]> git.proxmox.com Git - mirror_qemu.git/blob - target/i386/hvf/hvf.c
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[mirror_qemu.git] / target / i386 / hvf / hvf.c
1 /* Copyright 2008 IBM Corporation
2 * 2008 Red Hat, Inc.
3 * Copyright 2011 Intel Corporation
4 * Copyright 2016 Veertu, Inc.
5 * Copyright 2017 The Android Open Source Project
6 *
7 * QEMU Hypervisor.framework support
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of version 2 of the GNU General Public
11 * License as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
20 *
21 * This file contain code under public domain from the hvdos project:
22 * https://github.com/mist64/hvdos
23 *
24 * Parts Copyright (c) 2011 NetApp, Inc.
25 * All rights reserved.
26 *
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
30 * 1. Redistributions of source code must retain the above copyright
31 * notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 * notice, this list of conditions and the following disclaimer in the
34 * documentation and/or other materials provided with the distribution.
35 *
36 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46 * SUCH DAMAGE.
47 */
48 #include "qemu/osdep.h"
49 #include "qemu-common.h"
50 #include "qemu/error-report.h"
51
52 #include "sysemu/hvf.h"
53 #include "hvf-i386.h"
54 #include "vmcs.h"
55 #include "vmx.h"
56 #include "x86.h"
57 #include "x86_descr.h"
58 #include "x86_mmu.h"
59 #include "x86_decode.h"
60 #include "x86_emu.h"
61 #include "x86_task.h"
62 #include "x86hvf.h"
63
64 #include <Hypervisor/hv.h>
65 #include <Hypervisor/hv_vmx.h>
66
67 #include "exec/address-spaces.h"
68 #include "exec/exec-all.h"
69 #include "exec/ioport.h"
70 #include "hw/i386/apic_internal.h"
71 #include "hw/boards.h"
72 #include "qemu/main-loop.h"
73 #include "strings.h"
74 #include "sysemu/accel.h"
75 #include "sysemu/sysemu.h"
76 #include "target/i386/cpu.h"
77
78 pthread_rwlock_t mem_lock = PTHREAD_RWLOCK_INITIALIZER;
79 HVFState *hvf_state;
80 int hvf_disabled = 1;
81
82 static void assert_hvf_ok(hv_return_t ret)
83 {
84 if (ret == HV_SUCCESS) {
85 return;
86 }
87
88 switch (ret) {
89 case HV_ERROR:
90 error_report("Error: HV_ERROR\n");
91 break;
92 case HV_BUSY:
93 error_report("Error: HV_BUSY\n");
94 break;
95 case HV_BAD_ARGUMENT:
96 error_report("Error: HV_BAD_ARGUMENT\n");
97 break;
98 case HV_NO_RESOURCES:
99 error_report("Error: HV_NO_RESOURCES\n");
100 break;
101 case HV_NO_DEVICE:
102 error_report("Error: HV_NO_DEVICE\n");
103 break;
104 case HV_UNSUPPORTED:
105 error_report("Error: HV_UNSUPPORTED\n");
106 break;
107 default:
108 error_report("Unknown Error\n");
109 }
110
111 abort();
112 }
113
114 /* Memory slots */
115 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t end)
116 {
117 hvf_slot *slot;
118 int x;
119 for (x = 0; x < hvf_state->num_slots; ++x) {
120 slot = &hvf_state->slots[x];
121 if (slot->size && start < (slot->start + slot->size) &&
122 end > slot->start) {
123 return slot;
124 }
125 }
126 return NULL;
127 }
128
129 struct mac_slot {
130 int present;
131 uint64_t size;
132 uint64_t gpa_start;
133 uint64_t gva;
134 };
135
136 struct mac_slot mac_slots[32];
137 #define ALIGN(x, y) (((x) + (y) - 1) & ~((y) - 1))
138
139 static int do_hvf_set_memory(hvf_slot *slot)
140 {
141 struct mac_slot *macslot;
142 hv_memory_flags_t flags;
143 hv_return_t ret;
144
145 macslot = &mac_slots[slot->slot_id];
146
147 if (macslot->present) {
148 if (macslot->size != slot->size) {
149 macslot->present = 0;
150 ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
151 assert_hvf_ok(ret);
152 }
153 }
154
155 if (!slot->size) {
156 return 0;
157 }
158
159 flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
160
161 macslot->present = 1;
162 macslot->gpa_start = slot->start;
163 macslot->size = slot->size;
164 ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags);
165 assert_hvf_ok(ret);
166 return 0;
167 }
168
169 void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
170 {
171 hvf_slot *mem;
172 MemoryRegion *area = section->mr;
173
174 if (!memory_region_is_ram(area)) {
175 return;
176 }
177
178 mem = hvf_find_overlap_slot(
179 section->offset_within_address_space,
180 section->offset_within_address_space + int128_get64(section->size));
181
182 if (mem && add) {
183 if (mem->size == int128_get64(section->size) &&
184 mem->start == section->offset_within_address_space &&
185 mem->mem == (memory_region_get_ram_ptr(area) +
186 section->offset_within_region)) {
187 return; /* Same region was attempted to register, go away. */
188 }
189 }
190
191 /* Region needs to be reset. set the size to 0 and remap it. */
192 if (mem) {
193 mem->size = 0;
194 if (do_hvf_set_memory(mem)) {
195 error_report("Failed to reset overlapping slot\n");
196 abort();
197 }
198 }
199
200 if (!add) {
201 return;
202 }
203
204 /* Now make a new slot. */
205 int x;
206
207 for (x = 0; x < hvf_state->num_slots; ++x) {
208 mem = &hvf_state->slots[x];
209 if (!mem->size) {
210 break;
211 }
212 }
213
214 if (x == hvf_state->num_slots) {
215 error_report("No free slots\n");
216 abort();
217 }
218
219 mem->size = int128_get64(section->size);
220 mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
221 mem->start = section->offset_within_address_space;
222 mem->region = area;
223
224 if (do_hvf_set_memory(mem)) {
225 error_report("Error registering new memory slot\n");
226 abort();
227 }
228 }
229
230 void vmx_update_tpr(CPUState *cpu)
231 {
232 /* TODO: need integrate APIC handling */
233 X86CPU *x86_cpu = X86_CPU(cpu);
234 int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
235 int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
236
237 wreg(cpu->hvf_fd, HV_X86_TPR, tpr);
238 if (irr == -1) {
239 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
240 } else {
241 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
242 irr >> 4);
243 }
244 }
245
246 void update_apic_tpr(CPUState *cpu)
247 {
248 X86CPU *x86_cpu = X86_CPU(cpu);
249 int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4;
250 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
251 }
252
253 #define VECTORING_INFO_VECTOR_MASK 0xff
254
255 static void hvf_handle_interrupt(CPUState * cpu, int mask)
256 {
257 cpu->interrupt_request |= mask;
258 if (!qemu_cpu_is_self(cpu)) {
259 qemu_cpu_kick(cpu);
260 }
261 }
262
263 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
264 int direction, int size, int count)
265 {
266 int i;
267 uint8_t *ptr = buffer;
268
269 for (i = 0; i < count; i++) {
270 address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
271 ptr, size,
272 direction);
273 ptr += size;
274 }
275 }
276
277 /* TODO: synchronize vcpu state */
278 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
279 {
280 CPUState *cpu_state = cpu;
281 if (cpu_state->vcpu_dirty == 0) {
282 hvf_get_registers(cpu_state);
283 }
284
285 cpu_state->vcpu_dirty = 1;
286 }
287
288 void hvf_cpu_synchronize_state(CPUState *cpu_state)
289 {
290 if (cpu_state->vcpu_dirty == 0) {
291 run_on_cpu(cpu_state, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
292 }
293 }
294
295 static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
296 {
297 CPUState *cpu_state = cpu;
298 hvf_put_registers(cpu_state);
299 cpu_state->vcpu_dirty = false;
300 }
301
302 void hvf_cpu_synchronize_post_reset(CPUState *cpu_state)
303 {
304 run_on_cpu(cpu_state, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
305 }
306
307 void _hvf_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
308 {
309 CPUState *cpu_state = cpu;
310 hvf_put_registers(cpu_state);
311 cpu_state->vcpu_dirty = false;
312 }
313
314 void hvf_cpu_synchronize_post_init(CPUState *cpu_state)
315 {
316 run_on_cpu(cpu_state, _hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
317 }
318
319 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
320 {
321 int read, write;
322
323 /* EPT fault on an instruction fetch doesn't make sense here */
324 if (ept_qual & EPT_VIOLATION_INST_FETCH) {
325 return false;
326 }
327
328 /* EPT fault must be a read fault or a write fault */
329 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
330 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
331 if ((read | write) == 0) {
332 return false;
333 }
334
335 if (write && slot) {
336 if (slot->flags & HVF_SLOT_LOG) {
337 memory_region_set_dirty(slot->region, gpa - slot->start, 1);
338 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
339 HV_MEMORY_READ | HV_MEMORY_WRITE);
340 }
341 }
342
343 /*
344 * The EPT violation must have been caused by accessing a
345 * guest-physical address that is a translation of a guest-linear
346 * address.
347 */
348 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
349 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
350 return false;
351 }
352
353 return !slot;
354 }
355
356 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
357 {
358 hvf_slot *slot;
359
360 slot = hvf_find_overlap_slot(
361 section->offset_within_address_space,
362 section->offset_within_address_space + int128_get64(section->size));
363
364 /* protect region against writes; begin tracking it */
365 if (on) {
366 slot->flags |= HVF_SLOT_LOG;
367 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
368 HV_MEMORY_READ);
369 /* stop tracking region*/
370 } else {
371 slot->flags &= ~HVF_SLOT_LOG;
372 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
373 HV_MEMORY_READ | HV_MEMORY_WRITE);
374 }
375 }
376
377 static void hvf_log_start(MemoryListener *listener,
378 MemoryRegionSection *section, int old, int new)
379 {
380 if (old != 0) {
381 return;
382 }
383
384 hvf_set_dirty_tracking(section, 1);
385 }
386
387 static void hvf_log_stop(MemoryListener *listener,
388 MemoryRegionSection *section, int old, int new)
389 {
390 if (new != 0) {
391 return;
392 }
393
394 hvf_set_dirty_tracking(section, 0);
395 }
396
397 static void hvf_log_sync(MemoryListener *listener,
398 MemoryRegionSection *section)
399 {
400 /*
401 * sync of dirty pages is handled elsewhere; just make sure we keep
402 * tracking the region.
403 */
404 hvf_set_dirty_tracking(section, 1);
405 }
406
407 static void hvf_region_add(MemoryListener *listener,
408 MemoryRegionSection *section)
409 {
410 hvf_set_phys_mem(section, true);
411 }
412
413 static void hvf_region_del(MemoryListener *listener,
414 MemoryRegionSection *section)
415 {
416 hvf_set_phys_mem(section, false);
417 }
418
419 static MemoryListener hvf_memory_listener = {
420 .priority = 10,
421 .region_add = hvf_region_add,
422 .region_del = hvf_region_del,
423 .log_start = hvf_log_start,
424 .log_stop = hvf_log_stop,
425 .log_sync = hvf_log_sync,
426 };
427
428 void hvf_reset_vcpu(CPUState *cpu) {
429
430 /* TODO: this shouldn't be needed; there is already a call to
431 * cpu_synchronize_all_post_reset in vl.c
432 */
433 wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, 0);
434 wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, 0);
435 macvm_set_cr0(cpu->hvf_fd, 0x60000010);
436
437 wvmcs(cpu->hvf_fd, VMCS_CR4_MASK, CR4_VMXE_MASK);
438 wvmcs(cpu->hvf_fd, VMCS_CR4_SHADOW, 0x0);
439 wvmcs(cpu->hvf_fd, VMCS_GUEST_CR4, CR4_VMXE_MASK);
440
441 /* set VMCS guest state fields */
442 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_SELECTOR, 0xf000);
443 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_LIMIT, 0xffff);
444 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_ACCESS_RIGHTS, 0x9b);
445 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_BASE, 0xffff0000);
446
447 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_SELECTOR, 0);
448 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_LIMIT, 0xffff);
449 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_ACCESS_RIGHTS, 0x93);
450 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_BASE, 0);
451
452 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_SELECTOR, 0);
453 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_LIMIT, 0xffff);
454 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_ACCESS_RIGHTS, 0x93);
455 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_BASE, 0);
456
457 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_SELECTOR, 0);
458 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_LIMIT, 0xffff);
459 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_ACCESS_RIGHTS, 0x93);
460 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, 0);
461
462 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_SELECTOR, 0);
463 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_LIMIT, 0xffff);
464 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_ACCESS_RIGHTS, 0x93);
465 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, 0);
466
467 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_SELECTOR, 0);
468 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_LIMIT, 0xffff);
469 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_ACCESS_RIGHTS, 0x93);
470 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_BASE, 0);
471
472 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_SELECTOR, 0);
473 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT, 0);
474 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_ACCESS_RIGHTS, 0x10000);
475 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE, 0);
476
477 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_SELECTOR, 0);
478 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_LIMIT, 0);
479 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_ACCESS_RIGHTS, 0x83);
480 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_BASE, 0);
481
482 wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT, 0);
483 wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE, 0);
484
485 wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_LIMIT, 0);
486 wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_BASE, 0);
487
488 /*wvmcs(cpu->hvf_fd, VMCS_GUEST_CR2, 0x0);*/
489 wvmcs(cpu->hvf_fd, VMCS_GUEST_CR3, 0x0);
490
491 wreg(cpu->hvf_fd, HV_X86_RIP, 0xfff0);
492 wreg(cpu->hvf_fd, HV_X86_RDX, 0x623);
493 wreg(cpu->hvf_fd, HV_X86_RFLAGS, 0x2);
494 wreg(cpu->hvf_fd, HV_X86_RSP, 0x0);
495 wreg(cpu->hvf_fd, HV_X86_RAX, 0x0);
496 wreg(cpu->hvf_fd, HV_X86_RBX, 0x0);
497 wreg(cpu->hvf_fd, HV_X86_RCX, 0x0);
498 wreg(cpu->hvf_fd, HV_X86_RSI, 0x0);
499 wreg(cpu->hvf_fd, HV_X86_RDI, 0x0);
500 wreg(cpu->hvf_fd, HV_X86_RBP, 0x0);
501
502 for (int i = 0; i < 8; i++) {
503 wreg(cpu->hvf_fd, HV_X86_R8 + i, 0x0);
504 }
505
506 hv_vm_sync_tsc(0);
507 cpu->halted = 0;
508 hv_vcpu_invalidate_tlb(cpu->hvf_fd);
509 hv_vcpu_flush(cpu->hvf_fd);
510 }
511
512 void hvf_vcpu_destroy(CPUState *cpu)
513 {
514 hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd);
515 assert_hvf_ok(ret);
516 }
517
518 static void dummy_signal(int sig)
519 {
520 }
521
522 int hvf_init_vcpu(CPUState *cpu)
523 {
524
525 X86CPU *x86cpu = X86_CPU(cpu);
526 CPUX86State *env = &x86cpu->env;
527 int r;
528
529 /* init cpu signals */
530 sigset_t set;
531 struct sigaction sigact;
532
533 memset(&sigact, 0, sizeof(sigact));
534 sigact.sa_handler = dummy_signal;
535 sigaction(SIG_IPI, &sigact, NULL);
536
537 pthread_sigmask(SIG_BLOCK, NULL, &set);
538 sigdelset(&set, SIG_IPI);
539
540 init_emu();
541 init_decoder();
542
543 hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
544 env->hvf_emul = g_new0(HVFX86EmulatorState, 1);
545
546 r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT);
547 cpu->vcpu_dirty = 1;
548 assert_hvf_ok(r);
549
550 if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
551 &hvf_state->hvf_caps->vmx_cap_pinbased)) {
552 abort();
553 }
554 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
555 &hvf_state->hvf_caps->vmx_cap_procbased)) {
556 abort();
557 }
558 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
559 &hvf_state->hvf_caps->vmx_cap_procbased2)) {
560 abort();
561 }
562 if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
563 &hvf_state->hvf_caps->vmx_cap_entry)) {
564 abort();
565 }
566
567 /* set VMCS control fields */
568 wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS,
569 cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
570 VMCS_PIN_BASED_CTLS_EXTINT |
571 VMCS_PIN_BASED_CTLS_NMI |
572 VMCS_PIN_BASED_CTLS_VNMI));
573 wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS,
574 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
575 VMCS_PRI_PROC_BASED_CTLS_HLT |
576 VMCS_PRI_PROC_BASED_CTLS_MWAIT |
577 VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
578 VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
579 VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
580 wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS,
581 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
582 VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
583
584 wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
585 0));
586 wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
587
588 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
589
590 hvf_reset_vcpu(cpu);
591
592 x86cpu = X86_CPU(cpu);
593 x86cpu->env.kvm_xsave_buf = qemu_memalign(4096, 4096);
594
595 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1);
596 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1);
597 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1);
598 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1);
599 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1);
600 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1);
601 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1);
602 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1);
603 /*hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1);*/
604 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1);
605 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1);
606 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1);
607
608 return 0;
609 }
610
611 void hvf_disable(int shouldDisable)
612 {
613 hvf_disabled = shouldDisable;
614 }
615
616 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
617 {
618 X86CPU *x86_cpu = X86_CPU(cpu);
619 CPUX86State *env = &x86_cpu->env;
620
621 env->exception_injected = -1;
622 env->interrupt_injected = -1;
623 env->nmi_injected = false;
624 if (idtvec_info & VMCS_IDT_VEC_VALID) {
625 switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
626 case VMCS_IDT_VEC_HWINTR:
627 case VMCS_IDT_VEC_SWINTR:
628 env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
629 break;
630 case VMCS_IDT_VEC_NMI:
631 env->nmi_injected = true;
632 break;
633 case VMCS_IDT_VEC_HWEXCEPTION:
634 case VMCS_IDT_VEC_SWEXCEPTION:
635 env->exception_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
636 break;
637 case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
638 default:
639 abort();
640 }
641 if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
642 (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
643 env->ins_len = ins_len;
644 }
645 if (idtvec_info & VMCS_INTR_DEL_ERRCODE) {
646 env->has_error_code = true;
647 env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR);
648 }
649 }
650 if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
651 VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
652 env->hflags2 |= HF2_NMI_MASK;
653 } else {
654 env->hflags2 &= ~HF2_NMI_MASK;
655 }
656 if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
657 (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
658 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
659 env->hflags |= HF_INHIBIT_IRQ_MASK;
660 } else {
661 env->hflags &= ~HF_INHIBIT_IRQ_MASK;
662 }
663 }
664
665 int hvf_vcpu_exec(CPUState *cpu)
666 {
667 X86CPU *x86_cpu = X86_CPU(cpu);
668 CPUX86State *env = &x86_cpu->env;
669 int ret = 0;
670 uint64_t rip = 0;
671
672 cpu->halted = 0;
673
674 if (hvf_process_events(cpu)) {
675 return EXCP_HLT;
676 }
677
678 do {
679 if (cpu->vcpu_dirty) {
680 hvf_put_registers(cpu);
681 cpu->vcpu_dirty = false;
682 }
683
684 if (hvf_inject_interrupts(cpu)) {
685 return EXCP_INTERRUPT;
686 }
687 vmx_update_tpr(cpu);
688
689 qemu_mutex_unlock_iothread();
690 if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
691 qemu_mutex_lock_iothread();
692 return EXCP_HLT;
693 }
694
695 hv_return_t r = hv_vcpu_run(cpu->hvf_fd);
696 assert_hvf_ok(r);
697
698 /* handle VMEXIT */
699 uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON);
700 uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION);
701 uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd,
702 VMCS_EXIT_INSTRUCTION_LENGTH);
703
704 uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
705
706 hvf_store_events(cpu, ins_len, idtvec_info);
707 rip = rreg(cpu->hvf_fd, HV_X86_RIP);
708 RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
709 env->eflags = RFLAGS(env);
710
711 qemu_mutex_lock_iothread();
712
713 update_apic_tpr(cpu);
714 current_cpu = cpu;
715
716 ret = 0;
717 switch (exit_reason) {
718 case EXIT_REASON_HLT: {
719 macvm_set_rip(cpu, rip + ins_len);
720 if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
721 (EFLAGS(env) & IF_MASK))
722 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
723 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
724 cpu->halted = 1;
725 ret = EXCP_HLT;
726 }
727 ret = EXCP_INTERRUPT;
728 break;
729 }
730 case EXIT_REASON_MWAIT: {
731 ret = EXCP_INTERRUPT;
732 break;
733 }
734 /* Need to check if MMIO or unmmaped fault */
735 case EXIT_REASON_EPT_FAULT:
736 {
737 hvf_slot *slot;
738 uint64_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS);
739
740 if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
741 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
742 vmx_set_nmi_blocking(cpu);
743 }
744
745 slot = hvf_find_overlap_slot(gpa, gpa);
746 /* mmio */
747 if (ept_emulation_fault(slot, gpa, exit_qual)) {
748 struct x86_decode decode;
749
750 load_regs(cpu);
751 env->hvf_emul->fetch_rip = rip;
752
753 decode_instruction(env, &decode);
754 exec_instruction(env, &decode);
755 store_regs(cpu);
756 break;
757 }
758 break;
759 }
760 case EXIT_REASON_INOUT:
761 {
762 uint32_t in = (exit_qual & 8) != 0;
763 uint32_t size = (exit_qual & 7) + 1;
764 uint32_t string = (exit_qual & 16) != 0;
765 uint32_t port = exit_qual >> 16;
766 /*uint32_t rep = (exit_qual & 0x20) != 0;*/
767
768 if (!string && in) {
769 uint64_t val = 0;
770 load_regs(cpu);
771 hvf_handle_io(env, port, &val, 0, size, 1);
772 if (size == 1) {
773 AL(env) = val;
774 } else if (size == 2) {
775 AX(env) = val;
776 } else if (size == 4) {
777 RAX(env) = (uint32_t)val;
778 } else {
779 RAX(env) = (uint64_t)val;
780 }
781 RIP(env) += ins_len;
782 store_regs(cpu);
783 break;
784 } else if (!string && !in) {
785 RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX);
786 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
787 macvm_set_rip(cpu, rip + ins_len);
788 break;
789 }
790 struct x86_decode decode;
791
792 load_regs(cpu);
793 env->hvf_emul->fetch_rip = rip;
794
795 decode_instruction(env, &decode);
796 assert(ins_len == decode.len);
797 exec_instruction(env, &decode);
798 store_regs(cpu);
799
800 break;
801 }
802 case EXIT_REASON_CPUID: {
803 uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
804 uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX);
805 uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
806 uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
807
808 cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
809
810 wreg(cpu->hvf_fd, HV_X86_RAX, rax);
811 wreg(cpu->hvf_fd, HV_X86_RBX, rbx);
812 wreg(cpu->hvf_fd, HV_X86_RCX, rcx);
813 wreg(cpu->hvf_fd, HV_X86_RDX, rdx);
814
815 macvm_set_rip(cpu, rip + ins_len);
816 break;
817 }
818 case EXIT_REASON_XSETBV: {
819 X86CPU *x86_cpu = X86_CPU(cpu);
820 CPUX86State *env = &x86_cpu->env;
821 uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
822 uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
823 uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
824
825 if (ecx) {
826 macvm_set_rip(cpu, rip + ins_len);
827 break;
828 }
829 env->xcr0 = ((uint64_t)edx << 32) | eax;
830 wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1);
831 macvm_set_rip(cpu, rip + ins_len);
832 break;
833 }
834 case EXIT_REASON_INTR_WINDOW:
835 vmx_clear_int_window_exiting(cpu);
836 ret = EXCP_INTERRUPT;
837 break;
838 case EXIT_REASON_NMI_WINDOW:
839 vmx_clear_nmi_window_exiting(cpu);
840 ret = EXCP_INTERRUPT;
841 break;
842 case EXIT_REASON_EXT_INTR:
843 /* force exit and allow io handling */
844 ret = EXCP_INTERRUPT;
845 break;
846 case EXIT_REASON_RDMSR:
847 case EXIT_REASON_WRMSR:
848 {
849 load_regs(cpu);
850 if (exit_reason == EXIT_REASON_RDMSR) {
851 simulate_rdmsr(cpu);
852 } else {
853 simulate_wrmsr(cpu);
854 }
855 RIP(env) += rvmcs(cpu->hvf_fd, VMCS_EXIT_INSTRUCTION_LENGTH);
856 store_regs(cpu);
857 break;
858 }
859 case EXIT_REASON_CR_ACCESS: {
860 int cr;
861 int reg;
862
863 load_regs(cpu);
864 cr = exit_qual & 15;
865 reg = (exit_qual >> 8) & 15;
866
867 switch (cr) {
868 case 0x0: {
869 macvm_set_cr0(cpu->hvf_fd, RRX(env, reg));
870 break;
871 }
872 case 4: {
873 macvm_set_cr4(cpu->hvf_fd, RRX(env, reg));
874 break;
875 }
876 case 8: {
877 X86CPU *x86_cpu = X86_CPU(cpu);
878 if (exit_qual & 0x10) {
879 RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
880 } else {
881 int tpr = RRX(env, reg);
882 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
883 ret = EXCP_INTERRUPT;
884 }
885 break;
886 }
887 default:
888 error_report("Unrecognized CR %d\n", cr);
889 abort();
890 }
891 RIP(env) += ins_len;
892 store_regs(cpu);
893 break;
894 }
895 case EXIT_REASON_APIC_ACCESS: { /* TODO */
896 struct x86_decode decode;
897
898 load_regs(cpu);
899 env->hvf_emul->fetch_rip = rip;
900
901 decode_instruction(env, &decode);
902 exec_instruction(env, &decode);
903 store_regs(cpu);
904 break;
905 }
906 case EXIT_REASON_TPR: {
907 ret = 1;
908 break;
909 }
910 case EXIT_REASON_TASK_SWITCH: {
911 uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
912 x68_segment_selector sel = {.sel = exit_qual & 0xffff};
913 vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
914 vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
915 & VMCS_INTR_T_MASK);
916 break;
917 }
918 case EXIT_REASON_TRIPLE_FAULT: {
919 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
920 ret = EXCP_INTERRUPT;
921 break;
922 }
923 case EXIT_REASON_RDPMC:
924 wreg(cpu->hvf_fd, HV_X86_RAX, 0);
925 wreg(cpu->hvf_fd, HV_X86_RDX, 0);
926 macvm_set_rip(cpu, rip + ins_len);
927 break;
928 case VMX_REASON_VMCALL:
929 env->exception_injected = EXCP0D_GPF;
930 env->has_error_code = true;
931 env->error_code = 0;
932 break;
933 default:
934 error_report("%llx: unhandled exit %llx\n", rip, exit_reason);
935 }
936 } while (ret == 0);
937
938 return ret;
939 }
940
941 static bool hvf_allowed;
942
943 static int hvf_accel_init(MachineState *ms)
944 {
945 int x;
946 hv_return_t ret;
947 HVFState *s;
948
949 hvf_disable(0);
950 ret = hv_vm_create(HV_VM_DEFAULT);
951 assert_hvf_ok(ret);
952
953 s = g_new0(HVFState, 1);
954
955 s->num_slots = 32;
956 for (x = 0; x < s->num_slots; ++x) {
957 s->slots[x].size = 0;
958 s->slots[x].slot_id = x;
959 }
960
961 hvf_state = s;
962 cpu_interrupt_handler = hvf_handle_interrupt;
963 memory_listener_register(&hvf_memory_listener, &address_space_memory);
964 return 0;
965 }
966
967 static void hvf_accel_class_init(ObjectClass *oc, void *data)
968 {
969 AccelClass *ac = ACCEL_CLASS(oc);
970 ac->name = "HVF";
971 ac->init_machine = hvf_accel_init;
972 ac->allowed = &hvf_allowed;
973 }
974
975 static const TypeInfo hvf_accel_type = {
976 .name = TYPE_HVF_ACCEL,
977 .parent = TYPE_ACCEL,
978 .class_init = hvf_accel_class_init,
979 };
980
981 static void hvf_type_init(void)
982 {
983 type_register_static(&hvf_accel_type);
984 }
985
986 type_init(hvf_type_init);