]> git.proxmox.com Git - qemu.git/blob - target-mips/op_helper.c
Adjust s390 addresses (the MSB is defined as "to be ignored").
[qemu.git] / target-mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include <stdlib.h>
21 #include "exec.h"
22
23 #include "host-utils.h"
24
25 #ifdef __s390__
26 # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
27 #else
28 # define GETPC() (__builtin_return_address(0))
29 #endif
30
31 /*****************************************************************************/
32 /* Exceptions processing helpers */
33
34 void do_raise_exception_err (uint32_t exception, int error_code)
35 {
36 #if 1
37 if (logfile && exception < 0x100)
38 fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
39 #endif
40 env->exception_index = exception;
41 env->error_code = error_code;
42 T0 = 0;
43 cpu_loop_exit();
44 }
45
46 void do_raise_exception (uint32_t exception)
47 {
48 do_raise_exception_err(exception, 0);
49 }
50
51 void do_restore_state (void *pc_ptr)
52 {
53 TranslationBlock *tb;
54 unsigned long pc = (unsigned long) pc_ptr;
55
56 tb = tb_find_pc (pc);
57 cpu_restore_state (tb, env, pc, NULL);
58 }
59
60 void do_raise_exception_direct_err (uint32_t exception, int error_code)
61 {
62 do_restore_state (GETPC ());
63 do_raise_exception_err (exception, error_code);
64 }
65
66 void do_raise_exception_direct (uint32_t exception)
67 {
68 do_raise_exception_direct_err (exception, 0);
69 }
70
71 #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
72 #if TARGET_LONG_BITS > HOST_LONG_BITS
73 /* Those might call libgcc functions. */
74 void do_dsll (void)
75 {
76 T0 = T0 << T1;
77 }
78
79 void do_dsll32 (void)
80 {
81 T0 = T0 << (T1 + 32);
82 }
83
84 void do_dsra (void)
85 {
86 T0 = (int64_t)T0 >> T1;
87 }
88
89 void do_dsra32 (void)
90 {
91 T0 = (int64_t)T0 >> (T1 + 32);
92 }
93
94 void do_dsrl (void)
95 {
96 T0 = T0 >> T1;
97 }
98
99 void do_dsrl32 (void)
100 {
101 T0 = T0 >> (T1 + 32);
102 }
103
104 void do_drotr (void)
105 {
106 target_ulong tmp;
107
108 if (T1) {
109 tmp = T0 << (0x40 - T1);
110 T0 = (T0 >> T1) | tmp;
111 }
112 }
113
114 void do_drotr32 (void)
115 {
116 target_ulong tmp;
117
118 if (T1) {
119 tmp = T0 << (0x40 - (32 + T1));
120 T0 = (T0 >> (32 + T1)) | tmp;
121 }
122 }
123
124 void do_dsllv (void)
125 {
126 T0 = T1 << (T0 & 0x3F);
127 }
128
129 void do_dsrav (void)
130 {
131 T0 = (int64_t)T1 >> (T0 & 0x3F);
132 }
133
134 void do_dsrlv (void)
135 {
136 T0 = T1 >> (T0 & 0x3F);
137 }
138
139 void do_drotrv (void)
140 {
141 target_ulong tmp;
142
143 T0 &= 0x3F;
144 if (T0) {
145 tmp = T1 << (0x40 - T0);
146 T0 = (T1 >> T0) | tmp;
147 } else
148 T0 = T1;
149 }
150
151 void do_dclo (void)
152 {
153 T0 = clo64(T0);
154 }
155
156 void do_dclz (void)
157 {
158 T0 = clz64(T0);
159 }
160
161 #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
162 #endif /* TARGET_MIPSN32 || TARGET_MIPS64 */
163
164 /* 64 bits arithmetic for 32 bits hosts */
165 #if TARGET_LONG_BITS > HOST_LONG_BITS
166 static always_inline uint64_t get_HILO (void)
167 {
168 return (env->HI[0][env->current_tc] << 32) | (uint32_t)env->LO[0][env->current_tc];
169 }
170
171 static always_inline void set_HILO (uint64_t HILO)
172 {
173 env->LO[0][env->current_tc] = (int32_t)HILO;
174 env->HI[0][env->current_tc] = (int32_t)(HILO >> 32);
175 }
176
177 void do_mult (void)
178 {
179 set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
180 }
181
182 void do_multu (void)
183 {
184 set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
185 }
186
187 void do_madd (void)
188 {
189 int64_t tmp;
190
191 tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
192 set_HILO((int64_t)get_HILO() + tmp);
193 }
194
195 void do_maddu (void)
196 {
197 uint64_t tmp;
198
199 tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
200 set_HILO(get_HILO() + tmp);
201 }
202
203 void do_msub (void)
204 {
205 int64_t tmp;
206
207 tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
208 set_HILO((int64_t)get_HILO() - tmp);
209 }
210
211 void do_msubu (void)
212 {
213 uint64_t tmp;
214
215 tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
216 set_HILO(get_HILO() - tmp);
217 }
218 #endif
219
220 #if HOST_LONG_BITS < 64
221 void do_div (void)
222 {
223 /* 64bit datatypes because we may see overflow/underflow. */
224 if (T1 != 0) {
225 env->LO[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1);
226 env->HI[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1);
227 }
228 }
229 #endif
230
231 #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
232 void do_ddiv (void)
233 {
234 if (T1 != 0) {
235 lldiv_t res = lldiv((int64_t)T0, (int64_t)T1);
236 env->LO[0][env->current_tc] = res.quot;
237 env->HI[0][env->current_tc] = res.rem;
238 }
239 }
240
241 #if TARGET_LONG_BITS > HOST_LONG_BITS
242 void do_ddivu (void)
243 {
244 if (T1 != 0) {
245 env->LO[0][env->current_tc] = T0 / T1;
246 env->HI[0][env->current_tc] = T0 % T1;
247 }
248 }
249 #endif
250 #endif /* TARGET_MIPSN32 || TARGET_MIPS64 */
251
252 #if defined(CONFIG_USER_ONLY)
253 void do_mfc0_random (void)
254 {
255 cpu_abort(env, "mfc0 random\n");
256 }
257
258 void do_mfc0_count (void)
259 {
260 cpu_abort(env, "mfc0 count\n");
261 }
262
263 void cpu_mips_store_count(CPUState *env, uint32_t value)
264 {
265 cpu_abort(env, "mtc0 count\n");
266 }
267
268 void cpu_mips_store_compare(CPUState *env, uint32_t value)
269 {
270 cpu_abort(env, "mtc0 compare\n");
271 }
272
273 void cpu_mips_start_count(CPUState *env)
274 {
275 cpu_abort(env, "start count\n");
276 }
277
278 void cpu_mips_stop_count(CPUState *env)
279 {
280 cpu_abort(env, "stop count\n");
281 }
282
283 void cpu_mips_update_irq(CPUState *env)
284 {
285 cpu_abort(env, "mtc0 status / mtc0 cause\n");
286 }
287
288 void do_mtc0_status_debug(uint32_t old, uint32_t val)
289 {
290 cpu_abort(env, "mtc0 status debug\n");
291 }
292
293 void do_mtc0_status_irqraise_debug (void)
294 {
295 cpu_abort(env, "mtc0 status irqraise debug\n");
296 }
297
298 void cpu_mips_tlb_flush (CPUState *env, int flush_global)
299 {
300 cpu_abort(env, "mips_tlb_flush\n");
301 }
302
303 #else
304
305 /* CP0 helpers */
306 void do_mfc0_random (void)
307 {
308 T0 = (int32_t)cpu_mips_get_random(env);
309 }
310
311 void do_mfc0_count (void)
312 {
313 T0 = (int32_t)cpu_mips_get_count(env);
314 }
315
316 void do_mtc0_status_debug(uint32_t old, uint32_t val)
317 {
318 fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
319 old, old & env->CP0_Cause & CP0Ca_IP_mask,
320 val, val & env->CP0_Cause & CP0Ca_IP_mask,
321 env->CP0_Cause);
322 switch (env->hflags & MIPS_HFLAG_KSU) {
323 case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
324 case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
325 case MIPS_HFLAG_KM: fputs("\n", logfile); break;
326 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
327 }
328 }
329
330 void do_mtc0_status_irqraise_debug(void)
331 {
332 fprintf(logfile, "Raise pending IRQs\n");
333 }
334
335 void fpu_handle_exception(void)
336 {
337 #ifdef CONFIG_SOFTFLOAT
338 int flags = get_float_exception_flags(&env->fpu->fp_status);
339 unsigned int cpuflags = 0, enable, cause = 0;
340
341 enable = GET_FP_ENABLE(env->fpu->fcr31);
342
343 /* determine current flags */
344 if (flags & float_flag_invalid) {
345 cpuflags |= FP_INVALID;
346 cause |= FP_INVALID & enable;
347 }
348 if (flags & float_flag_divbyzero) {
349 cpuflags |= FP_DIV0;
350 cause |= FP_DIV0 & enable;
351 }
352 if (flags & float_flag_overflow) {
353 cpuflags |= FP_OVERFLOW;
354 cause |= FP_OVERFLOW & enable;
355 }
356 if (flags & float_flag_underflow) {
357 cpuflags |= FP_UNDERFLOW;
358 cause |= FP_UNDERFLOW & enable;
359 }
360 if (flags & float_flag_inexact) {
361 cpuflags |= FP_INEXACT;
362 cause |= FP_INEXACT & enable;
363 }
364 SET_FP_FLAGS(env->fpu->fcr31, cpuflags);
365 SET_FP_CAUSE(env->fpu->fcr31, cause);
366 #else
367 SET_FP_FLAGS(env->fpu->fcr31, 0);
368 SET_FP_CAUSE(env->fpu->fcr31, 0);
369 #endif
370 }
371
372 /* TLB management */
373 void cpu_mips_tlb_flush (CPUState *env, int flush_global)
374 {
375 /* Flush qemu's TLB and discard all shadowed entries. */
376 tlb_flush (env, flush_global);
377 env->tlb->tlb_in_use = env->tlb->nb_tlb;
378 }
379
380 static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
381 {
382 /* Discard entries from env->tlb[first] onwards. */
383 while (env->tlb->tlb_in_use > first) {
384 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
385 }
386 }
387
388 static void r4k_fill_tlb (int idx)
389 {
390 r4k_tlb_t *tlb;
391
392 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
393 tlb = &env->tlb->mmu.r4k.tlb[idx];
394 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
395 #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
396 tlb->VPN &= env->SEGMask;
397 #endif
398 tlb->ASID = env->CP0_EntryHi & 0xFF;
399 tlb->PageMask = env->CP0_PageMask;
400 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
401 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
402 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
403 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
404 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
405 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
406 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
407 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
408 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
409 }
410
411 void r4k_do_tlbwi (void)
412 {
413 /* Discard cached TLB entries. We could avoid doing this if the
414 tlbwi is just upgrading access permissions on the current entry;
415 that might be a further win. */
416 r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
417
418 r4k_invalidate_tlb(env, env->CP0_Index % env->tlb->nb_tlb, 0);
419 r4k_fill_tlb(env->CP0_Index % env->tlb->nb_tlb);
420 }
421
422 void r4k_do_tlbwr (void)
423 {
424 int r = cpu_mips_get_random(env);
425
426 r4k_invalidate_tlb(env, r, 1);
427 r4k_fill_tlb(r);
428 }
429
430 void r4k_do_tlbp (void)
431 {
432 r4k_tlb_t *tlb;
433 target_ulong mask;
434 target_ulong tag;
435 target_ulong VPN;
436 uint8_t ASID;
437 int i;
438
439 ASID = env->CP0_EntryHi & 0xFF;
440 for (i = 0; i < env->tlb->nb_tlb; i++) {
441 tlb = &env->tlb->mmu.r4k.tlb[i];
442 /* 1k pages are not supported. */
443 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
444 tag = env->CP0_EntryHi & ~mask;
445 VPN = tlb->VPN & ~mask;
446 /* Check ASID, virtual page number & size */
447 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
448 /* TLB match */
449 env->CP0_Index = i;
450 break;
451 }
452 }
453 if (i == env->tlb->nb_tlb) {
454 /* No match. Discard any shadow entries, if any of them match. */
455 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
456 tlb = &env->tlb->mmu.r4k.tlb[i];
457 /* 1k pages are not supported. */
458 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
459 tag = env->CP0_EntryHi & ~mask;
460 VPN = tlb->VPN & ~mask;
461 /* Check ASID, virtual page number & size */
462 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
463 r4k_mips_tlb_flush_extra (env, i);
464 break;
465 }
466 }
467
468 env->CP0_Index |= 0x80000000;
469 }
470 }
471
472 void r4k_do_tlbr (void)
473 {
474 r4k_tlb_t *tlb;
475 uint8_t ASID;
476
477 ASID = env->CP0_EntryHi & 0xFF;
478 tlb = &env->tlb->mmu.r4k.tlb[env->CP0_Index % env->tlb->nb_tlb];
479
480 /* If this will change the current ASID, flush qemu's TLB. */
481 if (ASID != tlb->ASID)
482 cpu_mips_tlb_flush (env, 1);
483
484 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
485
486 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
487 env->CP0_PageMask = tlb->PageMask;
488 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
489 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
490 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
491 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
492 }
493
494 #endif /* !CONFIG_USER_ONLY */
495
496 void dump_ldst (const unsigned char *func)
497 {
498 if (loglevel)
499 fprintf(logfile, "%s => " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, T0, T1);
500 }
501
502 void dump_sc (void)
503 {
504 if (loglevel) {
505 fprintf(logfile, "%s " TARGET_FMT_lx " at " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", __func__,
506 T1, T0, env->CP0_LLAddr);
507 }
508 }
509
510 void debug_pre_eret (void)
511 {
512 fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
513 env->PC[env->current_tc], env->CP0_EPC);
514 if (env->CP0_Status & (1 << CP0St_ERL))
515 fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
516 if (env->hflags & MIPS_HFLAG_DM)
517 fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
518 fputs("\n", logfile);
519 }
520
521 void debug_post_eret (void)
522 {
523 fprintf(logfile, " => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
524 env->PC[env->current_tc], env->CP0_EPC);
525 if (env->CP0_Status & (1 << CP0St_ERL))
526 fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
527 if (env->hflags & MIPS_HFLAG_DM)
528 fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
529 switch (env->hflags & MIPS_HFLAG_KSU) {
530 case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
531 case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
532 case MIPS_HFLAG_KM: fputs("\n", logfile); break;
533 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
534 }
535 }
536
537 void do_pmon (int function)
538 {
539 function /= 2;
540 switch (function) {
541 case 2: /* TODO: char inbyte(int waitflag); */
542 if (env->gpr[4][env->current_tc] == 0)
543 env->gpr[2][env->current_tc] = -1;
544 /* Fall through */
545 case 11: /* TODO: char inbyte (void); */
546 env->gpr[2][env->current_tc] = -1;
547 break;
548 case 3:
549 case 12:
550 printf("%c", (char)(env->gpr[4][env->current_tc] & 0xFF));
551 break;
552 case 17:
553 break;
554 case 158:
555 {
556 unsigned char *fmt = (void *)(unsigned long)env->gpr[4][env->current_tc];
557 printf("%s", fmt);
558 }
559 break;
560 }
561 }
562
563 #if !defined(CONFIG_USER_ONLY)
564
565 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
566
567 #define MMUSUFFIX _mmu
568 #define ALIGNED_ONLY
569
570 #define SHIFT 0
571 #include "softmmu_template.h"
572
573 #define SHIFT 1
574 #include "softmmu_template.h"
575
576 #define SHIFT 2
577 #include "softmmu_template.h"
578
579 #define SHIFT 3
580 #include "softmmu_template.h"
581
582 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
583 {
584 env->CP0_BadVAddr = addr;
585 do_restore_state (retaddr);
586 do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
587 }
588
589 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
590 {
591 TranslationBlock *tb;
592 CPUState *saved_env;
593 unsigned long pc;
594 int ret;
595
596 /* XXX: hack to restore env in all cases, even if not called from
597 generated code */
598 saved_env = env;
599 env = cpu_single_env;
600 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
601 if (ret) {
602 if (retaddr) {
603 /* now we have a real cpu fault */
604 pc = (unsigned long)retaddr;
605 tb = tb_find_pc(pc);
606 if (tb) {
607 /* the PC is inside the translated code. It means that we have
608 a virtual CPU fault */
609 cpu_restore_state(tb, env, pc, NULL);
610 }
611 }
612 do_raise_exception_err(env->exception_index, env->error_code);
613 }
614 env = saved_env;
615 }
616
617 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
618 int unused)
619 {
620 if (is_exec)
621 do_raise_exception(EXCP_IBE);
622 else
623 do_raise_exception(EXCP_DBE);
624 }
625 #endif
626
627 /* Complex FPU operations which may need stack space. */
628
629 #define FLOAT_SIGN32 (1 << 31)
630 #define FLOAT_SIGN64 (1ULL << 63)
631 #define FLOAT_ONE32 (0x3f8 << 20)
632 #define FLOAT_ONE64 (0x3ffULL << 52)
633 #define FLOAT_TWO32 (1 << 30)
634 #define FLOAT_TWO64 (1ULL << 62)
635 #define FLOAT_QNAN32 0x7fbfffff
636 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
637 #define FLOAT_SNAN32 0x7fffffff
638 #define FLOAT_SNAN64 0x7fffffffffffffffULL
639
640 /* convert MIPS rounding mode in FCR31 to IEEE library */
641 unsigned int ieee_rm[] = {
642 float_round_nearest_even,
643 float_round_to_zero,
644 float_round_up,
645 float_round_down
646 };
647
648 #define RESTORE_ROUNDING_MODE \
649 set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
650
651 void do_cfc1 (int reg)
652 {
653 switch (reg) {
654 case 0:
655 T0 = (int32_t)env->fpu->fcr0;
656 break;
657 case 25:
658 T0 = ((env->fpu->fcr31 >> 24) & 0xfe) | ((env->fpu->fcr31 >> 23) & 0x1);
659 break;
660 case 26:
661 T0 = env->fpu->fcr31 & 0x0003f07c;
662 break;
663 case 28:
664 T0 = (env->fpu->fcr31 & 0x00000f83) | ((env->fpu->fcr31 >> 22) & 0x4);
665 break;
666 default:
667 T0 = (int32_t)env->fpu->fcr31;
668 break;
669 }
670 }
671
672 void do_ctc1 (int reg)
673 {
674 switch(reg) {
675 case 25:
676 if (T0 & 0xffffff00)
677 return;
678 env->fpu->fcr31 = (env->fpu->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) |
679 ((T0 & 0x1) << 23);
680 break;
681 case 26:
682 if (T0 & 0x007c0000)
683 return;
684 env->fpu->fcr31 = (env->fpu->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c);
685 break;
686 case 28:
687 if (T0 & 0x007c0000)
688 return;
689 env->fpu->fcr31 = (env->fpu->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) |
690 ((T0 & 0x4) << 22);
691 break;
692 case 31:
693 if (T0 & 0x007c0000)
694 return;
695 env->fpu->fcr31 = T0;
696 break;
697 default:
698 return;
699 }
700 /* set rounding mode */
701 RESTORE_ROUNDING_MODE;
702 set_float_exception_flags(0, &env->fpu->fp_status);
703 if ((GET_FP_ENABLE(env->fpu->fcr31) | 0x20) & GET_FP_CAUSE(env->fpu->fcr31))
704 do_raise_exception(EXCP_FPE);
705 }
706
707 static always_inline char ieee_ex_to_mips(char xcpt)
708 {
709 return (xcpt & float_flag_inexact) >> 5 |
710 (xcpt & float_flag_underflow) >> 3 |
711 (xcpt & float_flag_overflow) >> 1 |
712 (xcpt & float_flag_divbyzero) << 1 |
713 (xcpt & float_flag_invalid) << 4;
714 }
715
716 static always_inline char mips_ex_to_ieee(char xcpt)
717 {
718 return (xcpt & FP_INEXACT) << 5 |
719 (xcpt & FP_UNDERFLOW) << 3 |
720 (xcpt & FP_OVERFLOW) << 1 |
721 (xcpt & FP_DIV0) >> 1 |
722 (xcpt & FP_INVALID) >> 4;
723 }
724
725 static always_inline void update_fcr31(void)
726 {
727 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fpu->fp_status));
728
729 SET_FP_CAUSE(env->fpu->fcr31, tmp);
730 if (GET_FP_ENABLE(env->fpu->fcr31) & tmp)
731 do_raise_exception(EXCP_FPE);
732 else
733 UPDATE_FP_FLAGS(env->fpu->fcr31, tmp);
734 }
735
736 #define FLOAT_OP(name, p) void do_float_##name##_##p(void)
737
738 FLOAT_OP(cvtd, s)
739 {
740 set_float_exception_flags(0, &env->fpu->fp_status);
741 FDT2 = float32_to_float64(FST0, &env->fpu->fp_status);
742 update_fcr31();
743 }
744 FLOAT_OP(cvtd, w)
745 {
746 set_float_exception_flags(0, &env->fpu->fp_status);
747 FDT2 = int32_to_float64(WT0, &env->fpu->fp_status);
748 update_fcr31();
749 }
750 FLOAT_OP(cvtd, l)
751 {
752 set_float_exception_flags(0, &env->fpu->fp_status);
753 FDT2 = int64_to_float64(DT0, &env->fpu->fp_status);
754 update_fcr31();
755 }
756 FLOAT_OP(cvtl, d)
757 {
758 set_float_exception_flags(0, &env->fpu->fp_status);
759 DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
760 update_fcr31();
761 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
762 DT2 = FLOAT_SNAN64;
763 }
764 FLOAT_OP(cvtl, s)
765 {
766 set_float_exception_flags(0, &env->fpu->fp_status);
767 DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
768 update_fcr31();
769 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
770 DT2 = FLOAT_SNAN64;
771 }
772
773 FLOAT_OP(cvtps, pw)
774 {
775 set_float_exception_flags(0, &env->fpu->fp_status);
776 FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
777 FSTH2 = int32_to_float32(WTH0, &env->fpu->fp_status);
778 update_fcr31();
779 }
780 FLOAT_OP(cvtpw, ps)
781 {
782 set_float_exception_flags(0, &env->fpu->fp_status);
783 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
784 WTH2 = float32_to_int32(FSTH0, &env->fpu->fp_status);
785 update_fcr31();
786 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
787 WT2 = FLOAT_SNAN32;
788 }
789 FLOAT_OP(cvts, d)
790 {
791 set_float_exception_flags(0, &env->fpu->fp_status);
792 FST2 = float64_to_float32(FDT0, &env->fpu->fp_status);
793 update_fcr31();
794 }
795 FLOAT_OP(cvts, w)
796 {
797 set_float_exception_flags(0, &env->fpu->fp_status);
798 FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
799 update_fcr31();
800 }
801 FLOAT_OP(cvts, l)
802 {
803 set_float_exception_flags(0, &env->fpu->fp_status);
804 FST2 = int64_to_float32(DT0, &env->fpu->fp_status);
805 update_fcr31();
806 }
807 FLOAT_OP(cvts, pl)
808 {
809 set_float_exception_flags(0, &env->fpu->fp_status);
810 WT2 = WT0;
811 update_fcr31();
812 }
813 FLOAT_OP(cvts, pu)
814 {
815 set_float_exception_flags(0, &env->fpu->fp_status);
816 WT2 = WTH0;
817 update_fcr31();
818 }
819 FLOAT_OP(cvtw, s)
820 {
821 set_float_exception_flags(0, &env->fpu->fp_status);
822 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
823 update_fcr31();
824 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
825 WT2 = FLOAT_SNAN32;
826 }
827 FLOAT_OP(cvtw, d)
828 {
829 set_float_exception_flags(0, &env->fpu->fp_status);
830 WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
831 update_fcr31();
832 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
833 WT2 = FLOAT_SNAN32;
834 }
835
836 FLOAT_OP(roundl, d)
837 {
838 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
839 DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
840 RESTORE_ROUNDING_MODE;
841 update_fcr31();
842 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
843 DT2 = FLOAT_SNAN64;
844 }
845 FLOAT_OP(roundl, s)
846 {
847 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
848 DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
849 RESTORE_ROUNDING_MODE;
850 update_fcr31();
851 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
852 DT2 = FLOAT_SNAN64;
853 }
854 FLOAT_OP(roundw, d)
855 {
856 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
857 WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
858 RESTORE_ROUNDING_MODE;
859 update_fcr31();
860 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
861 WT2 = FLOAT_SNAN32;
862 }
863 FLOAT_OP(roundw, s)
864 {
865 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
866 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
867 RESTORE_ROUNDING_MODE;
868 update_fcr31();
869 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
870 WT2 = FLOAT_SNAN32;
871 }
872
873 FLOAT_OP(truncl, d)
874 {
875 DT2 = float64_to_int64_round_to_zero(FDT0, &env->fpu->fp_status);
876 update_fcr31();
877 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
878 DT2 = FLOAT_SNAN64;
879 }
880 FLOAT_OP(truncl, s)
881 {
882 DT2 = float32_to_int64_round_to_zero(FST0, &env->fpu->fp_status);
883 update_fcr31();
884 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
885 DT2 = FLOAT_SNAN64;
886 }
887 FLOAT_OP(truncw, d)
888 {
889 WT2 = float64_to_int32_round_to_zero(FDT0, &env->fpu->fp_status);
890 update_fcr31();
891 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
892 WT2 = FLOAT_SNAN32;
893 }
894 FLOAT_OP(truncw, s)
895 {
896 WT2 = float32_to_int32_round_to_zero(FST0, &env->fpu->fp_status);
897 update_fcr31();
898 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
899 WT2 = FLOAT_SNAN32;
900 }
901
902 FLOAT_OP(ceill, d)
903 {
904 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
905 DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
906 RESTORE_ROUNDING_MODE;
907 update_fcr31();
908 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
909 DT2 = FLOAT_SNAN64;
910 }
911 FLOAT_OP(ceill, s)
912 {
913 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
914 DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
915 RESTORE_ROUNDING_MODE;
916 update_fcr31();
917 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
918 DT2 = FLOAT_SNAN64;
919 }
920 FLOAT_OP(ceilw, d)
921 {
922 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
923 WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
924 RESTORE_ROUNDING_MODE;
925 update_fcr31();
926 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
927 WT2 = FLOAT_SNAN32;
928 }
929 FLOAT_OP(ceilw, s)
930 {
931 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
932 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
933 RESTORE_ROUNDING_MODE;
934 update_fcr31();
935 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
936 WT2 = FLOAT_SNAN32;
937 }
938
939 FLOAT_OP(floorl, d)
940 {
941 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
942 DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
943 RESTORE_ROUNDING_MODE;
944 update_fcr31();
945 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
946 DT2 = FLOAT_SNAN64;
947 }
948 FLOAT_OP(floorl, s)
949 {
950 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
951 DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
952 RESTORE_ROUNDING_MODE;
953 update_fcr31();
954 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
955 DT2 = FLOAT_SNAN64;
956 }
957 FLOAT_OP(floorw, d)
958 {
959 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
960 WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
961 RESTORE_ROUNDING_MODE;
962 update_fcr31();
963 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
964 WT2 = FLOAT_SNAN32;
965 }
966 FLOAT_OP(floorw, s)
967 {
968 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
969 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
970 RESTORE_ROUNDING_MODE;
971 update_fcr31();
972 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
973 WT2 = FLOAT_SNAN32;
974 }
975
976 /* MIPS specific unary operations */
977 FLOAT_OP(recip, d)
978 {
979 set_float_exception_flags(0, &env->fpu->fp_status);
980 FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
981 update_fcr31();
982 }
983 FLOAT_OP(recip, s)
984 {
985 set_float_exception_flags(0, &env->fpu->fp_status);
986 FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
987 update_fcr31();
988 }
989
990 FLOAT_OP(rsqrt, d)
991 {
992 set_float_exception_flags(0, &env->fpu->fp_status);
993 FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
994 FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
995 update_fcr31();
996 }
997 FLOAT_OP(rsqrt, s)
998 {
999 set_float_exception_flags(0, &env->fpu->fp_status);
1000 FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1001 FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1002 update_fcr31();
1003 }
1004
1005 FLOAT_OP(recip1, d)
1006 {
1007 set_float_exception_flags(0, &env->fpu->fp_status);
1008 FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
1009 update_fcr31();
1010 }
1011 FLOAT_OP(recip1, s)
1012 {
1013 set_float_exception_flags(0, &env->fpu->fp_status);
1014 FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
1015 update_fcr31();
1016 }
1017 FLOAT_OP(recip1, ps)
1018 {
1019 set_float_exception_flags(0, &env->fpu->fp_status);
1020 FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
1021 FSTH2 = float32_div(FLOAT_ONE32, FSTH0, &env->fpu->fp_status);
1022 update_fcr31();
1023 }
1024
1025 FLOAT_OP(rsqrt1, d)
1026 {
1027 set_float_exception_flags(0, &env->fpu->fp_status);
1028 FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
1029 FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
1030 update_fcr31();
1031 }
1032 FLOAT_OP(rsqrt1, s)
1033 {
1034 set_float_exception_flags(0, &env->fpu->fp_status);
1035 FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1036 FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1037 update_fcr31();
1038 }
1039 FLOAT_OP(rsqrt1, ps)
1040 {
1041 set_float_exception_flags(0, &env->fpu->fp_status);
1042 FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1043 FSTH2 = float32_sqrt(FSTH0, &env->fpu->fp_status);
1044 FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1045 FSTH2 = float32_div(FLOAT_ONE32, FSTH2, &env->fpu->fp_status);
1046 update_fcr31();
1047 }
1048
1049 /* binary operations */
1050 #define FLOAT_BINOP(name) \
1051 FLOAT_OP(name, d) \
1052 { \
1053 set_float_exception_flags(0, &env->fpu->fp_status); \
1054 FDT2 = float64_ ## name (FDT0, FDT1, &env->fpu->fp_status); \
1055 update_fcr31(); \
1056 if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) \
1057 FDT2 = FLOAT_QNAN64; \
1058 } \
1059 FLOAT_OP(name, s) \
1060 { \
1061 set_float_exception_flags(0, &env->fpu->fp_status); \
1062 FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status); \
1063 update_fcr31(); \
1064 if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) \
1065 FST2 = FLOAT_QNAN32; \
1066 } \
1067 FLOAT_OP(name, ps) \
1068 { \
1069 set_float_exception_flags(0, &env->fpu->fp_status); \
1070 FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status); \
1071 FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fpu->fp_status); \
1072 update_fcr31(); \
1073 if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) { \
1074 FST2 = FLOAT_QNAN32; \
1075 FSTH2 = FLOAT_QNAN32; \
1076 } \
1077 }
1078 FLOAT_BINOP(add)
1079 FLOAT_BINOP(sub)
1080 FLOAT_BINOP(mul)
1081 FLOAT_BINOP(div)
1082 #undef FLOAT_BINOP
1083
1084 /* MIPS specific binary operations */
1085 FLOAT_OP(recip2, d)
1086 {
1087 set_float_exception_flags(0, &env->fpu->fp_status);
1088 FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
1089 FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status) ^ FLOAT_SIGN64;
1090 update_fcr31();
1091 }
1092 FLOAT_OP(recip2, s)
1093 {
1094 set_float_exception_flags(0, &env->fpu->fp_status);
1095 FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1096 FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1097 update_fcr31();
1098 }
1099 FLOAT_OP(recip2, ps)
1100 {
1101 set_float_exception_flags(0, &env->fpu->fp_status);
1102 FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1103 FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
1104 FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1105 FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1106 update_fcr31();
1107 }
1108
1109 FLOAT_OP(rsqrt2, d)
1110 {
1111 set_float_exception_flags(0, &env->fpu->fp_status);
1112 FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
1113 FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status);
1114 FDT2 = float64_div(FDT2, FLOAT_TWO64, &env->fpu->fp_status) ^ FLOAT_SIGN64;
1115 update_fcr31();
1116 }
1117 FLOAT_OP(rsqrt2, s)
1118 {
1119 set_float_exception_flags(0, &env->fpu->fp_status);
1120 FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1121 FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
1122 FST2 = float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1123 update_fcr31();
1124 }
1125 FLOAT_OP(rsqrt2, ps)
1126 {
1127 set_float_exception_flags(0, &env->fpu->fp_status);
1128 FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1129 FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
1130 FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
1131 FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status);
1132 FST2 = float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1133 FSTH2 = float32_div(FSTH2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1134 update_fcr31();
1135 }
1136
1137 FLOAT_OP(addr, ps)
1138 {
1139 set_float_exception_flags(0, &env->fpu->fp_status);
1140 FST2 = float32_add (FST0, FSTH0, &env->fpu->fp_status);
1141 FSTH2 = float32_add (FST1, FSTH1, &env->fpu->fp_status);
1142 update_fcr31();
1143 }
1144
1145 FLOAT_OP(mulr, ps)
1146 {
1147 set_float_exception_flags(0, &env->fpu->fp_status);
1148 FST2 = float32_mul (FST0, FSTH0, &env->fpu->fp_status);
1149 FSTH2 = float32_mul (FST1, FSTH1, &env->fpu->fp_status);
1150 update_fcr31();
1151 }
1152
1153 /* compare operations */
1154 #define FOP_COND_D(op, cond) \
1155 void do_cmp_d_ ## op (long cc) \
1156 { \
1157 int c = cond; \
1158 update_fcr31(); \
1159 if (c) \
1160 SET_FP_COND(cc, env->fpu); \
1161 else \
1162 CLEAR_FP_COND(cc, env->fpu); \
1163 } \
1164 void do_cmpabs_d_ ## op (long cc) \
1165 { \
1166 int c; \
1167 FDT0 &= ~FLOAT_SIGN64; \
1168 FDT1 &= ~FLOAT_SIGN64; \
1169 c = cond; \
1170 update_fcr31(); \
1171 if (c) \
1172 SET_FP_COND(cc, env->fpu); \
1173 else \
1174 CLEAR_FP_COND(cc, env->fpu); \
1175 }
1176
1177 int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
1178 {
1179 if (float64_is_signaling_nan(a) ||
1180 float64_is_signaling_nan(b) ||
1181 (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
1182 float_raise(float_flag_invalid, status);
1183 return 1;
1184 } else if (float64_is_nan(a) || float64_is_nan(b)) {
1185 return 1;
1186 } else {
1187 return 0;
1188 }
1189 }
1190
1191 /* NOTE: the comma operator will make "cond" to eval to false,
1192 * but float*_is_unordered() is still called. */
1193 FOP_COND_D(f, (float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status), 0))
1194 FOP_COND_D(un, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status))
1195 FOP_COND_D(eq, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1196 FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1197 FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1198 FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1199 FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
1200 FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_le(FDT0, FDT1, &env->fpu->fp_status))
1201 /* NOTE: the comma operator will make "cond" to eval to false,
1202 * but float*_is_unordered() is still called. */
1203 FOP_COND_D(sf, (float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status), 0))
1204 FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status))
1205 FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1206 FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1207 FOP_COND_D(lt, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1208 FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1209 FOP_COND_D(le, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
1210 FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_le(FDT0, FDT1, &env->fpu->fp_status))
1211
1212 #define FOP_COND_S(op, cond) \
1213 void do_cmp_s_ ## op (long cc) \
1214 { \
1215 int c = cond; \
1216 update_fcr31(); \
1217 if (c) \
1218 SET_FP_COND(cc, env->fpu); \
1219 else \
1220 CLEAR_FP_COND(cc, env->fpu); \
1221 } \
1222 void do_cmpabs_s_ ## op (long cc) \
1223 { \
1224 int c; \
1225 FST0 &= ~FLOAT_SIGN32; \
1226 FST1 &= ~FLOAT_SIGN32; \
1227 c = cond; \
1228 update_fcr31(); \
1229 if (c) \
1230 SET_FP_COND(cc, env->fpu); \
1231 else \
1232 CLEAR_FP_COND(cc, env->fpu); \
1233 }
1234
1235 flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
1236 {
1237 if (float32_is_signaling_nan(a) ||
1238 float32_is_signaling_nan(b) ||
1239 (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
1240 float_raise(float_flag_invalid, status);
1241 return 1;
1242 } else if (float32_is_nan(a) || float32_is_nan(b)) {
1243 return 1;
1244 } else {
1245 return 0;
1246 }
1247 }
1248
1249 /* NOTE: the comma operator will make "cond" to eval to false,
1250 * but float*_is_unordered() is still called. */
1251 FOP_COND_S(f, (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0))
1252 FOP_COND_S(un, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status))
1253 FOP_COND_S(eq, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
1254 FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status))
1255 FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
1256 FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status))
1257 FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
1258 FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status))
1259 /* NOTE: the comma operator will make "cond" to eval to false,
1260 * but float*_is_unordered() is still called. */
1261 FOP_COND_S(sf, (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0))
1262 FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status))
1263 FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
1264 FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status))
1265 FOP_COND_S(lt, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
1266 FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status))
1267 FOP_COND_S(le, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
1268 FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status))
1269
1270 #define FOP_COND_PS(op, condl, condh) \
1271 void do_cmp_ps_ ## op (long cc) \
1272 { \
1273 int cl = condl; \
1274 int ch = condh; \
1275 update_fcr31(); \
1276 if (cl) \
1277 SET_FP_COND(cc, env->fpu); \
1278 else \
1279 CLEAR_FP_COND(cc, env->fpu); \
1280 if (ch) \
1281 SET_FP_COND(cc + 1, env->fpu); \
1282 else \
1283 CLEAR_FP_COND(cc + 1, env->fpu); \
1284 } \
1285 void do_cmpabs_ps_ ## op (long cc) \
1286 { \
1287 int cl, ch; \
1288 FST0 &= ~FLOAT_SIGN32; \
1289 FSTH0 &= ~FLOAT_SIGN32; \
1290 FST1 &= ~FLOAT_SIGN32; \
1291 FSTH1 &= ~FLOAT_SIGN32; \
1292 cl = condl; \
1293 ch = condh; \
1294 update_fcr31(); \
1295 if (cl) \
1296 SET_FP_COND(cc, env->fpu); \
1297 else \
1298 CLEAR_FP_COND(cc, env->fpu); \
1299 if (ch) \
1300 SET_FP_COND(cc + 1, env->fpu); \
1301 else \
1302 CLEAR_FP_COND(cc + 1, env->fpu); \
1303 }
1304
1305 /* NOTE: the comma operator will make "cond" to eval to false,
1306 * but float*_is_unordered() is still called. */
1307 FOP_COND_PS(f, (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0),
1308 (float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status), 0))
1309 FOP_COND_PS(un, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status),
1310 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status))
1311 FOP_COND_PS(eq, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status),
1312 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1313 FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status),
1314 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1315 FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status),
1316 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1317 FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status),
1318 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1319 FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status),
1320 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1321 FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status),
1322 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1323 /* NOTE: the comma operator will make "cond" to eval to false,
1324 * but float*_is_unordered() is still called. */
1325 FOP_COND_PS(sf, (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0),
1326 (float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status), 0))
1327 FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status),
1328 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status))
1329 FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status),
1330 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1331 FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status),
1332 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1333 FOP_COND_PS(lt, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status),
1334 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1335 FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status),
1336 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1337 FOP_COND_PS(le, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status),
1338 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1339 FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status),
1340 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))