]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/ptw.c
target/arm: Implement FEAT_HAFDBS, access flag portion
[mirror_qemu.git] / target / arm / ptw.c
1 /*
2 * ARM page table walking.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "idau.h"
17
18
19 typedef struct S1Translate {
20 ARMMMUIdx in_mmu_idx;
21 ARMMMUIdx in_ptw_idx;
22 bool in_secure;
23 bool in_debug;
24 bool out_secure;
25 bool out_rw;
26 bool out_be;
27 hwaddr out_virt;
28 hwaddr out_phys;
29 void *out_host;
30 } S1Translate;
31
32 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
33 uint64_t address,
34 MMUAccessType access_type, bool s1_is_el0,
35 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
36 __attribute__((nonnull));
37
38 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
39 target_ulong address,
40 MMUAccessType access_type,
41 GetPhysAddrResult *result,
42 ARMMMUFaultInfo *fi)
43 __attribute__((nonnull));
44
45 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
46 static const uint8_t pamax_map[] = {
47 [0] = 32,
48 [1] = 36,
49 [2] = 40,
50 [3] = 42,
51 [4] = 44,
52 [5] = 48,
53 [6] = 52,
54 };
55
56 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
57 unsigned int arm_pamax(ARMCPU *cpu)
58 {
59 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
60 unsigned int parange =
61 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
62
63 /*
64 * id_aa64mmfr0 is a read-only register so values outside of the
65 * supported mappings can be considered an implementation error.
66 */
67 assert(parange < ARRAY_SIZE(pamax_map));
68 return pamax_map[parange];
69 }
70
71 /*
72 * In machvirt_init, we call arm_pamax on a cpu that is not fully
73 * initialized, so we can't rely on the propagation done in realize.
74 */
75 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
76 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
77 /* v7 with LPAE */
78 return 40;
79 }
80 /* Anything else */
81 return 32;
82 }
83
84 /*
85 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
86 */
87 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
88 {
89 switch (mmu_idx) {
90 case ARMMMUIdx_E10_0:
91 return ARMMMUIdx_Stage1_E0;
92 case ARMMMUIdx_E10_1:
93 return ARMMMUIdx_Stage1_E1;
94 case ARMMMUIdx_E10_1_PAN:
95 return ARMMMUIdx_Stage1_E1_PAN;
96 default:
97 return mmu_idx;
98 }
99 }
100
101 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
102 {
103 return stage_1_mmu_idx(arm_mmu_idx(env));
104 }
105
106 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
107 {
108 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
109 }
110
111 /* Return the TTBR associated with this translation regime */
112 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
113 {
114 if (mmu_idx == ARMMMUIdx_Stage2) {
115 return env->cp15.vttbr_el2;
116 }
117 if (mmu_idx == ARMMMUIdx_Stage2_S) {
118 return env->cp15.vsttbr_el2;
119 }
120 if (ttbrn == 0) {
121 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
122 } else {
123 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
124 }
125 }
126
127 /* Return true if the specified stage of address translation is disabled */
128 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
129 bool is_secure)
130 {
131 uint64_t hcr_el2;
132
133 if (arm_feature(env, ARM_FEATURE_M)) {
134 switch (env->v7m.mpu_ctrl[is_secure] &
135 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
136 case R_V7M_MPU_CTRL_ENABLE_MASK:
137 /* Enabled, but not for HardFault and NMI */
138 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
139 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
140 /* Enabled for all cases */
141 return false;
142 case 0:
143 default:
144 /*
145 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
146 * we warned about that in armv7m_nvic.c when the guest set it.
147 */
148 return true;
149 }
150 }
151
152 hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure);
153
154 switch (mmu_idx) {
155 case ARMMMUIdx_Stage2:
156 case ARMMMUIdx_Stage2_S:
157 /* HCR.DC means HCR.VM behaves as 1 */
158 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
159
160 case ARMMMUIdx_E10_0:
161 case ARMMMUIdx_E10_1:
162 case ARMMMUIdx_E10_1_PAN:
163 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
164 if (hcr_el2 & HCR_TGE) {
165 return true;
166 }
167 break;
168
169 case ARMMMUIdx_Stage1_E0:
170 case ARMMMUIdx_Stage1_E1:
171 case ARMMMUIdx_Stage1_E1_PAN:
172 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
173 if (hcr_el2 & HCR_DC) {
174 return true;
175 }
176 break;
177
178 case ARMMMUIdx_E20_0:
179 case ARMMMUIdx_E20_2:
180 case ARMMMUIdx_E20_2_PAN:
181 case ARMMMUIdx_E2:
182 case ARMMMUIdx_E3:
183 break;
184
185 case ARMMMUIdx_Phys_NS:
186 case ARMMMUIdx_Phys_S:
187 /* No translation for physical address spaces. */
188 return true;
189
190 default:
191 g_assert_not_reached();
192 }
193
194 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
195 }
196
197 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
198 {
199 /*
200 * For an S1 page table walk, the stage 1 attributes are always
201 * some form of "this is Normal memory". The combined S1+S2
202 * attributes are therefore only Device if stage 2 specifies Device.
203 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
204 * ie when cacheattrs.attrs bits [3:2] are 0b00.
205 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
206 * when cacheattrs.attrs bit [2] is 0.
207 */
208 if (hcr & HCR_FWB) {
209 return (attrs & 0x4) == 0;
210 } else {
211 return (attrs & 0xc) == 0;
212 }
213 }
214
215 /* Translate a S1 pagetable walk through S2 if needed. */
216 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
217 hwaddr addr, ARMMMUFaultInfo *fi)
218 {
219 bool is_secure = ptw->in_secure;
220 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
221 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
222 uint8_t pte_attrs;
223 bool pte_secure;
224
225 ptw->out_virt = addr;
226
227 if (unlikely(ptw->in_debug)) {
228 /*
229 * From gdbstub, do not use softmmu so that we don't modify the
230 * state of the cpu at all, including softmmu tlb contents.
231 */
232 if (regime_is_stage2(s2_mmu_idx)) {
233 S1Translate s2ptw = {
234 .in_mmu_idx = s2_mmu_idx,
235 .in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS,
236 .in_secure = is_secure,
237 .in_debug = true,
238 };
239 GetPhysAddrResult s2 = { };
240
241 if (!get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
242 false, &s2, fi)) {
243 goto fail;
244 }
245 ptw->out_phys = s2.f.phys_addr;
246 pte_attrs = s2.cacheattrs.attrs;
247 pte_secure = s2.f.attrs.secure;
248 } else {
249 /* Regime is physical. */
250 ptw->out_phys = addr;
251 pte_attrs = 0;
252 pte_secure = is_secure;
253 }
254 ptw->out_host = NULL;
255 ptw->out_rw = false;
256 } else {
257 CPUTLBEntryFull *full;
258 int flags;
259
260 env->tlb_fi = fi;
261 flags = probe_access_full(env, addr, MMU_DATA_LOAD,
262 arm_to_core_mmu_idx(s2_mmu_idx),
263 true, &ptw->out_host, &full, 0);
264 env->tlb_fi = NULL;
265
266 if (unlikely(flags & TLB_INVALID_MASK)) {
267 goto fail;
268 }
269 ptw->out_phys = full->phys_addr;
270 ptw->out_rw = full->prot & PAGE_WRITE;
271 pte_attrs = full->pte_attrs;
272 pte_secure = full->attrs.secure;
273 }
274
275 if (regime_is_stage2(s2_mmu_idx)) {
276 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
277
278 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
279 /*
280 * PTW set and S1 walk touched S2 Device memory:
281 * generate Permission fault.
282 */
283 fi->type = ARMFault_Permission;
284 fi->s2addr = addr;
285 fi->stage2 = true;
286 fi->s1ptw = true;
287 fi->s1ns = !is_secure;
288 return false;
289 }
290 }
291
292 /* Check if page table walk is to secure or non-secure PA space. */
293 ptw->out_secure = (is_secure
294 && !(pte_secure
295 ? env->cp15.vstcr_el2 & VSTCR_SW
296 : env->cp15.vtcr_el2 & VTCR_NSW));
297 ptw->out_be = regime_translation_big_endian(env, mmu_idx);
298 return true;
299
300 fail:
301 assert(fi->type != ARMFault_None);
302 fi->s2addr = addr;
303 fi->stage2 = true;
304 fi->s1ptw = true;
305 fi->s1ns = !is_secure;
306 return false;
307 }
308
309 /* All loads done in the course of a page table walk go through here. */
310 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
311 ARMMMUFaultInfo *fi)
312 {
313 CPUState *cs = env_cpu(env);
314 void *host = ptw->out_host;
315 uint32_t data;
316
317 if (likely(host)) {
318 /* Page tables are in RAM, and we have the host address. */
319 data = qatomic_read((uint32_t *)host);
320 if (ptw->out_be) {
321 data = be32_to_cpu(data);
322 } else {
323 data = le32_to_cpu(data);
324 }
325 } else {
326 /* Page tables are in MMIO. */
327 MemTxAttrs attrs = { .secure = ptw->out_secure };
328 AddressSpace *as = arm_addressspace(cs, attrs);
329 MemTxResult result = MEMTX_OK;
330
331 if (ptw->out_be) {
332 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
333 } else {
334 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
335 }
336 if (unlikely(result != MEMTX_OK)) {
337 fi->type = ARMFault_SyncExternalOnWalk;
338 fi->ea = arm_extabort_type(result);
339 return 0;
340 }
341 }
342 return data;
343 }
344
345 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
346 ARMMMUFaultInfo *fi)
347 {
348 CPUState *cs = env_cpu(env);
349 void *host = ptw->out_host;
350 uint64_t data;
351
352 if (likely(host)) {
353 /* Page tables are in RAM, and we have the host address. */
354 #ifdef CONFIG_ATOMIC64
355 data = qatomic_read__nocheck((uint64_t *)host);
356 if (ptw->out_be) {
357 data = be64_to_cpu(data);
358 } else {
359 data = le64_to_cpu(data);
360 }
361 #else
362 if (ptw->out_be) {
363 data = ldq_be_p(host);
364 } else {
365 data = ldq_le_p(host);
366 }
367 #endif
368 } else {
369 /* Page tables are in MMIO. */
370 MemTxAttrs attrs = { .secure = ptw->out_secure };
371 AddressSpace *as = arm_addressspace(cs, attrs);
372 MemTxResult result = MEMTX_OK;
373
374 if (ptw->out_be) {
375 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
376 } else {
377 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
378 }
379 if (unlikely(result != MEMTX_OK)) {
380 fi->type = ARMFault_SyncExternalOnWalk;
381 fi->ea = arm_extabort_type(result);
382 return 0;
383 }
384 }
385 return data;
386 }
387
388 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
389 uint64_t new_val, S1Translate *ptw,
390 ARMMMUFaultInfo *fi)
391 {
392 uint64_t cur_val;
393 void *host = ptw->out_host;
394
395 if (unlikely(!host)) {
396 fi->type = ARMFault_UnsuppAtomicUpdate;
397 fi->s1ptw = true;
398 return 0;
399 }
400
401 /*
402 * Raising a stage2 Protection fault for an atomic update to a read-only
403 * page is delayed until it is certain that there is a change to make.
404 */
405 if (unlikely(!ptw->out_rw)) {
406 int flags;
407 void *discard;
408
409 env->tlb_fi = fi;
410 flags = probe_access_flags(env, ptw->out_virt, MMU_DATA_STORE,
411 arm_to_core_mmu_idx(ptw->in_ptw_idx),
412 true, &discard, 0);
413 env->tlb_fi = NULL;
414
415 if (unlikely(flags & TLB_INVALID_MASK)) {
416 assert(fi->type != ARMFault_None);
417 fi->s2addr = ptw->out_virt;
418 fi->stage2 = true;
419 fi->s1ptw = true;
420 fi->s1ns = !ptw->in_secure;
421 return 0;
422 }
423
424 /* In case CAS mismatches and we loop, remember writability. */
425 ptw->out_rw = true;
426 }
427
428 #ifdef CONFIG_ATOMIC64
429 if (ptw->out_be) {
430 old_val = cpu_to_be64(old_val);
431 new_val = cpu_to_be64(new_val);
432 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
433 cur_val = be64_to_cpu(cur_val);
434 } else {
435 old_val = cpu_to_le64(old_val);
436 new_val = cpu_to_le64(new_val);
437 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
438 cur_val = le64_to_cpu(cur_val);
439 }
440 #else
441 /*
442 * We can't support the full 64-bit atomic cmpxchg on the host.
443 * Because this is only used for FEAT_HAFDBS, which is only for AA64,
444 * we know that TCG_OVERSIZED_GUEST is set, which means that we are
445 * running in round-robin mode and could only race with dma i/o.
446 */
447 #ifndef TCG_OVERSIZED_GUEST
448 # error "Unexpected configuration"
449 #endif
450 bool locked = qemu_mutex_iothread_locked();
451 if (!locked) {
452 qemu_mutex_lock_iothread();
453 }
454 if (ptw->out_be) {
455 cur_val = ldq_be_p(host);
456 if (cur_val == old_val) {
457 stq_be_p(host, new_val);
458 }
459 } else {
460 cur_val = ldq_le_p(host);
461 if (cur_val == old_val) {
462 stq_le_p(host, new_val);
463 }
464 }
465 if (!locked) {
466 qemu_mutex_unlock_iothread();
467 }
468 #endif
469
470 return cur_val;
471 }
472
473 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
474 uint32_t *table, uint32_t address)
475 {
476 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
477 uint64_t tcr = regime_tcr(env, mmu_idx);
478 int maskshift = extract32(tcr, 0, 3);
479 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
480 uint32_t base_mask;
481
482 if (address & mask) {
483 if (tcr & TTBCR_PD1) {
484 /* Translation table walk disabled for TTBR1 */
485 return false;
486 }
487 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
488 } else {
489 if (tcr & TTBCR_PD0) {
490 /* Translation table walk disabled for TTBR0 */
491 return false;
492 }
493 base_mask = ~((uint32_t)0x3fffu >> maskshift);
494 *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
495 }
496 *table |= (address >> 18) & 0x3ffc;
497 return true;
498 }
499
500 /*
501 * Translate section/page access permissions to page R/W protection flags
502 * @env: CPUARMState
503 * @mmu_idx: MMU index indicating required translation regime
504 * @ap: The 3-bit access permissions (AP[2:0])
505 * @domain_prot: The 2-bit domain access permissions
506 */
507 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
508 int ap, int domain_prot)
509 {
510 bool is_user = regime_is_user(env, mmu_idx);
511
512 if (domain_prot == 3) {
513 return PAGE_READ | PAGE_WRITE;
514 }
515
516 switch (ap) {
517 case 0:
518 if (arm_feature(env, ARM_FEATURE_V7)) {
519 return 0;
520 }
521 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
522 case SCTLR_S:
523 return is_user ? 0 : PAGE_READ;
524 case SCTLR_R:
525 return PAGE_READ;
526 default:
527 return 0;
528 }
529 case 1:
530 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
531 case 2:
532 if (is_user) {
533 return PAGE_READ;
534 } else {
535 return PAGE_READ | PAGE_WRITE;
536 }
537 case 3:
538 return PAGE_READ | PAGE_WRITE;
539 case 4: /* Reserved. */
540 return 0;
541 case 5:
542 return is_user ? 0 : PAGE_READ;
543 case 6:
544 return PAGE_READ;
545 case 7:
546 if (!arm_feature(env, ARM_FEATURE_V6K)) {
547 return 0;
548 }
549 return PAGE_READ;
550 default:
551 g_assert_not_reached();
552 }
553 }
554
555 /*
556 * Translate section/page access permissions to page R/W protection flags.
557 * @ap: The 2-bit simple AP (AP[2:1])
558 * @is_user: TRUE if accessing from PL0
559 */
560 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
561 {
562 switch (ap) {
563 case 0:
564 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
565 case 1:
566 return PAGE_READ | PAGE_WRITE;
567 case 2:
568 return is_user ? 0 : PAGE_READ;
569 case 3:
570 return PAGE_READ;
571 default:
572 g_assert_not_reached();
573 }
574 }
575
576 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
577 {
578 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
579 }
580
581 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
582 uint32_t address, MMUAccessType access_type,
583 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
584 {
585 int level = 1;
586 uint32_t table;
587 uint32_t desc;
588 int type;
589 int ap;
590 int domain = 0;
591 int domain_prot;
592 hwaddr phys_addr;
593 uint32_t dacr;
594
595 /* Pagetable walk. */
596 /* Lookup l1 descriptor. */
597 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
598 /* Section translation fault if page walk is disabled by PD0 or PD1 */
599 fi->type = ARMFault_Translation;
600 goto do_fault;
601 }
602 if (!S1_ptw_translate(env, ptw, table, fi)) {
603 goto do_fault;
604 }
605 desc = arm_ldl_ptw(env, ptw, fi);
606 if (fi->type != ARMFault_None) {
607 goto do_fault;
608 }
609 type = (desc & 3);
610 domain = (desc >> 5) & 0x0f;
611 if (regime_el(env, ptw->in_mmu_idx) == 1) {
612 dacr = env->cp15.dacr_ns;
613 } else {
614 dacr = env->cp15.dacr_s;
615 }
616 domain_prot = (dacr >> (domain * 2)) & 3;
617 if (type == 0) {
618 /* Section translation fault. */
619 fi->type = ARMFault_Translation;
620 goto do_fault;
621 }
622 if (type != 2) {
623 level = 2;
624 }
625 if (domain_prot == 0 || domain_prot == 2) {
626 fi->type = ARMFault_Domain;
627 goto do_fault;
628 }
629 if (type == 2) {
630 /* 1Mb section. */
631 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
632 ap = (desc >> 10) & 3;
633 result->f.lg_page_size = 20; /* 1MB */
634 } else {
635 /* Lookup l2 entry. */
636 if (type == 1) {
637 /* Coarse pagetable. */
638 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
639 } else {
640 /* Fine pagetable. */
641 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
642 }
643 if (!S1_ptw_translate(env, ptw, table, fi)) {
644 goto do_fault;
645 }
646 desc = arm_ldl_ptw(env, ptw, fi);
647 if (fi->type != ARMFault_None) {
648 goto do_fault;
649 }
650 switch (desc & 3) {
651 case 0: /* Page translation fault. */
652 fi->type = ARMFault_Translation;
653 goto do_fault;
654 case 1: /* 64k page. */
655 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
656 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
657 result->f.lg_page_size = 16;
658 break;
659 case 2: /* 4k page. */
660 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
661 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
662 result->f.lg_page_size = 12;
663 break;
664 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
665 if (type == 1) {
666 /* ARMv6/XScale extended small page format */
667 if (arm_feature(env, ARM_FEATURE_XSCALE)
668 || arm_feature(env, ARM_FEATURE_V6)) {
669 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
670 result->f.lg_page_size = 12;
671 } else {
672 /*
673 * UNPREDICTABLE in ARMv5; we choose to take a
674 * page translation fault.
675 */
676 fi->type = ARMFault_Translation;
677 goto do_fault;
678 }
679 } else {
680 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
681 result->f.lg_page_size = 10;
682 }
683 ap = (desc >> 4) & 3;
684 break;
685 default:
686 /* Never happens, but compiler isn't smart enough to tell. */
687 g_assert_not_reached();
688 }
689 }
690 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
691 result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
692 if (!(result->f.prot & (1 << access_type))) {
693 /* Access permission fault. */
694 fi->type = ARMFault_Permission;
695 goto do_fault;
696 }
697 result->f.phys_addr = phys_addr;
698 return false;
699 do_fault:
700 fi->domain = domain;
701 fi->level = level;
702 return true;
703 }
704
705 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
706 uint32_t address, MMUAccessType access_type,
707 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
708 {
709 ARMCPU *cpu = env_archcpu(env);
710 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
711 int level = 1;
712 uint32_t table;
713 uint32_t desc;
714 uint32_t xn;
715 uint32_t pxn = 0;
716 int type;
717 int ap;
718 int domain = 0;
719 int domain_prot;
720 hwaddr phys_addr;
721 uint32_t dacr;
722 bool ns;
723
724 /* Pagetable walk. */
725 /* Lookup l1 descriptor. */
726 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
727 /* Section translation fault if page walk is disabled by PD0 or PD1 */
728 fi->type = ARMFault_Translation;
729 goto do_fault;
730 }
731 if (!S1_ptw_translate(env, ptw, table, fi)) {
732 goto do_fault;
733 }
734 desc = arm_ldl_ptw(env, ptw, fi);
735 if (fi->type != ARMFault_None) {
736 goto do_fault;
737 }
738 type = (desc & 3);
739 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
740 /* Section translation fault, or attempt to use the encoding
741 * which is Reserved on implementations without PXN.
742 */
743 fi->type = ARMFault_Translation;
744 goto do_fault;
745 }
746 if ((type == 1) || !(desc & (1 << 18))) {
747 /* Page or Section. */
748 domain = (desc >> 5) & 0x0f;
749 }
750 if (regime_el(env, mmu_idx) == 1) {
751 dacr = env->cp15.dacr_ns;
752 } else {
753 dacr = env->cp15.dacr_s;
754 }
755 if (type == 1) {
756 level = 2;
757 }
758 domain_prot = (dacr >> (domain * 2)) & 3;
759 if (domain_prot == 0 || domain_prot == 2) {
760 /* Section or Page domain fault */
761 fi->type = ARMFault_Domain;
762 goto do_fault;
763 }
764 if (type != 1) {
765 if (desc & (1 << 18)) {
766 /* Supersection. */
767 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
768 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
769 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
770 result->f.lg_page_size = 24; /* 16MB */
771 } else {
772 /* Section. */
773 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
774 result->f.lg_page_size = 20; /* 1MB */
775 }
776 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
777 xn = desc & (1 << 4);
778 pxn = desc & 1;
779 ns = extract32(desc, 19, 1);
780 } else {
781 if (cpu_isar_feature(aa32_pxn, cpu)) {
782 pxn = (desc >> 2) & 1;
783 }
784 ns = extract32(desc, 3, 1);
785 /* Lookup l2 entry. */
786 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
787 if (!S1_ptw_translate(env, ptw, table, fi)) {
788 goto do_fault;
789 }
790 desc = arm_ldl_ptw(env, ptw, fi);
791 if (fi->type != ARMFault_None) {
792 goto do_fault;
793 }
794 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
795 switch (desc & 3) {
796 case 0: /* Page translation fault. */
797 fi->type = ARMFault_Translation;
798 goto do_fault;
799 case 1: /* 64k page. */
800 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
801 xn = desc & (1 << 15);
802 result->f.lg_page_size = 16;
803 break;
804 case 2: case 3: /* 4k page. */
805 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
806 xn = desc & 1;
807 result->f.lg_page_size = 12;
808 break;
809 default:
810 /* Never happens, but compiler isn't smart enough to tell. */
811 g_assert_not_reached();
812 }
813 }
814 if (domain_prot == 3) {
815 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
816 } else {
817 if (pxn && !regime_is_user(env, mmu_idx)) {
818 xn = 1;
819 }
820 if (xn && access_type == MMU_INST_FETCH) {
821 fi->type = ARMFault_Permission;
822 goto do_fault;
823 }
824
825 if (arm_feature(env, ARM_FEATURE_V6K) &&
826 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
827 /* The simplified model uses AP[0] as an access control bit. */
828 if ((ap & 1) == 0) {
829 /* Access flag fault. */
830 fi->type = ARMFault_AccessFlag;
831 goto do_fault;
832 }
833 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
834 } else {
835 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
836 }
837 if (result->f.prot && !xn) {
838 result->f.prot |= PAGE_EXEC;
839 }
840 if (!(result->f.prot & (1 << access_type))) {
841 /* Access permission fault. */
842 fi->type = ARMFault_Permission;
843 goto do_fault;
844 }
845 }
846 if (ns) {
847 /* The NS bit will (as required by the architecture) have no effect if
848 * the CPU doesn't support TZ or this is a non-secure translation
849 * regime, because the attribute will already be non-secure.
850 */
851 result->f.attrs.secure = false;
852 }
853 result->f.phys_addr = phys_addr;
854 return false;
855 do_fault:
856 fi->domain = domain;
857 fi->level = level;
858 return true;
859 }
860
861 /*
862 * Translate S2 section/page access permissions to protection flags
863 * @env: CPUARMState
864 * @s2ap: The 2-bit stage2 access permissions (S2AP)
865 * @xn: XN (execute-never) bits
866 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
867 */
868 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
869 {
870 int prot = 0;
871
872 if (s2ap & 1) {
873 prot |= PAGE_READ;
874 }
875 if (s2ap & 2) {
876 prot |= PAGE_WRITE;
877 }
878
879 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
880 switch (xn) {
881 case 0:
882 prot |= PAGE_EXEC;
883 break;
884 case 1:
885 if (s1_is_el0) {
886 prot |= PAGE_EXEC;
887 }
888 break;
889 case 2:
890 break;
891 case 3:
892 if (!s1_is_el0) {
893 prot |= PAGE_EXEC;
894 }
895 break;
896 default:
897 g_assert_not_reached();
898 }
899 } else {
900 if (!extract32(xn, 1, 1)) {
901 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
902 prot |= PAGE_EXEC;
903 }
904 }
905 }
906 return prot;
907 }
908
909 /*
910 * Translate section/page access permissions to protection flags
911 * @env: CPUARMState
912 * @mmu_idx: MMU index indicating required translation regime
913 * @is_aa64: TRUE if AArch64
914 * @ap: The 2-bit simple AP (AP[2:1])
915 * @ns: NS (non-secure) bit
916 * @xn: XN (execute-never) bit
917 * @pxn: PXN (privileged execute-never) bit
918 */
919 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
920 int ap, int ns, int xn, int pxn)
921 {
922 bool is_user = regime_is_user(env, mmu_idx);
923 int prot_rw, user_rw;
924 bool have_wxn;
925 int wxn = 0;
926
927 assert(!regime_is_stage2(mmu_idx));
928
929 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
930 if (is_user) {
931 prot_rw = user_rw;
932 } else {
933 if (user_rw && regime_is_pan(env, mmu_idx)) {
934 /* PAN forbids data accesses but doesn't affect insn fetch */
935 prot_rw = 0;
936 } else {
937 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
938 }
939 }
940
941 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
942 return prot_rw;
943 }
944
945 /* TODO have_wxn should be replaced with
946 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
947 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
948 * compatible processors have EL2, which is required for [U]WXN.
949 */
950 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
951
952 if (have_wxn) {
953 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
954 }
955
956 if (is_aa64) {
957 if (regime_has_2_ranges(mmu_idx) && !is_user) {
958 xn = pxn || (user_rw & PAGE_WRITE);
959 }
960 } else if (arm_feature(env, ARM_FEATURE_V7)) {
961 switch (regime_el(env, mmu_idx)) {
962 case 1:
963 case 3:
964 if (is_user) {
965 xn = xn || !(user_rw & PAGE_READ);
966 } else {
967 int uwxn = 0;
968 if (have_wxn) {
969 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
970 }
971 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
972 (uwxn && (user_rw & PAGE_WRITE));
973 }
974 break;
975 case 2:
976 break;
977 }
978 } else {
979 xn = wxn = 0;
980 }
981
982 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
983 return prot_rw;
984 }
985 return prot_rw | PAGE_EXEC;
986 }
987
988 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
989 ARMMMUIdx mmu_idx)
990 {
991 uint64_t tcr = regime_tcr(env, mmu_idx);
992 uint32_t el = regime_el(env, mmu_idx);
993 int select, tsz;
994 bool epd, hpd;
995
996 assert(mmu_idx != ARMMMUIdx_Stage2_S);
997
998 if (mmu_idx == ARMMMUIdx_Stage2) {
999 /* VTCR */
1000 bool sext = extract32(tcr, 4, 1);
1001 bool sign = extract32(tcr, 3, 1);
1002
1003 /*
1004 * If the sign-extend bit is not the same as t0sz[3], the result
1005 * is unpredictable. Flag this as a guest error.
1006 */
1007 if (sign != sext) {
1008 qemu_log_mask(LOG_GUEST_ERROR,
1009 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1010 }
1011 tsz = sextract32(tcr, 0, 4) + 8;
1012 select = 0;
1013 hpd = false;
1014 epd = false;
1015 } else if (el == 2) {
1016 /* HTCR */
1017 tsz = extract32(tcr, 0, 3);
1018 select = 0;
1019 hpd = extract64(tcr, 24, 1);
1020 epd = false;
1021 } else {
1022 int t0sz = extract32(tcr, 0, 3);
1023 int t1sz = extract32(tcr, 16, 3);
1024
1025 if (t1sz == 0) {
1026 select = va > (0xffffffffu >> t0sz);
1027 } else {
1028 /* Note that we will detect errors later. */
1029 select = va >= ~(0xffffffffu >> t1sz);
1030 }
1031 if (!select) {
1032 tsz = t0sz;
1033 epd = extract32(tcr, 7, 1);
1034 hpd = extract64(tcr, 41, 1);
1035 } else {
1036 tsz = t1sz;
1037 epd = extract32(tcr, 23, 1);
1038 hpd = extract64(tcr, 42, 1);
1039 }
1040 /* For aarch32, hpd0 is not enabled without t2e as well. */
1041 hpd &= extract32(tcr, 6, 1);
1042 }
1043
1044 return (ARMVAParameters) {
1045 .tsz = tsz,
1046 .select = select,
1047 .epd = epd,
1048 .hpd = hpd,
1049 };
1050 }
1051
1052 /*
1053 * check_s2_mmu_setup
1054 * @cpu: ARMCPU
1055 * @is_aa64: True if the translation regime is in AArch64 state
1056 * @startlevel: Suggested starting level
1057 * @inputsize: Bitsize of IPAs
1058 * @stride: Page-table stride (See the ARM ARM)
1059 *
1060 * Returns true if the suggested S2 translation parameters are OK and
1061 * false otherwise.
1062 */
1063 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
1064 int inputsize, int stride, int outputsize)
1065 {
1066 const int grainsize = stride + 3;
1067 int startsizecheck;
1068
1069 /*
1070 * Negative levels are usually not allowed...
1071 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
1072 * begins with level -1. Note that previous feature tests will have
1073 * eliminated this combination if it is not enabled.
1074 */
1075 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
1076 return false;
1077 }
1078
1079 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
1080 if (startsizecheck < 1 || startsizecheck > stride + 4) {
1081 return false;
1082 }
1083
1084 if (is_aa64) {
1085 switch (stride) {
1086 case 13: /* 64KB Pages. */
1087 if (level == 0 || (level == 1 && outputsize <= 42)) {
1088 return false;
1089 }
1090 break;
1091 case 11: /* 16KB Pages. */
1092 if (level == 0 || (level == 1 && outputsize <= 40)) {
1093 return false;
1094 }
1095 break;
1096 case 9: /* 4KB Pages. */
1097 if (level == 0 && outputsize <= 42) {
1098 return false;
1099 }
1100 break;
1101 default:
1102 g_assert_not_reached();
1103 }
1104
1105 /* Inputsize checks. */
1106 if (inputsize > outputsize &&
1107 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
1108 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
1109 return false;
1110 }
1111 } else {
1112 /* AArch32 only supports 4KB pages. Assert on that. */
1113 assert(stride == 9);
1114
1115 if (level == 0) {
1116 return false;
1117 }
1118 }
1119 return true;
1120 }
1121
1122 /**
1123 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1124 *
1125 * Returns false if the translation was successful. Otherwise, phys_ptr,
1126 * attrs, prot and page_size may not be filled in, and the populated fsr
1127 * value provides information on why the translation aborted, in the format
1128 * of a long-format DFSR/IFSR fault register, with the following caveat:
1129 * the WnR bit is never set (the caller must do this).
1130 *
1131 * @env: CPUARMState
1132 * @ptw: Current and next stage parameters for the walk.
1133 * @address: virtual address to get physical address for
1134 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1135 * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2
1136 * (so this is a stage 2 page table walk),
1137 * must be true if this is stage 2 of a stage 1+2
1138 * walk for an EL0 access. If @mmu_idx is anything else,
1139 * @s1_is_el0 is ignored.
1140 * @result: set on translation success,
1141 * @fi: set to fault info if the translation fails
1142 */
1143 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1144 uint64_t address,
1145 MMUAccessType access_type, bool s1_is_el0,
1146 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1147 {
1148 ARMCPU *cpu = env_archcpu(env);
1149 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1150 bool is_secure = ptw->in_secure;
1151 uint32_t level;
1152 ARMVAParameters param;
1153 uint64_t ttbr;
1154 hwaddr descaddr, indexmask, indexmask_grainsize;
1155 uint32_t tableattrs;
1156 target_ulong page_size;
1157 uint64_t attrs;
1158 int32_t stride;
1159 int addrsize, inputsize, outputsize;
1160 uint64_t tcr = regime_tcr(env, mmu_idx);
1161 int ap, ns, xn, pxn;
1162 uint32_t el = regime_el(env, mmu_idx);
1163 uint64_t descaddrmask;
1164 bool aarch64 = arm_el_is_aa64(env, el);
1165 uint64_t descriptor, new_descriptor;
1166 bool nstable;
1167
1168 /* TODO: This code does not support shareability levels. */
1169 if (aarch64) {
1170 int ps;
1171
1172 param = aa64_va_parameters(env, address, mmu_idx,
1173 access_type != MMU_INST_FETCH);
1174 level = 0;
1175
1176 /*
1177 * If TxSZ is programmed to a value larger than the maximum,
1178 * or smaller than the effective minimum, it is IMPLEMENTATION
1179 * DEFINED whether we behave as if the field were programmed
1180 * within bounds, or if a level 0 Translation fault is generated.
1181 *
1182 * With FEAT_LVA, fault on less than minimum becomes required,
1183 * so our choice is to always raise the fault.
1184 */
1185 if (param.tsz_oob) {
1186 goto do_translation_fault;
1187 }
1188
1189 addrsize = 64 - 8 * param.tbi;
1190 inputsize = 64 - param.tsz;
1191
1192 /*
1193 * Bound PS by PARANGE to find the effective output address size.
1194 * ID_AA64MMFR0 is a read-only register so values outside of the
1195 * supported mappings can be considered an implementation error.
1196 */
1197 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1198 ps = MIN(ps, param.ps);
1199 assert(ps < ARRAY_SIZE(pamax_map));
1200 outputsize = pamax_map[ps];
1201 } else {
1202 param = aa32_va_parameters(env, address, mmu_idx);
1203 level = 1;
1204 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1205 inputsize = addrsize - param.tsz;
1206 outputsize = 40;
1207 }
1208
1209 /*
1210 * We determined the region when collecting the parameters, but we
1211 * have not yet validated that the address is valid for the region.
1212 * Extract the top bits and verify that they all match select.
1213 *
1214 * For aa32, if inputsize == addrsize, then we have selected the
1215 * region by exclusion in aa32_va_parameters and there is no more
1216 * validation to do here.
1217 */
1218 if (inputsize < addrsize) {
1219 target_ulong top_bits = sextract64(address, inputsize,
1220 addrsize - inputsize);
1221 if (-top_bits != param.select) {
1222 /* The gap between the two regions is a Translation fault */
1223 goto do_translation_fault;
1224 }
1225 }
1226
1227 stride = arm_granule_bits(param.gran) - 3;
1228
1229 /*
1230 * Note that QEMU ignores shareability and cacheability attributes,
1231 * so we don't need to do anything with the SH, ORGN, IRGN fields
1232 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1233 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1234 * implement any ASID-like capability so we can ignore it (instead
1235 * we will always flush the TLB any time the ASID is changed).
1236 */
1237 ttbr = regime_ttbr(env, mmu_idx, param.select);
1238
1239 /*
1240 * Here we should have set up all the parameters for the translation:
1241 * inputsize, ttbr, epd, stride, tbi
1242 */
1243
1244 if (param.epd) {
1245 /*
1246 * Translation table walk disabled => Translation fault on TLB miss
1247 * Note: This is always 0 on 64-bit EL2 and EL3.
1248 */
1249 goto do_translation_fault;
1250 }
1251
1252 if (!regime_is_stage2(mmu_idx)) {
1253 /*
1254 * The starting level depends on the virtual address size (which can
1255 * be up to 48 bits) and the translation granule size. It indicates
1256 * the number of strides (stride bits at a time) needed to
1257 * consume the bits of the input address. In the pseudocode this is:
1258 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1259 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1260 * our 'stride + 3' and 'stride' is our 'stride'.
1261 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1262 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1263 * = 4 - (inputsize - 4) / stride;
1264 */
1265 level = 4 - (inputsize - 4) / stride;
1266 } else {
1267 /*
1268 * For stage 2 translations the starting level is specified by the
1269 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
1270 */
1271 uint32_t sl0 = extract32(tcr, 6, 2);
1272 uint32_t sl2 = extract64(tcr, 33, 1);
1273 uint32_t startlevel;
1274 bool ok;
1275
1276 /* SL2 is RES0 unless DS=1 & 4kb granule. */
1277 if (param.ds && stride == 9 && sl2) {
1278 if (sl0 != 0) {
1279 level = 0;
1280 goto do_translation_fault;
1281 }
1282 startlevel = -1;
1283 } else if (!aarch64 || stride == 9) {
1284 /* AArch32 or 4KB pages */
1285 startlevel = 2 - sl0;
1286
1287 if (cpu_isar_feature(aa64_st, cpu)) {
1288 startlevel &= 3;
1289 }
1290 } else {
1291 /* 16KB or 64KB pages */
1292 startlevel = 3 - sl0;
1293 }
1294
1295 /* Check that the starting level is valid. */
1296 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1297 inputsize, stride, outputsize);
1298 if (!ok) {
1299 goto do_translation_fault;
1300 }
1301 level = startlevel;
1302 }
1303
1304 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1305 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1306
1307 /* Now we can extract the actual base address from the TTBR */
1308 descaddr = extract64(ttbr, 0, 48);
1309
1310 /*
1311 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1312 *
1313 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1314 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1315 * but we've just cleared the bits above 47, so simplify the test.
1316 */
1317 if (outputsize > 48) {
1318 descaddr |= extract64(ttbr, 2, 4) << 48;
1319 } else if (descaddr >> outputsize) {
1320 level = 0;
1321 fi->type = ARMFault_AddressSize;
1322 goto do_fault;
1323 }
1324
1325 /*
1326 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1327 * and also to mask out CnP (bit 0) which could validly be non-zero.
1328 */
1329 descaddr &= ~indexmask;
1330
1331 /*
1332 * For AArch32, the address field in the descriptor goes up to bit 39
1333 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1334 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1335 * bits as part of the address, which will be checked via outputsize.
1336 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1337 * the highest bits of a 52-bit output are placed elsewhere.
1338 */
1339 if (param.ds) {
1340 descaddrmask = MAKE_64BIT_MASK(0, 50);
1341 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1342 descaddrmask = MAKE_64BIT_MASK(0, 48);
1343 } else {
1344 descaddrmask = MAKE_64BIT_MASK(0, 40);
1345 }
1346 descaddrmask &= ~indexmask_grainsize;
1347
1348 /*
1349 * Secure accesses start with the page table in secure memory and
1350 * can be downgraded to non-secure at any step. Non-secure accesses
1351 * remain non-secure. We implement this by just ORing in the NSTable/NS
1352 * bits at each step.
1353 */
1354 tableattrs = is_secure ? 0 : (1 << 4);
1355
1356 next_level:
1357 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1358 descaddr &= ~7ULL;
1359 nstable = extract32(tableattrs, 4, 1);
1360 if (!nstable) {
1361 /*
1362 * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1363 * Assert that the non-secure idx are even, and relative order.
1364 */
1365 QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0);
1366 QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0);
1367 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S);
1368 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S);
1369 ptw->in_ptw_idx &= ~1;
1370 ptw->in_secure = false;
1371 }
1372 if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1373 goto do_fault;
1374 }
1375 descriptor = arm_ldq_ptw(env, ptw, fi);
1376 if (fi->type != ARMFault_None) {
1377 goto do_fault;
1378 }
1379 new_descriptor = descriptor;
1380
1381 restart_atomic_update:
1382 if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) {
1383 /* Invalid, or the Reserved level 3 encoding */
1384 goto do_translation_fault;
1385 }
1386
1387 descaddr = descriptor & descaddrmask;
1388
1389 /*
1390 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1391 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1392 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1393 * raise AddressSizeFault.
1394 */
1395 if (outputsize > 48) {
1396 if (param.ds) {
1397 descaddr |= extract64(descriptor, 8, 2) << 50;
1398 } else {
1399 descaddr |= extract64(descriptor, 12, 4) << 48;
1400 }
1401 } else if (descaddr >> outputsize) {
1402 fi->type = ARMFault_AddressSize;
1403 goto do_fault;
1404 }
1405
1406 if ((descriptor & 2) && (level < 3)) {
1407 /*
1408 * Table entry. The top five bits are attributes which may
1409 * propagate down through lower levels of the table (and
1410 * which are all arranged so that 0 means "no effect", so
1411 * we can gather them up by ORing in the bits at each level).
1412 */
1413 tableattrs |= extract64(descriptor, 59, 5);
1414 level++;
1415 indexmask = indexmask_grainsize;
1416 goto next_level;
1417 }
1418
1419 /*
1420 * Block entry at level 1 or 2, or page entry at level 3.
1421 * These are basically the same thing, although the number
1422 * of bits we pull in from the vaddr varies. Note that although
1423 * descaddrmask masks enough of the low bits of the descriptor
1424 * to give a correct page or table address, the address field
1425 * in a block descriptor is smaller; so we need to explicitly
1426 * clear the lower bits here before ORing in the low vaddr bits.
1427 *
1428 * Afterward, descaddr is the final physical address.
1429 */
1430 page_size = (1ULL << ((stride * (4 - level)) + 3));
1431 descaddr &= ~(hwaddr)(page_size - 1);
1432 descaddr |= (address & (page_size - 1));
1433
1434 if (likely(!ptw->in_debug)) {
1435 /*
1436 * Access flag.
1437 * If HA is enabled, prepare to update the descriptor below.
1438 * Otherwise, pass the access fault on to software.
1439 */
1440 if (!(descriptor & (1 << 10))) {
1441 if (param.ha) {
1442 new_descriptor |= 1 << 10; /* AF */
1443 } else {
1444 fi->type = ARMFault_AccessFlag;
1445 goto do_fault;
1446 }
1447 }
1448 }
1449
1450 /*
1451 * Extract attributes from the (modified) descriptor, and apply
1452 * table descriptors. Stage 2 table descriptors do not include
1453 * any attribute fields. HPD disables all the table attributes
1454 * except NSTable.
1455 */
1456 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1457 if (!regime_is_stage2(mmu_idx)) {
1458 attrs |= nstable << 5; /* NS */
1459 if (!param.hpd) {
1460 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */
1461 /*
1462 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1463 * means "force PL1 access only", which means forcing AP[1] to 0.
1464 */
1465 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1466 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */
1467 }
1468 }
1469
1470 ap = extract32(attrs, 6, 2);
1471 if (regime_is_stage2(mmu_idx)) {
1472 ns = mmu_idx == ARMMMUIdx_Stage2;
1473 xn = extract64(attrs, 53, 2);
1474 result->f.prot = get_S2prot(env, ap, xn, s1_is_el0);
1475 } else {
1476 ns = extract32(attrs, 5, 1);
1477 xn = extract64(attrs, 54, 1);
1478 pxn = extract64(attrs, 53, 1);
1479 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
1480 }
1481
1482 if (!(result->f.prot & (1 << access_type))) {
1483 fi->type = ARMFault_Permission;
1484 goto do_fault;
1485 }
1486
1487 /* If FEAT_HAFDBS has made changes, update the PTE. */
1488 if (new_descriptor != descriptor) {
1489 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
1490 if (fi->type != ARMFault_None) {
1491 goto do_fault;
1492 }
1493 /*
1494 * I_YZSVV says that if the in-memory descriptor has changed,
1495 * then we must use the information in that new value
1496 * (which might include a different output address, different
1497 * attributes, or generate a fault).
1498 * Restart the handling of the descriptor value from scratch.
1499 */
1500 if (new_descriptor != descriptor) {
1501 descriptor = new_descriptor;
1502 goto restart_atomic_update;
1503 }
1504 }
1505
1506 if (ns) {
1507 /*
1508 * The NS bit will (as required by the architecture) have no effect if
1509 * the CPU doesn't support TZ or this is a non-secure translation
1510 * regime, because the attribute will already be non-secure.
1511 */
1512 result->f.attrs.secure = false;
1513 }
1514
1515 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
1516 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
1517 result->f.guarded = extract64(attrs, 50, 1); /* GP */
1518 }
1519
1520 if (regime_is_stage2(mmu_idx)) {
1521 result->cacheattrs.is_s2_format = true;
1522 result->cacheattrs.attrs = extract32(attrs, 2, 4);
1523 } else {
1524 /* Index into MAIR registers for cache attributes */
1525 uint8_t attrindx = extract32(attrs, 2, 3);
1526 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1527 assert(attrindx <= 7);
1528 result->cacheattrs.is_s2_format = false;
1529 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
1530 }
1531
1532 /*
1533 * For FEAT_LPA2 and effective DS, the SH field in the attributes
1534 * was re-purposed for output address bits. The SH attribute in
1535 * that case comes from TCR_ELx, which we extracted earlier.
1536 */
1537 if (param.ds) {
1538 result->cacheattrs.shareability = param.sh;
1539 } else {
1540 result->cacheattrs.shareability = extract32(attrs, 8, 2);
1541 }
1542
1543 result->f.phys_addr = descaddr;
1544 result->f.lg_page_size = ctz64(page_size);
1545 return false;
1546
1547 do_translation_fault:
1548 fi->type = ARMFault_Translation;
1549 do_fault:
1550 fi->level = level;
1551 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
1552 fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx);
1553 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1554 return true;
1555 }
1556
1557 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1558 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1559 bool is_secure, GetPhysAddrResult *result,
1560 ARMMMUFaultInfo *fi)
1561 {
1562 int n;
1563 uint32_t mask;
1564 uint32_t base;
1565 bool is_user = regime_is_user(env, mmu_idx);
1566
1567 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
1568 /* MPU disabled. */
1569 result->f.phys_addr = address;
1570 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1571 return false;
1572 }
1573
1574 result->f.phys_addr = address;
1575 for (n = 7; n >= 0; n--) {
1576 base = env->cp15.c6_region[n];
1577 if ((base & 1) == 0) {
1578 continue;
1579 }
1580 mask = 1 << ((base >> 1) & 0x1f);
1581 /* Keep this shift separate from the above to avoid an
1582 (undefined) << 32. */
1583 mask = (mask << 1) - 1;
1584 if (((base ^ address) & ~mask) == 0) {
1585 break;
1586 }
1587 }
1588 if (n < 0) {
1589 fi->type = ARMFault_Background;
1590 return true;
1591 }
1592
1593 if (access_type == MMU_INST_FETCH) {
1594 mask = env->cp15.pmsav5_insn_ap;
1595 } else {
1596 mask = env->cp15.pmsav5_data_ap;
1597 }
1598 mask = (mask >> (n * 4)) & 0xf;
1599 switch (mask) {
1600 case 0:
1601 fi->type = ARMFault_Permission;
1602 fi->level = 1;
1603 return true;
1604 case 1:
1605 if (is_user) {
1606 fi->type = ARMFault_Permission;
1607 fi->level = 1;
1608 return true;
1609 }
1610 result->f.prot = PAGE_READ | PAGE_WRITE;
1611 break;
1612 case 2:
1613 result->f.prot = PAGE_READ;
1614 if (!is_user) {
1615 result->f.prot |= PAGE_WRITE;
1616 }
1617 break;
1618 case 3:
1619 result->f.prot = PAGE_READ | PAGE_WRITE;
1620 break;
1621 case 5:
1622 if (is_user) {
1623 fi->type = ARMFault_Permission;
1624 fi->level = 1;
1625 return true;
1626 }
1627 result->f.prot = PAGE_READ;
1628 break;
1629 case 6:
1630 result->f.prot = PAGE_READ;
1631 break;
1632 default:
1633 /* Bad permission. */
1634 fi->type = ARMFault_Permission;
1635 fi->level = 1;
1636 return true;
1637 }
1638 result->f.prot |= PAGE_EXEC;
1639 return false;
1640 }
1641
1642 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
1643 int32_t address, uint8_t *prot)
1644 {
1645 if (!arm_feature(env, ARM_FEATURE_M)) {
1646 *prot = PAGE_READ | PAGE_WRITE;
1647 switch (address) {
1648 case 0xF0000000 ... 0xFFFFFFFF:
1649 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1650 /* hivecs execing is ok */
1651 *prot |= PAGE_EXEC;
1652 }
1653 break;
1654 case 0x00000000 ... 0x7FFFFFFF:
1655 *prot |= PAGE_EXEC;
1656 break;
1657 }
1658 } else {
1659 /* Default system address map for M profile cores.
1660 * The architecture specifies which regions are execute-never;
1661 * at the MPU level no other checks are defined.
1662 */
1663 switch (address) {
1664 case 0x00000000 ... 0x1fffffff: /* ROM */
1665 case 0x20000000 ... 0x3fffffff: /* SRAM */
1666 case 0x60000000 ... 0x7fffffff: /* RAM */
1667 case 0x80000000 ... 0x9fffffff: /* RAM */
1668 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1669 break;
1670 case 0x40000000 ... 0x5fffffff: /* Peripheral */
1671 case 0xa0000000 ... 0xbfffffff: /* Device */
1672 case 0xc0000000 ... 0xdfffffff: /* Device */
1673 case 0xe0000000 ... 0xffffffff: /* System */
1674 *prot = PAGE_READ | PAGE_WRITE;
1675 break;
1676 default:
1677 g_assert_not_reached();
1678 }
1679 }
1680 }
1681
1682 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1683 {
1684 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1685 return arm_feature(env, ARM_FEATURE_M) &&
1686 extract32(address, 20, 12) == 0xe00;
1687 }
1688
1689 static bool m_is_system_region(CPUARMState *env, uint32_t address)
1690 {
1691 /*
1692 * True if address is in the M profile system region
1693 * 0xe0000000 - 0xffffffff
1694 */
1695 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1696 }
1697
1698 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1699 bool is_secure, bool is_user)
1700 {
1701 /*
1702 * Return true if we should use the default memory map as a
1703 * "background" region if there are no hits against any MPU regions.
1704 */
1705 CPUARMState *env = &cpu->env;
1706
1707 if (is_user) {
1708 return false;
1709 }
1710
1711 if (arm_feature(env, ARM_FEATURE_M)) {
1712 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
1713 } else {
1714 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
1715 }
1716 }
1717
1718 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1719 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1720 bool secure, GetPhysAddrResult *result,
1721 ARMMMUFaultInfo *fi)
1722 {
1723 ARMCPU *cpu = env_archcpu(env);
1724 int n;
1725 bool is_user = regime_is_user(env, mmu_idx);
1726
1727 result->f.phys_addr = address;
1728 result->f.lg_page_size = TARGET_PAGE_BITS;
1729 result->f.prot = 0;
1730
1731 if (regime_translation_disabled(env, mmu_idx, secure) ||
1732 m_is_ppb_region(env, address)) {
1733 /*
1734 * MPU disabled or M profile PPB access: use default memory map.
1735 * The other case which uses the default memory map in the
1736 * v7M ARM ARM pseudocode is exception vector reads from the vector
1737 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1738 * which always does a direct read using address_space_ldl(), rather
1739 * than going via this function, so we don't need to check that here.
1740 */
1741 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
1742 } else { /* MPU enabled */
1743 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1744 /* region search */
1745 uint32_t base = env->pmsav7.drbar[n];
1746 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1747 uint32_t rmask;
1748 bool srdis = false;
1749
1750 if (!(env->pmsav7.drsr[n] & 0x1)) {
1751 continue;
1752 }
1753
1754 if (!rsize) {
1755 qemu_log_mask(LOG_GUEST_ERROR,
1756 "DRSR[%d]: Rsize field cannot be 0\n", n);
1757 continue;
1758 }
1759 rsize++;
1760 rmask = (1ull << rsize) - 1;
1761
1762 if (base & rmask) {
1763 qemu_log_mask(LOG_GUEST_ERROR,
1764 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1765 "to DRSR region size, mask = 0x%" PRIx32 "\n",
1766 n, base, rmask);
1767 continue;
1768 }
1769
1770 if (address < base || address > base + rmask) {
1771 /*
1772 * Address not in this region. We must check whether the
1773 * region covers addresses in the same page as our address.
1774 * In that case we must not report a size that covers the
1775 * whole page for a subsequent hit against a different MPU
1776 * region or the background region, because it would result in
1777 * incorrect TLB hits for subsequent accesses to addresses that
1778 * are in this MPU region.
1779 */
1780 if (ranges_overlap(base, rmask,
1781 address & TARGET_PAGE_MASK,
1782 TARGET_PAGE_SIZE)) {
1783 result->f.lg_page_size = 0;
1784 }
1785 continue;
1786 }
1787
1788 /* Region matched */
1789
1790 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1791 int i, snd;
1792 uint32_t srdis_mask;
1793
1794 rsize -= 3; /* sub region size (power of 2) */
1795 snd = ((address - base) >> rsize) & 0x7;
1796 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1797
1798 srdis_mask = srdis ? 0x3 : 0x0;
1799 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1800 /*
1801 * This will check in groups of 2, 4 and then 8, whether
1802 * the subregion bits are consistent. rsize is incremented
1803 * back up to give the region size, considering consistent
1804 * adjacent subregions as one region. Stop testing if rsize
1805 * is already big enough for an entire QEMU page.
1806 */
1807 int snd_rounded = snd & ~(i - 1);
1808 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1809 snd_rounded + 8, i);
1810 if (srdis_mask ^ srdis_multi) {
1811 break;
1812 }
1813 srdis_mask = (srdis_mask << i) | srdis_mask;
1814 rsize++;
1815 }
1816 }
1817 if (srdis) {
1818 continue;
1819 }
1820 if (rsize < TARGET_PAGE_BITS) {
1821 result->f.lg_page_size = rsize;
1822 }
1823 break;
1824 }
1825
1826 if (n == -1) { /* no hits */
1827 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1828 /* background fault */
1829 fi->type = ARMFault_Background;
1830 return true;
1831 }
1832 get_phys_addr_pmsav7_default(env, mmu_idx, address,
1833 &result->f.prot);
1834 } else { /* a MPU hit! */
1835 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1836 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1837
1838 if (m_is_system_region(env, address)) {
1839 /* System space is always execute never */
1840 xn = 1;
1841 }
1842
1843 if (is_user) { /* User mode AP bit decoding */
1844 switch (ap) {
1845 case 0:
1846 case 1:
1847 case 5:
1848 break; /* no access */
1849 case 3:
1850 result->f.prot |= PAGE_WRITE;
1851 /* fall through */
1852 case 2:
1853 case 6:
1854 result->f.prot |= PAGE_READ | PAGE_EXEC;
1855 break;
1856 case 7:
1857 /* for v7M, same as 6; for R profile a reserved value */
1858 if (arm_feature(env, ARM_FEATURE_M)) {
1859 result->f.prot |= PAGE_READ | PAGE_EXEC;
1860 break;
1861 }
1862 /* fall through */
1863 default:
1864 qemu_log_mask(LOG_GUEST_ERROR,
1865 "DRACR[%d]: Bad value for AP bits: 0x%"
1866 PRIx32 "\n", n, ap);
1867 }
1868 } else { /* Priv. mode AP bits decoding */
1869 switch (ap) {
1870 case 0:
1871 break; /* no access */
1872 case 1:
1873 case 2:
1874 case 3:
1875 result->f.prot |= PAGE_WRITE;
1876 /* fall through */
1877 case 5:
1878 case 6:
1879 result->f.prot |= PAGE_READ | PAGE_EXEC;
1880 break;
1881 case 7:
1882 /* for v7M, same as 6; for R profile a reserved value */
1883 if (arm_feature(env, ARM_FEATURE_M)) {
1884 result->f.prot |= PAGE_READ | PAGE_EXEC;
1885 break;
1886 }
1887 /* fall through */
1888 default:
1889 qemu_log_mask(LOG_GUEST_ERROR,
1890 "DRACR[%d]: Bad value for AP bits: 0x%"
1891 PRIx32 "\n", n, ap);
1892 }
1893 }
1894
1895 /* execute never */
1896 if (xn) {
1897 result->f.prot &= ~PAGE_EXEC;
1898 }
1899 }
1900 }
1901
1902 fi->type = ARMFault_Permission;
1903 fi->level = 1;
1904 return !(result->f.prot & (1 << access_type));
1905 }
1906
1907 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1908 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1909 bool secure, GetPhysAddrResult *result,
1910 ARMMMUFaultInfo *fi, uint32_t *mregion)
1911 {
1912 /*
1913 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
1914 * that a full phys-to-virt translation does).
1915 * mregion is (if not NULL) set to the region number which matched,
1916 * or -1 if no region number is returned (MPU off, address did not
1917 * hit a region, address hit in multiple regions).
1918 * If the region hit doesn't cover the entire TARGET_PAGE the address
1919 * is within, then we set the result page_size to 1 to force the
1920 * memory system to use a subpage.
1921 */
1922 ARMCPU *cpu = env_archcpu(env);
1923 bool is_user = regime_is_user(env, mmu_idx);
1924 int n;
1925 int matchregion = -1;
1926 bool hit = false;
1927 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
1928 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
1929
1930 result->f.lg_page_size = TARGET_PAGE_BITS;
1931 result->f.phys_addr = address;
1932 result->f.prot = 0;
1933 if (mregion) {
1934 *mregion = -1;
1935 }
1936
1937 /*
1938 * Unlike the ARM ARM pseudocode, we don't need to check whether this
1939 * was an exception vector read from the vector table (which is always
1940 * done using the default system address map), because those accesses
1941 * are done in arm_v7m_load_vector(), which always does a direct
1942 * read using address_space_ldl(), rather than going via this function.
1943 */
1944 if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */
1945 hit = true;
1946 } else if (m_is_ppb_region(env, address)) {
1947 hit = true;
1948 } else {
1949 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1950 hit = true;
1951 }
1952
1953 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1954 /* region search */
1955 /*
1956 * Note that the base address is bits [31:5] from the register
1957 * with bits [4:0] all zeroes, but the limit address is bits
1958 * [31:5] from the register with bits [4:0] all ones.
1959 */
1960 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
1961 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
1962
1963 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
1964 /* Region disabled */
1965 continue;
1966 }
1967
1968 if (address < base || address > limit) {
1969 /*
1970 * Address not in this region. We must check whether the
1971 * region covers addresses in the same page as our address.
1972 * In that case we must not report a size that covers the
1973 * whole page for a subsequent hit against a different MPU
1974 * region or the background region, because it would result in
1975 * incorrect TLB hits for subsequent accesses to addresses that
1976 * are in this MPU region.
1977 */
1978 if (limit >= base &&
1979 ranges_overlap(base, limit - base + 1,
1980 addr_page_base,
1981 TARGET_PAGE_SIZE)) {
1982 result->f.lg_page_size = 0;
1983 }
1984 continue;
1985 }
1986
1987 if (base > addr_page_base || limit < addr_page_limit) {
1988 result->f.lg_page_size = 0;
1989 }
1990
1991 if (matchregion != -1) {
1992 /*
1993 * Multiple regions match -- always a failure (unlike
1994 * PMSAv7 where highest-numbered-region wins)
1995 */
1996 fi->type = ARMFault_Permission;
1997 fi->level = 1;
1998 return true;
1999 }
2000
2001 matchregion = n;
2002 hit = true;
2003 }
2004 }
2005
2006 if (!hit) {
2007 /* background fault */
2008 fi->type = ARMFault_Background;
2009 return true;
2010 }
2011
2012 if (matchregion == -1) {
2013 /* hit using the background region */
2014 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2015 } else {
2016 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
2017 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
2018 bool pxn = false;
2019
2020 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2021 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
2022 }
2023
2024 if (m_is_system_region(env, address)) {
2025 /* System space is always execute never */
2026 xn = 1;
2027 }
2028
2029 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2030 if (result->f.prot && !xn && !(pxn && !is_user)) {
2031 result->f.prot |= PAGE_EXEC;
2032 }
2033 /*
2034 * We don't need to look the attribute up in the MAIR0/MAIR1
2035 * registers because that only tells us about cacheability.
2036 */
2037 if (mregion) {
2038 *mregion = matchregion;
2039 }
2040 }
2041
2042 fi->type = ARMFault_Permission;
2043 fi->level = 1;
2044 return !(result->f.prot & (1 << access_type));
2045 }
2046
2047 static bool v8m_is_sau_exempt(CPUARMState *env,
2048 uint32_t address, MMUAccessType access_type)
2049 {
2050 /*
2051 * The architecture specifies that certain address ranges are
2052 * exempt from v8M SAU/IDAU checks.
2053 */
2054 return
2055 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2056 (address >= 0xe0000000 && address <= 0xe0002fff) ||
2057 (address >= 0xe000e000 && address <= 0xe000efff) ||
2058 (address >= 0xe002e000 && address <= 0xe002efff) ||
2059 (address >= 0xe0040000 && address <= 0xe0041fff) ||
2060 (address >= 0xe00ff000 && address <= 0xe00fffff);
2061 }
2062
2063 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2064 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2065 bool is_secure, V8M_SAttributes *sattrs)
2066 {
2067 /*
2068 * Look up the security attributes for this address. Compare the
2069 * pseudocode SecurityCheck() function.
2070 * We assume the caller has zero-initialized *sattrs.
2071 */
2072 ARMCPU *cpu = env_archcpu(env);
2073 int r;
2074 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2075 int idau_region = IREGION_NOTVALID;
2076 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2077 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2078
2079 if (cpu->idau) {
2080 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2081 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2082
2083 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2084 &idau_nsc);
2085 }
2086
2087 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2088 /* 0xf0000000..0xffffffff is always S for insn fetches */
2089 return;
2090 }
2091
2092 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2093 sattrs->ns = !is_secure;
2094 return;
2095 }
2096
2097 if (idau_region != IREGION_NOTVALID) {
2098 sattrs->irvalid = true;
2099 sattrs->iregion = idau_region;
2100 }
2101
2102 switch (env->sau.ctrl & 3) {
2103 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2104 break;
2105 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2106 sattrs->ns = true;
2107 break;
2108 default: /* SAU.ENABLE == 1 */
2109 for (r = 0; r < cpu->sau_sregion; r++) {
2110 if (env->sau.rlar[r] & 1) {
2111 uint32_t base = env->sau.rbar[r] & ~0x1f;
2112 uint32_t limit = env->sau.rlar[r] | 0x1f;
2113
2114 if (base <= address && limit >= address) {
2115 if (base > addr_page_base || limit < addr_page_limit) {
2116 sattrs->subpage = true;
2117 }
2118 if (sattrs->srvalid) {
2119 /*
2120 * If we hit in more than one region then we must report
2121 * as Secure, not NS-Callable, with no valid region
2122 * number info.
2123 */
2124 sattrs->ns = false;
2125 sattrs->nsc = false;
2126 sattrs->sregion = 0;
2127 sattrs->srvalid = false;
2128 break;
2129 } else {
2130 if (env->sau.rlar[r] & 2) {
2131 sattrs->nsc = true;
2132 } else {
2133 sattrs->ns = true;
2134 }
2135 sattrs->srvalid = true;
2136 sattrs->sregion = r;
2137 }
2138 } else {
2139 /*
2140 * Address not in this region. We must check whether the
2141 * region covers addresses in the same page as our address.
2142 * In that case we must not report a size that covers the
2143 * whole page for a subsequent hit against a different MPU
2144 * region or the background region, because it would result
2145 * in incorrect TLB hits for subsequent accesses to
2146 * addresses that are in this MPU region.
2147 */
2148 if (limit >= base &&
2149 ranges_overlap(base, limit - base + 1,
2150 addr_page_base,
2151 TARGET_PAGE_SIZE)) {
2152 sattrs->subpage = true;
2153 }
2154 }
2155 }
2156 }
2157 break;
2158 }
2159
2160 /*
2161 * The IDAU will override the SAU lookup results if it specifies
2162 * higher security than the SAU does.
2163 */
2164 if (!idau_ns) {
2165 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2166 sattrs->ns = false;
2167 sattrs->nsc = idau_nsc;
2168 }
2169 }
2170 }
2171
2172 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
2173 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2174 bool secure, GetPhysAddrResult *result,
2175 ARMMMUFaultInfo *fi)
2176 {
2177 V8M_SAttributes sattrs = {};
2178 bool ret;
2179
2180 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2181 v8m_security_lookup(env, address, access_type, mmu_idx,
2182 secure, &sattrs);
2183 if (access_type == MMU_INST_FETCH) {
2184 /*
2185 * Instruction fetches always use the MMU bank and the
2186 * transaction attribute determined by the fetch address,
2187 * regardless of CPU state. This is painful for QEMU
2188 * to handle, because it would mean we need to encode
2189 * into the mmu_idx not just the (user, negpri) information
2190 * for the current security state but also that for the
2191 * other security state, which would balloon the number
2192 * of mmu_idx values needed alarmingly.
2193 * Fortunately we can avoid this because it's not actually
2194 * possible to arbitrarily execute code from memory with
2195 * the wrong security attribute: it will always generate
2196 * an exception of some kind or another, apart from the
2197 * special case of an NS CPU executing an SG instruction
2198 * in S&NSC memory. So we always just fail the translation
2199 * here and sort things out in the exception handler
2200 * (including possibly emulating an SG instruction).
2201 */
2202 if (sattrs.ns != !secure) {
2203 if (sattrs.nsc) {
2204 fi->type = ARMFault_QEMU_NSCExec;
2205 } else {
2206 fi->type = ARMFault_QEMU_SFault;
2207 }
2208 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2209 result->f.phys_addr = address;
2210 result->f.prot = 0;
2211 return true;
2212 }
2213 } else {
2214 /*
2215 * For data accesses we always use the MMU bank indicated
2216 * by the current CPU state, but the security attributes
2217 * might downgrade a secure access to nonsecure.
2218 */
2219 if (sattrs.ns) {
2220 result->f.attrs.secure = false;
2221 } else if (!secure) {
2222 /*
2223 * NS access to S memory must fault.
2224 * Architecturally we should first check whether the
2225 * MPU information for this address indicates that we
2226 * are doing an unaligned access to Device memory, which
2227 * should generate a UsageFault instead. QEMU does not
2228 * currently check for that kind of unaligned access though.
2229 * If we added it we would need to do so as a special case
2230 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2231 */
2232 fi->type = ARMFault_QEMU_SFault;
2233 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2234 result->f.phys_addr = address;
2235 result->f.prot = 0;
2236 return true;
2237 }
2238 }
2239 }
2240
2241 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2242 result, fi, NULL);
2243 if (sattrs.subpage) {
2244 result->f.lg_page_size = 0;
2245 }
2246 return ret;
2247 }
2248
2249 /*
2250 * Translate from the 4-bit stage 2 representation of
2251 * memory attributes (without cache-allocation hints) to
2252 * the 8-bit representation of the stage 1 MAIR registers
2253 * (which includes allocation hints).
2254 *
2255 * ref: shared/translation/attrs/S2AttrDecode()
2256 * .../S2ConvertAttrsHints()
2257 */
2258 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2259 {
2260 uint8_t hiattr = extract32(s2attrs, 2, 2);
2261 uint8_t loattr = extract32(s2attrs, 0, 2);
2262 uint8_t hihint = 0, lohint = 0;
2263
2264 if (hiattr != 0) { /* normal memory */
2265 if (hcr & HCR_CD) { /* cache disabled */
2266 hiattr = loattr = 1; /* non-cacheable */
2267 } else {
2268 if (hiattr != 1) { /* Write-through or write-back */
2269 hihint = 3; /* RW allocate */
2270 }
2271 if (loattr != 1) { /* Write-through or write-back */
2272 lohint = 3; /* RW allocate */
2273 }
2274 }
2275 }
2276
2277 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2278 }
2279
2280 /*
2281 * Combine either inner or outer cacheability attributes for normal
2282 * memory, according to table D4-42 and pseudocode procedure
2283 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2284 *
2285 * NB: only stage 1 includes allocation hints (RW bits), leading to
2286 * some asymmetry.
2287 */
2288 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2289 {
2290 if (s1 == 4 || s2 == 4) {
2291 /* non-cacheable has precedence */
2292 return 4;
2293 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2294 /* stage 1 write-through takes precedence */
2295 return s1;
2296 } else if (extract32(s2, 2, 2) == 2) {
2297 /* stage 2 write-through takes precedence, but the allocation hint
2298 * is still taken from stage 1
2299 */
2300 return (2 << 2) | extract32(s1, 0, 2);
2301 } else { /* write-back */
2302 return s1;
2303 }
2304 }
2305
2306 /*
2307 * Combine the memory type and cacheability attributes of
2308 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2309 * combined attributes in MAIR_EL1 format.
2310 */
2311 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2312 ARMCacheAttrs s1, ARMCacheAttrs s2)
2313 {
2314 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2315
2316 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2317
2318 s1lo = extract32(s1.attrs, 0, 4);
2319 s2lo = extract32(s2_mair_attrs, 0, 4);
2320 s1hi = extract32(s1.attrs, 4, 4);
2321 s2hi = extract32(s2_mair_attrs, 4, 4);
2322
2323 /* Combine memory type and cacheability attributes */
2324 if (s1hi == 0 || s2hi == 0) {
2325 /* Device has precedence over normal */
2326 if (s1lo == 0 || s2lo == 0) {
2327 /* nGnRnE has precedence over anything */
2328 ret_attrs = 0;
2329 } else if (s1lo == 4 || s2lo == 4) {
2330 /* non-Reordering has precedence over Reordering */
2331 ret_attrs = 4; /* nGnRE */
2332 } else if (s1lo == 8 || s2lo == 8) {
2333 /* non-Gathering has precedence over Gathering */
2334 ret_attrs = 8; /* nGRE */
2335 } else {
2336 ret_attrs = 0xc; /* GRE */
2337 }
2338 } else { /* Normal memory */
2339 /* Outer/inner cacheability combine independently */
2340 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2341 | combine_cacheattr_nibble(s1lo, s2lo);
2342 }
2343 return ret_attrs;
2344 }
2345
2346 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2347 {
2348 /*
2349 * Given the 4 bits specifying the outer or inner cacheability
2350 * in MAIR format, return a value specifying Normal Write-Back,
2351 * with the allocation and transient hints taken from the input
2352 * if the input specified some kind of cacheable attribute.
2353 */
2354 if (attr == 0 || attr == 4) {
2355 /*
2356 * 0 == an UNPREDICTABLE encoding
2357 * 4 == Non-cacheable
2358 * Either way, force Write-Back RW allocate non-transient
2359 */
2360 return 0xf;
2361 }
2362 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2363 return attr | 4;
2364 }
2365
2366 /*
2367 * Combine the memory type and cacheability attributes of
2368 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2369 * combined attributes in MAIR_EL1 format.
2370 */
2371 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
2372 {
2373 switch (s2.attrs) {
2374 case 7:
2375 /* Use stage 1 attributes */
2376 return s1.attrs;
2377 case 6:
2378 /*
2379 * Force Normal Write-Back. Note that if S1 is Normal cacheable
2380 * then we take the allocation hints from it; otherwise it is
2381 * RW allocate, non-transient.
2382 */
2383 if ((s1.attrs & 0xf0) == 0) {
2384 /* S1 is Device */
2385 return 0xff;
2386 }
2387 /* Need to check the Inner and Outer nibbles separately */
2388 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2389 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2390 case 5:
2391 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2392 if ((s1.attrs & 0xf0) == 0) {
2393 return s1.attrs;
2394 }
2395 return 0x44;
2396 case 0 ... 3:
2397 /* Force Device, of subtype specified by S2 */
2398 return s2.attrs << 2;
2399 default:
2400 /*
2401 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2402 * arbitrarily force Device.
2403 */
2404 return 0;
2405 }
2406 }
2407
2408 /*
2409 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2410 * and CombineS1S2Desc()
2411 *
2412 * @env: CPUARMState
2413 * @s1: Attributes from stage 1 walk
2414 * @s2: Attributes from stage 2 walk
2415 */
2416 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
2417 ARMCacheAttrs s1, ARMCacheAttrs s2)
2418 {
2419 ARMCacheAttrs ret;
2420 bool tagged = false;
2421
2422 assert(s2.is_s2_format && !s1.is_s2_format);
2423 ret.is_s2_format = false;
2424
2425 if (s1.attrs == 0xf0) {
2426 tagged = true;
2427 s1.attrs = 0xff;
2428 }
2429
2430 /* Combine shareability attributes (table D4-43) */
2431 if (s1.shareability == 2 || s2.shareability == 2) {
2432 /* if either are outer-shareable, the result is outer-shareable */
2433 ret.shareability = 2;
2434 } else if (s1.shareability == 3 || s2.shareability == 3) {
2435 /* if either are inner-shareable, the result is inner-shareable */
2436 ret.shareability = 3;
2437 } else {
2438 /* both non-shareable */
2439 ret.shareability = 0;
2440 }
2441
2442 /* Combine memory type and cacheability attributes */
2443 if (hcr & HCR_FWB) {
2444 ret.attrs = combined_attrs_fwb(s1, s2);
2445 } else {
2446 ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
2447 }
2448
2449 /*
2450 * Any location for which the resultant memory type is any
2451 * type of Device memory is always treated as Outer Shareable.
2452 * Any location for which the resultant memory type is Normal
2453 * Inner Non-cacheable, Outer Non-cacheable is always treated
2454 * as Outer Shareable.
2455 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2456 */
2457 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2458 ret.shareability = 2;
2459 }
2460
2461 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2462 if (tagged && ret.attrs == 0xff) {
2463 ret.attrs = 0xf0;
2464 }
2465
2466 return ret;
2467 }
2468
2469 /*
2470 * MMU disabled. S1 addresses within aa64 translation regimes are
2471 * still checked for bounds -- see AArch64.S1DisabledOutput().
2472 */
2473 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
2474 MMUAccessType access_type,
2475 ARMMMUIdx mmu_idx, bool is_secure,
2476 GetPhysAddrResult *result,
2477 ARMMMUFaultInfo *fi)
2478 {
2479 uint8_t memattr = 0x00; /* Device nGnRnE */
2480 uint8_t shareability = 0; /* non-sharable */
2481 int r_el;
2482
2483 switch (mmu_idx) {
2484 case ARMMMUIdx_Stage2:
2485 case ARMMMUIdx_Stage2_S:
2486 case ARMMMUIdx_Phys_NS:
2487 case ARMMMUIdx_Phys_S:
2488 break;
2489
2490 default:
2491 r_el = regime_el(env, mmu_idx);
2492 if (arm_el_is_aa64(env, r_el)) {
2493 int pamax = arm_pamax(env_archcpu(env));
2494 uint64_t tcr = env->cp15.tcr_el[r_el];
2495 int addrtop, tbi;
2496
2497 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2498 if (access_type == MMU_INST_FETCH) {
2499 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2500 }
2501 tbi = (tbi >> extract64(address, 55, 1)) & 1;
2502 addrtop = (tbi ? 55 : 63);
2503
2504 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2505 fi->type = ARMFault_AddressSize;
2506 fi->level = 0;
2507 fi->stage2 = false;
2508 return 1;
2509 }
2510
2511 /*
2512 * When TBI is disabled, we've just validated that all of the
2513 * bits above PAMax are zero, so logically we only need to
2514 * clear the top byte for TBI. But it's clearer to follow
2515 * the pseudocode set of addrdesc.paddress.
2516 */
2517 address = extract64(address, 0, 52);
2518 }
2519
2520 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2521 if (r_el == 1) {
2522 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2523 if (hcr & HCR_DC) {
2524 if (hcr & HCR_DCT) {
2525 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
2526 } else {
2527 memattr = 0xff; /* Normal, WB, RWA */
2528 }
2529 }
2530 }
2531 if (memattr == 0 && access_type == MMU_INST_FETCH) {
2532 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2533 memattr = 0xee; /* Normal, WT, RA, NT */
2534 } else {
2535 memattr = 0x44; /* Normal, NC, No */
2536 }
2537 shareability = 2; /* outer sharable */
2538 }
2539 result->cacheattrs.is_s2_format = false;
2540 break;
2541 }
2542
2543 result->f.phys_addr = address;
2544 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2545 result->f.lg_page_size = TARGET_PAGE_BITS;
2546 result->cacheattrs.shareability = shareability;
2547 result->cacheattrs.attrs = memattr;
2548 return false;
2549 }
2550
2551 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
2552 target_ulong address,
2553 MMUAccessType access_type,
2554 GetPhysAddrResult *result,
2555 ARMMMUFaultInfo *fi)
2556 {
2557 hwaddr ipa;
2558 int s1_prot;
2559 bool is_secure = ptw->in_secure;
2560 bool ret, ipa_secure, s2walk_secure;
2561 ARMCacheAttrs cacheattrs1;
2562 bool is_el0;
2563 uint64_t hcr;
2564
2565 ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi);
2566
2567 /* If S1 fails or S2 is disabled, return early. */
2568 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) {
2569 return ret;
2570 }
2571
2572 ipa = result->f.phys_addr;
2573 ipa_secure = result->f.attrs.secure;
2574 if (is_secure) {
2575 /* Select TCR based on the NS bit from the S1 walk. */
2576 s2walk_secure = !(ipa_secure
2577 ? env->cp15.vstcr_el2 & VSTCR_SW
2578 : env->cp15.vtcr_el2 & VTCR_NSW);
2579 } else {
2580 assert(!ipa_secure);
2581 s2walk_secure = false;
2582 }
2583
2584 is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
2585 ptw->in_mmu_idx = s2walk_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2586 ptw->in_ptw_idx = s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2587 ptw->in_secure = s2walk_secure;
2588
2589 /*
2590 * S1 is done, now do S2 translation.
2591 * Save the stage1 results so that we may merge prot and cacheattrs later.
2592 */
2593 s1_prot = result->f.prot;
2594 cacheattrs1 = result->cacheattrs;
2595 memset(result, 0, sizeof(*result));
2596
2597 ret = get_phys_addr_lpae(env, ptw, ipa, access_type, is_el0, result, fi);
2598 fi->s2addr = ipa;
2599
2600 /* Combine the S1 and S2 perms. */
2601 result->f.prot &= s1_prot;
2602
2603 /* If S2 fails, return early. */
2604 if (ret) {
2605 return ret;
2606 }
2607
2608 /* Combine the S1 and S2 cache attributes. */
2609 hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2610 if (hcr & HCR_DC) {
2611 /*
2612 * HCR.DC forces the first stage attributes to
2613 * Normal Non-Shareable,
2614 * Inner Write-Back Read-Allocate Write-Allocate,
2615 * Outer Write-Back Read-Allocate Write-Allocate.
2616 * Do not overwrite Tagged within attrs.
2617 */
2618 if (cacheattrs1.attrs != 0xf0) {
2619 cacheattrs1.attrs = 0xff;
2620 }
2621 cacheattrs1.shareability = 0;
2622 }
2623 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
2624 result->cacheattrs);
2625
2626 /*
2627 * Check if IPA translates to secure or non-secure PA space.
2628 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
2629 */
2630 result->f.attrs.secure =
2631 (is_secure
2632 && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
2633 && (ipa_secure
2634 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))));
2635
2636 return false;
2637 }
2638
2639 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
2640 target_ulong address,
2641 MMUAccessType access_type,
2642 GetPhysAddrResult *result,
2643 ARMMMUFaultInfo *fi)
2644 {
2645 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2646 bool is_secure = ptw->in_secure;
2647 ARMMMUIdx s1_mmu_idx;
2648
2649 switch (mmu_idx) {
2650 case ARMMMUIdx_Phys_S:
2651 case ARMMMUIdx_Phys_NS:
2652 /* Checking Phys early avoids special casing later vs regime_el. */
2653 return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2654 is_secure, result, fi);
2655
2656 case ARMMMUIdx_Stage1_E0:
2657 case ARMMMUIdx_Stage1_E1:
2658 case ARMMMUIdx_Stage1_E1_PAN:
2659 /* First stage lookup uses second stage for ptw. */
2660 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2661 break;
2662
2663 case ARMMMUIdx_E10_0:
2664 s1_mmu_idx = ARMMMUIdx_Stage1_E0;
2665 goto do_twostage;
2666 case ARMMMUIdx_E10_1:
2667 s1_mmu_idx = ARMMMUIdx_Stage1_E1;
2668 goto do_twostage;
2669 case ARMMMUIdx_E10_1_PAN:
2670 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
2671 do_twostage:
2672 /*
2673 * Call ourselves recursively to do the stage 1 and then stage 2
2674 * translations if mmu_idx is a two-stage regime, and EL2 present.
2675 * Otherwise, a stage1+stage2 translation is just stage 1.
2676 */
2677 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
2678 if (arm_feature(env, ARM_FEATURE_EL2)) {
2679 return get_phys_addr_twostage(env, ptw, address, access_type,
2680 result, fi);
2681 }
2682 /* fall through */
2683
2684 default:
2685 /* Single stage and second stage uses physical for ptw. */
2686 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2687 break;
2688 }
2689
2690 /*
2691 * The page table entries may downgrade secure to non-secure, but
2692 * cannot upgrade an non-secure translation regime's attributes
2693 * to secure.
2694 */
2695 result->f.attrs.secure = is_secure;
2696 result->f.attrs.user = regime_is_user(env, mmu_idx);
2697
2698 /*
2699 * Fast Context Switch Extension. This doesn't exist at all in v8.
2700 * In v7 and earlier it affects all stage 1 translations.
2701 */
2702 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2703 && !arm_feature(env, ARM_FEATURE_V8)) {
2704 if (regime_el(env, mmu_idx) == 3) {
2705 address += env->cp15.fcseidr_s;
2706 } else {
2707 address += env->cp15.fcseidr_ns;
2708 }
2709 }
2710
2711 if (arm_feature(env, ARM_FEATURE_PMSA)) {
2712 bool ret;
2713 result->f.lg_page_size = TARGET_PAGE_BITS;
2714
2715 if (arm_feature(env, ARM_FEATURE_V8)) {
2716 /* PMSAv8 */
2717 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
2718 is_secure, result, fi);
2719 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2720 /* PMSAv7 */
2721 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
2722 is_secure, result, fi);
2723 } else {
2724 /* Pre-v7 MPU */
2725 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
2726 is_secure, result, fi);
2727 }
2728 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2729 " mmu_idx %u -> %s (prot %c%c%c)\n",
2730 access_type == MMU_DATA_LOAD ? "reading" :
2731 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2732 (uint32_t)address, mmu_idx,
2733 ret ? "Miss" : "Hit",
2734 result->f.prot & PAGE_READ ? 'r' : '-',
2735 result->f.prot & PAGE_WRITE ? 'w' : '-',
2736 result->f.prot & PAGE_EXEC ? 'x' : '-');
2737
2738 return ret;
2739 }
2740
2741 /* Definitely a real MMU, not an MPU */
2742
2743 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
2744 return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2745 is_secure, result, fi);
2746 }
2747
2748 if (regime_using_lpae_format(env, mmu_idx)) {
2749 return get_phys_addr_lpae(env, ptw, address, access_type, false,
2750 result, fi);
2751 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
2752 return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
2753 } else {
2754 return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
2755 }
2756 }
2757
2758 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
2759 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2760 bool is_secure, GetPhysAddrResult *result,
2761 ARMMMUFaultInfo *fi)
2762 {
2763 S1Translate ptw = {
2764 .in_mmu_idx = mmu_idx,
2765 .in_secure = is_secure,
2766 };
2767 return get_phys_addr_with_struct(env, &ptw, address, access_type,
2768 result, fi);
2769 }
2770
2771 bool get_phys_addr(CPUARMState *env, target_ulong address,
2772 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2773 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
2774 {
2775 bool is_secure;
2776
2777 switch (mmu_idx) {
2778 case ARMMMUIdx_E10_0:
2779 case ARMMMUIdx_E10_1:
2780 case ARMMMUIdx_E10_1_PAN:
2781 case ARMMMUIdx_E20_0:
2782 case ARMMMUIdx_E20_2:
2783 case ARMMMUIdx_E20_2_PAN:
2784 case ARMMMUIdx_Stage1_E0:
2785 case ARMMMUIdx_Stage1_E1:
2786 case ARMMMUIdx_Stage1_E1_PAN:
2787 case ARMMMUIdx_E2:
2788 is_secure = arm_is_secure_below_el3(env);
2789 break;
2790 case ARMMMUIdx_Stage2:
2791 case ARMMMUIdx_Phys_NS:
2792 case ARMMMUIdx_MPrivNegPri:
2793 case ARMMMUIdx_MUserNegPri:
2794 case ARMMMUIdx_MPriv:
2795 case ARMMMUIdx_MUser:
2796 is_secure = false;
2797 break;
2798 case ARMMMUIdx_E3:
2799 case ARMMMUIdx_Stage2_S:
2800 case ARMMMUIdx_Phys_S:
2801 case ARMMMUIdx_MSPrivNegPri:
2802 case ARMMMUIdx_MSUserNegPri:
2803 case ARMMMUIdx_MSPriv:
2804 case ARMMMUIdx_MSUser:
2805 is_secure = true;
2806 break;
2807 default:
2808 g_assert_not_reached();
2809 }
2810 return get_phys_addr_with_secure(env, address, access_type, mmu_idx,
2811 is_secure, result, fi);
2812 }
2813
2814 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
2815 MemTxAttrs *attrs)
2816 {
2817 ARMCPU *cpu = ARM_CPU(cs);
2818 CPUARMState *env = &cpu->env;
2819 S1Translate ptw = {
2820 .in_mmu_idx = arm_mmu_idx(env),
2821 .in_secure = arm_is_secure(env),
2822 .in_debug = true,
2823 };
2824 GetPhysAddrResult res = {};
2825 ARMMMUFaultInfo fi = {};
2826 bool ret;
2827
2828 ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
2829 *attrs = res.f.attrs;
2830
2831 if (ret) {
2832 return -1;
2833 }
2834 return res.f.phys_addr;
2835 }