]> git.proxmox.com Git - mirror_qemu.git/blob - target/i386/tcg/decode-new.c.inc
vl: Allow ThreadContext objects to be created before the sandbox option
[mirror_qemu.git] / target / i386 / tcg / decode-new.c.inc
1 /*
2 * New-style decoder for i386 instructions
3 *
4 * Copyright (c) 2022 Red Hat, Inc.
5 *
6 * Author: Paolo Bonzini <pbonzini@redhat.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 /*
23 * The decoder is mostly based on tables copied from the Intel SDM. As
24 * a result, most operand load and writeback is done entirely in common
25 * table-driven code using the same operand type (X86_TYPE_*) and
26 * size (X86_SIZE_*) codes used in the manual.
27 *
28 * The main difference is that the V, U and W types are extended to
29 * cover MMX as well; if an instruction is like
30 *
31 * por Pq, Qq
32 * 66 por Vx, Hx, Wx
33 *
34 * only the second row is included and the instruction is marked as a
35 * valid MMX instruction. The MMX flag directs the decoder to rewrite
36 * the V/U/H/W types to P/N/P/Q if there is no prefix, as well as changing
37 * "x" to "q" if there is no prefix.
38 *
39 * In addition, the ss/ps/sd/pd types are sometimes mushed together as "x"
40 * if the difference is expressed via prefixes. Individual instructions
41 * are separated by prefix in the generator functions.
42 *
43 * There are a couple cases in which instructions (e.g. MOVD) write the
44 * whole XMM or MM register but are established incorrectly in the manual
45 * as "d" or "q". These have to be fixed for the decoder to work correctly.
46 */
47
48 #define X86_OP_NONE { 0 },
49
50 #define X86_OP_GROUP3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \
51 .decode = glue(decode_, op), \
52 .op0 = glue(X86_TYPE_, op0_), \
53 .s0 = glue(X86_SIZE_, s0_), \
54 .op1 = glue(X86_TYPE_, op1_), \
55 .s1 = glue(X86_SIZE_, s1_), \
56 .op2 = glue(X86_TYPE_, op2_), \
57 .s2 = glue(X86_SIZE_, s2_), \
58 .is_decode = true, \
59 ## __VA_ARGS__ \
60 }
61
62 #define X86_OP_GROUP2(op, op0, s0, op1, s1, ...) \
63 X86_OP_GROUP3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__)
64 #define X86_OP_GROUP0(op, ...) \
65 X86_OP_GROUP3(op, None, None, None, None, None, None, ## __VA_ARGS__)
66
67 #define X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \
68 .gen = glue(gen_, op), \
69 .op0 = glue(X86_TYPE_, op0_), \
70 .s0 = glue(X86_SIZE_, s0_), \
71 .op1 = glue(X86_TYPE_, op1_), \
72 .s1 = glue(X86_SIZE_, s1_), \
73 .op2 = glue(X86_TYPE_, op2_), \
74 .s2 = glue(X86_SIZE_, s2_), \
75 ## __VA_ARGS__ \
76 }
77
78 #define X86_OP_ENTRY4(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) \
79 X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, \
80 .op3 = X86_TYPE_I, .s3 = X86_SIZE_b, \
81 ## __VA_ARGS__)
82
83 #define X86_OP_ENTRY2(op, op0, s0, op1, s1, ...) \
84 X86_OP_ENTRY3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__)
85 #define X86_OP_ENTRYw(op, op0, s0, ...) \
86 X86_OP_ENTRY3(op, op0, s0, None, None, None, None, ## __VA_ARGS__)
87 #define X86_OP_ENTRYr(op, op0, s0, ...) \
88 X86_OP_ENTRY3(op, None, None, None, None, op0, s0, ## __VA_ARGS__)
89 #define X86_OP_ENTRY0(op, ...) \
90 X86_OP_ENTRY3(op, None, None, None, None, None, None, ## __VA_ARGS__)
91
92 #define cpuid(feat) .cpuid = X86_FEAT_##feat,
93 #define i64 .special = X86_SPECIAL_i64,
94 #define o64 .special = X86_SPECIAL_o64,
95 #define xchg .special = X86_SPECIAL_Locked,
96 #define mmx .special = X86_SPECIAL_MMX,
97 #define zext0 .special = X86_SPECIAL_ZExtOp0,
98 #define zext2 .special = X86_SPECIAL_ZExtOp2,
99 #define avx_movx .special = X86_SPECIAL_AVXExtMov,
100
101 #define vex1 .vex_class = 1,
102 #define vex1_rep3 .vex_class = 1, .vex_special = X86_VEX_REPScalar,
103 #define vex2 .vex_class = 2,
104 #define vex2_rep3 .vex_class = 2, .vex_special = X86_VEX_REPScalar,
105 #define vex3 .vex_class = 3,
106 #define vex4 .vex_class = 4,
107 #define vex4_unal .vex_class = 4, .vex_special = X86_VEX_SSEUnaligned,
108 #define vex5 .vex_class = 5,
109 #define vex6 .vex_class = 6,
110 #define vex7 .vex_class = 7,
111 #define vex8 .vex_class = 8,
112 #define vex11 .vex_class = 11,
113 #define vex12 .vex_class = 12,
114 #define vex13 .vex_class = 13,
115
116 #define avx2_256 .vex_special = X86_VEX_AVX2_256,
117
118 #define P_00 1
119 #define P_66 (1 << PREFIX_DATA)
120 #define P_F3 (1 << PREFIX_REPZ)
121 #define P_F2 (1 << PREFIX_REPNZ)
122
123 #define p_00 .valid_prefix = P_00,
124 #define p_66 .valid_prefix = P_66,
125 #define p_f3 .valid_prefix = P_F3,
126 #define p_f2 .valid_prefix = P_F2,
127 #define p_00_66 .valid_prefix = P_00 | P_66,
128 #define p_00_f3 .valid_prefix = P_00 | P_F3,
129 #define p_66_f2 .valid_prefix = P_66 | P_F2,
130 #define p_00_66_f3 .valid_prefix = P_00 | P_66 | P_F3,
131 #define p_66_f3_f2 .valid_prefix = P_66 | P_F3 | P_F2,
132 #define p_00_66_f3_f2 .valid_prefix = P_00 | P_66 | P_F3 | P_F2,
133
134 static uint8_t get_modrm(DisasContext *s, CPUX86State *env)
135 {
136 if (!s->has_modrm) {
137 s->modrm = x86_ldub_code(env, s);
138 s->has_modrm = true;
139 }
140 return s->modrm;
141 }
142
143 static inline const X86OpEntry *decode_by_prefix(DisasContext *s, const X86OpEntry entries[4])
144 {
145 if (s->prefix & PREFIX_REPNZ) {
146 return &entries[3];
147 } else if (s->prefix & PREFIX_REPZ) {
148 return &entries[2];
149 } else if (s->prefix & PREFIX_DATA) {
150 return &entries[1];
151 } else {
152 return &entries[0];
153 }
154 }
155
156 static void decode_group15(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
157 {
158 /* only includes ldmxcsr and stmxcsr, because they have AVX variants. */
159 static const X86OpEntry group15_reg[8] = {
160 };
161
162 static const X86OpEntry group15_mem[8] = {
163 [2] = X86_OP_ENTRYr(LDMXCSR, E,d, vex5),
164 [3] = X86_OP_ENTRYw(STMXCSR, E,d, vex5),
165 };
166
167 uint8_t modrm = get_modrm(s, env);
168 if ((modrm >> 6) == 3) {
169 *entry = group15_reg[(modrm >> 3) & 7];
170 } else {
171 *entry = group15_mem[(modrm >> 3) & 7];
172 }
173 }
174
175 static void decode_group17(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
176 {
177 static const X86GenFunc group17_gen[8] = {
178 NULL, gen_BLSR, gen_BLSMSK, gen_BLSI,
179 };
180 int op = (get_modrm(s, env) >> 3) & 7;
181 entry->gen = group17_gen[op];
182 }
183
184 static void decode_group12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
185 {
186 static const X86OpEntry opcodes_group12[8] = {
187 {},
188 {},
189 X86_OP_ENTRY3(PSRLW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
190 {},
191 X86_OP_ENTRY3(PSRAW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
192 {},
193 X86_OP_ENTRY3(PSLLW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
194 {},
195 };
196
197 int op = (get_modrm(s, env) >> 3) & 7;
198 *entry = opcodes_group12[op];
199 }
200
201 static void decode_group13(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
202 {
203 static const X86OpEntry opcodes_group13[8] = {
204 {},
205 {},
206 X86_OP_ENTRY3(PSRLD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
207 {},
208 X86_OP_ENTRY3(PSRAD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
209 {},
210 X86_OP_ENTRY3(PSLLD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
211 {},
212 };
213
214 int op = (get_modrm(s, env) >> 3) & 7;
215 *entry = opcodes_group13[op];
216 }
217
218 static void decode_group14(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
219 {
220 static const X86OpEntry opcodes_group14[8] = {
221 /* grp14 */
222 {},
223 {},
224 X86_OP_ENTRY3(PSRLQ_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
225 X86_OP_ENTRY3(PSRLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66),
226 {},
227 {},
228 X86_OP_ENTRY3(PSLLQ_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
229 X86_OP_ENTRY3(PSLLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66),
230 };
231
232 int op = (get_modrm(s, env) >> 3) & 7;
233 *entry = opcodes_group14[op];
234 }
235
236 static void decode_0F6F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
237 {
238 static const X86OpEntry opcodes_0F6F[4] = {
239 X86_OP_ENTRY3(MOVDQ, P,q, None,None, Q,q, vex1 mmx), /* movq */
240 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex1), /* movdqa */
241 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* movdqu */
242 {},
243 };
244 *entry = *decode_by_prefix(s, opcodes_0F6F);
245 }
246
247 static void decode_0F70(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
248 {
249 static const X86OpEntry pshufw[4] = {
250 X86_OP_ENTRY3(PSHUFW, P,q, Q,q, I,b, vex4 mmx),
251 X86_OP_ENTRY3(PSHUFD, V,x, W,x, I,b, vex4 avx2_256),
252 X86_OP_ENTRY3(PSHUFHW, V,x, W,x, I,b, vex4 avx2_256),
253 X86_OP_ENTRY3(PSHUFLW, V,x, W,x, I,b, vex4 avx2_256),
254 };
255
256 *entry = *decode_by_prefix(s, pshufw);
257 }
258
259 static void decode_0F77(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
260 {
261 if (!(s->prefix & PREFIX_VEX)) {
262 entry->gen = gen_EMMS;
263 } else if (!s->vex_l) {
264 entry->gen = gen_VZEROUPPER;
265 entry->vex_class = 8;
266 } else {
267 entry->gen = gen_VZEROALL;
268 entry->vex_class = 8;
269 }
270 }
271
272 static void decode_0F78(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
273 {
274 static const X86OpEntry opcodes_0F78[4] = {
275 {},
276 X86_OP_ENTRY3(EXTRQ_i, V,x, None,None, I,w, cpuid(SSE4A)),
277 {},
278 X86_OP_ENTRY3(INSERTQ_i, V,x, U,x, I,w, cpuid(SSE4A)),
279 };
280 *entry = *decode_by_prefix(s, opcodes_0F78);
281 }
282
283 static void decode_0F79(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
284 {
285 if (s->prefix & PREFIX_REPNZ) {
286 entry->gen = gen_INSERTQ_r;
287 } else if (s->prefix & PREFIX_DATA) {
288 entry->gen = gen_EXTRQ_r;
289 } else {
290 entry->gen = NULL;
291 };
292 }
293
294 static void decode_0F7E(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
295 {
296 static const X86OpEntry opcodes_0F7E[4] = {
297 X86_OP_ENTRY3(MOVD_from, E,y, None,None, P,y, vex5 mmx),
298 X86_OP_ENTRY3(MOVD_from, E,y, None,None, V,y, vex5),
299 X86_OP_ENTRY3(MOVQ, V,x, None,None, W,q, vex5), /* wrong dest Vy on SDM! */
300 {},
301 };
302 *entry = *decode_by_prefix(s, opcodes_0F7E);
303 }
304
305 static void decode_0F7F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
306 {
307 static const X86OpEntry opcodes_0F7F[4] = {
308 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 mmx), /* movq */
309 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1), /* movdqa */
310 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4_unal), /* movdqu */
311 {},
312 };
313 *entry = *decode_by_prefix(s, opcodes_0F7F);
314 }
315
316 static void decode_0FD6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
317 {
318 static const X86OpEntry movq[4] = {
319 {},
320 X86_OP_ENTRY3(MOVQ, W,x, None, None, V,q, vex5),
321 X86_OP_ENTRY3(MOVq_dq, V,dq, None, None, N,q),
322 X86_OP_ENTRY3(MOVq_dq, P,q, None, None, U,q),
323 };
324
325 *entry = *decode_by_prefix(s, movq);
326 }
327
328 static const X86OpEntry opcodes_0F38_00toEF[240] = {
329 [0x00] = X86_OP_ENTRY3(PSHUFB, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
330 [0x01] = X86_OP_ENTRY3(PHADDW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
331 [0x02] = X86_OP_ENTRY3(PHADDD, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
332 [0x03] = X86_OP_ENTRY3(PHADDSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
333 [0x04] = X86_OP_ENTRY3(PMADDUBSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
334 [0x05] = X86_OP_ENTRY3(PHSUBW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
335 [0x06] = X86_OP_ENTRY3(PHSUBD, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
336 [0x07] = X86_OP_ENTRY3(PHSUBSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
337
338 [0x10] = X86_OP_ENTRY2(PBLENDVB, V,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
339 [0x14] = X86_OP_ENTRY2(BLENDVPS, V,x, W,x, vex4 cpuid(SSE41) p_66),
340 [0x15] = X86_OP_ENTRY2(BLENDVPD, V,x, W,x, vex4 cpuid(SSE41) p_66),
341 /* Listed incorrectly as type 4 */
342 [0x16] = X86_OP_ENTRY3(VPERMD, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66),
343 [0x17] = X86_OP_ENTRY3(VPTEST, None,None, V,x, W,x, vex4 cpuid(SSE41) p_66),
344
345 /*
346 * Source operand listed as Mq/Ux and similar in the manual; incorrectly listed
347 * as 128-bit only in 2-17.
348 */
349 [0x20] = X86_OP_ENTRY3(VPMOVSXBW, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
350 [0x21] = X86_OP_ENTRY3(VPMOVSXBD, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
351 [0x22] = X86_OP_ENTRY3(VPMOVSXBQ, V,x, None,None, W,w, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
352 [0x23] = X86_OP_ENTRY3(VPMOVSXWD, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
353 [0x24] = X86_OP_ENTRY3(VPMOVSXWQ, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
354 [0x25] = X86_OP_ENTRY3(VPMOVSXDQ, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
355
356 /* Same as PMOVSX. */
357 [0x30] = X86_OP_ENTRY3(VPMOVZXBW, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
358 [0x31] = X86_OP_ENTRY3(VPMOVZXBD, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
359 [0x32] = X86_OP_ENTRY3(VPMOVZXBQ, V,x, None,None, W,w, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
360 [0x33] = X86_OP_ENTRY3(VPMOVZXWD, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
361 [0x34] = X86_OP_ENTRY3(VPMOVZXWQ, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
362 [0x35] = X86_OP_ENTRY3(VPMOVZXDQ, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
363 [0x36] = X86_OP_ENTRY3(VPERMD, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66),
364 [0x37] = X86_OP_ENTRY3(PCMPGTQ, V,x, H,x, W,x, vex4 cpuid(SSE42) avx2_256 p_66),
365
366 [0x40] = X86_OP_ENTRY3(PMULLD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
367 [0x41] = X86_OP_ENTRY3(VPHMINPOSUW, V,dq, None,None, W,dq, vex4 cpuid(SSE41) p_66),
368 /* Listed incorrectly as type 4 */
369 [0x45] = X86_OP_ENTRY3(VPSRLV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66),
370 [0x46] = X86_OP_ENTRY3(VPSRAV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66),
371 [0x47] = X86_OP_ENTRY3(VPSLLV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66),
372
373 [0x90] = X86_OP_ENTRY3(VPGATHERD, V,x, H,x, M,d, vex12 cpuid(AVX2) p_66), /* vpgatherdd/q */
374 [0x91] = X86_OP_ENTRY3(VPGATHERQ, V,x, H,x, M,q, vex12 cpuid(AVX2) p_66), /* vpgatherqd/q */
375 [0x92] = X86_OP_ENTRY3(VPGATHERD, V,x, H,x, M,d, vex12 cpuid(AVX2) p_66), /* vgatherdps/d */
376 [0x93] = X86_OP_ENTRY3(VPGATHERQ, V,x, H,x, M,q, vex12 cpuid(AVX2) p_66), /* vgatherqps/d */
377
378 [0x08] = X86_OP_ENTRY3(PSIGNB, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
379 [0x09] = X86_OP_ENTRY3(PSIGNW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
380 [0x0a] = X86_OP_ENTRY3(PSIGND, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
381 [0x0b] = X86_OP_ENTRY3(PMULHRSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
382 [0x0c] = X86_OP_ENTRY3(VPERMILPS, V,x, H,x, W,x, vex4 cpuid(AVX) p_00_66),
383 [0x0d] = X86_OP_ENTRY3(VPERMILPD, V,x, H,x, W,x, vex4 cpuid(AVX) p_66),
384 [0x0e] = X86_OP_ENTRY3(VTESTPS, None,None, V,x, W,x, vex4 cpuid(AVX) p_66),
385 [0x0f] = X86_OP_ENTRY3(VTESTPD, None,None, V,x, W,x, vex4 cpuid(AVX) p_66),
386
387 [0x18] = X86_OP_ENTRY3(VPBROADCASTD, V,x, None,None, W,d, vex6 cpuid(AVX) p_66), /* vbroadcastss */
388 [0x19] = X86_OP_ENTRY3(VPBROADCASTQ, V,qq, None,None, W,q, vex6 cpuid(AVX) p_66), /* vbroadcastsd */
389 [0x1a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 cpuid(AVX) p_66),
390 [0x1c] = X86_OP_ENTRY3(PABSB, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
391 [0x1d] = X86_OP_ENTRY3(PABSW, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
392 [0x1e] = X86_OP_ENTRY3(PABSD, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
393
394 [0x28] = X86_OP_ENTRY3(PMULDQ, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
395 [0x29] = X86_OP_ENTRY3(PCMPEQQ, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
396 [0x2a] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, WM,x, vex1 cpuid(SSE41) avx2_256 p_66), /* movntdqa */
397 [0x2b] = X86_OP_ENTRY3(VPACKUSDW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
398 [0x2c] = X86_OP_ENTRY3(VMASKMOVPS, V,x, H,x, WM,x, vex6 cpuid(AVX) p_66),
399 [0x2d] = X86_OP_ENTRY3(VMASKMOVPD, V,x, H,x, WM,x, vex6 cpuid(AVX) p_66),
400 /* Incorrectly listed as Mx,Hx,Vx in the manual */
401 [0x2e] = X86_OP_ENTRY3(VMASKMOVPS_st, M,x, V,x, H,x, vex6 cpuid(AVX) p_66),
402 [0x2f] = X86_OP_ENTRY3(VMASKMOVPD_st, M,x, V,x, H,x, vex6 cpuid(AVX) p_66),
403
404 [0x38] = X86_OP_ENTRY3(PMINSB, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
405 [0x39] = X86_OP_ENTRY3(PMINSD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
406 [0x3a] = X86_OP_ENTRY3(PMINUW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
407 [0x3b] = X86_OP_ENTRY3(PMINUD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
408 [0x3c] = X86_OP_ENTRY3(PMAXSB, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
409 [0x3d] = X86_OP_ENTRY3(PMAXSD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
410 [0x3e] = X86_OP_ENTRY3(PMAXUW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
411 [0x3f] = X86_OP_ENTRY3(PMAXUD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
412
413 [0x58] = X86_OP_ENTRY3(VPBROADCASTD, V,x, None,None, W,d, vex6 cpuid(AVX2) p_66),
414 [0x59] = X86_OP_ENTRY3(VPBROADCASTQ, V,x, None,None, W,q, vex6 cpuid(AVX2) p_66),
415 [0x5a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 cpuid(AVX2) p_66),
416
417 [0x78] = X86_OP_ENTRY3(VPBROADCASTB, V,x, None,None, W,b, vex6 cpuid(AVX2) p_66),
418 [0x79] = X86_OP_ENTRY3(VPBROADCASTW, V,x, None,None, W,w, vex6 cpuid(AVX2) p_66),
419
420 [0x8c] = X86_OP_ENTRY3(VPMASKMOV, V,x, H,x, WM,x, vex6 cpuid(AVX2) p_66),
421 [0x8e] = X86_OP_ENTRY3(VPMASKMOV_st, M,x, V,x, H,x, vex6 cpuid(AVX2) p_66),
422
423 [0xdb] = X86_OP_ENTRY3(VAESIMC, V,dq, None,None, W,dq, vex4 cpuid(AES) p_66),
424 [0xdc] = X86_OP_ENTRY3(VAESENC, V,x, H,x, W,x, vex4 cpuid(AES) p_66),
425 [0xdd] = X86_OP_ENTRY3(VAESENCLAST, V,x, H,x, W,x, vex4 cpuid(AES) p_66),
426 [0xde] = X86_OP_ENTRY3(VAESDEC, V,x, H,x, W,x, vex4 cpuid(AES) p_66),
427 [0xdf] = X86_OP_ENTRY3(VAESDECLAST, V,x, H,x, W,x, vex4 cpuid(AES) p_66),
428 };
429
430 /* five rows for no prefix, 66, F3, F2, 66+F2 */
431 static const X86OpEntry opcodes_0F38_F0toFF[16][5] = {
432 [0] = {
433 X86_OP_ENTRY3(MOVBE, G,y, M,y, None,None, cpuid(MOVBE)),
434 X86_OP_ENTRY3(MOVBE, G,w, M,w, None,None, cpuid(MOVBE)),
435 {},
436 X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)),
437 X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)),
438 },
439 [1] = {
440 X86_OP_ENTRY3(MOVBE, M,y, G,y, None,None, cpuid(MOVBE)),
441 X86_OP_ENTRY3(MOVBE, M,w, G,w, None,None, cpuid(MOVBE)),
442 {},
443 X86_OP_ENTRY2(CRC32, G,d, E,y, cpuid(SSE42)),
444 X86_OP_ENTRY2(CRC32, G,d, E,w, cpuid(SSE42)),
445 },
446 [2] = {
447 X86_OP_ENTRY3(ANDN, G,y, B,y, E,y, vex13 cpuid(BMI1)),
448 {},
449 {},
450 {},
451 {},
452 },
453 [3] = {
454 X86_OP_GROUP3(group17, B,y, E,y, None,None, vex13 cpuid(BMI1)),
455 {},
456 {},
457 {},
458 {},
459 },
460 [5] = {
461 X86_OP_ENTRY3(BZHI, G,y, E,y, B,y, vex13 cpuid(BMI1)),
462 {},
463 X86_OP_ENTRY3(PEXT, G,y, B,y, E,y, vex13 cpuid(BMI2)),
464 X86_OP_ENTRY3(PDEP, G,y, B,y, E,y, vex13 cpuid(BMI2)),
465 {},
466 },
467 [6] = {
468 {},
469 X86_OP_ENTRY2(ADCX, G,y, E,y, cpuid(ADX)),
470 X86_OP_ENTRY2(ADOX, G,y, E,y, cpuid(ADX)),
471 X86_OP_ENTRY3(MULX, /* B,y, */ G,y, E,y, 2,y, vex13 cpuid(BMI2)),
472 {},
473 },
474 [7] = {
475 X86_OP_ENTRY3(BEXTR, G,y, E,y, B,y, vex13 cpuid(BMI1)),
476 X86_OP_ENTRY3(SHLX, G,y, E,y, B,y, vex13 cpuid(BMI1)),
477 X86_OP_ENTRY3(SARX, G,y, E,y, B,y, vex13 cpuid(BMI1)),
478 X86_OP_ENTRY3(SHRX, G,y, E,y, B,y, vex13 cpuid(BMI1)),
479 {},
480 },
481 };
482
483 static void decode_0F38(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
484 {
485 *b = x86_ldub_code(env, s);
486 if (*b < 0xf0) {
487 *entry = opcodes_0F38_00toEF[*b];
488 } else {
489 int row = 0;
490 if (s->prefix & PREFIX_REPZ) {
491 /* The REPZ (F3) prefix has priority over 66 */
492 row = 2;
493 } else {
494 row += s->prefix & PREFIX_REPNZ ? 3 : 0;
495 row += s->prefix & PREFIX_DATA ? 1 : 0;
496 }
497 *entry = opcodes_0F38_F0toFF[*b & 15][row];
498 }
499 }
500
501 static void decode_VINSERTPS(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
502 {
503 static const X86OpEntry
504 vinsertps_reg = X86_OP_ENTRY4(VINSERTPS_r, V,dq, H,dq, U,dq, vex5 cpuid(SSE41) p_66),
505 vinsertps_mem = X86_OP_ENTRY4(VINSERTPS_m, V,dq, H,dq, M,d, vex5 cpuid(SSE41) p_66);
506
507 int modrm = get_modrm(s, env);
508 *entry = (modrm >> 6) == 3 ? vinsertps_reg : vinsertps_mem;
509 }
510
511 static const X86OpEntry opcodes_0F3A[256] = {
512 /*
513 * These are VEX-only, but incorrectly listed in the manual as exception type 4.
514 * Also the "qq" instructions are sometimes omitted by Table 2-17, but are VEX256
515 * only.
516 */
517 [0x00] = X86_OP_ENTRY3(VPERMQ, V,qq, W,qq, I,b, vex6 cpuid(AVX2) p_66),
518 [0x01] = X86_OP_ENTRY3(VPERMQ, V,qq, W,qq, I,b, vex6 cpuid(AVX2) p_66), /* VPERMPD */
519 [0x02] = X86_OP_ENTRY4(VBLENDPS, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), /* VPBLENDD */
520 [0x04] = X86_OP_ENTRY3(VPERMILPS_i, V,x, W,x, I,b, vex6 cpuid(AVX) p_66),
521 [0x05] = X86_OP_ENTRY3(VPERMILPD_i, V,x, W,x, I,b, vex6 cpuid(AVX) p_66),
522 [0x06] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 cpuid(AVX) p_66),
523
524 [0x14] = X86_OP_ENTRY3(PEXTRB, E,b, V,dq, I,b, vex5 cpuid(SSE41) zext0 p_66),
525 [0x15] = X86_OP_ENTRY3(PEXTRW, E,w, V,dq, I,b, vex5 cpuid(SSE41) zext0 p_66),
526 [0x16] = X86_OP_ENTRY3(PEXTR, E,y, V,dq, I,b, vex5 cpuid(SSE41) p_66),
527 [0x17] = X86_OP_ENTRY3(VEXTRACTPS, E,d, V,dq, I,b, vex5 cpuid(SSE41) p_66),
528
529 [0x20] = X86_OP_ENTRY4(PINSRB, V,dq, H,dq, E,b, vex5 cpuid(SSE41) zext2 p_66),
530 [0x21] = X86_OP_GROUP0(VINSERTPS),
531 [0x22] = X86_OP_ENTRY4(PINSR, V,dq, H,dq, E,y, vex5 cpuid(SSE41) p_66),
532
533 [0x40] = X86_OP_ENTRY4(VDDPS, V,x, H,x, W,x, vex2 cpuid(SSE41) p_66),
534 [0x41] = X86_OP_ENTRY4(VDDPD, V,dq, H,dq, W,dq, vex2 cpuid(SSE41) p_66),
535 [0x42] = X86_OP_ENTRY4(VMPSADBW, V,x, H,x, W,x, vex2 cpuid(SSE41) avx2_256 p_66),
536 [0x44] = X86_OP_ENTRY4(PCLMULQDQ, V,dq, H,dq, W,dq, vex4 cpuid(PCLMULQDQ) p_66),
537 [0x46] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66),
538
539 [0x60] = X86_OP_ENTRY4(PCMPESTRM, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
540 [0x61] = X86_OP_ENTRY4(PCMPESTRI, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
541 [0x62] = X86_OP_ENTRY4(PCMPISTRM, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
542 [0x63] = X86_OP_ENTRY4(PCMPISTRI, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
543
544 [0x08] = X86_OP_ENTRY3(VROUNDPS, V,x, W,x, I,b, vex2 cpuid(SSE41) p_66),
545 [0x09] = X86_OP_ENTRY3(VROUNDPD, V,x, W,x, I,b, vex2 cpuid(SSE41) p_66),
546 /*
547 * Not listed as four operand in the manual. Also writes and reads 128-bits
548 * from the first two operands due to the V operand picking higher entries of
549 * the H operand; the "Vss,Hss,Wss" description from the manual is incorrect.
550 * For other unary operations such as VSQRTSx this is hidden by the "REPScalar"
551 * value of vex_special, because the table lists the operand types of VSQRTPx.
552 */
553 [0x0a] = X86_OP_ENTRY4(VROUNDSS, V,x, H,x, W,ss, vex3 cpuid(SSE41) p_66),
554 [0x0b] = X86_OP_ENTRY4(VROUNDSD, V,x, H,x, W,sd, vex3 cpuid(SSE41) p_66),
555 [0x0c] = X86_OP_ENTRY4(VBLENDPS, V,x, H,x, W,x, vex4 cpuid(SSE41) p_66),
556 [0x0d] = X86_OP_ENTRY4(VBLENDPD, V,x, H,x, W,x, vex4 cpuid(SSE41) p_66),
557 [0x0e] = X86_OP_ENTRY4(VPBLENDW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
558 [0x0f] = X86_OP_ENTRY4(PALIGNR, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
559
560 [0x18] = X86_OP_ENTRY4(VINSERTx128, V,qq, H,qq, W,qq, vex6 cpuid(AVX) p_66),
561 [0x19] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b, vex6 cpuid(AVX) p_66),
562
563 [0x38] = X86_OP_ENTRY4(VINSERTx128, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66),
564 [0x39] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b, vex6 cpuid(AVX2) p_66),
565
566 /* Listed incorrectly as type 4 */
567 [0x4a] = X86_OP_ENTRY4(VBLENDVPS, V,x, H,x, W,x, vex6 cpuid(AVX) p_66),
568 [0x4b] = X86_OP_ENTRY4(VBLENDVPD, V,x, H,x, W,x, vex6 cpuid(AVX) p_66),
569 [0x4c] = X86_OP_ENTRY4(VPBLENDVB, V,x, H,x, W,x, vex6 cpuid(AVX) p_66 avx2_256),
570
571 [0xdf] = X86_OP_ENTRY3(VAESKEYGEN, V,dq, W,dq, I,b, vex4 cpuid(AES) p_66),
572
573 [0xF0] = X86_OP_ENTRY3(RORX, G,y, E,y, I,b, vex13 cpuid(BMI2) p_f2),
574 };
575
576 static void decode_0F3A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
577 {
578 *b = x86_ldub_code(env, s);
579 *entry = opcodes_0F3A[*b];
580 }
581
582 /*
583 * There are some mistakes in the operands in the manual, and the load/store/register
584 * cases are easiest to keep separate, so the entries for 10-17 follow simplicity and
585 * efficiency of implementation rather than copying what the manual says.
586 *
587 * In particular:
588 *
589 * 1) "VMOVSS m32, xmm1" and "VMOVSD m64, xmm1" do not support VEX.vvvv != 1111b,
590 * but this is not mentioned in the tables.
591 *
592 * 2) MOVHLPS, MOVHPS, MOVHPD, MOVLPD, MOVLPS read the high quadword of one of their
593 * operands, which must therefore be dq; MOVLPD and MOVLPS also write the high
594 * quadword of the V operand.
595 */
596 static void decode_0F10(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
597 {
598 static const X86OpEntry opcodes_0F10_reg[4] = {
599 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPS */
600 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPD */
601 X86_OP_ENTRY3(VMOVSS, V,x, H,x, W,x, vex4),
602 X86_OP_ENTRY3(VMOVLPx, V,x, H,x, W,x, vex4), /* MOVSD */
603 };
604
605 static const X86OpEntry opcodes_0F10_mem[4] = {
606 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPS */
607 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPD */
608 X86_OP_ENTRY3(VMOVSS_ld, V,x, H,x, M,ss, vex4),
609 X86_OP_ENTRY3(VMOVSD_ld, V,x, H,x, M,sd, vex4),
610 };
611
612 if ((get_modrm(s, env) >> 6) == 3) {
613 *entry = *decode_by_prefix(s, opcodes_0F10_reg);
614 } else {
615 *entry = *decode_by_prefix(s, opcodes_0F10_mem);
616 }
617 }
618
619 static void decode_0F11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
620 {
621 static const X86OpEntry opcodes_0F11_reg[4] = {
622 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVPS */
623 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVPD */
624 X86_OP_ENTRY3(VMOVSS, W,x, H,x, V,x, vex4),
625 X86_OP_ENTRY3(VMOVLPx, W,x, H,x, V,q, vex4), /* MOVSD */
626 };
627
628 static const X86OpEntry opcodes_0F11_mem[4] = {
629 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVPS */
630 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVPD */
631 X86_OP_ENTRY3(VMOVSS_st, M,ss, None,None, V,x, vex4),
632 X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex4), /* MOVSD */
633 };
634
635 if ((get_modrm(s, env) >> 6) == 3) {
636 *entry = *decode_by_prefix(s, opcodes_0F11_reg);
637 } else {
638 *entry = *decode_by_prefix(s, opcodes_0F11_mem);
639 }
640 }
641
642 static void decode_0F12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
643 {
644 static const X86OpEntry opcodes_0F12_mem[4] = {
645 /*
646 * Use dq for operand for compatibility with gen_MOVSD and
647 * to allow VEX128 only.
648 */
649 X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq, M,q, vex4), /* MOVLPS */
650 X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq, M,q, vex4), /* MOVLPD */
651 X86_OP_ENTRY3(VMOVSLDUP, V,x, None,None, W,x, vex4 cpuid(SSE3)),
652 X86_OP_ENTRY3(VMOVDDUP, V,x, None,None, WM,q, vex4 cpuid(SSE3)), /* qq if VEX.256 */
653 };
654 static const X86OpEntry opcodes_0F12_reg[4] = {
655 X86_OP_ENTRY3(VMOVHLPS, V,dq, H,dq, U,dq, vex4),
656 X86_OP_ENTRY3(VMOVLPx, W,x, H,x, U,q, vex4), /* MOVLPD */
657 X86_OP_ENTRY3(VMOVSLDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)),
658 X86_OP_ENTRY3(VMOVDDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)),
659 };
660
661 if ((get_modrm(s, env) >> 6) == 3) {
662 *entry = *decode_by_prefix(s, opcodes_0F12_reg);
663 } else {
664 *entry = *decode_by_prefix(s, opcodes_0F12_mem);
665 if ((s->prefix & PREFIX_REPNZ) && s->vex_l) {
666 entry->s2 = X86_SIZE_qq;
667 }
668 }
669 }
670
671 static void decode_0F16(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
672 {
673 static const X86OpEntry opcodes_0F16_mem[4] = {
674 /*
675 * Operand 1 technically only reads the low 64 bits, but uses dq so that
676 * it is easier to check for op0 == op1 in an endianness-neutral manner.
677 */
678 X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq, M,q, vex4), /* MOVHPS */
679 X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq, M,q, vex4), /* MOVHPD */
680 X86_OP_ENTRY3(VMOVSHDUP, V,x, None,None, W,x, vex4 cpuid(SSE3)),
681 {},
682 };
683 static const X86OpEntry opcodes_0F16_reg[4] = {
684 /* Same as above, operand 1 could be Hq if it wasn't for big-endian. */
685 X86_OP_ENTRY3(VMOVLHPS, V,dq, H,dq, U,q, vex4),
686 X86_OP_ENTRY3(VMOVHPx, V,x, H,x, U,x, vex4), /* MOVHPD */
687 X86_OP_ENTRY3(VMOVSHDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)),
688 {},
689 };
690
691 if ((get_modrm(s, env) >> 6) == 3) {
692 *entry = *decode_by_prefix(s, opcodes_0F16_reg);
693 } else {
694 *entry = *decode_by_prefix(s, opcodes_0F16_mem);
695 }
696 }
697
698 static void decode_0F2A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
699 {
700 static const X86OpEntry opcodes_0F2A[4] = {
701 X86_OP_ENTRY3(CVTPI2Px, V,x, None,None, Q,q),
702 X86_OP_ENTRY3(CVTPI2Px, V,x, None,None, Q,q),
703 X86_OP_ENTRY3(VCVTSI2Sx, V,x, H,x, E,y, vex3),
704 X86_OP_ENTRY3(VCVTSI2Sx, V,x, H,x, E,y, vex3),
705 };
706 *entry = *decode_by_prefix(s, opcodes_0F2A);
707 }
708
709 static void decode_0F2B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
710 {
711 static const X86OpEntry opcodes_0F2B[4] = {
712 X86_OP_ENTRY3(MOVDQ, M,x, None,None, V,x, vex4), /* MOVNTPS */
713 X86_OP_ENTRY3(MOVDQ, M,x, None,None, V,x, vex4), /* MOVNTPD */
714 X86_OP_ENTRY3(VMOVSS_st, M,ss, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSS */
715 X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSD */
716 };
717
718 *entry = *decode_by_prefix(s, opcodes_0F2B);
719 }
720
721 static void decode_0F2C(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
722 {
723 static const X86OpEntry opcodes_0F2C[4] = {
724 /* Listed as ps/pd in the manual, but CVTTPS2PI only reads 64-bit. */
725 X86_OP_ENTRY3(CVTTPx2PI, P,q, None,None, W,q),
726 X86_OP_ENTRY3(CVTTPx2PI, P,q, None,None, W,dq),
727 X86_OP_ENTRY3(VCVTTSx2SI, G,y, None,None, W,ss, vex3),
728 X86_OP_ENTRY3(VCVTTSx2SI, G,y, None,None, W,sd, vex3),
729 };
730 *entry = *decode_by_prefix(s, opcodes_0F2C);
731 }
732
733 static void decode_0F2D(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
734 {
735 static const X86OpEntry opcodes_0F2D[4] = {
736 /* Listed as ps/pd in the manual, but CVTPS2PI only reads 64-bit. */
737 X86_OP_ENTRY3(CVTPx2PI, P,q, None,None, W,q),
738 X86_OP_ENTRY3(CVTPx2PI, P,q, None,None, W,dq),
739 X86_OP_ENTRY3(VCVTSx2SI, G,y, None,None, W,ss, vex3),
740 X86_OP_ENTRY3(VCVTSx2SI, G,y, None,None, W,sd, vex3),
741 };
742 *entry = *decode_by_prefix(s, opcodes_0F2D);
743 }
744
745 static void decode_sse_unary(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
746 {
747 if (!(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ))) {
748 entry->op1 = X86_TYPE_None;
749 entry->s1 = X86_SIZE_None;
750 }
751 switch (*b) {
752 case 0x51: entry->gen = gen_VSQRT; break;
753 case 0x52: entry->gen = gen_VRSQRT; break;
754 case 0x53: entry->gen = gen_VRCP; break;
755 case 0x5A: entry->gen = gen_VCVTfp2fp; break;
756 }
757 }
758
759 static void decode_0F5B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
760 {
761 static const X86OpEntry opcodes_0F5B[4] = {
762 X86_OP_ENTRY2(VCVTDQ2PS, V,x, W,x, vex2),
763 X86_OP_ENTRY2(VCVTPS2DQ, V,x, W,x, vex2),
764 X86_OP_ENTRY2(VCVTTPS2DQ, V,x, W,x, vex2),
765 {},
766 };
767 *entry = *decode_by_prefix(s, opcodes_0F5B);
768 }
769
770 static void decode_0FE6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
771 {
772 static const X86OpEntry opcodes_0FE6[4] = {
773 {},
774 X86_OP_ENTRY2(VCVTTPD2DQ, V,x, W,x, vex2),
775 X86_OP_ENTRY2(VCVTDQ2PD, V,x, W,x, vex2),
776 X86_OP_ENTRY2(VCVTPD2DQ, V,x, W,x, vex2),
777 };
778 *entry = *decode_by_prefix(s, opcodes_0FE6);
779 }
780
781 static const X86OpEntry opcodes_0F[256] = {
782 [0x0E] = X86_OP_ENTRY0(EMMS, cpuid(3DNOW)), /* femms */
783 /*
784 * 3DNow!'s opcode byte comes *after* modrm and displacements, making it
785 * more like an Ib operand. Dispatch to the right helper in a single gen_*
786 * function.
787 */
788 [0x0F] = X86_OP_ENTRY3(3dnow, P,q, Q,q, I,b, cpuid(3DNOW)),
789
790 [0x10] = X86_OP_GROUP0(0F10),
791 [0x11] = X86_OP_GROUP0(0F11),
792 [0x12] = X86_OP_GROUP0(0F12),
793 [0x13] = X86_OP_ENTRY3(VMOVLPx_st, M,q, None,None, V,q, vex4 p_00_66),
794 [0x14] = X86_OP_ENTRY3(VUNPCKLPx, V,x, H,x, W,x, vex4 p_00_66),
795 [0x15] = X86_OP_ENTRY3(VUNPCKHPx, V,x, H,x, W,x, vex4 p_00_66),
796 [0x16] = X86_OP_GROUP0(0F16),
797 /* Incorrectly listed as Mq,Vq in the manual */
798 [0x17] = X86_OP_ENTRY3(VMOVHPx_st, M,q, None,None, V,dq, vex4 p_00_66),
799
800 [0x50] = X86_OP_ENTRY3(MOVMSK, G,y, None,None, U,x, vex7 p_00_66),
801 [0x51] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
802 [0x52] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex5 p_00_f3),
803 [0x53] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex5 p_00_f3),
804 [0x54] = X86_OP_ENTRY3(PAND, V,x, H,x, W,x, vex4 p_00_66), /* vand */
805 [0x55] = X86_OP_ENTRY3(PANDN, V,x, H,x, W,x, vex4 p_00_66), /* vandn */
806 [0x56] = X86_OP_ENTRY3(POR, V,x, H,x, W,x, vex4 p_00_66), /* vor */
807 [0x57] = X86_OP_ENTRY3(PXOR, V,x, H,x, W,x, vex4 p_00_66), /* vxor */
808
809 [0x60] = X86_OP_ENTRY3(PUNPCKLBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
810 [0x61] = X86_OP_ENTRY3(PUNPCKLWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
811 [0x62] = X86_OP_ENTRY3(PUNPCKLDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
812 [0x63] = X86_OP_ENTRY3(PACKSSWB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
813 [0x64] = X86_OP_ENTRY3(PCMPGTB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
814 [0x65] = X86_OP_ENTRY3(PCMPGTW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
815 [0x66] = X86_OP_ENTRY3(PCMPGTD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
816 [0x67] = X86_OP_ENTRY3(PACKUSWB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
817
818 [0x70] = X86_OP_GROUP0(0F70),
819 [0x71] = X86_OP_GROUP0(group12),
820 [0x72] = X86_OP_GROUP0(group13),
821 [0x73] = X86_OP_GROUP0(group14),
822 [0x74] = X86_OP_ENTRY3(PCMPEQB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
823 [0x75] = X86_OP_ENTRY3(PCMPEQW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
824 [0x76] = X86_OP_ENTRY3(PCMPEQD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
825 [0x77] = X86_OP_GROUP0(0F77),
826
827 [0x28] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex1 p_00_66), /* MOVAPS */
828 [0x29] = X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 p_00_66), /* MOVAPS */
829 [0x2A] = X86_OP_GROUP0(0F2A),
830 [0x2B] = X86_OP_GROUP0(0F2B),
831 [0x2C] = X86_OP_GROUP0(0F2C),
832 [0x2D] = X86_OP_GROUP0(0F2D),
833 [0x2E] = X86_OP_ENTRY3(VUCOMI, None,None, V,x, W,x, vex4 p_00_66),
834 [0x2F] = X86_OP_ENTRY3(VCOMI, None,None, V,x, W,x, vex4 p_00_66),
835
836 [0x38] = X86_OP_GROUP0(0F38),
837 [0x3a] = X86_OP_GROUP0(0F3A),
838
839 [0x58] = X86_OP_ENTRY3(VADD, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
840 [0x59] = X86_OP_ENTRY3(VMUL, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
841 [0x5a] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex3 p_00_66_f3_f2),
842 [0x5b] = X86_OP_GROUP0(0F5B),
843 [0x5c] = X86_OP_ENTRY3(VSUB, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
844 [0x5d] = X86_OP_ENTRY3(VMIN, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
845 [0x5e] = X86_OP_ENTRY3(VDIV, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
846 [0x5f] = X86_OP_ENTRY3(VMAX, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
847
848 [0x68] = X86_OP_ENTRY3(PUNPCKHBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
849 [0x69] = X86_OP_ENTRY3(PUNPCKHWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
850 [0x6a] = X86_OP_ENTRY3(PUNPCKHDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
851 [0x6b] = X86_OP_ENTRY3(PACKSSDW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
852 [0x6c] = X86_OP_ENTRY3(PUNPCKLQDQ, V,x, H,x, W,x, vex4 p_66 avx2_256),
853 [0x6d] = X86_OP_ENTRY3(PUNPCKHQDQ, V,x, H,x, W,x, vex4 p_66 avx2_256),
854 [0x6e] = X86_OP_ENTRY3(MOVD_to, V,x, None,None, E,y, vex5 mmx p_00_66), /* wrong dest Vy on SDM! */
855 [0x6f] = X86_OP_GROUP0(0F6F),
856
857 [0x78] = X86_OP_GROUP0(0F78),
858 [0x79] = X86_OP_GROUP2(0F79, V,x, U,x, cpuid(SSE4A)),
859 [0x7c] = X86_OP_ENTRY3(VHADD, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2),
860 [0x7d] = X86_OP_ENTRY3(VHSUB, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2),
861 [0x7e] = X86_OP_GROUP0(0F7E),
862 [0x7f] = X86_OP_GROUP0(0F7F),
863
864 [0xae] = X86_OP_GROUP0(group15),
865
866 [0xc2] = X86_OP_ENTRY4(VCMP, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
867 [0xc4] = X86_OP_ENTRY4(PINSRW, V,dq,H,dq,E,w, vex5 mmx p_00_66),
868 [0xc5] = X86_OP_ENTRY3(PEXTRW, G,d, U,dq,I,b, vex5 mmx p_00_66),
869 [0xc6] = X86_OP_ENTRY4(VSHUF, V,x, H,x, W,x, vex4 p_00_66),
870
871 [0xd0] = X86_OP_ENTRY3(VADDSUB, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2),
872 [0xd1] = X86_OP_ENTRY3(PSRLW_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
873 [0xd2] = X86_OP_ENTRY3(PSRLD_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
874 [0xd3] = X86_OP_ENTRY3(PSRLQ_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
875 [0xd4] = X86_OP_ENTRY3(PADDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
876 [0xd5] = X86_OP_ENTRY3(PMULLW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
877 [0xd6] = X86_OP_GROUP0(0FD6),
878 [0xd7] = X86_OP_ENTRY3(PMOVMSKB, G,d, None,None, U,x, vex7 mmx avx2_256 p_00_66),
879
880 [0xe0] = X86_OP_ENTRY3(PAVGB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
881 [0xe1] = X86_OP_ENTRY3(PSRAW_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66),
882 [0xe2] = X86_OP_ENTRY3(PSRAD_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66),
883 [0xe3] = X86_OP_ENTRY3(PAVGW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
884 [0xe4] = X86_OP_ENTRY3(PMULHUW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
885 [0xe5] = X86_OP_ENTRY3(PMULHW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
886 [0xe6] = X86_OP_GROUP0(0FE6),
887 [0xe7] = X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 mmx p_00_66), /* MOVNTQ/MOVNTDQ */
888
889 [0xf0] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, WM,x, vex4_unal cpuid(SSE3) p_f2), /* LDDQU */
890 [0xf1] = X86_OP_ENTRY3(PSLLW_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66),
891 [0xf2] = X86_OP_ENTRY3(PSLLD_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66),
892 [0xf3] = X86_OP_ENTRY3(PSLLQ_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66),
893 [0xf4] = X86_OP_ENTRY3(PMULUDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
894 [0xf5] = X86_OP_ENTRY3(PMADDWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
895 [0xf6] = X86_OP_ENTRY3(PSADBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
896 [0xf7] = X86_OP_ENTRY3(MASKMOV, None,None, V,dq, U,dq, vex4_unal avx2_256 mmx p_00_66),
897
898 /* Incorrectly missing from 2-17 */
899 [0xd8] = X86_OP_ENTRY3(PSUBUSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
900 [0xd9] = X86_OP_ENTRY3(PSUBUSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
901 [0xda] = X86_OP_ENTRY3(PMINUB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
902 [0xdb] = X86_OP_ENTRY3(PAND, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
903 [0xdc] = X86_OP_ENTRY3(PADDUSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
904 [0xdd] = X86_OP_ENTRY3(PADDUSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
905 [0xde] = X86_OP_ENTRY3(PMAXUB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
906 [0xdf] = X86_OP_ENTRY3(PANDN, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
907
908 [0xe8] = X86_OP_ENTRY3(PSUBSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
909 [0xe9] = X86_OP_ENTRY3(PSUBSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
910 [0xea] = X86_OP_ENTRY3(PMINSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
911 [0xeb] = X86_OP_ENTRY3(POR, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
912 [0xec] = X86_OP_ENTRY3(PADDSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
913 [0xed] = X86_OP_ENTRY3(PADDSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
914 [0xee] = X86_OP_ENTRY3(PMAXSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
915 [0xef] = X86_OP_ENTRY3(PXOR, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
916
917 [0xf8] = X86_OP_ENTRY3(PSUBB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
918 [0xf9] = X86_OP_ENTRY3(PSUBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
919 [0xfa] = X86_OP_ENTRY3(PSUBD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
920 [0xfb] = X86_OP_ENTRY3(PSUBQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
921 [0xfc] = X86_OP_ENTRY3(PADDB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
922 [0xfd] = X86_OP_ENTRY3(PADDW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
923 [0xfe] = X86_OP_ENTRY3(PADDD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
924 /* 0xff = UD0 */
925 };
926
927 static void do_decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
928 {
929 *entry = opcodes_0F[*b];
930 }
931
932 static void decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
933 {
934 *b = x86_ldub_code(env, s);
935 do_decode_0F(s, env, entry, b);
936 }
937
938 static const X86OpEntry opcodes_root[256] = {
939 [0x0F] = X86_OP_GROUP0(0F),
940 };
941
942 #undef mmx
943 #undef vex1
944 #undef vex2
945 #undef vex3
946 #undef vex4
947 #undef vex4_unal
948 #undef vex5
949 #undef vex6
950 #undef vex7
951 #undef vex8
952 #undef vex11
953 #undef vex12
954 #undef vex13
955
956 /*
957 * Decode the fixed part of the opcode and place the last
958 * in b.
959 */
960 static void decode_root(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
961 {
962 *entry = opcodes_root[*b];
963 }
964
965
966 static int decode_modrm(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
967 X86DecodedOp *op, X86OpType type)
968 {
969 int modrm = get_modrm(s, env);
970 if ((modrm >> 6) == 3) {
971 if (s->prefix & PREFIX_LOCK) {
972 decode->e.gen = gen_illegal;
973 return 0xff;
974 }
975 op->n = (modrm & 7);
976 if (type != X86_TYPE_Q && type != X86_TYPE_N) {
977 op->n |= REX_B(s);
978 }
979 } else {
980 op->has_ea = true;
981 op->n = -1;
982 decode->mem = gen_lea_modrm_0(env, s, get_modrm(s, env));
983 }
984 return modrm;
985 }
986
987 static bool decode_op_size(DisasContext *s, X86OpEntry *e, X86OpSize size, MemOp *ot)
988 {
989 switch (size) {
990 case X86_SIZE_b: /* byte */
991 *ot = MO_8;
992 return true;
993
994 case X86_SIZE_d: /* 32-bit */
995 case X86_SIZE_ss: /* SSE/AVX scalar single precision */
996 *ot = MO_32;
997 return true;
998
999 case X86_SIZE_p: /* Far pointer, return offset size */
1000 case X86_SIZE_s: /* Descriptor, return offset size */
1001 case X86_SIZE_v: /* 16/32/64-bit, based on operand size */
1002 *ot = s->dflag;
1003 return true;
1004
1005 case X86_SIZE_pi: /* MMX */
1006 case X86_SIZE_q: /* 64-bit */
1007 case X86_SIZE_sd: /* SSE/AVX scalar double precision */
1008 *ot = MO_64;
1009 return true;
1010
1011 case X86_SIZE_w: /* 16-bit */
1012 *ot = MO_16;
1013 return true;
1014
1015 case X86_SIZE_y: /* 32/64-bit, based on operand size */
1016 *ot = s->dflag == MO_16 ? MO_32 : s->dflag;
1017 return true;
1018
1019 case X86_SIZE_z: /* 16-bit for 16-bit operand size, else 32-bit */
1020 *ot = s->dflag == MO_16 ? MO_16 : MO_32;
1021 return true;
1022
1023 case X86_SIZE_dq: /* SSE/AVX 128-bit */
1024 if (e->special == X86_SPECIAL_MMX &&
1025 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1026 *ot = MO_64;
1027 return true;
1028 }
1029 if (s->vex_l && e->s0 != X86_SIZE_qq && e->s1 != X86_SIZE_qq) {
1030 return false;
1031 }
1032 *ot = MO_128;
1033 return true;
1034
1035 case X86_SIZE_qq: /* AVX 256-bit */
1036 if (!s->vex_l) {
1037 return false;
1038 }
1039 *ot = MO_256;
1040 return true;
1041
1042 case X86_SIZE_x: /* 128/256-bit, based on operand size */
1043 if (e->special == X86_SPECIAL_MMX &&
1044 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1045 *ot = MO_64;
1046 return true;
1047 }
1048 /* fall through */
1049 case X86_SIZE_ps: /* SSE/AVX packed single precision */
1050 case X86_SIZE_pd: /* SSE/AVX packed double precision */
1051 *ot = s->vex_l ? MO_256 : MO_128;
1052 return true;
1053
1054 case X86_SIZE_d64: /* Default to 64-bit in 64-bit mode */
1055 *ot = CODE64(s) && s->dflag == MO_32 ? MO_64 : s->dflag;
1056 return true;
1057
1058 case X86_SIZE_f64: /* Ignore size override prefix in 64-bit mode */
1059 *ot = CODE64(s) ? MO_64 : s->dflag;
1060 return true;
1061
1062 default:
1063 *ot = -1;
1064 return true;
1065 }
1066 }
1067
1068 static bool decode_op(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
1069 X86DecodedOp *op, X86OpType type, int b)
1070 {
1071 int modrm;
1072
1073 switch (type) {
1074 case X86_TYPE_None: /* Implicit or absent */
1075 case X86_TYPE_A: /* Implicit */
1076 case X86_TYPE_F: /* EFLAGS/RFLAGS */
1077 break;
1078
1079 case X86_TYPE_B: /* VEX.vvvv selects a GPR */
1080 op->unit = X86_OP_INT;
1081 op->n = s->vex_v;
1082 break;
1083
1084 case X86_TYPE_C: /* REG in the modrm byte selects a control register */
1085 op->unit = X86_OP_CR;
1086 goto get_reg;
1087
1088 case X86_TYPE_D: /* REG in the modrm byte selects a debug register */
1089 op->unit = X86_OP_DR;
1090 goto get_reg;
1091
1092 case X86_TYPE_G: /* REG in the modrm byte selects a GPR */
1093 op->unit = X86_OP_INT;
1094 goto get_reg;
1095
1096 case X86_TYPE_S: /* reg selects a segment register */
1097 op->unit = X86_OP_SEG;
1098 goto get_reg;
1099
1100 case X86_TYPE_P:
1101 op->unit = X86_OP_MMX;
1102 goto get_reg;
1103
1104 case X86_TYPE_V: /* reg in the modrm byte selects an XMM/YMM register */
1105 if (decode->e.special == X86_SPECIAL_MMX &&
1106 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1107 op->unit = X86_OP_MMX;
1108 } else {
1109 op->unit = X86_OP_SSE;
1110 }
1111 get_reg:
1112 op->n = ((get_modrm(s, env) >> 3) & 7) | REX_R(s);
1113 break;
1114
1115 case X86_TYPE_E: /* ALU modrm operand */
1116 op->unit = X86_OP_INT;
1117 goto get_modrm;
1118
1119 case X86_TYPE_Q: /* MMX modrm operand */
1120 op->unit = X86_OP_MMX;
1121 goto get_modrm;
1122
1123 case X86_TYPE_W: /* XMM/YMM modrm operand */
1124 if (decode->e.special == X86_SPECIAL_MMX &&
1125 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1126 op->unit = X86_OP_MMX;
1127 } else {
1128 op->unit = X86_OP_SSE;
1129 }
1130 goto get_modrm;
1131
1132 case X86_TYPE_N: /* R/M in the modrm byte selects an MMX register */
1133 op->unit = X86_OP_MMX;
1134 goto get_modrm_reg;
1135
1136 case X86_TYPE_U: /* R/M in the modrm byte selects an XMM/YMM register */
1137 if (decode->e.special == X86_SPECIAL_MMX &&
1138 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1139 op->unit = X86_OP_MMX;
1140 } else {
1141 op->unit = X86_OP_SSE;
1142 }
1143 goto get_modrm_reg;
1144
1145 case X86_TYPE_R: /* R/M in the modrm byte selects a register */
1146 op->unit = X86_OP_INT;
1147 get_modrm_reg:
1148 modrm = get_modrm(s, env);
1149 if ((modrm >> 6) != 3) {
1150 return false;
1151 }
1152 goto get_modrm;
1153
1154 case X86_TYPE_WM: /* modrm byte selects an XMM/YMM memory operand */
1155 op->unit = X86_OP_SSE;
1156 /* fall through */
1157 case X86_TYPE_M: /* modrm byte selects a memory operand */
1158 modrm = get_modrm(s, env);
1159 if ((modrm >> 6) == 3) {
1160 return false;
1161 }
1162 get_modrm:
1163 decode_modrm(s, env, decode, op, type);
1164 break;
1165
1166 case X86_TYPE_O: /* Absolute address encoded in the instruction */
1167 op->unit = X86_OP_INT;
1168 op->has_ea = true;
1169 op->n = -1;
1170 decode->mem = (AddressParts) {
1171 .def_seg = R_DS,
1172 .base = -1,
1173 .index = -1,
1174 .disp = insn_get_addr(env, s, s->aflag)
1175 };
1176 break;
1177
1178 case X86_TYPE_H: /* For AVX, VEX.vvvv selects an XMM/YMM register */
1179 if ((s->prefix & PREFIX_VEX)) {
1180 op->unit = X86_OP_SSE;
1181 op->n = s->vex_v;
1182 break;
1183 }
1184 if (op == &decode->op[0]) {
1185 /* shifts place the destination in VEX.vvvv, use modrm */
1186 return decode_op(s, env, decode, op, decode->e.op1, b);
1187 } else {
1188 return decode_op(s, env, decode, op, decode->e.op0, b);
1189 }
1190
1191 case X86_TYPE_I: /* Immediate */
1192 op->unit = X86_OP_IMM;
1193 decode->immediate = insn_get_signed(env, s, op->ot);
1194 break;
1195
1196 case X86_TYPE_J: /* Relative offset for a jump */
1197 op->unit = X86_OP_IMM;
1198 decode->immediate = insn_get_signed(env, s, op->ot);
1199 decode->immediate += s->pc - s->cs_base;
1200 if (s->dflag == MO_16) {
1201 decode->immediate &= 0xffff;
1202 } else if (!CODE64(s)) {
1203 decode->immediate &= 0xffffffffu;
1204 }
1205 break;
1206
1207 case X86_TYPE_L: /* The upper 4 bits of the immediate select a 128-bit register */
1208 op->n = insn_get(env, s, op->ot) >> 4;
1209 break;
1210
1211 case X86_TYPE_X: /* string source */
1212 op->n = -1;
1213 decode->mem = (AddressParts) {
1214 .def_seg = R_DS,
1215 .base = R_ESI,
1216 .index = -1,
1217 };
1218 break;
1219
1220 case X86_TYPE_Y: /* string destination */
1221 op->n = -1;
1222 decode->mem = (AddressParts) {
1223 .def_seg = R_ES,
1224 .base = R_EDI,
1225 .index = -1,
1226 };
1227 break;
1228
1229 case X86_TYPE_2op:
1230 *op = decode->op[0];
1231 break;
1232
1233 case X86_TYPE_LoBits:
1234 op->n = (b & 7) | REX_B(s);
1235 op->unit = X86_OP_INT;
1236 break;
1237
1238 case X86_TYPE_0 ... X86_TYPE_7:
1239 op->n = type - X86_TYPE_0;
1240 op->unit = X86_OP_INT;
1241 break;
1242
1243 case X86_TYPE_ES ... X86_TYPE_GS:
1244 op->n = type - X86_TYPE_ES;
1245 op->unit = X86_OP_SEG;
1246 break;
1247 }
1248
1249 return true;
1250 }
1251
1252 static bool validate_sse_prefix(DisasContext *s, X86OpEntry *e)
1253 {
1254 uint16_t sse_prefixes;
1255
1256 if (!e->valid_prefix) {
1257 return true;
1258 }
1259 if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
1260 /* In SSE instructions, 0xF3 and 0xF2 cancel 0x66. */
1261 s->prefix &= ~PREFIX_DATA;
1262 }
1263
1264 /* Now, either zero or one bit is set in sse_prefixes. */
1265 sse_prefixes = s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA);
1266 return e->valid_prefix & (1 << sse_prefixes);
1267 }
1268
1269 static bool decode_insn(DisasContext *s, CPUX86State *env, X86DecodeFunc decode_func,
1270 X86DecodedInsn *decode)
1271 {
1272 X86OpEntry *e = &decode->e;
1273
1274 decode_func(s, env, e, &decode->b);
1275 while (e->is_decode) {
1276 e->is_decode = false;
1277 e->decode(s, env, e, &decode->b);
1278 }
1279
1280 if (!validate_sse_prefix(s, e)) {
1281 return false;
1282 }
1283
1284 /* First compute size of operands in order to initialize s->rip_offset. */
1285 if (e->op0 != X86_TYPE_None) {
1286 if (!decode_op_size(s, e, e->s0, &decode->op[0].ot)) {
1287 return false;
1288 }
1289 if (e->op0 == X86_TYPE_I) {
1290 s->rip_offset += 1 << decode->op[0].ot;
1291 }
1292 }
1293 if (e->op1 != X86_TYPE_None) {
1294 if (!decode_op_size(s, e, e->s1, &decode->op[1].ot)) {
1295 return false;
1296 }
1297 if (e->op1 == X86_TYPE_I) {
1298 s->rip_offset += 1 << decode->op[1].ot;
1299 }
1300 }
1301 if (e->op2 != X86_TYPE_None) {
1302 if (!decode_op_size(s, e, e->s2, &decode->op[2].ot)) {
1303 return false;
1304 }
1305 if (e->op2 == X86_TYPE_I) {
1306 s->rip_offset += 1 << decode->op[2].ot;
1307 }
1308 }
1309 if (e->op3 != X86_TYPE_None) {
1310 /*
1311 * A couple instructions actually use the extra immediate byte for an Lx
1312 * register operand; those are handled in the gen_* functions as one off.
1313 */
1314 assert(e->op3 == X86_TYPE_I && e->s3 == X86_SIZE_b);
1315 s->rip_offset += 1;
1316 }
1317
1318 if (e->op0 != X86_TYPE_None &&
1319 !decode_op(s, env, decode, &decode->op[0], e->op0, decode->b)) {
1320 return false;
1321 }
1322
1323 if (e->op1 != X86_TYPE_None &&
1324 !decode_op(s, env, decode, &decode->op[1], e->op1, decode->b)) {
1325 return false;
1326 }
1327
1328 if (e->op2 != X86_TYPE_None &&
1329 !decode_op(s, env, decode, &decode->op[2], e->op2, decode->b)) {
1330 return false;
1331 }
1332
1333 if (e->op3 != X86_TYPE_None) {
1334 decode->immediate = insn_get_signed(env, s, MO_8);
1335 }
1336
1337 return true;
1338 }
1339
1340 static bool has_cpuid_feature(DisasContext *s, X86CPUIDFeature cpuid)
1341 {
1342 switch (cpuid) {
1343 case X86_FEAT_None:
1344 return true;
1345 case X86_FEAT_MOVBE:
1346 return (s->cpuid_ext_features & CPUID_EXT_MOVBE);
1347 case X86_FEAT_PCLMULQDQ:
1348 return (s->cpuid_ext_features & CPUID_EXT_PCLMULQDQ);
1349 case X86_FEAT_SSE:
1350 return (s->cpuid_ext_features & CPUID_SSE);
1351 case X86_FEAT_SSE2:
1352 return (s->cpuid_ext_features & CPUID_SSE2);
1353 case X86_FEAT_SSE3:
1354 return (s->cpuid_ext_features & CPUID_EXT_SSE3);
1355 case X86_FEAT_SSSE3:
1356 return (s->cpuid_ext_features & CPUID_EXT_SSSE3);
1357 case X86_FEAT_SSE41:
1358 return (s->cpuid_ext_features & CPUID_EXT_SSE41);
1359 case X86_FEAT_SSE42:
1360 return (s->cpuid_ext_features & CPUID_EXT_SSE42);
1361 case X86_FEAT_AES:
1362 if (!(s->cpuid_ext_features & CPUID_EXT_AES)) {
1363 return false;
1364 } else if (!(s->prefix & PREFIX_VEX)) {
1365 return true;
1366 } else if (!(s->cpuid_ext_features & CPUID_EXT_AVX)) {
1367 return false;
1368 } else {
1369 return !s->vex_l || (s->cpuid_7_0_ecx_features & CPUID_7_0_ECX_VAES);
1370 }
1371
1372 case X86_FEAT_AVX:
1373 return (s->cpuid_ext_features & CPUID_EXT_AVX);
1374
1375 case X86_FEAT_3DNOW:
1376 return (s->cpuid_ext2_features & CPUID_EXT2_3DNOW);
1377 case X86_FEAT_SSE4A:
1378 return (s->cpuid_ext3_features & CPUID_EXT3_SSE4A);
1379
1380 case X86_FEAT_ADX:
1381 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_ADX);
1382 case X86_FEAT_BMI1:
1383 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1);
1384 case X86_FEAT_BMI2:
1385 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI2);
1386 case X86_FEAT_AVX2:
1387 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_AVX2);
1388 }
1389 g_assert_not_reached();
1390 }
1391
1392 static bool validate_vex(DisasContext *s, X86DecodedInsn *decode)
1393 {
1394 X86OpEntry *e = &decode->e;
1395
1396 switch (e->vex_special) {
1397 case X86_VEX_REPScalar:
1398 /*
1399 * Instructions which differ between 00/66 and F2/F3 in the
1400 * exception classification and the size of the memory operand.
1401 */
1402 assert(e->vex_class == 1 || e->vex_class == 2);
1403 if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
1404 e->vex_class = 3;
1405 if (s->vex_l) {
1406 goto illegal;
1407 }
1408 assert(decode->e.s2 == X86_SIZE_x);
1409 if (decode->op[2].has_ea) {
1410 decode->op[2].ot = s->prefix & PREFIX_REPZ ? MO_32 : MO_64;
1411 }
1412 }
1413 break;
1414
1415 case X86_VEX_SSEUnaligned:
1416 /* handled in sse_needs_alignment. */
1417 break;
1418
1419 case X86_VEX_AVX2_256:
1420 if ((s->prefix & PREFIX_VEX) && s->vex_l && !has_cpuid_feature(s, X86_FEAT_AVX2)) {
1421 goto illegal;
1422 }
1423 }
1424
1425 /* TODO: instructions that require VEX.W=0 (Table 2-16) */
1426
1427 switch (e->vex_class) {
1428 case 0:
1429 if (s->prefix & PREFIX_VEX) {
1430 goto illegal;
1431 }
1432 return true;
1433 case 1:
1434 case 2:
1435 case 3:
1436 case 4:
1437 case 5:
1438 case 7:
1439 if (s->prefix & PREFIX_VEX) {
1440 if (!(s->flags & HF_AVX_EN_MASK)) {
1441 goto illegal;
1442 }
1443 } else {
1444 if (!(s->flags & HF_OSFXSR_MASK)) {
1445 goto illegal;
1446 }
1447 }
1448 break;
1449 case 12:
1450 /* Must have a VSIB byte and no address prefix. */
1451 assert(s->has_modrm);
1452 if ((s->modrm & 7) != 4 || s->aflag == MO_16) {
1453 goto illegal;
1454 }
1455
1456 /* Check no overlap between registers. */
1457 if (!decode->op[0].has_ea &&
1458 (decode->op[0].n == decode->mem.index || decode->op[0].n == decode->op[1].n)) {
1459 goto illegal;
1460 }
1461 assert(!decode->op[1].has_ea);
1462 if (decode->op[1].n == decode->mem.index) {
1463 goto illegal;
1464 }
1465 if (!decode->op[2].has_ea &&
1466 (decode->op[2].n == decode->mem.index || decode->op[2].n == decode->op[1].n)) {
1467 goto illegal;
1468 }
1469 /* fall through */
1470 case 6:
1471 case 11:
1472 if (!(s->prefix & PREFIX_VEX)) {
1473 goto illegal;
1474 }
1475 if (!(s->flags & HF_AVX_EN_MASK)) {
1476 goto illegal;
1477 }
1478 break;
1479 case 8:
1480 /* Non-VEX case handled in decode_0F77. */
1481 assert(s->prefix & PREFIX_VEX);
1482 if (!(s->flags & HF_AVX_EN_MASK)) {
1483 goto illegal;
1484 }
1485 break;
1486 case 13:
1487 if (!(s->prefix & PREFIX_VEX)) {
1488 goto illegal;
1489 }
1490 if (s->vex_l) {
1491 goto illegal;
1492 }
1493 /* All integer instructions use VEX.vvvv, so exit. */
1494 return true;
1495 }
1496
1497 if (s->vex_v != 0 &&
1498 e->op0 != X86_TYPE_H && e->op0 != X86_TYPE_B &&
1499 e->op1 != X86_TYPE_H && e->op1 != X86_TYPE_B &&
1500 e->op2 != X86_TYPE_H && e->op2 != X86_TYPE_B) {
1501 goto illegal;
1502 }
1503
1504 if (s->flags & HF_TS_MASK) {
1505 goto nm_exception;
1506 }
1507 if (s->flags & HF_EM_MASK) {
1508 goto illegal;
1509 }
1510 return true;
1511
1512 nm_exception:
1513 gen_NM_exception(s);
1514 return false;
1515 illegal:
1516 gen_illegal_opcode(s);
1517 return false;
1518 }
1519
1520 static void decode_temp_free(X86DecodedOp *op)
1521 {
1522 if (op->v_ptr) {
1523 tcg_temp_free_ptr(op->v_ptr);
1524 }
1525 }
1526
1527 static void decode_temps_free(X86DecodedInsn *decode)
1528 {
1529 decode_temp_free(&decode->op[0]);
1530 decode_temp_free(&decode->op[1]);
1531 decode_temp_free(&decode->op[2]);
1532 }
1533
1534 /*
1535 * Convert one instruction. s->base.is_jmp is set if the translation must
1536 * be stopped.
1537 */
1538 static void disas_insn_new(DisasContext *s, CPUState *cpu, int b)
1539 {
1540 CPUX86State *env = cpu->env_ptr;
1541 bool first = true;
1542 X86DecodedInsn decode;
1543 X86DecodeFunc decode_func = decode_root;
1544
1545 s->has_modrm = false;
1546
1547 next_byte:
1548 if (first) {
1549 first = false;
1550 } else {
1551 b = x86_ldub_code(env, s);
1552 }
1553 /* Collect prefixes. */
1554 switch (b) {
1555 case 0xf3:
1556 s->prefix |= PREFIX_REPZ;
1557 s->prefix &= ~PREFIX_REPNZ;
1558 goto next_byte;
1559 case 0xf2:
1560 s->prefix |= PREFIX_REPNZ;
1561 s->prefix &= ~PREFIX_REPZ;
1562 goto next_byte;
1563 case 0xf0:
1564 s->prefix |= PREFIX_LOCK;
1565 goto next_byte;
1566 case 0x2e:
1567 s->override = R_CS;
1568 goto next_byte;
1569 case 0x36:
1570 s->override = R_SS;
1571 goto next_byte;
1572 case 0x3e:
1573 s->override = R_DS;
1574 goto next_byte;
1575 case 0x26:
1576 s->override = R_ES;
1577 goto next_byte;
1578 case 0x64:
1579 s->override = R_FS;
1580 goto next_byte;
1581 case 0x65:
1582 s->override = R_GS;
1583 goto next_byte;
1584 case 0x66:
1585 s->prefix |= PREFIX_DATA;
1586 goto next_byte;
1587 case 0x67:
1588 s->prefix |= PREFIX_ADR;
1589 goto next_byte;
1590 #ifdef TARGET_X86_64
1591 case 0x40 ... 0x4f:
1592 if (CODE64(s)) {
1593 /* REX prefix */
1594 s->prefix |= PREFIX_REX;
1595 s->vex_w = (b >> 3) & 1;
1596 s->rex_r = (b & 0x4) << 1;
1597 s->rex_x = (b & 0x2) << 2;
1598 s->rex_b = (b & 0x1) << 3;
1599 goto next_byte;
1600 }
1601 break;
1602 #endif
1603 case 0xc5: /* 2-byte VEX */
1604 case 0xc4: /* 3-byte VEX */
1605 /*
1606 * VEX prefixes cannot be used except in 32-bit mode.
1607 * Otherwise the instruction is LES or LDS.
1608 */
1609 if (CODE32(s) && !VM86(s)) {
1610 static const int pp_prefix[4] = {
1611 0, PREFIX_DATA, PREFIX_REPZ, PREFIX_REPNZ
1612 };
1613 int vex3, vex2 = x86_ldub_code(env, s);
1614
1615 if (!CODE64(s) && (vex2 & 0xc0) != 0xc0) {
1616 /*
1617 * 4.1.4.6: In 32-bit mode, bits [7:6] must be 11b,
1618 * otherwise the instruction is LES or LDS.
1619 */
1620 s->pc--; /* rewind the advance_pc() x86_ldub_code() did */
1621 break;
1622 }
1623
1624 /* 4.1.1-4.1.3: No preceding lock, 66, f2, f3, or rex prefixes. */
1625 if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ
1626 | PREFIX_LOCK | PREFIX_DATA | PREFIX_REX)) {
1627 goto illegal_op;
1628 }
1629 #ifdef TARGET_X86_64
1630 s->rex_r = (~vex2 >> 4) & 8;
1631 #endif
1632 if (b == 0xc5) {
1633 /* 2-byte VEX prefix: RVVVVlpp, implied 0f leading opcode byte */
1634 vex3 = vex2;
1635 decode_func = decode_0F;
1636 } else {
1637 /* 3-byte VEX prefix: RXBmmmmm wVVVVlpp */
1638 vex3 = x86_ldub_code(env, s);
1639 #ifdef TARGET_X86_64
1640 s->rex_x = (~vex2 >> 3) & 8;
1641 s->rex_b = (~vex2 >> 2) & 8;
1642 #endif
1643 s->vex_w = (vex3 >> 7) & 1;
1644 switch (vex2 & 0x1f) {
1645 case 0x01: /* Implied 0f leading opcode bytes. */
1646 decode_func = decode_0F;
1647 break;
1648 case 0x02: /* Implied 0f 38 leading opcode bytes. */
1649 decode_func = decode_0F38;
1650 break;
1651 case 0x03: /* Implied 0f 3a leading opcode bytes. */
1652 decode_func = decode_0F3A;
1653 break;
1654 default: /* Reserved for future use. */
1655 goto unknown_op;
1656 }
1657 }
1658 s->vex_v = (~vex3 >> 3) & 0xf;
1659 s->vex_l = (vex3 >> 2) & 1;
1660 s->prefix |= pp_prefix[vex3 & 3] | PREFIX_VEX;
1661 }
1662 break;
1663 default:
1664 if (b >= 0x100) {
1665 b -= 0x100;
1666 decode_func = do_decode_0F;
1667 }
1668 break;
1669 }
1670
1671 /* Post-process prefixes. */
1672 if (CODE64(s)) {
1673 /*
1674 * In 64-bit mode, the default data size is 32-bit. Select 64-bit
1675 * data with rex_w, and 16-bit data with 0x66; rex_w takes precedence
1676 * over 0x66 if both are present.
1677 */
1678 s->dflag = (REX_W(s) ? MO_64 : s->prefix & PREFIX_DATA ? MO_16 : MO_32);
1679 /* In 64-bit mode, 0x67 selects 32-bit addressing. */
1680 s->aflag = (s->prefix & PREFIX_ADR ? MO_32 : MO_64);
1681 } else {
1682 /* In 16/32-bit mode, 0x66 selects the opposite data size. */
1683 if (CODE32(s) ^ ((s->prefix & PREFIX_DATA) != 0)) {
1684 s->dflag = MO_32;
1685 } else {
1686 s->dflag = MO_16;
1687 }
1688 /* In 16/32-bit mode, 0x67 selects the opposite addressing. */
1689 if (CODE32(s) ^ ((s->prefix & PREFIX_ADR) != 0)) {
1690 s->aflag = MO_32;
1691 } else {
1692 s->aflag = MO_16;
1693 }
1694 }
1695
1696 memset(&decode, 0, sizeof(decode));
1697 decode.b = b;
1698 if (!decode_insn(s, env, decode_func, &decode)) {
1699 goto illegal_op;
1700 }
1701 if (!decode.e.gen) {
1702 goto unknown_op;
1703 }
1704
1705 if (!has_cpuid_feature(s, decode.e.cpuid)) {
1706 goto illegal_op;
1707 }
1708
1709 switch (decode.e.special) {
1710 case X86_SPECIAL_None:
1711 break;
1712
1713 case X86_SPECIAL_Locked:
1714 if (decode.op[0].has_ea) {
1715 s->prefix |= PREFIX_LOCK;
1716 }
1717 break;
1718
1719 case X86_SPECIAL_ProtMode:
1720 if (!PE(s) || VM86(s)) {
1721 goto illegal_op;
1722 }
1723 break;
1724
1725 case X86_SPECIAL_i64:
1726 if (CODE64(s)) {
1727 goto illegal_op;
1728 }
1729 break;
1730 case X86_SPECIAL_o64:
1731 if (!CODE64(s)) {
1732 goto illegal_op;
1733 }
1734 break;
1735
1736 case X86_SPECIAL_ZExtOp0:
1737 assert(decode.op[0].unit == X86_OP_INT);
1738 if (!decode.op[0].has_ea) {
1739 decode.op[0].ot = MO_32;
1740 }
1741 break;
1742
1743 case X86_SPECIAL_ZExtOp2:
1744 assert(decode.op[2].unit == X86_OP_INT);
1745 if (!decode.op[2].has_ea) {
1746 decode.op[2].ot = MO_32;
1747 }
1748 break;
1749
1750 case X86_SPECIAL_AVXExtMov:
1751 if (!decode.op[2].has_ea) {
1752 decode.op[2].ot = s->vex_l ? MO_256 : MO_128;
1753 } else if (s->vex_l) {
1754 decode.op[2].ot++;
1755 }
1756 break;
1757
1758 case X86_SPECIAL_MMX:
1759 if (!(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) {
1760 gen_helper_enter_mmx(cpu_env);
1761 }
1762 break;
1763 }
1764
1765 if (!validate_vex(s, &decode)) {
1766 return;
1767 }
1768 if (decode.op[0].has_ea || decode.op[1].has_ea || decode.op[2].has_ea) {
1769 gen_load_ea(s, &decode.mem, decode.e.vex_class == 12);
1770 }
1771 if (s->prefix & PREFIX_LOCK) {
1772 if (decode.op[0].unit != X86_OP_INT || !decode.op[0].has_ea) {
1773 goto illegal_op;
1774 }
1775 gen_load(s, &decode, 2, s->T1);
1776 decode.e.gen(s, env, &decode);
1777 } else {
1778 if (decode.op[0].unit == X86_OP_MMX) {
1779 compute_mmx_offset(&decode.op[0]);
1780 } else if (decode.op[0].unit == X86_OP_SSE) {
1781 compute_xmm_offset(&decode.op[0]);
1782 }
1783 gen_load(s, &decode, 1, s->T0);
1784 gen_load(s, &decode, 2, s->T1);
1785 decode.e.gen(s, env, &decode);
1786 gen_writeback(s, &decode, 0, s->T0);
1787 }
1788 decode_temps_free(&decode);
1789 return;
1790 illegal_op:
1791 gen_illegal_opcode(s);
1792 return;
1793 unknown_op:
1794 gen_unknown_opcode(env, s);
1795 }