]> git.proxmox.com Git - mirror_qemu.git/blob - target/avr/helper.c
target/avr: Call avr_cpu_do_interrupt directly
[mirror_qemu.git] / target / avr / helper.c
1 /*
2 * QEMU AVR CPU helpers
3 *
4 * Copyright (c) 2016-2020 Michael Rolnik
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see
18 * <http://www.gnu.org/licenses/lgpl-2.1.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "cpu.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "exec/exec-all.h"
26 #include "exec/address-spaces.h"
27 #include "exec/helper-proto.h"
28
29 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
30 {
31 bool ret = false;
32 AVRCPU *cpu = AVR_CPU(cs);
33 CPUAVRState *env = &cpu->env;
34
35 if (interrupt_request & CPU_INTERRUPT_RESET) {
36 if (cpu_interrupts_enabled(env)) {
37 cs->exception_index = EXCP_RESET;
38 avr_cpu_do_interrupt(cs);
39
40 cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
41
42 ret = true;
43 }
44 }
45 if (interrupt_request & CPU_INTERRUPT_HARD) {
46 if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
47 int index = ctz32(env->intsrc);
48 cs->exception_index = EXCP_INT(index);
49 avr_cpu_do_interrupt(cs);
50
51 env->intsrc &= env->intsrc - 1; /* clear the interrupt */
52 if (!env->intsrc) {
53 cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
54 }
55
56 ret = true;
57 }
58 }
59 return ret;
60 }
61
62 void avr_cpu_do_interrupt(CPUState *cs)
63 {
64 AVRCPU *cpu = AVR_CPU(cs);
65 CPUAVRState *env = &cpu->env;
66
67 uint32_t ret = env->pc_w;
68 int vector = 0;
69 int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
70 int base = 0;
71
72 if (cs->exception_index == EXCP_RESET) {
73 vector = 0;
74 } else if (env->intsrc != 0) {
75 vector = ctz32(env->intsrc) + 1;
76 }
77
78 if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
79 cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
80 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
81 cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
82 } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
83 cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
84 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
85 } else {
86 cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
87 }
88
89 env->pc_w = base + vector * size;
90 env->sregI = 0; /* clear Global Interrupt Flag */
91
92 cs->exception_index = -1;
93 }
94
95 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
96 {
97 return addr; /* I assume 1:1 address correspondence */
98 }
99
100 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
101 MMUAccessType access_type, int mmu_idx,
102 bool probe, uintptr_t retaddr)
103 {
104 int prot, page_size = TARGET_PAGE_SIZE;
105 uint32_t paddr;
106
107 address &= TARGET_PAGE_MASK;
108
109 if (mmu_idx == MMU_CODE_IDX) {
110 /* Access to code in flash. */
111 paddr = OFFSET_CODE + address;
112 prot = PAGE_READ | PAGE_EXEC;
113 if (paddr >= OFFSET_DATA) {
114 /*
115 * This should not be possible via any architectural operations.
116 * There is certainly not an exception that we can deliver.
117 * Accept probing that might come from generic code.
118 */
119 if (probe) {
120 return false;
121 }
122 error_report("execution left flash memory");
123 abort();
124 }
125 } else {
126 /* Access to memory. */
127 paddr = OFFSET_DATA + address;
128 prot = PAGE_READ | PAGE_WRITE;
129 if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
130 /*
131 * Access to CPU registers, exit and rebuilt this TB to use
132 * full access in case it touches specially handled registers
133 * like SREG or SP. For probing, set page_size = 1, in order
134 * to force tlb_fill to be called for the next access.
135 */
136 if (probe) {
137 page_size = 1;
138 } else {
139 AVRCPU *cpu = AVR_CPU(cs);
140 CPUAVRState *env = &cpu->env;
141 env->fullacc = 1;
142 cpu_loop_exit_restore(cs, retaddr);
143 }
144 }
145 }
146
147 tlb_set_page(cs, address, paddr, prot, mmu_idx, page_size);
148 return true;
149 }
150
151 /*
152 * helpers
153 */
154
155 void helper_sleep(CPUAVRState *env)
156 {
157 CPUState *cs = env_cpu(env);
158
159 cs->exception_index = EXCP_HLT;
160 cpu_loop_exit(cs);
161 }
162
163 void helper_unsupported(CPUAVRState *env)
164 {
165 CPUState *cs = env_cpu(env);
166
167 /*
168 * I count not find what happens on the real platform, so
169 * it's EXCP_DEBUG for meanwhile
170 */
171 cs->exception_index = EXCP_DEBUG;
172 if (qemu_loglevel_mask(LOG_UNIMP)) {
173 qemu_log("UNSUPPORTED\n");
174 cpu_dump_state(cs, stderr, 0);
175 }
176 cpu_loop_exit(cs);
177 }
178
179 void helper_debug(CPUAVRState *env)
180 {
181 CPUState *cs = env_cpu(env);
182
183 cs->exception_index = EXCP_DEBUG;
184 cpu_loop_exit(cs);
185 }
186
187 void helper_break(CPUAVRState *env)
188 {
189 CPUState *cs = env_cpu(env);
190
191 cs->exception_index = EXCP_DEBUG;
192 cpu_loop_exit(cs);
193 }
194
195 void helper_wdr(CPUAVRState *env)
196 {
197 qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
198 }
199
200 /*
201 * This function implements IN instruction
202 *
203 * It does the following
204 * a. if an IO register belongs to CPU, its value is read and returned
205 * b. otherwise io address is translated to mem address and physical memory
206 * is read.
207 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
208 *
209 */
210 target_ulong helper_inb(CPUAVRState *env, uint32_t port)
211 {
212 target_ulong data = 0;
213
214 switch (port) {
215 case 0x38: /* RAMPD */
216 data = 0xff & (env->rampD >> 16);
217 break;
218 case 0x39: /* RAMPX */
219 data = 0xff & (env->rampX >> 16);
220 break;
221 case 0x3a: /* RAMPY */
222 data = 0xff & (env->rampY >> 16);
223 break;
224 case 0x3b: /* RAMPZ */
225 data = 0xff & (env->rampZ >> 16);
226 break;
227 case 0x3c: /* EIND */
228 data = 0xff & (env->eind >> 16);
229 break;
230 case 0x3d: /* SPL */
231 data = env->sp & 0x00ff;
232 break;
233 case 0x3e: /* SPH */
234 data = env->sp >> 8;
235 break;
236 case 0x3f: /* SREG */
237 data = cpu_get_sreg(env);
238 break;
239 default:
240 /* not a special register, pass to normal memory access */
241 data = address_space_ldub(&address_space_memory,
242 OFFSET_IO_REGISTERS + port,
243 MEMTXATTRS_UNSPECIFIED, NULL);
244 }
245
246 return data;
247 }
248
249 /*
250 * This function implements OUT instruction
251 *
252 * It does the following
253 * a. if an IO register belongs to CPU, its value is written into the register
254 * b. otherwise io address is translated to mem address and physical memory
255 * is written.
256 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
257 *
258 */
259 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
260 {
261 data &= 0x000000ff;
262
263 switch (port) {
264 case 0x38: /* RAMPD */
265 if (avr_feature(env, AVR_FEATURE_RAMPD)) {
266 env->rampD = (data & 0xff) << 16;
267 }
268 break;
269 case 0x39: /* RAMPX */
270 if (avr_feature(env, AVR_FEATURE_RAMPX)) {
271 env->rampX = (data & 0xff) << 16;
272 }
273 break;
274 case 0x3a: /* RAMPY */
275 if (avr_feature(env, AVR_FEATURE_RAMPY)) {
276 env->rampY = (data & 0xff) << 16;
277 }
278 break;
279 case 0x3b: /* RAMPZ */
280 if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
281 env->rampZ = (data & 0xff) << 16;
282 }
283 break;
284 case 0x3c: /* EIDN */
285 env->eind = (data & 0xff) << 16;
286 break;
287 case 0x3d: /* SPL */
288 env->sp = (env->sp & 0xff00) | (data);
289 break;
290 case 0x3e: /* SPH */
291 if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
292 env->sp = (env->sp & 0x00ff) | (data << 8);
293 }
294 break;
295 case 0x3f: /* SREG */
296 cpu_set_sreg(env, data);
297 break;
298 default:
299 /* not a special register, pass to normal memory access */
300 address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
301 data, MEMTXATTRS_UNSPECIFIED, NULL);
302 }
303 }
304
305 /*
306 * this function implements LD instruction when there is a possibility to read
307 * from a CPU register
308 */
309 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
310 {
311 uint8_t data;
312
313 env->fullacc = false;
314
315 if (addr < NUMBER_OF_CPU_REGISTERS) {
316 /* CPU registers */
317 data = env->r[addr];
318 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
319 /* IO registers */
320 data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
321 } else {
322 /* memory */
323 data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
324 MEMTXATTRS_UNSPECIFIED, NULL);
325 }
326 return data;
327 }
328
329 /*
330 * this function implements ST instruction when there is a possibility to write
331 * into a CPU register
332 */
333 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
334 {
335 env->fullacc = false;
336
337 /* Following logic assumes this: */
338 assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
339 assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
340 NUMBER_OF_CPU_REGISTERS);
341
342 if (addr < NUMBER_OF_CPU_REGISTERS) {
343 /* CPU registers */
344 env->r[addr] = data;
345 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
346 /* IO registers */
347 helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
348 } else {
349 /* memory */
350 address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
351 MEMTXATTRS_UNSPECIFIED, NULL);
352 }
353 }