]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.h
target/arm: Convert jazelle from feature bit to isar1 test
[mirror_qemu.git] / target / arm / cpu.h
1 /*
2 * ARM virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 #else
30 # define TARGET_LONG_BITS 32
31 #endif
32
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO (0)
35
36 #define CPUArchState struct CPUARMState
37
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41
42 #define EXCP_UDEF 1 /* undefined instruction */
43 #define EXCP_SWI 2 /* software interrupt */
44 #define EXCP_PREFETCH_ABORT 3
45 #define EXCP_DATA_ABORT 4
46 #define EXCP_IRQ 5
47 #define EXCP_FIQ 6
48 #define EXCP_BKPT 7
49 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
50 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
51 #define EXCP_HVC 11 /* HyperVisor Call */
52 #define EXCP_HYP_TRAP 12
53 #define EXCP_SMC 13 /* Secure Monitor Call */
54 #define EXCP_VIRQ 14
55 #define EXCP_VFIQ 15
56 #define EXCP_SEMIHOST 16 /* semihosting call */
57 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
59 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61
62 #define ARMV7M_EXCP_RESET 1
63 #define ARMV7M_EXCP_NMI 2
64 #define ARMV7M_EXCP_HARD 3
65 #define ARMV7M_EXCP_MEM 4
66 #define ARMV7M_EXCP_BUS 5
67 #define ARMV7M_EXCP_USAGE 6
68 #define ARMV7M_EXCP_SECURE 7
69 #define ARMV7M_EXCP_SVC 11
70 #define ARMV7M_EXCP_DEBUG 12
71 #define ARMV7M_EXCP_PENDSV 14
72 #define ARMV7M_EXCP_SYSTICK 15
73
74 /* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
83 enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87 };
88
89 /* ARM-specific interrupt pending bits. */
90 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
93
94 /* The usual mapping for an AArch64 system register to its AArch32
95 * counterpart is for the 32 bit world to have access to the lower
96 * half only (with writes leaving the upper half untouched). It's
97 * therefore useful to be able to pass TCG the offset of the least
98 * significant half of a uint64_t struct member.
99 */
100 #ifdef HOST_WORDS_BIGENDIAN
101 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
102 #define offsetofhigh32(S, M) offsetof(S, M)
103 #else
104 #define offsetoflow32(S, M) offsetof(S, M)
105 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
106 #endif
107
108 /* Meanings of the ARMCPU object's four inbound GPIO lines */
109 #define ARM_CPU_IRQ 0
110 #define ARM_CPU_FIQ 1
111 #define ARM_CPU_VIRQ 2
112 #define ARM_CPU_VFIQ 3
113
114 #define NB_MMU_MODES 8
115 /* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119 #define TARGET_INSN_START_EXTRA_WORDS 2
120
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
128
129 /* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
136
137 /**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
140 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141 * @cpregs_keys: Array that contains the corresponding Key of
142 * a given cpreg with the same order of the cpreg in the XML description.
143 */
144 typedef struct DynamicGDBXMLInfo {
145 char *desc;
146 int num_cpregs;
147 uint32_t *cpregs_keys;
148 } DynamicGDBXMLInfo;
149
150 /* CPU state for each instance of a generic timer (in cp15 c14) */
151 typedef struct ARMGenericTimer {
152 uint64_t cval; /* Timer CompareValue register */
153 uint64_t ctl; /* Timer Control register */
154 } ARMGenericTimer;
155
156 #define GTIMER_PHYS 0
157 #define GTIMER_VIRT 1
158 #define GTIMER_HYP 2
159 #define GTIMER_SEC 3
160 #define NUM_GTIMERS 4
161
162 typedef struct {
163 uint64_t raw_tcr;
164 uint32_t mask;
165 uint32_t base_mask;
166 } TCR;
167
168 /* Define a maximum sized vector register.
169 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170 * For 64-bit, this is a 2048-bit SVE register.
171 *
172 * Note that the mapping between S, D, and Q views of the register bank
173 * differs between AArch64 and AArch32.
174 * In AArch32:
175 * Qn = regs[n].d[1]:regs[n].d[0]
176 * Dn = regs[n / 2].d[n & 1]
177 * Sn = regs[n / 4].d[n % 4 / 2],
178 * bits 31..0 for even n, and bits 63..32 for odd n
179 * (and regs[16] to regs[31] are inaccessible)
180 * In AArch64:
181 * Zn = regs[n].d[*]
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n].d[0]
184 * Sn = regs[n].d[0] bits 31..0
185 * Hn = regs[n].d[0] bits 15..0
186 *
187 * This corresponds to the architecturally defined mapping between
188 * the two execution states, and means we do not need to explicitly
189 * map these registers when changing states.
190 *
191 * Align the data for use with TCG host vector operations.
192 */
193
194 #ifdef TARGET_AARCH64
195 # define ARM_MAX_VQ 16
196 #else
197 # define ARM_MAX_VQ 1
198 #endif
199
200 typedef struct ARMVectorReg {
201 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202 } ARMVectorReg;
203
204 /* In AArch32 mode, predicate registers do not exist at all. */
205 #ifdef TARGET_AARCH64
206 typedef struct ARMPredicateReg {
207 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208 } ARMPredicateReg;
209 #endif
210
211
212 typedef struct CPUARMState {
213 /* Regs for current mode. */
214 uint32_t regs[16];
215
216 /* 32/64 switch only happens when taking and returning from
217 * exceptions so the overlap semantics are taken care of then
218 * instead of having a complicated union.
219 */
220 /* Regs for A64 mode. */
221 uint64_t xregs[32];
222 uint64_t pc;
223 /* PSTATE isn't an architectural register for ARMv8. However, it is
224 * convenient for us to assemble the underlying state into a 32 bit format
225 * identical to the architectural format used for the SPSR. (This is also
226 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
227 * 'pstate' register are.) Of the PSTATE bits:
228 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
229 * semantics as for AArch32, as described in the comments on each field)
230 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
231 * DAIF (exception masks) are kept in env->daif
232 * all other bits are stored in their correct places in env->pstate
233 */
234 uint32_t pstate;
235 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
236
237 /* Frequently accessed CPSR bits are stored separately for efficiency.
238 This contains all the other bits. Use cpsr_{read,write} to access
239 the whole CPSR. */
240 uint32_t uncached_cpsr;
241 uint32_t spsr;
242
243 /* Banked registers. */
244 uint64_t banked_spsr[8];
245 uint32_t banked_r13[8];
246 uint32_t banked_r14[8];
247
248 /* These hold r8-r12. */
249 uint32_t usr_regs[5];
250 uint32_t fiq_regs[5];
251
252 /* cpsr flag cache for faster execution */
253 uint32_t CF; /* 0 or 1 */
254 uint32_t VF; /* V is the bit 31. All other bits are undefined */
255 uint32_t NF; /* N is bit 31. All other bits are undefined. */
256 uint32_t ZF; /* Z set if zero. */
257 uint32_t QF; /* 0 or 1 */
258 uint32_t GE; /* cpsr[19:16] */
259 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
260 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
261 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
262
263 uint64_t elr_el[4]; /* AArch64 exception link regs */
264 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
265
266 /* System control coprocessor (cp15) */
267 struct {
268 uint32_t c0_cpuid;
269 union { /* Cache size selection */
270 struct {
271 uint64_t _unused_csselr0;
272 uint64_t csselr_ns;
273 uint64_t _unused_csselr1;
274 uint64_t csselr_s;
275 };
276 uint64_t csselr_el[4];
277 };
278 union { /* System control register. */
279 struct {
280 uint64_t _unused_sctlr;
281 uint64_t sctlr_ns;
282 uint64_t hsctlr;
283 uint64_t sctlr_s;
284 };
285 uint64_t sctlr_el[4];
286 };
287 uint64_t cpacr_el1; /* Architectural feature access control register */
288 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
289 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
290 uint64_t sder; /* Secure debug enable register. */
291 uint32_t nsacr; /* Non-secure access control register. */
292 union { /* MMU translation table base 0. */
293 struct {
294 uint64_t _unused_ttbr0_0;
295 uint64_t ttbr0_ns;
296 uint64_t _unused_ttbr0_1;
297 uint64_t ttbr0_s;
298 };
299 uint64_t ttbr0_el[4];
300 };
301 union { /* MMU translation table base 1. */
302 struct {
303 uint64_t _unused_ttbr1_0;
304 uint64_t ttbr1_ns;
305 uint64_t _unused_ttbr1_1;
306 uint64_t ttbr1_s;
307 };
308 uint64_t ttbr1_el[4];
309 };
310 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
311 /* MMU translation table base control. */
312 TCR tcr_el[4];
313 TCR vtcr_el2; /* Virtualization Translation Control. */
314 uint32_t c2_data; /* MPU data cacheable bits. */
315 uint32_t c2_insn; /* MPU instruction cacheable bits. */
316 union { /* MMU domain access control register
317 * MPU write buffer control.
318 */
319 struct {
320 uint64_t dacr_ns;
321 uint64_t dacr_s;
322 };
323 struct {
324 uint64_t dacr32_el2;
325 };
326 };
327 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
328 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
329 uint64_t hcr_el2; /* Hypervisor configuration register */
330 uint64_t scr_el3; /* Secure configuration register. */
331 union { /* Fault status registers. */
332 struct {
333 uint64_t ifsr_ns;
334 uint64_t ifsr_s;
335 };
336 struct {
337 uint64_t ifsr32_el2;
338 };
339 };
340 union {
341 struct {
342 uint64_t _unused_dfsr;
343 uint64_t dfsr_ns;
344 uint64_t hsr;
345 uint64_t dfsr_s;
346 };
347 uint64_t esr_el[4];
348 };
349 uint32_t c6_region[8]; /* MPU base/size registers. */
350 union { /* Fault address registers. */
351 struct {
352 uint64_t _unused_far0;
353 #ifdef HOST_WORDS_BIGENDIAN
354 uint32_t ifar_ns;
355 uint32_t dfar_ns;
356 uint32_t ifar_s;
357 uint32_t dfar_s;
358 #else
359 uint32_t dfar_ns;
360 uint32_t ifar_ns;
361 uint32_t dfar_s;
362 uint32_t ifar_s;
363 #endif
364 uint64_t _unused_far3;
365 };
366 uint64_t far_el[4];
367 };
368 uint64_t hpfar_el2;
369 uint64_t hstr_el2;
370 union { /* Translation result. */
371 struct {
372 uint64_t _unused_par_0;
373 uint64_t par_ns;
374 uint64_t _unused_par_1;
375 uint64_t par_s;
376 };
377 uint64_t par_el[4];
378 };
379
380 uint32_t c9_insn; /* Cache lockdown registers. */
381 uint32_t c9_data;
382 uint64_t c9_pmcr; /* performance monitor control register */
383 uint64_t c9_pmcnten; /* perf monitor counter enables */
384 uint64_t c9_pmovsr; /* perf monitor overflow status */
385 uint64_t c9_pmuserenr; /* perf monitor user enable */
386 uint64_t c9_pmselr; /* perf monitor counter selection register */
387 uint64_t c9_pminten; /* perf monitor interrupt enables */
388 union { /* Memory attribute redirection */
389 struct {
390 #ifdef HOST_WORDS_BIGENDIAN
391 uint64_t _unused_mair_0;
392 uint32_t mair1_ns;
393 uint32_t mair0_ns;
394 uint64_t _unused_mair_1;
395 uint32_t mair1_s;
396 uint32_t mair0_s;
397 #else
398 uint64_t _unused_mair_0;
399 uint32_t mair0_ns;
400 uint32_t mair1_ns;
401 uint64_t _unused_mair_1;
402 uint32_t mair0_s;
403 uint32_t mair1_s;
404 #endif
405 };
406 uint64_t mair_el[4];
407 };
408 union { /* vector base address register */
409 struct {
410 uint64_t _unused_vbar;
411 uint64_t vbar_ns;
412 uint64_t hvbar;
413 uint64_t vbar_s;
414 };
415 uint64_t vbar_el[4];
416 };
417 uint32_t mvbar; /* (monitor) vector base address register */
418 struct { /* FCSE PID. */
419 uint32_t fcseidr_ns;
420 uint32_t fcseidr_s;
421 };
422 union { /* Context ID. */
423 struct {
424 uint64_t _unused_contextidr_0;
425 uint64_t contextidr_ns;
426 uint64_t _unused_contextidr_1;
427 uint64_t contextidr_s;
428 };
429 uint64_t contextidr_el[4];
430 };
431 union { /* User RW Thread register. */
432 struct {
433 uint64_t tpidrurw_ns;
434 uint64_t tpidrprw_ns;
435 uint64_t htpidr;
436 uint64_t _tpidr_el3;
437 };
438 uint64_t tpidr_el[4];
439 };
440 /* The secure banks of these registers don't map anywhere */
441 uint64_t tpidrurw_s;
442 uint64_t tpidrprw_s;
443 uint64_t tpidruro_s;
444
445 union { /* User RO Thread register. */
446 uint64_t tpidruro_ns;
447 uint64_t tpidrro_el[1];
448 };
449 uint64_t c14_cntfrq; /* Counter Frequency register */
450 uint64_t c14_cntkctl; /* Timer Control register */
451 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
452 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
453 ARMGenericTimer c14_timer[NUM_GTIMERS];
454 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
455 uint32_t c15_ticonfig; /* TI925T configuration byte. */
456 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
457 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
458 uint32_t c15_threadid; /* TI debugger thread-ID. */
459 uint32_t c15_config_base_address; /* SCU base address. */
460 uint32_t c15_diagnostic; /* diagnostic register */
461 uint32_t c15_power_diagnostic;
462 uint32_t c15_power_control; /* power control */
463 uint64_t dbgbvr[16]; /* breakpoint value registers */
464 uint64_t dbgbcr[16]; /* breakpoint control registers */
465 uint64_t dbgwvr[16]; /* watchpoint value registers */
466 uint64_t dbgwcr[16]; /* watchpoint control registers */
467 uint64_t mdscr_el1;
468 uint64_t oslsr_el1; /* OS Lock Status */
469 uint64_t mdcr_el2;
470 uint64_t mdcr_el3;
471 /* If the counter is enabled, this stores the last time the counter
472 * was reset. Otherwise it stores the counter value
473 */
474 uint64_t c15_ccnt;
475 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
476 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
477 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
478 } cp15;
479
480 struct {
481 /* M profile has up to 4 stack pointers:
482 * a Main Stack Pointer and a Process Stack Pointer for each
483 * of the Secure and Non-Secure states. (If the CPU doesn't support
484 * the security extension then it has only two SPs.)
485 * In QEMU we always store the currently active SP in regs[13],
486 * and the non-active SP for the current security state in
487 * v7m.other_sp. The stack pointers for the inactive security state
488 * are stored in other_ss_msp and other_ss_psp.
489 * switch_v7m_security_state() is responsible for rearranging them
490 * when we change security state.
491 */
492 uint32_t other_sp;
493 uint32_t other_ss_msp;
494 uint32_t other_ss_psp;
495 uint32_t vecbase[M_REG_NUM_BANKS];
496 uint32_t basepri[M_REG_NUM_BANKS];
497 uint32_t control[M_REG_NUM_BANKS];
498 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
499 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
500 uint32_t hfsr; /* HardFault Status */
501 uint32_t dfsr; /* Debug Fault Status Register */
502 uint32_t sfsr; /* Secure Fault Status Register */
503 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
504 uint32_t bfar; /* BusFault Address */
505 uint32_t sfar; /* Secure Fault Address Register */
506 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
507 int exception;
508 uint32_t primask[M_REG_NUM_BANKS];
509 uint32_t faultmask[M_REG_NUM_BANKS];
510 uint32_t aircr; /* only holds r/w state if security extn implemented */
511 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
512 uint32_t csselr[M_REG_NUM_BANKS];
513 uint32_t scr[M_REG_NUM_BANKS];
514 uint32_t msplim[M_REG_NUM_BANKS];
515 uint32_t psplim[M_REG_NUM_BANKS];
516 } v7m;
517
518 /* Information associated with an exception about to be taken:
519 * code which raises an exception must set cs->exception_index and
520 * the relevant parts of this structure; the cpu_do_interrupt function
521 * will then set the guest-visible registers as part of the exception
522 * entry process.
523 */
524 struct {
525 uint32_t syndrome; /* AArch64 format syndrome register */
526 uint32_t fsr; /* AArch32 format fault status register info */
527 uint64_t vaddress; /* virtual addr associated with exception, if any */
528 uint32_t target_el; /* EL the exception should be targeted for */
529 /* If we implement EL2 we will also need to store information
530 * about the intermediate physical address for stage 2 faults.
531 */
532 } exception;
533
534 /* Information associated with an SError */
535 struct {
536 uint8_t pending;
537 uint8_t has_esr;
538 uint64_t esr;
539 } serror;
540
541 /* Thumb-2 EE state. */
542 uint32_t teecr;
543 uint32_t teehbr;
544
545 /* VFP coprocessor state. */
546 struct {
547 ARMVectorReg zregs[32];
548
549 #ifdef TARGET_AARCH64
550 /* Store FFR as pregs[16] to make it easier to treat as any other. */
551 #define FFR_PRED_NUM 16
552 ARMPredicateReg pregs[17];
553 /* Scratch space for aa64 sve predicate temporary. */
554 ARMPredicateReg preg_tmp;
555 #endif
556
557 uint32_t xregs[16];
558 /* We store these fpcsr fields separately for convenience. */
559 int vec_len;
560 int vec_stride;
561
562 /* Scratch space for aa32 neon expansion. */
563 uint32_t scratch[8];
564
565 /* There are a number of distinct float control structures:
566 *
567 * fp_status: is the "normal" fp status.
568 * fp_status_fp16: used for half-precision calculations
569 * standard_fp_status : the ARM "Standard FPSCR Value"
570 *
571 * Half-precision operations are governed by a separate
572 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
573 * status structure to control this.
574 *
575 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
576 * round-to-nearest and is used by any operations (generally
577 * Neon) which the architecture defines as controlled by the
578 * standard FPSCR value rather than the FPSCR.
579 *
580 * To avoid having to transfer exception bits around, we simply
581 * say that the FPSCR cumulative exception flags are the logical
582 * OR of the flags in the three fp statuses. This relies on the
583 * only thing which needs to read the exception flags being
584 * an explicit FPSCR read.
585 */
586 float_status fp_status;
587 float_status fp_status_f16;
588 float_status standard_fp_status;
589
590 /* ZCR_EL[1-3] */
591 uint64_t zcr_el[4];
592 } vfp;
593 uint64_t exclusive_addr;
594 uint64_t exclusive_val;
595 uint64_t exclusive_high;
596
597 /* iwMMXt coprocessor state. */
598 struct {
599 uint64_t regs[16];
600 uint64_t val;
601
602 uint32_t cregs[16];
603 } iwmmxt;
604
605 #if defined(CONFIG_USER_ONLY)
606 /* For usermode syscall translation. */
607 int eabi;
608 #endif
609
610 struct CPUBreakpoint *cpu_breakpoint[16];
611 struct CPUWatchpoint *cpu_watchpoint[16];
612
613 /* Fields up to this point are cleared by a CPU reset */
614 struct {} end_reset_fields;
615
616 CPU_COMMON
617
618 /* Fields after CPU_COMMON are preserved across CPU reset. */
619
620 /* Internal CPU feature flags. */
621 uint64_t features;
622
623 /* PMSAv7 MPU */
624 struct {
625 uint32_t *drbar;
626 uint32_t *drsr;
627 uint32_t *dracr;
628 uint32_t rnr[M_REG_NUM_BANKS];
629 } pmsav7;
630
631 /* PMSAv8 MPU */
632 struct {
633 /* The PMSAv8 implementation also shares some PMSAv7 config
634 * and state:
635 * pmsav7.rnr (region number register)
636 * pmsav7_dregion (number of configured regions)
637 */
638 uint32_t *rbar[M_REG_NUM_BANKS];
639 uint32_t *rlar[M_REG_NUM_BANKS];
640 uint32_t mair0[M_REG_NUM_BANKS];
641 uint32_t mair1[M_REG_NUM_BANKS];
642 } pmsav8;
643
644 /* v8M SAU */
645 struct {
646 uint32_t *rbar;
647 uint32_t *rlar;
648 uint32_t rnr;
649 uint32_t ctrl;
650 } sau;
651
652 void *nvic;
653 const struct arm_boot_info *boot_info;
654 /* Store GICv3CPUState to access from this struct */
655 void *gicv3state;
656 } CPUARMState;
657
658 /**
659 * ARMELChangeHookFn:
660 * type of a function which can be registered via arm_register_el_change_hook()
661 * to get callbacks when the CPU changes its exception level or mode.
662 */
663 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
664 typedef struct ARMELChangeHook ARMELChangeHook;
665 struct ARMELChangeHook {
666 ARMELChangeHookFn *hook;
667 void *opaque;
668 QLIST_ENTRY(ARMELChangeHook) node;
669 };
670
671 /* These values map onto the return values for
672 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
673 typedef enum ARMPSCIState {
674 PSCI_ON = 0,
675 PSCI_OFF = 1,
676 PSCI_ON_PENDING = 2
677 } ARMPSCIState;
678
679 typedef struct ARMISARegisters ARMISARegisters;
680
681 /**
682 * ARMCPU:
683 * @env: #CPUARMState
684 *
685 * An ARM CPU core.
686 */
687 struct ARMCPU {
688 /*< private >*/
689 CPUState parent_obj;
690 /*< public >*/
691
692 CPUARMState env;
693
694 /* Coprocessor information */
695 GHashTable *cp_regs;
696 /* For marshalling (mostly coprocessor) register state between the
697 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
698 * we use these arrays.
699 */
700 /* List of register indexes managed via these arrays; (full KVM style
701 * 64 bit indexes, not CPRegInfo 32 bit indexes)
702 */
703 uint64_t *cpreg_indexes;
704 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
705 uint64_t *cpreg_values;
706 /* Length of the indexes, values, reset_values arrays */
707 int32_t cpreg_array_len;
708 /* These are used only for migration: incoming data arrives in
709 * these fields and is sanity checked in post_load before copying
710 * to the working data structures above.
711 */
712 uint64_t *cpreg_vmstate_indexes;
713 uint64_t *cpreg_vmstate_values;
714 int32_t cpreg_vmstate_array_len;
715
716 DynamicGDBXMLInfo dyn_xml;
717
718 /* Timers used by the generic (architected) timer */
719 QEMUTimer *gt_timer[NUM_GTIMERS];
720 /* GPIO outputs for generic timer */
721 qemu_irq gt_timer_outputs[NUM_GTIMERS];
722 /* GPIO output for GICv3 maintenance interrupt signal */
723 qemu_irq gicv3_maintenance_interrupt;
724 /* GPIO output for the PMU interrupt */
725 qemu_irq pmu_interrupt;
726
727 /* MemoryRegion to use for secure physical accesses */
728 MemoryRegion *secure_memory;
729
730 /* For v8M, pointer to the IDAU interface provided by board/SoC */
731 Object *idau;
732
733 /* 'compatible' string for this CPU for Linux device trees */
734 const char *dtb_compatible;
735
736 /* PSCI version for this CPU
737 * Bits[31:16] = Major Version
738 * Bits[15:0] = Minor Version
739 */
740 uint32_t psci_version;
741
742 /* Should CPU start in PSCI powered-off state? */
743 bool start_powered_off;
744
745 /* Current power state, access guarded by BQL */
746 ARMPSCIState power_state;
747
748 /* CPU has virtualization extension */
749 bool has_el2;
750 /* CPU has security extension */
751 bool has_el3;
752 /* CPU has PMU (Performance Monitor Unit) */
753 bool has_pmu;
754
755 /* CPU has memory protection unit */
756 bool has_mpu;
757 /* PMSAv7 MPU number of supported regions */
758 uint32_t pmsav7_dregion;
759 /* v8M SAU number of supported regions */
760 uint32_t sau_sregion;
761
762 /* PSCI conduit used to invoke PSCI methods
763 * 0 - disabled, 1 - smc, 2 - hvc
764 */
765 uint32_t psci_conduit;
766
767 /* For v8M, initial value of the Secure VTOR */
768 uint32_t init_svtor;
769
770 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
771 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
772 */
773 uint32_t kvm_target;
774
775 /* KVM init features for this CPU */
776 uint32_t kvm_init_features[7];
777
778 /* Uniprocessor system with MP extensions */
779 bool mp_is_up;
780
781 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
782 * and the probe failed (so we need to report the error in realize)
783 */
784 bool host_cpu_probe_failed;
785
786 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
787 * register.
788 */
789 int32_t core_count;
790
791 /* The instance init functions for implementation-specific subclasses
792 * set these fields to specify the implementation-dependent values of
793 * various constant registers and reset values of non-constant
794 * registers.
795 * Some of these might become QOM properties eventually.
796 * Field names match the official register names as defined in the
797 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
798 * is used for reset values of non-constant registers; no reset_
799 * prefix means a constant register.
800 * Some of these registers are split out into a substructure that
801 * is shared with the translators to control the ISA.
802 */
803 struct ARMISARegisters {
804 uint32_t id_isar0;
805 uint32_t id_isar1;
806 uint32_t id_isar2;
807 uint32_t id_isar3;
808 uint32_t id_isar4;
809 uint32_t id_isar5;
810 uint32_t id_isar6;
811 uint32_t mvfr0;
812 uint32_t mvfr1;
813 uint32_t mvfr2;
814 uint64_t id_aa64isar0;
815 uint64_t id_aa64isar1;
816 uint64_t id_aa64pfr0;
817 uint64_t id_aa64pfr1;
818 } isar;
819 uint32_t midr;
820 uint32_t revidr;
821 uint32_t reset_fpsid;
822 uint32_t ctr;
823 uint32_t reset_sctlr;
824 uint32_t id_pfr0;
825 uint32_t id_pfr1;
826 uint32_t id_dfr0;
827 uint32_t pmceid0;
828 uint32_t pmceid1;
829 uint32_t id_afr0;
830 uint32_t id_mmfr0;
831 uint32_t id_mmfr1;
832 uint32_t id_mmfr2;
833 uint32_t id_mmfr3;
834 uint32_t id_mmfr4;
835 uint64_t id_aa64dfr0;
836 uint64_t id_aa64dfr1;
837 uint64_t id_aa64afr0;
838 uint64_t id_aa64afr1;
839 uint64_t id_aa64mmfr0;
840 uint64_t id_aa64mmfr1;
841 uint32_t dbgdidr;
842 uint32_t clidr;
843 uint64_t mp_affinity; /* MP ID without feature bits */
844 /* The elements of this array are the CCSIDR values for each cache,
845 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
846 */
847 uint32_t ccsidr[16];
848 uint64_t reset_cbar;
849 uint32_t reset_auxcr;
850 bool reset_hivecs;
851 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
852 uint32_t dcz_blocksize;
853 uint64_t rvbar;
854
855 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
856 int gic_num_lrs; /* number of list registers */
857 int gic_vpribits; /* number of virtual priority bits */
858 int gic_vprebits; /* number of virtual preemption bits */
859
860 /* Whether the cfgend input is high (i.e. this CPU should reset into
861 * big-endian mode). This setting isn't used directly: instead it modifies
862 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
863 * architecture version.
864 */
865 bool cfgend;
866
867 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
868 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
869
870 int32_t node_id; /* NUMA node this CPU belongs to */
871
872 /* Used to synchronize KVM and QEMU in-kernel device levels */
873 uint8_t device_irq_level;
874
875 /* Used to set the maximum vector length the cpu will support. */
876 uint32_t sve_max_vq;
877 };
878
879 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
880 {
881 return container_of(env, ARMCPU, env);
882 }
883
884 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
885
886 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
887
888 #define ENV_OFFSET offsetof(ARMCPU, env)
889
890 #ifndef CONFIG_USER_ONLY
891 extern const struct VMStateDescription vmstate_arm_cpu;
892 #endif
893
894 void arm_cpu_do_interrupt(CPUState *cpu);
895 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
896 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
897
898 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
899 int flags);
900
901 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
902 MemTxAttrs *attrs);
903
904 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
905 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
906
907 /* Dynamically generates for gdb stub an XML description of the sysregs from
908 * the cp_regs hashtable. Returns the registered sysregs number.
909 */
910 int arm_gen_dynamic_xml(CPUState *cpu);
911
912 /* Returns the dynamically generated XML for the gdb stub.
913 * Returns a pointer to the XML contents for the specified XML file or NULL
914 * if the XML name doesn't match the predefined one.
915 */
916 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
917
918 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
919 int cpuid, void *opaque);
920 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
921 int cpuid, void *opaque);
922
923 #ifdef TARGET_AARCH64
924 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
925 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
926 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
927 void aarch64_sve_change_el(CPUARMState *env, int old_el,
928 int new_el, bool el0_a64);
929 #else
930 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
931 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
932 int n, bool a)
933 { }
934 #endif
935
936 target_ulong do_arm_semihosting(CPUARMState *env);
937 void aarch64_sync_32_to_64(CPUARMState *env);
938 void aarch64_sync_64_to_32(CPUARMState *env);
939
940 int fp_exception_el(CPUARMState *env, int cur_el);
941 int sve_exception_el(CPUARMState *env, int cur_el);
942 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
943
944 static inline bool is_a64(CPUARMState *env)
945 {
946 return env->aarch64;
947 }
948
949 /* you can call this signal handler from your SIGBUS and SIGSEGV
950 signal handlers to inform the virtual CPU of exceptions. non zero
951 is returned if the signal was handled by the virtual CPU. */
952 int cpu_arm_signal_handler(int host_signum, void *pinfo,
953 void *puc);
954
955 /**
956 * pmccntr_sync
957 * @env: CPUARMState
958 *
959 * Synchronises the counter in the PMCCNTR. This must always be called twice,
960 * once before any action that might affect the timer and again afterwards.
961 * The function is used to swap the state of the register if required.
962 * This only happens when not in user mode (!CONFIG_USER_ONLY)
963 */
964 void pmccntr_sync(CPUARMState *env);
965
966 /* SCTLR bit meanings. Several bits have been reused in newer
967 * versions of the architecture; in that case we define constants
968 * for both old and new bit meanings. Code which tests against those
969 * bits should probably check or otherwise arrange that the CPU
970 * is the architectural version it expects.
971 */
972 #define SCTLR_M (1U << 0)
973 #define SCTLR_A (1U << 1)
974 #define SCTLR_C (1U << 2)
975 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
976 #define SCTLR_SA (1U << 3)
977 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
978 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
979 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
980 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
981 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
982 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
983 #define SCTLR_ITD (1U << 7) /* v8 onward */
984 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
985 #define SCTLR_SED (1U << 8) /* v8 onward */
986 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
987 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
988 #define SCTLR_F (1U << 10) /* up to v6 */
989 #define SCTLR_SW (1U << 10) /* v7 onward */
990 #define SCTLR_Z (1U << 11)
991 #define SCTLR_I (1U << 12)
992 #define SCTLR_V (1U << 13)
993 #define SCTLR_RR (1U << 14) /* up to v7 */
994 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
995 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
996 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
997 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
998 #define SCTLR_nTWI (1U << 16) /* v8 onward */
999 #define SCTLR_HA (1U << 17)
1000 #define SCTLR_BR (1U << 17) /* PMSA only */
1001 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1002 #define SCTLR_nTWE (1U << 18) /* v8 onward */
1003 #define SCTLR_WXN (1U << 19)
1004 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1005 #define SCTLR_UWXN (1U << 20) /* v7 onward */
1006 #define SCTLR_FI (1U << 21)
1007 #define SCTLR_U (1U << 22)
1008 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1009 #define SCTLR_VE (1U << 24) /* up to v7 */
1010 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1011 #define SCTLR_EE (1U << 25)
1012 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1013 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1014 #define SCTLR_NMFI (1U << 27)
1015 #define SCTLR_TRE (1U << 28)
1016 #define SCTLR_AFE (1U << 29)
1017 #define SCTLR_TE (1U << 30)
1018
1019 #define CPTR_TCPAC (1U << 31)
1020 #define CPTR_TTA (1U << 20)
1021 #define CPTR_TFP (1U << 10)
1022 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1023 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */
1024
1025 #define MDCR_EPMAD (1U << 21)
1026 #define MDCR_EDAD (1U << 20)
1027 #define MDCR_SPME (1U << 17)
1028 #define MDCR_SDD (1U << 16)
1029 #define MDCR_SPD (3U << 14)
1030 #define MDCR_TDRA (1U << 11)
1031 #define MDCR_TDOSA (1U << 10)
1032 #define MDCR_TDA (1U << 9)
1033 #define MDCR_TDE (1U << 8)
1034 #define MDCR_HPME (1U << 7)
1035 #define MDCR_TPM (1U << 6)
1036 #define MDCR_TPMCR (1U << 5)
1037
1038 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1039 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1040
1041 #define CPSR_M (0x1fU)
1042 #define CPSR_T (1U << 5)
1043 #define CPSR_F (1U << 6)
1044 #define CPSR_I (1U << 7)
1045 #define CPSR_A (1U << 8)
1046 #define CPSR_E (1U << 9)
1047 #define CPSR_IT_2_7 (0xfc00U)
1048 #define CPSR_GE (0xfU << 16)
1049 #define CPSR_IL (1U << 20)
1050 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1051 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1052 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1053 * where it is live state but not accessible to the AArch32 code.
1054 */
1055 #define CPSR_RESERVED (0x7U << 21)
1056 #define CPSR_J (1U << 24)
1057 #define CPSR_IT_0_1 (3U << 25)
1058 #define CPSR_Q (1U << 27)
1059 #define CPSR_V (1U << 28)
1060 #define CPSR_C (1U << 29)
1061 #define CPSR_Z (1U << 30)
1062 #define CPSR_N (1U << 31)
1063 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1064 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1065
1066 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1067 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1068 | CPSR_NZCV)
1069 /* Bits writable in user mode. */
1070 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1071 /* Execution state bits. MRS read as zero, MSR writes ignored. */
1072 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1073 /* Mask of bits which may be set by exception return copying them from SPSR */
1074 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1075
1076 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1077 #define XPSR_EXCP 0x1ffU
1078 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1079 #define XPSR_IT_2_7 CPSR_IT_2_7
1080 #define XPSR_GE CPSR_GE
1081 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1082 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1083 #define XPSR_IT_0_1 CPSR_IT_0_1
1084 #define XPSR_Q CPSR_Q
1085 #define XPSR_V CPSR_V
1086 #define XPSR_C CPSR_C
1087 #define XPSR_Z CPSR_Z
1088 #define XPSR_N CPSR_N
1089 #define XPSR_NZCV CPSR_NZCV
1090 #define XPSR_IT CPSR_IT
1091
1092 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1093 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1094 #define TTBCR_PD0 (1U << 4)
1095 #define TTBCR_PD1 (1U << 5)
1096 #define TTBCR_EPD0 (1U << 7)
1097 #define TTBCR_IRGN0 (3U << 8)
1098 #define TTBCR_ORGN0 (3U << 10)
1099 #define TTBCR_SH0 (3U << 12)
1100 #define TTBCR_T1SZ (3U << 16)
1101 #define TTBCR_A1 (1U << 22)
1102 #define TTBCR_EPD1 (1U << 23)
1103 #define TTBCR_IRGN1 (3U << 24)
1104 #define TTBCR_ORGN1 (3U << 26)
1105 #define TTBCR_SH1 (1U << 28)
1106 #define TTBCR_EAE (1U << 31)
1107
1108 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1109 * Only these are valid when in AArch64 mode; in
1110 * AArch32 mode SPSRs are basically CPSR-format.
1111 */
1112 #define PSTATE_SP (1U)
1113 #define PSTATE_M (0xFU)
1114 #define PSTATE_nRW (1U << 4)
1115 #define PSTATE_F (1U << 6)
1116 #define PSTATE_I (1U << 7)
1117 #define PSTATE_A (1U << 8)
1118 #define PSTATE_D (1U << 9)
1119 #define PSTATE_IL (1U << 20)
1120 #define PSTATE_SS (1U << 21)
1121 #define PSTATE_V (1U << 28)
1122 #define PSTATE_C (1U << 29)
1123 #define PSTATE_Z (1U << 30)
1124 #define PSTATE_N (1U << 31)
1125 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1126 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1127 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
1128 /* Mode values for AArch64 */
1129 #define PSTATE_MODE_EL3h 13
1130 #define PSTATE_MODE_EL3t 12
1131 #define PSTATE_MODE_EL2h 9
1132 #define PSTATE_MODE_EL2t 8
1133 #define PSTATE_MODE_EL1h 5
1134 #define PSTATE_MODE_EL1t 4
1135 #define PSTATE_MODE_EL0t 0
1136
1137 /* Write a new value to v7m.exception, thus transitioning into or out
1138 * of Handler mode; this may result in a change of active stack pointer.
1139 */
1140 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1141
1142 /* Map EL and handler into a PSTATE_MODE. */
1143 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1144 {
1145 return (el << 2) | handler;
1146 }
1147
1148 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1149 * interprocessing, so we don't attempt to sync with the cpsr state used by
1150 * the 32 bit decoder.
1151 */
1152 static inline uint32_t pstate_read(CPUARMState *env)
1153 {
1154 int ZF;
1155
1156 ZF = (env->ZF == 0);
1157 return (env->NF & 0x80000000) | (ZF << 30)
1158 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1159 | env->pstate | env->daif;
1160 }
1161
1162 static inline void pstate_write(CPUARMState *env, uint32_t val)
1163 {
1164 env->ZF = (~val) & PSTATE_Z;
1165 env->NF = val;
1166 env->CF = (val >> 29) & 1;
1167 env->VF = (val << 3) & 0x80000000;
1168 env->daif = val & PSTATE_DAIF;
1169 env->pstate = val & ~CACHED_PSTATE_BITS;
1170 }
1171
1172 /* Return the current CPSR value. */
1173 uint32_t cpsr_read(CPUARMState *env);
1174
1175 typedef enum CPSRWriteType {
1176 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1177 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1178 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1179 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1180 } CPSRWriteType;
1181
1182 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1183 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1184 CPSRWriteType write_type);
1185
1186 /* Return the current xPSR value. */
1187 static inline uint32_t xpsr_read(CPUARMState *env)
1188 {
1189 int ZF;
1190 ZF = (env->ZF == 0);
1191 return (env->NF & 0x80000000) | (ZF << 30)
1192 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1193 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1194 | ((env->condexec_bits & 0xfc) << 8)
1195 | env->v7m.exception;
1196 }
1197
1198 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1199 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1200 {
1201 if (mask & XPSR_NZCV) {
1202 env->ZF = (~val) & XPSR_Z;
1203 env->NF = val;
1204 env->CF = (val >> 29) & 1;
1205 env->VF = (val << 3) & 0x80000000;
1206 }
1207 if (mask & XPSR_Q) {
1208 env->QF = ((val & XPSR_Q) != 0);
1209 }
1210 if (mask & XPSR_T) {
1211 env->thumb = ((val & XPSR_T) != 0);
1212 }
1213 if (mask & XPSR_IT_0_1) {
1214 env->condexec_bits &= ~3;
1215 env->condexec_bits |= (val >> 25) & 3;
1216 }
1217 if (mask & XPSR_IT_2_7) {
1218 env->condexec_bits &= 3;
1219 env->condexec_bits |= (val >> 8) & 0xfc;
1220 }
1221 if (mask & XPSR_EXCP) {
1222 /* Note that this only happens on exception exit */
1223 write_v7m_exception(env, val & XPSR_EXCP);
1224 }
1225 }
1226
1227 #define HCR_VM (1ULL << 0)
1228 #define HCR_SWIO (1ULL << 1)
1229 #define HCR_PTW (1ULL << 2)
1230 #define HCR_FMO (1ULL << 3)
1231 #define HCR_IMO (1ULL << 4)
1232 #define HCR_AMO (1ULL << 5)
1233 #define HCR_VF (1ULL << 6)
1234 #define HCR_VI (1ULL << 7)
1235 #define HCR_VSE (1ULL << 8)
1236 #define HCR_FB (1ULL << 9)
1237 #define HCR_BSU_MASK (3ULL << 10)
1238 #define HCR_DC (1ULL << 12)
1239 #define HCR_TWI (1ULL << 13)
1240 #define HCR_TWE (1ULL << 14)
1241 #define HCR_TID0 (1ULL << 15)
1242 #define HCR_TID1 (1ULL << 16)
1243 #define HCR_TID2 (1ULL << 17)
1244 #define HCR_TID3 (1ULL << 18)
1245 #define HCR_TSC (1ULL << 19)
1246 #define HCR_TIDCP (1ULL << 20)
1247 #define HCR_TACR (1ULL << 21)
1248 #define HCR_TSW (1ULL << 22)
1249 #define HCR_TPC (1ULL << 23)
1250 #define HCR_TPU (1ULL << 24)
1251 #define HCR_TTLB (1ULL << 25)
1252 #define HCR_TVM (1ULL << 26)
1253 #define HCR_TGE (1ULL << 27)
1254 #define HCR_TDZ (1ULL << 28)
1255 #define HCR_HCD (1ULL << 29)
1256 #define HCR_TRVM (1ULL << 30)
1257 #define HCR_RW (1ULL << 31)
1258 #define HCR_CD (1ULL << 32)
1259 #define HCR_ID (1ULL << 33)
1260 #define HCR_E2H (1ULL << 34)
1261 /*
1262 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1263 * HCR_MASK and then clear it again if the feature bit is not set in
1264 * hcr_write().
1265 */
1266 #define HCR_MASK ((1ULL << 34) - 1)
1267
1268 #define SCR_NS (1U << 0)
1269 #define SCR_IRQ (1U << 1)
1270 #define SCR_FIQ (1U << 2)
1271 #define SCR_EA (1U << 3)
1272 #define SCR_FW (1U << 4)
1273 #define SCR_AW (1U << 5)
1274 #define SCR_NET (1U << 6)
1275 #define SCR_SMD (1U << 7)
1276 #define SCR_HCE (1U << 8)
1277 #define SCR_SIF (1U << 9)
1278 #define SCR_RW (1U << 10)
1279 #define SCR_ST (1U << 11)
1280 #define SCR_TWI (1U << 12)
1281 #define SCR_TWE (1U << 13)
1282 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1283 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1284
1285 /* Return the current FPSCR value. */
1286 uint32_t vfp_get_fpscr(CPUARMState *env);
1287 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1288
1289 /* FPCR, Floating Point Control Register
1290 * FPSR, Floating Poiht Status Register
1291 *
1292 * For A64 the FPSCR is split into two logically distinct registers,
1293 * FPCR and FPSR. However since they still use non-overlapping bits
1294 * we store the underlying state in fpscr and just mask on read/write.
1295 */
1296 #define FPSR_MASK 0xf800009f
1297 #define FPCR_MASK 0x07ff9f00
1298
1299 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1300 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1301 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1302
1303 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1304 {
1305 return vfp_get_fpscr(env) & FPSR_MASK;
1306 }
1307
1308 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1309 {
1310 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1311 vfp_set_fpscr(env, new_fpscr);
1312 }
1313
1314 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1315 {
1316 return vfp_get_fpscr(env) & FPCR_MASK;
1317 }
1318
1319 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1320 {
1321 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1322 vfp_set_fpscr(env, new_fpscr);
1323 }
1324
1325 enum arm_cpu_mode {
1326 ARM_CPU_MODE_USR = 0x10,
1327 ARM_CPU_MODE_FIQ = 0x11,
1328 ARM_CPU_MODE_IRQ = 0x12,
1329 ARM_CPU_MODE_SVC = 0x13,
1330 ARM_CPU_MODE_MON = 0x16,
1331 ARM_CPU_MODE_ABT = 0x17,
1332 ARM_CPU_MODE_HYP = 0x1a,
1333 ARM_CPU_MODE_UND = 0x1b,
1334 ARM_CPU_MODE_SYS = 0x1f
1335 };
1336
1337 /* VFP system registers. */
1338 #define ARM_VFP_FPSID 0
1339 #define ARM_VFP_FPSCR 1
1340 #define ARM_VFP_MVFR2 5
1341 #define ARM_VFP_MVFR1 6
1342 #define ARM_VFP_MVFR0 7
1343 #define ARM_VFP_FPEXC 8
1344 #define ARM_VFP_FPINST 9
1345 #define ARM_VFP_FPINST2 10
1346
1347 /* iwMMXt coprocessor control registers. */
1348 #define ARM_IWMMXT_wCID 0
1349 #define ARM_IWMMXT_wCon 1
1350 #define ARM_IWMMXT_wCSSF 2
1351 #define ARM_IWMMXT_wCASF 3
1352 #define ARM_IWMMXT_wCGR0 8
1353 #define ARM_IWMMXT_wCGR1 9
1354 #define ARM_IWMMXT_wCGR2 10
1355 #define ARM_IWMMXT_wCGR3 11
1356
1357 /* V7M CCR bits */
1358 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1359 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1360 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1361 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1362 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1363 FIELD(V7M_CCR, STKALIGN, 9, 1)
1364 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1365 FIELD(V7M_CCR, DC, 16, 1)
1366 FIELD(V7M_CCR, IC, 17, 1)
1367 FIELD(V7M_CCR, BP, 18, 1)
1368
1369 /* V7M SCR bits */
1370 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1371 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1372 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1373 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1374
1375 /* V7M AIRCR bits */
1376 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1377 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1378 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1379 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1380 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1381 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1382 FIELD(V7M_AIRCR, PRIS, 14, 1)
1383 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1384 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1385
1386 /* V7M CFSR bits for MMFSR */
1387 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1388 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1389 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1390 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1391 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1392 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1393
1394 /* V7M CFSR bits for BFSR */
1395 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1396 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1397 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1398 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1399 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1400 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1401 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1402
1403 /* V7M CFSR bits for UFSR */
1404 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1405 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1406 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1407 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1408 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1409 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1410 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1411
1412 /* V7M CFSR bit masks covering all of the subregister bits */
1413 FIELD(V7M_CFSR, MMFSR, 0, 8)
1414 FIELD(V7M_CFSR, BFSR, 8, 8)
1415 FIELD(V7M_CFSR, UFSR, 16, 16)
1416
1417 /* V7M HFSR bits */
1418 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1419 FIELD(V7M_HFSR, FORCED, 30, 1)
1420 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1421
1422 /* V7M DFSR bits */
1423 FIELD(V7M_DFSR, HALTED, 0, 1)
1424 FIELD(V7M_DFSR, BKPT, 1, 1)
1425 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1426 FIELD(V7M_DFSR, VCATCH, 3, 1)
1427 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1428
1429 /* V7M SFSR bits */
1430 FIELD(V7M_SFSR, INVEP, 0, 1)
1431 FIELD(V7M_SFSR, INVIS, 1, 1)
1432 FIELD(V7M_SFSR, INVER, 2, 1)
1433 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1434 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1435 FIELD(V7M_SFSR, LSPERR, 5, 1)
1436 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1437 FIELD(V7M_SFSR, LSERR, 7, 1)
1438
1439 /* v7M MPU_CTRL bits */
1440 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1441 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1442 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1443
1444 /* v7M CLIDR bits */
1445 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1446 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1447 FIELD(V7M_CLIDR, LOC, 24, 3)
1448 FIELD(V7M_CLIDR, LOUU, 27, 3)
1449 FIELD(V7M_CLIDR, ICB, 30, 2)
1450
1451 FIELD(V7M_CSSELR, IND, 0, 1)
1452 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1453 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1454 * define a mask for this and check that it doesn't permit running off
1455 * the end of the array.
1456 */
1457 FIELD(V7M_CSSELR, INDEX, 0, 4)
1458
1459 /*
1460 * System register ID fields.
1461 */
1462 FIELD(ID_ISAR0, SWAP, 0, 4)
1463 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1464 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1465 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1466 FIELD(ID_ISAR0, COPROC, 16, 4)
1467 FIELD(ID_ISAR0, DEBUG, 20, 4)
1468 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1469
1470 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1471 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1472 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1473 FIELD(ID_ISAR1, EXTEND, 12, 4)
1474 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1475 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1476 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1477 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1478
1479 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1480 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1481 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1482 FIELD(ID_ISAR2, MULT, 12, 4)
1483 FIELD(ID_ISAR2, MULTS, 16, 4)
1484 FIELD(ID_ISAR2, MULTU, 20, 4)
1485 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1486 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1487
1488 FIELD(ID_ISAR3, SATURATE, 0, 4)
1489 FIELD(ID_ISAR3, SIMD, 4, 4)
1490 FIELD(ID_ISAR3, SVC, 8, 4)
1491 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1492 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1493 FIELD(ID_ISAR3, T32COPY, 20, 4)
1494 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1495 FIELD(ID_ISAR3, T32EE, 28, 4)
1496
1497 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1498 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1499 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1500 FIELD(ID_ISAR4, SMC, 12, 4)
1501 FIELD(ID_ISAR4, BARRIER, 16, 4)
1502 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1503 FIELD(ID_ISAR4, PSR_M, 24, 4)
1504 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1505
1506 FIELD(ID_ISAR5, SEVL, 0, 4)
1507 FIELD(ID_ISAR5, AES, 4, 4)
1508 FIELD(ID_ISAR5, SHA1, 8, 4)
1509 FIELD(ID_ISAR5, SHA2, 12, 4)
1510 FIELD(ID_ISAR5, CRC32, 16, 4)
1511 FIELD(ID_ISAR5, RDM, 24, 4)
1512 FIELD(ID_ISAR5, VCMA, 28, 4)
1513
1514 FIELD(ID_ISAR6, JSCVT, 0, 4)
1515 FIELD(ID_ISAR6, DP, 4, 4)
1516 FIELD(ID_ISAR6, FHM, 8, 4)
1517 FIELD(ID_ISAR6, SB, 12, 4)
1518 FIELD(ID_ISAR6, SPECRES, 16, 4)
1519
1520 FIELD(ID_AA64ISAR0, AES, 4, 4)
1521 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1522 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1523 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1524 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1525 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1526 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1527 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1528 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1529 FIELD(ID_AA64ISAR0, DP, 44, 4)
1530 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1531 FIELD(ID_AA64ISAR0, TS, 52, 4)
1532 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1533 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1534
1535 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1536 FIELD(ID_AA64ISAR1, APA, 4, 4)
1537 FIELD(ID_AA64ISAR1, API, 8, 4)
1538 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1539 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1540 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1541 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1542 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1543 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1544 FIELD(ID_AA64ISAR1, SB, 36, 4)
1545 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1546
1547 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1548
1549 /* If adding a feature bit which corresponds to a Linux ELF
1550 * HWCAP bit, remember to update the feature-bit-to-hwcap
1551 * mapping in linux-user/elfload.c:get_elf_hwcap().
1552 */
1553 enum arm_features {
1554 ARM_FEATURE_VFP,
1555 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1556 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
1557 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
1558 ARM_FEATURE_V6,
1559 ARM_FEATURE_V6K,
1560 ARM_FEATURE_V7,
1561 ARM_FEATURE_THUMB2,
1562 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
1563 ARM_FEATURE_VFP3,
1564 ARM_FEATURE_VFP_FP16,
1565 ARM_FEATURE_NEON,
1566 ARM_FEATURE_M, /* Microcontroller profile. */
1567 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
1568 ARM_FEATURE_THUMB2EE,
1569 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1570 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1571 ARM_FEATURE_V4T,
1572 ARM_FEATURE_V5,
1573 ARM_FEATURE_STRONGARM,
1574 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1575 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1576 ARM_FEATURE_GENERIC_TIMER,
1577 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1578 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1579 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1580 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1581 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1582 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1583 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1584 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1585 ARM_FEATURE_V8,
1586 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1587 ARM_FEATURE_CBAR, /* has cp15 CBAR */
1588 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1589 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1590 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1591 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1592 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1593 ARM_FEATURE_PMU, /* has PMU support */
1594 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1595 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1596 ARM_FEATURE_SVE, /* has Scalable Vector Extension */
1597 ARM_FEATURE_V8_FP16, /* implements v8.2 half-precision float */
1598 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1599 };
1600
1601 static inline int arm_feature(CPUARMState *env, int feature)
1602 {
1603 return (env->features & (1ULL << feature)) != 0;
1604 }
1605
1606 #if !defined(CONFIG_USER_ONLY)
1607 /* Return true if exception levels below EL3 are in secure state,
1608 * or would be following an exception return to that level.
1609 * Unlike arm_is_secure() (which is always a question about the
1610 * _current_ state of the CPU) this doesn't care about the current
1611 * EL or mode.
1612 */
1613 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1614 {
1615 if (arm_feature(env, ARM_FEATURE_EL3)) {
1616 return !(env->cp15.scr_el3 & SCR_NS);
1617 } else {
1618 /* If EL3 is not supported then the secure state is implementation
1619 * defined, in which case QEMU defaults to non-secure.
1620 */
1621 return false;
1622 }
1623 }
1624
1625 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1626 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1627 {
1628 if (arm_feature(env, ARM_FEATURE_EL3)) {
1629 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1630 /* CPU currently in AArch64 state and EL3 */
1631 return true;
1632 } else if (!is_a64(env) &&
1633 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1634 /* CPU currently in AArch32 state and monitor mode */
1635 return true;
1636 }
1637 }
1638 return false;
1639 }
1640
1641 /* Return true if the processor is in secure state */
1642 static inline bool arm_is_secure(CPUARMState *env)
1643 {
1644 if (arm_is_el3_or_mon(env)) {
1645 return true;
1646 }
1647 return arm_is_secure_below_el3(env);
1648 }
1649
1650 #else
1651 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1652 {
1653 return false;
1654 }
1655
1656 static inline bool arm_is_secure(CPUARMState *env)
1657 {
1658 return false;
1659 }
1660 #endif
1661
1662 /* Return true if the specified exception level is running in AArch64 state. */
1663 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1664 {
1665 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1666 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1667 */
1668 assert(el >= 1 && el <= 3);
1669 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1670
1671 /* The highest exception level is always at the maximum supported
1672 * register width, and then lower levels have a register width controlled
1673 * by bits in the SCR or HCR registers.
1674 */
1675 if (el == 3) {
1676 return aa64;
1677 }
1678
1679 if (arm_feature(env, ARM_FEATURE_EL3)) {
1680 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1681 }
1682
1683 if (el == 2) {
1684 return aa64;
1685 }
1686
1687 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1688 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1689 }
1690
1691 return aa64;
1692 }
1693
1694 /* Function for determing whether guest cp register reads and writes should
1695 * access the secure or non-secure bank of a cp register. When EL3 is
1696 * operating in AArch32 state, the NS-bit determines whether the secure
1697 * instance of a cp register should be used. When EL3 is AArch64 (or if
1698 * it doesn't exist at all) then there is no register banking, and all
1699 * accesses are to the non-secure version.
1700 */
1701 static inline bool access_secure_reg(CPUARMState *env)
1702 {
1703 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1704 !arm_el_is_aa64(env, 3) &&
1705 !(env->cp15.scr_el3 & SCR_NS));
1706
1707 return ret;
1708 }
1709
1710 /* Macros for accessing a specified CP register bank */
1711 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1712 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1713
1714 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1715 do { \
1716 if (_secure) { \
1717 (_env)->cp15._regname##_s = (_val); \
1718 } else { \
1719 (_env)->cp15._regname##_ns = (_val); \
1720 } \
1721 } while (0)
1722
1723 /* Macros for automatically accessing a specific CP register bank depending on
1724 * the current secure state of the system. These macros are not intended for
1725 * supporting instruction translation reads/writes as these are dependent
1726 * solely on the SCR.NS bit and not the mode.
1727 */
1728 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1729 A32_BANKED_REG_GET((_env), _regname, \
1730 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1731
1732 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1733 A32_BANKED_REG_SET((_env), _regname, \
1734 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1735 (_val))
1736
1737 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1738 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1739 uint32_t cur_el, bool secure);
1740
1741 /* Interface between CPU and Interrupt controller. */
1742 #ifndef CONFIG_USER_ONLY
1743 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1744 #else
1745 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1746 {
1747 return true;
1748 }
1749 #endif
1750 /**
1751 * armv7m_nvic_set_pending: mark the specified exception as pending
1752 * @opaque: the NVIC
1753 * @irq: the exception number to mark pending
1754 * @secure: false for non-banked exceptions or for the nonsecure
1755 * version of a banked exception, true for the secure version of a banked
1756 * exception.
1757 *
1758 * Marks the specified exception as pending. Note that we will assert()
1759 * if @secure is true and @irq does not specify one of the fixed set
1760 * of architecturally banked exceptions.
1761 */
1762 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1763 /**
1764 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1765 * @opaque: the NVIC
1766 * @irq: the exception number to mark pending
1767 * @secure: false for non-banked exceptions or for the nonsecure
1768 * version of a banked exception, true for the secure version of a banked
1769 * exception.
1770 *
1771 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1772 * exceptions (exceptions generated in the course of trying to take
1773 * a different exception).
1774 */
1775 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1776 /**
1777 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1778 * exception, and whether it targets Secure state
1779 * @opaque: the NVIC
1780 * @pirq: set to pending exception number
1781 * @ptargets_secure: set to whether pending exception targets Secure
1782 *
1783 * This function writes the number of the highest priority pending
1784 * exception (the one which would be made active by
1785 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1786 * to true if the current highest priority pending exception should
1787 * be taken to Secure state, false for NS.
1788 */
1789 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1790 bool *ptargets_secure);
1791 /**
1792 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1793 * @opaque: the NVIC
1794 *
1795 * Move the current highest priority pending exception from the pending
1796 * state to the active state, and update v7m.exception to indicate that
1797 * it is the exception currently being handled.
1798 */
1799 void armv7m_nvic_acknowledge_irq(void *opaque);
1800 /**
1801 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1802 * @opaque: the NVIC
1803 * @irq: the exception number to complete
1804 * @secure: true if this exception was secure
1805 *
1806 * Returns: -1 if the irq was not active
1807 * 1 if completing this irq brought us back to base (no active irqs)
1808 * 0 if there is still an irq active after this one was completed
1809 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1810 */
1811 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
1812 /**
1813 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1814 * @opaque: the NVIC
1815 *
1816 * Returns: the raw execution priority as defined by the v8M architecture.
1817 * This is the execution priority minus the effects of AIRCR.PRIS,
1818 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1819 * (v8M ARM ARM I_PKLD.)
1820 */
1821 int armv7m_nvic_raw_execution_priority(void *opaque);
1822 /**
1823 * armv7m_nvic_neg_prio_requested: return true if the requested execution
1824 * priority is negative for the specified security state.
1825 * @opaque: the NVIC
1826 * @secure: the security state to test
1827 * This corresponds to the pseudocode IsReqExecPriNeg().
1828 */
1829 #ifndef CONFIG_USER_ONLY
1830 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1831 #else
1832 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1833 {
1834 return false;
1835 }
1836 #endif
1837
1838 /* Interface for defining coprocessor registers.
1839 * Registers are defined in tables of arm_cp_reginfo structs
1840 * which are passed to define_arm_cp_regs().
1841 */
1842
1843 /* When looking up a coprocessor register we look for it
1844 * via an integer which encodes all of:
1845 * coprocessor number
1846 * Crn, Crm, opc1, opc2 fields
1847 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1848 * or via MRRC/MCRR?)
1849 * non-secure/secure bank (AArch32 only)
1850 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1851 * (In this case crn and opc2 should be zero.)
1852 * For AArch64, there is no 32/64 bit size distinction;
1853 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1854 * and 4 bit CRn and CRm. The encoding patterns are chosen
1855 * to be easy to convert to and from the KVM encodings, and also
1856 * so that the hashtable can contain both AArch32 and AArch64
1857 * registers (to allow for interprocessing where we might run
1858 * 32 bit code on a 64 bit core).
1859 */
1860 /* This bit is private to our hashtable cpreg; in KVM register
1861 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1862 * in the upper bits of the 64 bit ID.
1863 */
1864 #define CP_REG_AA64_SHIFT 28
1865 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1866
1867 /* To enable banking of coprocessor registers depending on ns-bit we
1868 * add a bit to distinguish between secure and non-secure cpregs in the
1869 * hashtable.
1870 */
1871 #define CP_REG_NS_SHIFT 29
1872 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1873
1874 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1875 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1876 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1877
1878 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1879 (CP_REG_AA64_MASK | \
1880 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1881 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1882 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1883 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1884 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1885 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1886
1887 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1888 * version used as a key for the coprocessor register hashtable
1889 */
1890 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1891 {
1892 uint32_t cpregid = kvmid;
1893 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1894 cpregid |= CP_REG_AA64_MASK;
1895 } else {
1896 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1897 cpregid |= (1 << 15);
1898 }
1899
1900 /* KVM is always non-secure so add the NS flag on AArch32 register
1901 * entries.
1902 */
1903 cpregid |= 1 << CP_REG_NS_SHIFT;
1904 }
1905 return cpregid;
1906 }
1907
1908 /* Convert a truncated 32 bit hashtable key into the full
1909 * 64 bit KVM register ID.
1910 */
1911 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1912 {
1913 uint64_t kvmid;
1914
1915 if (cpregid & CP_REG_AA64_MASK) {
1916 kvmid = cpregid & ~CP_REG_AA64_MASK;
1917 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1918 } else {
1919 kvmid = cpregid & ~(1 << 15);
1920 if (cpregid & (1 << 15)) {
1921 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1922 } else {
1923 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1924 }
1925 }
1926 return kvmid;
1927 }
1928
1929 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1930 * special-behaviour cp reg and bits [11..8] indicate what behaviour
1931 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1932 * TCG can assume the value to be constant (ie load at translate time)
1933 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1934 * indicates that the TB should not be ended after a write to this register
1935 * (the default is that the TB ends after cp writes). OVERRIDE permits
1936 * a register definition to override a previous definition for the
1937 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1938 * old must have the OVERRIDE bit set.
1939 * ALIAS indicates that this register is an alias view of some underlying
1940 * state which is also visible via another register, and that the other
1941 * register is handling migration and reset; registers marked ALIAS will not be
1942 * migrated but may have their state set by syncing of register state from KVM.
1943 * NO_RAW indicates that this register has no underlying state and does not
1944 * support raw access for state saving/loading; it will not be used for either
1945 * migration or KVM state synchronization. (Typically this is for "registers"
1946 * which are actually used as instructions for cache maintenance and so on.)
1947 * IO indicates that this register does I/O and therefore its accesses
1948 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1949 * registers which implement clocks or timers require this.
1950 */
1951 #define ARM_CP_SPECIAL 0x0001
1952 #define ARM_CP_CONST 0x0002
1953 #define ARM_CP_64BIT 0x0004
1954 #define ARM_CP_SUPPRESS_TB_END 0x0008
1955 #define ARM_CP_OVERRIDE 0x0010
1956 #define ARM_CP_ALIAS 0x0020
1957 #define ARM_CP_IO 0x0040
1958 #define ARM_CP_NO_RAW 0x0080
1959 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
1960 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
1961 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
1962 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
1963 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
1964 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1965 #define ARM_CP_FPU 0x1000
1966 #define ARM_CP_SVE 0x2000
1967 #define ARM_CP_NO_GDB 0x4000
1968 /* Used only as a terminator for ARMCPRegInfo lists */
1969 #define ARM_CP_SENTINEL 0xffff
1970 /* Mask of only the flag bits in a type field */
1971 #define ARM_CP_FLAG_MASK 0x70ff
1972
1973 /* Valid values for ARMCPRegInfo state field, indicating which of
1974 * the AArch32 and AArch64 execution states this register is visible in.
1975 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1976 * If the reginfo is declared to be visible in both states then a second
1977 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1978 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1979 * Note that we rely on the values of these enums as we iterate through
1980 * the various states in some places.
1981 */
1982 enum {
1983 ARM_CP_STATE_AA32 = 0,
1984 ARM_CP_STATE_AA64 = 1,
1985 ARM_CP_STATE_BOTH = 2,
1986 };
1987
1988 /* ARM CP register secure state flags. These flags identify security state
1989 * attributes for a given CP register entry.
1990 * The existence of both or neither secure and non-secure flags indicates that
1991 * the register has both a secure and non-secure hash entry. A single one of
1992 * these flags causes the register to only be hashed for the specified
1993 * security state.
1994 * Although definitions may have any combination of the S/NS bits, each
1995 * registered entry will only have one to identify whether the entry is secure
1996 * or non-secure.
1997 */
1998 enum {
1999 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2000 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2001 };
2002
2003 /* Return true if cptype is a valid type field. This is used to try to
2004 * catch errors where the sentinel has been accidentally left off the end
2005 * of a list of registers.
2006 */
2007 static inline bool cptype_valid(int cptype)
2008 {
2009 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2010 || ((cptype & ARM_CP_SPECIAL) &&
2011 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2012 }
2013
2014 /* Access rights:
2015 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2016 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2017 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2018 * (ie any of the privileged modes in Secure state, or Monitor mode).
2019 * If a register is accessible in one privilege level it's always accessible
2020 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2021 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2022 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2023 * terminology a little and call this PL3.
2024 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2025 * with the ELx exception levels.
2026 *
2027 * If access permissions for a register are more complex than can be
2028 * described with these bits, then use a laxer set of restrictions, and
2029 * do the more restrictive/complex check inside a helper function.
2030 */
2031 #define PL3_R 0x80
2032 #define PL3_W 0x40
2033 #define PL2_R (0x20 | PL3_R)
2034 #define PL2_W (0x10 | PL3_W)
2035 #define PL1_R (0x08 | PL2_R)
2036 #define PL1_W (0x04 | PL2_W)
2037 #define PL0_R (0x02 | PL1_R)
2038 #define PL0_W (0x01 | PL1_W)
2039
2040 #define PL3_RW (PL3_R | PL3_W)
2041 #define PL2_RW (PL2_R | PL2_W)
2042 #define PL1_RW (PL1_R | PL1_W)
2043 #define PL0_RW (PL0_R | PL0_W)
2044
2045 /* Return the highest implemented Exception Level */
2046 static inline int arm_highest_el(CPUARMState *env)
2047 {
2048 if (arm_feature(env, ARM_FEATURE_EL3)) {
2049 return 3;
2050 }
2051 if (arm_feature(env, ARM_FEATURE_EL2)) {
2052 return 2;
2053 }
2054 return 1;
2055 }
2056
2057 /* Return true if a v7M CPU is in Handler mode */
2058 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2059 {
2060 return env->v7m.exception != 0;
2061 }
2062
2063 /* Return the current Exception Level (as per ARMv8; note that this differs
2064 * from the ARMv7 Privilege Level).
2065 */
2066 static inline int arm_current_el(CPUARMState *env)
2067 {
2068 if (arm_feature(env, ARM_FEATURE_M)) {
2069 return arm_v7m_is_handler_mode(env) ||
2070 !(env->v7m.control[env->v7m.secure] & 1);
2071 }
2072
2073 if (is_a64(env)) {
2074 return extract32(env->pstate, 2, 2);
2075 }
2076
2077 switch (env->uncached_cpsr & 0x1f) {
2078 case ARM_CPU_MODE_USR:
2079 return 0;
2080 case ARM_CPU_MODE_HYP:
2081 return 2;
2082 case ARM_CPU_MODE_MON:
2083 return 3;
2084 default:
2085 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2086 /* If EL3 is 32-bit then all secure privileged modes run in
2087 * EL3
2088 */
2089 return 3;
2090 }
2091
2092 return 1;
2093 }
2094 }
2095
2096 typedef struct ARMCPRegInfo ARMCPRegInfo;
2097
2098 typedef enum CPAccessResult {
2099 /* Access is permitted */
2100 CP_ACCESS_OK = 0,
2101 /* Access fails due to a configurable trap or enable which would
2102 * result in a categorized exception syndrome giving information about
2103 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2104 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2105 * PL1 if in EL0, otherwise to the current EL).
2106 */
2107 CP_ACCESS_TRAP = 1,
2108 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2109 * Note that this is not a catch-all case -- the set of cases which may
2110 * result in this failure is specifically defined by the architecture.
2111 */
2112 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2113 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2114 CP_ACCESS_TRAP_EL2 = 3,
2115 CP_ACCESS_TRAP_EL3 = 4,
2116 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2117 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2118 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2119 /* Access fails and results in an exception syndrome for an FP access,
2120 * trapped directly to EL2 or EL3
2121 */
2122 CP_ACCESS_TRAP_FP_EL2 = 7,
2123 CP_ACCESS_TRAP_FP_EL3 = 8,
2124 } CPAccessResult;
2125
2126 /* Access functions for coprocessor registers. These cannot fail and
2127 * may not raise exceptions.
2128 */
2129 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2130 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2131 uint64_t value);
2132 /* Access permission check functions for coprocessor registers. */
2133 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2134 const ARMCPRegInfo *opaque,
2135 bool isread);
2136 /* Hook function for register reset */
2137 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2138
2139 #define CP_ANY 0xff
2140
2141 /* Definition of an ARM coprocessor register */
2142 struct ARMCPRegInfo {
2143 /* Name of register (useful mainly for debugging, need not be unique) */
2144 const char *name;
2145 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2146 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2147 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2148 * will be decoded to this register. The register read and write
2149 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2150 * used by the program, so it is possible to register a wildcard and
2151 * then behave differently on read/write if necessary.
2152 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2153 * must both be zero.
2154 * For AArch64-visible registers, opc0 is also used.
2155 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2156 * way to distinguish (for KVM's benefit) guest-visible system registers
2157 * from demuxed ones provided to preserve the "no side effects on
2158 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2159 * visible (to match KVM's encoding); cp==0 will be converted to
2160 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2161 */
2162 uint8_t cp;
2163 uint8_t crn;
2164 uint8_t crm;
2165 uint8_t opc0;
2166 uint8_t opc1;
2167 uint8_t opc2;
2168 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2169 int state;
2170 /* Register type: ARM_CP_* bits/values */
2171 int type;
2172 /* Access rights: PL*_[RW] */
2173 int access;
2174 /* Security state: ARM_CP_SECSTATE_* bits/values */
2175 int secure;
2176 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2177 * this register was defined: can be used to hand data through to the
2178 * register read/write functions, since they are passed the ARMCPRegInfo*.
2179 */
2180 void *opaque;
2181 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2182 * fieldoffset is non-zero, the reset value of the register.
2183 */
2184 uint64_t resetvalue;
2185 /* Offset of the field in CPUARMState for this register.
2186 *
2187 * This is not needed if either:
2188 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2189 * 2. both readfn and writefn are specified
2190 */
2191 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2192
2193 /* Offsets of the secure and non-secure fields in CPUARMState for the
2194 * register if it is banked. These fields are only used during the static
2195 * registration of a register. During hashing the bank associated
2196 * with a given security state is copied to fieldoffset which is used from
2197 * there on out.
2198 *
2199 * It is expected that register definitions use either fieldoffset or
2200 * bank_fieldoffsets in the definition but not both. It is also expected
2201 * that both bank offsets are set when defining a banked register. This
2202 * use indicates that a register is banked.
2203 */
2204 ptrdiff_t bank_fieldoffsets[2];
2205
2206 /* Function for making any access checks for this register in addition to
2207 * those specified by the 'access' permissions bits. If NULL, no extra
2208 * checks required. The access check is performed at runtime, not at
2209 * translate time.
2210 */
2211 CPAccessFn *accessfn;
2212 /* Function for handling reads of this register. If NULL, then reads
2213 * will be done by loading from the offset into CPUARMState specified
2214 * by fieldoffset.
2215 */
2216 CPReadFn *readfn;
2217 /* Function for handling writes of this register. If NULL, then writes
2218 * will be done by writing to the offset into CPUARMState specified
2219 * by fieldoffset.
2220 */
2221 CPWriteFn *writefn;
2222 /* Function for doing a "raw" read; used when we need to copy
2223 * coprocessor state to the kernel for KVM or out for
2224 * migration. This only needs to be provided if there is also a
2225 * readfn and it has side effects (for instance clear-on-read bits).
2226 */
2227 CPReadFn *raw_readfn;
2228 /* Function for doing a "raw" write; used when we need to copy KVM
2229 * kernel coprocessor state into userspace, or for inbound
2230 * migration. This only needs to be provided if there is also a
2231 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2232 * or similar behaviour.
2233 */
2234 CPWriteFn *raw_writefn;
2235 /* Function for resetting the register. If NULL, then reset will be done
2236 * by writing resetvalue to the field specified in fieldoffset. If
2237 * fieldoffset is 0 then no reset will be done.
2238 */
2239 CPResetFn *resetfn;
2240 };
2241
2242 /* Macros which are lvalues for the field in CPUARMState for the
2243 * ARMCPRegInfo *ri.
2244 */
2245 #define CPREG_FIELD32(env, ri) \
2246 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2247 #define CPREG_FIELD64(env, ri) \
2248 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2249
2250 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2251
2252 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2253 const ARMCPRegInfo *regs, void *opaque);
2254 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2255 const ARMCPRegInfo *regs, void *opaque);
2256 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2257 {
2258 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2259 }
2260 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2261 {
2262 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2263 }
2264 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2265
2266 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2267 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2268 uint64_t value);
2269 /* CPReadFn that can be used for read-as-zero behaviour */
2270 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2271
2272 /* CPResetFn that does nothing, for use if no reset is required even
2273 * if fieldoffset is non zero.
2274 */
2275 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2276
2277 /* Return true if this reginfo struct's field in the cpu state struct
2278 * is 64 bits wide.
2279 */
2280 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2281 {
2282 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2283 }
2284
2285 static inline bool cp_access_ok(int current_el,
2286 const ARMCPRegInfo *ri, int isread)
2287 {
2288 return (ri->access >> ((current_el * 2) + isread)) & 1;
2289 }
2290
2291 /* Raw read of a coprocessor register (as needed for migration, etc) */
2292 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2293
2294 /**
2295 * write_list_to_cpustate
2296 * @cpu: ARMCPU
2297 *
2298 * For each register listed in the ARMCPU cpreg_indexes list, write
2299 * its value from the cpreg_values list into the ARMCPUState structure.
2300 * This updates TCG's working data structures from KVM data or
2301 * from incoming migration state.
2302 *
2303 * Returns: true if all register values were updated correctly,
2304 * false if some register was unknown or could not be written.
2305 * Note that we do not stop early on failure -- we will attempt
2306 * writing all registers in the list.
2307 */
2308 bool write_list_to_cpustate(ARMCPU *cpu);
2309
2310 /**
2311 * write_cpustate_to_list:
2312 * @cpu: ARMCPU
2313 *
2314 * For each register listed in the ARMCPU cpreg_indexes list, write
2315 * its value from the ARMCPUState structure into the cpreg_values list.
2316 * This is used to copy info from TCG's working data structures into
2317 * KVM or for outbound migration.
2318 *
2319 * Returns: true if all register values were read correctly,
2320 * false if some register was unknown or could not be read.
2321 * Note that we do not stop early on failure -- we will attempt
2322 * reading all registers in the list.
2323 */
2324 bool write_cpustate_to_list(ARMCPU *cpu);
2325
2326 #define ARM_CPUID_TI915T 0x54029152
2327 #define ARM_CPUID_TI925T 0x54029252
2328
2329 #if defined(CONFIG_USER_ONLY)
2330 #define TARGET_PAGE_BITS 12
2331 #else
2332 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2333 * have to support 1K tiny pages.
2334 */
2335 #define TARGET_PAGE_BITS_VARY
2336 #define TARGET_PAGE_BITS_MIN 10
2337 #endif
2338
2339 #if defined(TARGET_AARCH64)
2340 # define TARGET_PHYS_ADDR_SPACE_BITS 48
2341 # define TARGET_VIRT_ADDR_SPACE_BITS 64
2342 #else
2343 # define TARGET_PHYS_ADDR_SPACE_BITS 40
2344 # define TARGET_VIRT_ADDR_SPACE_BITS 32
2345 #endif
2346
2347 /**
2348 * arm_hcr_el2_imo(): Return the effective value of HCR_EL2.IMO.
2349 * Depending on the values of HCR_EL2.E2H and TGE, this may be
2350 * "behaves as 1 for all purposes other than direct read/write" or
2351 * "behaves as 0 for all purposes other than direct read/write"
2352 */
2353 static inline bool arm_hcr_el2_imo(CPUARMState *env)
2354 {
2355 switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2356 case HCR_TGE:
2357 return true;
2358 case HCR_TGE | HCR_E2H:
2359 return false;
2360 default:
2361 return env->cp15.hcr_el2 & HCR_IMO;
2362 }
2363 }
2364
2365 /**
2366 * arm_hcr_el2_fmo(): Return the effective value of HCR_EL2.FMO.
2367 */
2368 static inline bool arm_hcr_el2_fmo(CPUARMState *env)
2369 {
2370 switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2371 case HCR_TGE:
2372 return true;
2373 case HCR_TGE | HCR_E2H:
2374 return false;
2375 default:
2376 return env->cp15.hcr_el2 & HCR_FMO;
2377 }
2378 }
2379
2380 /**
2381 * arm_hcr_el2_amo(): Return the effective value of HCR_EL2.AMO.
2382 */
2383 static inline bool arm_hcr_el2_amo(CPUARMState *env)
2384 {
2385 switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2386 case HCR_TGE:
2387 return true;
2388 case HCR_TGE | HCR_E2H:
2389 return false;
2390 default:
2391 return env->cp15.hcr_el2 & HCR_AMO;
2392 }
2393 }
2394
2395 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2396 unsigned int target_el)
2397 {
2398 CPUARMState *env = cs->env_ptr;
2399 unsigned int cur_el = arm_current_el(env);
2400 bool secure = arm_is_secure(env);
2401 bool pstate_unmasked;
2402 int8_t unmasked = 0;
2403
2404 /* Don't take exceptions if they target a lower EL.
2405 * This check should catch any exceptions that would not be taken but left
2406 * pending.
2407 */
2408 if (cur_el > target_el) {
2409 return false;
2410 }
2411
2412 switch (excp_idx) {
2413 case EXCP_FIQ:
2414 pstate_unmasked = !(env->daif & PSTATE_F);
2415 break;
2416
2417 case EXCP_IRQ:
2418 pstate_unmasked = !(env->daif & PSTATE_I);
2419 break;
2420
2421 case EXCP_VFIQ:
2422 if (secure || !arm_hcr_el2_fmo(env) || (env->cp15.hcr_el2 & HCR_TGE)) {
2423 /* VFIQs are only taken when hypervized and non-secure. */
2424 return false;
2425 }
2426 return !(env->daif & PSTATE_F);
2427 case EXCP_VIRQ:
2428 if (secure || !arm_hcr_el2_imo(env) || (env->cp15.hcr_el2 & HCR_TGE)) {
2429 /* VIRQs are only taken when hypervized and non-secure. */
2430 return false;
2431 }
2432 return !(env->daif & PSTATE_I);
2433 default:
2434 g_assert_not_reached();
2435 }
2436
2437 /* Use the target EL, current execution state and SCR/HCR settings to
2438 * determine whether the corresponding CPSR bit is used to mask the
2439 * interrupt.
2440 */
2441 if ((target_el > cur_el) && (target_el != 1)) {
2442 /* Exceptions targeting a higher EL may not be maskable */
2443 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2444 /* 64-bit masking rules are simple: exceptions to EL3
2445 * can't be masked, and exceptions to EL2 can only be
2446 * masked from Secure state. The HCR and SCR settings
2447 * don't affect the masking logic, only the interrupt routing.
2448 */
2449 if (target_el == 3 || !secure) {
2450 unmasked = 1;
2451 }
2452 } else {
2453 /* The old 32-bit-only environment has a more complicated
2454 * masking setup. HCR and SCR bits not only affect interrupt
2455 * routing but also change the behaviour of masking.
2456 */
2457 bool hcr, scr;
2458
2459 switch (excp_idx) {
2460 case EXCP_FIQ:
2461 /* If FIQs are routed to EL3 or EL2 then there are cases where
2462 * we override the CPSR.F in determining if the exception is
2463 * masked or not. If neither of these are set then we fall back
2464 * to the CPSR.F setting otherwise we further assess the state
2465 * below.
2466 */
2467 hcr = arm_hcr_el2_fmo(env);
2468 scr = (env->cp15.scr_el3 & SCR_FIQ);
2469
2470 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2471 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2472 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2473 * when non-secure but only when FIQs are only routed to EL3.
2474 */
2475 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2476 break;
2477 case EXCP_IRQ:
2478 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2479 * we may override the CPSR.I masking when in non-secure state.
2480 * The SCR.IRQ setting has already been taken into consideration
2481 * when setting the target EL, so it does not have a further
2482 * affect here.
2483 */
2484 hcr = arm_hcr_el2_imo(env);
2485 scr = false;
2486 break;
2487 default:
2488 g_assert_not_reached();
2489 }
2490
2491 if ((scr || hcr) && !secure) {
2492 unmasked = 1;
2493 }
2494 }
2495 }
2496
2497 /* The PSTATE bits only mask the interrupt if we have not overriden the
2498 * ability above.
2499 */
2500 return unmasked || pstate_unmasked;
2501 }
2502
2503 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2504 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2505 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2506
2507 #define cpu_signal_handler cpu_arm_signal_handler
2508 #define cpu_list arm_cpu_list
2509
2510 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2511 *
2512 * If EL3 is 64-bit:
2513 * + NonSecure EL1 & 0 stage 1
2514 * + NonSecure EL1 & 0 stage 2
2515 * + NonSecure EL2
2516 * + Secure EL1 & EL0
2517 * + Secure EL3
2518 * If EL3 is 32-bit:
2519 * + NonSecure PL1 & 0 stage 1
2520 * + NonSecure PL1 & 0 stage 2
2521 * + NonSecure PL2
2522 * + Secure PL0 & PL1
2523 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2524 *
2525 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2526 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2527 * may differ in access permissions even if the VA->PA map is the same
2528 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2529 * translation, which means that we have one mmu_idx that deals with two
2530 * concatenated translation regimes [this sort of combined s1+2 TLB is
2531 * architecturally permitted]
2532 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2533 * handling via the TLB. The only way to do a stage 1 translation without
2534 * the immediate stage 2 translation is via the ATS or AT system insns,
2535 * which can be slow-pathed and always do a page table walk.
2536 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2537 * translation regimes, because they map reasonably well to each other
2538 * and they can't both be active at the same time.
2539 * This gives us the following list of mmu_idx values:
2540 *
2541 * NS EL0 (aka NS PL0) stage 1+2
2542 * NS EL1 (aka NS PL1) stage 1+2
2543 * NS EL2 (aka NS PL2)
2544 * S EL3 (aka S PL1)
2545 * S EL0 (aka S PL0)
2546 * S EL1 (not used if EL3 is 32 bit)
2547 * NS EL0+1 stage 2
2548 *
2549 * (The last of these is an mmu_idx because we want to be able to use the TLB
2550 * for the accesses done as part of a stage 1 page table walk, rather than
2551 * having to walk the stage 2 page table over and over.)
2552 *
2553 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2554 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2555 * NS EL2 if we ever model a Cortex-R52).
2556 *
2557 * M profile CPUs are rather different as they do not have a true MMU.
2558 * They have the following different MMU indexes:
2559 * User
2560 * Privileged
2561 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2562 * Privileged, execution priority negative (ditto)
2563 * If the CPU supports the v8M Security Extension then there are also:
2564 * Secure User
2565 * Secure Privileged
2566 * Secure User, execution priority negative
2567 * Secure Privileged, execution priority negative
2568 *
2569 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2570 * are not quite the same -- different CPU types (most notably M profile
2571 * vs A/R profile) would like to use MMU indexes with different semantics,
2572 * but since we don't ever need to use all of those in a single CPU we
2573 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2574 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2575 * the same for any particular CPU.
2576 * Variables of type ARMMUIdx are always full values, and the core
2577 * index values are in variables of type 'int'.
2578 *
2579 * Our enumeration includes at the end some entries which are not "true"
2580 * mmu_idx values in that they don't have corresponding TLBs and are only
2581 * valid for doing slow path page table walks.
2582 *
2583 * The constant names here are patterned after the general style of the names
2584 * of the AT/ATS operations.
2585 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2586 * For M profile we arrange them to have a bit for priv, a bit for negpri
2587 * and a bit for secure.
2588 */
2589 #define ARM_MMU_IDX_A 0x10 /* A profile */
2590 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2591 #define ARM_MMU_IDX_M 0x40 /* M profile */
2592
2593 /* meanings of the bits for M profile mmu idx values */
2594 #define ARM_MMU_IDX_M_PRIV 0x1
2595 #define ARM_MMU_IDX_M_NEGPRI 0x2
2596 #define ARM_MMU_IDX_M_S 0x4
2597
2598 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2599 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2600
2601 typedef enum ARMMMUIdx {
2602 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2603 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2604 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2605 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2606 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2607 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2608 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2609 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2610 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2611 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2612 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2613 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2614 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2615 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2616 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2617 /* Indexes below here don't have TLBs and are used only for AT system
2618 * instructions or for the first stage of an S12 page table walk.
2619 */
2620 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2621 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2622 } ARMMMUIdx;
2623
2624 /* Bit macros for the core-mmu-index values for each index,
2625 * for use when calling tlb_flush_by_mmuidx() and friends.
2626 */
2627 typedef enum ARMMMUIdxBit {
2628 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2629 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2630 ARMMMUIdxBit_S1E2 = 1 << 2,
2631 ARMMMUIdxBit_S1E3 = 1 << 3,
2632 ARMMMUIdxBit_S1SE0 = 1 << 4,
2633 ARMMMUIdxBit_S1SE1 = 1 << 5,
2634 ARMMMUIdxBit_S2NS = 1 << 6,
2635 ARMMMUIdxBit_MUser = 1 << 0,
2636 ARMMMUIdxBit_MPriv = 1 << 1,
2637 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2638 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2639 ARMMMUIdxBit_MSUser = 1 << 4,
2640 ARMMMUIdxBit_MSPriv = 1 << 5,
2641 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2642 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2643 } ARMMMUIdxBit;
2644
2645 #define MMU_USER_IDX 0
2646
2647 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2648 {
2649 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2650 }
2651
2652 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2653 {
2654 if (arm_feature(env, ARM_FEATURE_M)) {
2655 return mmu_idx | ARM_MMU_IDX_M;
2656 } else {
2657 return mmu_idx | ARM_MMU_IDX_A;
2658 }
2659 }
2660
2661 /* Return the exception level we're running at if this is our mmu_idx */
2662 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2663 {
2664 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2665 case ARM_MMU_IDX_A:
2666 return mmu_idx & 3;
2667 case ARM_MMU_IDX_M:
2668 return mmu_idx & ARM_MMU_IDX_M_PRIV;
2669 default:
2670 g_assert_not_reached();
2671 }
2672 }
2673
2674 /* Return the MMU index for a v7M CPU in the specified security and
2675 * privilege state
2676 */
2677 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2678 bool secstate,
2679 bool priv)
2680 {
2681 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2682
2683 if (priv) {
2684 mmu_idx |= ARM_MMU_IDX_M_PRIV;
2685 }
2686
2687 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
2688 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2689 }
2690
2691 if (secstate) {
2692 mmu_idx |= ARM_MMU_IDX_M_S;
2693 }
2694
2695 return mmu_idx;
2696 }
2697
2698 /* Return the MMU index for a v7M CPU in the specified security state */
2699 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
2700 bool secstate)
2701 {
2702 bool priv = arm_current_el(env) != 0;
2703
2704 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2705 }
2706
2707 /* Determine the current mmu_idx to use for normal loads/stores */
2708 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2709 {
2710 int el = arm_current_el(env);
2711
2712 if (arm_feature(env, ARM_FEATURE_M)) {
2713 ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
2714
2715 return arm_to_core_mmu_idx(mmu_idx);
2716 }
2717
2718 if (el < 2 && arm_is_secure_below_el3(env)) {
2719 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2720 }
2721 return el;
2722 }
2723
2724 /* Indexes used when registering address spaces with cpu_address_space_init */
2725 typedef enum ARMASIdx {
2726 ARMASIdx_NS = 0,
2727 ARMASIdx_S = 1,
2728 } ARMASIdx;
2729
2730 /* Return the Exception Level targeted by debug exceptions. */
2731 static inline int arm_debug_target_el(CPUARMState *env)
2732 {
2733 bool secure = arm_is_secure(env);
2734 bool route_to_el2 = false;
2735
2736 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2737 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2738 env->cp15.mdcr_el2 & (1 << 8);
2739 }
2740
2741 if (route_to_el2) {
2742 return 2;
2743 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2744 !arm_el_is_aa64(env, 3) && secure) {
2745 return 3;
2746 } else {
2747 return 1;
2748 }
2749 }
2750
2751 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2752 {
2753 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2754 * CSSELR is RAZ/WI.
2755 */
2756 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2757 }
2758
2759 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2760 {
2761 if (arm_is_secure(env)) {
2762 /* MDCR_EL3.SDD disables debug events from Secure state */
2763 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2764 || arm_current_el(env) == 3) {
2765 return false;
2766 }
2767 }
2768
2769 if (arm_current_el(env) == arm_debug_target_el(env)) {
2770 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2771 || (env->daif & PSTATE_D)) {
2772 return false;
2773 }
2774 }
2775 return true;
2776 }
2777
2778 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2779 {
2780 int el = arm_current_el(env);
2781
2782 if (el == 0 && arm_el_is_aa64(env, 1)) {
2783 return aa64_generate_debug_exceptions(env);
2784 }
2785
2786 if (arm_is_secure(env)) {
2787 int spd;
2788
2789 if (el == 0 && (env->cp15.sder & 1)) {
2790 /* SDER.SUIDEN means debug exceptions from Secure EL0
2791 * are always enabled. Otherwise they are controlled by
2792 * SDCR.SPD like those from other Secure ELs.
2793 */
2794 return true;
2795 }
2796
2797 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2798 switch (spd) {
2799 case 1:
2800 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2801 case 0:
2802 /* For 0b00 we return true if external secure invasive debug
2803 * is enabled. On real hardware this is controlled by external
2804 * signals to the core. QEMU always permits debug, and behaves
2805 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2806 */
2807 return true;
2808 case 2:
2809 return false;
2810 case 3:
2811 return true;
2812 }
2813 }
2814
2815 return el != 2;
2816 }
2817
2818 /* Return true if debugging exceptions are currently enabled.
2819 * This corresponds to what in ARM ARM pseudocode would be
2820 * if UsingAArch32() then
2821 * return AArch32.GenerateDebugExceptions()
2822 * else
2823 * return AArch64.GenerateDebugExceptions()
2824 * We choose to push the if() down into this function for clarity,
2825 * since the pseudocode has it at all callsites except for the one in
2826 * CheckSoftwareStep(), where it is elided because both branches would
2827 * always return the same value.
2828 *
2829 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2830 * don't yet implement those exception levels or their associated trap bits.
2831 */
2832 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2833 {
2834 if (env->aarch64) {
2835 return aa64_generate_debug_exceptions(env);
2836 } else {
2837 return aa32_generate_debug_exceptions(env);
2838 }
2839 }
2840
2841 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2842 * implicitly means this always returns false in pre-v8 CPUs.)
2843 */
2844 static inline bool arm_singlestep_active(CPUARMState *env)
2845 {
2846 return extract32(env->cp15.mdscr_el1, 0, 1)
2847 && arm_el_is_aa64(env, arm_debug_target_el(env))
2848 && arm_generate_debug_exceptions(env);
2849 }
2850
2851 static inline bool arm_sctlr_b(CPUARMState *env)
2852 {
2853 return
2854 /* We need not implement SCTLR.ITD in user-mode emulation, so
2855 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2856 * This lets people run BE32 binaries with "-cpu any".
2857 */
2858 #ifndef CONFIG_USER_ONLY
2859 !arm_feature(env, ARM_FEATURE_V7) &&
2860 #endif
2861 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2862 }
2863
2864 /* Return true if the processor is in big-endian mode. */
2865 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2866 {
2867 int cur_el;
2868
2869 /* In 32bit endianness is determined by looking at CPSR's E bit */
2870 if (!is_a64(env)) {
2871 return
2872 #ifdef CONFIG_USER_ONLY
2873 /* In system mode, BE32 is modelled in line with the
2874 * architecture (as word-invariant big-endianness), where loads
2875 * and stores are done little endian but from addresses which
2876 * are adjusted by XORing with the appropriate constant. So the
2877 * endianness to use for the raw data access is not affected by
2878 * SCTLR.B.
2879 * In user mode, however, we model BE32 as byte-invariant
2880 * big-endianness (because user-only code cannot tell the
2881 * difference), and so we need to use a data access endianness
2882 * that depends on SCTLR.B.
2883 */
2884 arm_sctlr_b(env) ||
2885 #endif
2886 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2887 }
2888
2889 cur_el = arm_current_el(env);
2890
2891 if (cur_el == 0) {
2892 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2893 }
2894
2895 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2896 }
2897
2898 #include "exec/cpu-all.h"
2899
2900 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2901 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2902 * We put flags which are shared between 32 and 64 bit mode at the top
2903 * of the word, and flags which apply to only one mode at the bottom.
2904 */
2905 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2906 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2907 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2908 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2909 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2910 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2911 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2912 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2913 /* Target EL if we take a floating-point-disabled exception */
2914 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2915 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2916
2917 /* Bit usage when in AArch32 state: */
2918 #define ARM_TBFLAG_THUMB_SHIFT 0
2919 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2920 #define ARM_TBFLAG_VECLEN_SHIFT 1
2921 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2922 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2923 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2924 #define ARM_TBFLAG_VFPEN_SHIFT 7
2925 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2926 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
2927 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2928 #define ARM_TBFLAG_SCTLR_B_SHIFT 16
2929 #define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2930 /* We store the bottom two bits of the CPAR as TB flags and handle
2931 * checks on the other bits at runtime
2932 */
2933 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2934 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2935 /* Indicates whether cp register reads and writes by guest code should access
2936 * the secure or nonsecure bank of banked registers; note that this is not
2937 * the same thing as the current security state of the processor!
2938 */
2939 #define ARM_TBFLAG_NS_SHIFT 19
2940 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
2941 #define ARM_TBFLAG_BE_DATA_SHIFT 20
2942 #define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2943 /* For M profile only, Handler (ie not Thread) mode */
2944 #define ARM_TBFLAG_HANDLER_SHIFT 21
2945 #define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
2946 /* For M profile only, whether we should generate stack-limit checks */
2947 #define ARM_TBFLAG_STACKCHECK_SHIFT 22
2948 #define ARM_TBFLAG_STACKCHECK_MASK (1 << ARM_TBFLAG_STACKCHECK_SHIFT)
2949
2950 /* Bit usage when in AArch64 state */
2951 #define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2952 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2953 #define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2954 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2955 #define ARM_TBFLAG_SVEEXC_EL_SHIFT 2
2956 #define ARM_TBFLAG_SVEEXC_EL_MASK (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
2957 #define ARM_TBFLAG_ZCR_LEN_SHIFT 4
2958 #define ARM_TBFLAG_ZCR_LEN_MASK (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
2959
2960 /* some convenience accessor macros */
2961 #define ARM_TBFLAG_AARCH64_STATE(F) \
2962 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2963 #define ARM_TBFLAG_MMUIDX(F) \
2964 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2965 #define ARM_TBFLAG_SS_ACTIVE(F) \
2966 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2967 #define ARM_TBFLAG_PSTATE_SS(F) \
2968 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2969 #define ARM_TBFLAG_FPEXC_EL(F) \
2970 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2971 #define ARM_TBFLAG_THUMB(F) \
2972 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2973 #define ARM_TBFLAG_VECLEN(F) \
2974 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2975 #define ARM_TBFLAG_VECSTRIDE(F) \
2976 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2977 #define ARM_TBFLAG_VFPEN(F) \
2978 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2979 #define ARM_TBFLAG_CONDEXEC(F) \
2980 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2981 #define ARM_TBFLAG_SCTLR_B(F) \
2982 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2983 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2984 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2985 #define ARM_TBFLAG_NS(F) \
2986 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2987 #define ARM_TBFLAG_BE_DATA(F) \
2988 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2989 #define ARM_TBFLAG_HANDLER(F) \
2990 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2991 #define ARM_TBFLAG_STACKCHECK(F) \
2992 (((F) & ARM_TBFLAG_STACKCHECK_MASK) >> ARM_TBFLAG_STACKCHECK_SHIFT)
2993 #define ARM_TBFLAG_TBI0(F) \
2994 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2995 #define ARM_TBFLAG_TBI1(F) \
2996 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2997 #define ARM_TBFLAG_SVEEXC_EL(F) \
2998 (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
2999 #define ARM_TBFLAG_ZCR_LEN(F) \
3000 (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
3001
3002 static inline bool bswap_code(bool sctlr_b)
3003 {
3004 #ifdef CONFIG_USER_ONLY
3005 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3006 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3007 * would also end up as a mixed-endian mode with BE code, LE data.
3008 */
3009 return
3010 #ifdef TARGET_WORDS_BIGENDIAN
3011 1 ^
3012 #endif
3013 sctlr_b;
3014 #else
3015 /* All code access in ARM is little endian, and there are no loaders
3016 * doing swaps that need to be reversed
3017 */
3018 return 0;
3019 #endif
3020 }
3021
3022 #ifdef CONFIG_USER_ONLY
3023 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3024 {
3025 return
3026 #ifdef TARGET_WORDS_BIGENDIAN
3027 1 ^
3028 #endif
3029 arm_cpu_data_is_big_endian(env);
3030 }
3031 #endif
3032
3033 #ifndef CONFIG_USER_ONLY
3034 /**
3035 * arm_regime_tbi0:
3036 * @env: CPUARMState
3037 * @mmu_idx: MMU index indicating required translation regime
3038 *
3039 * Extracts the TBI0 value from the appropriate TCR for the current EL
3040 *
3041 * Returns: the TBI0 value.
3042 */
3043 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
3044
3045 /**
3046 * arm_regime_tbi1:
3047 * @env: CPUARMState
3048 * @mmu_idx: MMU index indicating required translation regime
3049 *
3050 * Extracts the TBI1 value from the appropriate TCR for the current EL
3051 *
3052 * Returns: the TBI1 value.
3053 */
3054 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
3055 #else
3056 /* We can't handle tagged addresses properly in user-only mode */
3057 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
3058 {
3059 return 0;
3060 }
3061
3062 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
3063 {
3064 return 0;
3065 }
3066 #endif
3067
3068 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3069 target_ulong *cs_base, uint32_t *flags);
3070
3071 enum {
3072 QEMU_PSCI_CONDUIT_DISABLED = 0,
3073 QEMU_PSCI_CONDUIT_SMC = 1,
3074 QEMU_PSCI_CONDUIT_HVC = 2,
3075 };
3076
3077 #ifndef CONFIG_USER_ONLY
3078 /* Return the address space index to use for a memory access */
3079 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3080 {
3081 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3082 }
3083
3084 /* Return the AddressSpace to use for a memory access
3085 * (which depends on whether the access is S or NS, and whether
3086 * the board gave us a separate AddressSpace for S accesses).
3087 */
3088 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3089 {
3090 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3091 }
3092 #endif
3093
3094 /**
3095 * arm_register_pre_el_change_hook:
3096 * Register a hook function which will be called immediately before this
3097 * CPU changes exception level or mode. The hook function will be
3098 * passed a pointer to the ARMCPU and the opaque data pointer passed
3099 * to this function when the hook was registered.
3100 *
3101 * Note that if a pre-change hook is called, any registered post-change hooks
3102 * are guaranteed to subsequently be called.
3103 */
3104 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3105 void *opaque);
3106 /**
3107 * arm_register_el_change_hook:
3108 * Register a hook function which will be called immediately after this
3109 * CPU changes exception level or mode. The hook function will be
3110 * passed a pointer to the ARMCPU and the opaque data pointer passed
3111 * to this function when the hook was registered.
3112 *
3113 * Note that any registered hooks registered here are guaranteed to be called
3114 * if pre-change hooks have been.
3115 */
3116 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3117 *opaque);
3118
3119 /**
3120 * aa32_vfp_dreg:
3121 * Return a pointer to the Dn register within env in 32-bit mode.
3122 */
3123 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3124 {
3125 return &env->vfp.zregs[regno >> 1].d[regno & 1];
3126 }
3127
3128 /**
3129 * aa32_vfp_qreg:
3130 * Return a pointer to the Qn register within env in 32-bit mode.
3131 */
3132 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3133 {
3134 return &env->vfp.zregs[regno].d[0];
3135 }
3136
3137 /**
3138 * aa64_vfp_qreg:
3139 * Return a pointer to the Qn register within env in 64-bit mode.
3140 */
3141 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3142 {
3143 return &env->vfp.zregs[regno].d[0];
3144 }
3145
3146 /* Shared between translate-sve.c and sve_helper.c. */
3147 extern const uint64_t pred_esz_masks[4];
3148
3149 /*
3150 * 32-bit feature tests via id registers.
3151 */
3152 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3153 {
3154 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3155 }
3156
3157 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3158 {
3159 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3160 }
3161
3162 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3163 {
3164 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3165 }
3166
3167 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3168 {
3169 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3170 }
3171
3172 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3173 {
3174 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3175 }
3176
3177 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3178 {
3179 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3180 }
3181
3182 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3183 {
3184 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3185 }
3186
3187 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3188 {
3189 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3190 }
3191
3192 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3193 {
3194 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3195 }
3196
3197 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3198 {
3199 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3200 }
3201
3202 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3203 {
3204 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3205 }
3206
3207 /*
3208 * 64-bit feature tests via id registers.
3209 */
3210 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3211 {
3212 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3213 }
3214
3215 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3216 {
3217 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3218 }
3219
3220 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3221 {
3222 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3223 }
3224
3225 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3226 {
3227 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3228 }
3229
3230 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3231 {
3232 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3233 }
3234
3235 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3236 {
3237 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3238 }
3239
3240 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3241 {
3242 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3243 }
3244
3245 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3246 {
3247 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3248 }
3249
3250 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3251 {
3252 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3253 }
3254
3255 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3256 {
3257 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3258 }
3259
3260 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3261 {
3262 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3263 }
3264
3265 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3266 {
3267 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3268 }
3269
3270 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3271 {
3272 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3273 }
3274
3275 /*
3276 * Forward to the above feature tests given an ARMCPU pointer.
3277 */
3278 #define cpu_isar_feature(name, cpu) \
3279 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3280
3281 #endif