]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/ptw.c
Merge tag 'for-upstream-mb' of https://gitlab.com/bonzini/qemu into staging
[mirror_qemu.git] / target / arm / ptw.c
1 /*
2 * ARM page table walking.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "idau.h"
17
18
19 typedef struct S1Translate {
20 ARMMMUIdx in_mmu_idx;
21 ARMMMUIdx in_ptw_idx;
22 bool in_secure;
23 bool in_debug;
24 bool out_secure;
25 bool out_rw;
26 bool out_be;
27 hwaddr out_virt;
28 hwaddr out_phys;
29 void *out_host;
30 } S1Translate;
31
32 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
33 uint64_t address,
34 MMUAccessType access_type, bool s1_is_el0,
35 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
36 __attribute__((nonnull));
37
38 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
39 target_ulong address,
40 MMUAccessType access_type,
41 GetPhysAddrResult *result,
42 ARMMMUFaultInfo *fi)
43 __attribute__((nonnull));
44
45 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
46 static const uint8_t pamax_map[] = {
47 [0] = 32,
48 [1] = 36,
49 [2] = 40,
50 [3] = 42,
51 [4] = 44,
52 [5] = 48,
53 [6] = 52,
54 };
55
56 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
57 unsigned int arm_pamax(ARMCPU *cpu)
58 {
59 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
60 unsigned int parange =
61 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
62
63 /*
64 * id_aa64mmfr0 is a read-only register so values outside of the
65 * supported mappings can be considered an implementation error.
66 */
67 assert(parange < ARRAY_SIZE(pamax_map));
68 return pamax_map[parange];
69 }
70
71 /*
72 * In machvirt_init, we call arm_pamax on a cpu that is not fully
73 * initialized, so we can't rely on the propagation done in realize.
74 */
75 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
76 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
77 /* v7 with LPAE */
78 return 40;
79 }
80 /* Anything else */
81 return 32;
82 }
83
84 /*
85 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
86 */
87 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
88 {
89 switch (mmu_idx) {
90 case ARMMMUIdx_E10_0:
91 return ARMMMUIdx_Stage1_E0;
92 case ARMMMUIdx_E10_1:
93 return ARMMMUIdx_Stage1_E1;
94 case ARMMMUIdx_E10_1_PAN:
95 return ARMMMUIdx_Stage1_E1_PAN;
96 default:
97 return mmu_idx;
98 }
99 }
100
101 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
102 {
103 return stage_1_mmu_idx(arm_mmu_idx(env));
104 }
105
106 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
107 {
108 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
109 }
110
111 /* Return the TTBR associated with this translation regime */
112 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
113 {
114 if (mmu_idx == ARMMMUIdx_Stage2) {
115 return env->cp15.vttbr_el2;
116 }
117 if (mmu_idx == ARMMMUIdx_Stage2_S) {
118 return env->cp15.vsttbr_el2;
119 }
120 if (ttbrn == 0) {
121 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
122 } else {
123 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
124 }
125 }
126
127 /* Return true if the specified stage of address translation is disabled */
128 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
129 bool is_secure)
130 {
131 uint64_t hcr_el2;
132
133 if (arm_feature(env, ARM_FEATURE_M)) {
134 switch (env->v7m.mpu_ctrl[is_secure] &
135 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
136 case R_V7M_MPU_CTRL_ENABLE_MASK:
137 /* Enabled, but not for HardFault and NMI */
138 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
139 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
140 /* Enabled for all cases */
141 return false;
142 case 0:
143 default:
144 /*
145 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
146 * we warned about that in armv7m_nvic.c when the guest set it.
147 */
148 return true;
149 }
150 }
151
152 hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure);
153
154 switch (mmu_idx) {
155 case ARMMMUIdx_Stage2:
156 case ARMMMUIdx_Stage2_S:
157 /* HCR.DC means HCR.VM behaves as 1 */
158 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
159
160 case ARMMMUIdx_E10_0:
161 case ARMMMUIdx_E10_1:
162 case ARMMMUIdx_E10_1_PAN:
163 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
164 if (hcr_el2 & HCR_TGE) {
165 return true;
166 }
167 break;
168
169 case ARMMMUIdx_Stage1_E0:
170 case ARMMMUIdx_Stage1_E1:
171 case ARMMMUIdx_Stage1_E1_PAN:
172 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
173 if (hcr_el2 & HCR_DC) {
174 return true;
175 }
176 break;
177
178 case ARMMMUIdx_E20_0:
179 case ARMMMUIdx_E20_2:
180 case ARMMMUIdx_E20_2_PAN:
181 case ARMMMUIdx_E2:
182 case ARMMMUIdx_E3:
183 break;
184
185 case ARMMMUIdx_Phys_NS:
186 case ARMMMUIdx_Phys_S:
187 /* No translation for physical address spaces. */
188 return true;
189
190 default:
191 g_assert_not_reached();
192 }
193
194 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
195 }
196
197 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
198 {
199 /*
200 * For an S1 page table walk, the stage 1 attributes are always
201 * some form of "this is Normal memory". The combined S1+S2
202 * attributes are therefore only Device if stage 2 specifies Device.
203 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
204 * ie when cacheattrs.attrs bits [3:2] are 0b00.
205 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
206 * when cacheattrs.attrs bit [2] is 0.
207 */
208 if (hcr & HCR_FWB) {
209 return (attrs & 0x4) == 0;
210 } else {
211 return (attrs & 0xc) == 0;
212 }
213 }
214
215 /* Translate a S1 pagetable walk through S2 if needed. */
216 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
217 hwaddr addr, ARMMMUFaultInfo *fi)
218 {
219 bool is_secure = ptw->in_secure;
220 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
221 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
222 uint8_t pte_attrs;
223 bool pte_secure;
224
225 ptw->out_virt = addr;
226
227 if (unlikely(ptw->in_debug)) {
228 /*
229 * From gdbstub, do not use softmmu so that we don't modify the
230 * state of the cpu at all, including softmmu tlb contents.
231 */
232 if (regime_is_stage2(s2_mmu_idx)) {
233 S1Translate s2ptw = {
234 .in_mmu_idx = s2_mmu_idx,
235 .in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS,
236 .in_secure = is_secure,
237 .in_debug = true,
238 };
239 GetPhysAddrResult s2 = { };
240
241 if (get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
242 false, &s2, fi)) {
243 goto fail;
244 }
245 ptw->out_phys = s2.f.phys_addr;
246 pte_attrs = s2.cacheattrs.attrs;
247 pte_secure = s2.f.attrs.secure;
248 } else {
249 /* Regime is physical. */
250 ptw->out_phys = addr;
251 pte_attrs = 0;
252 pte_secure = is_secure;
253 }
254 ptw->out_host = NULL;
255 ptw->out_rw = false;
256 } else {
257 #ifdef CONFIG_TCG
258 CPUTLBEntryFull *full;
259 int flags;
260
261 env->tlb_fi = fi;
262 flags = probe_access_full(env, addr, 0, MMU_DATA_LOAD,
263 arm_to_core_mmu_idx(s2_mmu_idx),
264 true, &ptw->out_host, &full, 0);
265 env->tlb_fi = NULL;
266
267 if (unlikely(flags & TLB_INVALID_MASK)) {
268 goto fail;
269 }
270 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
271 ptw->out_rw = full->prot & PAGE_WRITE;
272 pte_attrs = full->pte_attrs;
273 pte_secure = full->attrs.secure;
274 #else
275 g_assert_not_reached();
276 #endif
277 }
278
279 if (regime_is_stage2(s2_mmu_idx)) {
280 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
281
282 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
283 /*
284 * PTW set and S1 walk touched S2 Device memory:
285 * generate Permission fault.
286 */
287 fi->type = ARMFault_Permission;
288 fi->s2addr = addr;
289 fi->stage2 = true;
290 fi->s1ptw = true;
291 fi->s1ns = !is_secure;
292 return false;
293 }
294 }
295
296 /* Check if page table walk is to secure or non-secure PA space. */
297 ptw->out_secure = (is_secure
298 && !(pte_secure
299 ? env->cp15.vstcr_el2 & VSTCR_SW
300 : env->cp15.vtcr_el2 & VTCR_NSW));
301 ptw->out_be = regime_translation_big_endian(env, mmu_idx);
302 return true;
303
304 fail:
305 assert(fi->type != ARMFault_None);
306 fi->s2addr = addr;
307 fi->stage2 = true;
308 fi->s1ptw = true;
309 fi->s1ns = !is_secure;
310 return false;
311 }
312
313 /* All loads done in the course of a page table walk go through here. */
314 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
315 ARMMMUFaultInfo *fi)
316 {
317 CPUState *cs = env_cpu(env);
318 void *host = ptw->out_host;
319 uint32_t data;
320
321 if (likely(host)) {
322 /* Page tables are in RAM, and we have the host address. */
323 data = qatomic_read((uint32_t *)host);
324 if (ptw->out_be) {
325 data = be32_to_cpu(data);
326 } else {
327 data = le32_to_cpu(data);
328 }
329 } else {
330 /* Page tables are in MMIO. */
331 MemTxAttrs attrs = { .secure = ptw->out_secure };
332 AddressSpace *as = arm_addressspace(cs, attrs);
333 MemTxResult result = MEMTX_OK;
334
335 if (ptw->out_be) {
336 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
337 } else {
338 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
339 }
340 if (unlikely(result != MEMTX_OK)) {
341 fi->type = ARMFault_SyncExternalOnWalk;
342 fi->ea = arm_extabort_type(result);
343 return 0;
344 }
345 }
346 return data;
347 }
348
349 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
350 ARMMMUFaultInfo *fi)
351 {
352 CPUState *cs = env_cpu(env);
353 void *host = ptw->out_host;
354 uint64_t data;
355
356 if (likely(host)) {
357 /* Page tables are in RAM, and we have the host address. */
358 #ifdef CONFIG_ATOMIC64
359 data = qatomic_read__nocheck((uint64_t *)host);
360 if (ptw->out_be) {
361 data = be64_to_cpu(data);
362 } else {
363 data = le64_to_cpu(data);
364 }
365 #else
366 if (ptw->out_be) {
367 data = ldq_be_p(host);
368 } else {
369 data = ldq_le_p(host);
370 }
371 #endif
372 } else {
373 /* Page tables are in MMIO. */
374 MemTxAttrs attrs = { .secure = ptw->out_secure };
375 AddressSpace *as = arm_addressspace(cs, attrs);
376 MemTxResult result = MEMTX_OK;
377
378 if (ptw->out_be) {
379 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
380 } else {
381 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
382 }
383 if (unlikely(result != MEMTX_OK)) {
384 fi->type = ARMFault_SyncExternalOnWalk;
385 fi->ea = arm_extabort_type(result);
386 return 0;
387 }
388 }
389 return data;
390 }
391
392 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
393 uint64_t new_val, S1Translate *ptw,
394 ARMMMUFaultInfo *fi)
395 {
396 uint64_t cur_val;
397 void *host = ptw->out_host;
398
399 if (unlikely(!host)) {
400 fi->type = ARMFault_UnsuppAtomicUpdate;
401 fi->s1ptw = true;
402 return 0;
403 }
404
405 /*
406 * Raising a stage2 Protection fault for an atomic update to a read-only
407 * page is delayed until it is certain that there is a change to make.
408 */
409 if (unlikely(!ptw->out_rw)) {
410 int flags;
411 void *discard;
412
413 env->tlb_fi = fi;
414 flags = probe_access_flags(env, ptw->out_virt, 0, MMU_DATA_STORE,
415 arm_to_core_mmu_idx(ptw->in_ptw_idx),
416 true, &discard, 0);
417 env->tlb_fi = NULL;
418
419 if (unlikely(flags & TLB_INVALID_MASK)) {
420 assert(fi->type != ARMFault_None);
421 fi->s2addr = ptw->out_virt;
422 fi->stage2 = true;
423 fi->s1ptw = true;
424 fi->s1ns = !ptw->in_secure;
425 return 0;
426 }
427
428 /* In case CAS mismatches and we loop, remember writability. */
429 ptw->out_rw = true;
430 }
431
432 #ifdef CONFIG_ATOMIC64
433 if (ptw->out_be) {
434 old_val = cpu_to_be64(old_val);
435 new_val = cpu_to_be64(new_val);
436 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
437 cur_val = be64_to_cpu(cur_val);
438 } else {
439 old_val = cpu_to_le64(old_val);
440 new_val = cpu_to_le64(new_val);
441 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
442 cur_val = le64_to_cpu(cur_val);
443 }
444 #else
445 /*
446 * We can't support the full 64-bit atomic cmpxchg on the host.
447 * Because this is only used for FEAT_HAFDBS, which is only for AA64,
448 * we know that TCG_OVERSIZED_GUEST is set, which means that we are
449 * running in round-robin mode and could only race with dma i/o.
450 */
451 #ifndef TCG_OVERSIZED_GUEST
452 # error "Unexpected configuration"
453 #endif
454 bool locked = qemu_mutex_iothread_locked();
455 if (!locked) {
456 qemu_mutex_lock_iothread();
457 }
458 if (ptw->out_be) {
459 cur_val = ldq_be_p(host);
460 if (cur_val == old_val) {
461 stq_be_p(host, new_val);
462 }
463 } else {
464 cur_val = ldq_le_p(host);
465 if (cur_val == old_val) {
466 stq_le_p(host, new_val);
467 }
468 }
469 if (!locked) {
470 qemu_mutex_unlock_iothread();
471 }
472 #endif
473
474 return cur_val;
475 }
476
477 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
478 uint32_t *table, uint32_t address)
479 {
480 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
481 uint64_t tcr = regime_tcr(env, mmu_idx);
482 int maskshift = extract32(tcr, 0, 3);
483 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
484 uint32_t base_mask;
485
486 if (address & mask) {
487 if (tcr & TTBCR_PD1) {
488 /* Translation table walk disabled for TTBR1 */
489 return false;
490 }
491 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
492 } else {
493 if (tcr & TTBCR_PD0) {
494 /* Translation table walk disabled for TTBR0 */
495 return false;
496 }
497 base_mask = ~((uint32_t)0x3fffu >> maskshift);
498 *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
499 }
500 *table |= (address >> 18) & 0x3ffc;
501 return true;
502 }
503
504 /*
505 * Translate section/page access permissions to page R/W protection flags
506 * @env: CPUARMState
507 * @mmu_idx: MMU index indicating required translation regime
508 * @ap: The 3-bit access permissions (AP[2:0])
509 * @domain_prot: The 2-bit domain access permissions
510 * @is_user: TRUE if accessing from PL0
511 */
512 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
513 int ap, int domain_prot, bool is_user)
514 {
515 if (domain_prot == 3) {
516 return PAGE_READ | PAGE_WRITE;
517 }
518
519 switch (ap) {
520 case 0:
521 if (arm_feature(env, ARM_FEATURE_V7)) {
522 return 0;
523 }
524 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
525 case SCTLR_S:
526 return is_user ? 0 : PAGE_READ;
527 case SCTLR_R:
528 return PAGE_READ;
529 default:
530 return 0;
531 }
532 case 1:
533 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
534 case 2:
535 if (is_user) {
536 return PAGE_READ;
537 } else {
538 return PAGE_READ | PAGE_WRITE;
539 }
540 case 3:
541 return PAGE_READ | PAGE_WRITE;
542 case 4: /* Reserved. */
543 return 0;
544 case 5:
545 return is_user ? 0 : PAGE_READ;
546 case 6:
547 return PAGE_READ;
548 case 7:
549 if (!arm_feature(env, ARM_FEATURE_V6K)) {
550 return 0;
551 }
552 return PAGE_READ;
553 default:
554 g_assert_not_reached();
555 }
556 }
557
558 /*
559 * Translate section/page access permissions to page R/W protection flags
560 * @env: CPUARMState
561 * @mmu_idx: MMU index indicating required translation regime
562 * @ap: The 3-bit access permissions (AP[2:0])
563 * @domain_prot: The 2-bit domain access permissions
564 */
565 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
566 int ap, int domain_prot)
567 {
568 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
569 regime_is_user(env, mmu_idx));
570 }
571
572 /*
573 * Translate section/page access permissions to page R/W protection flags.
574 * @ap: The 2-bit simple AP (AP[2:1])
575 * @is_user: TRUE if accessing from PL0
576 */
577 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
578 {
579 switch (ap) {
580 case 0:
581 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
582 case 1:
583 return PAGE_READ | PAGE_WRITE;
584 case 2:
585 return is_user ? 0 : PAGE_READ;
586 case 3:
587 return PAGE_READ;
588 default:
589 g_assert_not_reached();
590 }
591 }
592
593 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
594 {
595 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
596 }
597
598 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
599 uint32_t address, MMUAccessType access_type,
600 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
601 {
602 int level = 1;
603 uint32_t table;
604 uint32_t desc;
605 int type;
606 int ap;
607 int domain = 0;
608 int domain_prot;
609 hwaddr phys_addr;
610 uint32_t dacr;
611
612 /* Pagetable walk. */
613 /* Lookup l1 descriptor. */
614 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
615 /* Section translation fault if page walk is disabled by PD0 or PD1 */
616 fi->type = ARMFault_Translation;
617 goto do_fault;
618 }
619 if (!S1_ptw_translate(env, ptw, table, fi)) {
620 goto do_fault;
621 }
622 desc = arm_ldl_ptw(env, ptw, fi);
623 if (fi->type != ARMFault_None) {
624 goto do_fault;
625 }
626 type = (desc & 3);
627 domain = (desc >> 5) & 0x0f;
628 if (regime_el(env, ptw->in_mmu_idx) == 1) {
629 dacr = env->cp15.dacr_ns;
630 } else {
631 dacr = env->cp15.dacr_s;
632 }
633 domain_prot = (dacr >> (domain * 2)) & 3;
634 if (type == 0) {
635 /* Section translation fault. */
636 fi->type = ARMFault_Translation;
637 goto do_fault;
638 }
639 if (type != 2) {
640 level = 2;
641 }
642 if (domain_prot == 0 || domain_prot == 2) {
643 fi->type = ARMFault_Domain;
644 goto do_fault;
645 }
646 if (type == 2) {
647 /* 1Mb section. */
648 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
649 ap = (desc >> 10) & 3;
650 result->f.lg_page_size = 20; /* 1MB */
651 } else {
652 /* Lookup l2 entry. */
653 if (type == 1) {
654 /* Coarse pagetable. */
655 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
656 } else {
657 /* Fine pagetable. */
658 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
659 }
660 if (!S1_ptw_translate(env, ptw, table, fi)) {
661 goto do_fault;
662 }
663 desc = arm_ldl_ptw(env, ptw, fi);
664 if (fi->type != ARMFault_None) {
665 goto do_fault;
666 }
667 switch (desc & 3) {
668 case 0: /* Page translation fault. */
669 fi->type = ARMFault_Translation;
670 goto do_fault;
671 case 1: /* 64k page. */
672 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
673 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
674 result->f.lg_page_size = 16;
675 break;
676 case 2: /* 4k page. */
677 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
678 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
679 result->f.lg_page_size = 12;
680 break;
681 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
682 if (type == 1) {
683 /* ARMv6/XScale extended small page format */
684 if (arm_feature(env, ARM_FEATURE_XSCALE)
685 || arm_feature(env, ARM_FEATURE_V6)) {
686 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
687 result->f.lg_page_size = 12;
688 } else {
689 /*
690 * UNPREDICTABLE in ARMv5; we choose to take a
691 * page translation fault.
692 */
693 fi->type = ARMFault_Translation;
694 goto do_fault;
695 }
696 } else {
697 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
698 result->f.lg_page_size = 10;
699 }
700 ap = (desc >> 4) & 3;
701 break;
702 default:
703 /* Never happens, but compiler isn't smart enough to tell. */
704 g_assert_not_reached();
705 }
706 }
707 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
708 result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
709 if (!(result->f.prot & (1 << access_type))) {
710 /* Access permission fault. */
711 fi->type = ARMFault_Permission;
712 goto do_fault;
713 }
714 result->f.phys_addr = phys_addr;
715 return false;
716 do_fault:
717 fi->domain = domain;
718 fi->level = level;
719 return true;
720 }
721
722 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
723 uint32_t address, MMUAccessType access_type,
724 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
725 {
726 ARMCPU *cpu = env_archcpu(env);
727 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
728 int level = 1;
729 uint32_t table;
730 uint32_t desc;
731 uint32_t xn;
732 uint32_t pxn = 0;
733 int type;
734 int ap;
735 int domain = 0;
736 int domain_prot;
737 hwaddr phys_addr;
738 uint32_t dacr;
739 bool ns;
740 int user_prot;
741
742 /* Pagetable walk. */
743 /* Lookup l1 descriptor. */
744 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
745 /* Section translation fault if page walk is disabled by PD0 or PD1 */
746 fi->type = ARMFault_Translation;
747 goto do_fault;
748 }
749 if (!S1_ptw_translate(env, ptw, table, fi)) {
750 goto do_fault;
751 }
752 desc = arm_ldl_ptw(env, ptw, fi);
753 if (fi->type != ARMFault_None) {
754 goto do_fault;
755 }
756 type = (desc & 3);
757 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
758 /* Section translation fault, or attempt to use the encoding
759 * which is Reserved on implementations without PXN.
760 */
761 fi->type = ARMFault_Translation;
762 goto do_fault;
763 }
764 if ((type == 1) || !(desc & (1 << 18))) {
765 /* Page or Section. */
766 domain = (desc >> 5) & 0x0f;
767 }
768 if (regime_el(env, mmu_idx) == 1) {
769 dacr = env->cp15.dacr_ns;
770 } else {
771 dacr = env->cp15.dacr_s;
772 }
773 if (type == 1) {
774 level = 2;
775 }
776 domain_prot = (dacr >> (domain * 2)) & 3;
777 if (domain_prot == 0 || domain_prot == 2) {
778 /* Section or Page domain fault */
779 fi->type = ARMFault_Domain;
780 goto do_fault;
781 }
782 if (type != 1) {
783 if (desc & (1 << 18)) {
784 /* Supersection. */
785 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
786 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
787 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
788 result->f.lg_page_size = 24; /* 16MB */
789 } else {
790 /* Section. */
791 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
792 result->f.lg_page_size = 20; /* 1MB */
793 }
794 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
795 xn = desc & (1 << 4);
796 pxn = desc & 1;
797 ns = extract32(desc, 19, 1);
798 } else {
799 if (cpu_isar_feature(aa32_pxn, cpu)) {
800 pxn = (desc >> 2) & 1;
801 }
802 ns = extract32(desc, 3, 1);
803 /* Lookup l2 entry. */
804 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
805 if (!S1_ptw_translate(env, ptw, table, fi)) {
806 goto do_fault;
807 }
808 desc = arm_ldl_ptw(env, ptw, fi);
809 if (fi->type != ARMFault_None) {
810 goto do_fault;
811 }
812 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
813 switch (desc & 3) {
814 case 0: /* Page translation fault. */
815 fi->type = ARMFault_Translation;
816 goto do_fault;
817 case 1: /* 64k page. */
818 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
819 xn = desc & (1 << 15);
820 result->f.lg_page_size = 16;
821 break;
822 case 2: case 3: /* 4k page. */
823 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
824 xn = desc & 1;
825 result->f.lg_page_size = 12;
826 break;
827 default:
828 /* Never happens, but compiler isn't smart enough to tell. */
829 g_assert_not_reached();
830 }
831 }
832 if (domain_prot == 3) {
833 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
834 } else {
835 if (pxn && !regime_is_user(env, mmu_idx)) {
836 xn = 1;
837 }
838 if (xn && access_type == MMU_INST_FETCH) {
839 fi->type = ARMFault_Permission;
840 goto do_fault;
841 }
842
843 if (arm_feature(env, ARM_FEATURE_V6K) &&
844 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
845 /* The simplified model uses AP[0] as an access control bit. */
846 if ((ap & 1) == 0) {
847 /* Access flag fault. */
848 fi->type = ARMFault_AccessFlag;
849 goto do_fault;
850 }
851 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
852 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
853 } else {
854 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
855 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
856 }
857 if (result->f.prot && !xn) {
858 result->f.prot |= PAGE_EXEC;
859 }
860 if (!(result->f.prot & (1 << access_type))) {
861 /* Access permission fault. */
862 fi->type = ARMFault_Permission;
863 goto do_fault;
864 }
865 if (regime_is_pan(env, mmu_idx) &&
866 !regime_is_user(env, mmu_idx) &&
867 user_prot &&
868 access_type != MMU_INST_FETCH) {
869 /* Privileged Access Never fault */
870 fi->type = ARMFault_Permission;
871 goto do_fault;
872 }
873 }
874 if (ns) {
875 /* The NS bit will (as required by the architecture) have no effect if
876 * the CPU doesn't support TZ or this is a non-secure translation
877 * regime, because the attribute will already be non-secure.
878 */
879 result->f.attrs.secure = false;
880 }
881 result->f.phys_addr = phys_addr;
882 return false;
883 do_fault:
884 fi->domain = domain;
885 fi->level = level;
886 return true;
887 }
888
889 /*
890 * Translate S2 section/page access permissions to protection flags
891 * @env: CPUARMState
892 * @s2ap: The 2-bit stage2 access permissions (S2AP)
893 * @xn: XN (execute-never) bits
894 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
895 */
896 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
897 {
898 int prot = 0;
899
900 if (s2ap & 1) {
901 prot |= PAGE_READ;
902 }
903 if (s2ap & 2) {
904 prot |= PAGE_WRITE;
905 }
906
907 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
908 switch (xn) {
909 case 0:
910 prot |= PAGE_EXEC;
911 break;
912 case 1:
913 if (s1_is_el0) {
914 prot |= PAGE_EXEC;
915 }
916 break;
917 case 2:
918 break;
919 case 3:
920 if (!s1_is_el0) {
921 prot |= PAGE_EXEC;
922 }
923 break;
924 default:
925 g_assert_not_reached();
926 }
927 } else {
928 if (!extract32(xn, 1, 1)) {
929 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
930 prot |= PAGE_EXEC;
931 }
932 }
933 }
934 return prot;
935 }
936
937 /*
938 * Translate section/page access permissions to protection flags
939 * @env: CPUARMState
940 * @mmu_idx: MMU index indicating required translation regime
941 * @is_aa64: TRUE if AArch64
942 * @ap: The 2-bit simple AP (AP[2:1])
943 * @ns: NS (non-secure) bit
944 * @xn: XN (execute-never) bit
945 * @pxn: PXN (privileged execute-never) bit
946 */
947 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
948 int ap, int ns, int xn, int pxn)
949 {
950 bool is_user = regime_is_user(env, mmu_idx);
951 int prot_rw, user_rw;
952 bool have_wxn;
953 int wxn = 0;
954
955 assert(!regime_is_stage2(mmu_idx));
956
957 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
958 if (is_user) {
959 prot_rw = user_rw;
960 } else {
961 if (user_rw && regime_is_pan(env, mmu_idx)) {
962 /* PAN forbids data accesses but doesn't affect insn fetch */
963 prot_rw = 0;
964 } else {
965 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
966 }
967 }
968
969 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
970 return prot_rw;
971 }
972
973 /* TODO have_wxn should be replaced with
974 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
975 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
976 * compatible processors have EL2, which is required for [U]WXN.
977 */
978 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
979
980 if (have_wxn) {
981 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
982 }
983
984 if (is_aa64) {
985 if (regime_has_2_ranges(mmu_idx) && !is_user) {
986 xn = pxn || (user_rw & PAGE_WRITE);
987 }
988 } else if (arm_feature(env, ARM_FEATURE_V7)) {
989 switch (regime_el(env, mmu_idx)) {
990 case 1:
991 case 3:
992 if (is_user) {
993 xn = xn || !(user_rw & PAGE_READ);
994 } else {
995 int uwxn = 0;
996 if (have_wxn) {
997 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
998 }
999 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1000 (uwxn && (user_rw & PAGE_WRITE));
1001 }
1002 break;
1003 case 2:
1004 break;
1005 }
1006 } else {
1007 xn = wxn = 0;
1008 }
1009
1010 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1011 return prot_rw;
1012 }
1013 return prot_rw | PAGE_EXEC;
1014 }
1015
1016 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1017 ARMMMUIdx mmu_idx)
1018 {
1019 uint64_t tcr = regime_tcr(env, mmu_idx);
1020 uint32_t el = regime_el(env, mmu_idx);
1021 int select, tsz;
1022 bool epd, hpd;
1023
1024 assert(mmu_idx != ARMMMUIdx_Stage2_S);
1025
1026 if (mmu_idx == ARMMMUIdx_Stage2) {
1027 /* VTCR */
1028 bool sext = extract32(tcr, 4, 1);
1029 bool sign = extract32(tcr, 3, 1);
1030
1031 /*
1032 * If the sign-extend bit is not the same as t0sz[3], the result
1033 * is unpredictable. Flag this as a guest error.
1034 */
1035 if (sign != sext) {
1036 qemu_log_mask(LOG_GUEST_ERROR,
1037 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1038 }
1039 tsz = sextract32(tcr, 0, 4) + 8;
1040 select = 0;
1041 hpd = false;
1042 epd = false;
1043 } else if (el == 2) {
1044 /* HTCR */
1045 tsz = extract32(tcr, 0, 3);
1046 select = 0;
1047 hpd = extract64(tcr, 24, 1);
1048 epd = false;
1049 } else {
1050 int t0sz = extract32(tcr, 0, 3);
1051 int t1sz = extract32(tcr, 16, 3);
1052
1053 if (t1sz == 0) {
1054 select = va > (0xffffffffu >> t0sz);
1055 } else {
1056 /* Note that we will detect errors later. */
1057 select = va >= ~(0xffffffffu >> t1sz);
1058 }
1059 if (!select) {
1060 tsz = t0sz;
1061 epd = extract32(tcr, 7, 1);
1062 hpd = extract64(tcr, 41, 1);
1063 } else {
1064 tsz = t1sz;
1065 epd = extract32(tcr, 23, 1);
1066 hpd = extract64(tcr, 42, 1);
1067 }
1068 /* For aarch32, hpd0 is not enabled without t2e as well. */
1069 hpd &= extract32(tcr, 6, 1);
1070 }
1071
1072 return (ARMVAParameters) {
1073 .tsz = tsz,
1074 .select = select,
1075 .epd = epd,
1076 .hpd = hpd,
1077 };
1078 }
1079
1080 /*
1081 * check_s2_mmu_setup
1082 * @cpu: ARMCPU
1083 * @is_aa64: True if the translation regime is in AArch64 state
1084 * @tcr: VTCR_EL2 or VSTCR_EL2
1085 * @ds: Effective value of TCR.DS.
1086 * @iasize: Bitsize of IPAs
1087 * @stride: Page-table stride (See the ARM ARM)
1088 *
1089 * Decode the starting level of the S2 lookup, returning INT_MIN if
1090 * the configuration is invalid.
1091 */
1092 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1093 bool ds, int iasize, int stride)
1094 {
1095 int sl0, sl2, startlevel, granulebits, levels;
1096 int s1_min_iasize, s1_max_iasize;
1097
1098 sl0 = extract32(tcr, 6, 2);
1099 if (is_aa64) {
1100 /*
1101 * AArch64.S2InvalidTxSZ: While we checked tsz_oob near the top of
1102 * get_phys_addr_lpae, that used aa64_va_parameters which apply
1103 * to aarch64. If Stage1 is aarch32, the min_txsz is larger.
1104 * See AArch64.S2MinTxSZ, where min_tsz is 24, translated to
1105 * inputsize is 64 - 24 = 40.
1106 */
1107 if (iasize < 40 && !arm_el_is_aa64(&cpu->env, 1)) {
1108 goto fail;
1109 }
1110
1111 /*
1112 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1113 * so interleave AArch64.S2StartLevel.
1114 */
1115 switch (stride) {
1116 case 9: /* 4KB */
1117 /* SL2 is RES0 unless DS=1 & 4KB granule. */
1118 sl2 = extract64(tcr, 33, 1);
1119 if (ds && sl2) {
1120 if (sl0 != 0) {
1121 goto fail;
1122 }
1123 startlevel = -1;
1124 } else {
1125 startlevel = 2 - sl0;
1126 switch (sl0) {
1127 case 2:
1128 if (arm_pamax(cpu) < 44) {
1129 goto fail;
1130 }
1131 break;
1132 case 3:
1133 if (!cpu_isar_feature(aa64_st, cpu)) {
1134 goto fail;
1135 }
1136 startlevel = 3;
1137 break;
1138 }
1139 }
1140 break;
1141 case 11: /* 16KB */
1142 switch (sl0) {
1143 case 2:
1144 if (arm_pamax(cpu) < 42) {
1145 goto fail;
1146 }
1147 break;
1148 case 3:
1149 if (!ds) {
1150 goto fail;
1151 }
1152 break;
1153 }
1154 startlevel = 3 - sl0;
1155 break;
1156 case 13: /* 64KB */
1157 switch (sl0) {
1158 case 2:
1159 if (arm_pamax(cpu) < 44) {
1160 goto fail;
1161 }
1162 break;
1163 case 3:
1164 goto fail;
1165 }
1166 startlevel = 3 - sl0;
1167 break;
1168 default:
1169 g_assert_not_reached();
1170 }
1171 } else {
1172 /*
1173 * Things are simpler for AArch32 EL2, with only 4k pages.
1174 * There is no separate S2InvalidSL function, but AArch32.S2Walk
1175 * begins with walkparms.sl0 in {'1x'}.
1176 */
1177 assert(stride == 9);
1178 if (sl0 >= 2) {
1179 goto fail;
1180 }
1181 startlevel = 2 - sl0;
1182 }
1183
1184 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */
1185 levels = 3 - startlevel;
1186 granulebits = stride + 3;
1187
1188 s1_min_iasize = levels * stride + granulebits + 1;
1189 s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1190
1191 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1192 return startlevel;
1193 }
1194
1195 fail:
1196 return INT_MIN;
1197 }
1198
1199 /**
1200 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1201 *
1202 * Returns false if the translation was successful. Otherwise, phys_ptr,
1203 * attrs, prot and page_size may not be filled in, and the populated fsr
1204 * value provides information on why the translation aborted, in the format
1205 * of a long-format DFSR/IFSR fault register, with the following caveat:
1206 * the WnR bit is never set (the caller must do this).
1207 *
1208 * @env: CPUARMState
1209 * @ptw: Current and next stage parameters for the walk.
1210 * @address: virtual address to get physical address for
1211 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1212 * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2
1213 * (so this is a stage 2 page table walk),
1214 * must be true if this is stage 2 of a stage 1+2
1215 * walk for an EL0 access. If @mmu_idx is anything else,
1216 * @s1_is_el0 is ignored.
1217 * @result: set on translation success,
1218 * @fi: set to fault info if the translation fails
1219 */
1220 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1221 uint64_t address,
1222 MMUAccessType access_type, bool s1_is_el0,
1223 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1224 {
1225 ARMCPU *cpu = env_archcpu(env);
1226 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1227 bool is_secure = ptw->in_secure;
1228 int32_t level;
1229 ARMVAParameters param;
1230 uint64_t ttbr;
1231 hwaddr descaddr, indexmask, indexmask_grainsize;
1232 uint32_t tableattrs;
1233 target_ulong page_size;
1234 uint64_t attrs;
1235 int32_t stride;
1236 int addrsize, inputsize, outputsize;
1237 uint64_t tcr = regime_tcr(env, mmu_idx);
1238 int ap, ns, xn, pxn;
1239 uint32_t el = regime_el(env, mmu_idx);
1240 uint64_t descaddrmask;
1241 bool aarch64 = arm_el_is_aa64(env, el);
1242 uint64_t descriptor, new_descriptor;
1243 bool nstable;
1244
1245 /* TODO: This code does not support shareability levels. */
1246 if (aarch64) {
1247 int ps;
1248
1249 param = aa64_va_parameters(env, address, mmu_idx,
1250 access_type != MMU_INST_FETCH);
1251 level = 0;
1252
1253 /*
1254 * If TxSZ is programmed to a value larger than the maximum,
1255 * or smaller than the effective minimum, it is IMPLEMENTATION
1256 * DEFINED whether we behave as if the field were programmed
1257 * within bounds, or if a level 0 Translation fault is generated.
1258 *
1259 * With FEAT_LVA, fault on less than minimum becomes required,
1260 * so our choice is to always raise the fault.
1261 */
1262 if (param.tsz_oob) {
1263 goto do_translation_fault;
1264 }
1265
1266 addrsize = 64 - 8 * param.tbi;
1267 inputsize = 64 - param.tsz;
1268
1269 /*
1270 * Bound PS by PARANGE to find the effective output address size.
1271 * ID_AA64MMFR0 is a read-only register so values outside of the
1272 * supported mappings can be considered an implementation error.
1273 */
1274 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1275 ps = MIN(ps, param.ps);
1276 assert(ps < ARRAY_SIZE(pamax_map));
1277 outputsize = pamax_map[ps];
1278
1279 /*
1280 * With LPA2, the effective output address (OA) size is at most 48 bits
1281 * unless TCR.DS == 1
1282 */
1283 if (!param.ds && param.gran != Gran64K) {
1284 outputsize = MIN(outputsize, 48);
1285 }
1286 } else {
1287 param = aa32_va_parameters(env, address, mmu_idx);
1288 level = 1;
1289 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1290 inputsize = addrsize - param.tsz;
1291 outputsize = 40;
1292 }
1293
1294 /*
1295 * We determined the region when collecting the parameters, but we
1296 * have not yet validated that the address is valid for the region.
1297 * Extract the top bits and verify that they all match select.
1298 *
1299 * For aa32, if inputsize == addrsize, then we have selected the
1300 * region by exclusion in aa32_va_parameters and there is no more
1301 * validation to do here.
1302 */
1303 if (inputsize < addrsize) {
1304 target_ulong top_bits = sextract64(address, inputsize,
1305 addrsize - inputsize);
1306 if (-top_bits != param.select) {
1307 /* The gap between the two regions is a Translation fault */
1308 goto do_translation_fault;
1309 }
1310 }
1311
1312 stride = arm_granule_bits(param.gran) - 3;
1313
1314 /*
1315 * Note that QEMU ignores shareability and cacheability attributes,
1316 * so we don't need to do anything with the SH, ORGN, IRGN fields
1317 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1318 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1319 * implement any ASID-like capability so we can ignore it (instead
1320 * we will always flush the TLB any time the ASID is changed).
1321 */
1322 ttbr = regime_ttbr(env, mmu_idx, param.select);
1323
1324 /*
1325 * Here we should have set up all the parameters for the translation:
1326 * inputsize, ttbr, epd, stride, tbi
1327 */
1328
1329 if (param.epd) {
1330 /*
1331 * Translation table walk disabled => Translation fault on TLB miss
1332 * Note: This is always 0 on 64-bit EL2 and EL3.
1333 */
1334 goto do_translation_fault;
1335 }
1336
1337 if (!regime_is_stage2(mmu_idx)) {
1338 /*
1339 * The starting level depends on the virtual address size (which can
1340 * be up to 48 bits) and the translation granule size. It indicates
1341 * the number of strides (stride bits at a time) needed to
1342 * consume the bits of the input address. In the pseudocode this is:
1343 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1344 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1345 * our 'stride + 3' and 'stride' is our 'stride'.
1346 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1347 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1348 * = 4 - (inputsize - 4) / stride;
1349 */
1350 level = 4 - (inputsize - 4) / stride;
1351 } else {
1352 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1353 inputsize, stride);
1354 if (startlevel == INT_MIN) {
1355 level = 0;
1356 goto do_translation_fault;
1357 }
1358 level = startlevel;
1359 }
1360
1361 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1362 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1363
1364 /* Now we can extract the actual base address from the TTBR */
1365 descaddr = extract64(ttbr, 0, 48);
1366
1367 /*
1368 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1369 *
1370 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1371 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1372 * but we've just cleared the bits above 47, so simplify the test.
1373 */
1374 if (outputsize > 48) {
1375 descaddr |= extract64(ttbr, 2, 4) << 48;
1376 } else if (descaddr >> outputsize) {
1377 level = 0;
1378 fi->type = ARMFault_AddressSize;
1379 goto do_fault;
1380 }
1381
1382 /*
1383 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1384 * and also to mask out CnP (bit 0) which could validly be non-zero.
1385 */
1386 descaddr &= ~indexmask;
1387
1388 /*
1389 * For AArch32, the address field in the descriptor goes up to bit 39
1390 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1391 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1392 * bits as part of the address, which will be checked via outputsize.
1393 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1394 * the highest bits of a 52-bit output are placed elsewhere.
1395 */
1396 if (param.ds) {
1397 descaddrmask = MAKE_64BIT_MASK(0, 50);
1398 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1399 descaddrmask = MAKE_64BIT_MASK(0, 48);
1400 } else {
1401 descaddrmask = MAKE_64BIT_MASK(0, 40);
1402 }
1403 descaddrmask &= ~indexmask_grainsize;
1404
1405 /*
1406 * Secure accesses start with the page table in secure memory and
1407 * can be downgraded to non-secure at any step. Non-secure accesses
1408 * remain non-secure. We implement this by just ORing in the NSTable/NS
1409 * bits at each step.
1410 */
1411 tableattrs = is_secure ? 0 : (1 << 4);
1412
1413 next_level:
1414 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1415 descaddr &= ~7ULL;
1416 nstable = extract32(tableattrs, 4, 1);
1417 if (nstable) {
1418 /*
1419 * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1420 * Assert that the non-secure idx are even, and relative order.
1421 */
1422 QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0);
1423 QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0);
1424 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S);
1425 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S);
1426 ptw->in_ptw_idx &= ~1;
1427 ptw->in_secure = false;
1428 }
1429 if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1430 goto do_fault;
1431 }
1432 descriptor = arm_ldq_ptw(env, ptw, fi);
1433 if (fi->type != ARMFault_None) {
1434 goto do_fault;
1435 }
1436 new_descriptor = descriptor;
1437
1438 restart_atomic_update:
1439 if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) {
1440 /* Invalid, or the Reserved level 3 encoding */
1441 goto do_translation_fault;
1442 }
1443
1444 descaddr = descriptor & descaddrmask;
1445
1446 /*
1447 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1448 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1449 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1450 * raise AddressSizeFault.
1451 */
1452 if (outputsize > 48) {
1453 if (param.ds) {
1454 descaddr |= extract64(descriptor, 8, 2) << 50;
1455 } else {
1456 descaddr |= extract64(descriptor, 12, 4) << 48;
1457 }
1458 } else if (descaddr >> outputsize) {
1459 fi->type = ARMFault_AddressSize;
1460 goto do_fault;
1461 }
1462
1463 if ((descriptor & 2) && (level < 3)) {
1464 /*
1465 * Table entry. The top five bits are attributes which may
1466 * propagate down through lower levels of the table (and
1467 * which are all arranged so that 0 means "no effect", so
1468 * we can gather them up by ORing in the bits at each level).
1469 */
1470 tableattrs |= extract64(descriptor, 59, 5);
1471 level++;
1472 indexmask = indexmask_grainsize;
1473 goto next_level;
1474 }
1475
1476 /*
1477 * Block entry at level 1 or 2, or page entry at level 3.
1478 * These are basically the same thing, although the number
1479 * of bits we pull in from the vaddr varies. Note that although
1480 * descaddrmask masks enough of the low bits of the descriptor
1481 * to give a correct page or table address, the address field
1482 * in a block descriptor is smaller; so we need to explicitly
1483 * clear the lower bits here before ORing in the low vaddr bits.
1484 *
1485 * Afterward, descaddr is the final physical address.
1486 */
1487 page_size = (1ULL << ((stride * (4 - level)) + 3));
1488 descaddr &= ~(hwaddr)(page_size - 1);
1489 descaddr |= (address & (page_size - 1));
1490
1491 if (likely(!ptw->in_debug)) {
1492 /*
1493 * Access flag.
1494 * If HA is enabled, prepare to update the descriptor below.
1495 * Otherwise, pass the access fault on to software.
1496 */
1497 if (!(descriptor & (1 << 10))) {
1498 if (param.ha) {
1499 new_descriptor |= 1 << 10; /* AF */
1500 } else {
1501 fi->type = ARMFault_AccessFlag;
1502 goto do_fault;
1503 }
1504 }
1505
1506 /*
1507 * Dirty Bit.
1508 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1509 * bit for writeback. The actual write protection test may still be
1510 * overridden by tableattrs, to be merged below.
1511 */
1512 if (param.hd
1513 && extract64(descriptor, 51, 1) /* DBM */
1514 && access_type == MMU_DATA_STORE) {
1515 if (regime_is_stage2(mmu_idx)) {
1516 new_descriptor |= 1ull << 7; /* set S2AP[1] */
1517 } else {
1518 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1519 }
1520 }
1521 }
1522
1523 /*
1524 * Extract attributes from the (modified) descriptor, and apply
1525 * table descriptors. Stage 2 table descriptors do not include
1526 * any attribute fields. HPD disables all the table attributes
1527 * except NSTable.
1528 */
1529 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1530 if (!regime_is_stage2(mmu_idx)) {
1531 attrs |= nstable << 5; /* NS */
1532 if (!param.hpd) {
1533 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */
1534 /*
1535 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1536 * means "force PL1 access only", which means forcing AP[1] to 0.
1537 */
1538 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1539 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */
1540 }
1541 }
1542
1543 ap = extract32(attrs, 6, 2);
1544 if (regime_is_stage2(mmu_idx)) {
1545 ns = mmu_idx == ARMMMUIdx_Stage2;
1546 xn = extract64(attrs, 53, 2);
1547 result->f.prot = get_S2prot(env, ap, xn, s1_is_el0);
1548 } else {
1549 ns = extract32(attrs, 5, 1);
1550 xn = extract64(attrs, 54, 1);
1551 pxn = extract64(attrs, 53, 1);
1552 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
1553 }
1554
1555 if (!(result->f.prot & (1 << access_type))) {
1556 fi->type = ARMFault_Permission;
1557 goto do_fault;
1558 }
1559
1560 /* If FEAT_HAFDBS has made changes, update the PTE. */
1561 if (new_descriptor != descriptor) {
1562 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
1563 if (fi->type != ARMFault_None) {
1564 goto do_fault;
1565 }
1566 /*
1567 * I_YZSVV says that if the in-memory descriptor has changed,
1568 * then we must use the information in that new value
1569 * (which might include a different output address, different
1570 * attributes, or generate a fault).
1571 * Restart the handling of the descriptor value from scratch.
1572 */
1573 if (new_descriptor != descriptor) {
1574 descriptor = new_descriptor;
1575 goto restart_atomic_update;
1576 }
1577 }
1578
1579 if (ns) {
1580 /*
1581 * The NS bit will (as required by the architecture) have no effect if
1582 * the CPU doesn't support TZ or this is a non-secure translation
1583 * regime, because the attribute will already be non-secure.
1584 */
1585 result->f.attrs.secure = false;
1586 }
1587
1588 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
1589 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
1590 result->f.guarded = extract64(attrs, 50, 1); /* GP */
1591 }
1592
1593 if (regime_is_stage2(mmu_idx)) {
1594 result->cacheattrs.is_s2_format = true;
1595 result->cacheattrs.attrs = extract32(attrs, 2, 4);
1596 } else {
1597 /* Index into MAIR registers for cache attributes */
1598 uint8_t attrindx = extract32(attrs, 2, 3);
1599 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1600 assert(attrindx <= 7);
1601 result->cacheattrs.is_s2_format = false;
1602 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
1603 }
1604
1605 /*
1606 * For FEAT_LPA2 and effective DS, the SH field in the attributes
1607 * was re-purposed for output address bits. The SH attribute in
1608 * that case comes from TCR_ELx, which we extracted earlier.
1609 */
1610 if (param.ds) {
1611 result->cacheattrs.shareability = param.sh;
1612 } else {
1613 result->cacheattrs.shareability = extract32(attrs, 8, 2);
1614 }
1615
1616 result->f.phys_addr = descaddr;
1617 result->f.lg_page_size = ctz64(page_size);
1618 return false;
1619
1620 do_translation_fault:
1621 fi->type = ARMFault_Translation;
1622 do_fault:
1623 fi->level = level;
1624 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
1625 fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx);
1626 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1627 return true;
1628 }
1629
1630 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1631 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1632 bool is_secure, GetPhysAddrResult *result,
1633 ARMMMUFaultInfo *fi)
1634 {
1635 int n;
1636 uint32_t mask;
1637 uint32_t base;
1638 bool is_user = regime_is_user(env, mmu_idx);
1639
1640 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
1641 /* MPU disabled. */
1642 result->f.phys_addr = address;
1643 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1644 return false;
1645 }
1646
1647 result->f.phys_addr = address;
1648 for (n = 7; n >= 0; n--) {
1649 base = env->cp15.c6_region[n];
1650 if ((base & 1) == 0) {
1651 continue;
1652 }
1653 mask = 1 << ((base >> 1) & 0x1f);
1654 /* Keep this shift separate from the above to avoid an
1655 (undefined) << 32. */
1656 mask = (mask << 1) - 1;
1657 if (((base ^ address) & ~mask) == 0) {
1658 break;
1659 }
1660 }
1661 if (n < 0) {
1662 fi->type = ARMFault_Background;
1663 return true;
1664 }
1665
1666 if (access_type == MMU_INST_FETCH) {
1667 mask = env->cp15.pmsav5_insn_ap;
1668 } else {
1669 mask = env->cp15.pmsav5_data_ap;
1670 }
1671 mask = (mask >> (n * 4)) & 0xf;
1672 switch (mask) {
1673 case 0:
1674 fi->type = ARMFault_Permission;
1675 fi->level = 1;
1676 return true;
1677 case 1:
1678 if (is_user) {
1679 fi->type = ARMFault_Permission;
1680 fi->level = 1;
1681 return true;
1682 }
1683 result->f.prot = PAGE_READ | PAGE_WRITE;
1684 break;
1685 case 2:
1686 result->f.prot = PAGE_READ;
1687 if (!is_user) {
1688 result->f.prot |= PAGE_WRITE;
1689 }
1690 break;
1691 case 3:
1692 result->f.prot = PAGE_READ | PAGE_WRITE;
1693 break;
1694 case 5:
1695 if (is_user) {
1696 fi->type = ARMFault_Permission;
1697 fi->level = 1;
1698 return true;
1699 }
1700 result->f.prot = PAGE_READ;
1701 break;
1702 case 6:
1703 result->f.prot = PAGE_READ;
1704 break;
1705 default:
1706 /* Bad permission. */
1707 fi->type = ARMFault_Permission;
1708 fi->level = 1;
1709 return true;
1710 }
1711 result->f.prot |= PAGE_EXEC;
1712 return false;
1713 }
1714
1715 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
1716 int32_t address, uint8_t *prot)
1717 {
1718 if (!arm_feature(env, ARM_FEATURE_M)) {
1719 *prot = PAGE_READ | PAGE_WRITE;
1720 switch (address) {
1721 case 0xF0000000 ... 0xFFFFFFFF:
1722 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1723 /* hivecs execing is ok */
1724 *prot |= PAGE_EXEC;
1725 }
1726 break;
1727 case 0x00000000 ... 0x7FFFFFFF:
1728 *prot |= PAGE_EXEC;
1729 break;
1730 }
1731 } else {
1732 /* Default system address map for M profile cores.
1733 * The architecture specifies which regions are execute-never;
1734 * at the MPU level no other checks are defined.
1735 */
1736 switch (address) {
1737 case 0x00000000 ... 0x1fffffff: /* ROM */
1738 case 0x20000000 ... 0x3fffffff: /* SRAM */
1739 case 0x60000000 ... 0x7fffffff: /* RAM */
1740 case 0x80000000 ... 0x9fffffff: /* RAM */
1741 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1742 break;
1743 case 0x40000000 ... 0x5fffffff: /* Peripheral */
1744 case 0xa0000000 ... 0xbfffffff: /* Device */
1745 case 0xc0000000 ... 0xdfffffff: /* Device */
1746 case 0xe0000000 ... 0xffffffff: /* System */
1747 *prot = PAGE_READ | PAGE_WRITE;
1748 break;
1749 default:
1750 g_assert_not_reached();
1751 }
1752 }
1753 }
1754
1755 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1756 {
1757 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1758 return arm_feature(env, ARM_FEATURE_M) &&
1759 extract32(address, 20, 12) == 0xe00;
1760 }
1761
1762 static bool m_is_system_region(CPUARMState *env, uint32_t address)
1763 {
1764 /*
1765 * True if address is in the M profile system region
1766 * 0xe0000000 - 0xffffffff
1767 */
1768 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1769 }
1770
1771 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1772 bool is_secure, bool is_user)
1773 {
1774 /*
1775 * Return true if we should use the default memory map as a
1776 * "background" region if there are no hits against any MPU regions.
1777 */
1778 CPUARMState *env = &cpu->env;
1779
1780 if (is_user) {
1781 return false;
1782 }
1783
1784 if (arm_feature(env, ARM_FEATURE_M)) {
1785 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
1786 }
1787
1788 if (mmu_idx == ARMMMUIdx_Stage2) {
1789 return false;
1790 }
1791
1792 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
1793 }
1794
1795 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1796 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1797 bool secure, GetPhysAddrResult *result,
1798 ARMMMUFaultInfo *fi)
1799 {
1800 ARMCPU *cpu = env_archcpu(env);
1801 int n;
1802 bool is_user = regime_is_user(env, mmu_idx);
1803
1804 result->f.phys_addr = address;
1805 result->f.lg_page_size = TARGET_PAGE_BITS;
1806 result->f.prot = 0;
1807
1808 if (regime_translation_disabled(env, mmu_idx, secure) ||
1809 m_is_ppb_region(env, address)) {
1810 /*
1811 * MPU disabled or M profile PPB access: use default memory map.
1812 * The other case which uses the default memory map in the
1813 * v7M ARM ARM pseudocode is exception vector reads from the vector
1814 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1815 * which always does a direct read using address_space_ldl(), rather
1816 * than going via this function, so we don't need to check that here.
1817 */
1818 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
1819 } else { /* MPU enabled */
1820 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1821 /* region search */
1822 uint32_t base = env->pmsav7.drbar[n];
1823 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1824 uint32_t rmask;
1825 bool srdis = false;
1826
1827 if (!(env->pmsav7.drsr[n] & 0x1)) {
1828 continue;
1829 }
1830
1831 if (!rsize) {
1832 qemu_log_mask(LOG_GUEST_ERROR,
1833 "DRSR[%d]: Rsize field cannot be 0\n", n);
1834 continue;
1835 }
1836 rsize++;
1837 rmask = (1ull << rsize) - 1;
1838
1839 if (base & rmask) {
1840 qemu_log_mask(LOG_GUEST_ERROR,
1841 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1842 "to DRSR region size, mask = 0x%" PRIx32 "\n",
1843 n, base, rmask);
1844 continue;
1845 }
1846
1847 if (address < base || address > base + rmask) {
1848 /*
1849 * Address not in this region. We must check whether the
1850 * region covers addresses in the same page as our address.
1851 * In that case we must not report a size that covers the
1852 * whole page for a subsequent hit against a different MPU
1853 * region or the background region, because it would result in
1854 * incorrect TLB hits for subsequent accesses to addresses that
1855 * are in this MPU region.
1856 */
1857 if (ranges_overlap(base, rmask,
1858 address & TARGET_PAGE_MASK,
1859 TARGET_PAGE_SIZE)) {
1860 result->f.lg_page_size = 0;
1861 }
1862 continue;
1863 }
1864
1865 /* Region matched */
1866
1867 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1868 int i, snd;
1869 uint32_t srdis_mask;
1870
1871 rsize -= 3; /* sub region size (power of 2) */
1872 snd = ((address - base) >> rsize) & 0x7;
1873 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1874
1875 srdis_mask = srdis ? 0x3 : 0x0;
1876 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1877 /*
1878 * This will check in groups of 2, 4 and then 8, whether
1879 * the subregion bits are consistent. rsize is incremented
1880 * back up to give the region size, considering consistent
1881 * adjacent subregions as one region. Stop testing if rsize
1882 * is already big enough for an entire QEMU page.
1883 */
1884 int snd_rounded = snd & ~(i - 1);
1885 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1886 snd_rounded + 8, i);
1887 if (srdis_mask ^ srdis_multi) {
1888 break;
1889 }
1890 srdis_mask = (srdis_mask << i) | srdis_mask;
1891 rsize++;
1892 }
1893 }
1894 if (srdis) {
1895 continue;
1896 }
1897 if (rsize < TARGET_PAGE_BITS) {
1898 result->f.lg_page_size = rsize;
1899 }
1900 break;
1901 }
1902
1903 if (n == -1) { /* no hits */
1904 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1905 /* background fault */
1906 fi->type = ARMFault_Background;
1907 return true;
1908 }
1909 get_phys_addr_pmsav7_default(env, mmu_idx, address,
1910 &result->f.prot);
1911 } else { /* a MPU hit! */
1912 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1913 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1914
1915 if (m_is_system_region(env, address)) {
1916 /* System space is always execute never */
1917 xn = 1;
1918 }
1919
1920 if (is_user) { /* User mode AP bit decoding */
1921 switch (ap) {
1922 case 0:
1923 case 1:
1924 case 5:
1925 break; /* no access */
1926 case 3:
1927 result->f.prot |= PAGE_WRITE;
1928 /* fall through */
1929 case 2:
1930 case 6:
1931 result->f.prot |= PAGE_READ | PAGE_EXEC;
1932 break;
1933 case 7:
1934 /* for v7M, same as 6; for R profile a reserved value */
1935 if (arm_feature(env, ARM_FEATURE_M)) {
1936 result->f.prot |= PAGE_READ | PAGE_EXEC;
1937 break;
1938 }
1939 /* fall through */
1940 default:
1941 qemu_log_mask(LOG_GUEST_ERROR,
1942 "DRACR[%d]: Bad value for AP bits: 0x%"
1943 PRIx32 "\n", n, ap);
1944 }
1945 } else { /* Priv. mode AP bits decoding */
1946 switch (ap) {
1947 case 0:
1948 break; /* no access */
1949 case 1:
1950 case 2:
1951 case 3:
1952 result->f.prot |= PAGE_WRITE;
1953 /* fall through */
1954 case 5:
1955 case 6:
1956 result->f.prot |= PAGE_READ | PAGE_EXEC;
1957 break;
1958 case 7:
1959 /* for v7M, same as 6; for R profile a reserved value */
1960 if (arm_feature(env, ARM_FEATURE_M)) {
1961 result->f.prot |= PAGE_READ | PAGE_EXEC;
1962 break;
1963 }
1964 /* fall through */
1965 default:
1966 qemu_log_mask(LOG_GUEST_ERROR,
1967 "DRACR[%d]: Bad value for AP bits: 0x%"
1968 PRIx32 "\n", n, ap);
1969 }
1970 }
1971
1972 /* execute never */
1973 if (xn) {
1974 result->f.prot &= ~PAGE_EXEC;
1975 }
1976 }
1977 }
1978
1979 fi->type = ARMFault_Permission;
1980 fi->level = 1;
1981 return !(result->f.prot & (1 << access_type));
1982 }
1983
1984 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
1985 uint32_t secure)
1986 {
1987 if (regime_el(env, mmu_idx) == 2) {
1988 return env->pmsav8.hprbar;
1989 } else {
1990 return env->pmsav8.rbar[secure];
1991 }
1992 }
1993
1994 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
1995 uint32_t secure)
1996 {
1997 if (regime_el(env, mmu_idx) == 2) {
1998 return env->pmsav8.hprlar;
1999 } else {
2000 return env->pmsav8.rlar[secure];
2001 }
2002 }
2003
2004 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2005 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2006 bool secure, GetPhysAddrResult *result,
2007 ARMMMUFaultInfo *fi, uint32_t *mregion)
2008 {
2009 /*
2010 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2011 * that a full phys-to-virt translation does).
2012 * mregion is (if not NULL) set to the region number which matched,
2013 * or -1 if no region number is returned (MPU off, address did not
2014 * hit a region, address hit in multiple regions).
2015 * If the region hit doesn't cover the entire TARGET_PAGE the address
2016 * is within, then we set the result page_size to 1 to force the
2017 * memory system to use a subpage.
2018 */
2019 ARMCPU *cpu = env_archcpu(env);
2020 bool is_user = regime_is_user(env, mmu_idx);
2021 int n;
2022 int matchregion = -1;
2023 bool hit = false;
2024 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2025 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2026 int region_counter;
2027
2028 if (regime_el(env, mmu_idx) == 2) {
2029 region_counter = cpu->pmsav8r_hdregion;
2030 } else {
2031 region_counter = cpu->pmsav7_dregion;
2032 }
2033
2034 result->f.lg_page_size = TARGET_PAGE_BITS;
2035 result->f.phys_addr = address;
2036 result->f.prot = 0;
2037 if (mregion) {
2038 *mregion = -1;
2039 }
2040
2041 if (mmu_idx == ARMMMUIdx_Stage2) {
2042 fi->stage2 = true;
2043 }
2044
2045 /*
2046 * Unlike the ARM ARM pseudocode, we don't need to check whether this
2047 * was an exception vector read from the vector table (which is always
2048 * done using the default system address map), because those accesses
2049 * are done in arm_v7m_load_vector(), which always does a direct
2050 * read using address_space_ldl(), rather than going via this function.
2051 */
2052 if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */
2053 hit = true;
2054 } else if (m_is_ppb_region(env, address)) {
2055 hit = true;
2056 } else {
2057 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2058 hit = true;
2059 }
2060
2061 uint32_t bitmask;
2062 if (arm_feature(env, ARM_FEATURE_M)) {
2063 bitmask = 0x1f;
2064 } else {
2065 bitmask = 0x3f;
2066 fi->level = 0;
2067 }
2068
2069 for (n = region_counter - 1; n >= 0; n--) {
2070 /* region search */
2071 /*
2072 * Note that the base address is bits [31:x] from the register
2073 * with bits [x-1:0] all zeroes, but the limit address is bits
2074 * [31:x] from the register with bits [x:0] all ones. Where x is
2075 * 5 for Cortex-M and 6 for Cortex-R
2076 */
2077 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2078 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2079
2080 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2081 /* Region disabled */
2082 continue;
2083 }
2084
2085 if (address < base || address > limit) {
2086 /*
2087 * Address not in this region. We must check whether the
2088 * region covers addresses in the same page as our address.
2089 * In that case we must not report a size that covers the
2090 * whole page for a subsequent hit against a different MPU
2091 * region or the background region, because it would result in
2092 * incorrect TLB hits for subsequent accesses to addresses that
2093 * are in this MPU region.
2094 */
2095 if (limit >= base &&
2096 ranges_overlap(base, limit - base + 1,
2097 addr_page_base,
2098 TARGET_PAGE_SIZE)) {
2099 result->f.lg_page_size = 0;
2100 }
2101 continue;
2102 }
2103
2104 if (base > addr_page_base || limit < addr_page_limit) {
2105 result->f.lg_page_size = 0;
2106 }
2107
2108 if (matchregion != -1) {
2109 /*
2110 * Multiple regions match -- always a failure (unlike
2111 * PMSAv7 where highest-numbered-region wins)
2112 */
2113 fi->type = ARMFault_Permission;
2114 if (arm_feature(env, ARM_FEATURE_M)) {
2115 fi->level = 1;
2116 }
2117 return true;
2118 }
2119
2120 matchregion = n;
2121 hit = true;
2122 }
2123 }
2124
2125 if (!hit) {
2126 if (arm_feature(env, ARM_FEATURE_M)) {
2127 fi->type = ARMFault_Background;
2128 } else {
2129 fi->type = ARMFault_Permission;
2130 }
2131 return true;
2132 }
2133
2134 if (matchregion == -1) {
2135 /* hit using the background region */
2136 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2137 } else {
2138 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2139 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2140 uint32_t ap = extract32(matched_rbar, 1, 2);
2141 uint32_t xn = extract32(matched_rbar, 0, 1);
2142 bool pxn = false;
2143
2144 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2145 pxn = extract32(matched_rlar, 4, 1);
2146 }
2147
2148 if (m_is_system_region(env, address)) {
2149 /* System space is always execute never */
2150 xn = 1;
2151 }
2152
2153 if (regime_el(env, mmu_idx) == 2) {
2154 result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2155 mmu_idx != ARMMMUIdx_E2);
2156 } else {
2157 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2158 }
2159
2160 if (!arm_feature(env, ARM_FEATURE_M)) {
2161 uint8_t attrindx = extract32(matched_rlar, 1, 3);
2162 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2163 uint8_t sh = extract32(matched_rlar, 3, 2);
2164
2165 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2166 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2167 xn = 0x1;
2168 }
2169
2170 if ((regime_el(env, mmu_idx) == 1) &&
2171 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2172 pxn = 0x1;
2173 }
2174
2175 result->cacheattrs.is_s2_format = false;
2176 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2177 result->cacheattrs.shareability = sh;
2178 }
2179
2180 if (result->f.prot && !xn && !(pxn && !is_user)) {
2181 result->f.prot |= PAGE_EXEC;
2182 }
2183
2184 if (mregion) {
2185 *mregion = matchregion;
2186 }
2187 }
2188
2189 fi->type = ARMFault_Permission;
2190 if (arm_feature(env, ARM_FEATURE_M)) {
2191 fi->level = 1;
2192 }
2193 return !(result->f.prot & (1 << access_type));
2194 }
2195
2196 static bool v8m_is_sau_exempt(CPUARMState *env,
2197 uint32_t address, MMUAccessType access_type)
2198 {
2199 /*
2200 * The architecture specifies that certain address ranges are
2201 * exempt from v8M SAU/IDAU checks.
2202 */
2203 return
2204 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2205 (address >= 0xe0000000 && address <= 0xe0002fff) ||
2206 (address >= 0xe000e000 && address <= 0xe000efff) ||
2207 (address >= 0xe002e000 && address <= 0xe002efff) ||
2208 (address >= 0xe0040000 && address <= 0xe0041fff) ||
2209 (address >= 0xe00ff000 && address <= 0xe00fffff);
2210 }
2211
2212 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2213 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2214 bool is_secure, V8M_SAttributes *sattrs)
2215 {
2216 /*
2217 * Look up the security attributes for this address. Compare the
2218 * pseudocode SecurityCheck() function.
2219 * We assume the caller has zero-initialized *sattrs.
2220 */
2221 ARMCPU *cpu = env_archcpu(env);
2222 int r;
2223 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2224 int idau_region = IREGION_NOTVALID;
2225 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2226 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2227
2228 if (cpu->idau) {
2229 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2230 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2231
2232 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2233 &idau_nsc);
2234 }
2235
2236 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2237 /* 0xf0000000..0xffffffff is always S for insn fetches */
2238 return;
2239 }
2240
2241 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2242 sattrs->ns = !is_secure;
2243 return;
2244 }
2245
2246 if (idau_region != IREGION_NOTVALID) {
2247 sattrs->irvalid = true;
2248 sattrs->iregion = idau_region;
2249 }
2250
2251 switch (env->sau.ctrl & 3) {
2252 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2253 break;
2254 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2255 sattrs->ns = true;
2256 break;
2257 default: /* SAU.ENABLE == 1 */
2258 for (r = 0; r < cpu->sau_sregion; r++) {
2259 if (env->sau.rlar[r] & 1) {
2260 uint32_t base = env->sau.rbar[r] & ~0x1f;
2261 uint32_t limit = env->sau.rlar[r] | 0x1f;
2262
2263 if (base <= address && limit >= address) {
2264 if (base > addr_page_base || limit < addr_page_limit) {
2265 sattrs->subpage = true;
2266 }
2267 if (sattrs->srvalid) {
2268 /*
2269 * If we hit in more than one region then we must report
2270 * as Secure, not NS-Callable, with no valid region
2271 * number info.
2272 */
2273 sattrs->ns = false;
2274 sattrs->nsc = false;
2275 sattrs->sregion = 0;
2276 sattrs->srvalid = false;
2277 break;
2278 } else {
2279 if (env->sau.rlar[r] & 2) {
2280 sattrs->nsc = true;
2281 } else {
2282 sattrs->ns = true;
2283 }
2284 sattrs->srvalid = true;
2285 sattrs->sregion = r;
2286 }
2287 } else {
2288 /*
2289 * Address not in this region. We must check whether the
2290 * region covers addresses in the same page as our address.
2291 * In that case we must not report a size that covers the
2292 * whole page for a subsequent hit against a different MPU
2293 * region or the background region, because it would result
2294 * in incorrect TLB hits for subsequent accesses to
2295 * addresses that are in this MPU region.
2296 */
2297 if (limit >= base &&
2298 ranges_overlap(base, limit - base + 1,
2299 addr_page_base,
2300 TARGET_PAGE_SIZE)) {
2301 sattrs->subpage = true;
2302 }
2303 }
2304 }
2305 }
2306 break;
2307 }
2308
2309 /*
2310 * The IDAU will override the SAU lookup results if it specifies
2311 * higher security than the SAU does.
2312 */
2313 if (!idau_ns) {
2314 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2315 sattrs->ns = false;
2316 sattrs->nsc = idau_nsc;
2317 }
2318 }
2319 }
2320
2321 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
2322 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2323 bool secure, GetPhysAddrResult *result,
2324 ARMMMUFaultInfo *fi)
2325 {
2326 V8M_SAttributes sattrs = {};
2327 bool ret;
2328
2329 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2330 v8m_security_lookup(env, address, access_type, mmu_idx,
2331 secure, &sattrs);
2332 if (access_type == MMU_INST_FETCH) {
2333 /*
2334 * Instruction fetches always use the MMU bank and the
2335 * transaction attribute determined by the fetch address,
2336 * regardless of CPU state. This is painful for QEMU
2337 * to handle, because it would mean we need to encode
2338 * into the mmu_idx not just the (user, negpri) information
2339 * for the current security state but also that for the
2340 * other security state, which would balloon the number
2341 * of mmu_idx values needed alarmingly.
2342 * Fortunately we can avoid this because it's not actually
2343 * possible to arbitrarily execute code from memory with
2344 * the wrong security attribute: it will always generate
2345 * an exception of some kind or another, apart from the
2346 * special case of an NS CPU executing an SG instruction
2347 * in S&NSC memory. So we always just fail the translation
2348 * here and sort things out in the exception handler
2349 * (including possibly emulating an SG instruction).
2350 */
2351 if (sattrs.ns != !secure) {
2352 if (sattrs.nsc) {
2353 fi->type = ARMFault_QEMU_NSCExec;
2354 } else {
2355 fi->type = ARMFault_QEMU_SFault;
2356 }
2357 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2358 result->f.phys_addr = address;
2359 result->f.prot = 0;
2360 return true;
2361 }
2362 } else {
2363 /*
2364 * For data accesses we always use the MMU bank indicated
2365 * by the current CPU state, but the security attributes
2366 * might downgrade a secure access to nonsecure.
2367 */
2368 if (sattrs.ns) {
2369 result->f.attrs.secure = false;
2370 } else if (!secure) {
2371 /*
2372 * NS access to S memory must fault.
2373 * Architecturally we should first check whether the
2374 * MPU information for this address indicates that we
2375 * are doing an unaligned access to Device memory, which
2376 * should generate a UsageFault instead. QEMU does not
2377 * currently check for that kind of unaligned access though.
2378 * If we added it we would need to do so as a special case
2379 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2380 */
2381 fi->type = ARMFault_QEMU_SFault;
2382 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2383 result->f.phys_addr = address;
2384 result->f.prot = 0;
2385 return true;
2386 }
2387 }
2388 }
2389
2390 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2391 result, fi, NULL);
2392 if (sattrs.subpage) {
2393 result->f.lg_page_size = 0;
2394 }
2395 return ret;
2396 }
2397
2398 /*
2399 * Translate from the 4-bit stage 2 representation of
2400 * memory attributes (without cache-allocation hints) to
2401 * the 8-bit representation of the stage 1 MAIR registers
2402 * (which includes allocation hints).
2403 *
2404 * ref: shared/translation/attrs/S2AttrDecode()
2405 * .../S2ConvertAttrsHints()
2406 */
2407 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2408 {
2409 uint8_t hiattr = extract32(s2attrs, 2, 2);
2410 uint8_t loattr = extract32(s2attrs, 0, 2);
2411 uint8_t hihint = 0, lohint = 0;
2412
2413 if (hiattr != 0) { /* normal memory */
2414 if (hcr & HCR_CD) { /* cache disabled */
2415 hiattr = loattr = 1; /* non-cacheable */
2416 } else {
2417 if (hiattr != 1) { /* Write-through or write-back */
2418 hihint = 3; /* RW allocate */
2419 }
2420 if (loattr != 1) { /* Write-through or write-back */
2421 lohint = 3; /* RW allocate */
2422 }
2423 }
2424 }
2425
2426 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2427 }
2428
2429 /*
2430 * Combine either inner or outer cacheability attributes for normal
2431 * memory, according to table D4-42 and pseudocode procedure
2432 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2433 *
2434 * NB: only stage 1 includes allocation hints (RW bits), leading to
2435 * some asymmetry.
2436 */
2437 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2438 {
2439 if (s1 == 4 || s2 == 4) {
2440 /* non-cacheable has precedence */
2441 return 4;
2442 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2443 /* stage 1 write-through takes precedence */
2444 return s1;
2445 } else if (extract32(s2, 2, 2) == 2) {
2446 /* stage 2 write-through takes precedence, but the allocation hint
2447 * is still taken from stage 1
2448 */
2449 return (2 << 2) | extract32(s1, 0, 2);
2450 } else { /* write-back */
2451 return s1;
2452 }
2453 }
2454
2455 /*
2456 * Combine the memory type and cacheability attributes of
2457 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2458 * combined attributes in MAIR_EL1 format.
2459 */
2460 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2461 ARMCacheAttrs s1, ARMCacheAttrs s2)
2462 {
2463 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2464
2465 if (s2.is_s2_format) {
2466 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2467 } else {
2468 s2_mair_attrs = s2.attrs;
2469 }
2470
2471 s1lo = extract32(s1.attrs, 0, 4);
2472 s2lo = extract32(s2_mair_attrs, 0, 4);
2473 s1hi = extract32(s1.attrs, 4, 4);
2474 s2hi = extract32(s2_mair_attrs, 4, 4);
2475
2476 /* Combine memory type and cacheability attributes */
2477 if (s1hi == 0 || s2hi == 0) {
2478 /* Device has precedence over normal */
2479 if (s1lo == 0 || s2lo == 0) {
2480 /* nGnRnE has precedence over anything */
2481 ret_attrs = 0;
2482 } else if (s1lo == 4 || s2lo == 4) {
2483 /* non-Reordering has precedence over Reordering */
2484 ret_attrs = 4; /* nGnRE */
2485 } else if (s1lo == 8 || s2lo == 8) {
2486 /* non-Gathering has precedence over Gathering */
2487 ret_attrs = 8; /* nGRE */
2488 } else {
2489 ret_attrs = 0xc; /* GRE */
2490 }
2491 } else { /* Normal memory */
2492 /* Outer/inner cacheability combine independently */
2493 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2494 | combine_cacheattr_nibble(s1lo, s2lo);
2495 }
2496 return ret_attrs;
2497 }
2498
2499 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2500 {
2501 /*
2502 * Given the 4 bits specifying the outer or inner cacheability
2503 * in MAIR format, return a value specifying Normal Write-Back,
2504 * with the allocation and transient hints taken from the input
2505 * if the input specified some kind of cacheable attribute.
2506 */
2507 if (attr == 0 || attr == 4) {
2508 /*
2509 * 0 == an UNPREDICTABLE encoding
2510 * 4 == Non-cacheable
2511 * Either way, force Write-Back RW allocate non-transient
2512 */
2513 return 0xf;
2514 }
2515 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2516 return attr | 4;
2517 }
2518
2519 /*
2520 * Combine the memory type and cacheability attributes of
2521 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2522 * combined attributes in MAIR_EL1 format.
2523 */
2524 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
2525 {
2526 assert(s2.is_s2_format && !s1.is_s2_format);
2527
2528 switch (s2.attrs) {
2529 case 7:
2530 /* Use stage 1 attributes */
2531 return s1.attrs;
2532 case 6:
2533 /*
2534 * Force Normal Write-Back. Note that if S1 is Normal cacheable
2535 * then we take the allocation hints from it; otherwise it is
2536 * RW allocate, non-transient.
2537 */
2538 if ((s1.attrs & 0xf0) == 0) {
2539 /* S1 is Device */
2540 return 0xff;
2541 }
2542 /* Need to check the Inner and Outer nibbles separately */
2543 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2544 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2545 case 5:
2546 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2547 if ((s1.attrs & 0xf0) == 0) {
2548 return s1.attrs;
2549 }
2550 return 0x44;
2551 case 0 ... 3:
2552 /* Force Device, of subtype specified by S2 */
2553 return s2.attrs << 2;
2554 default:
2555 /*
2556 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2557 * arbitrarily force Device.
2558 */
2559 return 0;
2560 }
2561 }
2562
2563 /*
2564 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2565 * and CombineS1S2Desc()
2566 *
2567 * @env: CPUARMState
2568 * @s1: Attributes from stage 1 walk
2569 * @s2: Attributes from stage 2 walk
2570 */
2571 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
2572 ARMCacheAttrs s1, ARMCacheAttrs s2)
2573 {
2574 ARMCacheAttrs ret;
2575 bool tagged = false;
2576
2577 assert(!s1.is_s2_format);
2578 ret.is_s2_format = false;
2579
2580 if (s1.attrs == 0xf0) {
2581 tagged = true;
2582 s1.attrs = 0xff;
2583 }
2584
2585 /* Combine shareability attributes (table D4-43) */
2586 if (s1.shareability == 2 || s2.shareability == 2) {
2587 /* if either are outer-shareable, the result is outer-shareable */
2588 ret.shareability = 2;
2589 } else if (s1.shareability == 3 || s2.shareability == 3) {
2590 /* if either are inner-shareable, the result is inner-shareable */
2591 ret.shareability = 3;
2592 } else {
2593 /* both non-shareable */
2594 ret.shareability = 0;
2595 }
2596
2597 /* Combine memory type and cacheability attributes */
2598 if (hcr & HCR_FWB) {
2599 ret.attrs = combined_attrs_fwb(s1, s2);
2600 } else {
2601 ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
2602 }
2603
2604 /*
2605 * Any location for which the resultant memory type is any
2606 * type of Device memory is always treated as Outer Shareable.
2607 * Any location for which the resultant memory type is Normal
2608 * Inner Non-cacheable, Outer Non-cacheable is always treated
2609 * as Outer Shareable.
2610 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2611 */
2612 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2613 ret.shareability = 2;
2614 }
2615
2616 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2617 if (tagged && ret.attrs == 0xff) {
2618 ret.attrs = 0xf0;
2619 }
2620
2621 return ret;
2622 }
2623
2624 /*
2625 * MMU disabled. S1 addresses within aa64 translation regimes are
2626 * still checked for bounds -- see AArch64.S1DisabledOutput().
2627 */
2628 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
2629 MMUAccessType access_type,
2630 ARMMMUIdx mmu_idx, bool is_secure,
2631 GetPhysAddrResult *result,
2632 ARMMMUFaultInfo *fi)
2633 {
2634 uint8_t memattr = 0x00; /* Device nGnRnE */
2635 uint8_t shareability = 0; /* non-sharable */
2636 int r_el;
2637
2638 switch (mmu_idx) {
2639 case ARMMMUIdx_Stage2:
2640 case ARMMMUIdx_Stage2_S:
2641 case ARMMMUIdx_Phys_NS:
2642 case ARMMMUIdx_Phys_S:
2643 break;
2644
2645 default:
2646 r_el = regime_el(env, mmu_idx);
2647 if (arm_el_is_aa64(env, r_el)) {
2648 int pamax = arm_pamax(env_archcpu(env));
2649 uint64_t tcr = env->cp15.tcr_el[r_el];
2650 int addrtop, tbi;
2651
2652 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2653 if (access_type == MMU_INST_FETCH) {
2654 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2655 }
2656 tbi = (tbi >> extract64(address, 55, 1)) & 1;
2657 addrtop = (tbi ? 55 : 63);
2658
2659 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2660 fi->type = ARMFault_AddressSize;
2661 fi->level = 0;
2662 fi->stage2 = false;
2663 return 1;
2664 }
2665
2666 /*
2667 * When TBI is disabled, we've just validated that all of the
2668 * bits above PAMax are zero, so logically we only need to
2669 * clear the top byte for TBI. But it's clearer to follow
2670 * the pseudocode set of addrdesc.paddress.
2671 */
2672 address = extract64(address, 0, 52);
2673 }
2674
2675 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2676 if (r_el == 1) {
2677 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2678 if (hcr & HCR_DC) {
2679 if (hcr & HCR_DCT) {
2680 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
2681 } else {
2682 memattr = 0xff; /* Normal, WB, RWA */
2683 }
2684 }
2685 }
2686 if (memattr == 0 && access_type == MMU_INST_FETCH) {
2687 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2688 memattr = 0xee; /* Normal, WT, RA, NT */
2689 } else {
2690 memattr = 0x44; /* Normal, NC, No */
2691 }
2692 shareability = 2; /* outer sharable */
2693 }
2694 result->cacheattrs.is_s2_format = false;
2695 break;
2696 }
2697
2698 result->f.phys_addr = address;
2699 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2700 result->f.lg_page_size = TARGET_PAGE_BITS;
2701 result->cacheattrs.shareability = shareability;
2702 result->cacheattrs.attrs = memattr;
2703 return false;
2704 }
2705
2706 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
2707 target_ulong address,
2708 MMUAccessType access_type,
2709 GetPhysAddrResult *result,
2710 ARMMMUFaultInfo *fi)
2711 {
2712 hwaddr ipa;
2713 int s1_prot, s1_lgpgsz;
2714 bool is_secure = ptw->in_secure;
2715 bool ret, ipa_secure, s2walk_secure;
2716 ARMCacheAttrs cacheattrs1;
2717 bool is_el0;
2718 uint64_t hcr;
2719
2720 ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi);
2721
2722 /* If S1 fails, return early. */
2723 if (ret) {
2724 return ret;
2725 }
2726
2727 ipa = result->f.phys_addr;
2728 ipa_secure = result->f.attrs.secure;
2729 if (is_secure) {
2730 /* Select TCR based on the NS bit from the S1 walk. */
2731 s2walk_secure = !(ipa_secure
2732 ? env->cp15.vstcr_el2 & VSTCR_SW
2733 : env->cp15.vtcr_el2 & VTCR_NSW);
2734 } else {
2735 assert(!ipa_secure);
2736 s2walk_secure = false;
2737 }
2738
2739 is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
2740 ptw->in_mmu_idx = s2walk_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2741 ptw->in_ptw_idx = s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2742 ptw->in_secure = s2walk_secure;
2743
2744 /*
2745 * S1 is done, now do S2 translation.
2746 * Save the stage1 results so that we may merge prot and cacheattrs later.
2747 */
2748 s1_prot = result->f.prot;
2749 s1_lgpgsz = result->f.lg_page_size;
2750 cacheattrs1 = result->cacheattrs;
2751 memset(result, 0, sizeof(*result));
2752
2753 if (arm_feature(env, ARM_FEATURE_PMSA)) {
2754 ret = get_phys_addr_pmsav8(env, ipa, access_type,
2755 ptw->in_mmu_idx, is_secure, result, fi);
2756 } else {
2757 ret = get_phys_addr_lpae(env, ptw, ipa, access_type,
2758 is_el0, result, fi);
2759 }
2760 fi->s2addr = ipa;
2761
2762 /* Combine the S1 and S2 perms. */
2763 result->f.prot &= s1_prot;
2764
2765 /* If S2 fails, return early. */
2766 if (ret) {
2767 return ret;
2768 }
2769
2770 /*
2771 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
2772 * this means "don't put this in the TLB"; in this case, return a
2773 * result with lg_page_size == 0 to achieve that. Otherwise,
2774 * use the maximum of the S1 & S2 page size, so that invalidation
2775 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
2776 * we know the combined result permissions etc only cover the minimum
2777 * of the S1 and S2 page size, because we know that the common TLB code
2778 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
2779 * and passing a larger page size value only affects invalidations.)
2780 */
2781 if (result->f.lg_page_size < TARGET_PAGE_BITS ||
2782 s1_lgpgsz < TARGET_PAGE_BITS) {
2783 result->f.lg_page_size = 0;
2784 } else if (result->f.lg_page_size < s1_lgpgsz) {
2785 result->f.lg_page_size = s1_lgpgsz;
2786 }
2787
2788 /* Combine the S1 and S2 cache attributes. */
2789 hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2790 if (hcr & HCR_DC) {
2791 /*
2792 * HCR.DC forces the first stage attributes to
2793 * Normal Non-Shareable,
2794 * Inner Write-Back Read-Allocate Write-Allocate,
2795 * Outer Write-Back Read-Allocate Write-Allocate.
2796 * Do not overwrite Tagged within attrs.
2797 */
2798 if (cacheattrs1.attrs != 0xf0) {
2799 cacheattrs1.attrs = 0xff;
2800 }
2801 cacheattrs1.shareability = 0;
2802 }
2803 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
2804 result->cacheattrs);
2805
2806 /*
2807 * Check if IPA translates to secure or non-secure PA space.
2808 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
2809 */
2810 result->f.attrs.secure =
2811 (is_secure
2812 && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
2813 && (ipa_secure
2814 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))));
2815
2816 return false;
2817 }
2818
2819 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
2820 target_ulong address,
2821 MMUAccessType access_type,
2822 GetPhysAddrResult *result,
2823 ARMMMUFaultInfo *fi)
2824 {
2825 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2826 bool is_secure = ptw->in_secure;
2827 ARMMMUIdx s1_mmu_idx;
2828
2829 /*
2830 * The page table entries may downgrade secure to non-secure, but
2831 * cannot upgrade an non-secure translation regime's attributes
2832 * to secure.
2833 */
2834 result->f.attrs.secure = is_secure;
2835
2836 switch (mmu_idx) {
2837 case ARMMMUIdx_Phys_S:
2838 case ARMMMUIdx_Phys_NS:
2839 /* Checking Phys early avoids special casing later vs regime_el. */
2840 return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2841 is_secure, result, fi);
2842
2843 case ARMMMUIdx_Stage1_E0:
2844 case ARMMMUIdx_Stage1_E1:
2845 case ARMMMUIdx_Stage1_E1_PAN:
2846 /* First stage lookup uses second stage for ptw. */
2847 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2848 break;
2849
2850 case ARMMMUIdx_E10_0:
2851 s1_mmu_idx = ARMMMUIdx_Stage1_E0;
2852 goto do_twostage;
2853 case ARMMMUIdx_E10_1:
2854 s1_mmu_idx = ARMMMUIdx_Stage1_E1;
2855 goto do_twostage;
2856 case ARMMMUIdx_E10_1_PAN:
2857 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
2858 do_twostage:
2859 /*
2860 * Call ourselves recursively to do the stage 1 and then stage 2
2861 * translations if mmu_idx is a two-stage regime, and EL2 present.
2862 * Otherwise, a stage1+stage2 translation is just stage 1.
2863 */
2864 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
2865 if (arm_feature(env, ARM_FEATURE_EL2) &&
2866 !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) {
2867 return get_phys_addr_twostage(env, ptw, address, access_type,
2868 result, fi);
2869 }
2870 /* fall through */
2871
2872 default:
2873 /* Single stage and second stage uses physical for ptw. */
2874 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2875 break;
2876 }
2877
2878 result->f.attrs.user = regime_is_user(env, mmu_idx);
2879
2880 /*
2881 * Fast Context Switch Extension. This doesn't exist at all in v8.
2882 * In v7 and earlier it affects all stage 1 translations.
2883 */
2884 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2885 && !arm_feature(env, ARM_FEATURE_V8)) {
2886 if (regime_el(env, mmu_idx) == 3) {
2887 address += env->cp15.fcseidr_s;
2888 } else {
2889 address += env->cp15.fcseidr_ns;
2890 }
2891 }
2892
2893 if (arm_feature(env, ARM_FEATURE_PMSA)) {
2894 bool ret;
2895 result->f.lg_page_size = TARGET_PAGE_BITS;
2896
2897 if (arm_feature(env, ARM_FEATURE_V8)) {
2898 /* PMSAv8 */
2899 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
2900 is_secure, result, fi);
2901 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2902 /* PMSAv7 */
2903 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
2904 is_secure, result, fi);
2905 } else {
2906 /* Pre-v7 MPU */
2907 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
2908 is_secure, result, fi);
2909 }
2910 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2911 " mmu_idx %u -> %s (prot %c%c%c)\n",
2912 access_type == MMU_DATA_LOAD ? "reading" :
2913 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2914 (uint32_t)address, mmu_idx,
2915 ret ? "Miss" : "Hit",
2916 result->f.prot & PAGE_READ ? 'r' : '-',
2917 result->f.prot & PAGE_WRITE ? 'w' : '-',
2918 result->f.prot & PAGE_EXEC ? 'x' : '-');
2919
2920 return ret;
2921 }
2922
2923 /* Definitely a real MMU, not an MPU */
2924
2925 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
2926 return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2927 is_secure, result, fi);
2928 }
2929
2930 if (regime_using_lpae_format(env, mmu_idx)) {
2931 return get_phys_addr_lpae(env, ptw, address, access_type, false,
2932 result, fi);
2933 } else if (arm_feature(env, ARM_FEATURE_V7) ||
2934 regime_sctlr(env, mmu_idx) & SCTLR_XP) {
2935 return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
2936 } else {
2937 return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
2938 }
2939 }
2940
2941 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
2942 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2943 bool is_secure, GetPhysAddrResult *result,
2944 ARMMMUFaultInfo *fi)
2945 {
2946 S1Translate ptw = {
2947 .in_mmu_idx = mmu_idx,
2948 .in_secure = is_secure,
2949 };
2950 return get_phys_addr_with_struct(env, &ptw, address, access_type,
2951 result, fi);
2952 }
2953
2954 bool get_phys_addr(CPUARMState *env, target_ulong address,
2955 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2956 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
2957 {
2958 bool is_secure;
2959
2960 switch (mmu_idx) {
2961 case ARMMMUIdx_E10_0:
2962 case ARMMMUIdx_E10_1:
2963 case ARMMMUIdx_E10_1_PAN:
2964 case ARMMMUIdx_E20_0:
2965 case ARMMMUIdx_E20_2:
2966 case ARMMMUIdx_E20_2_PAN:
2967 case ARMMMUIdx_Stage1_E0:
2968 case ARMMMUIdx_Stage1_E1:
2969 case ARMMMUIdx_Stage1_E1_PAN:
2970 case ARMMMUIdx_E2:
2971 is_secure = arm_is_secure_below_el3(env);
2972 break;
2973 case ARMMMUIdx_Stage2:
2974 case ARMMMUIdx_Phys_NS:
2975 case ARMMMUIdx_MPrivNegPri:
2976 case ARMMMUIdx_MUserNegPri:
2977 case ARMMMUIdx_MPriv:
2978 case ARMMMUIdx_MUser:
2979 is_secure = false;
2980 break;
2981 case ARMMMUIdx_E3:
2982 case ARMMMUIdx_Stage2_S:
2983 case ARMMMUIdx_Phys_S:
2984 case ARMMMUIdx_MSPrivNegPri:
2985 case ARMMMUIdx_MSUserNegPri:
2986 case ARMMMUIdx_MSPriv:
2987 case ARMMMUIdx_MSUser:
2988 is_secure = true;
2989 break;
2990 default:
2991 g_assert_not_reached();
2992 }
2993 return get_phys_addr_with_secure(env, address, access_type, mmu_idx,
2994 is_secure, result, fi);
2995 }
2996
2997 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
2998 MemTxAttrs *attrs)
2999 {
3000 ARMCPU *cpu = ARM_CPU(cs);
3001 CPUARMState *env = &cpu->env;
3002 S1Translate ptw = {
3003 .in_mmu_idx = arm_mmu_idx(env),
3004 .in_secure = arm_is_secure(env),
3005 .in_debug = true,
3006 };
3007 GetPhysAddrResult res = {};
3008 ARMMMUFaultInfo fi = {};
3009 bool ret;
3010
3011 ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3012 *attrs = res.f.attrs;
3013
3014 if (ret) {
3015 return -1;
3016 }
3017 return res.f.phys_addr;
3018 }