]> git.proxmox.com Git - qemu.git/blob - target-arm/helper.c
target-arm: Move feature bit settings to CPU init fns
[qemu.git] / target-arm / helper.c
1 #include "cpu.h"
2 #include "gdbstub.h"
3 #include "helper.h"
4 #include "host-utils.h"
5 #if !defined(CONFIG_USER_ONLY)
6 #include "hw/loader.h"
7 #endif
8 #include "sysemu.h"
9
10 static uint32_t cortexa15_cp15_c0_c1[8] = {
11 0x00001131, 0x00011011, 0x02010555, 0x00000000,
12 0x10201105, 0x20000000, 0x01240000, 0x02102211
13 };
14
15 static uint32_t cortexa15_cp15_c0_c2[8] = {
16 0x02101110, 0x13112111, 0x21232041, 0x11112131, 0x10011142, 0, 0, 0
17 };
18
19 static uint32_t cortexa9_cp15_c0_c1[8] =
20 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
21
22 static uint32_t cortexa9_cp15_c0_c2[8] =
23 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
24
25 static uint32_t cortexa8_cp15_c0_c1[8] =
26 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
27
28 static uint32_t cortexa8_cp15_c0_c2[8] =
29 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
30
31 static uint32_t mpcore_cp15_c0_c1[8] =
32 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
33
34 static uint32_t mpcore_cp15_c0_c2[8] =
35 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
36
37 static uint32_t arm1136_cp15_c0_c1[8] =
38 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
39
40 static uint32_t arm1136_cp15_c0_c2[8] =
41 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
42
43 static uint32_t arm1176_cp15_c0_c1[8] =
44 { 0x111, 0x11, 0x33, 0, 0x01130003, 0x10030302, 0x01222100, 0 };
45
46 static uint32_t arm1176_cp15_c0_c2[8] =
47 { 0x0140011, 0x12002111, 0x11231121, 0x01102131, 0x01141, 0, 0, 0 };
48
49 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
50 {
51 switch (id) {
52 case ARM_CPUID_ARM926:
53 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
54 env->cp15.c0_cachetype = 0x1dd20d2;
55 env->cp15.c1_sys = 0x00090078;
56 break;
57 case ARM_CPUID_ARM946:
58 env->cp15.c0_cachetype = 0x0f004006;
59 env->cp15.c1_sys = 0x00000078;
60 break;
61 case ARM_CPUID_ARM1026:
62 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
63 env->cp15.c0_cachetype = 0x1dd20d2;
64 env->cp15.c1_sys = 0x00090078;
65 break;
66 case ARM_CPUID_ARM1136:
67 /* This is the 1136 r1, which is a v6K core */
68 case ARM_CPUID_ARM1136_R2:
69 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
70 * older core than plain "arm1136". In particular this does not
71 * have the v6K features.
72 */
73 /* These ID register values are correct for 1136 but may be wrong
74 * for 1136_r2 (in particular r0p2 does not actually implement most
75 * of the ID registers).
76 */
77 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
78 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
79 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
80 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
81 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
82 env->cp15.c0_cachetype = 0x1dd20d2;
83 env->cp15.c1_sys = 0x00050078;
84 break;
85 case ARM_CPUID_ARM1176:
86 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b5;
87 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
88 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
89 memcpy(env->cp15.c0_c1, arm1176_cp15_c0_c1, 8 * sizeof(uint32_t));
90 memcpy(env->cp15.c0_c2, arm1176_cp15_c0_c2, 8 * sizeof(uint32_t));
91 env->cp15.c0_cachetype = 0x1dd20d2;
92 env->cp15.c1_sys = 0x00050078;
93 break;
94 case ARM_CPUID_ARM11MPCORE:
95 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
96 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
97 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
98 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
99 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
100 env->cp15.c0_cachetype = 0x1dd20d2;
101 break;
102 case ARM_CPUID_CORTEXA8:
103 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
104 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
105 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
106 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
107 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
108 env->cp15.c0_cachetype = 0x82048004;
109 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
110 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
111 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
112 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
113 env->cp15.c1_sys = 0x00c50078;
114 break;
115 case ARM_CPUID_CORTEXA9:
116 env->vfp.xregs[ARM_VFP_FPSID] = 0x41033090;
117 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
118 env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
119 memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
120 memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
121 env->cp15.c0_cachetype = 0x80038003;
122 env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
123 env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
124 env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
125 env->cp15.c1_sys = 0x00c50078;
126 break;
127 case ARM_CPUID_CORTEXA15:
128 env->vfp.xregs[ARM_VFP_FPSID] = 0x410430f0;
129 env->vfp.xregs[ARM_VFP_MVFR0] = 0x10110222;
130 env->vfp.xregs[ARM_VFP_MVFR1] = 0x11111111;
131 memcpy(env->cp15.c0_c1, cortexa15_cp15_c0_c1, 8 * sizeof(uint32_t));
132 memcpy(env->cp15.c0_c2, cortexa15_cp15_c0_c2, 8 * sizeof(uint32_t));
133 env->cp15.c0_cachetype = 0x8444c004;
134 env->cp15.c0_clid = 0x0a200023;
135 env->cp15.c0_ccsid[0] = 0x701fe00a; /* 32K L1 dcache */
136 env->cp15.c0_ccsid[1] = 0x201fe00a; /* 32K L1 icache */
137 env->cp15.c0_ccsid[2] = 0x711fe07a; /* 4096K L2 unified cache */
138 env->cp15.c1_sys = 0x00c50078;
139 break;
140 case ARM_CPUID_CORTEXM3:
141 break;
142 case ARM_CPUID_ANY: /* For userspace emulation. */
143 break;
144 case ARM_CPUID_TI915T:
145 case ARM_CPUID_TI925T:
146 env->cp15.c0_cachetype = 0x5109149;
147 env->cp15.c1_sys = 0x00000070;
148 env->cp15.c15_i_max = 0x000;
149 env->cp15.c15_i_min = 0xff0;
150 break;
151 case ARM_CPUID_PXA250:
152 case ARM_CPUID_PXA255:
153 case ARM_CPUID_PXA260:
154 case ARM_CPUID_PXA261:
155 case ARM_CPUID_PXA262:
156 /* JTAG_ID is ((id << 28) | 0x09265013) */
157 env->cp15.c0_cachetype = 0xd172172;
158 env->cp15.c1_sys = 0x00000078;
159 break;
160 case ARM_CPUID_PXA270_A0:
161 case ARM_CPUID_PXA270_A1:
162 case ARM_CPUID_PXA270_B0:
163 case ARM_CPUID_PXA270_B1:
164 case ARM_CPUID_PXA270_C0:
165 case ARM_CPUID_PXA270_C5:
166 /* JTAG_ID is ((id << 28) | 0x09265013) */
167 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
168 env->cp15.c0_cachetype = 0xd172172;
169 env->cp15.c1_sys = 0x00000078;
170 break;
171 case ARM_CPUID_SA1100:
172 case ARM_CPUID_SA1110:
173 env->cp15.c1_sys = 0x00000070;
174 break;
175 default:
176 cpu_abort(env, "Bad CPU ID: %x\n", id);
177 break;
178 }
179
180 }
181
182 /* TODO Move contents into arm_cpu_reset() in cpu.c,
183 * once cpu_reset_model_id() is eliminated,
184 * and then forward to cpu_reset() here.
185 */
186 void cpu_state_reset(CPUARMState *env)
187 {
188 uint32_t id;
189 uint32_t tmp = 0;
190 ARMCPU *cpu = arm_env_get_cpu(env);
191
192 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
193 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
194 log_cpu_state(env, 0);
195 }
196
197 id = cpu->midr;
198 tmp = env->cp15.c15_config_base_address;
199 memset(env, 0, offsetof(CPUARMState, breakpoints));
200 if (id)
201 cpu_reset_model_id(env, id);
202 env->cp15.c15_config_base_address = tmp;
203 env->cp15.c0_cpuid = cpu->midr;
204 #if defined (CONFIG_USER_ONLY)
205 env->uncached_cpsr = ARM_CPU_MODE_USR;
206 /* For user mode we must enable access to coprocessors */
207 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
208 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
209 env->cp15.c15_cpar = 3;
210 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
211 env->cp15.c15_cpar = 1;
212 }
213 #else
214 /* SVC mode with interrupts disabled. */
215 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
216 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
217 clear at reset. Initial SP and PC are loaded from ROM. */
218 if (IS_M(env)) {
219 uint32_t pc;
220 uint8_t *rom;
221 env->uncached_cpsr &= ~CPSR_I;
222 rom = rom_ptr(0);
223 if (rom) {
224 /* We should really use ldl_phys here, in case the guest
225 modified flash and reset itself. However images
226 loaded via -kernel have not been copied yet, so load the
227 values directly from there. */
228 env->regs[13] = ldl_p(rom);
229 pc = ldl_p(rom + 4);
230 env->thumb = pc & 1;
231 env->regs[15] = pc & ~1;
232 }
233 }
234 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
235 env->cp15.c2_base_mask = 0xffffc000u;
236 /* v7 performance monitor control register: same implementor
237 * field as main ID register, and we implement no event counters.
238 */
239 env->cp15.c9_pmcr = (id & 0xff000000);
240 #endif
241 set_flush_to_zero(1, &env->vfp.standard_fp_status);
242 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
243 set_default_nan_mode(1, &env->vfp.standard_fp_status);
244 set_float_detect_tininess(float_tininess_before_rounding,
245 &env->vfp.fp_status);
246 set_float_detect_tininess(float_tininess_before_rounding,
247 &env->vfp.standard_fp_status);
248 tlb_flush(env, 1);
249 /* Reset is a state change for some CPUARMState fields which we
250 * bake assumptions about into translated code, so we need to
251 * tb_flush().
252 */
253 tb_flush(env);
254 }
255
256 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
257 {
258 int nregs;
259
260 /* VFP data registers are always little-endian. */
261 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
262 if (reg < nregs) {
263 stfq_le_p(buf, env->vfp.regs[reg]);
264 return 8;
265 }
266 if (arm_feature(env, ARM_FEATURE_NEON)) {
267 /* Aliases for Q regs. */
268 nregs += 16;
269 if (reg < nregs) {
270 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
271 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
272 return 16;
273 }
274 }
275 switch (reg - nregs) {
276 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
277 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
278 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
279 }
280 return 0;
281 }
282
283 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
284 {
285 int nregs;
286
287 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
288 if (reg < nregs) {
289 env->vfp.regs[reg] = ldfq_le_p(buf);
290 return 8;
291 }
292 if (arm_feature(env, ARM_FEATURE_NEON)) {
293 nregs += 16;
294 if (reg < nregs) {
295 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
296 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
297 return 16;
298 }
299 }
300 switch (reg - nregs) {
301 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
302 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
303 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
304 }
305 return 0;
306 }
307
308 CPUARMState *cpu_arm_init(const char *cpu_model)
309 {
310 ARMCPU *cpu;
311 CPUARMState *env;
312 static int inited = 0;
313
314 if (!object_class_by_name(cpu_model)) {
315 return NULL;
316 }
317 cpu = ARM_CPU(object_new(cpu_model));
318 env = &cpu->env;
319 env->cpu_model_str = cpu_model;
320 arm_cpu_realize(cpu);
321
322 if (tcg_enabled() && !inited) {
323 inited = 1;
324 arm_translate_init();
325 }
326
327 cpu_state_reset(env);
328 if (arm_feature(env, ARM_FEATURE_NEON)) {
329 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
330 51, "arm-neon.xml", 0);
331 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
332 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
333 35, "arm-vfp3.xml", 0);
334 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
335 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
336 19, "arm-vfp.xml", 0);
337 }
338 qemu_init_vcpu(env);
339 return env;
340 }
341
342 typedef struct ARMCPUListState {
343 fprintf_function cpu_fprintf;
344 FILE *file;
345 } ARMCPUListState;
346
347 /* Sort alphabetically by type name, except for "any". */
348 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
349 {
350 ObjectClass *class_a = (ObjectClass *)a;
351 ObjectClass *class_b = (ObjectClass *)b;
352 const char *name_a, *name_b;
353
354 name_a = object_class_get_name(class_a);
355 name_b = object_class_get_name(class_b);
356 if (strcmp(name_a, "any") == 0) {
357 return 1;
358 } else if (strcmp(name_b, "any") == 0) {
359 return -1;
360 } else {
361 return strcmp(name_a, name_b);
362 }
363 }
364
365 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
366 {
367 ObjectClass *oc = data;
368 ARMCPUListState *s = user_data;
369
370 (*s->cpu_fprintf)(s->file, " %s\n",
371 object_class_get_name(oc));
372 }
373
374 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
375 {
376 ARMCPUListState s = {
377 .file = f,
378 .cpu_fprintf = cpu_fprintf,
379 };
380 GSList *list;
381
382 list = object_class_get_list(TYPE_ARM_CPU, false);
383 list = g_slist_sort(list, arm_cpu_list_compare);
384 (*cpu_fprintf)(f, "Available CPUs:\n");
385 g_slist_foreach(list, arm_cpu_list_entry, &s);
386 g_slist_free(list);
387 }
388
389 static int bad_mode_switch(CPUARMState *env, int mode)
390 {
391 /* Return true if it is not valid for us to switch to
392 * this CPU mode (ie all the UNPREDICTABLE cases in
393 * the ARM ARM CPSRWriteByInstr pseudocode).
394 */
395 switch (mode) {
396 case ARM_CPU_MODE_USR:
397 case ARM_CPU_MODE_SYS:
398 case ARM_CPU_MODE_SVC:
399 case ARM_CPU_MODE_ABT:
400 case ARM_CPU_MODE_UND:
401 case ARM_CPU_MODE_IRQ:
402 case ARM_CPU_MODE_FIQ:
403 return 0;
404 default:
405 return 1;
406 }
407 }
408
409 uint32_t cpsr_read(CPUARMState *env)
410 {
411 int ZF;
412 ZF = (env->ZF == 0);
413 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
414 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
415 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
416 | ((env->condexec_bits & 0xfc) << 8)
417 | (env->GE << 16);
418 }
419
420 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
421 {
422 if (mask & CPSR_NZCV) {
423 env->ZF = (~val) & CPSR_Z;
424 env->NF = val;
425 env->CF = (val >> 29) & 1;
426 env->VF = (val << 3) & 0x80000000;
427 }
428 if (mask & CPSR_Q)
429 env->QF = ((val & CPSR_Q) != 0);
430 if (mask & CPSR_T)
431 env->thumb = ((val & CPSR_T) != 0);
432 if (mask & CPSR_IT_0_1) {
433 env->condexec_bits &= ~3;
434 env->condexec_bits |= (val >> 25) & 3;
435 }
436 if (mask & CPSR_IT_2_7) {
437 env->condexec_bits &= 3;
438 env->condexec_bits |= (val >> 8) & 0xfc;
439 }
440 if (mask & CPSR_GE) {
441 env->GE = (val >> 16) & 0xf;
442 }
443
444 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
445 if (bad_mode_switch(env, val & CPSR_M)) {
446 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
447 * We choose to ignore the attempt and leave the CPSR M field
448 * untouched.
449 */
450 mask &= ~CPSR_M;
451 } else {
452 switch_mode(env, val & CPSR_M);
453 }
454 }
455 mask &= ~CACHED_CPSR_BITS;
456 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
457 }
458
459 /* Sign/zero extend */
460 uint32_t HELPER(sxtb16)(uint32_t x)
461 {
462 uint32_t res;
463 res = (uint16_t)(int8_t)x;
464 res |= (uint32_t)(int8_t)(x >> 16) << 16;
465 return res;
466 }
467
468 uint32_t HELPER(uxtb16)(uint32_t x)
469 {
470 uint32_t res;
471 res = (uint16_t)(uint8_t)x;
472 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
473 return res;
474 }
475
476 uint32_t HELPER(clz)(uint32_t x)
477 {
478 return clz32(x);
479 }
480
481 int32_t HELPER(sdiv)(int32_t num, int32_t den)
482 {
483 if (den == 0)
484 return 0;
485 if (num == INT_MIN && den == -1)
486 return INT_MIN;
487 return num / den;
488 }
489
490 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
491 {
492 if (den == 0)
493 return 0;
494 return num / den;
495 }
496
497 uint32_t HELPER(rbit)(uint32_t x)
498 {
499 x = ((x & 0xff000000) >> 24)
500 | ((x & 0x00ff0000) >> 8)
501 | ((x & 0x0000ff00) << 8)
502 | ((x & 0x000000ff) << 24);
503 x = ((x & 0xf0f0f0f0) >> 4)
504 | ((x & 0x0f0f0f0f) << 4);
505 x = ((x & 0x88888888) >> 3)
506 | ((x & 0x44444444) >> 1)
507 | ((x & 0x22222222) << 1)
508 | ((x & 0x11111111) << 3);
509 return x;
510 }
511
512 uint32_t HELPER(abs)(uint32_t x)
513 {
514 return ((int32_t)x < 0) ? -x : x;
515 }
516
517 #if defined(CONFIG_USER_ONLY)
518
519 void do_interrupt (CPUARMState *env)
520 {
521 env->exception_index = -1;
522 }
523
524 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
525 int mmu_idx)
526 {
527 if (rw == 2) {
528 env->exception_index = EXCP_PREFETCH_ABORT;
529 env->cp15.c6_insn = address;
530 } else {
531 env->exception_index = EXCP_DATA_ABORT;
532 env->cp15.c6_data = address;
533 }
534 return 1;
535 }
536
537 /* These should probably raise undefined insn exceptions. */
538 void HELPER(set_cp)(CPUARMState *env, uint32_t insn, uint32_t val)
539 {
540 int op1 = (insn >> 8) & 0xf;
541 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
542 return;
543 }
544
545 uint32_t HELPER(get_cp)(CPUARMState *env, uint32_t insn)
546 {
547 int op1 = (insn >> 8) & 0xf;
548 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
549 return 0;
550 }
551
552 void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
553 {
554 cpu_abort(env, "cp15 insn %08x\n", insn);
555 }
556
557 uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
558 {
559 cpu_abort(env, "cp15 insn %08x\n", insn);
560 }
561
562 /* These should probably raise undefined insn exceptions. */
563 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
564 {
565 cpu_abort(env, "v7m_mrs %d\n", reg);
566 }
567
568 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
569 {
570 cpu_abort(env, "v7m_mrs %d\n", reg);
571 return 0;
572 }
573
574 void switch_mode(CPUARMState *env, int mode)
575 {
576 if (mode != ARM_CPU_MODE_USR)
577 cpu_abort(env, "Tried to switch out of user mode\n");
578 }
579
580 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
581 {
582 cpu_abort(env, "banked r13 write\n");
583 }
584
585 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
586 {
587 cpu_abort(env, "banked r13 read\n");
588 return 0;
589 }
590
591 #else
592
593 /* Map CPU modes onto saved register banks. */
594 static inline int bank_number(CPUARMState *env, int mode)
595 {
596 switch (mode) {
597 case ARM_CPU_MODE_USR:
598 case ARM_CPU_MODE_SYS:
599 return 0;
600 case ARM_CPU_MODE_SVC:
601 return 1;
602 case ARM_CPU_MODE_ABT:
603 return 2;
604 case ARM_CPU_MODE_UND:
605 return 3;
606 case ARM_CPU_MODE_IRQ:
607 return 4;
608 case ARM_CPU_MODE_FIQ:
609 return 5;
610 }
611 cpu_abort(env, "Bad mode %x\n", mode);
612 return -1;
613 }
614
615 void switch_mode(CPUARMState *env, int mode)
616 {
617 int old_mode;
618 int i;
619
620 old_mode = env->uncached_cpsr & CPSR_M;
621 if (mode == old_mode)
622 return;
623
624 if (old_mode == ARM_CPU_MODE_FIQ) {
625 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
626 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
627 } else if (mode == ARM_CPU_MODE_FIQ) {
628 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
629 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
630 }
631
632 i = bank_number(env, old_mode);
633 env->banked_r13[i] = env->regs[13];
634 env->banked_r14[i] = env->regs[14];
635 env->banked_spsr[i] = env->spsr;
636
637 i = bank_number(env, mode);
638 env->regs[13] = env->banked_r13[i];
639 env->regs[14] = env->banked_r14[i];
640 env->spsr = env->banked_spsr[i];
641 }
642
643 static void v7m_push(CPUARMState *env, uint32_t val)
644 {
645 env->regs[13] -= 4;
646 stl_phys(env->regs[13], val);
647 }
648
649 static uint32_t v7m_pop(CPUARMState *env)
650 {
651 uint32_t val;
652 val = ldl_phys(env->regs[13]);
653 env->regs[13] += 4;
654 return val;
655 }
656
657 /* Switch to V7M main or process stack pointer. */
658 static void switch_v7m_sp(CPUARMState *env, int process)
659 {
660 uint32_t tmp;
661 if (env->v7m.current_sp != process) {
662 tmp = env->v7m.other_sp;
663 env->v7m.other_sp = env->regs[13];
664 env->regs[13] = tmp;
665 env->v7m.current_sp = process;
666 }
667 }
668
669 static void do_v7m_exception_exit(CPUARMState *env)
670 {
671 uint32_t type;
672 uint32_t xpsr;
673
674 type = env->regs[15];
675 if (env->v7m.exception != 0)
676 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
677
678 /* Switch to the target stack. */
679 switch_v7m_sp(env, (type & 4) != 0);
680 /* Pop registers. */
681 env->regs[0] = v7m_pop(env);
682 env->regs[1] = v7m_pop(env);
683 env->regs[2] = v7m_pop(env);
684 env->regs[3] = v7m_pop(env);
685 env->regs[12] = v7m_pop(env);
686 env->regs[14] = v7m_pop(env);
687 env->regs[15] = v7m_pop(env);
688 xpsr = v7m_pop(env);
689 xpsr_write(env, xpsr, 0xfffffdff);
690 /* Undo stack alignment. */
691 if (xpsr & 0x200)
692 env->regs[13] |= 4;
693 /* ??? The exception return type specifies Thread/Handler mode. However
694 this is also implied by the xPSR value. Not sure what to do
695 if there is a mismatch. */
696 /* ??? Likewise for mismatches between the CONTROL register and the stack
697 pointer. */
698 }
699
700 static void do_interrupt_v7m(CPUARMState *env)
701 {
702 uint32_t xpsr = xpsr_read(env);
703 uint32_t lr;
704 uint32_t addr;
705
706 lr = 0xfffffff1;
707 if (env->v7m.current_sp)
708 lr |= 4;
709 if (env->v7m.exception == 0)
710 lr |= 8;
711
712 /* For exceptions we just mark as pending on the NVIC, and let that
713 handle it. */
714 /* TODO: Need to escalate if the current priority is higher than the
715 one we're raising. */
716 switch (env->exception_index) {
717 case EXCP_UDEF:
718 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
719 return;
720 case EXCP_SWI:
721 env->regs[15] += 2;
722 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
723 return;
724 case EXCP_PREFETCH_ABORT:
725 case EXCP_DATA_ABORT:
726 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
727 return;
728 case EXCP_BKPT:
729 if (semihosting_enabled) {
730 int nr;
731 nr = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
732 if (nr == 0xab) {
733 env->regs[15] += 2;
734 env->regs[0] = do_arm_semihosting(env);
735 return;
736 }
737 }
738 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
739 return;
740 case EXCP_IRQ:
741 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
742 break;
743 case EXCP_EXCEPTION_EXIT:
744 do_v7m_exception_exit(env);
745 return;
746 default:
747 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
748 return; /* Never happens. Keep compiler happy. */
749 }
750
751 /* Align stack pointer. */
752 /* ??? Should only do this if Configuration Control Register
753 STACKALIGN bit is set. */
754 if (env->regs[13] & 4) {
755 env->regs[13] -= 4;
756 xpsr |= 0x200;
757 }
758 /* Switch to the handler mode. */
759 v7m_push(env, xpsr);
760 v7m_push(env, env->regs[15]);
761 v7m_push(env, env->regs[14]);
762 v7m_push(env, env->regs[12]);
763 v7m_push(env, env->regs[3]);
764 v7m_push(env, env->regs[2]);
765 v7m_push(env, env->regs[1]);
766 v7m_push(env, env->regs[0]);
767 switch_v7m_sp(env, 0);
768 /* Clear IT bits */
769 env->condexec_bits = 0;
770 env->regs[14] = lr;
771 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
772 env->regs[15] = addr & 0xfffffffe;
773 env->thumb = addr & 1;
774 }
775
776 /* Handle a CPU exception. */
777 void do_interrupt(CPUARMState *env)
778 {
779 uint32_t addr;
780 uint32_t mask;
781 int new_mode;
782 uint32_t offset;
783
784 if (IS_M(env)) {
785 do_interrupt_v7m(env);
786 return;
787 }
788 /* TODO: Vectored interrupt controller. */
789 switch (env->exception_index) {
790 case EXCP_UDEF:
791 new_mode = ARM_CPU_MODE_UND;
792 addr = 0x04;
793 mask = CPSR_I;
794 if (env->thumb)
795 offset = 2;
796 else
797 offset = 4;
798 break;
799 case EXCP_SWI:
800 if (semihosting_enabled) {
801 /* Check for semihosting interrupt. */
802 if (env->thumb) {
803 mask = arm_lduw_code(env->regs[15] - 2, env->bswap_code) & 0xff;
804 } else {
805 mask = arm_ldl_code(env->regs[15] - 4, env->bswap_code)
806 & 0xffffff;
807 }
808 /* Only intercept calls from privileged modes, to provide some
809 semblance of security. */
810 if (((mask == 0x123456 && !env->thumb)
811 || (mask == 0xab && env->thumb))
812 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
813 env->regs[0] = do_arm_semihosting(env);
814 return;
815 }
816 }
817 new_mode = ARM_CPU_MODE_SVC;
818 addr = 0x08;
819 mask = CPSR_I;
820 /* The PC already points to the next instruction. */
821 offset = 0;
822 break;
823 case EXCP_BKPT:
824 /* See if this is a semihosting syscall. */
825 if (env->thumb && semihosting_enabled) {
826 mask = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
827 if (mask == 0xab
828 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
829 env->regs[15] += 2;
830 env->regs[0] = do_arm_semihosting(env);
831 return;
832 }
833 }
834 env->cp15.c5_insn = 2;
835 /* Fall through to prefetch abort. */
836 case EXCP_PREFETCH_ABORT:
837 new_mode = ARM_CPU_MODE_ABT;
838 addr = 0x0c;
839 mask = CPSR_A | CPSR_I;
840 offset = 4;
841 break;
842 case EXCP_DATA_ABORT:
843 new_mode = ARM_CPU_MODE_ABT;
844 addr = 0x10;
845 mask = CPSR_A | CPSR_I;
846 offset = 8;
847 break;
848 case EXCP_IRQ:
849 new_mode = ARM_CPU_MODE_IRQ;
850 addr = 0x18;
851 /* Disable IRQ and imprecise data aborts. */
852 mask = CPSR_A | CPSR_I;
853 offset = 4;
854 break;
855 case EXCP_FIQ:
856 new_mode = ARM_CPU_MODE_FIQ;
857 addr = 0x1c;
858 /* Disable FIQ, IRQ and imprecise data aborts. */
859 mask = CPSR_A | CPSR_I | CPSR_F;
860 offset = 4;
861 break;
862 default:
863 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
864 return; /* Never happens. Keep compiler happy. */
865 }
866 /* High vectors. */
867 if (env->cp15.c1_sys & (1 << 13)) {
868 addr += 0xffff0000;
869 }
870 switch_mode (env, new_mode);
871 env->spsr = cpsr_read(env);
872 /* Clear IT bits. */
873 env->condexec_bits = 0;
874 /* Switch to the new mode, and to the correct instruction set. */
875 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
876 env->uncached_cpsr |= mask;
877 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
878 * and we should just guard the thumb mode on V4 */
879 if (arm_feature(env, ARM_FEATURE_V4T)) {
880 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
881 }
882 env->regs[14] = env->regs[15] + offset;
883 env->regs[15] = addr;
884 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
885 }
886
887 /* Check section/page access permissions.
888 Returns the page protection flags, or zero if the access is not
889 permitted. */
890 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
891 int access_type, int is_user)
892 {
893 int prot_ro;
894
895 if (domain_prot == 3) {
896 return PAGE_READ | PAGE_WRITE;
897 }
898
899 if (access_type == 1)
900 prot_ro = 0;
901 else
902 prot_ro = PAGE_READ;
903
904 switch (ap) {
905 case 0:
906 if (access_type == 1)
907 return 0;
908 switch ((env->cp15.c1_sys >> 8) & 3) {
909 case 1:
910 return is_user ? 0 : PAGE_READ;
911 case 2:
912 return PAGE_READ;
913 default:
914 return 0;
915 }
916 case 1:
917 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
918 case 2:
919 if (is_user)
920 return prot_ro;
921 else
922 return PAGE_READ | PAGE_WRITE;
923 case 3:
924 return PAGE_READ | PAGE_WRITE;
925 case 4: /* Reserved. */
926 return 0;
927 case 5:
928 return is_user ? 0 : prot_ro;
929 case 6:
930 return prot_ro;
931 case 7:
932 if (!arm_feature (env, ARM_FEATURE_V6K))
933 return 0;
934 return prot_ro;
935 default:
936 abort();
937 }
938 }
939
940 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
941 {
942 uint32_t table;
943
944 if (address & env->cp15.c2_mask)
945 table = env->cp15.c2_base1 & 0xffffc000;
946 else
947 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
948
949 table |= (address >> 18) & 0x3ffc;
950 return table;
951 }
952
953 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
954 int is_user, uint32_t *phys_ptr, int *prot,
955 target_ulong *page_size)
956 {
957 int code;
958 uint32_t table;
959 uint32_t desc;
960 int type;
961 int ap;
962 int domain;
963 int domain_prot;
964 uint32_t phys_addr;
965
966 /* Pagetable walk. */
967 /* Lookup l1 descriptor. */
968 table = get_level1_table_address(env, address);
969 desc = ldl_phys(table);
970 type = (desc & 3);
971 domain = (desc >> 5) & 0x0f;
972 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
973 if (type == 0) {
974 /* Section translation fault. */
975 code = 5;
976 goto do_fault;
977 }
978 if (domain_prot == 0 || domain_prot == 2) {
979 if (type == 2)
980 code = 9; /* Section domain fault. */
981 else
982 code = 11; /* Page domain fault. */
983 goto do_fault;
984 }
985 if (type == 2) {
986 /* 1Mb section. */
987 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
988 ap = (desc >> 10) & 3;
989 code = 13;
990 *page_size = 1024 * 1024;
991 } else {
992 /* Lookup l2 entry. */
993 if (type == 1) {
994 /* Coarse pagetable. */
995 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
996 } else {
997 /* Fine pagetable. */
998 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
999 }
1000 desc = ldl_phys(table);
1001 switch (desc & 3) {
1002 case 0: /* Page translation fault. */
1003 code = 7;
1004 goto do_fault;
1005 case 1: /* 64k page. */
1006 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1007 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1008 *page_size = 0x10000;
1009 break;
1010 case 2: /* 4k page. */
1011 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1012 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1013 *page_size = 0x1000;
1014 break;
1015 case 3: /* 1k page. */
1016 if (type == 1) {
1017 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1018 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1019 } else {
1020 /* Page translation fault. */
1021 code = 7;
1022 goto do_fault;
1023 }
1024 } else {
1025 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1026 }
1027 ap = (desc >> 4) & 3;
1028 *page_size = 0x400;
1029 break;
1030 default:
1031 /* Never happens, but compiler isn't smart enough to tell. */
1032 abort();
1033 }
1034 code = 15;
1035 }
1036 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
1037 if (!*prot) {
1038 /* Access permission fault. */
1039 goto do_fault;
1040 }
1041 *prot |= PAGE_EXEC;
1042 *phys_ptr = phys_addr;
1043 return 0;
1044 do_fault:
1045 return code | (domain << 4);
1046 }
1047
1048 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
1049 int is_user, uint32_t *phys_ptr, int *prot,
1050 target_ulong *page_size)
1051 {
1052 int code;
1053 uint32_t table;
1054 uint32_t desc;
1055 uint32_t xn;
1056 int type;
1057 int ap;
1058 int domain;
1059 int domain_prot;
1060 uint32_t phys_addr;
1061
1062 /* Pagetable walk. */
1063 /* Lookup l1 descriptor. */
1064 table = get_level1_table_address(env, address);
1065 desc = ldl_phys(table);
1066 type = (desc & 3);
1067 if (type == 0) {
1068 /* Section translation fault. */
1069 code = 5;
1070 domain = 0;
1071 goto do_fault;
1072 } else if (type == 2 && (desc & (1 << 18))) {
1073 /* Supersection. */
1074 domain = 0;
1075 } else {
1076 /* Section or page. */
1077 domain = (desc >> 5) & 0x0f;
1078 }
1079 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1080 if (domain_prot == 0 || domain_prot == 2) {
1081 if (type == 2)
1082 code = 9; /* Section domain fault. */
1083 else
1084 code = 11; /* Page domain fault. */
1085 goto do_fault;
1086 }
1087 if (type == 2) {
1088 if (desc & (1 << 18)) {
1089 /* Supersection. */
1090 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1091 *page_size = 0x1000000;
1092 } else {
1093 /* Section. */
1094 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1095 *page_size = 0x100000;
1096 }
1097 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1098 xn = desc & (1 << 4);
1099 code = 13;
1100 } else {
1101 /* Lookup l2 entry. */
1102 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1103 desc = ldl_phys(table);
1104 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1105 switch (desc & 3) {
1106 case 0: /* Page translation fault. */
1107 code = 7;
1108 goto do_fault;
1109 case 1: /* 64k page. */
1110 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1111 xn = desc & (1 << 15);
1112 *page_size = 0x10000;
1113 break;
1114 case 2: case 3: /* 4k page. */
1115 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1116 xn = desc & 1;
1117 *page_size = 0x1000;
1118 break;
1119 default:
1120 /* Never happens, but compiler isn't smart enough to tell. */
1121 abort();
1122 }
1123 code = 15;
1124 }
1125 if (domain_prot == 3) {
1126 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1127 } else {
1128 if (xn && access_type == 2)
1129 goto do_fault;
1130
1131 /* The simplified model uses AP[0] as an access control bit. */
1132 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1133 /* Access flag fault. */
1134 code = (code == 15) ? 6 : 3;
1135 goto do_fault;
1136 }
1137 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
1138 if (!*prot) {
1139 /* Access permission fault. */
1140 goto do_fault;
1141 }
1142 if (!xn) {
1143 *prot |= PAGE_EXEC;
1144 }
1145 }
1146 *phys_ptr = phys_addr;
1147 return 0;
1148 do_fault:
1149 return code | (domain << 4);
1150 }
1151
1152 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type,
1153 int is_user, uint32_t *phys_ptr, int *prot)
1154 {
1155 int n;
1156 uint32_t mask;
1157 uint32_t base;
1158
1159 *phys_ptr = address;
1160 for (n = 7; n >= 0; n--) {
1161 base = env->cp15.c6_region[n];
1162 if ((base & 1) == 0)
1163 continue;
1164 mask = 1 << ((base >> 1) & 0x1f);
1165 /* Keep this shift separate from the above to avoid an
1166 (undefined) << 32. */
1167 mask = (mask << 1) - 1;
1168 if (((base ^ address) & ~mask) == 0)
1169 break;
1170 }
1171 if (n < 0)
1172 return 2;
1173
1174 if (access_type == 2) {
1175 mask = env->cp15.c5_insn;
1176 } else {
1177 mask = env->cp15.c5_data;
1178 }
1179 mask = (mask >> (n * 4)) & 0xf;
1180 switch (mask) {
1181 case 0:
1182 return 1;
1183 case 1:
1184 if (is_user)
1185 return 1;
1186 *prot = PAGE_READ | PAGE_WRITE;
1187 break;
1188 case 2:
1189 *prot = PAGE_READ;
1190 if (!is_user)
1191 *prot |= PAGE_WRITE;
1192 break;
1193 case 3:
1194 *prot = PAGE_READ | PAGE_WRITE;
1195 break;
1196 case 5:
1197 if (is_user)
1198 return 1;
1199 *prot = PAGE_READ;
1200 break;
1201 case 6:
1202 *prot = PAGE_READ;
1203 break;
1204 default:
1205 /* Bad permission. */
1206 return 1;
1207 }
1208 *prot |= PAGE_EXEC;
1209 return 0;
1210 }
1211
1212 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
1213 int access_type, int is_user,
1214 uint32_t *phys_ptr, int *prot,
1215 target_ulong *page_size)
1216 {
1217 /* Fast Context Switch Extension. */
1218 if (address < 0x02000000)
1219 address += env->cp15.c13_fcse;
1220
1221 if ((env->cp15.c1_sys & 1) == 0) {
1222 /* MMU/MPU disabled. */
1223 *phys_ptr = address;
1224 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1225 *page_size = TARGET_PAGE_SIZE;
1226 return 0;
1227 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1228 *page_size = TARGET_PAGE_SIZE;
1229 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1230 prot);
1231 } else if (env->cp15.c1_sys & (1 << 23)) {
1232 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1233 prot, page_size);
1234 } else {
1235 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1236 prot, page_size);
1237 }
1238 }
1239
1240 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
1241 int access_type, int mmu_idx)
1242 {
1243 uint32_t phys_addr;
1244 target_ulong page_size;
1245 int prot;
1246 int ret, is_user;
1247
1248 is_user = mmu_idx == MMU_USER_IDX;
1249 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1250 &page_size);
1251 if (ret == 0) {
1252 /* Map a single [sub]page. */
1253 phys_addr &= ~(uint32_t)0x3ff;
1254 address &= ~(uint32_t)0x3ff;
1255 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
1256 return 0;
1257 }
1258
1259 if (access_type == 2) {
1260 env->cp15.c5_insn = ret;
1261 env->cp15.c6_insn = address;
1262 env->exception_index = EXCP_PREFETCH_ABORT;
1263 } else {
1264 env->cp15.c5_data = ret;
1265 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1266 env->cp15.c5_data |= (1 << 11);
1267 env->cp15.c6_data = address;
1268 env->exception_index = EXCP_DATA_ABORT;
1269 }
1270 return 1;
1271 }
1272
1273 target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
1274 {
1275 uint32_t phys_addr;
1276 target_ulong page_size;
1277 int prot;
1278 int ret;
1279
1280 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1281
1282 if (ret != 0)
1283 return -1;
1284
1285 return phys_addr;
1286 }
1287
1288 void HELPER(set_cp)(CPUARMState *env, uint32_t insn, uint32_t val)
1289 {
1290 int cp_num = (insn >> 8) & 0xf;
1291 int cp_info = (insn >> 5) & 7;
1292 int src = (insn >> 16) & 0xf;
1293 int operand = insn & 0xf;
1294
1295 if (env->cp[cp_num].cp_write)
1296 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1297 cp_info, src, operand, val);
1298 }
1299
1300 uint32_t HELPER(get_cp)(CPUARMState *env, uint32_t insn)
1301 {
1302 int cp_num = (insn >> 8) & 0xf;
1303 int cp_info = (insn >> 5) & 7;
1304 int dest = (insn >> 16) & 0xf;
1305 int operand = insn & 0xf;
1306
1307 if (env->cp[cp_num].cp_read)
1308 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1309 cp_info, dest, operand);
1310 return 0;
1311 }
1312
1313 /* Return basic MPU access permission bits. */
1314 static uint32_t simple_mpu_ap_bits(uint32_t val)
1315 {
1316 uint32_t ret;
1317 uint32_t mask;
1318 int i;
1319 ret = 0;
1320 mask = 3;
1321 for (i = 0; i < 16; i += 2) {
1322 ret |= (val >> i) & mask;
1323 mask <<= 2;
1324 }
1325 return ret;
1326 }
1327
1328 /* Pad basic MPU access permission bits to extended format. */
1329 static uint32_t extended_mpu_ap_bits(uint32_t val)
1330 {
1331 uint32_t ret;
1332 uint32_t mask;
1333 int i;
1334 ret = 0;
1335 mask = 3;
1336 for (i = 0; i < 16; i += 2) {
1337 ret |= (val & mask) << i;
1338 mask <<= 2;
1339 }
1340 return ret;
1341 }
1342
1343 void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
1344 {
1345 int op1;
1346 int op2;
1347 int crm;
1348
1349 op1 = (insn >> 21) & 7;
1350 op2 = (insn >> 5) & 7;
1351 crm = insn & 0xf;
1352 switch ((insn >> 16) & 0xf) {
1353 case 0:
1354 /* ID codes. */
1355 if (arm_feature(env, ARM_FEATURE_XSCALE))
1356 break;
1357 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1358 break;
1359 if (arm_feature(env, ARM_FEATURE_V7)
1360 && op1 == 2 && crm == 0 && op2 == 0) {
1361 env->cp15.c0_cssel = val & 0xf;
1362 break;
1363 }
1364 goto bad_reg;
1365 case 1: /* System configuration. */
1366 if (arm_feature(env, ARM_FEATURE_V7)
1367 && op1 == 0 && crm == 1 && op2 == 0) {
1368 env->cp15.c1_scr = val;
1369 break;
1370 }
1371 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1372 op2 = 0;
1373 switch (op2) {
1374 case 0:
1375 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1376 env->cp15.c1_sys = val;
1377 /* ??? Lots of these bits are not implemented. */
1378 /* This may enable/disable the MMU, so do a TLB flush. */
1379 tlb_flush(env, 1);
1380 break;
1381 case 1: /* Auxiliary control register. */
1382 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1383 env->cp15.c1_xscaleauxcr = val;
1384 break;
1385 }
1386 /* Not implemented. */
1387 break;
1388 case 2:
1389 if (arm_feature(env, ARM_FEATURE_XSCALE))
1390 goto bad_reg;
1391 if (env->cp15.c1_coproc != val) {
1392 env->cp15.c1_coproc = val;
1393 /* ??? Is this safe when called from within a TB? */
1394 tb_flush(env);
1395 }
1396 break;
1397 default:
1398 goto bad_reg;
1399 }
1400 break;
1401 case 2: /* MMU Page table control / MPU cache control. */
1402 if (arm_feature(env, ARM_FEATURE_MPU)) {
1403 switch (op2) {
1404 case 0:
1405 env->cp15.c2_data = val;
1406 break;
1407 case 1:
1408 env->cp15.c2_insn = val;
1409 break;
1410 default:
1411 goto bad_reg;
1412 }
1413 } else {
1414 switch (op2) {
1415 case 0:
1416 env->cp15.c2_base0 = val;
1417 break;
1418 case 1:
1419 env->cp15.c2_base1 = val;
1420 break;
1421 case 2:
1422 val &= 7;
1423 env->cp15.c2_control = val;
1424 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1425 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1426 break;
1427 default:
1428 goto bad_reg;
1429 }
1430 }
1431 break;
1432 case 3: /* MMU Domain access control / MPU write buffer control. */
1433 env->cp15.c3 = val;
1434 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1435 break;
1436 case 4: /* Reserved. */
1437 goto bad_reg;
1438 case 5: /* MMU Fault status / MPU access permission. */
1439 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1440 op2 = 0;
1441 switch (op2) {
1442 case 0:
1443 if (arm_feature(env, ARM_FEATURE_MPU))
1444 val = extended_mpu_ap_bits(val);
1445 env->cp15.c5_data = val;
1446 break;
1447 case 1:
1448 if (arm_feature(env, ARM_FEATURE_MPU))
1449 val = extended_mpu_ap_bits(val);
1450 env->cp15.c5_insn = val;
1451 break;
1452 case 2:
1453 if (!arm_feature(env, ARM_FEATURE_MPU))
1454 goto bad_reg;
1455 env->cp15.c5_data = val;
1456 break;
1457 case 3:
1458 if (!arm_feature(env, ARM_FEATURE_MPU))
1459 goto bad_reg;
1460 env->cp15.c5_insn = val;
1461 break;
1462 default:
1463 goto bad_reg;
1464 }
1465 break;
1466 case 6: /* MMU Fault address / MPU base/size. */
1467 if (arm_feature(env, ARM_FEATURE_MPU)) {
1468 if (crm >= 8)
1469 goto bad_reg;
1470 env->cp15.c6_region[crm] = val;
1471 } else {
1472 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1473 op2 = 0;
1474 switch (op2) {
1475 case 0:
1476 env->cp15.c6_data = val;
1477 break;
1478 case 1: /* ??? This is WFAR on armv6 */
1479 case 2:
1480 env->cp15.c6_insn = val;
1481 break;
1482 default:
1483 goto bad_reg;
1484 }
1485 }
1486 break;
1487 case 7: /* Cache control. */
1488 env->cp15.c15_i_max = 0x000;
1489 env->cp15.c15_i_min = 0xff0;
1490 if (op1 != 0) {
1491 goto bad_reg;
1492 }
1493 /* No cache, so nothing to do except VA->PA translations. */
1494 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1495 switch (crm) {
1496 case 4:
1497 if (arm_feature(env, ARM_FEATURE_V7)) {
1498 env->cp15.c7_par = val & 0xfffff6ff;
1499 } else {
1500 env->cp15.c7_par = val & 0xfffff1ff;
1501 }
1502 break;
1503 case 8: {
1504 uint32_t phys_addr;
1505 target_ulong page_size;
1506 int prot;
1507 int ret, is_user = op2 & 2;
1508 int access_type = op2 & 1;
1509
1510 if (op2 & 4) {
1511 /* Other states are only available with TrustZone */
1512 goto bad_reg;
1513 }
1514 ret = get_phys_addr(env, val, access_type, is_user,
1515 &phys_addr, &prot, &page_size);
1516 if (ret == 0) {
1517 /* We do not set any attribute bits in the PAR */
1518 if (page_size == (1 << 24)
1519 && arm_feature(env, ARM_FEATURE_V7)) {
1520 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1521 } else {
1522 env->cp15.c7_par = phys_addr & 0xfffff000;
1523 }
1524 } else {
1525 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1526 ((ret & (12 << 1)) >> 6) |
1527 ((ret & 0xf) << 1) | 1;
1528 }
1529 break;
1530 }
1531 }
1532 }
1533 break;
1534 case 8: /* MMU TLB control. */
1535 switch (op2) {
1536 case 0: /* Invalidate all (TLBIALL) */
1537 tlb_flush(env, 1);
1538 break;
1539 case 1: /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
1540 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1541 break;
1542 case 2: /* Invalidate by ASID (TLBIASID) */
1543 tlb_flush(env, val == 0);
1544 break;
1545 case 3: /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
1546 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1547 break;
1548 default:
1549 goto bad_reg;
1550 }
1551 break;
1552 case 9:
1553 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1554 break;
1555 if (arm_feature(env, ARM_FEATURE_STRONGARM))
1556 break; /* Ignore ReadBuffer access */
1557 switch (crm) {
1558 case 0: /* Cache lockdown. */
1559 switch (op1) {
1560 case 0: /* L1 cache. */
1561 switch (op2) {
1562 case 0:
1563 env->cp15.c9_data = val;
1564 break;
1565 case 1:
1566 env->cp15.c9_insn = val;
1567 break;
1568 default:
1569 goto bad_reg;
1570 }
1571 break;
1572 case 1: /* L2 cache. */
1573 /* Ignore writes to L2 lockdown/auxiliary registers. */
1574 break;
1575 default:
1576 goto bad_reg;
1577 }
1578 break;
1579 case 1: /* TCM memory region registers. */
1580 /* Not implemented. */
1581 goto bad_reg;
1582 case 12: /* Performance monitor control */
1583 /* Performance monitors are implementation defined in v7,
1584 * but with an ARM recommended set of registers, which we
1585 * follow (although we don't actually implement any counters)
1586 */
1587 if (!arm_feature(env, ARM_FEATURE_V7)) {
1588 goto bad_reg;
1589 }
1590 switch (op2) {
1591 case 0: /* performance monitor control register */
1592 /* only the DP, X, D and E bits are writable */
1593 env->cp15.c9_pmcr &= ~0x39;
1594 env->cp15.c9_pmcr |= (val & 0x39);
1595 break;
1596 case 1: /* Count enable set register */
1597 val &= (1 << 31);
1598 env->cp15.c9_pmcnten |= val;
1599 break;
1600 case 2: /* Count enable clear */
1601 val &= (1 << 31);
1602 env->cp15.c9_pmcnten &= ~val;
1603 break;
1604 case 3: /* Overflow flag status */
1605 env->cp15.c9_pmovsr &= ~val;
1606 break;
1607 case 4: /* Software increment */
1608 /* RAZ/WI since we don't implement the software-count event */
1609 break;
1610 case 5: /* Event counter selection register */
1611 /* Since we don't implement any events, writing to this register
1612 * is actually UNPREDICTABLE. So we choose to RAZ/WI.
1613 */
1614 break;
1615 default:
1616 goto bad_reg;
1617 }
1618 break;
1619 case 13: /* Performance counters */
1620 if (!arm_feature(env, ARM_FEATURE_V7)) {
1621 goto bad_reg;
1622 }
1623 switch (op2) {
1624 case 0: /* Cycle count register: not implemented, so RAZ/WI */
1625 break;
1626 case 1: /* Event type select */
1627 env->cp15.c9_pmxevtyper = val & 0xff;
1628 break;
1629 case 2: /* Event count register */
1630 /* Unimplemented (we have no events), RAZ/WI */
1631 break;
1632 default:
1633 goto bad_reg;
1634 }
1635 break;
1636 case 14: /* Performance monitor control */
1637 if (!arm_feature(env, ARM_FEATURE_V7)) {
1638 goto bad_reg;
1639 }
1640 switch (op2) {
1641 case 0: /* user enable */
1642 env->cp15.c9_pmuserenr = val & 1;
1643 /* changes access rights for cp registers, so flush tbs */
1644 tb_flush(env);
1645 break;
1646 case 1: /* interrupt enable set */
1647 /* We have no event counters so only the C bit can be changed */
1648 val &= (1 << 31);
1649 env->cp15.c9_pminten |= val;
1650 break;
1651 case 2: /* interrupt enable clear */
1652 val &= (1 << 31);
1653 env->cp15.c9_pminten &= ~val;
1654 break;
1655 }
1656 break;
1657 default:
1658 goto bad_reg;
1659 }
1660 break;
1661 case 10: /* MMU TLB lockdown. */
1662 /* ??? TLB lockdown not implemented. */
1663 break;
1664 case 12: /* Reserved. */
1665 goto bad_reg;
1666 case 13: /* Process ID. */
1667 switch (op2) {
1668 case 0:
1669 /* Unlike real hardware the qemu TLB uses virtual addresses,
1670 not modified virtual addresses, so this causes a TLB flush.
1671 */
1672 if (env->cp15.c13_fcse != val)
1673 tlb_flush(env, 1);
1674 env->cp15.c13_fcse = val;
1675 break;
1676 case 1:
1677 /* This changes the ASID, so do a TLB flush. */
1678 if (env->cp15.c13_context != val
1679 && !arm_feature(env, ARM_FEATURE_MPU))
1680 tlb_flush(env, 0);
1681 env->cp15.c13_context = val;
1682 break;
1683 default:
1684 goto bad_reg;
1685 }
1686 break;
1687 case 14: /* Generic timer */
1688 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1689 /* Dummy implementation: RAZ/WI for all */
1690 break;
1691 }
1692 goto bad_reg;
1693 case 15: /* Implementation specific. */
1694 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1695 if (op2 == 0 && crm == 1) {
1696 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1697 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1698 tb_flush(env);
1699 env->cp15.c15_cpar = val & 0x3fff;
1700 }
1701 break;
1702 }
1703 goto bad_reg;
1704 }
1705 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1706 switch (crm) {
1707 case 0:
1708 break;
1709 case 1: /* Set TI925T configuration. */
1710 env->cp15.c15_ticonfig = val & 0xe7;
1711 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1712 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1713 break;
1714 case 2: /* Set I_max. */
1715 env->cp15.c15_i_max = val;
1716 break;
1717 case 3: /* Set I_min. */
1718 env->cp15.c15_i_min = val;
1719 break;
1720 case 4: /* Set thread-ID. */
1721 env->cp15.c15_threadid = val & 0xffff;
1722 break;
1723 case 8: /* Wait-for-interrupt (deprecated). */
1724 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1725 break;
1726 default:
1727 goto bad_reg;
1728 }
1729 }
1730 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1731 switch (crm) {
1732 case 0:
1733 if ((op1 == 0) && (op2 == 0)) {
1734 env->cp15.c15_power_control = val;
1735 } else if ((op1 == 0) && (op2 == 1)) {
1736 env->cp15.c15_diagnostic = val;
1737 } else if ((op1 == 0) && (op2 == 2)) {
1738 env->cp15.c15_power_diagnostic = val;
1739 }
1740 default:
1741 break;
1742 }
1743 }
1744 break;
1745 }
1746 return;
1747 bad_reg:
1748 /* ??? For debugging only. Should raise illegal instruction exception. */
1749 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1750 (insn >> 16) & 0xf, crm, op1, op2);
1751 }
1752
1753 uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
1754 {
1755 int op1;
1756 int op2;
1757 int crm;
1758
1759 op1 = (insn >> 21) & 7;
1760 op2 = (insn >> 5) & 7;
1761 crm = insn & 0xf;
1762 switch ((insn >> 16) & 0xf) {
1763 case 0: /* ID codes. */
1764 switch (op1) {
1765 case 0:
1766 switch (crm) {
1767 case 0:
1768 switch (op2) {
1769 case 0: /* Device ID. */
1770 return env->cp15.c0_cpuid;
1771 case 1: /* Cache Type. */
1772 return env->cp15.c0_cachetype;
1773 case 2: /* TCM status. */
1774 return 0;
1775 case 3: /* TLB type register. */
1776 return 0; /* No lockable TLB entries. */
1777 case 5: /* MPIDR */
1778 /* The MPIDR was standardised in v7; prior to
1779 * this it was implemented only in the 11MPCore.
1780 * For all other pre-v7 cores it does not exist.
1781 */
1782 if (arm_feature(env, ARM_FEATURE_V7) ||
1783 ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
1784 int mpidr = env->cpu_index;
1785 /* We don't support setting cluster ID ([8..11])
1786 * so these bits always RAZ.
1787 */
1788 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1789 mpidr |= (1 << 31);
1790 /* Cores which are uniprocessor (non-coherent)
1791 * but still implement the MP extensions set
1792 * bit 30. (For instance, A9UP.) However we do
1793 * not currently model any of those cores.
1794 */
1795 }
1796 return mpidr;
1797 }
1798 /* otherwise fall through to the unimplemented-reg case */
1799 default:
1800 goto bad_reg;
1801 }
1802 case 1:
1803 if (!arm_feature(env, ARM_FEATURE_V6))
1804 goto bad_reg;
1805 return env->cp15.c0_c1[op2];
1806 case 2:
1807 if (!arm_feature(env, ARM_FEATURE_V6))
1808 goto bad_reg;
1809 return env->cp15.c0_c2[op2];
1810 case 3: case 4: case 5: case 6: case 7:
1811 return 0;
1812 default:
1813 goto bad_reg;
1814 }
1815 case 1:
1816 /* These registers aren't documented on arm11 cores. However
1817 Linux looks at them anyway. */
1818 if (!arm_feature(env, ARM_FEATURE_V6))
1819 goto bad_reg;
1820 if (crm != 0)
1821 goto bad_reg;
1822 if (!arm_feature(env, ARM_FEATURE_V7))
1823 return 0;
1824
1825 switch (op2) {
1826 case 0:
1827 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1828 case 1:
1829 return env->cp15.c0_clid;
1830 case 7:
1831 return 0;
1832 }
1833 goto bad_reg;
1834 case 2:
1835 if (op2 != 0 || crm != 0)
1836 goto bad_reg;
1837 return env->cp15.c0_cssel;
1838 default:
1839 goto bad_reg;
1840 }
1841 case 1: /* System configuration. */
1842 if (arm_feature(env, ARM_FEATURE_V7)
1843 && op1 == 0 && crm == 1 && op2 == 0) {
1844 return env->cp15.c1_scr;
1845 }
1846 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1847 op2 = 0;
1848 switch (op2) {
1849 case 0: /* Control register. */
1850 return env->cp15.c1_sys;
1851 case 1: /* Auxiliary control register. */
1852 if (arm_feature(env, ARM_FEATURE_XSCALE))
1853 return env->cp15.c1_xscaleauxcr;
1854 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1855 goto bad_reg;
1856 switch (ARM_CPUID(env)) {
1857 case ARM_CPUID_ARM1026:
1858 return 1;
1859 case ARM_CPUID_ARM1136:
1860 case ARM_CPUID_ARM1136_R2:
1861 case ARM_CPUID_ARM1176:
1862 return 7;
1863 case ARM_CPUID_ARM11MPCORE:
1864 return 1;
1865 case ARM_CPUID_CORTEXA8:
1866 return 2;
1867 case ARM_CPUID_CORTEXA9:
1868 case ARM_CPUID_CORTEXA15:
1869 return 0;
1870 default:
1871 goto bad_reg;
1872 }
1873 case 2: /* Coprocessor access register. */
1874 if (arm_feature(env, ARM_FEATURE_XSCALE))
1875 goto bad_reg;
1876 return env->cp15.c1_coproc;
1877 default:
1878 goto bad_reg;
1879 }
1880 case 2: /* MMU Page table control / MPU cache control. */
1881 if (arm_feature(env, ARM_FEATURE_MPU)) {
1882 switch (op2) {
1883 case 0:
1884 return env->cp15.c2_data;
1885 break;
1886 case 1:
1887 return env->cp15.c2_insn;
1888 break;
1889 default:
1890 goto bad_reg;
1891 }
1892 } else {
1893 switch (op2) {
1894 case 0:
1895 return env->cp15.c2_base0;
1896 case 1:
1897 return env->cp15.c2_base1;
1898 case 2:
1899 return env->cp15.c2_control;
1900 default:
1901 goto bad_reg;
1902 }
1903 }
1904 case 3: /* MMU Domain access control / MPU write buffer control. */
1905 return env->cp15.c3;
1906 case 4: /* Reserved. */
1907 goto bad_reg;
1908 case 5: /* MMU Fault status / MPU access permission. */
1909 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1910 op2 = 0;
1911 switch (op2) {
1912 case 0:
1913 if (arm_feature(env, ARM_FEATURE_MPU))
1914 return simple_mpu_ap_bits(env->cp15.c5_data);
1915 return env->cp15.c5_data;
1916 case 1:
1917 if (arm_feature(env, ARM_FEATURE_MPU))
1918 return simple_mpu_ap_bits(env->cp15.c5_insn);
1919 return env->cp15.c5_insn;
1920 case 2:
1921 if (!arm_feature(env, ARM_FEATURE_MPU))
1922 goto bad_reg;
1923 return env->cp15.c5_data;
1924 case 3:
1925 if (!arm_feature(env, ARM_FEATURE_MPU))
1926 goto bad_reg;
1927 return env->cp15.c5_insn;
1928 default:
1929 goto bad_reg;
1930 }
1931 case 6: /* MMU Fault address. */
1932 if (arm_feature(env, ARM_FEATURE_MPU)) {
1933 if (crm >= 8)
1934 goto bad_reg;
1935 return env->cp15.c6_region[crm];
1936 } else {
1937 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1938 op2 = 0;
1939 switch (op2) {
1940 case 0:
1941 return env->cp15.c6_data;
1942 case 1:
1943 if (arm_feature(env, ARM_FEATURE_V6)) {
1944 /* Watchpoint Fault Adrress. */
1945 return 0; /* Not implemented. */
1946 } else {
1947 /* Instruction Fault Adrress. */
1948 /* Arm9 doesn't have an IFAR, but implementing it anyway
1949 shouldn't do any harm. */
1950 return env->cp15.c6_insn;
1951 }
1952 case 2:
1953 if (arm_feature(env, ARM_FEATURE_V6)) {
1954 /* Instruction Fault Adrress. */
1955 return env->cp15.c6_insn;
1956 } else {
1957 goto bad_reg;
1958 }
1959 default:
1960 goto bad_reg;
1961 }
1962 }
1963 case 7: /* Cache control. */
1964 if (crm == 4 && op1 == 0 && op2 == 0) {
1965 return env->cp15.c7_par;
1966 }
1967 /* FIXME: Should only clear Z flag if destination is r15. */
1968 env->ZF = 0;
1969 return 0;
1970 case 8: /* MMU TLB control. */
1971 goto bad_reg;
1972 case 9:
1973 switch (crm) {
1974 case 0: /* Cache lockdown */
1975 switch (op1) {
1976 case 0: /* L1 cache. */
1977 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1978 return 0;
1979 }
1980 switch (op2) {
1981 case 0:
1982 return env->cp15.c9_data;
1983 case 1:
1984 return env->cp15.c9_insn;
1985 default:
1986 goto bad_reg;
1987 }
1988 case 1: /* L2 cache */
1989 /* L2 Lockdown and Auxiliary control. */
1990 switch (op2) {
1991 case 0:
1992 /* L2 cache lockdown (A8 only) */
1993 return 0;
1994 case 2:
1995 /* L2 cache auxiliary control (A8) or control (A15) */
1996 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA15) {
1997 /* Linux wants the number of processors from here.
1998 * Might as well set the interrupt-controller bit too.
1999 */
2000 return ((smp_cpus - 1) << 24) | (1 << 23);
2001 }
2002 return 0;
2003 case 3:
2004 /* L2 cache extended control (A15) */
2005 return 0;
2006 default:
2007 goto bad_reg;
2008 }
2009 default:
2010 goto bad_reg;
2011 }
2012 break;
2013 case 12: /* Performance monitor control */
2014 if (!arm_feature(env, ARM_FEATURE_V7)) {
2015 goto bad_reg;
2016 }
2017 switch (op2) {
2018 case 0: /* performance monitor control register */
2019 return env->cp15.c9_pmcr;
2020 case 1: /* count enable set */
2021 case 2: /* count enable clear */
2022 return env->cp15.c9_pmcnten;
2023 case 3: /* overflow flag status */
2024 return env->cp15.c9_pmovsr;
2025 case 4: /* software increment */
2026 case 5: /* event counter selection register */
2027 return 0; /* Unimplemented, RAZ/WI */
2028 default:
2029 goto bad_reg;
2030 }
2031 case 13: /* Performance counters */
2032 if (!arm_feature(env, ARM_FEATURE_V7)) {
2033 goto bad_reg;
2034 }
2035 switch (op2) {
2036 case 1: /* Event type select */
2037 return env->cp15.c9_pmxevtyper;
2038 case 0: /* Cycle count register */
2039 case 2: /* Event count register */
2040 /* Unimplemented, so RAZ/WI */
2041 return 0;
2042 default:
2043 goto bad_reg;
2044 }
2045 case 14: /* Performance monitor control */
2046 if (!arm_feature(env, ARM_FEATURE_V7)) {
2047 goto bad_reg;
2048 }
2049 switch (op2) {
2050 case 0: /* user enable */
2051 return env->cp15.c9_pmuserenr;
2052 case 1: /* interrupt enable set */
2053 case 2: /* interrupt enable clear */
2054 return env->cp15.c9_pminten;
2055 default:
2056 goto bad_reg;
2057 }
2058 default:
2059 goto bad_reg;
2060 }
2061 break;
2062 case 10: /* MMU TLB lockdown. */
2063 /* ??? TLB lockdown not implemented. */
2064 return 0;
2065 case 11: /* TCM DMA control. */
2066 case 12: /* Reserved. */
2067 goto bad_reg;
2068 case 13: /* Process ID. */
2069 switch (op2) {
2070 case 0:
2071 return env->cp15.c13_fcse;
2072 case 1:
2073 return env->cp15.c13_context;
2074 default:
2075 goto bad_reg;
2076 }
2077 case 14: /* Generic timer */
2078 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
2079 /* Dummy implementation: RAZ/WI for all */
2080 return 0;
2081 }
2082 goto bad_reg;
2083 case 15: /* Implementation specific. */
2084 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2085 if (op2 == 0 && crm == 1)
2086 return env->cp15.c15_cpar;
2087
2088 goto bad_reg;
2089 }
2090 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2091 switch (crm) {
2092 case 0:
2093 return 0;
2094 case 1: /* Read TI925T configuration. */
2095 return env->cp15.c15_ticonfig;
2096 case 2: /* Read I_max. */
2097 return env->cp15.c15_i_max;
2098 case 3: /* Read I_min. */
2099 return env->cp15.c15_i_min;
2100 case 4: /* Read thread-ID. */
2101 return env->cp15.c15_threadid;
2102 case 8: /* TI925T_status */
2103 return 0;
2104 }
2105 /* TODO: Peripheral port remap register:
2106 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
2107 * controller base address at $rn & ~0xfff and map size of
2108 * 0x200 << ($rn & 0xfff), when MMU is off. */
2109 goto bad_reg;
2110 }
2111 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
2112 switch (crm) {
2113 case 0:
2114 if ((op1 == 4) && (op2 == 0)) {
2115 /* The config_base_address should hold the value of
2116 * the peripheral base. ARM should get this from a CPU
2117 * object property, but that support isn't available in
2118 * December 2011. Default to 0 for now and board models
2119 * that care can set it by a private hook */
2120 return env->cp15.c15_config_base_address;
2121 } else if ((op1 == 0) && (op2 == 0)) {
2122 /* power_control should be set to maximum latency. Again,
2123 default to 0 and set by private hook */
2124 return env->cp15.c15_power_control;
2125 } else if ((op1 == 0) && (op2 == 1)) {
2126 return env->cp15.c15_diagnostic;
2127 } else if ((op1 == 0) && (op2 == 2)) {
2128 return env->cp15.c15_power_diagnostic;
2129 }
2130 break;
2131 case 1: /* NEON Busy */
2132 return 0;
2133 case 5: /* tlb lockdown */
2134 case 6:
2135 case 7:
2136 if ((op1 == 5) && (op2 == 2)) {
2137 return 0;
2138 }
2139 break;
2140 default:
2141 break;
2142 }
2143 goto bad_reg;
2144 }
2145 return 0;
2146 }
2147 bad_reg:
2148 /* ??? For debugging only. Should raise illegal instruction exception. */
2149 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
2150 (insn >> 16) & 0xf, crm, op1, op2);
2151 return 0;
2152 }
2153
2154 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2155 {
2156 if ((env->uncached_cpsr & CPSR_M) == mode) {
2157 env->regs[13] = val;
2158 } else {
2159 env->banked_r13[bank_number(env, mode)] = val;
2160 }
2161 }
2162
2163 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2164 {
2165 if ((env->uncached_cpsr & CPSR_M) == mode) {
2166 return env->regs[13];
2167 } else {
2168 return env->banked_r13[bank_number(env, mode)];
2169 }
2170 }
2171
2172 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2173 {
2174 switch (reg) {
2175 case 0: /* APSR */
2176 return xpsr_read(env) & 0xf8000000;
2177 case 1: /* IAPSR */
2178 return xpsr_read(env) & 0xf80001ff;
2179 case 2: /* EAPSR */
2180 return xpsr_read(env) & 0xff00fc00;
2181 case 3: /* xPSR */
2182 return xpsr_read(env) & 0xff00fdff;
2183 case 5: /* IPSR */
2184 return xpsr_read(env) & 0x000001ff;
2185 case 6: /* EPSR */
2186 return xpsr_read(env) & 0x0700fc00;
2187 case 7: /* IEPSR */
2188 return xpsr_read(env) & 0x0700edff;
2189 case 8: /* MSP */
2190 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2191 case 9: /* PSP */
2192 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2193 case 16: /* PRIMASK */
2194 return (env->uncached_cpsr & CPSR_I) != 0;
2195 case 17: /* BASEPRI */
2196 case 18: /* BASEPRI_MAX */
2197 return env->v7m.basepri;
2198 case 19: /* FAULTMASK */
2199 return (env->uncached_cpsr & CPSR_F) != 0;
2200 case 20: /* CONTROL */
2201 return env->v7m.control;
2202 default:
2203 /* ??? For debugging only. */
2204 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2205 return 0;
2206 }
2207 }
2208
2209 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2210 {
2211 switch (reg) {
2212 case 0: /* APSR */
2213 xpsr_write(env, val, 0xf8000000);
2214 break;
2215 case 1: /* IAPSR */
2216 xpsr_write(env, val, 0xf8000000);
2217 break;
2218 case 2: /* EAPSR */
2219 xpsr_write(env, val, 0xfe00fc00);
2220 break;
2221 case 3: /* xPSR */
2222 xpsr_write(env, val, 0xfe00fc00);
2223 break;
2224 case 5: /* IPSR */
2225 /* IPSR bits are readonly. */
2226 break;
2227 case 6: /* EPSR */
2228 xpsr_write(env, val, 0x0600fc00);
2229 break;
2230 case 7: /* IEPSR */
2231 xpsr_write(env, val, 0x0600fc00);
2232 break;
2233 case 8: /* MSP */
2234 if (env->v7m.current_sp)
2235 env->v7m.other_sp = val;
2236 else
2237 env->regs[13] = val;
2238 break;
2239 case 9: /* PSP */
2240 if (env->v7m.current_sp)
2241 env->regs[13] = val;
2242 else
2243 env->v7m.other_sp = val;
2244 break;
2245 case 16: /* PRIMASK */
2246 if (val & 1)
2247 env->uncached_cpsr |= CPSR_I;
2248 else
2249 env->uncached_cpsr &= ~CPSR_I;
2250 break;
2251 case 17: /* BASEPRI */
2252 env->v7m.basepri = val & 0xff;
2253 break;
2254 case 18: /* BASEPRI_MAX */
2255 val &= 0xff;
2256 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2257 env->v7m.basepri = val;
2258 break;
2259 case 19: /* FAULTMASK */
2260 if (val & 1)
2261 env->uncached_cpsr |= CPSR_F;
2262 else
2263 env->uncached_cpsr &= ~CPSR_F;
2264 break;
2265 case 20: /* CONTROL */
2266 env->v7m.control = val & 3;
2267 switch_v7m_sp(env, (val & 2) != 0);
2268 break;
2269 default:
2270 /* ??? For debugging only. */
2271 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2272 return;
2273 }
2274 }
2275
2276 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
2277 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
2278 void *opaque)
2279 {
2280 if (cpnum < 0 || cpnum > 14) {
2281 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
2282 return;
2283 }
2284
2285 env->cp[cpnum].cp_read = cp_read;
2286 env->cp[cpnum].cp_write = cp_write;
2287 env->cp[cpnum].opaque = opaque;
2288 }
2289
2290 #endif
2291
2292 /* Note that signed overflow is undefined in C. The following routines are
2293 careful to use unsigned types where modulo arithmetic is required.
2294 Failure to do so _will_ break on newer gcc. */
2295
2296 /* Signed saturating arithmetic. */
2297
2298 /* Perform 16-bit signed saturating addition. */
2299 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2300 {
2301 uint16_t res;
2302
2303 res = a + b;
2304 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2305 if (a & 0x8000)
2306 res = 0x8000;
2307 else
2308 res = 0x7fff;
2309 }
2310 return res;
2311 }
2312
2313 /* Perform 8-bit signed saturating addition. */
2314 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2315 {
2316 uint8_t res;
2317
2318 res = a + b;
2319 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2320 if (a & 0x80)
2321 res = 0x80;
2322 else
2323 res = 0x7f;
2324 }
2325 return res;
2326 }
2327
2328 /* Perform 16-bit signed saturating subtraction. */
2329 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2330 {
2331 uint16_t res;
2332
2333 res = a - b;
2334 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2335 if (a & 0x8000)
2336 res = 0x8000;
2337 else
2338 res = 0x7fff;
2339 }
2340 return res;
2341 }
2342
2343 /* Perform 8-bit signed saturating subtraction. */
2344 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2345 {
2346 uint8_t res;
2347
2348 res = a - b;
2349 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2350 if (a & 0x80)
2351 res = 0x80;
2352 else
2353 res = 0x7f;
2354 }
2355 return res;
2356 }
2357
2358 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2359 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2360 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2361 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2362 #define PFX q
2363
2364 #include "op_addsub.h"
2365
2366 /* Unsigned saturating arithmetic. */
2367 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2368 {
2369 uint16_t res;
2370 res = a + b;
2371 if (res < a)
2372 res = 0xffff;
2373 return res;
2374 }
2375
2376 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2377 {
2378 if (a > b)
2379 return a - b;
2380 else
2381 return 0;
2382 }
2383
2384 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2385 {
2386 uint8_t res;
2387 res = a + b;
2388 if (res < a)
2389 res = 0xff;
2390 return res;
2391 }
2392
2393 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2394 {
2395 if (a > b)
2396 return a - b;
2397 else
2398 return 0;
2399 }
2400
2401 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2402 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2403 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2404 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2405 #define PFX uq
2406
2407 #include "op_addsub.h"
2408
2409 /* Signed modulo arithmetic. */
2410 #define SARITH16(a, b, n, op) do { \
2411 int32_t sum; \
2412 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2413 RESULT(sum, n, 16); \
2414 if (sum >= 0) \
2415 ge |= 3 << (n * 2); \
2416 } while(0)
2417
2418 #define SARITH8(a, b, n, op) do { \
2419 int32_t sum; \
2420 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2421 RESULT(sum, n, 8); \
2422 if (sum >= 0) \
2423 ge |= 1 << n; \
2424 } while(0)
2425
2426
2427 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2428 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2429 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2430 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2431 #define PFX s
2432 #define ARITH_GE
2433
2434 #include "op_addsub.h"
2435
2436 /* Unsigned modulo arithmetic. */
2437 #define ADD16(a, b, n) do { \
2438 uint32_t sum; \
2439 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2440 RESULT(sum, n, 16); \
2441 if ((sum >> 16) == 1) \
2442 ge |= 3 << (n * 2); \
2443 } while(0)
2444
2445 #define ADD8(a, b, n) do { \
2446 uint32_t sum; \
2447 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2448 RESULT(sum, n, 8); \
2449 if ((sum >> 8) == 1) \
2450 ge |= 1 << n; \
2451 } while(0)
2452
2453 #define SUB16(a, b, n) do { \
2454 uint32_t sum; \
2455 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2456 RESULT(sum, n, 16); \
2457 if ((sum >> 16) == 0) \
2458 ge |= 3 << (n * 2); \
2459 } while(0)
2460
2461 #define SUB8(a, b, n) do { \
2462 uint32_t sum; \
2463 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2464 RESULT(sum, n, 8); \
2465 if ((sum >> 8) == 0) \
2466 ge |= 1 << n; \
2467 } while(0)
2468
2469 #define PFX u
2470 #define ARITH_GE
2471
2472 #include "op_addsub.h"
2473
2474 /* Halved signed arithmetic. */
2475 #define ADD16(a, b, n) \
2476 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2477 #define SUB16(a, b, n) \
2478 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2479 #define ADD8(a, b, n) \
2480 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2481 #define SUB8(a, b, n) \
2482 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2483 #define PFX sh
2484
2485 #include "op_addsub.h"
2486
2487 /* Halved unsigned arithmetic. */
2488 #define ADD16(a, b, n) \
2489 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2490 #define SUB16(a, b, n) \
2491 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2492 #define ADD8(a, b, n) \
2493 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2494 #define SUB8(a, b, n) \
2495 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2496 #define PFX uh
2497
2498 #include "op_addsub.h"
2499
2500 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2501 {
2502 if (a > b)
2503 return a - b;
2504 else
2505 return b - a;
2506 }
2507
2508 /* Unsigned sum of absolute byte differences. */
2509 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2510 {
2511 uint32_t sum;
2512 sum = do_usad(a, b);
2513 sum += do_usad(a >> 8, b >> 8);
2514 sum += do_usad(a >> 16, b >>16);
2515 sum += do_usad(a >> 24, b >> 24);
2516 return sum;
2517 }
2518
2519 /* For ARMv6 SEL instruction. */
2520 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2521 {
2522 uint32_t mask;
2523
2524 mask = 0;
2525 if (flags & 1)
2526 mask |= 0xff;
2527 if (flags & 2)
2528 mask |= 0xff00;
2529 if (flags & 4)
2530 mask |= 0xff0000;
2531 if (flags & 8)
2532 mask |= 0xff000000;
2533 return (a & mask) | (b & ~mask);
2534 }
2535
2536 uint32_t HELPER(logicq_cc)(uint64_t val)
2537 {
2538 return (val >> 32) | (val != 0);
2539 }
2540
2541 /* VFP support. We follow the convention used for VFP instrunctions:
2542 Single precition routines have a "s" suffix, double precision a
2543 "d" suffix. */
2544
2545 /* Convert host exception flags to vfp form. */
2546 static inline int vfp_exceptbits_from_host(int host_bits)
2547 {
2548 int target_bits = 0;
2549
2550 if (host_bits & float_flag_invalid)
2551 target_bits |= 1;
2552 if (host_bits & float_flag_divbyzero)
2553 target_bits |= 2;
2554 if (host_bits & float_flag_overflow)
2555 target_bits |= 4;
2556 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2557 target_bits |= 8;
2558 if (host_bits & float_flag_inexact)
2559 target_bits |= 0x10;
2560 if (host_bits & float_flag_input_denormal)
2561 target_bits |= 0x80;
2562 return target_bits;
2563 }
2564
2565 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
2566 {
2567 int i;
2568 uint32_t fpscr;
2569
2570 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2571 | (env->vfp.vec_len << 16)
2572 | (env->vfp.vec_stride << 20);
2573 i = get_float_exception_flags(&env->vfp.fp_status);
2574 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2575 fpscr |= vfp_exceptbits_from_host(i);
2576 return fpscr;
2577 }
2578
2579 uint32_t vfp_get_fpscr(CPUARMState *env)
2580 {
2581 return HELPER(vfp_get_fpscr)(env);
2582 }
2583
2584 /* Convert vfp exception flags to target form. */
2585 static inline int vfp_exceptbits_to_host(int target_bits)
2586 {
2587 int host_bits = 0;
2588
2589 if (target_bits & 1)
2590 host_bits |= float_flag_invalid;
2591 if (target_bits & 2)
2592 host_bits |= float_flag_divbyzero;
2593 if (target_bits & 4)
2594 host_bits |= float_flag_overflow;
2595 if (target_bits & 8)
2596 host_bits |= float_flag_underflow;
2597 if (target_bits & 0x10)
2598 host_bits |= float_flag_inexact;
2599 if (target_bits & 0x80)
2600 host_bits |= float_flag_input_denormal;
2601 return host_bits;
2602 }
2603
2604 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
2605 {
2606 int i;
2607 uint32_t changed;
2608
2609 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2610 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2611 env->vfp.vec_len = (val >> 16) & 7;
2612 env->vfp.vec_stride = (val >> 20) & 3;
2613
2614 changed ^= val;
2615 if (changed & (3 << 22)) {
2616 i = (val >> 22) & 3;
2617 switch (i) {
2618 case 0:
2619 i = float_round_nearest_even;
2620 break;
2621 case 1:
2622 i = float_round_up;
2623 break;
2624 case 2:
2625 i = float_round_down;
2626 break;
2627 case 3:
2628 i = float_round_to_zero;
2629 break;
2630 }
2631 set_float_rounding_mode(i, &env->vfp.fp_status);
2632 }
2633 if (changed & (1 << 24)) {
2634 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2635 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2636 }
2637 if (changed & (1 << 25))
2638 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2639
2640 i = vfp_exceptbits_to_host(val);
2641 set_float_exception_flags(i, &env->vfp.fp_status);
2642 set_float_exception_flags(0, &env->vfp.standard_fp_status);
2643 }
2644
2645 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
2646 {
2647 HELPER(vfp_set_fpscr)(env, val);
2648 }
2649
2650 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2651
2652 #define VFP_BINOP(name) \
2653 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2654 { \
2655 float_status *fpst = fpstp; \
2656 return float32_ ## name(a, b, fpst); \
2657 } \
2658 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2659 { \
2660 float_status *fpst = fpstp; \
2661 return float64_ ## name(a, b, fpst); \
2662 }
2663 VFP_BINOP(add)
2664 VFP_BINOP(sub)
2665 VFP_BINOP(mul)
2666 VFP_BINOP(div)
2667 #undef VFP_BINOP
2668
2669 float32 VFP_HELPER(neg, s)(float32 a)
2670 {
2671 return float32_chs(a);
2672 }
2673
2674 float64 VFP_HELPER(neg, d)(float64 a)
2675 {
2676 return float64_chs(a);
2677 }
2678
2679 float32 VFP_HELPER(abs, s)(float32 a)
2680 {
2681 return float32_abs(a);
2682 }
2683
2684 float64 VFP_HELPER(abs, d)(float64 a)
2685 {
2686 return float64_abs(a);
2687 }
2688
2689 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
2690 {
2691 return float32_sqrt(a, &env->vfp.fp_status);
2692 }
2693
2694 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
2695 {
2696 return float64_sqrt(a, &env->vfp.fp_status);
2697 }
2698
2699 /* XXX: check quiet/signaling case */
2700 #define DO_VFP_cmp(p, type) \
2701 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
2702 { \
2703 uint32_t flags; \
2704 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2705 case 0: flags = 0x6; break; \
2706 case -1: flags = 0x8; break; \
2707 case 1: flags = 0x2; break; \
2708 default: case 2: flags = 0x3; break; \
2709 } \
2710 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2711 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2712 } \
2713 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
2714 { \
2715 uint32_t flags; \
2716 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2717 case 0: flags = 0x6; break; \
2718 case -1: flags = 0x8; break; \
2719 case 1: flags = 0x2; break; \
2720 default: case 2: flags = 0x3; break; \
2721 } \
2722 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2723 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2724 }
2725 DO_VFP_cmp(s, float32)
2726 DO_VFP_cmp(d, float64)
2727 #undef DO_VFP_cmp
2728
2729 /* Integer to float and float to integer conversions */
2730
2731 #define CONV_ITOF(name, fsz, sign) \
2732 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2733 { \
2734 float_status *fpst = fpstp; \
2735 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
2736 }
2737
2738 #define CONV_FTOI(name, fsz, sign, round) \
2739 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2740 { \
2741 float_status *fpst = fpstp; \
2742 if (float##fsz##_is_any_nan(x)) { \
2743 float_raise(float_flag_invalid, fpst); \
2744 return 0; \
2745 } \
2746 return float##fsz##_to_##sign##int32##round(x, fpst); \
2747 }
2748
2749 #define FLOAT_CONVS(name, p, fsz, sign) \
2750 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2751 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2752 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2753
2754 FLOAT_CONVS(si, s, 32, )
2755 FLOAT_CONVS(si, d, 64, )
2756 FLOAT_CONVS(ui, s, 32, u)
2757 FLOAT_CONVS(ui, d, 64, u)
2758
2759 #undef CONV_ITOF
2760 #undef CONV_FTOI
2761 #undef FLOAT_CONVS
2762
2763 /* floating point conversion */
2764 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
2765 {
2766 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2767 /* ARM requires that S<->D conversion of any kind of NaN generates
2768 * a quiet NaN by forcing the most significant frac bit to 1.
2769 */
2770 return float64_maybe_silence_nan(r);
2771 }
2772
2773 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
2774 {
2775 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2776 /* ARM requires that S<->D conversion of any kind of NaN generates
2777 * a quiet NaN by forcing the most significant frac bit to 1.
2778 */
2779 return float32_maybe_silence_nan(r);
2780 }
2781
2782 /* VFP3 fixed point conversion. */
2783 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2784 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2785 void *fpstp) \
2786 { \
2787 float_status *fpst = fpstp; \
2788 float##fsz tmp; \
2789 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2790 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2791 } \
2792 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2793 void *fpstp) \
2794 { \
2795 float_status *fpst = fpstp; \
2796 float##fsz tmp; \
2797 if (float##fsz##_is_any_nan(x)) { \
2798 float_raise(float_flag_invalid, fpst); \
2799 return 0; \
2800 } \
2801 tmp = float##fsz##_scalbn(x, shift, fpst); \
2802 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2803 }
2804
2805 VFP_CONV_FIX(sh, d, 64, int16, )
2806 VFP_CONV_FIX(sl, d, 64, int32, )
2807 VFP_CONV_FIX(uh, d, 64, uint16, u)
2808 VFP_CONV_FIX(ul, d, 64, uint32, u)
2809 VFP_CONV_FIX(sh, s, 32, int16, )
2810 VFP_CONV_FIX(sl, s, 32, int32, )
2811 VFP_CONV_FIX(uh, s, 32, uint16, u)
2812 VFP_CONV_FIX(ul, s, 32, uint32, u)
2813 #undef VFP_CONV_FIX
2814
2815 /* Half precision conversions. */
2816 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
2817 {
2818 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2819 float32 r = float16_to_float32(make_float16(a), ieee, s);
2820 if (ieee) {
2821 return float32_maybe_silence_nan(r);
2822 }
2823 return r;
2824 }
2825
2826 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
2827 {
2828 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2829 float16 r = float32_to_float16(a, ieee, s);
2830 if (ieee) {
2831 r = float16_maybe_silence_nan(r);
2832 }
2833 return float16_val(r);
2834 }
2835
2836 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2837 {
2838 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2839 }
2840
2841 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2842 {
2843 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2844 }
2845
2846 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2847 {
2848 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2849 }
2850
2851 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2852 {
2853 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2854 }
2855
2856 #define float32_two make_float32(0x40000000)
2857 #define float32_three make_float32(0x40400000)
2858 #define float32_one_point_five make_float32(0x3fc00000)
2859
2860 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
2861 {
2862 float_status *s = &env->vfp.standard_fp_status;
2863 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2864 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2865 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2866 float_raise(float_flag_input_denormal, s);
2867 }
2868 return float32_two;
2869 }
2870 return float32_sub(float32_two, float32_mul(a, b, s), s);
2871 }
2872
2873 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
2874 {
2875 float_status *s = &env->vfp.standard_fp_status;
2876 float32 product;
2877 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2878 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2879 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2880 float_raise(float_flag_input_denormal, s);
2881 }
2882 return float32_one_point_five;
2883 }
2884 product = float32_mul(a, b, s);
2885 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
2886 }
2887
2888 /* NEON helpers. */
2889
2890 /* Constants 256 and 512 are used in some helpers; we avoid relying on
2891 * int->float conversions at run-time. */
2892 #define float64_256 make_float64(0x4070000000000000LL)
2893 #define float64_512 make_float64(0x4080000000000000LL)
2894
2895 /* The algorithm that must be used to calculate the estimate
2896 * is specified by the ARM ARM.
2897 */
2898 static float64 recip_estimate(float64 a, CPUARMState *env)
2899 {
2900 /* These calculations mustn't set any fp exception flags,
2901 * so we use a local copy of the fp_status.
2902 */
2903 float_status dummy_status = env->vfp.standard_fp_status;
2904 float_status *s = &dummy_status;
2905 /* q = (int)(a * 512.0) */
2906 float64 q = float64_mul(float64_512, a, s);
2907 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2908
2909 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
2910 q = int64_to_float64(q_int, s);
2911 q = float64_add(q, float64_half, s);
2912 q = float64_div(q, float64_512, s);
2913 q = float64_div(float64_one, q, s);
2914
2915 /* s = (int)(256.0 * r + 0.5) */
2916 q = float64_mul(q, float64_256, s);
2917 q = float64_add(q, float64_half, s);
2918 q_int = float64_to_int64_round_to_zero(q, s);
2919
2920 /* return (double)s / 256.0 */
2921 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2922 }
2923
2924 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
2925 {
2926 float_status *s = &env->vfp.standard_fp_status;
2927 float64 f64;
2928 uint32_t val32 = float32_val(a);
2929
2930 int result_exp;
2931 int a_exp = (val32 & 0x7f800000) >> 23;
2932 int sign = val32 & 0x80000000;
2933
2934 if (float32_is_any_nan(a)) {
2935 if (float32_is_signaling_nan(a)) {
2936 float_raise(float_flag_invalid, s);
2937 }
2938 return float32_default_nan;
2939 } else if (float32_is_infinity(a)) {
2940 return float32_set_sign(float32_zero, float32_is_neg(a));
2941 } else if (float32_is_zero_or_denormal(a)) {
2942 if (!float32_is_zero(a)) {
2943 float_raise(float_flag_input_denormal, s);
2944 }
2945 float_raise(float_flag_divbyzero, s);
2946 return float32_set_sign(float32_infinity, float32_is_neg(a));
2947 } else if (a_exp >= 253) {
2948 float_raise(float_flag_underflow, s);
2949 return float32_set_sign(float32_zero, float32_is_neg(a));
2950 }
2951
2952 f64 = make_float64((0x3feULL << 52)
2953 | ((int64_t)(val32 & 0x7fffff) << 29));
2954
2955 result_exp = 253 - a_exp;
2956
2957 f64 = recip_estimate(f64, env);
2958
2959 val32 = sign
2960 | ((result_exp & 0xff) << 23)
2961 | ((float64_val(f64) >> 29) & 0x7fffff);
2962 return make_float32(val32);
2963 }
2964
2965 /* The algorithm that must be used to calculate the estimate
2966 * is specified by the ARM ARM.
2967 */
2968 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
2969 {
2970 /* These calculations mustn't set any fp exception flags,
2971 * so we use a local copy of the fp_status.
2972 */
2973 float_status dummy_status = env->vfp.standard_fp_status;
2974 float_status *s = &dummy_status;
2975 float64 q;
2976 int64_t q_int;
2977
2978 if (float64_lt(a, float64_half, s)) {
2979 /* range 0.25 <= a < 0.5 */
2980
2981 /* a in units of 1/512 rounded down */
2982 /* q0 = (int)(a * 512.0); */
2983 q = float64_mul(float64_512, a, s);
2984 q_int = float64_to_int64_round_to_zero(q, s);
2985
2986 /* reciprocal root r */
2987 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
2988 q = int64_to_float64(q_int, s);
2989 q = float64_add(q, float64_half, s);
2990 q = float64_div(q, float64_512, s);
2991 q = float64_sqrt(q, s);
2992 q = float64_div(float64_one, q, s);
2993 } else {
2994 /* range 0.5 <= a < 1.0 */
2995
2996 /* a in units of 1/256 rounded down */
2997 /* q1 = (int)(a * 256.0); */
2998 q = float64_mul(float64_256, a, s);
2999 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3000
3001 /* reciprocal root r */
3002 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3003 q = int64_to_float64(q_int, s);
3004 q = float64_add(q, float64_half, s);
3005 q = float64_div(q, float64_256, s);
3006 q = float64_sqrt(q, s);
3007 q = float64_div(float64_one, q, s);
3008 }
3009 /* r in units of 1/256 rounded to nearest */
3010 /* s = (int)(256.0 * r + 0.5); */
3011
3012 q = float64_mul(q, float64_256,s );
3013 q = float64_add(q, float64_half, s);
3014 q_int = float64_to_int64_round_to_zero(q, s);
3015
3016 /* return (double)s / 256.0;*/
3017 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3018 }
3019
3020 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3021 {
3022 float_status *s = &env->vfp.standard_fp_status;
3023 int result_exp;
3024 float64 f64;
3025 uint32_t val;
3026 uint64_t val64;
3027
3028 val = float32_val(a);
3029
3030 if (float32_is_any_nan(a)) {
3031 if (float32_is_signaling_nan(a)) {
3032 float_raise(float_flag_invalid, s);
3033 }
3034 return float32_default_nan;
3035 } else if (float32_is_zero_or_denormal(a)) {
3036 if (!float32_is_zero(a)) {
3037 float_raise(float_flag_input_denormal, s);
3038 }
3039 float_raise(float_flag_divbyzero, s);
3040 return float32_set_sign(float32_infinity, float32_is_neg(a));
3041 } else if (float32_is_neg(a)) {
3042 float_raise(float_flag_invalid, s);
3043 return float32_default_nan;
3044 } else if (float32_is_infinity(a)) {
3045 return float32_zero;
3046 }
3047
3048 /* Normalize to a double-precision value between 0.25 and 1.0,
3049 * preserving the parity of the exponent. */
3050 if ((val & 0x800000) == 0) {
3051 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3052 | (0x3feULL << 52)
3053 | ((uint64_t)(val & 0x7fffff) << 29));
3054 } else {
3055 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3056 | (0x3fdULL << 52)
3057 | ((uint64_t)(val & 0x7fffff) << 29));
3058 }
3059
3060 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3061
3062 f64 = recip_sqrt_estimate(f64, env);
3063
3064 val64 = float64_val(f64);
3065
3066 val = ((result_exp & 0xff) << 23)
3067 | ((val64 >> 29) & 0x7fffff);
3068 return make_float32(val);
3069 }
3070
3071 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3072 {
3073 float64 f64;
3074
3075 if ((a & 0x80000000) == 0) {
3076 return 0xffffffff;
3077 }
3078
3079 f64 = make_float64((0x3feULL << 52)
3080 | ((int64_t)(a & 0x7fffffff) << 21));
3081
3082 f64 = recip_estimate (f64, env);
3083
3084 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3085 }
3086
3087 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3088 {
3089 float64 f64;
3090
3091 if ((a & 0xc0000000) == 0) {
3092 return 0xffffffff;
3093 }
3094
3095 if (a & 0x80000000) {
3096 f64 = make_float64((0x3feULL << 52)
3097 | ((uint64_t)(a & 0x7fffffff) << 21));
3098 } else { /* bits 31-30 == '01' */
3099 f64 = make_float64((0x3fdULL << 52)
3100 | ((uint64_t)(a & 0x3fffffff) << 22));
3101 }
3102
3103 f64 = recip_sqrt_estimate(f64, env);
3104
3105 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3106 }
3107
3108 /* VFPv4 fused multiply-accumulate */
3109 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3110 {
3111 float_status *fpst = fpstp;
3112 return float32_muladd(a, b, c, 0, fpst);
3113 }
3114
3115 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3116 {
3117 float_status *fpst = fpstp;
3118 return float64_muladd(a, b, c, 0, fpst);
3119 }
3120
3121 void HELPER(set_teecr)(CPUARMState *env, uint32_t val)
3122 {
3123 val &= 1;
3124 if (env->teecr != val) {
3125 env->teecr = val;
3126 tb_flush(env);
3127 }
3128 }