]> git.proxmox.com Git - mirror_qemu.git/blob - target/s390x/misc_helper.c
s390x/ioinst: pass the retaddr to all IO instructions
[mirror_qemu.git] / target / s390x / misc_helper.c
1 /*
2 * S/390 misc helper routines
3 *
4 * Copyright (c) 2009 Ulrich Hecht
5 * Copyright (c) 2009 Alexander Graf
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "internal.h"
25 #include "exec/memory.h"
26 #include "qemu/host-utils.h"
27 #include "exec/helper-proto.h"
28 #include "qemu/timer.h"
29 #include "exec/address-spaces.h"
30 #include "exec/exec-all.h"
31 #include "exec/cpu_ldst.h"
32
33 #if !defined(CONFIG_USER_ONLY)
34 #include "sysemu/cpus.h"
35 #include "sysemu/sysemu.h"
36 #include "hw/s390x/ebcdic.h"
37 #include "hw/s390x/s390-virtio-hcall.h"
38 #include "hw/s390x/sclp.h"
39 #endif
40
41 /* #define DEBUG_HELPER */
42 #ifdef DEBUG_HELPER
43 #define HELPER_LOG(x...) qemu_log(x)
44 #else
45 #define HELPER_LOG(x...)
46 #endif
47
48 /* Raise an exception statically from a TB. */
49 void HELPER(exception)(CPUS390XState *env, uint32_t excp)
50 {
51 CPUState *cs = CPU(s390_env_get_cpu(env));
52
53 HELPER_LOG("%s: exception %d\n", __func__, excp);
54 cs->exception_index = excp;
55 cpu_loop_exit(cs);
56 }
57
58 #ifndef CONFIG_USER_ONLY
59
60 /* SCLP service call */
61 uint32_t HELPER(servc)(CPUS390XState *env, uint64_t r1, uint64_t r2)
62 {
63 qemu_mutex_lock_iothread();
64 int r = sclp_service_call(env, r1, r2);
65 if (r < 0) {
66 program_interrupt(env, -r, 4);
67 r = 0;
68 }
69 qemu_mutex_unlock_iothread();
70 return r;
71 }
72
73 void HELPER(diag)(CPUS390XState *env, uint32_t r1, uint32_t r3, uint32_t num)
74 {
75 uint64_t r;
76
77 switch (num) {
78 case 0x500:
79 /* KVM hypercall */
80 qemu_mutex_lock_iothread();
81 r = s390_virtio_hypercall(env);
82 qemu_mutex_unlock_iothread();
83 break;
84 case 0x44:
85 /* yield */
86 r = 0;
87 break;
88 case 0x308:
89 /* ipl */
90 qemu_mutex_lock_iothread();
91 handle_diag_308(env, r1, r3);
92 qemu_mutex_unlock_iothread();
93 r = 0;
94 break;
95 case 0x288:
96 /* time bomb (watchdog) */
97 r = handle_diag_288(env, r1, r3);
98 break;
99 default:
100 r = -1;
101 break;
102 }
103
104 if (r) {
105 program_interrupt(env, PGM_SPECIFICATION, ILEN_AUTO);
106 }
107 }
108
109 /* Set Prefix */
110 void HELPER(spx)(CPUS390XState *env, uint64_t a1)
111 {
112 CPUState *cs = CPU(s390_env_get_cpu(env));
113 uint32_t prefix = a1 & 0x7fffe000;
114
115 env->psa = prefix;
116 HELPER_LOG("prefix: %#x\n", prefix);
117 tlb_flush_page(cs, 0);
118 tlb_flush_page(cs, TARGET_PAGE_SIZE);
119 }
120
121 /* Store Clock */
122 uint64_t HELPER(stck)(CPUS390XState *env)
123 {
124 uint64_t time;
125
126 time = env->tod_offset +
127 time2tod(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - env->tod_basetime);
128
129 return time;
130 }
131
132 /* Set Clock Comparator */
133 void HELPER(sckc)(CPUS390XState *env, uint64_t time)
134 {
135 if (time == -1ULL) {
136 return;
137 }
138
139 env->ckc = time;
140
141 /* difference between origins */
142 time -= env->tod_offset;
143
144 /* nanoseconds */
145 time = tod2time(time);
146
147 timer_mod(env->tod_timer, env->tod_basetime + time);
148 }
149
150 /* Store Clock Comparator */
151 uint64_t HELPER(stckc)(CPUS390XState *env)
152 {
153 return env->ckc;
154 }
155
156 /* Set CPU Timer */
157 void HELPER(spt)(CPUS390XState *env, uint64_t time)
158 {
159 if (time == -1ULL) {
160 return;
161 }
162
163 /* nanoseconds */
164 time = tod2time(time);
165
166 env->cputm = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + time;
167
168 timer_mod(env->cpu_timer, env->cputm);
169 }
170
171 /* Store CPU Timer */
172 uint64_t HELPER(stpt)(CPUS390XState *env)
173 {
174 return time2tod(env->cputm - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
175 }
176
177 /* Store System Information */
178 uint32_t HELPER(stsi)(CPUS390XState *env, uint64_t a0,
179 uint64_t r0, uint64_t r1)
180 {
181 S390CPU *cpu = s390_env_get_cpu(env);
182 int cc = 0;
183 int sel1, sel2;
184
185 if ((r0 & STSI_LEVEL_MASK) <= STSI_LEVEL_3 &&
186 ((r0 & STSI_R0_RESERVED_MASK) || (r1 & STSI_R1_RESERVED_MASK))) {
187 /* valid function code, invalid reserved bits */
188 program_interrupt(env, PGM_SPECIFICATION, 4);
189 }
190
191 sel1 = r0 & STSI_R0_SEL1_MASK;
192 sel2 = r1 & STSI_R1_SEL2_MASK;
193
194 /* XXX: spec exception if sysib is not 4k-aligned */
195
196 switch (r0 & STSI_LEVEL_MASK) {
197 case STSI_LEVEL_1:
198 if ((sel1 == 1) && (sel2 == 1)) {
199 /* Basic Machine Configuration */
200 struct sysib_111 sysib;
201 char type[5] = {};
202
203 memset(&sysib, 0, sizeof(sysib));
204 ebcdic_put(sysib.manuf, "QEMU ", 16);
205 /* same as machine type number in STORE CPU ID, but in EBCDIC */
206 snprintf(type, ARRAY_SIZE(type), "%X", cpu->model->def->type);
207 ebcdic_put(sysib.type, type, 4);
208 /* model number (not stored in STORE CPU ID for z/Architecure) */
209 ebcdic_put(sysib.model, "QEMU ", 16);
210 ebcdic_put(sysib.sequence, "QEMU ", 16);
211 ebcdic_put(sysib.plant, "QEMU", 4);
212 cpu_physical_memory_write(a0, &sysib, sizeof(sysib));
213 } else if ((sel1 == 2) && (sel2 == 1)) {
214 /* Basic Machine CPU */
215 struct sysib_121 sysib;
216
217 memset(&sysib, 0, sizeof(sysib));
218 /* XXX make different for different CPUs? */
219 ebcdic_put(sysib.sequence, "QEMUQEMUQEMUQEMU", 16);
220 ebcdic_put(sysib.plant, "QEMU", 4);
221 stw_p(&sysib.cpu_addr, env->core_id);
222 cpu_physical_memory_write(a0, &sysib, sizeof(sysib));
223 } else if ((sel1 == 2) && (sel2 == 2)) {
224 /* Basic Machine CPUs */
225 struct sysib_122 sysib;
226
227 memset(&sysib, 0, sizeof(sysib));
228 stl_p(&sysib.capability, 0x443afc29);
229 /* XXX change when SMP comes */
230 stw_p(&sysib.total_cpus, 1);
231 stw_p(&sysib.active_cpus, 1);
232 stw_p(&sysib.standby_cpus, 0);
233 stw_p(&sysib.reserved_cpus, 0);
234 cpu_physical_memory_write(a0, &sysib, sizeof(sysib));
235 } else {
236 cc = 3;
237 }
238 break;
239 case STSI_LEVEL_2:
240 {
241 if ((sel1 == 2) && (sel2 == 1)) {
242 /* LPAR CPU */
243 struct sysib_221 sysib;
244
245 memset(&sysib, 0, sizeof(sysib));
246 /* XXX make different for different CPUs? */
247 ebcdic_put(sysib.sequence, "QEMUQEMUQEMUQEMU", 16);
248 ebcdic_put(sysib.plant, "QEMU", 4);
249 stw_p(&sysib.cpu_addr, env->core_id);
250 stw_p(&sysib.cpu_id, 0);
251 cpu_physical_memory_write(a0, &sysib, sizeof(sysib));
252 } else if ((sel1 == 2) && (sel2 == 2)) {
253 /* LPAR CPUs */
254 struct sysib_222 sysib;
255
256 memset(&sysib, 0, sizeof(sysib));
257 stw_p(&sysib.lpar_num, 0);
258 sysib.lcpuc = 0;
259 /* XXX change when SMP comes */
260 stw_p(&sysib.total_cpus, 1);
261 stw_p(&sysib.conf_cpus, 1);
262 stw_p(&sysib.standby_cpus, 0);
263 stw_p(&sysib.reserved_cpus, 0);
264 ebcdic_put(sysib.name, "QEMU ", 8);
265 stl_p(&sysib.caf, 1000);
266 stw_p(&sysib.dedicated_cpus, 0);
267 stw_p(&sysib.shared_cpus, 0);
268 cpu_physical_memory_write(a0, &sysib, sizeof(sysib));
269 } else {
270 cc = 3;
271 }
272 break;
273 }
274 case STSI_LEVEL_3:
275 {
276 if ((sel1 == 2) && (sel2 == 2)) {
277 /* VM CPUs */
278 struct sysib_322 sysib;
279
280 memset(&sysib, 0, sizeof(sysib));
281 sysib.count = 1;
282 /* XXX change when SMP comes */
283 stw_p(&sysib.vm[0].total_cpus, 1);
284 stw_p(&sysib.vm[0].conf_cpus, 1);
285 stw_p(&sysib.vm[0].standby_cpus, 0);
286 stw_p(&sysib.vm[0].reserved_cpus, 0);
287 ebcdic_put(sysib.vm[0].name, "KVMguest", 8);
288 stl_p(&sysib.vm[0].caf, 1000);
289 ebcdic_put(sysib.vm[0].cpi, "KVM/Linux ", 16);
290 cpu_physical_memory_write(a0, &sysib, sizeof(sysib));
291 } else {
292 cc = 3;
293 }
294 break;
295 }
296 case STSI_LEVEL_CURRENT:
297 env->regs[0] = STSI_LEVEL_3;
298 break;
299 default:
300 cc = 3;
301 break;
302 }
303
304 return cc;
305 }
306
307 uint32_t HELPER(sigp)(CPUS390XState *env, uint64_t order_code, uint32_t r1,
308 uint32_t r3)
309 {
310 int cc;
311
312 /* TODO: needed to inject interrupts - push further down */
313 qemu_mutex_lock_iothread();
314 cc = handle_sigp(env, order_code & SIGP_ORDER_MASK, r1, r3);
315 qemu_mutex_unlock_iothread();
316
317 return cc;
318 }
319 #endif
320
321 #ifndef CONFIG_USER_ONLY
322 void HELPER(xsch)(CPUS390XState *env, uint64_t r1)
323 {
324 S390CPU *cpu = s390_env_get_cpu(env);
325 qemu_mutex_lock_iothread();
326 ioinst_handle_xsch(cpu, r1, GETPC());
327 qemu_mutex_unlock_iothread();
328 }
329
330 void HELPER(csch)(CPUS390XState *env, uint64_t r1)
331 {
332 S390CPU *cpu = s390_env_get_cpu(env);
333 qemu_mutex_lock_iothread();
334 ioinst_handle_csch(cpu, r1, GETPC());
335 qemu_mutex_unlock_iothread();
336 }
337
338 void HELPER(hsch)(CPUS390XState *env, uint64_t r1)
339 {
340 S390CPU *cpu = s390_env_get_cpu(env);
341 qemu_mutex_lock_iothread();
342 ioinst_handle_hsch(cpu, r1, GETPC());
343 qemu_mutex_unlock_iothread();
344 }
345
346 void HELPER(msch)(CPUS390XState *env, uint64_t r1, uint64_t inst)
347 {
348 S390CPU *cpu = s390_env_get_cpu(env);
349 qemu_mutex_lock_iothread();
350 ioinst_handle_msch(cpu, r1, inst >> 16, GETPC());
351 qemu_mutex_unlock_iothread();
352 }
353
354 void HELPER(rchp)(CPUS390XState *env, uint64_t r1)
355 {
356 S390CPU *cpu = s390_env_get_cpu(env);
357 qemu_mutex_lock_iothread();
358 ioinst_handle_rchp(cpu, r1, GETPC());
359 qemu_mutex_unlock_iothread();
360 }
361
362 void HELPER(rsch)(CPUS390XState *env, uint64_t r1)
363 {
364 S390CPU *cpu = s390_env_get_cpu(env);
365 qemu_mutex_lock_iothread();
366 ioinst_handle_rsch(cpu, r1, GETPC());
367 qemu_mutex_unlock_iothread();
368 }
369
370 void HELPER(ssch)(CPUS390XState *env, uint64_t r1, uint64_t inst)
371 {
372 S390CPU *cpu = s390_env_get_cpu(env);
373 qemu_mutex_lock_iothread();
374 ioinst_handle_ssch(cpu, r1, inst >> 16, GETPC());
375 qemu_mutex_unlock_iothread();
376 }
377
378 void HELPER(stsch)(CPUS390XState *env, uint64_t r1, uint64_t inst)
379 {
380 S390CPU *cpu = s390_env_get_cpu(env);
381 qemu_mutex_lock_iothread();
382 ioinst_handle_stsch(cpu, r1, inst >> 16, GETPC());
383 qemu_mutex_unlock_iothread();
384 }
385
386 void HELPER(tsch)(CPUS390XState *env, uint64_t r1, uint64_t inst)
387 {
388 S390CPU *cpu = s390_env_get_cpu(env);
389 qemu_mutex_lock_iothread();
390 ioinst_handle_tsch(cpu, r1, inst >> 16, GETPC());
391 qemu_mutex_unlock_iothread();
392 }
393
394 void HELPER(chsc)(CPUS390XState *env, uint64_t inst)
395 {
396 S390CPU *cpu = s390_env_get_cpu(env);
397 qemu_mutex_lock_iothread();
398 ioinst_handle_chsc(cpu, inst >> 16, GETPC());
399 qemu_mutex_unlock_iothread();
400 }
401 #endif
402
403 #ifndef CONFIG_USER_ONLY
404 void HELPER(per_check_exception)(CPUS390XState *env)
405 {
406 uint32_t ilen;
407
408 if (env->per_perc_atmid) {
409 /*
410 * FIXME: ILEN_AUTO is most probably the right thing to use. ilen
411 * always has to match the instruction referenced in the PSW. E.g.
412 * if a PER interrupt is triggered via EXECUTE, we have to use ilen
413 * of EXECUTE, while per_address contains the target of EXECUTE.
414 */
415 ilen = get_ilen(cpu_ldub_code(env, env->per_address));
416 program_interrupt(env, PGM_PER, ilen);
417 }
418 }
419
420 /* Check if an address is within the PER starting address and the PER
421 ending address. The address range might loop. */
422 static inline bool get_per_in_range(CPUS390XState *env, uint64_t addr)
423 {
424 if (env->cregs[10] <= env->cregs[11]) {
425 return env->cregs[10] <= addr && addr <= env->cregs[11];
426 } else {
427 return env->cregs[10] <= addr || addr <= env->cregs[11];
428 }
429 }
430
431 void HELPER(per_branch)(CPUS390XState *env, uint64_t from, uint64_t to)
432 {
433 if ((env->cregs[9] & PER_CR9_EVENT_BRANCH)) {
434 if (!(env->cregs[9] & PER_CR9_CONTROL_BRANCH_ADDRESS)
435 || get_per_in_range(env, to)) {
436 env->per_address = from;
437 env->per_perc_atmid = PER_CODE_EVENT_BRANCH | get_per_atmid(env);
438 }
439 }
440 }
441
442 void HELPER(per_ifetch)(CPUS390XState *env, uint64_t addr)
443 {
444 if ((env->cregs[9] & PER_CR9_EVENT_IFETCH) && get_per_in_range(env, addr)) {
445 env->per_address = addr;
446 env->per_perc_atmid = PER_CODE_EVENT_IFETCH | get_per_atmid(env);
447
448 /* If the instruction has to be nullified, trigger the
449 exception immediately. */
450 if (env->cregs[9] & PER_CR9_EVENT_NULLIFICATION) {
451 CPUState *cs = CPU(s390_env_get_cpu(env));
452
453 env->per_perc_atmid |= PER_CODE_EVENT_NULLIFICATION;
454 env->int_pgm_code = PGM_PER;
455 env->int_pgm_ilen = get_ilen(cpu_ldub_code(env, addr));
456
457 cs->exception_index = EXCP_PGM;
458 cpu_loop_exit(cs);
459 }
460 }
461 }
462 #endif
463
464 static uint8_t stfl_bytes[2048];
465 static unsigned int used_stfl_bytes;
466
467 static void prepare_stfl(void)
468 {
469 static bool initialized;
470 int i;
471
472 /* racy, but we don't care, the same values are always written */
473 if (initialized) {
474 return;
475 }
476
477 s390_get_feat_block(S390_FEAT_TYPE_STFL, stfl_bytes);
478 for (i = 0; i < sizeof(stfl_bytes); i++) {
479 if (stfl_bytes[i]) {
480 used_stfl_bytes = i + 1;
481 }
482 }
483 initialized = true;
484 }
485
486 #ifndef CONFIG_USER_ONLY
487 void HELPER(stfl)(CPUS390XState *env)
488 {
489 LowCore *lowcore;
490
491 lowcore = cpu_map_lowcore(env);
492 prepare_stfl();
493 memcpy(&lowcore->stfl_fac_list, stfl_bytes, sizeof(lowcore->stfl_fac_list));
494 cpu_unmap_lowcore(lowcore);
495 }
496 #endif
497
498 uint32_t HELPER(stfle)(CPUS390XState *env, uint64_t addr)
499 {
500 const uintptr_t ra = GETPC();
501 const int count_bytes = ((env->regs[0] & 0xff) + 1) * 8;
502 const int max_bytes = ROUND_UP(used_stfl_bytes, 8);
503 int i;
504
505 if (addr & 0x7) {
506 s390_program_interrupt(env, PGM_SPECIFICATION, 4, ra);
507 }
508
509 prepare_stfl();
510 for (i = 0; i < count_bytes; ++i) {
511 cpu_stb_data_ra(env, addr + i, stfl_bytes[i], ra);
512 }
513
514 env->regs[0] = deposit64(env->regs[0], 0, 8, (max_bytes / 8) - 1);
515 return count_bytes >= max_bytes ? 0 : 3;
516 }