]> git.proxmox.com Git - mirror_qemu.git/blob - target/sparc/mmu_helper.c
Merge remote-tracking branch 'remotes/berrange/tags/hmp-x-qmp-620-pull-request' into...
[mirror_qemu.git] / target / sparc / mmu_helper.c
1 /*
2 * Sparc MMU helpers
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/qemu-print.h"
24 #include "trace.h"
25
26 /* Sparc MMU emulation */
27
28 #ifndef TARGET_SPARC64
29 /*
30 * Sparc V8 Reference MMU (SRMMU)
31 */
32 static const int access_table[8][8] = {
33 { 0, 0, 0, 0, 8, 0, 12, 12 },
34 { 0, 0, 0, 0, 8, 0, 0, 0 },
35 { 8, 8, 0, 0, 0, 8, 12, 12 },
36 { 8, 8, 0, 0, 0, 8, 0, 0 },
37 { 8, 0, 8, 0, 8, 8, 12, 12 },
38 { 8, 0, 8, 0, 8, 0, 8, 0 },
39 { 8, 8, 8, 0, 8, 8, 12, 12 },
40 { 8, 8, 8, 0, 8, 8, 8, 0 }
41 };
42
43 static const int perm_table[2][8] = {
44 {
45 PAGE_READ,
46 PAGE_READ | PAGE_WRITE,
47 PAGE_READ | PAGE_EXEC,
48 PAGE_READ | PAGE_WRITE | PAGE_EXEC,
49 PAGE_EXEC,
50 PAGE_READ | PAGE_WRITE,
51 PAGE_READ | PAGE_EXEC,
52 PAGE_READ | PAGE_WRITE | PAGE_EXEC
53 },
54 {
55 PAGE_READ,
56 PAGE_READ | PAGE_WRITE,
57 PAGE_READ | PAGE_EXEC,
58 PAGE_READ | PAGE_WRITE | PAGE_EXEC,
59 PAGE_EXEC,
60 PAGE_READ,
61 0,
62 0,
63 }
64 };
65
66 static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
67 int *prot, int *access_index, MemTxAttrs *attrs,
68 target_ulong address, int rw, int mmu_idx,
69 target_ulong *page_size)
70 {
71 int access_perms = 0;
72 hwaddr pde_ptr;
73 uint32_t pde;
74 int error_code = 0, is_dirty, is_user;
75 unsigned long page_offset;
76 CPUState *cs = env_cpu(env);
77 MemTxResult result;
78
79 is_user = mmu_idx == MMU_USER_IDX;
80
81 if (mmu_idx == MMU_PHYS_IDX) {
82 *page_size = TARGET_PAGE_SIZE;
83 /* Boot mode: instruction fetches are taken from PROM */
84 if (rw == 2 && (env->mmuregs[0] & env->def.mmu_bm)) {
85 *physical = env->prom_addr | (address & 0x7ffffULL);
86 *prot = PAGE_READ | PAGE_EXEC;
87 return 0;
88 }
89 *physical = address;
90 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
91 return 0;
92 }
93
94 *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user ? 0 : 1);
95 *physical = 0xffffffffffff0000ULL;
96
97 /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
98 /* Context base + context number */
99 pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
100 pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
101 if (result != MEMTX_OK) {
102 return 4 << 2; /* Translation fault, L = 0 */
103 }
104
105 /* Ctx pde */
106 switch (pde & PTE_ENTRYTYPE_MASK) {
107 default:
108 case 0: /* Invalid */
109 return 1 << 2;
110 case 2: /* L0 PTE, maybe should not happen? */
111 case 3: /* Reserved */
112 return 4 << 2;
113 case 1: /* L0 PDE */
114 pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
115 pde = address_space_ldl(cs->as, pde_ptr,
116 MEMTXATTRS_UNSPECIFIED, &result);
117 if (result != MEMTX_OK) {
118 return (1 << 8) | (4 << 2); /* Translation fault, L = 1 */
119 }
120
121 switch (pde & PTE_ENTRYTYPE_MASK) {
122 default:
123 case 0: /* Invalid */
124 return (1 << 8) | (1 << 2);
125 case 3: /* Reserved */
126 return (1 << 8) | (4 << 2);
127 case 1: /* L1 PDE */
128 pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
129 pde = address_space_ldl(cs->as, pde_ptr,
130 MEMTXATTRS_UNSPECIFIED, &result);
131 if (result != MEMTX_OK) {
132 return (2 << 8) | (4 << 2); /* Translation fault, L = 2 */
133 }
134
135 switch (pde & PTE_ENTRYTYPE_MASK) {
136 default:
137 case 0: /* Invalid */
138 return (2 << 8) | (1 << 2);
139 case 3: /* Reserved */
140 return (2 << 8) | (4 << 2);
141 case 1: /* L2 PDE */
142 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
143 pde = address_space_ldl(cs->as, pde_ptr,
144 MEMTXATTRS_UNSPECIFIED, &result);
145 if (result != MEMTX_OK) {
146 return (3 << 8) | (4 << 2); /* Translation fault, L = 3 */
147 }
148
149 switch (pde & PTE_ENTRYTYPE_MASK) {
150 default:
151 case 0: /* Invalid */
152 return (3 << 8) | (1 << 2);
153 case 1: /* PDE, should not happen */
154 case 3: /* Reserved */
155 return (3 << 8) | (4 << 2);
156 case 2: /* L3 PTE */
157 page_offset = 0;
158 }
159 *page_size = TARGET_PAGE_SIZE;
160 break;
161 case 2: /* L2 PTE */
162 page_offset = address & 0x3f000;
163 *page_size = 0x40000;
164 }
165 break;
166 case 2: /* L1 PTE */
167 page_offset = address & 0xfff000;
168 *page_size = 0x1000000;
169 }
170 }
171
172 /* check access */
173 access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
174 error_code = access_table[*access_index][access_perms];
175 if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user)) {
176 return error_code;
177 }
178
179 /* update page modified and dirty bits */
180 is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
181 if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
182 pde |= PG_ACCESSED_MASK;
183 if (is_dirty) {
184 pde |= PG_MODIFIED_MASK;
185 }
186 stl_phys_notdirty(cs->as, pde_ptr, pde);
187 }
188
189 /* the page can be put in the TLB */
190 *prot = perm_table[is_user][access_perms];
191 if (!(pde & PG_MODIFIED_MASK)) {
192 /* only set write access if already dirty... otherwise wait
193 for dirty access */
194 *prot &= ~PAGE_WRITE;
195 }
196
197 /* Even if large ptes, we map only one 4KB page in the cache to
198 avoid filling it too fast */
199 *physical = ((hwaddr)(pde & PTE_ADDR_MASK) << 4) + page_offset;
200 return error_code;
201 }
202
203 /* Perform address translation */
204 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
205 MMUAccessType access_type, int mmu_idx,
206 bool probe, uintptr_t retaddr)
207 {
208 SPARCCPU *cpu = SPARC_CPU(cs);
209 CPUSPARCState *env = &cpu->env;
210 hwaddr paddr;
211 target_ulong vaddr;
212 target_ulong page_size;
213 int error_code = 0, prot, access_index;
214 MemTxAttrs attrs = {};
215
216 /*
217 * TODO: If we ever need tlb_vaddr_to_host for this target,
218 * then we must figure out how to manipulate FSR and FAR
219 * when both MMU_NF and probe are set. In the meantime,
220 * do not support this use case.
221 */
222 assert(!probe);
223
224 address &= TARGET_PAGE_MASK;
225 error_code = get_physical_address(env, &paddr, &prot, &access_index, &attrs,
226 address, access_type,
227 mmu_idx, &page_size);
228 vaddr = address;
229 if (likely(error_code == 0)) {
230 qemu_log_mask(CPU_LOG_MMU,
231 "Translate at %" VADDR_PRIx " -> "
232 TARGET_FMT_plx ", vaddr " TARGET_FMT_lx "\n",
233 address, paddr, vaddr);
234 tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, page_size);
235 return true;
236 }
237
238 if (env->mmuregs[3]) { /* Fault status register */
239 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
240 }
241 env->mmuregs[3] |= (access_index << 5) | error_code | 2;
242 env->mmuregs[4] = address; /* Fault address register */
243
244 if ((env->mmuregs[0] & MMU_NF) || env->psret == 0) {
245 /* No fault mode: if a mapping is available, just override
246 permissions. If no mapping is available, redirect accesses to
247 neverland. Fake/overridden mappings will be flushed when
248 switching to normal mode. */
249 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
250 tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, TARGET_PAGE_SIZE);
251 return true;
252 } else {
253 if (access_type == MMU_INST_FETCH) {
254 cs->exception_index = TT_TFAULT;
255 } else {
256 cs->exception_index = TT_DFAULT;
257 }
258 cpu_loop_exit_restore(cs, retaddr);
259 }
260 }
261
262 target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev)
263 {
264 CPUState *cs = env_cpu(env);
265 hwaddr pde_ptr;
266 uint32_t pde;
267 MemTxResult result;
268
269 /*
270 * TODO: MMU probe operations are supposed to set the fault
271 * status registers, but we don't do this.
272 */
273
274 /* Context base + context number */
275 pde_ptr = (hwaddr)(env->mmuregs[1] << 4) +
276 (env->mmuregs[2] << 2);
277 pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
278 if (result != MEMTX_OK) {
279 return 0;
280 }
281
282 switch (pde & PTE_ENTRYTYPE_MASK) {
283 default:
284 case 0: /* Invalid */
285 case 2: /* PTE, maybe should not happen? */
286 case 3: /* Reserved */
287 return 0;
288 case 1: /* L1 PDE */
289 if (mmulev == 3) {
290 return pde;
291 }
292 pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
293 pde = address_space_ldl(cs->as, pde_ptr,
294 MEMTXATTRS_UNSPECIFIED, &result);
295 if (result != MEMTX_OK) {
296 return 0;
297 }
298
299 switch (pde & PTE_ENTRYTYPE_MASK) {
300 default:
301 case 0: /* Invalid */
302 case 3: /* Reserved */
303 return 0;
304 case 2: /* L1 PTE */
305 return pde;
306 case 1: /* L2 PDE */
307 if (mmulev == 2) {
308 return pde;
309 }
310 pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
311 pde = address_space_ldl(cs->as, pde_ptr,
312 MEMTXATTRS_UNSPECIFIED, &result);
313 if (result != MEMTX_OK) {
314 return 0;
315 }
316
317 switch (pde & PTE_ENTRYTYPE_MASK) {
318 default:
319 case 0: /* Invalid */
320 case 3: /* Reserved */
321 return 0;
322 case 2: /* L2 PTE */
323 return pde;
324 case 1: /* L3 PDE */
325 if (mmulev == 1) {
326 return pde;
327 }
328 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
329 pde = address_space_ldl(cs->as, pde_ptr,
330 MEMTXATTRS_UNSPECIFIED, &result);
331 if (result != MEMTX_OK) {
332 return 0;
333 }
334
335 switch (pde & PTE_ENTRYTYPE_MASK) {
336 default:
337 case 0: /* Invalid */
338 case 1: /* PDE, should not happen */
339 case 3: /* Reserved */
340 return 0;
341 case 2: /* L3 PTE */
342 return pde;
343 }
344 }
345 }
346 }
347 return 0;
348 }
349
350 void dump_mmu(CPUSPARCState *env)
351 {
352 CPUState *cs = env_cpu(env);
353 target_ulong va, va1, va2;
354 unsigned int n, m, o;
355 hwaddr pa;
356 uint32_t pde;
357
358 qemu_printf("Root ptr: " TARGET_FMT_plx ", ctx: %d\n",
359 (hwaddr)env->mmuregs[1] << 4, env->mmuregs[2]);
360 for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
361 pde = mmu_probe(env, va, 2);
362 if (pde) {
363 pa = cpu_get_phys_page_debug(cs, va);
364 qemu_printf("VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx
365 " PDE: " TARGET_FMT_lx "\n", va, pa, pde);
366 for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
367 pde = mmu_probe(env, va1, 1);
368 if (pde) {
369 pa = cpu_get_phys_page_debug(cs, va1);
370 qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
371 TARGET_FMT_plx " PDE: " TARGET_FMT_lx "\n",
372 va1, pa, pde);
373 for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
374 pde = mmu_probe(env, va2, 0);
375 if (pde) {
376 pa = cpu_get_phys_page_debug(cs, va2);
377 qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
378 TARGET_FMT_plx " PTE: "
379 TARGET_FMT_lx "\n",
380 va2, pa, pde);
381 }
382 }
383 }
384 }
385 }
386 }
387 }
388
389 /* Gdb expects all registers windows to be flushed in ram. This function handles
390 * reads (and only reads) in stack frames as if windows were flushed. We assume
391 * that the sparc ABI is followed.
392 */
393 int sparc_cpu_memory_rw_debug(CPUState *cs, vaddr address,
394 uint8_t *buf, int len, bool is_write)
395 {
396 SPARCCPU *cpu = SPARC_CPU(cs);
397 CPUSPARCState *env = &cpu->env;
398 target_ulong addr = address;
399 int i;
400 int len1;
401 int cwp = env->cwp;
402
403 if (!is_write) {
404 for (i = 0; i < env->nwindows; i++) {
405 int off;
406 target_ulong fp = env->regbase[cwp * 16 + 22];
407
408 /* Assume fp == 0 means end of frame. */
409 if (fp == 0) {
410 break;
411 }
412
413 cwp = cpu_cwp_inc(env, cwp + 1);
414
415 /* Invalid window ? */
416 if (env->wim & (1 << cwp)) {
417 break;
418 }
419
420 /* According to the ABI, the stack is growing downward. */
421 if (addr + len < fp) {
422 break;
423 }
424
425 /* Not in this frame. */
426 if (addr > fp + 64) {
427 continue;
428 }
429
430 /* Handle access before this window. */
431 if (addr < fp) {
432 len1 = fp - addr;
433 if (cpu_memory_rw_debug(cs, addr, buf, len1, is_write) != 0) {
434 return -1;
435 }
436 addr += len1;
437 len -= len1;
438 buf += len1;
439 }
440
441 /* Access byte per byte to registers. Not very efficient but speed
442 * is not critical.
443 */
444 off = addr - fp;
445 len1 = 64 - off;
446
447 if (len1 > len) {
448 len1 = len;
449 }
450
451 for (; len1; len1--) {
452 int reg = cwp * 16 + 8 + (off >> 2);
453 union {
454 uint32_t v;
455 uint8_t c[4];
456 } u;
457 u.v = cpu_to_be32(env->regbase[reg]);
458 *buf++ = u.c[off & 3];
459 addr++;
460 len--;
461 off++;
462 }
463
464 if (len == 0) {
465 return 0;
466 }
467 }
468 }
469 return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
470 }
471
472 #else /* !TARGET_SPARC64 */
473
474 /* 41 bit physical address space */
475 static inline hwaddr ultrasparc_truncate_physical(uint64_t x)
476 {
477 return x & 0x1ffffffffffULL;
478 }
479
480 /*
481 * UltraSparc IIi I/DMMUs
482 */
483
484 /* Returns true if TTE tag is valid and matches virtual address value
485 in context requires virtual address mask value calculated from TTE
486 entry size */
487 static inline int ultrasparc_tag_match(SparcTLBEntry *tlb,
488 uint64_t address, uint64_t context,
489 hwaddr *physical)
490 {
491 uint64_t mask = -(8192ULL << 3 * TTE_PGSIZE(tlb->tte));
492
493 /* valid, context match, virtual address match? */
494 if (TTE_IS_VALID(tlb->tte) &&
495 (TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context))
496 && compare_masked(address, tlb->tag, mask)) {
497 /* decode physical address */
498 *physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL;
499 return 1;
500 }
501
502 return 0;
503 }
504
505 static uint64_t build_sfsr(CPUSPARCState *env, int mmu_idx, int rw)
506 {
507 uint64_t sfsr = SFSR_VALID_BIT;
508
509 switch (mmu_idx) {
510 case MMU_PHYS_IDX:
511 sfsr |= SFSR_CT_NOTRANS;
512 break;
513 case MMU_USER_IDX:
514 case MMU_KERNEL_IDX:
515 sfsr |= SFSR_CT_PRIMARY;
516 break;
517 case MMU_USER_SECONDARY_IDX:
518 case MMU_KERNEL_SECONDARY_IDX:
519 sfsr |= SFSR_CT_SECONDARY;
520 break;
521 case MMU_NUCLEUS_IDX:
522 sfsr |= SFSR_CT_NUCLEUS;
523 break;
524 default:
525 g_assert_not_reached();
526 }
527
528 if (rw == 1) {
529 sfsr |= SFSR_WRITE_BIT;
530 } else if (rw == 4) {
531 sfsr |= SFSR_NF_BIT;
532 }
533
534 if (env->pstate & PS_PRIV) {
535 sfsr |= SFSR_PR_BIT;
536 }
537
538 if (env->dmmu.sfsr & SFSR_VALID_BIT) { /* Fault status register */
539 sfsr |= SFSR_OW_BIT; /* overflow (not read before another fault) */
540 }
541
542 /* FIXME: ASI field in SFSR must be set */
543
544 return sfsr;
545 }
546
547 static int get_physical_address_data(CPUSPARCState *env, hwaddr *physical,
548 int *prot, MemTxAttrs *attrs,
549 target_ulong address, int rw, int mmu_idx)
550 {
551 CPUState *cs = env_cpu(env);
552 unsigned int i;
553 uint64_t sfsr;
554 uint64_t context;
555 bool is_user = false;
556
557 sfsr = build_sfsr(env, mmu_idx, rw);
558
559 switch (mmu_idx) {
560 case MMU_PHYS_IDX:
561 g_assert_not_reached();
562 case MMU_USER_IDX:
563 is_user = true;
564 /* fallthru */
565 case MMU_KERNEL_IDX:
566 context = env->dmmu.mmu_primary_context & 0x1fff;
567 break;
568 case MMU_USER_SECONDARY_IDX:
569 is_user = true;
570 /* fallthru */
571 case MMU_KERNEL_SECONDARY_IDX:
572 context = env->dmmu.mmu_secondary_context & 0x1fff;
573 break;
574 default:
575 context = 0;
576 break;
577 }
578
579 for (i = 0; i < 64; i++) {
580 /* ctx match, vaddr match, valid? */
581 if (ultrasparc_tag_match(&env->dtlb[i], address, context, physical)) {
582 int do_fault = 0;
583
584 if (TTE_IS_IE(env->dtlb[i].tte)) {
585 attrs->byte_swap = true;
586 }
587
588 /* access ok? */
589 /* multiple bits in SFSR.FT may be set on TT_DFAULT */
590 if (TTE_IS_PRIV(env->dtlb[i].tte) && is_user) {
591 do_fault = 1;
592 sfsr |= SFSR_FT_PRIV_BIT; /* privilege violation */
593 trace_mmu_helper_dfault(address, context, mmu_idx, env->tl);
594 }
595 if (rw == 4) {
596 if (TTE_IS_SIDEEFFECT(env->dtlb[i].tte)) {
597 do_fault = 1;
598 sfsr |= SFSR_FT_NF_E_BIT;
599 }
600 } else {
601 if (TTE_IS_NFO(env->dtlb[i].tte)) {
602 do_fault = 1;
603 sfsr |= SFSR_FT_NFO_BIT;
604 }
605 }
606
607 if (do_fault) {
608 /* faults above are reported with TT_DFAULT. */
609 cs->exception_index = TT_DFAULT;
610 } else if (!TTE_IS_W_OK(env->dtlb[i].tte) && (rw == 1)) {
611 do_fault = 1;
612 cs->exception_index = TT_DPROT;
613
614 trace_mmu_helper_dprot(address, context, mmu_idx, env->tl);
615 }
616
617 if (!do_fault) {
618 *prot = PAGE_READ;
619 if (TTE_IS_W_OK(env->dtlb[i].tte)) {
620 *prot |= PAGE_WRITE;
621 }
622
623 TTE_SET_USED(env->dtlb[i].tte);
624
625 return 0;
626 }
627
628 env->dmmu.sfsr = sfsr;
629 env->dmmu.sfar = address; /* Fault address register */
630 env->dmmu.tag_access = (address & ~0x1fffULL) | context;
631 return 1;
632 }
633 }
634
635 trace_mmu_helper_dmiss(address, context);
636
637 /*
638 * On MMU misses:
639 * - UltraSPARC IIi: SFSR and SFAR unmodified
640 * - JPS1: SFAR updated and some fields of SFSR updated
641 */
642 env->dmmu.tag_access = (address & ~0x1fffULL) | context;
643 cs->exception_index = TT_DMISS;
644 return 1;
645 }
646
647 static int get_physical_address_code(CPUSPARCState *env, hwaddr *physical,
648 int *prot, MemTxAttrs *attrs,
649 target_ulong address, int mmu_idx)
650 {
651 CPUState *cs = env_cpu(env);
652 unsigned int i;
653 uint64_t context;
654 bool is_user = false;
655
656 switch (mmu_idx) {
657 case MMU_PHYS_IDX:
658 case MMU_USER_SECONDARY_IDX:
659 case MMU_KERNEL_SECONDARY_IDX:
660 g_assert_not_reached();
661 case MMU_USER_IDX:
662 is_user = true;
663 /* fallthru */
664 case MMU_KERNEL_IDX:
665 context = env->dmmu.mmu_primary_context & 0x1fff;
666 break;
667 default:
668 context = 0;
669 break;
670 }
671
672 if (env->tl == 0) {
673 /* PRIMARY context */
674 context = env->dmmu.mmu_primary_context & 0x1fff;
675 } else {
676 /* NUCLEUS context */
677 context = 0;
678 }
679
680 for (i = 0; i < 64; i++) {
681 /* ctx match, vaddr match, valid? */
682 if (ultrasparc_tag_match(&env->itlb[i],
683 address, context, physical)) {
684 /* access ok? */
685 if (TTE_IS_PRIV(env->itlb[i].tte) && is_user) {
686 /* Fault status register */
687 if (env->immu.sfsr & SFSR_VALID_BIT) {
688 env->immu.sfsr = SFSR_OW_BIT; /* overflow (not read before
689 another fault) */
690 } else {
691 env->immu.sfsr = 0;
692 }
693 if (env->pstate & PS_PRIV) {
694 env->immu.sfsr |= SFSR_PR_BIT;
695 }
696 if (env->tl > 0) {
697 env->immu.sfsr |= SFSR_CT_NUCLEUS;
698 }
699
700 /* FIXME: ASI field in SFSR must be set */
701 env->immu.sfsr |= SFSR_FT_PRIV_BIT | SFSR_VALID_BIT;
702 cs->exception_index = TT_TFAULT;
703
704 env->immu.tag_access = (address & ~0x1fffULL) | context;
705
706 trace_mmu_helper_tfault(address, context);
707
708 return 1;
709 }
710 *prot = PAGE_EXEC;
711 TTE_SET_USED(env->itlb[i].tte);
712 return 0;
713 }
714 }
715
716 trace_mmu_helper_tmiss(address, context);
717
718 /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
719 env->immu.tag_access = (address & ~0x1fffULL) | context;
720 cs->exception_index = TT_TMISS;
721 return 1;
722 }
723
724 static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
725 int *prot, int *access_index, MemTxAttrs *attrs,
726 target_ulong address, int rw, int mmu_idx,
727 target_ulong *page_size)
728 {
729 /* ??? We treat everything as a small page, then explicitly flush
730 everything when an entry is evicted. */
731 *page_size = TARGET_PAGE_SIZE;
732
733 /* safety net to catch wrong softmmu index use from dynamic code */
734 if (env->tl > 0 && mmu_idx != MMU_NUCLEUS_IDX) {
735 if (rw == 2) {
736 trace_mmu_helper_get_phys_addr_code(env->tl, mmu_idx,
737 env->dmmu.mmu_primary_context,
738 env->dmmu.mmu_secondary_context,
739 address);
740 } else {
741 trace_mmu_helper_get_phys_addr_data(env->tl, mmu_idx,
742 env->dmmu.mmu_primary_context,
743 env->dmmu.mmu_secondary_context,
744 address);
745 }
746 }
747
748 if (mmu_idx == MMU_PHYS_IDX) {
749 *physical = ultrasparc_truncate_physical(address);
750 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
751 return 0;
752 }
753
754 if (rw == 2) {
755 return get_physical_address_code(env, physical, prot, attrs, address,
756 mmu_idx);
757 } else {
758 return get_physical_address_data(env, physical, prot, attrs, address,
759 rw, mmu_idx);
760 }
761 }
762
763 /* Perform address translation */
764 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
765 MMUAccessType access_type, int mmu_idx,
766 bool probe, uintptr_t retaddr)
767 {
768 SPARCCPU *cpu = SPARC_CPU(cs);
769 CPUSPARCState *env = &cpu->env;
770 target_ulong vaddr;
771 hwaddr paddr;
772 target_ulong page_size;
773 MemTxAttrs attrs = {};
774 int error_code = 0, prot, access_index;
775
776 address &= TARGET_PAGE_MASK;
777 error_code = get_physical_address(env, &paddr, &prot, &access_index, &attrs,
778 address, access_type,
779 mmu_idx, &page_size);
780 if (likely(error_code == 0)) {
781 vaddr = address;
782
783 trace_mmu_helper_mmu_fault(address, paddr, mmu_idx, env->tl,
784 env->dmmu.mmu_primary_context,
785 env->dmmu.mmu_secondary_context);
786
787 tlb_set_page_with_attrs(cs, vaddr, paddr, attrs, prot, mmu_idx,
788 page_size);
789 return true;
790 }
791 if (probe) {
792 return false;
793 }
794 cpu_loop_exit_restore(cs, retaddr);
795 }
796
797 void dump_mmu(CPUSPARCState *env)
798 {
799 unsigned int i;
800 const char *mask;
801
802 qemu_printf("MMU contexts: Primary: %" PRId64 ", Secondary: %"
803 PRId64 "\n",
804 env->dmmu.mmu_primary_context,
805 env->dmmu.mmu_secondary_context);
806 qemu_printf("DMMU Tag Access: %" PRIx64 ", TSB Tag Target: %" PRIx64
807 "\n", env->dmmu.tag_access, env->dmmu.tsb_tag_target);
808 if ((env->lsu & DMMU_E) == 0) {
809 qemu_printf("DMMU disabled\n");
810 } else {
811 qemu_printf("DMMU dump\n");
812 for (i = 0; i < 64; i++) {
813 switch (TTE_PGSIZE(env->dtlb[i].tte)) {
814 default:
815 case 0x0:
816 mask = " 8k";
817 break;
818 case 0x1:
819 mask = " 64k";
820 break;
821 case 0x2:
822 mask = "512k";
823 break;
824 case 0x3:
825 mask = " 4M";
826 break;
827 }
828 if (TTE_IS_VALID(env->dtlb[i].tte)) {
829 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
830 ", %s, %s, %s, %s, ie %s, ctx %" PRId64 " %s\n",
831 i,
832 env->dtlb[i].tag & (uint64_t)~0x1fffULL,
833 TTE_PA(env->dtlb[i].tte),
834 mask,
835 TTE_IS_PRIV(env->dtlb[i].tte) ? "priv" : "user",
836 TTE_IS_W_OK(env->dtlb[i].tte) ? "RW" : "RO",
837 TTE_IS_LOCKED(env->dtlb[i].tte) ?
838 "locked" : "unlocked",
839 TTE_IS_IE(env->dtlb[i].tte) ?
840 "yes" : "no",
841 env->dtlb[i].tag & (uint64_t)0x1fffULL,
842 TTE_IS_GLOBAL(env->dtlb[i].tte) ?
843 "global" : "local");
844 }
845 }
846 }
847 if ((env->lsu & IMMU_E) == 0) {
848 qemu_printf("IMMU disabled\n");
849 } else {
850 qemu_printf("IMMU dump\n");
851 for (i = 0; i < 64; i++) {
852 switch (TTE_PGSIZE(env->itlb[i].tte)) {
853 default:
854 case 0x0:
855 mask = " 8k";
856 break;
857 case 0x1:
858 mask = " 64k";
859 break;
860 case 0x2:
861 mask = "512k";
862 break;
863 case 0x3:
864 mask = " 4M";
865 break;
866 }
867 if (TTE_IS_VALID(env->itlb[i].tte)) {
868 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
869 ", %s, %s, %s, ctx %" PRId64 " %s\n",
870 i,
871 env->itlb[i].tag & (uint64_t)~0x1fffULL,
872 TTE_PA(env->itlb[i].tte),
873 mask,
874 TTE_IS_PRIV(env->itlb[i].tte) ? "priv" : "user",
875 TTE_IS_LOCKED(env->itlb[i].tte) ?
876 "locked" : "unlocked",
877 env->itlb[i].tag & (uint64_t)0x1fffULL,
878 TTE_IS_GLOBAL(env->itlb[i].tte) ?
879 "global" : "local");
880 }
881 }
882 }
883 }
884
885 #endif /* TARGET_SPARC64 */
886
887 static int cpu_sparc_get_phys_page(CPUSPARCState *env, hwaddr *phys,
888 target_ulong addr, int rw, int mmu_idx)
889 {
890 target_ulong page_size;
891 int prot, access_index;
892 MemTxAttrs attrs = {};
893
894 return get_physical_address(env, phys, &prot, &access_index, &attrs, addr,
895 rw, mmu_idx, &page_size);
896 }
897
898 #if defined(TARGET_SPARC64)
899 hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr,
900 int mmu_idx)
901 {
902 hwaddr phys_addr;
903
904 if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 4, mmu_idx) != 0) {
905 return -1;
906 }
907 return phys_addr;
908 }
909 #endif
910
911 hwaddr sparc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
912 {
913 SPARCCPU *cpu = SPARC_CPU(cs);
914 CPUSPARCState *env = &cpu->env;
915 hwaddr phys_addr;
916 int mmu_idx = cpu_mmu_index(env, false);
917
918 if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 2, mmu_idx) != 0) {
919 if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 0, mmu_idx) != 0) {
920 return -1;
921 }
922 }
923 return phys_addr;
924 }
925
926 #ifndef CONFIG_USER_ONLY
927 void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
928 MMUAccessType access_type,
929 int mmu_idx,
930 uintptr_t retaddr)
931 {
932 SPARCCPU *cpu = SPARC_CPU(cs);
933 CPUSPARCState *env = &cpu->env;
934
935 #ifdef TARGET_SPARC64
936 env->dmmu.sfsr = build_sfsr(env, mmu_idx, access_type);
937 env->dmmu.sfar = addr;
938 #else
939 env->mmuregs[4] = addr;
940 #endif
941
942 cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
943 }
944 #endif /* !CONFIG_USER_ONLY */