]> git.proxmox.com Git - mirror_qemu.git/blob - target-i386/kvm.c
x86: Run qemu_inject_x86_mce on target VCPU
[mirror_qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
31 #include "kvm_x86.h"
32
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
35 #endif
36 //
37 //#define DEBUG_KVM
38
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
49
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
56
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62 };
63
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
67 static bool has_msr_async_pf_en;
68 #endif
69 static int lm_capable_kernel;
70
71 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
72 {
73 struct kvm_cpuid2 *cpuid;
74 int r, size;
75
76 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
77 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
78 cpuid->nent = max;
79 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
80 if (r == 0 && cpuid->nent >= max) {
81 r = -E2BIG;
82 }
83 if (r < 0) {
84 if (r == -E2BIG) {
85 qemu_free(cpuid);
86 return NULL;
87 } else {
88 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
89 strerror(-r));
90 exit(1);
91 }
92 }
93 return cpuid;
94 }
95
96 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
97 uint32_t index, int reg)
98 {
99 struct kvm_cpuid2 *cpuid;
100 int i, max;
101 uint32_t ret = 0;
102 uint32_t cpuid_1_edx;
103
104 max = 1;
105 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
106 max *= 2;
107 }
108
109 for (i = 0; i < cpuid->nent; ++i) {
110 if (cpuid->entries[i].function == function &&
111 cpuid->entries[i].index == index) {
112 switch (reg) {
113 case R_EAX:
114 ret = cpuid->entries[i].eax;
115 break;
116 case R_EBX:
117 ret = cpuid->entries[i].ebx;
118 break;
119 case R_ECX:
120 ret = cpuid->entries[i].ecx;
121 break;
122 case R_EDX:
123 ret = cpuid->entries[i].edx;
124 switch (function) {
125 case 1:
126 /* KVM before 2.6.30 misreports the following features */
127 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
128 break;
129 case 0x80000001:
130 /* On Intel, kvm returns cpuid according to the Intel spec,
131 * so add missing bits according to the AMD spec:
132 */
133 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
134 ret |= cpuid_1_edx & 0x183f7ff;
135 break;
136 }
137 break;
138 }
139 }
140 }
141
142 qemu_free(cpuid);
143
144 return ret;
145 }
146
147 #ifdef CONFIG_KVM_PARA
148 struct kvm_para_features {
149 int cap;
150 int feature;
151 } para_features[] = {
152 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
153 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
154 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
155 #ifdef KVM_CAP_ASYNC_PF
156 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
157 #endif
158 { -1, -1 }
159 };
160
161 static int get_para_features(CPUState *env)
162 {
163 int i, features = 0;
164
165 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
166 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
167 features |= (1 << para_features[i].feature);
168 }
169 }
170 #ifdef KVM_CAP_ASYNC_PF
171 has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
172 #endif
173 return features;
174 }
175 #endif /* CONFIG_KVM_PARA */
176
177 #ifdef KVM_CAP_MCE
178 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
179 int *max_banks)
180 {
181 int r;
182
183 r = kvm_check_extension(s, KVM_CAP_MCE);
184 if (r > 0) {
185 *max_banks = r;
186 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
187 }
188 return -ENOSYS;
189 }
190
191 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
192 {
193 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
194 }
195
196 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
197 {
198 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
199 }
200
201 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
202 {
203 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
204 int r;
205
206 kmsrs->nmsrs = n;
207 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
208 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
209 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
210 free(kmsrs);
211 return r;
212 }
213
214 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
215 static int kvm_mce_in_progress(CPUState *env)
216 {
217 struct kvm_msr_entry msr_mcg_status = {
218 .index = MSR_MCG_STATUS,
219 };
220 int r;
221
222 r = kvm_get_msr(env, &msr_mcg_status, 1);
223 if (r == -1 || r == 0) {
224 fprintf(stderr, "Failed to get MCE status\n");
225 return 0;
226 }
227 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
228 }
229
230 struct kvm_x86_mce_data
231 {
232 CPUState *env;
233 struct kvm_x86_mce *mce;
234 int abort_on_error;
235 };
236
237 static void kvm_do_inject_x86_mce(void *_data)
238 {
239 struct kvm_x86_mce_data *data = _data;
240 int r;
241
242 /* If there is an MCE exception being processed, ignore this SRAO MCE */
243 if ((data->env->mcg_cap & MCG_SER_P) &&
244 !(data->mce->status & MCI_STATUS_AR)) {
245 if (kvm_mce_in_progress(data->env)) {
246 return;
247 }
248 }
249
250 r = kvm_set_mce(data->env, data->mce);
251 if (r < 0) {
252 perror("kvm_set_mce FAILED");
253 if (data->abort_on_error) {
254 abort();
255 }
256 }
257 }
258
259 static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
260 int flag)
261 {
262 struct kvm_x86_mce_data data = {
263 .env = env,
264 .mce = mce,
265 .abort_on_error = (flag & ABORT_ON_ERROR),
266 };
267
268 if (!env->mcg_cap) {
269 fprintf(stderr, "MCE support is not enabled!\n");
270 return;
271 }
272
273 run_on_cpu(env, kvm_do_inject_x86_mce, &data);
274 }
275
276 static void kvm_mce_broadcast_rest(CPUState *env)
277 {
278 struct kvm_x86_mce mce = {
279 .bank = 1,
280 .status = MCI_STATUS_VAL | MCI_STATUS_UC,
281 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
282 .addr = 0,
283 .misc = 0,
284 };
285 CPUState *cenv;
286
287 /* Broadcast MCA signal for processor version 06H_EH and above */
288 if (cpu_x86_support_mca_broadcast(env)) {
289 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
290 if (cenv == env) {
291 continue;
292 }
293 kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
294 }
295 }
296 }
297
298 static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
299 {
300 struct kvm_x86_mce mce = {
301 .bank = 9,
302 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
303 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
304 | MCI_STATUS_AR | 0x134,
305 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
306 .addr = paddr,
307 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
308 };
309 int r;
310
311 r = kvm_set_mce(env, &mce);
312 if (r < 0) {
313 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
314 abort();
315 }
316 kvm_mce_broadcast_rest(env);
317 }
318
319 static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
320 {
321 struct kvm_x86_mce mce = {
322 .bank = 9,
323 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
324 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
325 | 0xc0,
326 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
327 .addr = paddr,
328 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
329 };
330 int r;
331
332 r = kvm_set_mce(env, &mce);
333 if (r < 0) {
334 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
335 abort();
336 }
337 kvm_mce_broadcast_rest(env);
338 }
339
340 static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
341 {
342 struct kvm_x86_mce mce = {
343 .bank = 9,
344 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
345 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
346 | 0xc0,
347 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
348 .addr = paddr,
349 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
350 };
351
352 kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
353 kvm_mce_broadcast_rest(env);
354 }
355 #endif /* KVM_CAP_MCE */
356
357 static void hardware_memory_error(void)
358 {
359 fprintf(stderr, "Hardware memory error!\n");
360 exit(1);
361 }
362
363 int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
364 {
365 #ifdef KVM_CAP_MCE
366 void *vaddr;
367 ram_addr_t ram_addr;
368 target_phys_addr_t paddr;
369
370 if ((env->mcg_cap & MCG_SER_P) && addr
371 && (code == BUS_MCEERR_AR
372 || code == BUS_MCEERR_AO)) {
373 vaddr = (void *)addr;
374 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
375 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
376 fprintf(stderr, "Hardware memory error for memory used by "
377 "QEMU itself instead of guest system!\n");
378 /* Hope we are lucky for AO MCE */
379 if (code == BUS_MCEERR_AO) {
380 return 0;
381 } else {
382 hardware_memory_error();
383 }
384 }
385
386 if (code == BUS_MCEERR_AR) {
387 /* Fake an Intel architectural Data Load SRAR UCR */
388 kvm_mce_inj_srar_dataload(env, paddr);
389 } else {
390 /*
391 * If there is an MCE excpetion being processed, ignore
392 * this SRAO MCE
393 */
394 if (!kvm_mce_in_progress(env)) {
395 /* Fake an Intel architectural Memory scrubbing UCR */
396 kvm_mce_inj_srao_memscrub(env, paddr);
397 }
398 }
399 } else
400 #endif /* KVM_CAP_MCE */
401 {
402 if (code == BUS_MCEERR_AO) {
403 return 0;
404 } else if (code == BUS_MCEERR_AR) {
405 hardware_memory_error();
406 } else {
407 return 1;
408 }
409 }
410 return 0;
411 }
412
413 int kvm_arch_on_sigbus(int code, void *addr)
414 {
415 #ifdef KVM_CAP_MCE
416 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
417 void *vaddr;
418 ram_addr_t ram_addr;
419 target_phys_addr_t paddr;
420
421 /* Hope we are lucky for AO MCE */
422 vaddr = addr;
423 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
424 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
425 &paddr)) {
426 fprintf(stderr, "Hardware memory error for memory used by "
427 "QEMU itself instead of guest system!: %p\n", addr);
428 return 0;
429 }
430 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
431 } else
432 #endif /* KVM_CAP_MCE */
433 {
434 if (code == BUS_MCEERR_AO) {
435 return 0;
436 } else if (code == BUS_MCEERR_AR) {
437 hardware_memory_error();
438 } else {
439 return 1;
440 }
441 }
442 return 0;
443 }
444
445 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
446 uint64_t mcg_status, uint64_t addr, uint64_t misc,
447 int flag)
448 {
449 #ifdef KVM_CAP_MCE
450 struct kvm_x86_mce mce = {
451 .bank = bank,
452 .status = status,
453 .mcg_status = mcg_status,
454 .addr = addr,
455 .misc = misc,
456 };
457
458 if (flag & MCE_BROADCAST) {
459 kvm_mce_broadcast_rest(cenv);
460 }
461
462 kvm_inject_x86_mce_on(cenv, &mce, flag);
463 #else /* !KVM_CAP_MCE*/
464 if (flag & ABORT_ON_ERROR) {
465 abort();
466 }
467 #endif /* !KVM_CAP_MCE*/
468 }
469
470 static int kvm_inject_mce_oldstyle(CPUState *env)
471 {
472 #ifdef KVM_CAP_MCE
473 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
474 unsigned int bank, bank_num = env->mcg_cap & 0xff;
475 struct kvm_x86_mce mce;
476
477 env->exception_injected = -1;
478
479 /*
480 * There must be at least one bank in use if an MCE is pending.
481 * Find it and use its values for the event injection.
482 */
483 for (bank = 0; bank < bank_num; bank++) {
484 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
485 break;
486 }
487 }
488 assert(bank < bank_num);
489
490 mce.bank = bank;
491 mce.status = env->mce_banks[bank * 4 + 1];
492 mce.mcg_status = env->mcg_status;
493 mce.addr = env->mce_banks[bank * 4 + 2];
494 mce.misc = env->mce_banks[bank * 4 + 3];
495
496 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
497 }
498 #endif /* KVM_CAP_MCE */
499 return 0;
500 }
501
502 static void cpu_update_state(void *opaque, int running, int reason)
503 {
504 CPUState *env = opaque;
505
506 if (running) {
507 env->tsc_valid = false;
508 }
509 }
510
511 int kvm_arch_init_vcpu(CPUState *env)
512 {
513 struct {
514 struct kvm_cpuid2 cpuid;
515 struct kvm_cpuid_entry2 entries[100];
516 } __attribute__((packed)) cpuid_data;
517 uint32_t limit, i, j, cpuid_i;
518 uint32_t unused;
519 struct kvm_cpuid_entry2 *c;
520 #ifdef CONFIG_KVM_PARA
521 uint32_t signature[3];
522 #endif
523
524 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
525
526 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
527 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
528 env->cpuid_ext_features |= i;
529
530 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
531 0, R_EDX);
532 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
533 0, R_ECX);
534 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
535 0, R_EDX);
536
537
538 cpuid_i = 0;
539
540 #ifdef CONFIG_KVM_PARA
541 /* Paravirtualization CPUIDs */
542 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
543 c = &cpuid_data.entries[cpuid_i++];
544 memset(c, 0, sizeof(*c));
545 c->function = KVM_CPUID_SIGNATURE;
546 c->eax = 0;
547 c->ebx = signature[0];
548 c->ecx = signature[1];
549 c->edx = signature[2];
550
551 c = &cpuid_data.entries[cpuid_i++];
552 memset(c, 0, sizeof(*c));
553 c->function = KVM_CPUID_FEATURES;
554 c->eax = env->cpuid_kvm_features & get_para_features(env);
555 #endif
556
557 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
558
559 for (i = 0; i <= limit; i++) {
560 c = &cpuid_data.entries[cpuid_i++];
561
562 switch (i) {
563 case 2: {
564 /* Keep reading function 2 till all the input is received */
565 int times;
566
567 c->function = i;
568 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
569 KVM_CPUID_FLAG_STATE_READ_NEXT;
570 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
571 times = c->eax & 0xff;
572
573 for (j = 1; j < times; ++j) {
574 c = &cpuid_data.entries[cpuid_i++];
575 c->function = i;
576 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
577 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
578 }
579 break;
580 }
581 case 4:
582 case 0xb:
583 case 0xd:
584 for (j = 0; ; j++) {
585 c->function = i;
586 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
587 c->index = j;
588 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
589
590 if (i == 4 && c->eax == 0) {
591 break;
592 }
593 if (i == 0xb && !(c->ecx & 0xff00)) {
594 break;
595 }
596 if (i == 0xd && c->eax == 0) {
597 break;
598 }
599 c = &cpuid_data.entries[cpuid_i++];
600 }
601 break;
602 default:
603 c->function = i;
604 c->flags = 0;
605 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
606 break;
607 }
608 }
609 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
610
611 for (i = 0x80000000; i <= limit; i++) {
612 c = &cpuid_data.entries[cpuid_i++];
613
614 c->function = i;
615 c->flags = 0;
616 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
617 }
618
619 cpuid_data.cpuid.nent = cpuid_i;
620
621 #ifdef KVM_CAP_MCE
622 if (((env->cpuid_version >> 8)&0xF) >= 6
623 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
624 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
625 uint64_t mcg_cap;
626 int banks;
627
628 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
629 perror("kvm_get_mce_cap_supported FAILED");
630 } else {
631 if (banks > MCE_BANKS_DEF)
632 banks = MCE_BANKS_DEF;
633 mcg_cap &= MCE_CAP_DEF;
634 mcg_cap |= banks;
635 if (kvm_setup_mce(env, &mcg_cap)) {
636 perror("kvm_setup_mce FAILED");
637 } else {
638 env->mcg_cap = mcg_cap;
639 }
640 }
641 }
642 #endif
643
644 qemu_add_vm_change_state_handler(cpu_update_state, env);
645
646 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
647 }
648
649 void kvm_arch_reset_vcpu(CPUState *env)
650 {
651 env->exception_injected = -1;
652 env->interrupt_injected = -1;
653 env->xcr0 = 1;
654 if (kvm_irqchip_in_kernel()) {
655 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
656 KVM_MP_STATE_UNINITIALIZED;
657 } else {
658 env->mp_state = KVM_MP_STATE_RUNNABLE;
659 }
660 }
661
662 static int kvm_get_supported_msrs(KVMState *s)
663 {
664 static int kvm_supported_msrs;
665 int ret = 0;
666
667 /* first time */
668 if (kvm_supported_msrs == 0) {
669 struct kvm_msr_list msr_list, *kvm_msr_list;
670
671 kvm_supported_msrs = -1;
672
673 /* Obtain MSR list from KVM. These are the MSRs that we must
674 * save/restore */
675 msr_list.nmsrs = 0;
676 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
677 if (ret < 0 && ret != -E2BIG) {
678 return ret;
679 }
680 /* Old kernel modules had a bug and could write beyond the provided
681 memory. Allocate at least a safe amount of 1K. */
682 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
683 msr_list.nmsrs *
684 sizeof(msr_list.indices[0])));
685
686 kvm_msr_list->nmsrs = msr_list.nmsrs;
687 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
688 if (ret >= 0) {
689 int i;
690
691 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
692 if (kvm_msr_list->indices[i] == MSR_STAR) {
693 has_msr_star = true;
694 continue;
695 }
696 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
697 has_msr_hsave_pa = true;
698 continue;
699 }
700 }
701 }
702
703 free(kvm_msr_list);
704 }
705
706 return ret;
707 }
708
709 int kvm_arch_init(KVMState *s)
710 {
711 uint64_t identity_base = 0xfffbc000;
712 int ret;
713 struct utsname utsname;
714
715 ret = kvm_get_supported_msrs(s);
716 if (ret < 0) {
717 return ret;
718 }
719
720 uname(&utsname);
721 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
722
723 /*
724 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
725 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
726 * Since these must be part of guest physical memory, we need to allocate
727 * them, both by setting their start addresses in the kernel and by
728 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
729 *
730 * Older KVM versions may not support setting the identity map base. In
731 * that case we need to stick with the default, i.e. a 256K maximum BIOS
732 * size.
733 */
734 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
735 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
736 /* Allows up to 16M BIOSes. */
737 identity_base = 0xfeffc000;
738
739 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
740 if (ret < 0) {
741 return ret;
742 }
743 }
744 #endif
745 /* Set TSS base one page after EPT identity map. */
746 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
747 if (ret < 0) {
748 return ret;
749 }
750
751 /* Tell fw_cfg to notify the BIOS to reserve the range. */
752 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
753 if (ret < 0) {
754 fprintf(stderr, "e820_add_entry() table is full\n");
755 return ret;
756 }
757
758 return 0;
759 }
760
761 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
762 {
763 lhs->selector = rhs->selector;
764 lhs->base = rhs->base;
765 lhs->limit = rhs->limit;
766 lhs->type = 3;
767 lhs->present = 1;
768 lhs->dpl = 3;
769 lhs->db = 0;
770 lhs->s = 1;
771 lhs->l = 0;
772 lhs->g = 0;
773 lhs->avl = 0;
774 lhs->unusable = 0;
775 }
776
777 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
778 {
779 unsigned flags = rhs->flags;
780 lhs->selector = rhs->selector;
781 lhs->base = rhs->base;
782 lhs->limit = rhs->limit;
783 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
784 lhs->present = (flags & DESC_P_MASK) != 0;
785 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
786 lhs->db = (flags >> DESC_B_SHIFT) & 1;
787 lhs->s = (flags & DESC_S_MASK) != 0;
788 lhs->l = (flags >> DESC_L_SHIFT) & 1;
789 lhs->g = (flags & DESC_G_MASK) != 0;
790 lhs->avl = (flags & DESC_AVL_MASK) != 0;
791 lhs->unusable = 0;
792 }
793
794 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
795 {
796 lhs->selector = rhs->selector;
797 lhs->base = rhs->base;
798 lhs->limit = rhs->limit;
799 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
800 (rhs->present * DESC_P_MASK) |
801 (rhs->dpl << DESC_DPL_SHIFT) |
802 (rhs->db << DESC_B_SHIFT) |
803 (rhs->s * DESC_S_MASK) |
804 (rhs->l << DESC_L_SHIFT) |
805 (rhs->g * DESC_G_MASK) |
806 (rhs->avl * DESC_AVL_MASK);
807 }
808
809 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
810 {
811 if (set) {
812 *kvm_reg = *qemu_reg;
813 } else {
814 *qemu_reg = *kvm_reg;
815 }
816 }
817
818 static int kvm_getput_regs(CPUState *env, int set)
819 {
820 struct kvm_regs regs;
821 int ret = 0;
822
823 if (!set) {
824 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
825 if (ret < 0) {
826 return ret;
827 }
828 }
829
830 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
831 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
832 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
833 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
834 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
835 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
836 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
837 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
838 #ifdef TARGET_X86_64
839 kvm_getput_reg(&regs.r8, &env->regs[8], set);
840 kvm_getput_reg(&regs.r9, &env->regs[9], set);
841 kvm_getput_reg(&regs.r10, &env->regs[10], set);
842 kvm_getput_reg(&regs.r11, &env->regs[11], set);
843 kvm_getput_reg(&regs.r12, &env->regs[12], set);
844 kvm_getput_reg(&regs.r13, &env->regs[13], set);
845 kvm_getput_reg(&regs.r14, &env->regs[14], set);
846 kvm_getput_reg(&regs.r15, &env->regs[15], set);
847 #endif
848
849 kvm_getput_reg(&regs.rflags, &env->eflags, set);
850 kvm_getput_reg(&regs.rip, &env->eip, set);
851
852 if (set) {
853 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
854 }
855
856 return ret;
857 }
858
859 static int kvm_put_fpu(CPUState *env)
860 {
861 struct kvm_fpu fpu;
862 int i;
863
864 memset(&fpu, 0, sizeof fpu);
865 fpu.fsw = env->fpus & ~(7 << 11);
866 fpu.fsw |= (env->fpstt & 7) << 11;
867 fpu.fcw = env->fpuc;
868 for (i = 0; i < 8; ++i) {
869 fpu.ftwx |= (!env->fptags[i]) << i;
870 }
871 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
872 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
873 fpu.mxcsr = env->mxcsr;
874
875 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
876 }
877
878 #ifdef KVM_CAP_XSAVE
879 #define XSAVE_CWD_RIP 2
880 #define XSAVE_CWD_RDP 4
881 #define XSAVE_MXCSR 6
882 #define XSAVE_ST_SPACE 8
883 #define XSAVE_XMM_SPACE 40
884 #define XSAVE_XSTATE_BV 128
885 #define XSAVE_YMMH_SPACE 144
886 #endif
887
888 static int kvm_put_xsave(CPUState *env)
889 {
890 #ifdef KVM_CAP_XSAVE
891 int i, r;
892 struct kvm_xsave* xsave;
893 uint16_t cwd, swd, twd, fop;
894
895 if (!kvm_has_xsave()) {
896 return kvm_put_fpu(env);
897 }
898
899 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
900 memset(xsave, 0, sizeof(struct kvm_xsave));
901 cwd = swd = twd = fop = 0;
902 swd = env->fpus & ~(7 << 11);
903 swd |= (env->fpstt & 7) << 11;
904 cwd = env->fpuc;
905 for (i = 0; i < 8; ++i) {
906 twd |= (!env->fptags[i]) << i;
907 }
908 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
909 xsave->region[1] = (uint32_t)(fop << 16) + twd;
910 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
911 sizeof env->fpregs);
912 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
913 sizeof env->xmm_regs);
914 xsave->region[XSAVE_MXCSR] = env->mxcsr;
915 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
916 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
917 sizeof env->ymmh_regs);
918 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
919 qemu_free(xsave);
920 return r;
921 #else
922 return kvm_put_fpu(env);
923 #endif
924 }
925
926 static int kvm_put_xcrs(CPUState *env)
927 {
928 #ifdef KVM_CAP_XCRS
929 struct kvm_xcrs xcrs;
930
931 if (!kvm_has_xcrs()) {
932 return 0;
933 }
934
935 xcrs.nr_xcrs = 1;
936 xcrs.flags = 0;
937 xcrs.xcrs[0].xcr = 0;
938 xcrs.xcrs[0].value = env->xcr0;
939 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
940 #else
941 return 0;
942 #endif
943 }
944
945 static int kvm_put_sregs(CPUState *env)
946 {
947 struct kvm_sregs sregs;
948
949 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
950 if (env->interrupt_injected >= 0) {
951 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
952 (uint64_t)1 << (env->interrupt_injected % 64);
953 }
954
955 if ((env->eflags & VM_MASK)) {
956 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
957 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
958 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
959 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
960 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
961 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
962 } else {
963 set_seg(&sregs.cs, &env->segs[R_CS]);
964 set_seg(&sregs.ds, &env->segs[R_DS]);
965 set_seg(&sregs.es, &env->segs[R_ES]);
966 set_seg(&sregs.fs, &env->segs[R_FS]);
967 set_seg(&sregs.gs, &env->segs[R_GS]);
968 set_seg(&sregs.ss, &env->segs[R_SS]);
969 }
970
971 set_seg(&sregs.tr, &env->tr);
972 set_seg(&sregs.ldt, &env->ldt);
973
974 sregs.idt.limit = env->idt.limit;
975 sregs.idt.base = env->idt.base;
976 sregs.gdt.limit = env->gdt.limit;
977 sregs.gdt.base = env->gdt.base;
978
979 sregs.cr0 = env->cr[0];
980 sregs.cr2 = env->cr[2];
981 sregs.cr3 = env->cr[3];
982 sregs.cr4 = env->cr[4];
983
984 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
985 sregs.apic_base = cpu_get_apic_base(env->apic_state);
986
987 sregs.efer = env->efer;
988
989 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
990 }
991
992 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
993 uint32_t index, uint64_t value)
994 {
995 entry->index = index;
996 entry->data = value;
997 }
998
999 static int kvm_put_msrs(CPUState *env, int level)
1000 {
1001 struct {
1002 struct kvm_msrs info;
1003 struct kvm_msr_entry entries[100];
1004 } msr_data;
1005 struct kvm_msr_entry *msrs = msr_data.entries;
1006 int n = 0;
1007
1008 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1009 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1010 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1011 if (has_msr_star) {
1012 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1013 }
1014 if (has_msr_hsave_pa) {
1015 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1016 }
1017 #ifdef TARGET_X86_64
1018 if (lm_capable_kernel) {
1019 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1020 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1021 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1022 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1023 }
1024 #endif
1025 if (level == KVM_PUT_FULL_STATE) {
1026 /*
1027 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1028 * writeback. Until this is fixed, we only write the offset to SMP
1029 * guests after migration, desynchronizing the VCPUs, but avoiding
1030 * huge jump-backs that would occur without any writeback at all.
1031 */
1032 if (smp_cpus == 1 || env->tsc != 0) {
1033 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1034 }
1035 }
1036 /*
1037 * The following paravirtual MSRs have side effects on the guest or are
1038 * too heavy for normal writeback. Limit them to reset or full state
1039 * updates.
1040 */
1041 if (level >= KVM_PUT_RESET_STATE) {
1042 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1043 env->system_time_msr);
1044 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1045 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1046 if (has_msr_async_pf_en) {
1047 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1048 env->async_pf_en_msr);
1049 }
1050 #endif
1051 }
1052 #ifdef KVM_CAP_MCE
1053 if (env->mcg_cap) {
1054 int i;
1055
1056 if (level == KVM_PUT_RESET_STATE) {
1057 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1058 } else if (level == KVM_PUT_FULL_STATE) {
1059 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1060 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1061 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1062 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1063 }
1064 }
1065 }
1066 #endif
1067
1068 msr_data.info.nmsrs = n;
1069
1070 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1071
1072 }
1073
1074
1075 static int kvm_get_fpu(CPUState *env)
1076 {
1077 struct kvm_fpu fpu;
1078 int i, ret;
1079
1080 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1081 if (ret < 0) {
1082 return ret;
1083 }
1084
1085 env->fpstt = (fpu.fsw >> 11) & 7;
1086 env->fpus = fpu.fsw;
1087 env->fpuc = fpu.fcw;
1088 for (i = 0; i < 8; ++i) {
1089 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1090 }
1091 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1092 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1093 env->mxcsr = fpu.mxcsr;
1094
1095 return 0;
1096 }
1097
1098 static int kvm_get_xsave(CPUState *env)
1099 {
1100 #ifdef KVM_CAP_XSAVE
1101 struct kvm_xsave* xsave;
1102 int ret, i;
1103 uint16_t cwd, swd, twd, fop;
1104
1105 if (!kvm_has_xsave()) {
1106 return kvm_get_fpu(env);
1107 }
1108
1109 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
1110 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1111 if (ret < 0) {
1112 qemu_free(xsave);
1113 return ret;
1114 }
1115
1116 cwd = (uint16_t)xsave->region[0];
1117 swd = (uint16_t)(xsave->region[0] >> 16);
1118 twd = (uint16_t)xsave->region[1];
1119 fop = (uint16_t)(xsave->region[1] >> 16);
1120 env->fpstt = (swd >> 11) & 7;
1121 env->fpus = swd;
1122 env->fpuc = cwd;
1123 for (i = 0; i < 8; ++i) {
1124 env->fptags[i] = !((twd >> i) & 1);
1125 }
1126 env->mxcsr = xsave->region[XSAVE_MXCSR];
1127 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1128 sizeof env->fpregs);
1129 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1130 sizeof env->xmm_regs);
1131 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1132 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1133 sizeof env->ymmh_regs);
1134 qemu_free(xsave);
1135 return 0;
1136 #else
1137 return kvm_get_fpu(env);
1138 #endif
1139 }
1140
1141 static int kvm_get_xcrs(CPUState *env)
1142 {
1143 #ifdef KVM_CAP_XCRS
1144 int i, ret;
1145 struct kvm_xcrs xcrs;
1146
1147 if (!kvm_has_xcrs()) {
1148 return 0;
1149 }
1150
1151 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1152 if (ret < 0) {
1153 return ret;
1154 }
1155
1156 for (i = 0; i < xcrs.nr_xcrs; i++) {
1157 /* Only support xcr0 now */
1158 if (xcrs.xcrs[0].xcr == 0) {
1159 env->xcr0 = xcrs.xcrs[0].value;
1160 break;
1161 }
1162 }
1163 return 0;
1164 #else
1165 return 0;
1166 #endif
1167 }
1168
1169 static int kvm_get_sregs(CPUState *env)
1170 {
1171 struct kvm_sregs sregs;
1172 uint32_t hflags;
1173 int bit, i, ret;
1174
1175 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1176 if (ret < 0) {
1177 return ret;
1178 }
1179
1180 /* There can only be one pending IRQ set in the bitmap at a time, so try
1181 to find it and save its number instead (-1 for none). */
1182 env->interrupt_injected = -1;
1183 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1184 if (sregs.interrupt_bitmap[i]) {
1185 bit = ctz64(sregs.interrupt_bitmap[i]);
1186 env->interrupt_injected = i * 64 + bit;
1187 break;
1188 }
1189 }
1190
1191 get_seg(&env->segs[R_CS], &sregs.cs);
1192 get_seg(&env->segs[R_DS], &sregs.ds);
1193 get_seg(&env->segs[R_ES], &sregs.es);
1194 get_seg(&env->segs[R_FS], &sregs.fs);
1195 get_seg(&env->segs[R_GS], &sregs.gs);
1196 get_seg(&env->segs[R_SS], &sregs.ss);
1197
1198 get_seg(&env->tr, &sregs.tr);
1199 get_seg(&env->ldt, &sregs.ldt);
1200
1201 env->idt.limit = sregs.idt.limit;
1202 env->idt.base = sregs.idt.base;
1203 env->gdt.limit = sregs.gdt.limit;
1204 env->gdt.base = sregs.gdt.base;
1205
1206 env->cr[0] = sregs.cr0;
1207 env->cr[2] = sregs.cr2;
1208 env->cr[3] = sregs.cr3;
1209 env->cr[4] = sregs.cr4;
1210
1211 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1212
1213 env->efer = sregs.efer;
1214 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1215
1216 #define HFLAG_COPY_MASK \
1217 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1218 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1219 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1220 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1221
1222 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1223 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1224 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1225 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1226 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1227 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1228 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1229
1230 if (env->efer & MSR_EFER_LMA) {
1231 hflags |= HF_LMA_MASK;
1232 }
1233
1234 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1235 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1236 } else {
1237 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1238 (DESC_B_SHIFT - HF_CS32_SHIFT);
1239 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1240 (DESC_B_SHIFT - HF_SS32_SHIFT);
1241 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1242 !(hflags & HF_CS32_MASK)) {
1243 hflags |= HF_ADDSEG_MASK;
1244 } else {
1245 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1246 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1247 }
1248 }
1249 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1250
1251 return 0;
1252 }
1253
1254 static int kvm_get_msrs(CPUState *env)
1255 {
1256 struct {
1257 struct kvm_msrs info;
1258 struct kvm_msr_entry entries[100];
1259 } msr_data;
1260 struct kvm_msr_entry *msrs = msr_data.entries;
1261 int ret, i, n;
1262
1263 n = 0;
1264 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1265 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1266 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1267 if (has_msr_star) {
1268 msrs[n++].index = MSR_STAR;
1269 }
1270 if (has_msr_hsave_pa) {
1271 msrs[n++].index = MSR_VM_HSAVE_PA;
1272 }
1273
1274 if (!env->tsc_valid) {
1275 msrs[n++].index = MSR_IA32_TSC;
1276 env->tsc_valid = !vm_running;
1277 }
1278
1279 #ifdef TARGET_X86_64
1280 if (lm_capable_kernel) {
1281 msrs[n++].index = MSR_CSTAR;
1282 msrs[n++].index = MSR_KERNELGSBASE;
1283 msrs[n++].index = MSR_FMASK;
1284 msrs[n++].index = MSR_LSTAR;
1285 }
1286 #endif
1287 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1288 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1289 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1290 if (has_msr_async_pf_en) {
1291 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1292 }
1293 #endif
1294
1295 #ifdef KVM_CAP_MCE
1296 if (env->mcg_cap) {
1297 msrs[n++].index = MSR_MCG_STATUS;
1298 msrs[n++].index = MSR_MCG_CTL;
1299 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1300 msrs[n++].index = MSR_MC0_CTL + i;
1301 }
1302 }
1303 #endif
1304
1305 msr_data.info.nmsrs = n;
1306 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1307 if (ret < 0) {
1308 return ret;
1309 }
1310
1311 for (i = 0; i < ret; i++) {
1312 switch (msrs[i].index) {
1313 case MSR_IA32_SYSENTER_CS:
1314 env->sysenter_cs = msrs[i].data;
1315 break;
1316 case MSR_IA32_SYSENTER_ESP:
1317 env->sysenter_esp = msrs[i].data;
1318 break;
1319 case MSR_IA32_SYSENTER_EIP:
1320 env->sysenter_eip = msrs[i].data;
1321 break;
1322 case MSR_STAR:
1323 env->star = msrs[i].data;
1324 break;
1325 #ifdef TARGET_X86_64
1326 case MSR_CSTAR:
1327 env->cstar = msrs[i].data;
1328 break;
1329 case MSR_KERNELGSBASE:
1330 env->kernelgsbase = msrs[i].data;
1331 break;
1332 case MSR_FMASK:
1333 env->fmask = msrs[i].data;
1334 break;
1335 case MSR_LSTAR:
1336 env->lstar = msrs[i].data;
1337 break;
1338 #endif
1339 case MSR_IA32_TSC:
1340 env->tsc = msrs[i].data;
1341 break;
1342 case MSR_VM_HSAVE_PA:
1343 env->vm_hsave = msrs[i].data;
1344 break;
1345 case MSR_KVM_SYSTEM_TIME:
1346 env->system_time_msr = msrs[i].data;
1347 break;
1348 case MSR_KVM_WALL_CLOCK:
1349 env->wall_clock_msr = msrs[i].data;
1350 break;
1351 #ifdef KVM_CAP_MCE
1352 case MSR_MCG_STATUS:
1353 env->mcg_status = msrs[i].data;
1354 break;
1355 case MSR_MCG_CTL:
1356 env->mcg_ctl = msrs[i].data;
1357 break;
1358 #endif
1359 default:
1360 #ifdef KVM_CAP_MCE
1361 if (msrs[i].index >= MSR_MC0_CTL &&
1362 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1363 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1364 }
1365 #endif
1366 break;
1367 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1368 case MSR_KVM_ASYNC_PF_EN:
1369 env->async_pf_en_msr = msrs[i].data;
1370 break;
1371 #endif
1372 }
1373 }
1374
1375 return 0;
1376 }
1377
1378 static int kvm_put_mp_state(CPUState *env)
1379 {
1380 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1381
1382 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1383 }
1384
1385 static int kvm_get_mp_state(CPUState *env)
1386 {
1387 struct kvm_mp_state mp_state;
1388 int ret;
1389
1390 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1391 if (ret < 0) {
1392 return ret;
1393 }
1394 env->mp_state = mp_state.mp_state;
1395 if (kvm_irqchip_in_kernel()) {
1396 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1397 }
1398 return 0;
1399 }
1400
1401 static int kvm_put_vcpu_events(CPUState *env, int level)
1402 {
1403 #ifdef KVM_CAP_VCPU_EVENTS
1404 struct kvm_vcpu_events events;
1405
1406 if (!kvm_has_vcpu_events()) {
1407 return 0;
1408 }
1409
1410 events.exception.injected = (env->exception_injected >= 0);
1411 events.exception.nr = env->exception_injected;
1412 events.exception.has_error_code = env->has_error_code;
1413 events.exception.error_code = env->error_code;
1414
1415 events.interrupt.injected = (env->interrupt_injected >= 0);
1416 events.interrupt.nr = env->interrupt_injected;
1417 events.interrupt.soft = env->soft_interrupt;
1418
1419 events.nmi.injected = env->nmi_injected;
1420 events.nmi.pending = env->nmi_pending;
1421 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1422
1423 events.sipi_vector = env->sipi_vector;
1424
1425 events.flags = 0;
1426 if (level >= KVM_PUT_RESET_STATE) {
1427 events.flags |=
1428 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1429 }
1430
1431 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1432 #else
1433 return 0;
1434 #endif
1435 }
1436
1437 static int kvm_get_vcpu_events(CPUState *env)
1438 {
1439 #ifdef KVM_CAP_VCPU_EVENTS
1440 struct kvm_vcpu_events events;
1441 int ret;
1442
1443 if (!kvm_has_vcpu_events()) {
1444 return 0;
1445 }
1446
1447 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1448 if (ret < 0) {
1449 return ret;
1450 }
1451 env->exception_injected =
1452 events.exception.injected ? events.exception.nr : -1;
1453 env->has_error_code = events.exception.has_error_code;
1454 env->error_code = events.exception.error_code;
1455
1456 env->interrupt_injected =
1457 events.interrupt.injected ? events.interrupt.nr : -1;
1458 env->soft_interrupt = events.interrupt.soft;
1459
1460 env->nmi_injected = events.nmi.injected;
1461 env->nmi_pending = events.nmi.pending;
1462 if (events.nmi.masked) {
1463 env->hflags2 |= HF2_NMI_MASK;
1464 } else {
1465 env->hflags2 &= ~HF2_NMI_MASK;
1466 }
1467
1468 env->sipi_vector = events.sipi_vector;
1469 #endif
1470
1471 return 0;
1472 }
1473
1474 static int kvm_guest_debug_workarounds(CPUState *env)
1475 {
1476 int ret = 0;
1477 #ifdef KVM_CAP_SET_GUEST_DEBUG
1478 unsigned long reinject_trap = 0;
1479
1480 if (!kvm_has_vcpu_events()) {
1481 if (env->exception_injected == 1) {
1482 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1483 } else if (env->exception_injected == 3) {
1484 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1485 }
1486 env->exception_injected = -1;
1487 }
1488
1489 /*
1490 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1491 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1492 * by updating the debug state once again if single-stepping is on.
1493 * Another reason to call kvm_update_guest_debug here is a pending debug
1494 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1495 * reinject them via SET_GUEST_DEBUG.
1496 */
1497 if (reinject_trap ||
1498 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1499 ret = kvm_update_guest_debug(env, reinject_trap);
1500 }
1501 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1502 return ret;
1503 }
1504
1505 static int kvm_put_debugregs(CPUState *env)
1506 {
1507 #ifdef KVM_CAP_DEBUGREGS
1508 struct kvm_debugregs dbgregs;
1509 int i;
1510
1511 if (!kvm_has_debugregs()) {
1512 return 0;
1513 }
1514
1515 for (i = 0; i < 4; i++) {
1516 dbgregs.db[i] = env->dr[i];
1517 }
1518 dbgregs.dr6 = env->dr[6];
1519 dbgregs.dr7 = env->dr[7];
1520 dbgregs.flags = 0;
1521
1522 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1523 #else
1524 return 0;
1525 #endif
1526 }
1527
1528 static int kvm_get_debugregs(CPUState *env)
1529 {
1530 #ifdef KVM_CAP_DEBUGREGS
1531 struct kvm_debugregs dbgregs;
1532 int i, ret;
1533
1534 if (!kvm_has_debugregs()) {
1535 return 0;
1536 }
1537
1538 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1539 if (ret < 0) {
1540 return ret;
1541 }
1542 for (i = 0; i < 4; i++) {
1543 env->dr[i] = dbgregs.db[i];
1544 }
1545 env->dr[4] = env->dr[6] = dbgregs.dr6;
1546 env->dr[5] = env->dr[7] = dbgregs.dr7;
1547 #endif
1548
1549 return 0;
1550 }
1551
1552 int kvm_arch_put_registers(CPUState *env, int level)
1553 {
1554 int ret;
1555
1556 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1557
1558 ret = kvm_getput_regs(env, 1);
1559 if (ret < 0) {
1560 return ret;
1561 }
1562 ret = kvm_put_xsave(env);
1563 if (ret < 0) {
1564 return ret;
1565 }
1566 ret = kvm_put_xcrs(env);
1567 if (ret < 0) {
1568 return ret;
1569 }
1570 ret = kvm_put_sregs(env);
1571 if (ret < 0) {
1572 return ret;
1573 }
1574 /* must be before kvm_put_msrs */
1575 ret = kvm_inject_mce_oldstyle(env);
1576 if (ret < 0) {
1577 return ret;
1578 }
1579 ret = kvm_put_msrs(env, level);
1580 if (ret < 0) {
1581 return ret;
1582 }
1583 if (level >= KVM_PUT_RESET_STATE) {
1584 ret = kvm_put_mp_state(env);
1585 if (ret < 0) {
1586 return ret;
1587 }
1588 }
1589 ret = kvm_put_vcpu_events(env, level);
1590 if (ret < 0) {
1591 return ret;
1592 }
1593 ret = kvm_put_debugregs(env);
1594 if (ret < 0) {
1595 return ret;
1596 }
1597 /* must be last */
1598 ret = kvm_guest_debug_workarounds(env);
1599 if (ret < 0) {
1600 return ret;
1601 }
1602 return 0;
1603 }
1604
1605 int kvm_arch_get_registers(CPUState *env)
1606 {
1607 int ret;
1608
1609 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1610
1611 ret = kvm_getput_regs(env, 0);
1612 if (ret < 0) {
1613 return ret;
1614 }
1615 ret = kvm_get_xsave(env);
1616 if (ret < 0) {
1617 return ret;
1618 }
1619 ret = kvm_get_xcrs(env);
1620 if (ret < 0) {
1621 return ret;
1622 }
1623 ret = kvm_get_sregs(env);
1624 if (ret < 0) {
1625 return ret;
1626 }
1627 ret = kvm_get_msrs(env);
1628 if (ret < 0) {
1629 return ret;
1630 }
1631 ret = kvm_get_mp_state(env);
1632 if (ret < 0) {
1633 return ret;
1634 }
1635 ret = kvm_get_vcpu_events(env);
1636 if (ret < 0) {
1637 return ret;
1638 }
1639 ret = kvm_get_debugregs(env);
1640 if (ret < 0) {
1641 return ret;
1642 }
1643 return 0;
1644 }
1645
1646 void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1647 {
1648 int ret;
1649
1650 /* Inject NMI */
1651 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1652 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1653 DPRINTF("injected NMI\n");
1654 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1655 if (ret < 0) {
1656 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1657 strerror(-ret));
1658 }
1659 }
1660
1661 if (!kvm_irqchip_in_kernel()) {
1662 /* Force the VCPU out of its inner loop to process the INIT request */
1663 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1664 env->exit_request = 1;
1665 }
1666
1667 /* Try to inject an interrupt if the guest can accept it */
1668 if (run->ready_for_interrupt_injection &&
1669 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1670 (env->eflags & IF_MASK)) {
1671 int irq;
1672
1673 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1674 irq = cpu_get_pic_interrupt(env);
1675 if (irq >= 0) {
1676 struct kvm_interrupt intr;
1677
1678 intr.irq = irq;
1679 DPRINTF("injected interrupt %d\n", irq);
1680 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1681 if (ret < 0) {
1682 fprintf(stderr,
1683 "KVM: injection failed, interrupt lost (%s)\n",
1684 strerror(-ret));
1685 }
1686 }
1687 }
1688
1689 /* If we have an interrupt but the guest is not ready to receive an
1690 * interrupt, request an interrupt window exit. This will
1691 * cause a return to userspace as soon as the guest is ready to
1692 * receive interrupts. */
1693 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1694 run->request_interrupt_window = 1;
1695 } else {
1696 run->request_interrupt_window = 0;
1697 }
1698
1699 DPRINTF("setting tpr\n");
1700 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1701 }
1702 }
1703
1704 void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1705 {
1706 if (run->if_flag) {
1707 env->eflags |= IF_MASK;
1708 } else {
1709 env->eflags &= ~IF_MASK;
1710 }
1711 cpu_set_apic_tpr(env->apic_state, run->cr8);
1712 cpu_set_apic_base(env->apic_state, run->apic_base);
1713 }
1714
1715 int kvm_arch_process_async_events(CPUState *env)
1716 {
1717 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1718 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1719 assert(env->mcg_cap);
1720
1721 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1722
1723 kvm_cpu_synchronize_state(env);
1724
1725 if (env->exception_injected == EXCP08_DBLE) {
1726 /* this means triple fault */
1727 qemu_system_reset_request();
1728 env->exit_request = 1;
1729 return 0;
1730 }
1731 env->exception_injected = EXCP12_MCHK;
1732 env->has_error_code = 0;
1733
1734 env->halted = 0;
1735 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1736 env->mp_state = KVM_MP_STATE_RUNNABLE;
1737 }
1738 }
1739
1740 if (kvm_irqchip_in_kernel()) {
1741 return 0;
1742 }
1743
1744 if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI)) {
1745 env->halted = 0;
1746 }
1747 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1748 kvm_cpu_synchronize_state(env);
1749 do_cpu_init(env);
1750 }
1751 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1752 kvm_cpu_synchronize_state(env);
1753 do_cpu_sipi(env);
1754 }
1755
1756 return env->halted;
1757 }
1758
1759 static int kvm_handle_halt(CPUState *env)
1760 {
1761 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1762 (env->eflags & IF_MASK)) &&
1763 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1764 env->halted = 1;
1765 return 0;
1766 }
1767
1768 return 1;
1769 }
1770
1771 static bool host_supports_vmx(void)
1772 {
1773 uint32_t ecx, unused;
1774
1775 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1776 return ecx & CPUID_EXT_VMX;
1777 }
1778
1779 #define VMX_INVALID_GUEST_STATE 0x80000021
1780
1781 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1782 {
1783 uint64_t code;
1784 int ret = 0;
1785
1786 switch (run->exit_reason) {
1787 case KVM_EXIT_HLT:
1788 DPRINTF("handle_hlt\n");
1789 ret = kvm_handle_halt(env);
1790 break;
1791 case KVM_EXIT_SET_TPR:
1792 ret = 1;
1793 break;
1794 case KVM_EXIT_FAIL_ENTRY:
1795 code = run->fail_entry.hardware_entry_failure_reason;
1796 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1797 code);
1798 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1799 fprintf(stderr,
1800 "\nIf you're runnning a guest on an Intel machine without "
1801 "unrestricted mode\n"
1802 "support, the failure can be most likely due to the guest "
1803 "entering an invalid\n"
1804 "state for Intel VT. For example, the guest maybe running "
1805 "in big real mode\n"
1806 "which is not supported on less recent Intel processors."
1807 "\n\n");
1808 }
1809 ret = -1;
1810 break;
1811 case KVM_EXIT_EXCEPTION:
1812 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1813 run->ex.exception, run->ex.error_code);
1814 ret = -1;
1815 break;
1816 default:
1817 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1818 ret = -1;
1819 break;
1820 }
1821
1822 return ret;
1823 }
1824
1825 #ifdef KVM_CAP_SET_GUEST_DEBUG
1826 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1827 {
1828 static const uint8_t int3 = 0xcc;
1829
1830 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1831 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1832 return -EINVAL;
1833 }
1834 return 0;
1835 }
1836
1837 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1838 {
1839 uint8_t int3;
1840
1841 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1842 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1843 return -EINVAL;
1844 }
1845 return 0;
1846 }
1847
1848 static struct {
1849 target_ulong addr;
1850 int len;
1851 int type;
1852 } hw_breakpoint[4];
1853
1854 static int nb_hw_breakpoint;
1855
1856 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1857 {
1858 int n;
1859
1860 for (n = 0; n < nb_hw_breakpoint; n++) {
1861 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1862 (hw_breakpoint[n].len == len || len == -1)) {
1863 return n;
1864 }
1865 }
1866 return -1;
1867 }
1868
1869 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1870 target_ulong len, int type)
1871 {
1872 switch (type) {
1873 case GDB_BREAKPOINT_HW:
1874 len = 1;
1875 break;
1876 case GDB_WATCHPOINT_WRITE:
1877 case GDB_WATCHPOINT_ACCESS:
1878 switch (len) {
1879 case 1:
1880 break;
1881 case 2:
1882 case 4:
1883 case 8:
1884 if (addr & (len - 1)) {
1885 return -EINVAL;
1886 }
1887 break;
1888 default:
1889 return -EINVAL;
1890 }
1891 break;
1892 default:
1893 return -ENOSYS;
1894 }
1895
1896 if (nb_hw_breakpoint == 4) {
1897 return -ENOBUFS;
1898 }
1899 if (find_hw_breakpoint(addr, len, type) >= 0) {
1900 return -EEXIST;
1901 }
1902 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1903 hw_breakpoint[nb_hw_breakpoint].len = len;
1904 hw_breakpoint[nb_hw_breakpoint].type = type;
1905 nb_hw_breakpoint++;
1906
1907 return 0;
1908 }
1909
1910 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1911 target_ulong len, int type)
1912 {
1913 int n;
1914
1915 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1916 if (n < 0) {
1917 return -ENOENT;
1918 }
1919 nb_hw_breakpoint--;
1920 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1921
1922 return 0;
1923 }
1924
1925 void kvm_arch_remove_all_hw_breakpoints(void)
1926 {
1927 nb_hw_breakpoint = 0;
1928 }
1929
1930 static CPUWatchpoint hw_watchpoint;
1931
1932 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1933 {
1934 int handle = 0;
1935 int n;
1936
1937 if (arch_info->exception == 1) {
1938 if (arch_info->dr6 & (1 << 14)) {
1939 if (cpu_single_env->singlestep_enabled) {
1940 handle = 1;
1941 }
1942 } else {
1943 for (n = 0; n < 4; n++) {
1944 if (arch_info->dr6 & (1 << n)) {
1945 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1946 case 0x0:
1947 handle = 1;
1948 break;
1949 case 0x1:
1950 handle = 1;
1951 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1952 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1953 hw_watchpoint.flags = BP_MEM_WRITE;
1954 break;
1955 case 0x3:
1956 handle = 1;
1957 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1958 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1959 hw_watchpoint.flags = BP_MEM_ACCESS;
1960 break;
1961 }
1962 }
1963 }
1964 }
1965 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1966 handle = 1;
1967 }
1968 if (!handle) {
1969 cpu_synchronize_state(cpu_single_env);
1970 assert(cpu_single_env->exception_injected == -1);
1971
1972 cpu_single_env->exception_injected = arch_info->exception;
1973 cpu_single_env->has_error_code = 0;
1974 }
1975
1976 return handle;
1977 }
1978
1979 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1980 {
1981 const uint8_t type_code[] = {
1982 [GDB_BREAKPOINT_HW] = 0x0,
1983 [GDB_WATCHPOINT_WRITE] = 0x1,
1984 [GDB_WATCHPOINT_ACCESS] = 0x3
1985 };
1986 const uint8_t len_code[] = {
1987 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1988 };
1989 int n;
1990
1991 if (kvm_sw_breakpoints_active(env)) {
1992 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1993 }
1994 if (nb_hw_breakpoint > 0) {
1995 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1996 dbg->arch.debugreg[7] = 0x0600;
1997 for (n = 0; n < nb_hw_breakpoint; n++) {
1998 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1999 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2000 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2001 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2002 }
2003 }
2004 }
2005 #endif /* KVM_CAP_SET_GUEST_DEBUG */
2006
2007 bool kvm_arch_stop_on_emulation_error(CPUState *env)
2008 {
2009 return !(env->cr[0] & CR0_PE_MASK) ||
2010 ((env->segs[R_CS].selector & 3) != 3);
2011 }