]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
kvm: init mp_state
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18
19 #include <linux/kvm.h>
20
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
27 #include "hw/pc.h"
28 #include "ioport.h"
29
30 #ifdef CONFIG_KVM_PARA
31 #include <linux/kvm_para.h>
32 #endif
33 //
34 //#define DEBUG_KVM
35
36 #ifdef DEBUG_KVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
43
44 #define MSR_KVM_WALL_CLOCK 0x11
45 #define MSR_KVM_SYSTEM_TIME 0x12
46
47 #ifdef KVM_CAP_EXT_CPUID
48
49 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
50 {
51 struct kvm_cpuid2 *cpuid;
52 int r, size;
53
54 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
55 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
56 cpuid->nent = max;
57 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
58 if (r == 0 && cpuid->nent >= max) {
59 r = -E2BIG;
60 }
61 if (r < 0) {
62 if (r == -E2BIG) {
63 qemu_free(cpuid);
64 return NULL;
65 } else {
66 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
67 strerror(-r));
68 exit(1);
69 }
70 }
71 return cpuid;
72 }
73
74 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
75 uint32_t index, int reg)
76 {
77 struct kvm_cpuid2 *cpuid;
78 int i, max;
79 uint32_t ret = 0;
80 uint32_t cpuid_1_edx;
81
82 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
83 return -1U;
84 }
85
86 max = 1;
87 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
88 max *= 2;
89 }
90
91 for (i = 0; i < cpuid->nent; ++i) {
92 if (cpuid->entries[i].function == function &&
93 cpuid->entries[i].index == index) {
94 switch (reg) {
95 case R_EAX:
96 ret = cpuid->entries[i].eax;
97 break;
98 case R_EBX:
99 ret = cpuid->entries[i].ebx;
100 break;
101 case R_ECX:
102 ret = cpuid->entries[i].ecx;
103 break;
104 case R_EDX:
105 ret = cpuid->entries[i].edx;
106 switch (function) {
107 case 1:
108 /* KVM before 2.6.30 misreports the following features */
109 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
110 break;
111 case 0x80000001:
112 /* On Intel, kvm returns cpuid according to the Intel spec,
113 * so add missing bits according to the AMD spec:
114 */
115 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
116 ret |= cpuid_1_edx & 0x183f7ff;
117 break;
118 }
119 break;
120 }
121 }
122 }
123
124 qemu_free(cpuid);
125
126 return ret;
127 }
128
129 #else
130
131 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
132 uint32_t index, int reg)
133 {
134 return -1U;
135 }
136
137 #endif
138
139 #ifdef CONFIG_KVM_PARA
140 struct kvm_para_features {
141 int cap;
142 int feature;
143 } para_features[] = {
144 #ifdef KVM_CAP_CLOCKSOURCE
145 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
146 #endif
147 #ifdef KVM_CAP_NOP_IO_DELAY
148 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
149 #endif
150 #ifdef KVM_CAP_PV_MMU
151 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
152 #endif
153 { -1, -1 }
154 };
155
156 static int get_para_features(CPUState *env)
157 {
158 int i, features = 0;
159
160 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
161 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
162 features |= (1 << para_features[i].feature);
163 }
164
165 return features;
166 }
167 #endif
168
169 int kvm_arch_init_vcpu(CPUState *env)
170 {
171 struct {
172 struct kvm_cpuid2 cpuid;
173 struct kvm_cpuid_entry2 entries[100];
174 } __attribute__((packed)) cpuid_data;
175 uint32_t limit, i, j, cpuid_i;
176 uint32_t unused;
177 struct kvm_cpuid_entry2 *c;
178 #ifdef KVM_CPUID_SIGNATURE
179 uint32_t signature[3];
180 #endif
181
182 env->mp_state = KVM_MP_STATE_RUNNABLE;
183
184 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
185
186 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
187 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
188 env->cpuid_ext_features |= i;
189
190 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
191 0, R_EDX);
192 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
193 0, R_ECX);
194
195 cpuid_i = 0;
196
197 #ifdef CONFIG_KVM_PARA
198 /* Paravirtualization CPUIDs */
199 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
200 c = &cpuid_data.entries[cpuid_i++];
201 memset(c, 0, sizeof(*c));
202 c->function = KVM_CPUID_SIGNATURE;
203 c->eax = 0;
204 c->ebx = signature[0];
205 c->ecx = signature[1];
206 c->edx = signature[2];
207
208 c = &cpuid_data.entries[cpuid_i++];
209 memset(c, 0, sizeof(*c));
210 c->function = KVM_CPUID_FEATURES;
211 c->eax = env->cpuid_kvm_features & get_para_features(env);
212 #endif
213
214 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
215
216 for (i = 0; i <= limit; i++) {
217 c = &cpuid_data.entries[cpuid_i++];
218
219 switch (i) {
220 case 2: {
221 /* Keep reading function 2 till all the input is received */
222 int times;
223
224 c->function = i;
225 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
226 KVM_CPUID_FLAG_STATE_READ_NEXT;
227 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
228 times = c->eax & 0xff;
229
230 for (j = 1; j < times; ++j) {
231 c = &cpuid_data.entries[cpuid_i++];
232 c->function = i;
233 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
234 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
235 }
236 break;
237 }
238 case 4:
239 case 0xb:
240 case 0xd:
241 for (j = 0; ; j++) {
242 c->function = i;
243 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
244 c->index = j;
245 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
246
247 if (i == 4 && c->eax == 0)
248 break;
249 if (i == 0xb && !(c->ecx & 0xff00))
250 break;
251 if (i == 0xd && c->eax == 0)
252 break;
253
254 c = &cpuid_data.entries[cpuid_i++];
255 }
256 break;
257 default:
258 c->function = i;
259 c->flags = 0;
260 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
261 break;
262 }
263 }
264 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
265
266 for (i = 0x80000000; i <= limit; i++) {
267 c = &cpuid_data.entries[cpuid_i++];
268
269 c->function = i;
270 c->flags = 0;
271 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
272 }
273
274 cpuid_data.cpuid.nent = cpuid_i;
275
276 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
277 }
278
279 void kvm_arch_reset_vcpu(CPUState *env)
280 {
281 env->exception_injected = -1;
282 env->interrupt_injected = -1;
283 env->nmi_injected = 0;
284 env->nmi_pending = 0;
285 if (kvm_irqchip_in_kernel()) {
286 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
287 KVM_MP_STATE_UNINITIALIZED;
288 } else {
289 env->mp_state = KVM_MP_STATE_RUNNABLE;
290 }
291 }
292
293 static int kvm_has_msr_star(CPUState *env)
294 {
295 static int has_msr_star;
296 int ret;
297
298 /* first time */
299 if (has_msr_star == 0) {
300 struct kvm_msr_list msr_list, *kvm_msr_list;
301
302 has_msr_star = -1;
303
304 /* Obtain MSR list from KVM. These are the MSRs that we must
305 * save/restore */
306 msr_list.nmsrs = 0;
307 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
308 if (ret < 0 && ret != -E2BIG) {
309 return 0;
310 }
311 /* Old kernel modules had a bug and could write beyond the provided
312 memory. Allocate at least a safe amount of 1K. */
313 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
314 msr_list.nmsrs *
315 sizeof(msr_list.indices[0])));
316
317 kvm_msr_list->nmsrs = msr_list.nmsrs;
318 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
319 if (ret >= 0) {
320 int i;
321
322 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
323 if (kvm_msr_list->indices[i] == MSR_STAR) {
324 has_msr_star = 1;
325 break;
326 }
327 }
328 }
329
330 free(kvm_msr_list);
331 }
332
333 if (has_msr_star == 1)
334 return 1;
335 return 0;
336 }
337
338 static int kvm_init_identity_map_page(KVMState *s)
339 {
340 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
341 int ret;
342 uint64_t addr = 0xfffbc000;
343
344 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
345 return 0;
346 }
347
348 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
349 if (ret < 0) {
350 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
351 return ret;
352 }
353 #endif
354 return 0;
355 }
356
357 int kvm_arch_init(KVMState *s, int smp_cpus)
358 {
359 int ret;
360
361 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
362 * directly. In order to use vm86 mode, a TSS is needed. Since this
363 * must be part of guest physical memory, we need to allocate it. Older
364 * versions of KVM just assumed that it would be at the end of physical
365 * memory but that doesn't work with more than 4GB of memory. We simply
366 * refuse to work with those older versions of KVM. */
367 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
368 if (ret <= 0) {
369 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
370 return ret;
371 }
372
373 /* this address is 3 pages before the bios, and the bios should present
374 * as unavaible memory. FIXME, need to ensure the e820 map deals with
375 * this?
376 */
377 /*
378 * Tell fw_cfg to notify the BIOS to reserve the range.
379 */
380 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
381 perror("e820_add_entry() table is full");
382 exit(1);
383 }
384 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
385 if (ret < 0) {
386 return ret;
387 }
388
389 return kvm_init_identity_map_page(s);
390 }
391
392 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
393 {
394 lhs->selector = rhs->selector;
395 lhs->base = rhs->base;
396 lhs->limit = rhs->limit;
397 lhs->type = 3;
398 lhs->present = 1;
399 lhs->dpl = 3;
400 lhs->db = 0;
401 lhs->s = 1;
402 lhs->l = 0;
403 lhs->g = 0;
404 lhs->avl = 0;
405 lhs->unusable = 0;
406 }
407
408 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
409 {
410 unsigned flags = rhs->flags;
411 lhs->selector = rhs->selector;
412 lhs->base = rhs->base;
413 lhs->limit = rhs->limit;
414 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
415 lhs->present = (flags & DESC_P_MASK) != 0;
416 lhs->dpl = rhs->selector & 3;
417 lhs->db = (flags >> DESC_B_SHIFT) & 1;
418 lhs->s = (flags & DESC_S_MASK) != 0;
419 lhs->l = (flags >> DESC_L_SHIFT) & 1;
420 lhs->g = (flags & DESC_G_MASK) != 0;
421 lhs->avl = (flags & DESC_AVL_MASK) != 0;
422 lhs->unusable = 0;
423 }
424
425 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
426 {
427 lhs->selector = rhs->selector;
428 lhs->base = rhs->base;
429 lhs->limit = rhs->limit;
430 lhs->flags =
431 (rhs->type << DESC_TYPE_SHIFT)
432 | (rhs->present * DESC_P_MASK)
433 | (rhs->dpl << DESC_DPL_SHIFT)
434 | (rhs->db << DESC_B_SHIFT)
435 | (rhs->s * DESC_S_MASK)
436 | (rhs->l << DESC_L_SHIFT)
437 | (rhs->g * DESC_G_MASK)
438 | (rhs->avl * DESC_AVL_MASK);
439 }
440
441 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
442 {
443 if (set)
444 *kvm_reg = *qemu_reg;
445 else
446 *qemu_reg = *kvm_reg;
447 }
448
449 static int kvm_getput_regs(CPUState *env, int set)
450 {
451 struct kvm_regs regs;
452 int ret = 0;
453
454 if (!set) {
455 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
456 if (ret < 0)
457 return ret;
458 }
459
460 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
461 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
462 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
463 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
464 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
465 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
466 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
467 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
468 #ifdef TARGET_X86_64
469 kvm_getput_reg(&regs.r8, &env->regs[8], set);
470 kvm_getput_reg(&regs.r9, &env->regs[9], set);
471 kvm_getput_reg(&regs.r10, &env->regs[10], set);
472 kvm_getput_reg(&regs.r11, &env->regs[11], set);
473 kvm_getput_reg(&regs.r12, &env->regs[12], set);
474 kvm_getput_reg(&regs.r13, &env->regs[13], set);
475 kvm_getput_reg(&regs.r14, &env->regs[14], set);
476 kvm_getput_reg(&regs.r15, &env->regs[15], set);
477 #endif
478
479 kvm_getput_reg(&regs.rflags, &env->eflags, set);
480 kvm_getput_reg(&regs.rip, &env->eip, set);
481
482 if (set)
483 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
484
485 return ret;
486 }
487
488 static int kvm_put_fpu(CPUState *env)
489 {
490 struct kvm_fpu fpu;
491 int i;
492
493 memset(&fpu, 0, sizeof fpu);
494 fpu.fsw = env->fpus & ~(7 << 11);
495 fpu.fsw |= (env->fpstt & 7) << 11;
496 fpu.fcw = env->fpuc;
497 for (i = 0; i < 8; ++i)
498 fpu.ftwx |= (!env->fptags[i]) << i;
499 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
500 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
501 fpu.mxcsr = env->mxcsr;
502
503 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
504 }
505
506 #ifdef KVM_CAP_XSAVE
507 #define XSAVE_CWD_RIP 2
508 #define XSAVE_CWD_RDP 4
509 #define XSAVE_MXCSR 6
510 #define XSAVE_ST_SPACE 8
511 #define XSAVE_XMM_SPACE 40
512 #define XSAVE_XSTATE_BV 128
513 #define XSAVE_YMMH_SPACE 144
514 #endif
515
516 static int kvm_put_xsave(CPUState *env)
517 {
518 #ifdef KVM_CAP_XSAVE
519 int i;
520 struct kvm_xsave* xsave;
521 uint16_t cwd, swd, twd, fop;
522
523 if (!kvm_has_xsave())
524 return kvm_put_fpu(env);
525
526 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
527 memset(xsave, 0, sizeof(struct kvm_xsave));
528 cwd = swd = twd = fop = 0;
529 swd = env->fpus & ~(7 << 11);
530 swd |= (env->fpstt & 7) << 11;
531 cwd = env->fpuc;
532 for (i = 0; i < 8; ++i)
533 twd |= (!env->fptags[i]) << i;
534 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
535 xsave->region[1] = (uint32_t)(fop << 16) + twd;
536 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
537 sizeof env->fpregs);
538 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
539 sizeof env->xmm_regs);
540 xsave->region[XSAVE_MXCSR] = env->mxcsr;
541 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
542 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
543 sizeof env->ymmh_regs);
544 return kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
545 #else
546 return kvm_put_fpu(env);
547 #endif
548 }
549
550 static int kvm_put_xcrs(CPUState *env)
551 {
552 #ifdef KVM_CAP_XCRS
553 struct kvm_xcrs xcrs;
554
555 if (!kvm_has_xcrs())
556 return 0;
557
558 xcrs.nr_xcrs = 1;
559 xcrs.flags = 0;
560 xcrs.xcrs[0].xcr = 0;
561 xcrs.xcrs[0].value = env->xcr0;
562 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
563 #else
564 return 0;
565 #endif
566 }
567
568 static int kvm_put_sregs(CPUState *env)
569 {
570 struct kvm_sregs sregs;
571
572 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
573 if (env->interrupt_injected >= 0) {
574 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
575 (uint64_t)1 << (env->interrupt_injected % 64);
576 }
577
578 if ((env->eflags & VM_MASK)) {
579 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
580 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
581 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
582 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
583 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
584 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
585 } else {
586 set_seg(&sregs.cs, &env->segs[R_CS]);
587 set_seg(&sregs.ds, &env->segs[R_DS]);
588 set_seg(&sregs.es, &env->segs[R_ES]);
589 set_seg(&sregs.fs, &env->segs[R_FS]);
590 set_seg(&sregs.gs, &env->segs[R_GS]);
591 set_seg(&sregs.ss, &env->segs[R_SS]);
592
593 if (env->cr[0] & CR0_PE_MASK) {
594 /* force ss cpl to cs cpl */
595 sregs.ss.selector = (sregs.ss.selector & ~3) |
596 (sregs.cs.selector & 3);
597 sregs.ss.dpl = sregs.ss.selector & 3;
598 }
599 }
600
601 set_seg(&sregs.tr, &env->tr);
602 set_seg(&sregs.ldt, &env->ldt);
603
604 sregs.idt.limit = env->idt.limit;
605 sregs.idt.base = env->idt.base;
606 sregs.gdt.limit = env->gdt.limit;
607 sregs.gdt.base = env->gdt.base;
608
609 sregs.cr0 = env->cr[0];
610 sregs.cr2 = env->cr[2];
611 sregs.cr3 = env->cr[3];
612 sregs.cr4 = env->cr[4];
613
614 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
615 sregs.apic_base = cpu_get_apic_base(env->apic_state);
616
617 sregs.efer = env->efer;
618
619 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
620 }
621
622 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
623 uint32_t index, uint64_t value)
624 {
625 entry->index = index;
626 entry->data = value;
627 }
628
629 static int kvm_put_msrs(CPUState *env, int level)
630 {
631 struct {
632 struct kvm_msrs info;
633 struct kvm_msr_entry entries[100];
634 } msr_data;
635 struct kvm_msr_entry *msrs = msr_data.entries;
636 int n = 0;
637
638 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
639 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
640 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
641 if (kvm_has_msr_star(env))
642 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
643 #ifdef TARGET_X86_64
644 /* FIXME if lm capable */
645 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
646 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
647 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
648 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
649 #endif
650 if (level == KVM_PUT_FULL_STATE) {
651 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
652 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
653 env->system_time_msr);
654 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
655 }
656
657 msr_data.info.nmsrs = n;
658
659 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
660
661 }
662
663
664 static int kvm_get_fpu(CPUState *env)
665 {
666 struct kvm_fpu fpu;
667 int i, ret;
668
669 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
670 if (ret < 0)
671 return ret;
672
673 env->fpstt = (fpu.fsw >> 11) & 7;
674 env->fpus = fpu.fsw;
675 env->fpuc = fpu.fcw;
676 for (i = 0; i < 8; ++i)
677 env->fptags[i] = !((fpu.ftwx >> i) & 1);
678 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
679 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
680 env->mxcsr = fpu.mxcsr;
681
682 return 0;
683 }
684
685 static int kvm_get_xsave(CPUState *env)
686 {
687 #ifdef KVM_CAP_XSAVE
688 struct kvm_xsave* xsave;
689 int ret, i;
690 uint16_t cwd, swd, twd, fop;
691
692 if (!kvm_has_xsave())
693 return kvm_get_fpu(env);
694
695 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
696 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
697 if (ret < 0)
698 return ret;
699
700 cwd = (uint16_t)xsave->region[0];
701 swd = (uint16_t)(xsave->region[0] >> 16);
702 twd = (uint16_t)xsave->region[1];
703 fop = (uint16_t)(xsave->region[1] >> 16);
704 env->fpstt = (swd >> 11) & 7;
705 env->fpus = swd;
706 env->fpuc = cwd;
707 for (i = 0; i < 8; ++i)
708 env->fptags[i] = !((twd >> i) & 1);
709 env->mxcsr = xsave->region[XSAVE_MXCSR];
710 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
711 sizeof env->fpregs);
712 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
713 sizeof env->xmm_regs);
714 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
715 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
716 sizeof env->ymmh_regs);
717 return 0;
718 #else
719 return kvm_get_fpu(env);
720 #endif
721 }
722
723 static int kvm_get_xcrs(CPUState *env)
724 {
725 #ifdef KVM_CAP_XCRS
726 int i, ret;
727 struct kvm_xcrs xcrs;
728
729 if (!kvm_has_xcrs())
730 return 0;
731
732 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
733 if (ret < 0)
734 return ret;
735
736 for (i = 0; i < xcrs.nr_xcrs; i++)
737 /* Only support xcr0 now */
738 if (xcrs.xcrs[0].xcr == 0) {
739 env->xcr0 = xcrs.xcrs[0].value;
740 break;
741 }
742 return 0;
743 #else
744 return 0;
745 #endif
746 }
747
748 static int kvm_get_sregs(CPUState *env)
749 {
750 struct kvm_sregs sregs;
751 uint32_t hflags;
752 int bit, i, ret;
753
754 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
755 if (ret < 0)
756 return ret;
757
758 /* There can only be one pending IRQ set in the bitmap at a time, so try
759 to find it and save its number instead (-1 for none). */
760 env->interrupt_injected = -1;
761 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
762 if (sregs.interrupt_bitmap[i]) {
763 bit = ctz64(sregs.interrupt_bitmap[i]);
764 env->interrupt_injected = i * 64 + bit;
765 break;
766 }
767 }
768
769 get_seg(&env->segs[R_CS], &sregs.cs);
770 get_seg(&env->segs[R_DS], &sregs.ds);
771 get_seg(&env->segs[R_ES], &sregs.es);
772 get_seg(&env->segs[R_FS], &sregs.fs);
773 get_seg(&env->segs[R_GS], &sregs.gs);
774 get_seg(&env->segs[R_SS], &sregs.ss);
775
776 get_seg(&env->tr, &sregs.tr);
777 get_seg(&env->ldt, &sregs.ldt);
778
779 env->idt.limit = sregs.idt.limit;
780 env->idt.base = sregs.idt.base;
781 env->gdt.limit = sregs.gdt.limit;
782 env->gdt.base = sregs.gdt.base;
783
784 env->cr[0] = sregs.cr0;
785 env->cr[2] = sregs.cr2;
786 env->cr[3] = sregs.cr3;
787 env->cr[4] = sregs.cr4;
788
789 cpu_set_apic_base(env->apic_state, sregs.apic_base);
790
791 env->efer = sregs.efer;
792 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
793
794 #define HFLAG_COPY_MASK ~( \
795 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
796 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
797 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
798 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
799
800
801
802 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
803 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
804 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
805 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
806 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
807 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
808 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
809
810 if (env->efer & MSR_EFER_LMA) {
811 hflags |= HF_LMA_MASK;
812 }
813
814 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
815 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
816 } else {
817 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
818 (DESC_B_SHIFT - HF_CS32_SHIFT);
819 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
820 (DESC_B_SHIFT - HF_SS32_SHIFT);
821 if (!(env->cr[0] & CR0_PE_MASK) ||
822 (env->eflags & VM_MASK) ||
823 !(hflags & HF_CS32_MASK)) {
824 hflags |= HF_ADDSEG_MASK;
825 } else {
826 hflags |= ((env->segs[R_DS].base |
827 env->segs[R_ES].base |
828 env->segs[R_SS].base) != 0) <<
829 HF_ADDSEG_SHIFT;
830 }
831 }
832 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
833
834 return 0;
835 }
836
837 static int kvm_get_msrs(CPUState *env)
838 {
839 struct {
840 struct kvm_msrs info;
841 struct kvm_msr_entry entries[100];
842 } msr_data;
843 struct kvm_msr_entry *msrs = msr_data.entries;
844 int ret, i, n;
845
846 n = 0;
847 msrs[n++].index = MSR_IA32_SYSENTER_CS;
848 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
849 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
850 if (kvm_has_msr_star(env))
851 msrs[n++].index = MSR_STAR;
852 msrs[n++].index = MSR_IA32_TSC;
853 #ifdef TARGET_X86_64
854 /* FIXME lm_capable_kernel */
855 msrs[n++].index = MSR_CSTAR;
856 msrs[n++].index = MSR_KERNELGSBASE;
857 msrs[n++].index = MSR_FMASK;
858 msrs[n++].index = MSR_LSTAR;
859 #endif
860 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
861 msrs[n++].index = MSR_KVM_WALL_CLOCK;
862
863 msr_data.info.nmsrs = n;
864 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
865 if (ret < 0)
866 return ret;
867
868 for (i = 0; i < ret; i++) {
869 switch (msrs[i].index) {
870 case MSR_IA32_SYSENTER_CS:
871 env->sysenter_cs = msrs[i].data;
872 break;
873 case MSR_IA32_SYSENTER_ESP:
874 env->sysenter_esp = msrs[i].data;
875 break;
876 case MSR_IA32_SYSENTER_EIP:
877 env->sysenter_eip = msrs[i].data;
878 break;
879 case MSR_STAR:
880 env->star = msrs[i].data;
881 break;
882 #ifdef TARGET_X86_64
883 case MSR_CSTAR:
884 env->cstar = msrs[i].data;
885 break;
886 case MSR_KERNELGSBASE:
887 env->kernelgsbase = msrs[i].data;
888 break;
889 case MSR_FMASK:
890 env->fmask = msrs[i].data;
891 break;
892 case MSR_LSTAR:
893 env->lstar = msrs[i].data;
894 break;
895 #endif
896 case MSR_IA32_TSC:
897 env->tsc = msrs[i].data;
898 break;
899 case MSR_KVM_SYSTEM_TIME:
900 env->system_time_msr = msrs[i].data;
901 break;
902 case MSR_KVM_WALL_CLOCK:
903 env->wall_clock_msr = msrs[i].data;
904 break;
905 }
906 }
907
908 return 0;
909 }
910
911 static int kvm_put_mp_state(CPUState *env)
912 {
913 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
914
915 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
916 }
917
918 static int kvm_get_mp_state(CPUState *env)
919 {
920 struct kvm_mp_state mp_state;
921 int ret;
922
923 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
924 if (ret < 0) {
925 return ret;
926 }
927 env->mp_state = mp_state.mp_state;
928 return 0;
929 }
930
931 static int kvm_put_vcpu_events(CPUState *env, int level)
932 {
933 #ifdef KVM_CAP_VCPU_EVENTS
934 struct kvm_vcpu_events events;
935
936 if (!kvm_has_vcpu_events()) {
937 return 0;
938 }
939
940 events.exception.injected = (env->exception_injected >= 0);
941 events.exception.nr = env->exception_injected;
942 events.exception.has_error_code = env->has_error_code;
943 events.exception.error_code = env->error_code;
944
945 events.interrupt.injected = (env->interrupt_injected >= 0);
946 events.interrupt.nr = env->interrupt_injected;
947 events.interrupt.soft = env->soft_interrupt;
948
949 events.nmi.injected = env->nmi_injected;
950 events.nmi.pending = env->nmi_pending;
951 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
952
953 events.sipi_vector = env->sipi_vector;
954
955 events.flags = 0;
956 if (level >= KVM_PUT_RESET_STATE) {
957 events.flags |=
958 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
959 }
960
961 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
962 #else
963 return 0;
964 #endif
965 }
966
967 static int kvm_get_vcpu_events(CPUState *env)
968 {
969 #ifdef KVM_CAP_VCPU_EVENTS
970 struct kvm_vcpu_events events;
971 int ret;
972
973 if (!kvm_has_vcpu_events()) {
974 return 0;
975 }
976
977 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
978 if (ret < 0) {
979 return ret;
980 }
981 env->exception_injected =
982 events.exception.injected ? events.exception.nr : -1;
983 env->has_error_code = events.exception.has_error_code;
984 env->error_code = events.exception.error_code;
985
986 env->interrupt_injected =
987 events.interrupt.injected ? events.interrupt.nr : -1;
988 env->soft_interrupt = events.interrupt.soft;
989
990 env->nmi_injected = events.nmi.injected;
991 env->nmi_pending = events.nmi.pending;
992 if (events.nmi.masked) {
993 env->hflags2 |= HF2_NMI_MASK;
994 } else {
995 env->hflags2 &= ~HF2_NMI_MASK;
996 }
997
998 env->sipi_vector = events.sipi_vector;
999 #endif
1000
1001 return 0;
1002 }
1003
1004 static int kvm_guest_debug_workarounds(CPUState *env)
1005 {
1006 int ret = 0;
1007 #ifdef KVM_CAP_SET_GUEST_DEBUG
1008 unsigned long reinject_trap = 0;
1009
1010 if (!kvm_has_vcpu_events()) {
1011 if (env->exception_injected == 1) {
1012 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1013 } else if (env->exception_injected == 3) {
1014 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1015 }
1016 env->exception_injected = -1;
1017 }
1018
1019 /*
1020 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1021 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1022 * by updating the debug state once again if single-stepping is on.
1023 * Another reason to call kvm_update_guest_debug here is a pending debug
1024 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1025 * reinject them via SET_GUEST_DEBUG.
1026 */
1027 if (reinject_trap ||
1028 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1029 ret = kvm_update_guest_debug(env, reinject_trap);
1030 }
1031 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1032 return ret;
1033 }
1034
1035 static int kvm_put_debugregs(CPUState *env)
1036 {
1037 #ifdef KVM_CAP_DEBUGREGS
1038 struct kvm_debugregs dbgregs;
1039 int i;
1040
1041 if (!kvm_has_debugregs()) {
1042 return 0;
1043 }
1044
1045 for (i = 0; i < 4; i++) {
1046 dbgregs.db[i] = env->dr[i];
1047 }
1048 dbgregs.dr6 = env->dr[6];
1049 dbgregs.dr7 = env->dr[7];
1050 dbgregs.flags = 0;
1051
1052 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1053 #else
1054 return 0;
1055 #endif
1056 }
1057
1058 static int kvm_get_debugregs(CPUState *env)
1059 {
1060 #ifdef KVM_CAP_DEBUGREGS
1061 struct kvm_debugregs dbgregs;
1062 int i, ret;
1063
1064 if (!kvm_has_debugregs()) {
1065 return 0;
1066 }
1067
1068 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1069 if (ret < 0) {
1070 return ret;
1071 }
1072 for (i = 0; i < 4; i++) {
1073 env->dr[i] = dbgregs.db[i];
1074 }
1075 env->dr[4] = env->dr[6] = dbgregs.dr6;
1076 env->dr[5] = env->dr[7] = dbgregs.dr7;
1077 #endif
1078
1079 return 0;
1080 }
1081
1082 int kvm_arch_put_registers(CPUState *env, int level)
1083 {
1084 int ret;
1085
1086 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1087
1088 ret = kvm_getput_regs(env, 1);
1089 if (ret < 0)
1090 return ret;
1091
1092 ret = kvm_put_xsave(env);
1093 if (ret < 0)
1094 return ret;
1095
1096 ret = kvm_put_xcrs(env);
1097 if (ret < 0)
1098 return ret;
1099
1100 ret = kvm_put_sregs(env);
1101 if (ret < 0)
1102 return ret;
1103
1104 ret = kvm_put_msrs(env, level);
1105 if (ret < 0)
1106 return ret;
1107
1108 if (level >= KVM_PUT_RESET_STATE) {
1109 ret = kvm_put_mp_state(env);
1110 if (ret < 0)
1111 return ret;
1112 }
1113
1114 ret = kvm_put_vcpu_events(env, level);
1115 if (ret < 0)
1116 return ret;
1117
1118 /* must be last */
1119 ret = kvm_guest_debug_workarounds(env);
1120 if (ret < 0)
1121 return ret;
1122
1123 ret = kvm_put_debugregs(env);
1124 if (ret < 0)
1125 return ret;
1126
1127 return 0;
1128 }
1129
1130 int kvm_arch_get_registers(CPUState *env)
1131 {
1132 int ret;
1133
1134 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1135
1136 ret = kvm_getput_regs(env, 0);
1137 if (ret < 0)
1138 return ret;
1139
1140 ret = kvm_get_xsave(env);
1141 if (ret < 0)
1142 return ret;
1143
1144 ret = kvm_get_xcrs(env);
1145 if (ret < 0)
1146 return ret;
1147
1148 ret = kvm_get_sregs(env);
1149 if (ret < 0)
1150 return ret;
1151
1152 ret = kvm_get_msrs(env);
1153 if (ret < 0)
1154 return ret;
1155
1156 ret = kvm_get_mp_state(env);
1157 if (ret < 0)
1158 return ret;
1159
1160 ret = kvm_get_vcpu_events(env);
1161 if (ret < 0)
1162 return ret;
1163
1164 ret = kvm_get_debugregs(env);
1165 if (ret < 0)
1166 return ret;
1167
1168 return 0;
1169 }
1170
1171 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1172 {
1173 /* Try to inject an interrupt if the guest can accept it */
1174 if (run->ready_for_interrupt_injection &&
1175 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1176 (env->eflags & IF_MASK)) {
1177 int irq;
1178
1179 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1180 irq = cpu_get_pic_interrupt(env);
1181 if (irq >= 0) {
1182 struct kvm_interrupt intr;
1183 intr.irq = irq;
1184 /* FIXME: errors */
1185 DPRINTF("injected interrupt %d\n", irq);
1186 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1187 }
1188 }
1189
1190 /* If we have an interrupt but the guest is not ready to receive an
1191 * interrupt, request an interrupt window exit. This will
1192 * cause a return to userspace as soon as the guest is ready to
1193 * receive interrupts. */
1194 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1195 run->request_interrupt_window = 1;
1196 else
1197 run->request_interrupt_window = 0;
1198
1199 DPRINTF("setting tpr\n");
1200 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1201
1202 return 0;
1203 }
1204
1205 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1206 {
1207 if (run->if_flag)
1208 env->eflags |= IF_MASK;
1209 else
1210 env->eflags &= ~IF_MASK;
1211
1212 cpu_set_apic_tpr(env->apic_state, run->cr8);
1213 cpu_set_apic_base(env->apic_state, run->apic_base);
1214
1215 return 0;
1216 }
1217
1218 int kvm_arch_process_irqchip_events(CPUState *env)
1219 {
1220 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1221 kvm_cpu_synchronize_state(env);
1222 do_cpu_init(env);
1223 env->exception_index = EXCP_HALTED;
1224 }
1225
1226 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1227 kvm_cpu_synchronize_state(env);
1228 do_cpu_sipi(env);
1229 }
1230
1231 return env->halted;
1232 }
1233
1234 static int kvm_handle_halt(CPUState *env)
1235 {
1236 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1237 (env->eflags & IF_MASK)) &&
1238 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1239 env->halted = 1;
1240 env->exception_index = EXCP_HLT;
1241 return 0;
1242 }
1243
1244 return 1;
1245 }
1246
1247 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1248 {
1249 int ret = 0;
1250
1251 switch (run->exit_reason) {
1252 case KVM_EXIT_HLT:
1253 DPRINTF("handle_hlt\n");
1254 ret = kvm_handle_halt(env);
1255 break;
1256 }
1257
1258 return ret;
1259 }
1260
1261 #ifdef KVM_CAP_SET_GUEST_DEBUG
1262 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1263 {
1264 static const uint8_t int3 = 0xcc;
1265
1266 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1267 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1268 return -EINVAL;
1269 return 0;
1270 }
1271
1272 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1273 {
1274 uint8_t int3;
1275
1276 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1277 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1278 return -EINVAL;
1279 return 0;
1280 }
1281
1282 static struct {
1283 target_ulong addr;
1284 int len;
1285 int type;
1286 } hw_breakpoint[4];
1287
1288 static int nb_hw_breakpoint;
1289
1290 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1291 {
1292 int n;
1293
1294 for (n = 0; n < nb_hw_breakpoint; n++)
1295 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1296 (hw_breakpoint[n].len == len || len == -1))
1297 return n;
1298 return -1;
1299 }
1300
1301 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1302 target_ulong len, int type)
1303 {
1304 switch (type) {
1305 case GDB_BREAKPOINT_HW:
1306 len = 1;
1307 break;
1308 case GDB_WATCHPOINT_WRITE:
1309 case GDB_WATCHPOINT_ACCESS:
1310 switch (len) {
1311 case 1:
1312 break;
1313 case 2:
1314 case 4:
1315 case 8:
1316 if (addr & (len - 1))
1317 return -EINVAL;
1318 break;
1319 default:
1320 return -EINVAL;
1321 }
1322 break;
1323 default:
1324 return -ENOSYS;
1325 }
1326
1327 if (nb_hw_breakpoint == 4)
1328 return -ENOBUFS;
1329
1330 if (find_hw_breakpoint(addr, len, type) >= 0)
1331 return -EEXIST;
1332
1333 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1334 hw_breakpoint[nb_hw_breakpoint].len = len;
1335 hw_breakpoint[nb_hw_breakpoint].type = type;
1336 nb_hw_breakpoint++;
1337
1338 return 0;
1339 }
1340
1341 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1342 target_ulong len, int type)
1343 {
1344 int n;
1345
1346 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1347 if (n < 0)
1348 return -ENOENT;
1349
1350 nb_hw_breakpoint--;
1351 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1352
1353 return 0;
1354 }
1355
1356 void kvm_arch_remove_all_hw_breakpoints(void)
1357 {
1358 nb_hw_breakpoint = 0;
1359 }
1360
1361 static CPUWatchpoint hw_watchpoint;
1362
1363 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1364 {
1365 int handle = 0;
1366 int n;
1367
1368 if (arch_info->exception == 1) {
1369 if (arch_info->dr6 & (1 << 14)) {
1370 if (cpu_single_env->singlestep_enabled)
1371 handle = 1;
1372 } else {
1373 for (n = 0; n < 4; n++)
1374 if (arch_info->dr6 & (1 << n))
1375 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1376 case 0x0:
1377 handle = 1;
1378 break;
1379 case 0x1:
1380 handle = 1;
1381 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1382 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1383 hw_watchpoint.flags = BP_MEM_WRITE;
1384 break;
1385 case 0x3:
1386 handle = 1;
1387 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1388 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1389 hw_watchpoint.flags = BP_MEM_ACCESS;
1390 break;
1391 }
1392 }
1393 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1394 handle = 1;
1395
1396 if (!handle) {
1397 cpu_synchronize_state(cpu_single_env);
1398 assert(cpu_single_env->exception_injected == -1);
1399
1400 cpu_single_env->exception_injected = arch_info->exception;
1401 cpu_single_env->has_error_code = 0;
1402 }
1403
1404 return handle;
1405 }
1406
1407 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1408 {
1409 const uint8_t type_code[] = {
1410 [GDB_BREAKPOINT_HW] = 0x0,
1411 [GDB_WATCHPOINT_WRITE] = 0x1,
1412 [GDB_WATCHPOINT_ACCESS] = 0x3
1413 };
1414 const uint8_t len_code[] = {
1415 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1416 };
1417 int n;
1418
1419 if (kvm_sw_breakpoints_active(env))
1420 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1421
1422 if (nb_hw_breakpoint > 0) {
1423 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1424 dbg->arch.debugreg[7] = 0x0600;
1425 for (n = 0; n < nb_hw_breakpoint; n++) {
1426 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1427 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1428 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1429 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1430 }
1431 }
1432 /* Legal xcr0 for loading */
1433 env->xcr0 = 1;
1434 }
1435 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1436
1437 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1438 {
1439 return !(env->cr[0] & CR0_PE_MASK) ||
1440 ((env->segs[R_CS].selector & 3) != 3);
1441 }
1442