]> git.proxmox.com Git - qemu.git/blob - target-alpha/op_helper.c
target-alpha: remove helper_load_implver
[qemu.git] / target-alpha / op_helper.c
1 /*
2 * Alpha emulation cpu micro-operations helpers for qemu.
3 *
4 * Copyright (c) 2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
19 */
20
21 #include "exec.h"
22 #include "host-utils.h"
23 #include "softfloat.h"
24 #include "helper.h"
25
26 void helper_tb_flush (void)
27 {
28 tb_flush(env);
29 }
30
31 /*****************************************************************************/
32 /* Exceptions processing helpers */
33 void helper_excp (int excp, int error)
34 {
35 env->exception_index = excp;
36 env->error_code = error;
37 cpu_loop_exit();
38 }
39
40 uint64_t helper_amask (uint64_t arg)
41 {
42 switch (env->implver) {
43 case IMPLVER_2106x:
44 /* EV4, EV45, LCA, LCA45 & EV5 */
45 break;
46 case IMPLVER_21164:
47 case IMPLVER_21264:
48 case IMPLVER_21364:
49 arg &= ~env->amask;
50 break;
51 }
52 return arg;
53 }
54
55 uint64_t helper_load_pcc (void)
56 {
57 /* XXX: TODO */
58 return 0;
59 }
60
61 uint64_t helper_load_fpcr (void)
62 {
63 uint64_t ret = 0;
64 #ifdef CONFIG_SOFTFLOAT
65 ret |= env->fp_status.float_exception_flags << 52;
66 if (env->fp_status.float_exception_flags)
67 ret |= 1ULL << 63;
68 env->ipr[IPR_EXC_SUM] &= ~0x3E:
69 env->ipr[IPR_EXC_SUM] |= env->fp_status.float_exception_flags << 1;
70 #endif
71 switch (env->fp_status.float_rounding_mode) {
72 case float_round_nearest_even:
73 ret |= 2ULL << 58;
74 break;
75 case float_round_down:
76 ret |= 1ULL << 58;
77 break;
78 case float_round_up:
79 ret |= 3ULL << 58;
80 break;
81 case float_round_to_zero:
82 break;
83 }
84 return ret;
85 }
86
87 void helper_store_fpcr (uint64_t val)
88 {
89 #ifdef CONFIG_SOFTFLOAT
90 set_float_exception_flags((val >> 52) & 0x3F, &FP_STATUS);
91 #endif
92 switch ((val >> 58) & 3) {
93 case 0:
94 set_float_rounding_mode(float_round_to_zero, &FP_STATUS);
95 break;
96 case 1:
97 set_float_rounding_mode(float_round_down, &FP_STATUS);
98 break;
99 case 2:
100 set_float_rounding_mode(float_round_nearest_even, &FP_STATUS);
101 break;
102 case 3:
103 set_float_rounding_mode(float_round_up, &FP_STATUS);
104 break;
105 }
106 }
107
108 spinlock_t intr_cpu_lock = SPIN_LOCK_UNLOCKED;
109
110 uint64_t helper_rs(void)
111 {
112 uint64_t tmp;
113
114 spin_lock(&intr_cpu_lock);
115 tmp = env->intr_flag;
116 env->intr_flag = 1;
117 spin_unlock(&intr_cpu_lock);
118
119 return tmp;
120 }
121
122 uint64_t helper_rc(void)
123 {
124 uint64_t tmp;
125
126 spin_lock(&intr_cpu_lock);
127 tmp = env->intr_flag;
128 env->intr_flag = 0;
129 spin_unlock(&intr_cpu_lock);
130
131 return tmp;
132 }
133
134 uint64_t helper_addqv (uint64_t op1, uint64_t op2)
135 {
136 uint64_t tmp = op1;
137 op1 += op2;
138 if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) {
139 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
140 }
141 return op1;
142 }
143
144 uint64_t helper_addlv (uint64_t op1, uint64_t op2)
145 {
146 uint64_t tmp = op1;
147 op1 = (uint32_t)(op1 + op2);
148 if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) {
149 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
150 }
151 return op1;
152 }
153
154 uint64_t helper_subqv (uint64_t op1, uint64_t op2)
155 {
156 uint64_t res;
157 res = op1 - op2;
158 if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) {
159 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
160 }
161 return res;
162 }
163
164 uint64_t helper_sublv (uint64_t op1, uint64_t op2)
165 {
166 uint32_t res;
167 res = op1 - op2;
168 if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) {
169 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
170 }
171 return res;
172 }
173
174 uint64_t helper_mullv (uint64_t op1, uint64_t op2)
175 {
176 int64_t res = (int64_t)op1 * (int64_t)op2;
177
178 if (unlikely((int32_t)res != res)) {
179 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
180 }
181 return (int64_t)((int32_t)res);
182 }
183
184 uint64_t helper_mulqv (uint64_t op1, uint64_t op2)
185 {
186 uint64_t tl, th;
187
188 muls64(&tl, &th, op1, op2);
189 /* If th != 0 && th != -1, then we had an overflow */
190 if (unlikely((th + 1) > 1)) {
191 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
192 }
193 return tl;
194 }
195
196 uint64_t helper_umulh (uint64_t op1, uint64_t op2)
197 {
198 uint64_t tl, th;
199
200 mulu64(&tl, &th, op1, op2);
201 return th;
202 }
203
204 uint64_t helper_ctpop (uint64_t arg)
205 {
206 return ctpop64(arg);
207 }
208
209 uint64_t helper_ctlz (uint64_t arg)
210 {
211 return clz64(arg);
212 }
213
214 uint64_t helper_cttz (uint64_t arg)
215 {
216 return ctz64(arg);
217 }
218
219 static always_inline uint64_t byte_zap (uint64_t op, uint8_t mskb)
220 {
221 uint64_t mask;
222
223 mask = 0;
224 mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL;
225 mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL;
226 mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL;
227 mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL;
228 mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL;
229 mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL;
230 mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL;
231 mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL;
232
233 return op & ~mask;
234 }
235
236 uint64_t helper_mskbl(uint64_t val, uint64_t mask)
237 {
238 return byte_zap(val, 0x01 << (mask & 7));
239 }
240
241 uint64_t helper_insbl(uint64_t val, uint64_t mask)
242 {
243 val <<= (mask & 7) * 8;
244 return byte_zap(val, ~(0x01 << (mask & 7)));
245 }
246
247 uint64_t helper_mskwl(uint64_t val, uint64_t mask)
248 {
249 return byte_zap(val, 0x03 << (mask & 7));
250 }
251
252 uint64_t helper_inswl(uint64_t val, uint64_t mask)
253 {
254 val <<= (mask & 7) * 8;
255 return byte_zap(val, ~(0x03 << (mask & 7)));
256 }
257
258 uint64_t helper_mskll(uint64_t val, uint64_t mask)
259 {
260 return byte_zap(val, 0x0F << (mask & 7));
261 }
262
263 uint64_t helper_insll(uint64_t val, uint64_t mask)
264 {
265 val <<= (mask & 7) * 8;
266 return byte_zap(val, ~(0x0F << (mask & 7)));
267 }
268
269 uint64_t helper_zap(uint64_t val, uint64_t mask)
270 {
271 return byte_zap(val, mask);
272 }
273
274 uint64_t helper_zapnot(uint64_t val, uint64_t mask)
275 {
276 return byte_zap(val, ~mask);
277 }
278
279 uint64_t helper_mskql(uint64_t val, uint64_t mask)
280 {
281 return byte_zap(val, 0xFF << (mask & 7));
282 }
283
284 uint64_t helper_insql(uint64_t val, uint64_t mask)
285 {
286 val <<= (mask & 7) * 8;
287 return byte_zap(val, ~(0xFF << (mask & 7)));
288 }
289
290 uint64_t helper_mskwh(uint64_t val, uint64_t mask)
291 {
292 return byte_zap(val, (0x03 << (mask & 7)) >> 8);
293 }
294
295 uint64_t helper_inswh(uint64_t val, uint64_t mask)
296 {
297 val >>= 64 - ((mask & 7) * 8);
298 return byte_zap(val, ~((0x03 << (mask & 7)) >> 8));
299 }
300
301 uint64_t helper_msklh(uint64_t val, uint64_t mask)
302 {
303 return byte_zap(val, (0x0F << (mask & 7)) >> 8);
304 }
305
306 uint64_t helper_inslh(uint64_t val, uint64_t mask)
307 {
308 val >>= 64 - ((mask & 7) * 8);
309 return byte_zap(val, ~((0x0F << (mask & 7)) >> 8));
310 }
311
312 uint64_t helper_mskqh(uint64_t val, uint64_t mask)
313 {
314 return byte_zap(val, (0xFF << (mask & 7)) >> 8);
315 }
316
317 uint64_t helper_insqh(uint64_t val, uint64_t mask)
318 {
319 val >>= 64 - ((mask & 7) * 8);
320 return byte_zap(val, ~((0xFF << (mask & 7)) >> 8));
321 }
322
323 uint64_t helper_cmpbge (uint64_t op1, uint64_t op2)
324 {
325 uint8_t opa, opb, res;
326 int i;
327
328 res = 0;
329 for (i = 0; i < 8; i++) {
330 opa = op1 >> (i * 8);
331 opb = op2 >> (i * 8);
332 if (opa >= opb)
333 res |= 1 << i;
334 }
335 return res;
336 }
337
338 /* Floating point helpers */
339
340 /* F floating (VAX) */
341 static always_inline uint64_t float32_to_f (float32 fa)
342 {
343 uint64_t r, exp, mant, sig;
344 CPU_FloatU a;
345
346 a.f = fa;
347 sig = ((uint64_t)a.l & 0x80000000) << 32;
348 exp = (a.l >> 23) & 0xff;
349 mant = ((uint64_t)a.l & 0x007fffff) << 29;
350
351 if (exp == 255) {
352 /* NaN or infinity */
353 r = 1; /* VAX dirty zero */
354 } else if (exp == 0) {
355 if (mant == 0) {
356 /* Zero */
357 r = 0;
358 } else {
359 /* Denormalized */
360 r = sig | ((exp + 1) << 52) | mant;
361 }
362 } else {
363 if (exp >= 253) {
364 /* Overflow */
365 r = 1; /* VAX dirty zero */
366 } else {
367 r = sig | ((exp + 2) << 52);
368 }
369 }
370
371 return r;
372 }
373
374 static always_inline float32 f_to_float32 (uint64_t a)
375 {
376 uint32_t exp, mant_sig;
377 CPU_FloatU r;
378
379 exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
380 mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
381
382 if (unlikely(!exp && mant_sig)) {
383 /* Reserved operands / Dirty zero */
384 helper_excp(EXCP_OPCDEC, 0);
385 }
386
387 if (exp < 3) {
388 /* Underflow */
389 r.l = 0;
390 } else {
391 r.l = ((exp - 2) << 23) | mant_sig;
392 }
393
394 return r.f;
395 }
396
397 uint32_t helper_f_to_memory (uint64_t a)
398 {
399 uint32_t r;
400 r = (a & 0x00001fffe0000000ull) >> 13;
401 r |= (a & 0x07ffe00000000000ull) >> 45;
402 r |= (a & 0xc000000000000000ull) >> 48;
403 return r;
404 }
405
406 uint64_t helper_memory_to_f (uint32_t a)
407 {
408 uint64_t r;
409 r = ((uint64_t)(a & 0x0000c000)) << 48;
410 r |= ((uint64_t)(a & 0x003fffff)) << 45;
411 r |= ((uint64_t)(a & 0xffff0000)) << 13;
412 if (!(a & 0x00004000))
413 r |= 0x7ll << 59;
414 return r;
415 }
416
417 uint64_t helper_addf (uint64_t a, uint64_t b)
418 {
419 float32 fa, fb, fr;
420
421 fa = f_to_float32(a);
422 fb = f_to_float32(b);
423 fr = float32_add(fa, fb, &FP_STATUS);
424 return float32_to_f(fr);
425 }
426
427 uint64_t helper_subf (uint64_t a, uint64_t b)
428 {
429 float32 fa, fb, fr;
430
431 fa = f_to_float32(a);
432 fb = f_to_float32(b);
433 fr = float32_sub(fa, fb, &FP_STATUS);
434 return float32_to_f(fr);
435 }
436
437 uint64_t helper_mulf (uint64_t a, uint64_t b)
438 {
439 float32 fa, fb, fr;
440
441 fa = f_to_float32(a);
442 fb = f_to_float32(b);
443 fr = float32_mul(fa, fb, &FP_STATUS);
444 return float32_to_f(fr);
445 }
446
447 uint64_t helper_divf (uint64_t a, uint64_t b)
448 {
449 float32 fa, fb, fr;
450
451 fa = f_to_float32(a);
452 fb = f_to_float32(b);
453 fr = float32_div(fa, fb, &FP_STATUS);
454 return float32_to_f(fr);
455 }
456
457 uint64_t helper_sqrtf (uint64_t t)
458 {
459 float32 ft, fr;
460
461 ft = f_to_float32(t);
462 fr = float32_sqrt(ft, &FP_STATUS);
463 return float32_to_f(fr);
464 }
465
466
467 /* G floating (VAX) */
468 static always_inline uint64_t float64_to_g (float64 fa)
469 {
470 uint64_t r, exp, mant, sig;
471 CPU_DoubleU a;
472
473 a.d = fa;
474 sig = a.ll & 0x8000000000000000ull;
475 exp = (a.ll >> 52) & 0x7ff;
476 mant = a.ll & 0x000fffffffffffffull;
477
478 if (exp == 2047) {
479 /* NaN or infinity */
480 r = 1; /* VAX dirty zero */
481 } else if (exp == 0) {
482 if (mant == 0) {
483 /* Zero */
484 r = 0;
485 } else {
486 /* Denormalized */
487 r = sig | ((exp + 1) << 52) | mant;
488 }
489 } else {
490 if (exp >= 2045) {
491 /* Overflow */
492 r = 1; /* VAX dirty zero */
493 } else {
494 r = sig | ((exp + 2) << 52);
495 }
496 }
497
498 return r;
499 }
500
501 static always_inline float64 g_to_float64 (uint64_t a)
502 {
503 uint64_t exp, mant_sig;
504 CPU_DoubleU r;
505
506 exp = (a >> 52) & 0x7ff;
507 mant_sig = a & 0x800fffffffffffffull;
508
509 if (!exp && mant_sig) {
510 /* Reserved operands / Dirty zero */
511 helper_excp(EXCP_OPCDEC, 0);
512 }
513
514 if (exp < 3) {
515 /* Underflow */
516 r.ll = 0;
517 } else {
518 r.ll = ((exp - 2) << 52) | mant_sig;
519 }
520
521 return r.d;
522 }
523
524 uint64_t helper_g_to_memory (uint64_t a)
525 {
526 uint64_t r;
527 r = (a & 0x000000000000ffffull) << 48;
528 r |= (a & 0x00000000ffff0000ull) << 16;
529 r |= (a & 0x0000ffff00000000ull) >> 16;
530 r |= (a & 0xffff000000000000ull) >> 48;
531 return r;
532 }
533
534 uint64_t helper_memory_to_g (uint64_t a)
535 {
536 uint64_t r;
537 r = (a & 0x000000000000ffffull) << 48;
538 r |= (a & 0x00000000ffff0000ull) << 16;
539 r |= (a & 0x0000ffff00000000ull) >> 16;
540 r |= (a & 0xffff000000000000ull) >> 48;
541 return r;
542 }
543
544 uint64_t helper_addg (uint64_t a, uint64_t b)
545 {
546 float64 fa, fb, fr;
547
548 fa = g_to_float64(a);
549 fb = g_to_float64(b);
550 fr = float64_add(fa, fb, &FP_STATUS);
551 return float64_to_g(fr);
552 }
553
554 uint64_t helper_subg (uint64_t a, uint64_t b)
555 {
556 float64 fa, fb, fr;
557
558 fa = g_to_float64(a);
559 fb = g_to_float64(b);
560 fr = float64_sub(fa, fb, &FP_STATUS);
561 return float64_to_g(fr);
562 }
563
564 uint64_t helper_mulg (uint64_t a, uint64_t b)
565 {
566 float64 fa, fb, fr;
567
568 fa = g_to_float64(a);
569 fb = g_to_float64(b);
570 fr = float64_mul(fa, fb, &FP_STATUS);
571 return float64_to_g(fr);
572 }
573
574 uint64_t helper_divg (uint64_t a, uint64_t b)
575 {
576 float64 fa, fb, fr;
577
578 fa = g_to_float64(a);
579 fb = g_to_float64(b);
580 fr = float64_div(fa, fb, &FP_STATUS);
581 return float64_to_g(fr);
582 }
583
584 uint64_t helper_sqrtg (uint64_t a)
585 {
586 float64 fa, fr;
587
588 fa = g_to_float64(a);
589 fr = float64_sqrt(fa, &FP_STATUS);
590 return float64_to_g(fr);
591 }
592
593
594 /* S floating (single) */
595 static always_inline uint64_t float32_to_s (float32 fa)
596 {
597 CPU_FloatU a;
598 uint64_t r;
599
600 a.f = fa;
601
602 r = (((uint64_t)(a.l & 0xc0000000)) << 32) | (((uint64_t)(a.l & 0x3fffffff)) << 29);
603 if (((a.l & 0x7f800000) != 0x7f800000) && (!(a.l & 0x40000000)))
604 r |= 0x7ll << 59;
605 return r;
606 }
607
608 static always_inline float32 s_to_float32 (uint64_t a)
609 {
610 CPU_FloatU r;
611 r.l = ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff);
612 return r.f;
613 }
614
615 uint32_t helper_s_to_memory (uint64_t a)
616 {
617 /* Memory format is the same as float32 */
618 float32 fa = s_to_float32(a);
619 return *(uint32_t*)(&fa);
620 }
621
622 uint64_t helper_memory_to_s (uint32_t a)
623 {
624 /* Memory format is the same as float32 */
625 return float32_to_s(*(float32*)(&a));
626 }
627
628 uint64_t helper_adds (uint64_t a, uint64_t b)
629 {
630 float32 fa, fb, fr;
631
632 fa = s_to_float32(a);
633 fb = s_to_float32(b);
634 fr = float32_add(fa, fb, &FP_STATUS);
635 return float32_to_s(fr);
636 }
637
638 uint64_t helper_subs (uint64_t a, uint64_t b)
639 {
640 float32 fa, fb, fr;
641
642 fa = s_to_float32(a);
643 fb = s_to_float32(b);
644 fr = float32_sub(fa, fb, &FP_STATUS);
645 return float32_to_s(fr);
646 }
647
648 uint64_t helper_muls (uint64_t a, uint64_t b)
649 {
650 float32 fa, fb, fr;
651
652 fa = s_to_float32(a);
653 fb = s_to_float32(b);
654 fr = float32_mul(fa, fb, &FP_STATUS);
655 return float32_to_s(fr);
656 }
657
658 uint64_t helper_divs (uint64_t a, uint64_t b)
659 {
660 float32 fa, fb, fr;
661
662 fa = s_to_float32(a);
663 fb = s_to_float32(b);
664 fr = float32_div(fa, fb, &FP_STATUS);
665 return float32_to_s(fr);
666 }
667
668 uint64_t helper_sqrts (uint64_t a)
669 {
670 float32 fa, fr;
671
672 fa = s_to_float32(a);
673 fr = float32_sqrt(fa, &FP_STATUS);
674 return float32_to_s(fr);
675 }
676
677
678 /* T floating (double) */
679 static always_inline float64 t_to_float64 (uint64_t a)
680 {
681 /* Memory format is the same as float64 */
682 CPU_DoubleU r;
683 r.ll = a;
684 return r.d;
685 }
686
687 static always_inline uint64_t float64_to_t (float64 fa)
688 {
689 /* Memory format is the same as float64 */
690 CPU_DoubleU r;
691 r.d = fa;
692 return r.ll;
693 }
694
695 uint64_t helper_addt (uint64_t a, uint64_t b)
696 {
697 float64 fa, fb, fr;
698
699 fa = t_to_float64(a);
700 fb = t_to_float64(b);
701 fr = float64_add(fa, fb, &FP_STATUS);
702 return float64_to_t(fr);
703 }
704
705 uint64_t helper_subt (uint64_t a, uint64_t b)
706 {
707 float64 fa, fb, fr;
708
709 fa = t_to_float64(a);
710 fb = t_to_float64(b);
711 fr = float64_sub(fa, fb, &FP_STATUS);
712 return float64_to_t(fr);
713 }
714
715 uint64_t helper_mult (uint64_t a, uint64_t b)
716 {
717 float64 fa, fb, fr;
718
719 fa = t_to_float64(a);
720 fb = t_to_float64(b);
721 fr = float64_mul(fa, fb, &FP_STATUS);
722 return float64_to_t(fr);
723 }
724
725 uint64_t helper_divt (uint64_t a, uint64_t b)
726 {
727 float64 fa, fb, fr;
728
729 fa = t_to_float64(a);
730 fb = t_to_float64(b);
731 fr = float64_div(fa, fb, &FP_STATUS);
732 return float64_to_t(fr);
733 }
734
735 uint64_t helper_sqrtt (uint64_t a)
736 {
737 float64 fa, fr;
738
739 fa = t_to_float64(a);
740 fr = float64_sqrt(fa, &FP_STATUS);
741 return float64_to_t(fr);
742 }
743
744
745 /* Sign copy */
746 uint64_t helper_cpys(uint64_t a, uint64_t b)
747 {
748 return (a & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL);
749 }
750
751 uint64_t helper_cpysn(uint64_t a, uint64_t b)
752 {
753 return ((~a) & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL);
754 }
755
756 uint64_t helper_cpyse(uint64_t a, uint64_t b)
757 {
758 return (a & 0xFFF0000000000000ULL) | (b & ~0xFFF0000000000000ULL);
759 }
760
761
762 /* Comparisons */
763 uint64_t helper_cmptun (uint64_t a, uint64_t b)
764 {
765 float64 fa, fb;
766
767 fa = t_to_float64(a);
768 fb = t_to_float64(b);
769
770 if (float64_is_nan(fa) || float64_is_nan(fb))
771 return 0x4000000000000000ULL;
772 else
773 return 0;
774 }
775
776 uint64_t helper_cmpteq(uint64_t a, uint64_t b)
777 {
778 float64 fa, fb;
779
780 fa = t_to_float64(a);
781 fb = t_to_float64(b);
782
783 if (float64_eq(fa, fb, &FP_STATUS))
784 return 0x4000000000000000ULL;
785 else
786 return 0;
787 }
788
789 uint64_t helper_cmptle(uint64_t a, uint64_t b)
790 {
791 float64 fa, fb;
792
793 fa = t_to_float64(a);
794 fb = t_to_float64(b);
795
796 if (float64_le(fa, fb, &FP_STATUS))
797 return 0x4000000000000000ULL;
798 else
799 return 0;
800 }
801
802 uint64_t helper_cmptlt(uint64_t a, uint64_t b)
803 {
804 float64 fa, fb;
805
806 fa = t_to_float64(a);
807 fb = t_to_float64(b);
808
809 if (float64_lt(fa, fb, &FP_STATUS))
810 return 0x4000000000000000ULL;
811 else
812 return 0;
813 }
814
815 uint64_t helper_cmpgeq(uint64_t a, uint64_t b)
816 {
817 float64 fa, fb;
818
819 fa = g_to_float64(a);
820 fb = g_to_float64(b);
821
822 if (float64_eq(fa, fb, &FP_STATUS))
823 return 0x4000000000000000ULL;
824 else
825 return 0;
826 }
827
828 uint64_t helper_cmpgle(uint64_t a, uint64_t b)
829 {
830 float64 fa, fb;
831
832 fa = g_to_float64(a);
833 fb = g_to_float64(b);
834
835 if (float64_le(fa, fb, &FP_STATUS))
836 return 0x4000000000000000ULL;
837 else
838 return 0;
839 }
840
841 uint64_t helper_cmpglt(uint64_t a, uint64_t b)
842 {
843 float64 fa, fb;
844
845 fa = g_to_float64(a);
846 fb = g_to_float64(b);
847
848 if (float64_lt(fa, fb, &FP_STATUS))
849 return 0x4000000000000000ULL;
850 else
851 return 0;
852 }
853
854 uint64_t helper_cmpfeq (uint64_t a)
855 {
856 return !(a & 0x7FFFFFFFFFFFFFFFULL);
857 }
858
859 uint64_t helper_cmpfne (uint64_t a)
860 {
861 return (a & 0x7FFFFFFFFFFFFFFFULL);
862 }
863
864 uint64_t helper_cmpflt (uint64_t a)
865 {
866 return (a & 0x8000000000000000ULL) && (a & 0x7FFFFFFFFFFFFFFFULL);
867 }
868
869 uint64_t helper_cmpfle (uint64_t a)
870 {
871 return (a & 0x8000000000000000ULL) || !(a & 0x7FFFFFFFFFFFFFFFULL);
872 }
873
874 uint64_t helper_cmpfgt (uint64_t a)
875 {
876 return !(a & 0x8000000000000000ULL) && (a & 0x7FFFFFFFFFFFFFFFULL);
877 }
878
879 uint64_t helper_cmpfge (uint64_t a)
880 {
881 return !(a & 0x8000000000000000ULL) || !(a & 0x7FFFFFFFFFFFFFFFULL);
882 }
883
884
885 /* Floating point format conversion */
886 uint64_t helper_cvtts (uint64_t a)
887 {
888 float64 fa;
889 float32 fr;
890
891 fa = t_to_float64(a);
892 fr = float64_to_float32(fa, &FP_STATUS);
893 return float32_to_s(fr);
894 }
895
896 uint64_t helper_cvtst (uint64_t a)
897 {
898 float32 fa;
899 float64 fr;
900
901 fa = s_to_float32(a);
902 fr = float32_to_float64(fa, &FP_STATUS);
903 return float64_to_t(fr);
904 }
905
906 uint64_t helper_cvtqs (uint64_t a)
907 {
908 float32 fr = int64_to_float32(a, &FP_STATUS);
909 return float32_to_s(fr);
910 }
911
912 uint64_t helper_cvttq (uint64_t a)
913 {
914 float64 fa = t_to_float64(a);
915 return float64_to_int64_round_to_zero(fa, &FP_STATUS);
916 }
917
918 uint64_t helper_cvtqt (uint64_t a)
919 {
920 float64 fr = int64_to_float64(a, &FP_STATUS);
921 return float64_to_t(fr);
922 }
923
924 uint64_t helper_cvtqf (uint64_t a)
925 {
926 float32 fr = int64_to_float32(a, &FP_STATUS);
927 return float32_to_f(fr);
928 }
929
930 uint64_t helper_cvtgf (uint64_t a)
931 {
932 float64 fa;
933 float32 fr;
934
935 fa = g_to_float64(a);
936 fr = float64_to_float32(fa, &FP_STATUS);
937 return float32_to_f(fr);
938 }
939
940 uint64_t helper_cvtgq (uint64_t a)
941 {
942 float64 fa = g_to_float64(a);
943 return float64_to_int64_round_to_zero(fa, &FP_STATUS);
944 }
945
946 uint64_t helper_cvtqg (uint64_t a)
947 {
948 float64 fr;
949 fr = int64_to_float64(a, &FP_STATUS);
950 return float64_to_g(fr);
951 }
952
953 uint64_t helper_cvtlq (uint64_t a)
954 {
955 return (int64_t)((int32_t)((a >> 32) | ((a >> 29) & 0x3FFFFFFF)));
956 }
957
958 static always_inline uint64_t __helper_cvtql (uint64_t a, int s, int v)
959 {
960 uint64_t r;
961
962 r = ((uint64_t)(a & 0xC0000000)) << 32;
963 r |= ((uint64_t)(a & 0x7FFFFFFF)) << 29;
964
965 if (v && (int64_t)((int32_t)r) != (int64_t)r) {
966 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
967 }
968 if (s) {
969 /* TODO */
970 }
971 return r;
972 }
973
974 uint64_t helper_cvtql (uint64_t a)
975 {
976 return __helper_cvtql(a, 0, 0);
977 }
978
979 uint64_t helper_cvtqlv (uint64_t a)
980 {
981 return __helper_cvtql(a, 0, 1);
982 }
983
984 uint64_t helper_cvtqlsv (uint64_t a)
985 {
986 return __helper_cvtql(a, 1, 1);
987 }
988
989 /* PALcode support special instructions */
990 #if !defined (CONFIG_USER_ONLY)
991 void helper_hw_rei (void)
992 {
993 env->pc = env->ipr[IPR_EXC_ADDR] & ~3;
994 env->ipr[IPR_EXC_ADDR] = env->ipr[IPR_EXC_ADDR] & 1;
995 /* XXX: re-enable interrupts and memory mapping */
996 }
997
998 void helper_hw_ret (uint64_t a)
999 {
1000 env->pc = a & ~3;
1001 env->ipr[IPR_EXC_ADDR] = a & 1;
1002 /* XXX: re-enable interrupts and memory mapping */
1003 }
1004
1005 uint64_t helper_mfpr (int iprn, uint64_t val)
1006 {
1007 uint64_t tmp;
1008
1009 if (cpu_alpha_mfpr(env, iprn, &tmp) == 0)
1010 val = tmp;
1011
1012 return val;
1013 }
1014
1015 void helper_mtpr (int iprn, uint64_t val)
1016 {
1017 cpu_alpha_mtpr(env, iprn, val, NULL);
1018 }
1019
1020 void helper_set_alt_mode (void)
1021 {
1022 env->saved_mode = env->ps & 0xC;
1023 env->ps = (env->ps & ~0xC) | (env->ipr[IPR_ALT_MODE] & 0xC);
1024 }
1025
1026 void helper_restore_mode (void)
1027 {
1028 env->ps = (env->ps & ~0xC) | env->saved_mode;
1029 }
1030
1031 #endif
1032
1033 /*****************************************************************************/
1034 /* Softmmu support */
1035 #if !defined (CONFIG_USER_ONLY)
1036
1037 /* XXX: the two following helpers are pure hacks.
1038 * Hopefully, we emulate the PALcode, then we should never see
1039 * HW_LD / HW_ST instructions.
1040 */
1041 uint64_t helper_ld_virt_to_phys (uint64_t virtaddr)
1042 {
1043 uint64_t tlb_addr, physaddr;
1044 int index, mmu_idx;
1045 void *retaddr;
1046
1047 mmu_idx = cpu_mmu_index(env);
1048 index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1049 redo:
1050 tlb_addr = env->tlb_table[mmu_idx][index].addr_read;
1051 if ((virtaddr & TARGET_PAGE_MASK) ==
1052 (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1053 physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend;
1054 } else {
1055 /* the page is not in the TLB : fill it */
1056 retaddr = GETPC();
1057 tlb_fill(virtaddr, 0, mmu_idx, retaddr);
1058 goto redo;
1059 }
1060 return physaddr;
1061 }
1062
1063 uint64_t helper_st_virt_to_phys (uint64_t virtaddr)
1064 {
1065 uint64_t tlb_addr, physaddr;
1066 int index, mmu_idx;
1067 void *retaddr;
1068
1069 mmu_idx = cpu_mmu_index(env);
1070 index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1071 redo:
1072 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
1073 if ((virtaddr & TARGET_PAGE_MASK) ==
1074 (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1075 physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend;
1076 } else {
1077 /* the page is not in the TLB : fill it */
1078 retaddr = GETPC();
1079 tlb_fill(virtaddr, 1, mmu_idx, retaddr);
1080 goto redo;
1081 }
1082 return physaddr;
1083 }
1084
1085 void helper_ldl_raw(uint64_t t0, uint64_t t1)
1086 {
1087 ldl_raw(t1, t0);
1088 }
1089
1090 void helper_ldq_raw(uint64_t t0, uint64_t t1)
1091 {
1092 ldq_raw(t1, t0);
1093 }
1094
1095 void helper_ldl_l_raw(uint64_t t0, uint64_t t1)
1096 {
1097 env->lock = t1;
1098 ldl_raw(t1, t0);
1099 }
1100
1101 void helper_ldq_l_raw(uint64_t t0, uint64_t t1)
1102 {
1103 env->lock = t1;
1104 ldl_raw(t1, t0);
1105 }
1106
1107 void helper_ldl_kernel(uint64_t t0, uint64_t t1)
1108 {
1109 ldl_kernel(t1, t0);
1110 }
1111
1112 void helper_ldq_kernel(uint64_t t0, uint64_t t1)
1113 {
1114 ldq_kernel(t1, t0);
1115 }
1116
1117 void helper_ldl_data(uint64_t t0, uint64_t t1)
1118 {
1119 ldl_data(t1, t0);
1120 }
1121
1122 void helper_ldq_data(uint64_t t0, uint64_t t1)
1123 {
1124 ldq_data(t1, t0);
1125 }
1126
1127 void helper_stl_raw(uint64_t t0, uint64_t t1)
1128 {
1129 stl_raw(t1, t0);
1130 }
1131
1132 void helper_stq_raw(uint64_t t0, uint64_t t1)
1133 {
1134 stq_raw(t1, t0);
1135 }
1136
1137 uint64_t helper_stl_c_raw(uint64_t t0, uint64_t t1)
1138 {
1139 uint64_t ret;
1140
1141 if (t1 == env->lock) {
1142 stl_raw(t1, t0);
1143 ret = 0;
1144 } else
1145 ret = 1;
1146
1147 env->lock = 1;
1148
1149 return ret;
1150 }
1151
1152 uint64_t helper_stq_c_raw(uint64_t t0, uint64_t t1)
1153 {
1154 uint64_t ret;
1155
1156 if (t1 == env->lock) {
1157 stq_raw(t1, t0);
1158 ret = 0;
1159 } else
1160 ret = 1;
1161
1162 env->lock = 1;
1163
1164 return ret;
1165 }
1166
1167 #define MMUSUFFIX _mmu
1168
1169 #define SHIFT 0
1170 #include "softmmu_template.h"
1171
1172 #define SHIFT 1
1173 #include "softmmu_template.h"
1174
1175 #define SHIFT 2
1176 #include "softmmu_template.h"
1177
1178 #define SHIFT 3
1179 #include "softmmu_template.h"
1180
1181 /* try to fill the TLB and return an exception if error. If retaddr is
1182 NULL, it means that the function was called in C code (i.e. not
1183 from generated code or from helper.c) */
1184 /* XXX: fix it to restore all registers */
1185 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1186 {
1187 TranslationBlock *tb;
1188 CPUState *saved_env;
1189 unsigned long pc;
1190 int ret;
1191
1192 /* XXX: hack to restore env in all cases, even if not called from
1193 generated code */
1194 saved_env = env;
1195 env = cpu_single_env;
1196 ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1197 if (!likely(ret == 0)) {
1198 if (likely(retaddr)) {
1199 /* now we have a real cpu fault */
1200 pc = (unsigned long)retaddr;
1201 tb = tb_find_pc(pc);
1202 if (likely(tb)) {
1203 /* the PC is inside the translated code. It means that we have
1204 a virtual CPU fault */
1205 cpu_restore_state(tb, env, pc, NULL);
1206 }
1207 }
1208 /* Exception index and error code are already set */
1209 cpu_loop_exit();
1210 }
1211 env = saved_env;
1212 }
1213
1214 #endif