]> git.proxmox.com Git - mirror_qemu.git/blob - target/i386/tcg/decode-new.c.inc
Merge tag 'audio-pull-request' of https://gitlab.com/marcandre.lureau/qemu into staging
[mirror_qemu.git] / target / i386 / tcg / decode-new.c.inc
1 /*
2 * New-style decoder for i386 instructions
3 *
4 * Copyright (c) 2022 Red Hat, Inc.
5 *
6 * Author: Paolo Bonzini <pbonzini@redhat.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 /*
23 * The decoder is mostly based on tables copied from the Intel SDM. As
24 * a result, most operand load and writeback is done entirely in common
25 * table-driven code using the same operand type (X86_TYPE_*) and
26 * size (X86_SIZE_*) codes used in the manual.
27 *
28 * The main difference is that the V, U and W types are extended to
29 * cover MMX as well; if an instruction is like
30 *
31 * por Pq, Qq
32 * 66 por Vx, Hx, Wx
33 *
34 * only the second row is included and the instruction is marked as a
35 * valid MMX instruction. The MMX flag directs the decoder to rewrite
36 * the V/U/H/W types to P/N/P/Q if there is no prefix, as well as changing
37 * "x" to "q" if there is no prefix.
38 *
39 * In addition, the ss/ps/sd/pd types are sometimes mushed together as "x"
40 * if the difference is expressed via prefixes. Individual instructions
41 * are separated by prefix in the generator functions.
42 *
43 * There are a couple cases in which instructions (e.g. MOVD) write the
44 * whole XMM or MM register but are established incorrectly in the manual
45 * as "d" or "q". These have to be fixed for the decoder to work correctly.
46 */
47
48 #define X86_OP_NONE { 0 },
49
50 #define X86_OP_GROUP3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \
51 .decode = glue(decode_, op), \
52 .op0 = glue(X86_TYPE_, op0_), \
53 .s0 = glue(X86_SIZE_, s0_), \
54 .op1 = glue(X86_TYPE_, op1_), \
55 .s1 = glue(X86_SIZE_, s1_), \
56 .op2 = glue(X86_TYPE_, op2_), \
57 .s2 = glue(X86_SIZE_, s2_), \
58 .is_decode = true, \
59 ## __VA_ARGS__ \
60 }
61
62 #define X86_OP_GROUP2(op, op0, s0, op1, s1, ...) \
63 X86_OP_GROUP3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__)
64 #define X86_OP_GROUP0(op, ...) \
65 X86_OP_GROUP3(op, None, None, None, None, None, None, ## __VA_ARGS__)
66
67 #define X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \
68 .gen = glue(gen_, op), \
69 .op0 = glue(X86_TYPE_, op0_), \
70 .s0 = glue(X86_SIZE_, s0_), \
71 .op1 = glue(X86_TYPE_, op1_), \
72 .s1 = glue(X86_SIZE_, s1_), \
73 .op2 = glue(X86_TYPE_, op2_), \
74 .s2 = glue(X86_SIZE_, s2_), \
75 ## __VA_ARGS__ \
76 }
77
78 #define X86_OP_ENTRY4(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) \
79 X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, \
80 .op3 = X86_TYPE_I, .s3 = X86_SIZE_b, \
81 ## __VA_ARGS__)
82
83 #define X86_OP_ENTRY2(op, op0, s0, op1, s1, ...) \
84 X86_OP_ENTRY3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__)
85 #define X86_OP_ENTRYw(op, op0, s0, ...) \
86 X86_OP_ENTRY3(op, op0, s0, None, None, None, None, ## __VA_ARGS__)
87 #define X86_OP_ENTRYr(op, op0, s0, ...) \
88 X86_OP_ENTRY3(op, None, None, None, None, op0, s0, ## __VA_ARGS__)
89 #define X86_OP_ENTRY0(op, ...) \
90 X86_OP_ENTRY3(op, None, None, None, None, None, None, ## __VA_ARGS__)
91
92 #define cpuid(feat) .cpuid = X86_FEAT_##feat,
93 #define i64 .special = X86_SPECIAL_i64,
94 #define o64 .special = X86_SPECIAL_o64,
95 #define xchg .special = X86_SPECIAL_Locked,
96 #define mmx .special = X86_SPECIAL_MMX,
97 #define zext0 .special = X86_SPECIAL_ZExtOp0,
98 #define zext2 .special = X86_SPECIAL_ZExtOp2,
99 #define avx_movx .special = X86_SPECIAL_AVXExtMov,
100
101 #define vex1 .vex_class = 1,
102 #define vex1_rep3 .vex_class = 1, .vex_special = X86_VEX_REPScalar,
103 #define vex2 .vex_class = 2,
104 #define vex2_rep3 .vex_class = 2, .vex_special = X86_VEX_REPScalar,
105 #define vex3 .vex_class = 3,
106 #define vex4 .vex_class = 4,
107 #define vex4_unal .vex_class = 4, .vex_special = X86_VEX_SSEUnaligned,
108 #define vex4_rep5 .vex_class = 4, .vex_special = X86_VEX_REPScalar,
109 #define vex5 .vex_class = 5,
110 #define vex6 .vex_class = 6,
111 #define vex7 .vex_class = 7,
112 #define vex8 .vex_class = 8,
113 #define vex11 .vex_class = 11,
114 #define vex12 .vex_class = 12,
115 #define vex13 .vex_class = 13,
116
117 #define avx2_256 .vex_special = X86_VEX_AVX2_256,
118
119 #define P_00 1
120 #define P_66 (1 << PREFIX_DATA)
121 #define P_F3 (1 << PREFIX_REPZ)
122 #define P_F2 (1 << PREFIX_REPNZ)
123
124 #define p_00 .valid_prefix = P_00,
125 #define p_66 .valid_prefix = P_66,
126 #define p_f3 .valid_prefix = P_F3,
127 #define p_f2 .valid_prefix = P_F2,
128 #define p_00_66 .valid_prefix = P_00 | P_66,
129 #define p_00_f3 .valid_prefix = P_00 | P_F3,
130 #define p_66_f2 .valid_prefix = P_66 | P_F2,
131 #define p_00_66_f3 .valid_prefix = P_00 | P_66 | P_F3,
132 #define p_66_f3_f2 .valid_prefix = P_66 | P_F3 | P_F2,
133 #define p_00_66_f3_f2 .valid_prefix = P_00 | P_66 | P_F3 | P_F2,
134
135 static uint8_t get_modrm(DisasContext *s, CPUX86State *env)
136 {
137 if (!s->has_modrm) {
138 s->modrm = x86_ldub_code(env, s);
139 s->has_modrm = true;
140 }
141 return s->modrm;
142 }
143
144 static inline const X86OpEntry *decode_by_prefix(DisasContext *s, const X86OpEntry entries[4])
145 {
146 if (s->prefix & PREFIX_REPNZ) {
147 return &entries[3];
148 } else if (s->prefix & PREFIX_REPZ) {
149 return &entries[2];
150 } else if (s->prefix & PREFIX_DATA) {
151 return &entries[1];
152 } else {
153 return &entries[0];
154 }
155 }
156
157 static void decode_group15(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
158 {
159 /* only includes ldmxcsr and stmxcsr, because they have AVX variants. */
160 static const X86OpEntry group15_reg[8] = {
161 };
162
163 static const X86OpEntry group15_mem[8] = {
164 [2] = X86_OP_ENTRYr(LDMXCSR, E,d, vex5),
165 [3] = X86_OP_ENTRYw(STMXCSR, E,d, vex5),
166 };
167
168 uint8_t modrm = get_modrm(s, env);
169 if ((modrm >> 6) == 3) {
170 *entry = group15_reg[(modrm >> 3) & 7];
171 } else {
172 *entry = group15_mem[(modrm >> 3) & 7];
173 }
174 }
175
176 static void decode_group17(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
177 {
178 static const X86GenFunc group17_gen[8] = {
179 NULL, gen_BLSR, gen_BLSMSK, gen_BLSI,
180 };
181 int op = (get_modrm(s, env) >> 3) & 7;
182 entry->gen = group17_gen[op];
183 }
184
185 static void decode_group12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
186 {
187 static const X86OpEntry opcodes_group12[8] = {
188 {},
189 {},
190 X86_OP_ENTRY3(PSRLW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
191 {},
192 X86_OP_ENTRY3(PSRAW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
193 {},
194 X86_OP_ENTRY3(PSLLW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
195 {},
196 };
197
198 int op = (get_modrm(s, env) >> 3) & 7;
199 *entry = opcodes_group12[op];
200 }
201
202 static void decode_group13(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
203 {
204 static const X86OpEntry opcodes_group13[8] = {
205 {},
206 {},
207 X86_OP_ENTRY3(PSRLD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
208 {},
209 X86_OP_ENTRY3(PSRAD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
210 {},
211 X86_OP_ENTRY3(PSLLD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
212 {},
213 };
214
215 int op = (get_modrm(s, env) >> 3) & 7;
216 *entry = opcodes_group13[op];
217 }
218
219 static void decode_group14(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
220 {
221 static const X86OpEntry opcodes_group14[8] = {
222 /* grp14 */
223 {},
224 {},
225 X86_OP_ENTRY3(PSRLQ_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
226 X86_OP_ENTRY3(PSRLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66),
227 {},
228 {},
229 X86_OP_ENTRY3(PSLLQ_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
230 X86_OP_ENTRY3(PSLLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66),
231 };
232
233 int op = (get_modrm(s, env) >> 3) & 7;
234 *entry = opcodes_group14[op];
235 }
236
237 static void decode_0F6F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
238 {
239 static const X86OpEntry opcodes_0F6F[4] = {
240 X86_OP_ENTRY3(MOVDQ, P,q, None,None, Q,q, vex1 mmx), /* movq */
241 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex1), /* movdqa */
242 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* movdqu */
243 {},
244 };
245 *entry = *decode_by_prefix(s, opcodes_0F6F);
246 }
247
248 static void decode_0F70(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
249 {
250 static const X86OpEntry pshufw[4] = {
251 X86_OP_ENTRY3(PSHUFW, P,q, Q,q, I,b, vex4 mmx),
252 X86_OP_ENTRY3(PSHUFD, V,x, W,x, I,b, vex4 avx2_256),
253 X86_OP_ENTRY3(PSHUFHW, V,x, W,x, I,b, vex4 avx2_256),
254 X86_OP_ENTRY3(PSHUFLW, V,x, W,x, I,b, vex4 avx2_256),
255 };
256
257 *entry = *decode_by_prefix(s, pshufw);
258 }
259
260 static void decode_0F77(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
261 {
262 if (!(s->prefix & PREFIX_VEX)) {
263 entry->gen = gen_EMMS;
264 } else if (!s->vex_l) {
265 entry->gen = gen_VZEROUPPER;
266 entry->vex_class = 8;
267 } else {
268 entry->gen = gen_VZEROALL;
269 entry->vex_class = 8;
270 }
271 }
272
273 static void decode_0F78(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
274 {
275 static const X86OpEntry opcodes_0F78[4] = {
276 {},
277 X86_OP_ENTRY3(EXTRQ_i, V,x, None,None, I,w, cpuid(SSE4A)),
278 {},
279 X86_OP_ENTRY3(INSERTQ_i, V,x, U,x, I,w, cpuid(SSE4A)),
280 };
281 *entry = *decode_by_prefix(s, opcodes_0F78);
282 }
283
284 static void decode_0F79(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
285 {
286 if (s->prefix & PREFIX_REPNZ) {
287 entry->gen = gen_INSERTQ_r;
288 } else if (s->prefix & PREFIX_DATA) {
289 entry->gen = gen_EXTRQ_r;
290 } else {
291 entry->gen = NULL;
292 };
293 }
294
295 static void decode_0F7E(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
296 {
297 static const X86OpEntry opcodes_0F7E[4] = {
298 X86_OP_ENTRY3(MOVD_from, E,y, None,None, P,y, vex5 mmx),
299 X86_OP_ENTRY3(MOVD_from, E,y, None,None, V,y, vex5),
300 X86_OP_ENTRY3(MOVQ, V,x, None,None, W,q, vex5), /* wrong dest Vy on SDM! */
301 {},
302 };
303 *entry = *decode_by_prefix(s, opcodes_0F7E);
304 }
305
306 static void decode_0F7F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
307 {
308 static const X86OpEntry opcodes_0F7F[4] = {
309 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 mmx), /* movq */
310 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1), /* movdqa */
311 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4_unal), /* movdqu */
312 {},
313 };
314 *entry = *decode_by_prefix(s, opcodes_0F7F);
315 }
316
317 static void decode_0FD6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
318 {
319 static const X86OpEntry movq[4] = {
320 {},
321 X86_OP_ENTRY3(MOVQ, W,x, None, None, V,q, vex5),
322 X86_OP_ENTRY3(MOVq_dq, V,dq, None, None, N,q),
323 X86_OP_ENTRY3(MOVq_dq, P,q, None, None, U,q),
324 };
325
326 *entry = *decode_by_prefix(s, movq);
327 }
328
329 static const X86OpEntry opcodes_0F38_00toEF[240] = {
330 [0x00] = X86_OP_ENTRY3(PSHUFB, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
331 [0x01] = X86_OP_ENTRY3(PHADDW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
332 [0x02] = X86_OP_ENTRY3(PHADDD, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
333 [0x03] = X86_OP_ENTRY3(PHADDSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
334 [0x04] = X86_OP_ENTRY3(PMADDUBSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
335 [0x05] = X86_OP_ENTRY3(PHSUBW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
336 [0x06] = X86_OP_ENTRY3(PHSUBD, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
337 [0x07] = X86_OP_ENTRY3(PHSUBSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
338
339 [0x10] = X86_OP_ENTRY2(PBLENDVB, V,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
340 [0x13] = X86_OP_ENTRY2(VCVTPH2PS, V,x, W,ph, vex11 cpuid(F16C) p_66),
341 [0x14] = X86_OP_ENTRY2(BLENDVPS, V,x, W,x, vex4 cpuid(SSE41) p_66),
342 [0x15] = X86_OP_ENTRY2(BLENDVPD, V,x, W,x, vex4 cpuid(SSE41) p_66),
343 /* Listed incorrectly as type 4 */
344 [0x16] = X86_OP_ENTRY3(VPERMD, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66),
345 [0x17] = X86_OP_ENTRY3(VPTEST, None,None, V,x, W,x, vex4 cpuid(SSE41) p_66),
346
347 /*
348 * Source operand listed as Mq/Ux and similar in the manual; incorrectly listed
349 * as 128-bit only in 2-17.
350 */
351 [0x20] = X86_OP_ENTRY3(VPMOVSXBW, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
352 [0x21] = X86_OP_ENTRY3(VPMOVSXBD, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
353 [0x22] = X86_OP_ENTRY3(VPMOVSXBQ, V,x, None,None, W,w, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
354 [0x23] = X86_OP_ENTRY3(VPMOVSXWD, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
355 [0x24] = X86_OP_ENTRY3(VPMOVSXWQ, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
356 [0x25] = X86_OP_ENTRY3(VPMOVSXDQ, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
357
358 /* Same as PMOVSX. */
359 [0x30] = X86_OP_ENTRY3(VPMOVZXBW, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
360 [0x31] = X86_OP_ENTRY3(VPMOVZXBD, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
361 [0x32] = X86_OP_ENTRY3(VPMOVZXBQ, V,x, None,None, W,w, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
362 [0x33] = X86_OP_ENTRY3(VPMOVZXWD, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
363 [0x34] = X86_OP_ENTRY3(VPMOVZXWQ, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
364 [0x35] = X86_OP_ENTRY3(VPMOVZXDQ, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
365 [0x36] = X86_OP_ENTRY3(VPERMD, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66),
366 [0x37] = X86_OP_ENTRY3(PCMPGTQ, V,x, H,x, W,x, vex4 cpuid(SSE42) avx2_256 p_66),
367
368 [0x40] = X86_OP_ENTRY3(PMULLD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
369 [0x41] = X86_OP_ENTRY3(VPHMINPOSUW, V,dq, None,None, W,dq, vex4 cpuid(SSE41) p_66),
370 /* Listed incorrectly as type 4 */
371 [0x45] = X86_OP_ENTRY3(VPSRLV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66),
372 [0x46] = X86_OP_ENTRY3(VPSRAV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66),
373 [0x47] = X86_OP_ENTRY3(VPSLLV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66),
374
375 [0x90] = X86_OP_ENTRY3(VPGATHERD, V,x, H,x, M,d, vex12 cpuid(AVX2) p_66), /* vpgatherdd/q */
376 [0x91] = X86_OP_ENTRY3(VPGATHERQ, V,x, H,x, M,q, vex12 cpuid(AVX2) p_66), /* vpgatherqd/q */
377 [0x92] = X86_OP_ENTRY3(VPGATHERD, V,x, H,x, M,d, vex12 cpuid(AVX2) p_66), /* vgatherdps/d */
378 [0x93] = X86_OP_ENTRY3(VPGATHERQ, V,x, H,x, M,q, vex12 cpuid(AVX2) p_66), /* vgatherqps/d */
379
380 /* Should be exception type 2 but they do not have legacy SSE equivalents? */
381 [0x96] = X86_OP_ENTRY3(VFMADDSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
382 [0x97] = X86_OP_ENTRY3(VFMSUBADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
383
384 [0xa6] = X86_OP_ENTRY3(VFMADDSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
385 [0xa7] = X86_OP_ENTRY3(VFMSUBADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
386
387 [0xb6] = X86_OP_ENTRY3(VFMADDSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
388 [0xb7] = X86_OP_ENTRY3(VFMSUBADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
389
390 [0x08] = X86_OP_ENTRY3(PSIGNB, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
391 [0x09] = X86_OP_ENTRY3(PSIGNW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
392 [0x0a] = X86_OP_ENTRY3(PSIGND, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
393 [0x0b] = X86_OP_ENTRY3(PMULHRSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
394 [0x0c] = X86_OP_ENTRY3(VPERMILPS, V,x, H,x, W,x, vex4 cpuid(AVX) p_00_66),
395 [0x0d] = X86_OP_ENTRY3(VPERMILPD, V,x, H,x, W,x, vex4 cpuid(AVX) p_66),
396 [0x0e] = X86_OP_ENTRY3(VTESTPS, None,None, V,x, W,x, vex4 cpuid(AVX) p_66),
397 [0x0f] = X86_OP_ENTRY3(VTESTPD, None,None, V,x, W,x, vex4 cpuid(AVX) p_66),
398
399 [0x18] = X86_OP_ENTRY3(VPBROADCASTD, V,x, None,None, W,d, vex6 cpuid(AVX) p_66), /* vbroadcastss */
400 [0x19] = X86_OP_ENTRY3(VPBROADCASTQ, V,qq, None,None, W,q, vex6 cpuid(AVX) p_66), /* vbroadcastsd */
401 [0x1a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 cpuid(AVX) p_66),
402 [0x1c] = X86_OP_ENTRY3(PABSB, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
403 [0x1d] = X86_OP_ENTRY3(PABSW, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
404 [0x1e] = X86_OP_ENTRY3(PABSD, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
405
406 [0x28] = X86_OP_ENTRY3(PMULDQ, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
407 [0x29] = X86_OP_ENTRY3(PCMPEQQ, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
408 [0x2a] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, WM,x, vex1 cpuid(SSE41) avx2_256 p_66), /* movntdqa */
409 [0x2b] = X86_OP_ENTRY3(VPACKUSDW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
410 [0x2c] = X86_OP_ENTRY3(VMASKMOVPS, V,x, H,x, WM,x, vex6 cpuid(AVX) p_66),
411 [0x2d] = X86_OP_ENTRY3(VMASKMOVPD, V,x, H,x, WM,x, vex6 cpuid(AVX) p_66),
412 /* Incorrectly listed as Mx,Hx,Vx in the manual */
413 [0x2e] = X86_OP_ENTRY3(VMASKMOVPS_st, M,x, V,x, H,x, vex6 cpuid(AVX) p_66),
414 [0x2f] = X86_OP_ENTRY3(VMASKMOVPD_st, M,x, V,x, H,x, vex6 cpuid(AVX) p_66),
415
416 [0x38] = X86_OP_ENTRY3(PMINSB, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
417 [0x39] = X86_OP_ENTRY3(PMINSD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
418 [0x3a] = X86_OP_ENTRY3(PMINUW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
419 [0x3b] = X86_OP_ENTRY3(PMINUD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
420 [0x3c] = X86_OP_ENTRY3(PMAXSB, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
421 [0x3d] = X86_OP_ENTRY3(PMAXSD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
422 [0x3e] = X86_OP_ENTRY3(PMAXUW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
423 [0x3f] = X86_OP_ENTRY3(PMAXUD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
424
425 [0x58] = X86_OP_ENTRY3(VPBROADCASTD, V,x, None,None, W,d, vex6 cpuid(AVX2) p_66),
426 [0x59] = X86_OP_ENTRY3(VPBROADCASTQ, V,x, None,None, W,q, vex6 cpuid(AVX2) p_66),
427 [0x5a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 cpuid(AVX2) p_66),
428
429 [0x78] = X86_OP_ENTRY3(VPBROADCASTB, V,x, None,None, W,b, vex6 cpuid(AVX2) p_66),
430 [0x79] = X86_OP_ENTRY3(VPBROADCASTW, V,x, None,None, W,w, vex6 cpuid(AVX2) p_66),
431
432 [0x8c] = X86_OP_ENTRY3(VPMASKMOV, V,x, H,x, WM,x, vex6 cpuid(AVX2) p_66),
433 [0x8e] = X86_OP_ENTRY3(VPMASKMOV_st, M,x, V,x, H,x, vex6 cpuid(AVX2) p_66),
434
435 /* Should be exception type 2 or 3 but they do not have legacy SSE equivalents? */
436 [0x98] = X86_OP_ENTRY3(VFMADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
437 [0x99] = X86_OP_ENTRY3(VFMADD132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
438 [0x9a] = X86_OP_ENTRY3(VFMSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
439 [0x9b] = X86_OP_ENTRY3(VFMSUB132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
440 [0x9c] = X86_OP_ENTRY3(VFNMADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
441 [0x9d] = X86_OP_ENTRY3(VFNMADD132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
442 [0x9e] = X86_OP_ENTRY3(VFNMSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
443 [0x9f] = X86_OP_ENTRY3(VFNMSUB132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
444
445 [0xa8] = X86_OP_ENTRY3(VFMADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
446 [0xa9] = X86_OP_ENTRY3(VFMADD213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
447 [0xaa] = X86_OP_ENTRY3(VFMSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
448 [0xab] = X86_OP_ENTRY3(VFMSUB213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
449 [0xac] = X86_OP_ENTRY3(VFNMADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
450 [0xad] = X86_OP_ENTRY3(VFNMADD213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
451 [0xae] = X86_OP_ENTRY3(VFNMSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
452 [0xaf] = X86_OP_ENTRY3(VFNMSUB213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
453
454 [0xb8] = X86_OP_ENTRY3(VFMADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
455 [0xb9] = X86_OP_ENTRY3(VFMADD231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
456 [0xba] = X86_OP_ENTRY3(VFMSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
457 [0xbb] = X86_OP_ENTRY3(VFMSUB231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
458 [0xbc] = X86_OP_ENTRY3(VFNMADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
459 [0xbd] = X86_OP_ENTRY3(VFNMADD231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
460 [0xbe] = X86_OP_ENTRY3(VFNMSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
461 [0xbf] = X86_OP_ENTRY3(VFNMSUB231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66),
462
463 [0xdb] = X86_OP_ENTRY3(VAESIMC, V,dq, None,None, W,dq, vex4 cpuid(AES) p_66),
464 [0xdc] = X86_OP_ENTRY3(VAESENC, V,x, H,x, W,x, vex4 cpuid(AES) p_66),
465 [0xdd] = X86_OP_ENTRY3(VAESENCLAST, V,x, H,x, W,x, vex4 cpuid(AES) p_66),
466 [0xde] = X86_OP_ENTRY3(VAESDEC, V,x, H,x, W,x, vex4 cpuid(AES) p_66),
467 [0xdf] = X86_OP_ENTRY3(VAESDECLAST, V,x, H,x, W,x, vex4 cpuid(AES) p_66),
468 };
469
470 /* five rows for no prefix, 66, F3, F2, 66+F2 */
471 static const X86OpEntry opcodes_0F38_F0toFF[16][5] = {
472 [0] = {
473 X86_OP_ENTRY3(MOVBE, G,y, M,y, None,None, cpuid(MOVBE)),
474 X86_OP_ENTRY3(MOVBE, G,w, M,w, None,None, cpuid(MOVBE)),
475 {},
476 X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)),
477 X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)),
478 },
479 [1] = {
480 X86_OP_ENTRY3(MOVBE, M,y, G,y, None,None, cpuid(MOVBE)),
481 X86_OP_ENTRY3(MOVBE, M,w, G,w, None,None, cpuid(MOVBE)),
482 {},
483 X86_OP_ENTRY2(CRC32, G,d, E,y, cpuid(SSE42)),
484 X86_OP_ENTRY2(CRC32, G,d, E,w, cpuid(SSE42)),
485 },
486 [2] = {
487 X86_OP_ENTRY3(ANDN, G,y, B,y, E,y, vex13 cpuid(BMI1)),
488 {},
489 {},
490 {},
491 {},
492 },
493 [3] = {
494 X86_OP_GROUP3(group17, B,y, E,y, None,None, vex13 cpuid(BMI1)),
495 {},
496 {},
497 {},
498 {},
499 },
500 [5] = {
501 X86_OP_ENTRY3(BZHI, G,y, E,y, B,y, vex13 cpuid(BMI1)),
502 {},
503 X86_OP_ENTRY3(PEXT, G,y, B,y, E,y, vex13 cpuid(BMI2)),
504 X86_OP_ENTRY3(PDEP, G,y, B,y, E,y, vex13 cpuid(BMI2)),
505 {},
506 },
507 [6] = {
508 {},
509 X86_OP_ENTRY2(ADCX, G,y, E,y, cpuid(ADX)),
510 X86_OP_ENTRY2(ADOX, G,y, E,y, cpuid(ADX)),
511 X86_OP_ENTRY3(MULX, /* B,y, */ G,y, E,y, 2,y, vex13 cpuid(BMI2)),
512 {},
513 },
514 [7] = {
515 X86_OP_ENTRY3(BEXTR, G,y, E,y, B,y, vex13 cpuid(BMI1)),
516 X86_OP_ENTRY3(SHLX, G,y, E,y, B,y, vex13 cpuid(BMI1)),
517 X86_OP_ENTRY3(SARX, G,y, E,y, B,y, vex13 cpuid(BMI1)),
518 X86_OP_ENTRY3(SHRX, G,y, E,y, B,y, vex13 cpuid(BMI1)),
519 {},
520 },
521 };
522
523 static void decode_0F38(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
524 {
525 *b = x86_ldub_code(env, s);
526 if (*b < 0xf0) {
527 *entry = opcodes_0F38_00toEF[*b];
528 } else {
529 int row = 0;
530 if (s->prefix & PREFIX_REPZ) {
531 /* The REPZ (F3) prefix has priority over 66 */
532 row = 2;
533 } else {
534 row += s->prefix & PREFIX_REPNZ ? 3 : 0;
535 row += s->prefix & PREFIX_DATA ? 1 : 0;
536 }
537 *entry = opcodes_0F38_F0toFF[*b & 15][row];
538 }
539 }
540
541 static void decode_VINSERTPS(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
542 {
543 static const X86OpEntry
544 vinsertps_reg = X86_OP_ENTRY4(VINSERTPS_r, V,dq, H,dq, U,dq, vex5 cpuid(SSE41) p_66),
545 vinsertps_mem = X86_OP_ENTRY4(VINSERTPS_m, V,dq, H,dq, M,d, vex5 cpuid(SSE41) p_66);
546
547 int modrm = get_modrm(s, env);
548 *entry = (modrm >> 6) == 3 ? vinsertps_reg : vinsertps_mem;
549 }
550
551 static const X86OpEntry opcodes_0F3A[256] = {
552 /*
553 * These are VEX-only, but incorrectly listed in the manual as exception type 4.
554 * Also the "qq" instructions are sometimes omitted by Table 2-17, but are VEX256
555 * only.
556 */
557 [0x00] = X86_OP_ENTRY3(VPERMQ, V,qq, W,qq, I,b, vex6 cpuid(AVX2) p_66),
558 [0x01] = X86_OP_ENTRY3(VPERMQ, V,qq, W,qq, I,b, vex6 cpuid(AVX2) p_66), /* VPERMPD */
559 [0x02] = X86_OP_ENTRY4(VBLENDPS, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), /* VPBLENDD */
560 [0x04] = X86_OP_ENTRY3(VPERMILPS_i, V,x, W,x, I,b, vex6 cpuid(AVX) p_66),
561 [0x05] = X86_OP_ENTRY3(VPERMILPD_i, V,x, W,x, I,b, vex6 cpuid(AVX) p_66),
562 [0x06] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 cpuid(AVX) p_66),
563
564 [0x14] = X86_OP_ENTRY3(PEXTRB, E,b, V,dq, I,b, vex5 cpuid(SSE41) zext0 p_66),
565 [0x15] = X86_OP_ENTRY3(PEXTRW, E,w, V,dq, I,b, vex5 cpuid(SSE41) zext0 p_66),
566 [0x16] = X86_OP_ENTRY3(PEXTR, E,y, V,dq, I,b, vex5 cpuid(SSE41) p_66),
567 [0x17] = X86_OP_ENTRY3(VEXTRACTPS, E,d, V,dq, I,b, vex5 cpuid(SSE41) p_66),
568 [0x1d] = X86_OP_ENTRY3(VCVTPS2PH, W,ph, V,x, I,b, vex11 cpuid(F16C) p_66),
569
570 [0x20] = X86_OP_ENTRY4(PINSRB, V,dq, H,dq, E,b, vex5 cpuid(SSE41) zext2 p_66),
571 [0x21] = X86_OP_GROUP0(VINSERTPS),
572 [0x22] = X86_OP_ENTRY4(PINSR, V,dq, H,dq, E,y, vex5 cpuid(SSE41) p_66),
573
574 [0x40] = X86_OP_ENTRY4(VDDPS, V,x, H,x, W,x, vex2 cpuid(SSE41) p_66),
575 [0x41] = X86_OP_ENTRY4(VDDPD, V,dq, H,dq, W,dq, vex2 cpuid(SSE41) p_66),
576 [0x42] = X86_OP_ENTRY4(VMPSADBW, V,x, H,x, W,x, vex2 cpuid(SSE41) avx2_256 p_66),
577 [0x44] = X86_OP_ENTRY4(PCLMULQDQ, V,dq, H,dq, W,dq, vex4 cpuid(PCLMULQDQ) p_66),
578 [0x46] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66),
579
580 [0x60] = X86_OP_ENTRY4(PCMPESTRM, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
581 [0x61] = X86_OP_ENTRY4(PCMPESTRI, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
582 [0x62] = X86_OP_ENTRY4(PCMPISTRM, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
583 [0x63] = X86_OP_ENTRY4(PCMPISTRI, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
584
585 [0x08] = X86_OP_ENTRY3(VROUNDPS, V,x, W,x, I,b, vex2 cpuid(SSE41) p_66),
586 [0x09] = X86_OP_ENTRY3(VROUNDPD, V,x, W,x, I,b, vex2 cpuid(SSE41) p_66),
587 /*
588 * Not listed as four operand in the manual. Also writes and reads 128-bits
589 * from the first two operands due to the V operand picking higher entries of
590 * the H operand; the "Vss,Hss,Wss" description from the manual is incorrect.
591 * For other unary operations such as VSQRTSx this is hidden by the "REPScalar"
592 * value of vex_special, because the table lists the operand types of VSQRTPx.
593 */
594 [0x0a] = X86_OP_ENTRY4(VROUNDSS, V,x, H,x, W,ss, vex3 cpuid(SSE41) p_66),
595 [0x0b] = X86_OP_ENTRY4(VROUNDSD, V,x, H,x, W,sd, vex3 cpuid(SSE41) p_66),
596 [0x0c] = X86_OP_ENTRY4(VBLENDPS, V,x, H,x, W,x, vex4 cpuid(SSE41) p_66),
597 [0x0d] = X86_OP_ENTRY4(VBLENDPD, V,x, H,x, W,x, vex4 cpuid(SSE41) p_66),
598 [0x0e] = X86_OP_ENTRY4(VPBLENDW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66),
599 [0x0f] = X86_OP_ENTRY4(PALIGNR, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
600
601 [0x18] = X86_OP_ENTRY4(VINSERTx128, V,qq, H,qq, W,qq, vex6 cpuid(AVX) p_66),
602 [0x19] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b, vex6 cpuid(AVX) p_66),
603
604 [0x38] = X86_OP_ENTRY4(VINSERTx128, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66),
605 [0x39] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b, vex6 cpuid(AVX2) p_66),
606
607 /* Listed incorrectly as type 4 */
608 [0x4a] = X86_OP_ENTRY4(VBLENDVPS, V,x, H,x, W,x, vex6 cpuid(AVX) p_66),
609 [0x4b] = X86_OP_ENTRY4(VBLENDVPD, V,x, H,x, W,x, vex6 cpuid(AVX) p_66),
610 [0x4c] = X86_OP_ENTRY4(VPBLENDVB, V,x, H,x, W,x, vex6 cpuid(AVX) p_66 avx2_256),
611
612 [0xdf] = X86_OP_ENTRY3(VAESKEYGEN, V,dq, W,dq, I,b, vex4 cpuid(AES) p_66),
613
614 [0xF0] = X86_OP_ENTRY3(RORX, G,y, E,y, I,b, vex13 cpuid(BMI2) p_f2),
615 };
616
617 static void decode_0F3A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
618 {
619 *b = x86_ldub_code(env, s);
620 *entry = opcodes_0F3A[*b];
621 }
622
623 /*
624 * There are some mistakes in the operands in the manual, and the load/store/register
625 * cases are easiest to keep separate, so the entries for 10-17 follow simplicity and
626 * efficiency of implementation rather than copying what the manual says.
627 *
628 * In particular:
629 *
630 * 1) "VMOVSS m32, xmm1" and "VMOVSD m64, xmm1" do not support VEX.vvvv != 1111b,
631 * but this is not mentioned in the tables.
632 *
633 * 2) MOVHLPS, MOVHPS, MOVHPD, MOVLPD, MOVLPS read the high quadword of one of their
634 * operands, which must therefore be dq; MOVLPD and MOVLPS also write the high
635 * quadword of the V operand.
636 */
637 static void decode_0F10(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
638 {
639 static const X86OpEntry opcodes_0F10_reg[4] = {
640 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPS */
641 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPD */
642 X86_OP_ENTRY3(VMOVSS, V,x, H,x, W,x, vex4),
643 X86_OP_ENTRY3(VMOVLPx, V,x, H,x, W,x, vex4), /* MOVSD */
644 };
645
646 static const X86OpEntry opcodes_0F10_mem[4] = {
647 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPS */
648 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPD */
649 X86_OP_ENTRY3(VMOVSS_ld, V,x, H,x, M,ss, vex4),
650 X86_OP_ENTRY3(VMOVSD_ld, V,x, H,x, M,sd, vex4),
651 };
652
653 if ((get_modrm(s, env) >> 6) == 3) {
654 *entry = *decode_by_prefix(s, opcodes_0F10_reg);
655 } else {
656 *entry = *decode_by_prefix(s, opcodes_0F10_mem);
657 }
658 }
659
660 static void decode_0F11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
661 {
662 static const X86OpEntry opcodes_0F11_reg[4] = {
663 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVPS */
664 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVPD */
665 X86_OP_ENTRY3(VMOVSS, W,x, H,x, V,x, vex4),
666 X86_OP_ENTRY3(VMOVLPx, W,x, H,x, V,q, vex4), /* MOVSD */
667 };
668
669 static const X86OpEntry opcodes_0F11_mem[4] = {
670 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVPS */
671 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVPD */
672 X86_OP_ENTRY3(VMOVSS_st, M,ss, None,None, V,x, vex4),
673 X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex4), /* MOVSD */
674 };
675
676 if ((get_modrm(s, env) >> 6) == 3) {
677 *entry = *decode_by_prefix(s, opcodes_0F11_reg);
678 } else {
679 *entry = *decode_by_prefix(s, opcodes_0F11_mem);
680 }
681 }
682
683 static void decode_0F12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
684 {
685 static const X86OpEntry opcodes_0F12_mem[4] = {
686 /*
687 * Use dq for operand for compatibility with gen_MOVSD and
688 * to allow VEX128 only.
689 */
690 X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq, M,q, vex4), /* MOVLPS */
691 X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq, M,q, vex4), /* MOVLPD */
692 X86_OP_ENTRY3(VMOVSLDUP, V,x, None,None, W,x, vex4 cpuid(SSE3)),
693 X86_OP_ENTRY3(VMOVDDUP, V,x, None,None, WM,q, vex4 cpuid(SSE3)), /* qq if VEX.256 */
694 };
695 static const X86OpEntry opcodes_0F12_reg[4] = {
696 X86_OP_ENTRY3(VMOVHLPS, V,dq, H,dq, U,dq, vex4),
697 X86_OP_ENTRY3(VMOVLPx, W,x, H,x, U,q, vex4), /* MOVLPD */
698 X86_OP_ENTRY3(VMOVSLDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)),
699 X86_OP_ENTRY3(VMOVDDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)),
700 };
701
702 if ((get_modrm(s, env) >> 6) == 3) {
703 *entry = *decode_by_prefix(s, opcodes_0F12_reg);
704 } else {
705 *entry = *decode_by_prefix(s, opcodes_0F12_mem);
706 if ((s->prefix & PREFIX_REPNZ) && s->vex_l) {
707 entry->s2 = X86_SIZE_qq;
708 }
709 }
710 }
711
712 static void decode_0F16(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
713 {
714 static const X86OpEntry opcodes_0F16_mem[4] = {
715 /*
716 * Operand 1 technically only reads the low 64 bits, but uses dq so that
717 * it is easier to check for op0 == op1 in an endianness-neutral manner.
718 */
719 X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq, M,q, vex4), /* MOVHPS */
720 X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq, M,q, vex4), /* MOVHPD */
721 X86_OP_ENTRY3(VMOVSHDUP, V,x, None,None, W,x, vex4 cpuid(SSE3)),
722 {},
723 };
724 static const X86OpEntry opcodes_0F16_reg[4] = {
725 /* Same as above, operand 1 could be Hq if it wasn't for big-endian. */
726 X86_OP_ENTRY3(VMOVLHPS, V,dq, H,dq, U,q, vex4),
727 X86_OP_ENTRY3(VMOVHPx, V,x, H,x, U,x, vex4), /* MOVHPD */
728 X86_OP_ENTRY3(VMOVSHDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)),
729 {},
730 };
731
732 if ((get_modrm(s, env) >> 6) == 3) {
733 *entry = *decode_by_prefix(s, opcodes_0F16_reg);
734 } else {
735 *entry = *decode_by_prefix(s, opcodes_0F16_mem);
736 }
737 }
738
739 static void decode_0F2A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
740 {
741 static const X86OpEntry opcodes_0F2A[4] = {
742 X86_OP_ENTRY3(CVTPI2Px, V,x, None,None, Q,q),
743 X86_OP_ENTRY3(CVTPI2Px, V,x, None,None, Q,q),
744 X86_OP_ENTRY3(VCVTSI2Sx, V,x, H,x, E,y, vex3),
745 X86_OP_ENTRY3(VCVTSI2Sx, V,x, H,x, E,y, vex3),
746 };
747 *entry = *decode_by_prefix(s, opcodes_0F2A);
748 }
749
750 static void decode_0F2B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
751 {
752 static const X86OpEntry opcodes_0F2B[4] = {
753 X86_OP_ENTRY3(MOVDQ, M,x, None,None, V,x, vex4), /* MOVNTPS */
754 X86_OP_ENTRY3(MOVDQ, M,x, None,None, V,x, vex4), /* MOVNTPD */
755 X86_OP_ENTRY3(VMOVSS_st, M,ss, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSS */
756 X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSD */
757 };
758
759 *entry = *decode_by_prefix(s, opcodes_0F2B);
760 }
761
762 static void decode_0F2C(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
763 {
764 static const X86OpEntry opcodes_0F2C[4] = {
765 /* Listed as ps/pd in the manual, but CVTTPS2PI only reads 64-bit. */
766 X86_OP_ENTRY3(CVTTPx2PI, P,q, None,None, W,q),
767 X86_OP_ENTRY3(CVTTPx2PI, P,q, None,None, W,dq),
768 X86_OP_ENTRY3(VCVTTSx2SI, G,y, None,None, W,ss, vex3),
769 X86_OP_ENTRY3(VCVTTSx2SI, G,y, None,None, W,sd, vex3),
770 };
771 *entry = *decode_by_prefix(s, opcodes_0F2C);
772 }
773
774 static void decode_0F2D(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
775 {
776 static const X86OpEntry opcodes_0F2D[4] = {
777 /* Listed as ps/pd in the manual, but CVTPS2PI only reads 64-bit. */
778 X86_OP_ENTRY3(CVTPx2PI, P,q, None,None, W,q),
779 X86_OP_ENTRY3(CVTPx2PI, P,q, None,None, W,dq),
780 X86_OP_ENTRY3(VCVTSx2SI, G,y, None,None, W,ss, vex3),
781 X86_OP_ENTRY3(VCVTSx2SI, G,y, None,None, W,sd, vex3),
782 };
783 *entry = *decode_by_prefix(s, opcodes_0F2D);
784 }
785
786 static void decode_sse_unary(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
787 {
788 if (!(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ))) {
789 entry->op1 = X86_TYPE_None;
790 entry->s1 = X86_SIZE_None;
791 }
792 switch (*b) {
793 case 0x51: entry->gen = gen_VSQRT; break;
794 case 0x52: entry->gen = gen_VRSQRT; break;
795 case 0x53: entry->gen = gen_VRCP; break;
796 case 0x5A: entry->gen = gen_VCVTfp2fp; break;
797 }
798 }
799
800 static void decode_0F5B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
801 {
802 static const X86OpEntry opcodes_0F5B[4] = {
803 X86_OP_ENTRY2(VCVTDQ2PS, V,x, W,x, vex2),
804 X86_OP_ENTRY2(VCVTPS2DQ, V,x, W,x, vex2),
805 X86_OP_ENTRY2(VCVTTPS2DQ, V,x, W,x, vex2),
806 {},
807 };
808 *entry = *decode_by_prefix(s, opcodes_0F5B);
809 }
810
811 static void decode_0FE6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
812 {
813 static const X86OpEntry opcodes_0FE6[4] = {
814 {},
815 X86_OP_ENTRY2(VCVTTPD2DQ, V,x, W,x, vex2),
816 X86_OP_ENTRY2(VCVTDQ2PD, V,x, W,x, vex2),
817 X86_OP_ENTRY2(VCVTPD2DQ, V,x, W,x, vex2),
818 };
819 *entry = *decode_by_prefix(s, opcodes_0FE6);
820 }
821
822 static const X86OpEntry opcodes_0F[256] = {
823 [0x0E] = X86_OP_ENTRY0(EMMS, cpuid(3DNOW)), /* femms */
824 /*
825 * 3DNow!'s opcode byte comes *after* modrm and displacements, making it
826 * more like an Ib operand. Dispatch to the right helper in a single gen_*
827 * function.
828 */
829 [0x0F] = X86_OP_ENTRY3(3dnow, P,q, Q,q, I,b, cpuid(3DNOW)),
830
831 [0x10] = X86_OP_GROUP0(0F10),
832 [0x11] = X86_OP_GROUP0(0F11),
833 [0x12] = X86_OP_GROUP0(0F12),
834 [0x13] = X86_OP_ENTRY3(VMOVLPx_st, M,q, None,None, V,q, vex4 p_00_66),
835 [0x14] = X86_OP_ENTRY3(VUNPCKLPx, V,x, H,x, W,x, vex4 p_00_66),
836 [0x15] = X86_OP_ENTRY3(VUNPCKHPx, V,x, H,x, W,x, vex4 p_00_66),
837 [0x16] = X86_OP_GROUP0(0F16),
838 /* Incorrectly listed as Mq,Vq in the manual */
839 [0x17] = X86_OP_ENTRY3(VMOVHPx_st, M,q, None,None, V,dq, vex4 p_00_66),
840
841 [0x50] = X86_OP_ENTRY3(MOVMSK, G,y, None,None, U,x, vex7 p_00_66),
842 [0x51] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
843 [0x52] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex4_rep5 p_00_f3),
844 [0x53] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex4_rep5 p_00_f3),
845 [0x54] = X86_OP_ENTRY3(PAND, V,x, H,x, W,x, vex4 p_00_66), /* vand */
846 [0x55] = X86_OP_ENTRY3(PANDN, V,x, H,x, W,x, vex4 p_00_66), /* vandn */
847 [0x56] = X86_OP_ENTRY3(POR, V,x, H,x, W,x, vex4 p_00_66), /* vor */
848 [0x57] = X86_OP_ENTRY3(PXOR, V,x, H,x, W,x, vex4 p_00_66), /* vxor */
849
850 [0x60] = X86_OP_ENTRY3(PUNPCKLBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
851 [0x61] = X86_OP_ENTRY3(PUNPCKLWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
852 [0x62] = X86_OP_ENTRY3(PUNPCKLDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
853 [0x63] = X86_OP_ENTRY3(PACKSSWB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
854 [0x64] = X86_OP_ENTRY3(PCMPGTB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
855 [0x65] = X86_OP_ENTRY3(PCMPGTW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
856 [0x66] = X86_OP_ENTRY3(PCMPGTD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
857 [0x67] = X86_OP_ENTRY3(PACKUSWB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
858
859 [0x70] = X86_OP_GROUP0(0F70),
860 [0x71] = X86_OP_GROUP0(group12),
861 [0x72] = X86_OP_GROUP0(group13),
862 [0x73] = X86_OP_GROUP0(group14),
863 [0x74] = X86_OP_ENTRY3(PCMPEQB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
864 [0x75] = X86_OP_ENTRY3(PCMPEQW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
865 [0x76] = X86_OP_ENTRY3(PCMPEQD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
866 [0x77] = X86_OP_GROUP0(0F77),
867
868 [0x28] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex1 p_00_66), /* MOVAPS */
869 [0x29] = X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 p_00_66), /* MOVAPS */
870 [0x2A] = X86_OP_GROUP0(0F2A),
871 [0x2B] = X86_OP_GROUP0(0F2B),
872 [0x2C] = X86_OP_GROUP0(0F2C),
873 [0x2D] = X86_OP_GROUP0(0F2D),
874 [0x2E] = X86_OP_ENTRY3(VUCOMI, None,None, V,x, W,x, vex4 p_00_66),
875 [0x2F] = X86_OP_ENTRY3(VCOMI, None,None, V,x, W,x, vex4 p_00_66),
876
877 [0x38] = X86_OP_GROUP0(0F38),
878 [0x3a] = X86_OP_GROUP0(0F3A),
879
880 [0x58] = X86_OP_ENTRY3(VADD, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
881 [0x59] = X86_OP_ENTRY3(VMUL, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
882 [0x5a] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
883 [0x5b] = X86_OP_GROUP0(0F5B),
884 [0x5c] = X86_OP_ENTRY3(VSUB, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
885 [0x5d] = X86_OP_ENTRY3(VMIN, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
886 [0x5e] = X86_OP_ENTRY3(VDIV, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
887 [0x5f] = X86_OP_ENTRY3(VMAX, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
888
889 [0x68] = X86_OP_ENTRY3(PUNPCKHBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
890 [0x69] = X86_OP_ENTRY3(PUNPCKHWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
891 [0x6a] = X86_OP_ENTRY3(PUNPCKHDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
892 [0x6b] = X86_OP_ENTRY3(PACKSSDW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
893 [0x6c] = X86_OP_ENTRY3(PUNPCKLQDQ, V,x, H,x, W,x, vex4 p_66 avx2_256),
894 [0x6d] = X86_OP_ENTRY3(PUNPCKHQDQ, V,x, H,x, W,x, vex4 p_66 avx2_256),
895 [0x6e] = X86_OP_ENTRY3(MOVD_to, V,x, None,None, E,y, vex5 mmx p_00_66), /* wrong dest Vy on SDM! */
896 [0x6f] = X86_OP_GROUP0(0F6F),
897
898 [0x78] = X86_OP_GROUP0(0F78),
899 [0x79] = X86_OP_GROUP2(0F79, V,x, U,x, cpuid(SSE4A)),
900 [0x7c] = X86_OP_ENTRY3(VHADD, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2),
901 [0x7d] = X86_OP_ENTRY3(VHSUB, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2),
902 [0x7e] = X86_OP_GROUP0(0F7E),
903 [0x7f] = X86_OP_GROUP0(0F7F),
904
905 [0xae] = X86_OP_GROUP0(group15),
906
907 [0xc2] = X86_OP_ENTRY4(VCMP, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
908 [0xc4] = X86_OP_ENTRY4(PINSRW, V,dq,H,dq,E,w, vex5 mmx p_00_66),
909 [0xc5] = X86_OP_ENTRY3(PEXTRW, G,d, U,dq,I,b, vex5 mmx p_00_66),
910 [0xc6] = X86_OP_ENTRY4(VSHUF, V,x, H,x, W,x, vex4 p_00_66),
911
912 [0xd0] = X86_OP_ENTRY3(VADDSUB, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2),
913 [0xd1] = X86_OP_ENTRY3(PSRLW_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
914 [0xd2] = X86_OP_ENTRY3(PSRLD_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
915 [0xd3] = X86_OP_ENTRY3(PSRLQ_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
916 [0xd4] = X86_OP_ENTRY3(PADDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
917 [0xd5] = X86_OP_ENTRY3(PMULLW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
918 [0xd6] = X86_OP_GROUP0(0FD6),
919 [0xd7] = X86_OP_ENTRY3(PMOVMSKB, G,d, None,None, U,x, vex7 mmx avx2_256 p_00_66),
920
921 [0xe0] = X86_OP_ENTRY3(PAVGB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
922 [0xe1] = X86_OP_ENTRY3(PSRAW_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66),
923 [0xe2] = X86_OP_ENTRY3(PSRAD_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66),
924 [0xe3] = X86_OP_ENTRY3(PAVGW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
925 [0xe4] = X86_OP_ENTRY3(PMULHUW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
926 [0xe5] = X86_OP_ENTRY3(PMULHW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
927 [0xe6] = X86_OP_GROUP0(0FE6),
928 [0xe7] = X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 mmx p_00_66), /* MOVNTQ/MOVNTDQ */
929
930 [0xf0] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, WM,x, vex4_unal cpuid(SSE3) p_f2), /* LDDQU */
931 [0xf1] = X86_OP_ENTRY3(PSLLW_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66),
932 [0xf2] = X86_OP_ENTRY3(PSLLD_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66),
933 [0xf3] = X86_OP_ENTRY3(PSLLQ_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66),
934 [0xf4] = X86_OP_ENTRY3(PMULUDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
935 [0xf5] = X86_OP_ENTRY3(PMADDWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
936 [0xf6] = X86_OP_ENTRY3(PSADBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
937 [0xf7] = X86_OP_ENTRY3(MASKMOV, None,None, V,dq, U,dq, vex4_unal avx2_256 mmx p_00_66),
938
939 /* Incorrectly missing from 2-17 */
940 [0xd8] = X86_OP_ENTRY3(PSUBUSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
941 [0xd9] = X86_OP_ENTRY3(PSUBUSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
942 [0xda] = X86_OP_ENTRY3(PMINUB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
943 [0xdb] = X86_OP_ENTRY3(PAND, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
944 [0xdc] = X86_OP_ENTRY3(PADDUSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
945 [0xdd] = X86_OP_ENTRY3(PADDUSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
946 [0xde] = X86_OP_ENTRY3(PMAXUB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
947 [0xdf] = X86_OP_ENTRY3(PANDN, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
948
949 [0xe8] = X86_OP_ENTRY3(PSUBSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
950 [0xe9] = X86_OP_ENTRY3(PSUBSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
951 [0xea] = X86_OP_ENTRY3(PMINSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
952 [0xeb] = X86_OP_ENTRY3(POR, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
953 [0xec] = X86_OP_ENTRY3(PADDSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
954 [0xed] = X86_OP_ENTRY3(PADDSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
955 [0xee] = X86_OP_ENTRY3(PMAXSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
956 [0xef] = X86_OP_ENTRY3(PXOR, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
957
958 [0xf8] = X86_OP_ENTRY3(PSUBB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
959 [0xf9] = X86_OP_ENTRY3(PSUBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
960 [0xfa] = X86_OP_ENTRY3(PSUBD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
961 [0xfb] = X86_OP_ENTRY3(PSUBQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
962 [0xfc] = X86_OP_ENTRY3(PADDB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
963 [0xfd] = X86_OP_ENTRY3(PADDW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
964 [0xfe] = X86_OP_ENTRY3(PADDD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66),
965 /* 0xff = UD0 */
966 };
967
968 static void do_decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
969 {
970 *entry = opcodes_0F[*b];
971 }
972
973 static void decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
974 {
975 *b = x86_ldub_code(env, s);
976 do_decode_0F(s, env, entry, b);
977 }
978
979 static const X86OpEntry opcodes_root[256] = {
980 [0x0F] = X86_OP_GROUP0(0F),
981 };
982
983 #undef mmx
984 #undef vex1
985 #undef vex2
986 #undef vex3
987 #undef vex4
988 #undef vex4_unal
989 #undef vex5
990 #undef vex6
991 #undef vex7
992 #undef vex8
993 #undef vex11
994 #undef vex12
995 #undef vex13
996
997 /*
998 * Decode the fixed part of the opcode and place the last
999 * in b.
1000 */
1001 static void decode_root(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1002 {
1003 *entry = opcodes_root[*b];
1004 }
1005
1006
1007 static int decode_modrm(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
1008 X86DecodedOp *op, X86OpType type)
1009 {
1010 int modrm = get_modrm(s, env);
1011 if ((modrm >> 6) == 3) {
1012 if (s->prefix & PREFIX_LOCK) {
1013 decode->e.gen = gen_illegal;
1014 return 0xff;
1015 }
1016 op->n = (modrm & 7);
1017 if (type != X86_TYPE_Q && type != X86_TYPE_N) {
1018 op->n |= REX_B(s);
1019 }
1020 } else {
1021 op->has_ea = true;
1022 op->n = -1;
1023 decode->mem = gen_lea_modrm_0(env, s, get_modrm(s, env));
1024 }
1025 return modrm;
1026 }
1027
1028 static bool decode_op_size(DisasContext *s, X86OpEntry *e, X86OpSize size, MemOp *ot)
1029 {
1030 switch (size) {
1031 case X86_SIZE_b: /* byte */
1032 *ot = MO_8;
1033 return true;
1034
1035 case X86_SIZE_d: /* 32-bit */
1036 case X86_SIZE_ss: /* SSE/AVX scalar single precision */
1037 *ot = MO_32;
1038 return true;
1039
1040 case X86_SIZE_p: /* Far pointer, return offset size */
1041 case X86_SIZE_s: /* Descriptor, return offset size */
1042 case X86_SIZE_v: /* 16/32/64-bit, based on operand size */
1043 *ot = s->dflag;
1044 return true;
1045
1046 case X86_SIZE_pi: /* MMX */
1047 case X86_SIZE_q: /* 64-bit */
1048 case X86_SIZE_sd: /* SSE/AVX scalar double precision */
1049 *ot = MO_64;
1050 return true;
1051
1052 case X86_SIZE_w: /* 16-bit */
1053 *ot = MO_16;
1054 return true;
1055
1056 case X86_SIZE_y: /* 32/64-bit, based on operand size */
1057 *ot = s->dflag == MO_16 ? MO_32 : s->dflag;
1058 return true;
1059
1060 case X86_SIZE_z: /* 16-bit for 16-bit operand size, else 32-bit */
1061 *ot = s->dflag == MO_16 ? MO_16 : MO_32;
1062 return true;
1063
1064 case X86_SIZE_dq: /* SSE/AVX 128-bit */
1065 if (e->special == X86_SPECIAL_MMX &&
1066 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1067 *ot = MO_64;
1068 return true;
1069 }
1070 if (s->vex_l && e->s0 != X86_SIZE_qq && e->s1 != X86_SIZE_qq) {
1071 return false;
1072 }
1073 *ot = MO_128;
1074 return true;
1075
1076 case X86_SIZE_qq: /* AVX 256-bit */
1077 if (!s->vex_l) {
1078 return false;
1079 }
1080 *ot = MO_256;
1081 return true;
1082
1083 case X86_SIZE_x: /* 128/256-bit, based on operand size */
1084 if (e->special == X86_SPECIAL_MMX &&
1085 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1086 *ot = MO_64;
1087 return true;
1088 }
1089 /* fall through */
1090 case X86_SIZE_ps: /* SSE/AVX packed single precision */
1091 case X86_SIZE_pd: /* SSE/AVX packed double precision */
1092 *ot = s->vex_l ? MO_256 : MO_128;
1093 return true;
1094
1095 case X86_SIZE_ph: /* SSE/AVX packed half precision */
1096 *ot = s->vex_l ? MO_128 : MO_64;
1097 return true;
1098
1099 case X86_SIZE_d64: /* Default to 64-bit in 64-bit mode */
1100 *ot = CODE64(s) && s->dflag == MO_32 ? MO_64 : s->dflag;
1101 return true;
1102
1103 case X86_SIZE_f64: /* Ignore size override prefix in 64-bit mode */
1104 *ot = CODE64(s) ? MO_64 : s->dflag;
1105 return true;
1106
1107 default:
1108 *ot = -1;
1109 return true;
1110 }
1111 }
1112
1113 static bool decode_op(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
1114 X86DecodedOp *op, X86OpType type, int b)
1115 {
1116 int modrm;
1117
1118 switch (type) {
1119 case X86_TYPE_None: /* Implicit or absent */
1120 case X86_TYPE_A: /* Implicit */
1121 case X86_TYPE_F: /* EFLAGS/RFLAGS */
1122 break;
1123
1124 case X86_TYPE_B: /* VEX.vvvv selects a GPR */
1125 op->unit = X86_OP_INT;
1126 op->n = s->vex_v;
1127 break;
1128
1129 case X86_TYPE_C: /* REG in the modrm byte selects a control register */
1130 op->unit = X86_OP_CR;
1131 goto get_reg;
1132
1133 case X86_TYPE_D: /* REG in the modrm byte selects a debug register */
1134 op->unit = X86_OP_DR;
1135 goto get_reg;
1136
1137 case X86_TYPE_G: /* REG in the modrm byte selects a GPR */
1138 op->unit = X86_OP_INT;
1139 goto get_reg;
1140
1141 case X86_TYPE_S: /* reg selects a segment register */
1142 op->unit = X86_OP_SEG;
1143 goto get_reg;
1144
1145 case X86_TYPE_P:
1146 op->unit = X86_OP_MMX;
1147 goto get_reg;
1148
1149 case X86_TYPE_V: /* reg in the modrm byte selects an XMM/YMM register */
1150 if (decode->e.special == X86_SPECIAL_MMX &&
1151 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1152 op->unit = X86_OP_MMX;
1153 } else {
1154 op->unit = X86_OP_SSE;
1155 }
1156 get_reg:
1157 op->n = ((get_modrm(s, env) >> 3) & 7) | REX_R(s);
1158 break;
1159
1160 case X86_TYPE_E: /* ALU modrm operand */
1161 op->unit = X86_OP_INT;
1162 goto get_modrm;
1163
1164 case X86_TYPE_Q: /* MMX modrm operand */
1165 op->unit = X86_OP_MMX;
1166 goto get_modrm;
1167
1168 case X86_TYPE_W: /* XMM/YMM modrm operand */
1169 if (decode->e.special == X86_SPECIAL_MMX &&
1170 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1171 op->unit = X86_OP_MMX;
1172 } else {
1173 op->unit = X86_OP_SSE;
1174 }
1175 goto get_modrm;
1176
1177 case X86_TYPE_N: /* R/M in the modrm byte selects an MMX register */
1178 op->unit = X86_OP_MMX;
1179 goto get_modrm_reg;
1180
1181 case X86_TYPE_U: /* R/M in the modrm byte selects an XMM/YMM register */
1182 if (decode->e.special == X86_SPECIAL_MMX &&
1183 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1184 op->unit = X86_OP_MMX;
1185 } else {
1186 op->unit = X86_OP_SSE;
1187 }
1188 goto get_modrm_reg;
1189
1190 case X86_TYPE_R: /* R/M in the modrm byte selects a register */
1191 op->unit = X86_OP_INT;
1192 get_modrm_reg:
1193 modrm = get_modrm(s, env);
1194 if ((modrm >> 6) != 3) {
1195 return false;
1196 }
1197 goto get_modrm;
1198
1199 case X86_TYPE_WM: /* modrm byte selects an XMM/YMM memory operand */
1200 op->unit = X86_OP_SSE;
1201 /* fall through */
1202 case X86_TYPE_M: /* modrm byte selects a memory operand */
1203 modrm = get_modrm(s, env);
1204 if ((modrm >> 6) == 3) {
1205 return false;
1206 }
1207 get_modrm:
1208 decode_modrm(s, env, decode, op, type);
1209 break;
1210
1211 case X86_TYPE_O: /* Absolute address encoded in the instruction */
1212 op->unit = X86_OP_INT;
1213 op->has_ea = true;
1214 op->n = -1;
1215 decode->mem = (AddressParts) {
1216 .def_seg = R_DS,
1217 .base = -1,
1218 .index = -1,
1219 .disp = insn_get_addr(env, s, s->aflag)
1220 };
1221 break;
1222
1223 case X86_TYPE_H: /* For AVX, VEX.vvvv selects an XMM/YMM register */
1224 if ((s->prefix & PREFIX_VEX)) {
1225 op->unit = X86_OP_SSE;
1226 op->n = s->vex_v;
1227 break;
1228 }
1229 if (op == &decode->op[0]) {
1230 /* shifts place the destination in VEX.vvvv, use modrm */
1231 return decode_op(s, env, decode, op, decode->e.op1, b);
1232 } else {
1233 return decode_op(s, env, decode, op, decode->e.op0, b);
1234 }
1235
1236 case X86_TYPE_I: /* Immediate */
1237 op->unit = X86_OP_IMM;
1238 decode->immediate = insn_get_signed(env, s, op->ot);
1239 break;
1240
1241 case X86_TYPE_J: /* Relative offset for a jump */
1242 op->unit = X86_OP_IMM;
1243 decode->immediate = insn_get_signed(env, s, op->ot);
1244 decode->immediate += s->pc - s->cs_base;
1245 if (s->dflag == MO_16) {
1246 decode->immediate &= 0xffff;
1247 } else if (!CODE64(s)) {
1248 decode->immediate &= 0xffffffffu;
1249 }
1250 break;
1251
1252 case X86_TYPE_L: /* The upper 4 bits of the immediate select a 128-bit register */
1253 op->n = insn_get(env, s, op->ot) >> 4;
1254 break;
1255
1256 case X86_TYPE_X: /* string source */
1257 op->n = -1;
1258 decode->mem = (AddressParts) {
1259 .def_seg = R_DS,
1260 .base = R_ESI,
1261 .index = -1,
1262 };
1263 break;
1264
1265 case X86_TYPE_Y: /* string destination */
1266 op->n = -1;
1267 decode->mem = (AddressParts) {
1268 .def_seg = R_ES,
1269 .base = R_EDI,
1270 .index = -1,
1271 };
1272 break;
1273
1274 case X86_TYPE_2op:
1275 *op = decode->op[0];
1276 break;
1277
1278 case X86_TYPE_LoBits:
1279 op->n = (b & 7) | REX_B(s);
1280 op->unit = X86_OP_INT;
1281 break;
1282
1283 case X86_TYPE_0 ... X86_TYPE_7:
1284 op->n = type - X86_TYPE_0;
1285 op->unit = X86_OP_INT;
1286 break;
1287
1288 case X86_TYPE_ES ... X86_TYPE_GS:
1289 op->n = type - X86_TYPE_ES;
1290 op->unit = X86_OP_SEG;
1291 break;
1292 }
1293
1294 return true;
1295 }
1296
1297 static bool validate_sse_prefix(DisasContext *s, X86OpEntry *e)
1298 {
1299 uint16_t sse_prefixes;
1300
1301 if (!e->valid_prefix) {
1302 return true;
1303 }
1304 if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
1305 /* In SSE instructions, 0xF3 and 0xF2 cancel 0x66. */
1306 s->prefix &= ~PREFIX_DATA;
1307 }
1308
1309 /* Now, either zero or one bit is set in sse_prefixes. */
1310 sse_prefixes = s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA);
1311 return e->valid_prefix & (1 << sse_prefixes);
1312 }
1313
1314 static bool decode_insn(DisasContext *s, CPUX86State *env, X86DecodeFunc decode_func,
1315 X86DecodedInsn *decode)
1316 {
1317 X86OpEntry *e = &decode->e;
1318
1319 decode_func(s, env, e, &decode->b);
1320 while (e->is_decode) {
1321 e->is_decode = false;
1322 e->decode(s, env, e, &decode->b);
1323 }
1324
1325 if (!validate_sse_prefix(s, e)) {
1326 return false;
1327 }
1328
1329 /* First compute size of operands in order to initialize s->rip_offset. */
1330 if (e->op0 != X86_TYPE_None) {
1331 if (!decode_op_size(s, e, e->s0, &decode->op[0].ot)) {
1332 return false;
1333 }
1334 if (e->op0 == X86_TYPE_I) {
1335 s->rip_offset += 1 << decode->op[0].ot;
1336 }
1337 }
1338 if (e->op1 != X86_TYPE_None) {
1339 if (!decode_op_size(s, e, e->s1, &decode->op[1].ot)) {
1340 return false;
1341 }
1342 if (e->op1 == X86_TYPE_I) {
1343 s->rip_offset += 1 << decode->op[1].ot;
1344 }
1345 }
1346 if (e->op2 != X86_TYPE_None) {
1347 if (!decode_op_size(s, e, e->s2, &decode->op[2].ot)) {
1348 return false;
1349 }
1350 if (e->op2 == X86_TYPE_I) {
1351 s->rip_offset += 1 << decode->op[2].ot;
1352 }
1353 }
1354 if (e->op3 != X86_TYPE_None) {
1355 /*
1356 * A couple instructions actually use the extra immediate byte for an Lx
1357 * register operand; those are handled in the gen_* functions as one off.
1358 */
1359 assert(e->op3 == X86_TYPE_I && e->s3 == X86_SIZE_b);
1360 s->rip_offset += 1;
1361 }
1362
1363 if (e->op0 != X86_TYPE_None &&
1364 !decode_op(s, env, decode, &decode->op[0], e->op0, decode->b)) {
1365 return false;
1366 }
1367
1368 if (e->op1 != X86_TYPE_None &&
1369 !decode_op(s, env, decode, &decode->op[1], e->op1, decode->b)) {
1370 return false;
1371 }
1372
1373 if (e->op2 != X86_TYPE_None &&
1374 !decode_op(s, env, decode, &decode->op[2], e->op2, decode->b)) {
1375 return false;
1376 }
1377
1378 if (e->op3 != X86_TYPE_None) {
1379 decode->immediate = insn_get_signed(env, s, MO_8);
1380 }
1381
1382 return true;
1383 }
1384
1385 static bool has_cpuid_feature(DisasContext *s, X86CPUIDFeature cpuid)
1386 {
1387 switch (cpuid) {
1388 case X86_FEAT_None:
1389 return true;
1390 case X86_FEAT_F16C:
1391 return (s->cpuid_ext_features & CPUID_EXT_F16C);
1392 case X86_FEAT_FMA:
1393 return (s->cpuid_ext_features & CPUID_EXT_FMA);
1394 case X86_FEAT_MOVBE:
1395 return (s->cpuid_ext_features & CPUID_EXT_MOVBE);
1396 case X86_FEAT_PCLMULQDQ:
1397 return (s->cpuid_ext_features & CPUID_EXT_PCLMULQDQ);
1398 case X86_FEAT_SSE:
1399 return (s->cpuid_ext_features & CPUID_SSE);
1400 case X86_FEAT_SSE2:
1401 return (s->cpuid_ext_features & CPUID_SSE2);
1402 case X86_FEAT_SSE3:
1403 return (s->cpuid_ext_features & CPUID_EXT_SSE3);
1404 case X86_FEAT_SSSE3:
1405 return (s->cpuid_ext_features & CPUID_EXT_SSSE3);
1406 case X86_FEAT_SSE41:
1407 return (s->cpuid_ext_features & CPUID_EXT_SSE41);
1408 case X86_FEAT_SSE42:
1409 return (s->cpuid_ext_features & CPUID_EXT_SSE42);
1410 case X86_FEAT_AES:
1411 if (!(s->cpuid_ext_features & CPUID_EXT_AES)) {
1412 return false;
1413 } else if (!(s->prefix & PREFIX_VEX)) {
1414 return true;
1415 } else if (!(s->cpuid_ext_features & CPUID_EXT_AVX)) {
1416 return false;
1417 } else {
1418 return !s->vex_l || (s->cpuid_7_0_ecx_features & CPUID_7_0_ECX_VAES);
1419 }
1420
1421 case X86_FEAT_AVX:
1422 return (s->cpuid_ext_features & CPUID_EXT_AVX);
1423
1424 case X86_FEAT_3DNOW:
1425 return (s->cpuid_ext2_features & CPUID_EXT2_3DNOW);
1426 case X86_FEAT_SSE4A:
1427 return (s->cpuid_ext3_features & CPUID_EXT3_SSE4A);
1428
1429 case X86_FEAT_ADX:
1430 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_ADX);
1431 case X86_FEAT_BMI1:
1432 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1);
1433 case X86_FEAT_BMI2:
1434 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI2);
1435 case X86_FEAT_AVX2:
1436 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_AVX2);
1437 }
1438 g_assert_not_reached();
1439 }
1440
1441 static bool validate_vex(DisasContext *s, X86DecodedInsn *decode)
1442 {
1443 X86OpEntry *e = &decode->e;
1444
1445 switch (e->vex_special) {
1446 case X86_VEX_REPScalar:
1447 /*
1448 * Instructions which differ between 00/66 and F2/F3 in the
1449 * exception classification and the size of the memory operand.
1450 */
1451 assert(e->vex_class == 1 || e->vex_class == 2 || e->vex_class == 4);
1452 if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
1453 e->vex_class = e->vex_class < 4 ? 3 : 5;
1454 if (s->vex_l) {
1455 goto illegal;
1456 }
1457 assert(decode->e.s2 == X86_SIZE_x);
1458 if (decode->op[2].has_ea) {
1459 decode->op[2].ot = s->prefix & PREFIX_REPZ ? MO_32 : MO_64;
1460 }
1461 }
1462 break;
1463
1464 case X86_VEX_SSEUnaligned:
1465 /* handled in sse_needs_alignment. */
1466 break;
1467
1468 case X86_VEX_AVX2_256:
1469 if ((s->prefix & PREFIX_VEX) && s->vex_l && !has_cpuid_feature(s, X86_FEAT_AVX2)) {
1470 goto illegal;
1471 }
1472 }
1473
1474 /* TODO: instructions that require VEX.W=0 (Table 2-16) */
1475
1476 switch (e->vex_class) {
1477 case 0:
1478 if (s->prefix & PREFIX_VEX) {
1479 goto illegal;
1480 }
1481 return true;
1482 case 1:
1483 case 2:
1484 case 3:
1485 case 4:
1486 case 5:
1487 case 7:
1488 if (s->prefix & PREFIX_VEX) {
1489 if (!(s->flags & HF_AVX_EN_MASK)) {
1490 goto illegal;
1491 }
1492 } else if (e->special != X86_SPECIAL_MMX ||
1493 (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) {
1494 if (!(s->flags & HF_OSFXSR_MASK)) {
1495 goto illegal;
1496 }
1497 }
1498 break;
1499 case 12:
1500 /* Must have a VSIB byte and no address prefix. */
1501 assert(s->has_modrm);
1502 if ((s->modrm & 7) != 4 || s->aflag == MO_16) {
1503 goto illegal;
1504 }
1505
1506 /* Check no overlap between registers. */
1507 if (!decode->op[0].has_ea &&
1508 (decode->op[0].n == decode->mem.index || decode->op[0].n == decode->op[1].n)) {
1509 goto illegal;
1510 }
1511 assert(!decode->op[1].has_ea);
1512 if (decode->op[1].n == decode->mem.index) {
1513 goto illegal;
1514 }
1515 if (!decode->op[2].has_ea &&
1516 (decode->op[2].n == decode->mem.index || decode->op[2].n == decode->op[1].n)) {
1517 goto illegal;
1518 }
1519 /* fall through */
1520 case 6:
1521 case 11:
1522 if (!(s->prefix & PREFIX_VEX)) {
1523 goto illegal;
1524 }
1525 if (!(s->flags & HF_AVX_EN_MASK)) {
1526 goto illegal;
1527 }
1528 break;
1529 case 8:
1530 /* Non-VEX case handled in decode_0F77. */
1531 assert(s->prefix & PREFIX_VEX);
1532 if (!(s->flags & HF_AVX_EN_MASK)) {
1533 goto illegal;
1534 }
1535 break;
1536 case 13:
1537 if (!(s->prefix & PREFIX_VEX)) {
1538 goto illegal;
1539 }
1540 if (s->vex_l) {
1541 goto illegal;
1542 }
1543 /* All integer instructions use VEX.vvvv, so exit. */
1544 return true;
1545 }
1546
1547 if (s->vex_v != 0 &&
1548 e->op0 != X86_TYPE_H && e->op0 != X86_TYPE_B &&
1549 e->op1 != X86_TYPE_H && e->op1 != X86_TYPE_B &&
1550 e->op2 != X86_TYPE_H && e->op2 != X86_TYPE_B) {
1551 goto illegal;
1552 }
1553
1554 if (s->flags & HF_TS_MASK) {
1555 goto nm_exception;
1556 }
1557 if (s->flags & HF_EM_MASK) {
1558 goto illegal;
1559 }
1560 return true;
1561
1562 nm_exception:
1563 gen_NM_exception(s);
1564 return false;
1565 illegal:
1566 gen_illegal_opcode(s);
1567 return false;
1568 }
1569
1570 /*
1571 * Convert one instruction. s->base.is_jmp is set if the translation must
1572 * be stopped.
1573 */
1574 static void disas_insn_new(DisasContext *s, CPUState *cpu, int b)
1575 {
1576 CPUX86State *env = cpu->env_ptr;
1577 bool first = true;
1578 X86DecodedInsn decode;
1579 X86DecodeFunc decode_func = decode_root;
1580
1581 s->has_modrm = false;
1582
1583 next_byte:
1584 if (first) {
1585 first = false;
1586 } else {
1587 b = x86_ldub_code(env, s);
1588 }
1589 /* Collect prefixes. */
1590 switch (b) {
1591 case 0xf3:
1592 s->prefix |= PREFIX_REPZ;
1593 s->prefix &= ~PREFIX_REPNZ;
1594 goto next_byte;
1595 case 0xf2:
1596 s->prefix |= PREFIX_REPNZ;
1597 s->prefix &= ~PREFIX_REPZ;
1598 goto next_byte;
1599 case 0xf0:
1600 s->prefix |= PREFIX_LOCK;
1601 goto next_byte;
1602 case 0x2e:
1603 s->override = R_CS;
1604 goto next_byte;
1605 case 0x36:
1606 s->override = R_SS;
1607 goto next_byte;
1608 case 0x3e:
1609 s->override = R_DS;
1610 goto next_byte;
1611 case 0x26:
1612 s->override = R_ES;
1613 goto next_byte;
1614 case 0x64:
1615 s->override = R_FS;
1616 goto next_byte;
1617 case 0x65:
1618 s->override = R_GS;
1619 goto next_byte;
1620 case 0x66:
1621 s->prefix |= PREFIX_DATA;
1622 goto next_byte;
1623 case 0x67:
1624 s->prefix |= PREFIX_ADR;
1625 goto next_byte;
1626 #ifdef TARGET_X86_64
1627 case 0x40 ... 0x4f:
1628 if (CODE64(s)) {
1629 /* REX prefix */
1630 s->prefix |= PREFIX_REX;
1631 s->vex_w = (b >> 3) & 1;
1632 s->rex_r = (b & 0x4) << 1;
1633 s->rex_x = (b & 0x2) << 2;
1634 s->rex_b = (b & 0x1) << 3;
1635 goto next_byte;
1636 }
1637 break;
1638 #endif
1639 case 0xc5: /* 2-byte VEX */
1640 case 0xc4: /* 3-byte VEX */
1641 /*
1642 * VEX prefixes cannot be used except in 32-bit mode.
1643 * Otherwise the instruction is LES or LDS.
1644 */
1645 if (CODE32(s) && !VM86(s)) {
1646 static const int pp_prefix[4] = {
1647 0, PREFIX_DATA, PREFIX_REPZ, PREFIX_REPNZ
1648 };
1649 int vex3, vex2 = x86_ldub_code(env, s);
1650
1651 if (!CODE64(s) && (vex2 & 0xc0) != 0xc0) {
1652 /*
1653 * 4.1.4.6: In 32-bit mode, bits [7:6] must be 11b,
1654 * otherwise the instruction is LES or LDS.
1655 */
1656 s->pc--; /* rewind the advance_pc() x86_ldub_code() did */
1657 break;
1658 }
1659
1660 /* 4.1.1-4.1.3: No preceding lock, 66, f2, f3, or rex prefixes. */
1661 if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ
1662 | PREFIX_LOCK | PREFIX_DATA | PREFIX_REX)) {
1663 goto illegal_op;
1664 }
1665 #ifdef TARGET_X86_64
1666 s->rex_r = (~vex2 >> 4) & 8;
1667 #endif
1668 if (b == 0xc5) {
1669 /* 2-byte VEX prefix: RVVVVlpp, implied 0f leading opcode byte */
1670 vex3 = vex2;
1671 decode_func = decode_0F;
1672 } else {
1673 /* 3-byte VEX prefix: RXBmmmmm wVVVVlpp */
1674 vex3 = x86_ldub_code(env, s);
1675 #ifdef TARGET_X86_64
1676 s->rex_x = (~vex2 >> 3) & 8;
1677 s->rex_b = (~vex2 >> 2) & 8;
1678 #endif
1679 s->vex_w = (vex3 >> 7) & 1;
1680 switch (vex2 & 0x1f) {
1681 case 0x01: /* Implied 0f leading opcode bytes. */
1682 decode_func = decode_0F;
1683 break;
1684 case 0x02: /* Implied 0f 38 leading opcode bytes. */
1685 decode_func = decode_0F38;
1686 break;
1687 case 0x03: /* Implied 0f 3a leading opcode bytes. */
1688 decode_func = decode_0F3A;
1689 break;
1690 default: /* Reserved for future use. */
1691 goto unknown_op;
1692 }
1693 }
1694 s->vex_v = (~vex3 >> 3) & 0xf;
1695 s->vex_l = (vex3 >> 2) & 1;
1696 s->prefix |= pp_prefix[vex3 & 3] | PREFIX_VEX;
1697 }
1698 break;
1699 default:
1700 if (b >= 0x100) {
1701 b -= 0x100;
1702 decode_func = do_decode_0F;
1703 }
1704 break;
1705 }
1706
1707 /* Post-process prefixes. */
1708 if (CODE64(s)) {
1709 /*
1710 * In 64-bit mode, the default data size is 32-bit. Select 64-bit
1711 * data with rex_w, and 16-bit data with 0x66; rex_w takes precedence
1712 * over 0x66 if both are present.
1713 */
1714 s->dflag = (REX_W(s) ? MO_64 : s->prefix & PREFIX_DATA ? MO_16 : MO_32);
1715 /* In 64-bit mode, 0x67 selects 32-bit addressing. */
1716 s->aflag = (s->prefix & PREFIX_ADR ? MO_32 : MO_64);
1717 } else {
1718 /* In 16/32-bit mode, 0x66 selects the opposite data size. */
1719 if (CODE32(s) ^ ((s->prefix & PREFIX_DATA) != 0)) {
1720 s->dflag = MO_32;
1721 } else {
1722 s->dflag = MO_16;
1723 }
1724 /* In 16/32-bit mode, 0x67 selects the opposite addressing. */
1725 if (CODE32(s) ^ ((s->prefix & PREFIX_ADR) != 0)) {
1726 s->aflag = MO_32;
1727 } else {
1728 s->aflag = MO_16;
1729 }
1730 }
1731
1732 memset(&decode, 0, sizeof(decode));
1733 decode.b = b;
1734 if (!decode_insn(s, env, decode_func, &decode)) {
1735 goto illegal_op;
1736 }
1737 if (!decode.e.gen) {
1738 goto unknown_op;
1739 }
1740
1741 if (!has_cpuid_feature(s, decode.e.cpuid)) {
1742 goto illegal_op;
1743 }
1744
1745 switch (decode.e.special) {
1746 case X86_SPECIAL_None:
1747 break;
1748
1749 case X86_SPECIAL_Locked:
1750 if (decode.op[0].has_ea) {
1751 s->prefix |= PREFIX_LOCK;
1752 }
1753 break;
1754
1755 case X86_SPECIAL_ProtMode:
1756 if (!PE(s) || VM86(s)) {
1757 goto illegal_op;
1758 }
1759 break;
1760
1761 case X86_SPECIAL_i64:
1762 if (CODE64(s)) {
1763 goto illegal_op;
1764 }
1765 break;
1766 case X86_SPECIAL_o64:
1767 if (!CODE64(s)) {
1768 goto illegal_op;
1769 }
1770 break;
1771
1772 case X86_SPECIAL_ZExtOp0:
1773 assert(decode.op[0].unit == X86_OP_INT);
1774 if (!decode.op[0].has_ea) {
1775 decode.op[0].ot = MO_32;
1776 }
1777 break;
1778
1779 case X86_SPECIAL_ZExtOp2:
1780 assert(decode.op[2].unit == X86_OP_INT);
1781 if (!decode.op[2].has_ea) {
1782 decode.op[2].ot = MO_32;
1783 }
1784 break;
1785
1786 case X86_SPECIAL_AVXExtMov:
1787 if (!decode.op[2].has_ea) {
1788 decode.op[2].ot = s->vex_l ? MO_256 : MO_128;
1789 } else if (s->vex_l) {
1790 decode.op[2].ot++;
1791 }
1792 break;
1793
1794 case X86_SPECIAL_MMX:
1795 if (!(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) {
1796 gen_helper_enter_mmx(cpu_env);
1797 }
1798 break;
1799 }
1800
1801 if (!validate_vex(s, &decode)) {
1802 return;
1803 }
1804 if (decode.op[0].has_ea || decode.op[1].has_ea || decode.op[2].has_ea) {
1805 gen_load_ea(s, &decode.mem, decode.e.vex_class == 12);
1806 }
1807 if (s->prefix & PREFIX_LOCK) {
1808 if (decode.op[0].unit != X86_OP_INT || !decode.op[0].has_ea) {
1809 goto illegal_op;
1810 }
1811 gen_load(s, &decode, 2, s->T1);
1812 decode.e.gen(s, env, &decode);
1813 } else {
1814 if (decode.op[0].unit == X86_OP_MMX) {
1815 compute_mmx_offset(&decode.op[0]);
1816 } else if (decode.op[0].unit == X86_OP_SSE) {
1817 compute_xmm_offset(&decode.op[0]);
1818 }
1819 gen_load(s, &decode, 1, s->T0);
1820 gen_load(s, &decode, 2, s->T1);
1821 decode.e.gen(s, env, &decode);
1822 gen_writeback(s, &decode, 0, s->T0);
1823 }
1824 return;
1825 illegal_op:
1826 gen_illegal_opcode(s);
1827 return;
1828 unknown_op:
1829 gen_unknown_opcode(env, s);
1830 }