]> git.proxmox.com Git - mirror_qemu.git/blob - target-sparc/helper.c
Sparc32: remove unused variable, spotted by clang
[mirror_qemu.git] / target-sparc / helper.c
1 /*
2 * sparc helpers
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include <stdarg.h>
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <string.h>
23 #include <inttypes.h>
24 #include <signal.h>
25
26 #include "cpu.h"
27 #include "exec-all.h"
28 #include "qemu-common.h"
29
30 //#define DEBUG_MMU
31 //#define DEBUG_FEATURES
32
33 static int cpu_sparc_find_by_name(sparc_def_t *cpu_def, const char *cpu_model);
34
35 /* Sparc MMU emulation */
36
37 /* thread support */
38
39 static spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;
40
41 void cpu_lock(void)
42 {
43 spin_lock(&global_cpu_lock);
44 }
45
46 void cpu_unlock(void)
47 {
48 spin_unlock(&global_cpu_lock);
49 }
50
51 #if defined(CONFIG_USER_ONLY)
52
53 int cpu_sparc_handle_mmu_fault(CPUState *env1, target_ulong address, int rw,
54 int mmu_idx, int is_softmmu)
55 {
56 if (rw & 2)
57 env1->exception_index = TT_TFAULT;
58 else
59 env1->exception_index = TT_DFAULT;
60 return 1;
61 }
62
63 #else
64
65 #ifndef TARGET_SPARC64
66 /*
67 * Sparc V8 Reference MMU (SRMMU)
68 */
69 static const int access_table[8][8] = {
70 { 0, 0, 0, 0, 8, 0, 12, 12 },
71 { 0, 0, 0, 0, 8, 0, 0, 0 },
72 { 8, 8, 0, 0, 0, 8, 12, 12 },
73 { 8, 8, 0, 0, 0, 8, 0, 0 },
74 { 8, 0, 8, 0, 8, 8, 12, 12 },
75 { 8, 0, 8, 0, 8, 0, 8, 0 },
76 { 8, 8, 8, 0, 8, 8, 12, 12 },
77 { 8, 8, 8, 0, 8, 8, 8, 0 }
78 };
79
80 static const int perm_table[2][8] = {
81 {
82 PAGE_READ,
83 PAGE_READ | PAGE_WRITE,
84 PAGE_READ | PAGE_EXEC,
85 PAGE_READ | PAGE_WRITE | PAGE_EXEC,
86 PAGE_EXEC,
87 PAGE_READ | PAGE_WRITE,
88 PAGE_READ | PAGE_EXEC,
89 PAGE_READ | PAGE_WRITE | PAGE_EXEC
90 },
91 {
92 PAGE_READ,
93 PAGE_READ | PAGE_WRITE,
94 PAGE_READ | PAGE_EXEC,
95 PAGE_READ | PAGE_WRITE | PAGE_EXEC,
96 PAGE_EXEC,
97 PAGE_READ,
98 0,
99 0,
100 }
101 };
102
103 static int get_physical_address(CPUState *env, target_phys_addr_t *physical,
104 int *prot, int *access_index,
105 target_ulong address, int rw, int mmu_idx)
106 {
107 int access_perms = 0;
108 target_phys_addr_t pde_ptr;
109 uint32_t pde;
110 int error_code = 0, is_dirty, is_user;
111 unsigned long page_offset;
112
113 is_user = mmu_idx == MMU_USER_IDX;
114
115 if ((env->mmuregs[0] & MMU_E) == 0) { /* MMU disabled */
116 // Boot mode: instruction fetches are taken from PROM
117 if (rw == 2 && (env->mmuregs[0] & env->def->mmu_bm)) {
118 *physical = env->prom_addr | (address & 0x7ffffULL);
119 *prot = PAGE_READ | PAGE_EXEC;
120 return 0;
121 }
122 *physical = address;
123 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
124 return 0;
125 }
126
127 *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user? 0 : 1);
128 *physical = 0xffffffffffff0000ULL;
129
130 /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
131 /* Context base + context number */
132 pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
133 pde = ldl_phys(pde_ptr);
134
135 /* Ctx pde */
136 switch (pde & PTE_ENTRYTYPE_MASK) {
137 default:
138 case 0: /* Invalid */
139 return 1 << 2;
140 case 2: /* L0 PTE, maybe should not happen? */
141 case 3: /* Reserved */
142 return 4 << 2;
143 case 1: /* L0 PDE */
144 pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
145 pde = ldl_phys(pde_ptr);
146
147 switch (pde & PTE_ENTRYTYPE_MASK) {
148 default:
149 case 0: /* Invalid */
150 return (1 << 8) | (1 << 2);
151 case 3: /* Reserved */
152 return (1 << 8) | (4 << 2);
153 case 1: /* L1 PDE */
154 pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
155 pde = ldl_phys(pde_ptr);
156
157 switch (pde & PTE_ENTRYTYPE_MASK) {
158 default:
159 case 0: /* Invalid */
160 return (2 << 8) | (1 << 2);
161 case 3: /* Reserved */
162 return (2 << 8) | (4 << 2);
163 case 1: /* L2 PDE */
164 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
165 pde = ldl_phys(pde_ptr);
166
167 switch (pde & PTE_ENTRYTYPE_MASK) {
168 default:
169 case 0: /* Invalid */
170 return (3 << 8) | (1 << 2);
171 case 1: /* PDE, should not happen */
172 case 3: /* Reserved */
173 return (3 << 8) | (4 << 2);
174 case 2: /* L3 PTE */
175 page_offset = (address & TARGET_PAGE_MASK) &
176 (TARGET_PAGE_SIZE - 1);
177 }
178 break;
179 case 2: /* L2 PTE */
180 page_offset = address & 0x3ffff;
181 }
182 break;
183 case 2: /* L1 PTE */
184 page_offset = address & 0xffffff;
185 }
186 }
187
188 /* update page modified and dirty bits */
189 is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
190 if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
191 pde |= PG_ACCESSED_MASK;
192 if (is_dirty)
193 pde |= PG_MODIFIED_MASK;
194 stl_phys_notdirty(pde_ptr, pde);
195 }
196 /* check access */
197 access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
198 error_code = access_table[*access_index][access_perms];
199 if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user))
200 return error_code;
201
202 /* the page can be put in the TLB */
203 *prot = perm_table[is_user][access_perms];
204 if (!(pde & PG_MODIFIED_MASK)) {
205 /* only set write access if already dirty... otherwise wait
206 for dirty access */
207 *prot &= ~PAGE_WRITE;
208 }
209
210 /* Even if large ptes, we map only one 4KB page in the cache to
211 avoid filling it too fast */
212 *physical = ((target_phys_addr_t)(pde & PTE_ADDR_MASK) << 4) + page_offset;
213 return error_code;
214 }
215
216 /* Perform address translation */
217 int cpu_sparc_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
218 int mmu_idx, int is_softmmu)
219 {
220 target_phys_addr_t paddr;
221 target_ulong vaddr;
222 int error_code = 0, prot, ret = 0, access_index;
223
224 error_code = get_physical_address(env, &paddr, &prot, &access_index,
225 address, rw, mmu_idx);
226 if (error_code == 0) {
227 vaddr = address & TARGET_PAGE_MASK;
228 paddr &= TARGET_PAGE_MASK;
229 #ifdef DEBUG_MMU
230 printf("Translate at " TARGET_FMT_lx " -> " TARGET_FMT_plx ", vaddr "
231 TARGET_FMT_lx "\n", address, paddr, vaddr);
232 #endif
233 ret = tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu);
234 return ret;
235 }
236
237 if (env->mmuregs[3]) /* Fault status register */
238 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
239 env->mmuregs[3] |= (access_index << 5) | error_code | 2;
240 env->mmuregs[4] = address; /* Fault address register */
241
242 if ((env->mmuregs[0] & MMU_NF) || env->psret == 0) {
243 // No fault mode: if a mapping is available, just override
244 // permissions. If no mapping is available, redirect accesses to
245 // neverland. Fake/overridden mappings will be flushed when
246 // switching to normal mode.
247 vaddr = address & TARGET_PAGE_MASK;
248 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
249 ret = tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu);
250 return ret;
251 } else {
252 if (rw & 2)
253 env->exception_index = TT_TFAULT;
254 else
255 env->exception_index = TT_DFAULT;
256 return 1;
257 }
258 }
259
260 target_ulong mmu_probe(CPUState *env, target_ulong address, int mmulev)
261 {
262 target_phys_addr_t pde_ptr;
263 uint32_t pde;
264
265 /* Context base + context number */
266 pde_ptr = (target_phys_addr_t)(env->mmuregs[1] << 4) +
267 (env->mmuregs[2] << 2);
268 pde = ldl_phys(pde_ptr);
269
270 switch (pde & PTE_ENTRYTYPE_MASK) {
271 default:
272 case 0: /* Invalid */
273 case 2: /* PTE, maybe should not happen? */
274 case 3: /* Reserved */
275 return 0;
276 case 1: /* L1 PDE */
277 if (mmulev == 3)
278 return pde;
279 pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
280 pde = ldl_phys(pde_ptr);
281
282 switch (pde & PTE_ENTRYTYPE_MASK) {
283 default:
284 case 0: /* Invalid */
285 case 3: /* Reserved */
286 return 0;
287 case 2: /* L1 PTE */
288 return pde;
289 case 1: /* L2 PDE */
290 if (mmulev == 2)
291 return pde;
292 pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
293 pde = ldl_phys(pde_ptr);
294
295 switch (pde & PTE_ENTRYTYPE_MASK) {
296 default:
297 case 0: /* Invalid */
298 case 3: /* Reserved */
299 return 0;
300 case 2: /* L2 PTE */
301 return pde;
302 case 1: /* L3 PDE */
303 if (mmulev == 1)
304 return pde;
305 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
306 pde = ldl_phys(pde_ptr);
307
308 switch (pde & PTE_ENTRYTYPE_MASK) {
309 default:
310 case 0: /* Invalid */
311 case 1: /* PDE, should not happen */
312 case 3: /* Reserved */
313 return 0;
314 case 2: /* L3 PTE */
315 return pde;
316 }
317 }
318 }
319 }
320 return 0;
321 }
322
323 #ifdef DEBUG_MMU
324 void dump_mmu(CPUState *env)
325 {
326 target_ulong va, va1, va2;
327 unsigned int n, m, o;
328 target_phys_addr_t pde_ptr, pa;
329 uint32_t pde;
330
331 printf("MMU dump:\n");
332 pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
333 pde = ldl_phys(pde_ptr);
334 printf("Root ptr: " TARGET_FMT_plx ", ctx: %d\n",
335 (target_phys_addr_t)env->mmuregs[1] << 4, env->mmuregs[2]);
336 for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
337 pde = mmu_probe(env, va, 2);
338 if (pde) {
339 pa = cpu_get_phys_page_debug(env, va);
340 printf("VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx
341 " PDE: " TARGET_FMT_lx "\n", va, pa, pde);
342 for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
343 pde = mmu_probe(env, va1, 1);
344 if (pde) {
345 pa = cpu_get_phys_page_debug(env, va1);
346 printf(" VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx
347 " PDE: " TARGET_FMT_lx "\n", va1, pa, pde);
348 for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
349 pde = mmu_probe(env, va2, 0);
350 if (pde) {
351 pa = cpu_get_phys_page_debug(env, va2);
352 printf(" VA: " TARGET_FMT_lx ", PA: "
353 TARGET_FMT_plx " PTE: " TARGET_FMT_lx "\n",
354 va2, pa, pde);
355 }
356 }
357 }
358 }
359 }
360 }
361 printf("MMU dump ends\n");
362 }
363 #endif /* DEBUG_MMU */
364
365 #else /* !TARGET_SPARC64 */
366
367 // 41 bit physical address space
368 static inline target_phys_addr_t ultrasparc_truncate_physical(uint64_t x)
369 {
370 return x & 0x1ffffffffffULL;
371 }
372
373 /*
374 * UltraSparc IIi I/DMMUs
375 */
376
377 static inline int compare_masked(uint64_t x, uint64_t y, uint64_t mask)
378 {
379 return (x & mask) == (y & mask);
380 }
381
382 // Returns true if TTE tag is valid and matches virtual address value in context
383 // requires virtual address mask value calculated from TTE entry size
384 static inline int ultrasparc_tag_match(SparcTLBEntry *tlb,
385 uint64_t address, uint64_t context,
386 target_phys_addr_t *physical,
387 int is_nucleus)
388 {
389 uint64_t mask;
390
391 switch ((tlb->tte >> 61) & 3) {
392 default:
393 case 0x0: // 8k
394 mask = 0xffffffffffffe000ULL;
395 break;
396 case 0x1: // 64k
397 mask = 0xffffffffffff0000ULL;
398 break;
399 case 0x2: // 512k
400 mask = 0xfffffffffff80000ULL;
401 break;
402 case 0x3: // 4M
403 mask = 0xffffffffffc00000ULL;
404 break;
405 }
406
407 // valid, context match, virtual address match?
408 if (TTE_IS_VALID(tlb->tte) &&
409 ((is_nucleus && compare_masked(0, tlb->tag, 0x1fff))
410 || TTE_IS_GLOBAL(tlb->tte) || compare_masked(context, tlb->tag, 0x1fff))
411 && compare_masked(address, tlb->tag, mask))
412 {
413 // decode physical address
414 *physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL;
415 return 1;
416 }
417
418 return 0;
419 }
420
421 static int get_physical_address_data(CPUState *env,
422 target_phys_addr_t *physical, int *prot,
423 target_ulong address, int rw, int is_user)
424 {
425 unsigned int i;
426 uint64_t context;
427 int is_nucleus;
428
429 if ((env->lsu & DMMU_E) == 0) { /* DMMU disabled */
430 *physical = ultrasparc_truncate_physical(address);
431 *prot = PAGE_READ | PAGE_WRITE;
432 return 0;
433 }
434
435 context = env->dmmu.mmu_primary_context & 0x1fff;
436 is_nucleus = env->tl > 0;
437
438 for (i = 0; i < 64; i++) {
439 // ctx match, vaddr match, valid?
440 if (ultrasparc_tag_match(&env->dtlb[i],
441 address, context, physical,
442 is_nucleus)) {
443 // access ok?
444 if (((env->dtlb[i].tte & 0x4) && is_user) ||
445 (!(env->dtlb[i].tte & 0x2) && (rw == 1))) {
446 uint8_t fault_type = 0;
447
448 if ((env->dtlb[i].tte & 0x4) && is_user) {
449 fault_type |= 1; /* privilege violation */
450 }
451
452 if (env->dmmu.sfsr & 1) /* Fault status register */
453 env->dmmu.sfsr = 2; /* overflow (not read before
454 another fault) */
455
456 env->dmmu.sfsr |= (is_user << 3) | ((rw == 1) << 2) | 1;
457
458 env->dmmu.sfsr |= (fault_type << 7);
459
460 env->dmmu.sfar = address; /* Fault address register */
461 env->exception_index = TT_DFAULT;
462 #ifdef DEBUG_MMU
463 printf("DFAULT at 0x%" PRIx64 "\n", address);
464 #endif
465 return 1;
466 }
467 *prot = PAGE_READ;
468 if (env->dtlb[i].tte & 0x2)
469 *prot |= PAGE_WRITE;
470 TTE_SET_USED(env->dtlb[i].tte);
471 return 0;
472 }
473 }
474 #ifdef DEBUG_MMU
475 printf("DMISS at 0x%" PRIx64 "\n", address);
476 #endif
477 env->dmmu.tag_access = (address & ~0x1fffULL) | context;
478 env->exception_index = TT_DMISS;
479 return 1;
480 }
481
482 static int get_physical_address_code(CPUState *env,
483 target_phys_addr_t *physical, int *prot,
484 target_ulong address, int is_user)
485 {
486 unsigned int i;
487 uint64_t context;
488 int is_nucleus;
489
490 if ((env->lsu & IMMU_E) == 0 || (env->pstate & PS_RED) != 0) {
491 /* IMMU disabled */
492 *physical = ultrasparc_truncate_physical(address);
493 *prot = PAGE_EXEC;
494 return 0;
495 }
496
497 context = env->dmmu.mmu_primary_context & 0x1fff;
498 is_nucleus = env->tl > 0;
499
500 for (i = 0; i < 64; i++) {
501 // ctx match, vaddr match, valid?
502 if (ultrasparc_tag_match(&env->itlb[i],
503 address, context, physical,
504 is_nucleus)) {
505 // access ok?
506 if ((env->itlb[i].tte & 0x4) && is_user) {
507 if (env->immu.sfsr) /* Fault status register */
508 env->immu.sfsr = 2; /* overflow (not read before
509 another fault) */
510 env->immu.sfsr |= (is_user << 3) | 1;
511 env->exception_index = TT_TFAULT;
512 #ifdef DEBUG_MMU
513 printf("TFAULT at 0x%" PRIx64 "\n", address);
514 #endif
515 return 1;
516 }
517 *prot = PAGE_EXEC;
518 TTE_SET_USED(env->itlb[i].tte);
519 return 0;
520 }
521 }
522 #ifdef DEBUG_MMU
523 printf("TMISS at 0x%" PRIx64 "\n", address);
524 #endif
525 /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
526 env->immu.tag_access = (address & ~0x1fffULL) | context;
527 env->exception_index = TT_TMISS;
528 return 1;
529 }
530
531 static int get_physical_address(CPUState *env, target_phys_addr_t *physical,
532 int *prot, int *access_index,
533 target_ulong address, int rw, int mmu_idx)
534 {
535 int is_user = mmu_idx == MMU_USER_IDX;
536
537 if (rw == 2)
538 return get_physical_address_code(env, physical, prot, address,
539 is_user);
540 else
541 return get_physical_address_data(env, physical, prot, address, rw,
542 is_user);
543 }
544
545 /* Perform address translation */
546 int cpu_sparc_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
547 int mmu_idx, int is_softmmu)
548 {
549 target_ulong virt_addr, vaddr;
550 target_phys_addr_t paddr;
551 int error_code = 0, prot, ret = 0, access_index;
552
553 error_code = get_physical_address(env, &paddr, &prot, &access_index,
554 address, rw, mmu_idx);
555 if (error_code == 0) {
556 virt_addr = address & TARGET_PAGE_MASK;
557 vaddr = virt_addr + ((address & TARGET_PAGE_MASK) &
558 (TARGET_PAGE_SIZE - 1));
559 #ifdef DEBUG_MMU
560 printf("Translate at 0x%" PRIx64 " -> 0x%" PRIx64 ", vaddr 0x%" PRIx64
561 "\n", address, paddr, vaddr);
562 #endif
563 ret = tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu);
564 return ret;
565 }
566 // XXX
567 return 1;
568 }
569
570 #ifdef DEBUG_MMU
571 void dump_mmu(CPUState *env)
572 {
573 unsigned int i;
574 const char *mask;
575
576 printf("MMU contexts: Primary: %" PRId64 ", Secondary: %" PRId64 "\n",
577 env->dmmu.mmu_primary_context, env->dmmu.mmu_secondary_context);
578 if ((env->lsu & DMMU_E) == 0) {
579 printf("DMMU disabled\n");
580 } else {
581 printf("DMMU dump:\n");
582 for (i = 0; i < 64; i++) {
583 switch ((env->dtlb[i].tte >> 61) & 3) {
584 default:
585 case 0x0:
586 mask = " 8k";
587 break;
588 case 0x1:
589 mask = " 64k";
590 break;
591 case 0x2:
592 mask = "512k";
593 break;
594 case 0x3:
595 mask = " 4M";
596 break;
597 }
598 if ((env->dtlb[i].tte & 0x8000000000000000ULL) != 0) {
599 printf("[%02u] VA: %" PRIx64 ", PA: %" PRIx64
600 ", %s, %s, %s, %s, ctx %" PRId64 " %s\n",
601 i,
602 env->dtlb[i].tag & (uint64_t)~0x1fffULL,
603 env->dtlb[i].tte & (uint64_t)0x1ffffffe000ULL,
604 mask,
605 env->dtlb[i].tte & 0x4? "priv": "user",
606 env->dtlb[i].tte & 0x2? "RW": "RO",
607 env->dtlb[i].tte & 0x40? "locked": "unlocked",
608 env->dtlb[i].tag & (uint64_t)0x1fffULL,
609 TTE_IS_GLOBAL(env->dtlb[i].tag)? "global" : "local");
610 }
611 }
612 }
613 if ((env->lsu & IMMU_E) == 0) {
614 printf("IMMU disabled\n");
615 } else {
616 printf("IMMU dump:\n");
617 for (i = 0; i < 64; i++) {
618 switch ((env->itlb[i].tte >> 61) & 3) {
619 default:
620 case 0x0:
621 mask = " 8k";
622 break;
623 case 0x1:
624 mask = " 64k";
625 break;
626 case 0x2:
627 mask = "512k";
628 break;
629 case 0x3:
630 mask = " 4M";
631 break;
632 }
633 if ((env->itlb[i].tte & 0x8000000000000000ULL) != 0) {
634 printf("[%02u] VA: %" PRIx64 ", PA: %" PRIx64
635 ", %s, %s, %s, ctx %" PRId64 " %s\n",
636 i,
637 env->itlb[i].tag & (uint64_t)~0x1fffULL,
638 env->itlb[i].tte & (uint64_t)0x1ffffffe000ULL,
639 mask,
640 env->itlb[i].tte & 0x4? "priv": "user",
641 env->itlb[i].tte & 0x40? "locked": "unlocked",
642 env->itlb[i].tag & (uint64_t)0x1fffULL,
643 TTE_IS_GLOBAL(env->itlb[i].tag)? "global" : "local");
644 }
645 }
646 }
647 }
648 #endif /* DEBUG_MMU */
649
650 #endif /* TARGET_SPARC64 */
651 #endif /* !CONFIG_USER_ONLY */
652
653
654 #if defined(CONFIG_USER_ONLY)
655 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
656 {
657 return addr;
658 }
659
660 #else
661 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
662 {
663 target_phys_addr_t phys_addr;
664 int prot, access_index;
665
666 if (get_physical_address(env, &phys_addr, &prot, &access_index, addr, 2,
667 MMU_KERNEL_IDX) != 0)
668 if (get_physical_address(env, &phys_addr, &prot, &access_index, addr,
669 0, MMU_KERNEL_IDX) != 0)
670 return -1;
671 if (cpu_get_physical_page_desc(phys_addr) == IO_MEM_UNASSIGNED)
672 return -1;
673 return phys_addr;
674 }
675 #endif
676
677 void cpu_reset(CPUSPARCState *env)
678 {
679 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
680 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
681 log_cpu_state(env, 0);
682 }
683
684 tlb_flush(env, 1);
685 env->cwp = 0;
686 #ifndef TARGET_SPARC64
687 env->wim = 1;
688 #endif
689 env->regwptr = env->regbase + (env->cwp * 16);
690 CC_OP = CC_OP_FLAGS;
691 #if defined(CONFIG_USER_ONLY)
692 #ifdef TARGET_SPARC64
693 env->cleanwin = env->nwindows - 2;
694 env->cansave = env->nwindows - 2;
695 env->pstate = PS_RMO | PS_PEF | PS_IE;
696 env->asi = 0x82; // Primary no-fault
697 #endif
698 #else
699 #if !defined(TARGET_SPARC64)
700 env->psret = 0;
701 #endif
702 env->psrs = 1;
703 env->psrps = 1;
704 #ifdef TARGET_SPARC64
705 env->pstate = PS_PRIV|PS_RED|PS_PEF|PS_AG;
706 env->hpstate = HS_PRIV;
707 env->tl = env->maxtl;
708 cpu_tsptr(env)->tt = TT_POWER_ON_RESET;
709 env->lsu = 0;
710 #else
711 env->mmuregs[0] &= ~(MMU_E | MMU_NF);
712 env->mmuregs[0] |= env->def->mmu_bm;
713 #endif
714 env->pc = 0;
715 env->npc = env->pc + 4;
716 #endif
717 }
718
719 static int cpu_sparc_register(CPUSPARCState *env, const char *cpu_model)
720 {
721 sparc_def_t def1, *def = &def1;
722
723 if (cpu_sparc_find_by_name(def, cpu_model) < 0)
724 return -1;
725
726 env->def = qemu_mallocz(sizeof(*def));
727 memcpy(env->def, def, sizeof(*def));
728 #if defined(CONFIG_USER_ONLY)
729 if ((env->def->features & CPU_FEATURE_FLOAT))
730 env->def->features |= CPU_FEATURE_FLOAT128;
731 #endif
732 env->cpu_model_str = cpu_model;
733 env->version = def->iu_version;
734 env->fsr = def->fpu_version;
735 env->nwindows = def->nwindows;
736 #if !defined(TARGET_SPARC64)
737 env->mmuregs[0] |= def->mmu_version;
738 cpu_sparc_set_id(env, 0);
739 env->mxccregs[7] |= def->mxcc_version;
740 #else
741 env->mmu_version = def->mmu_version;
742 env->maxtl = def->maxtl;
743 env->version |= def->maxtl << 8;
744 env->version |= def->nwindows - 1;
745 #endif
746 return 0;
747 }
748
749 static void cpu_sparc_close(CPUSPARCState *env)
750 {
751 free(env->def);
752 free(env);
753 }
754
755 CPUSPARCState *cpu_sparc_init(const char *cpu_model)
756 {
757 CPUSPARCState *env;
758
759 env = qemu_mallocz(sizeof(CPUSPARCState));
760 cpu_exec_init(env);
761
762 gen_intermediate_code_init(env);
763
764 if (cpu_sparc_register(env, cpu_model) < 0) {
765 cpu_sparc_close(env);
766 return NULL;
767 }
768 qemu_init_vcpu(env);
769
770 return env;
771 }
772
773 void cpu_sparc_set_id(CPUSPARCState *env, unsigned int cpu)
774 {
775 #if !defined(TARGET_SPARC64)
776 env->mxccregs[7] = ((cpu + 8) & 0xf) << 24;
777 #endif
778 }
779
780 static const sparc_def_t sparc_defs[] = {
781 #ifdef TARGET_SPARC64
782 {
783 .name = "Fujitsu Sparc64",
784 .iu_version = ((0x04ULL << 48) | (0x02ULL << 32) | (0ULL << 24)),
785 .fpu_version = 0x00000000,
786 .mmu_version = mmu_us_12,
787 .nwindows = 4,
788 .maxtl = 4,
789 .features = CPU_DEFAULT_FEATURES,
790 },
791 {
792 .name = "Fujitsu Sparc64 III",
793 .iu_version = ((0x04ULL << 48) | (0x03ULL << 32) | (0ULL << 24)),
794 .fpu_version = 0x00000000,
795 .mmu_version = mmu_us_12,
796 .nwindows = 5,
797 .maxtl = 4,
798 .features = CPU_DEFAULT_FEATURES,
799 },
800 {
801 .name = "Fujitsu Sparc64 IV",
802 .iu_version = ((0x04ULL << 48) | (0x04ULL << 32) | (0ULL << 24)),
803 .fpu_version = 0x00000000,
804 .mmu_version = mmu_us_12,
805 .nwindows = 8,
806 .maxtl = 5,
807 .features = CPU_DEFAULT_FEATURES,
808 },
809 {
810 .name = "Fujitsu Sparc64 V",
811 .iu_version = ((0x04ULL << 48) | (0x05ULL << 32) | (0x51ULL << 24)),
812 .fpu_version = 0x00000000,
813 .mmu_version = mmu_us_12,
814 .nwindows = 8,
815 .maxtl = 5,
816 .features = CPU_DEFAULT_FEATURES,
817 },
818 {
819 .name = "TI UltraSparc I",
820 .iu_version = ((0x17ULL << 48) | (0x10ULL << 32) | (0x40ULL << 24)),
821 .fpu_version = 0x00000000,
822 .mmu_version = mmu_us_12,
823 .nwindows = 8,
824 .maxtl = 5,
825 .features = CPU_DEFAULT_FEATURES,
826 },
827 {
828 .name = "TI UltraSparc II",
829 .iu_version = ((0x17ULL << 48) | (0x11ULL << 32) | (0x20ULL << 24)),
830 .fpu_version = 0x00000000,
831 .mmu_version = mmu_us_12,
832 .nwindows = 8,
833 .maxtl = 5,
834 .features = CPU_DEFAULT_FEATURES,
835 },
836 {
837 .name = "TI UltraSparc IIi",
838 .iu_version = ((0x17ULL << 48) | (0x12ULL << 32) | (0x91ULL << 24)),
839 .fpu_version = 0x00000000,
840 .mmu_version = mmu_us_12,
841 .nwindows = 8,
842 .maxtl = 5,
843 .features = CPU_DEFAULT_FEATURES,
844 },
845 {
846 .name = "TI UltraSparc IIe",
847 .iu_version = ((0x17ULL << 48) | (0x13ULL << 32) | (0x14ULL << 24)),
848 .fpu_version = 0x00000000,
849 .mmu_version = mmu_us_12,
850 .nwindows = 8,
851 .maxtl = 5,
852 .features = CPU_DEFAULT_FEATURES,
853 },
854 {
855 .name = "Sun UltraSparc III",
856 .iu_version = ((0x3eULL << 48) | (0x14ULL << 32) | (0x34ULL << 24)),
857 .fpu_version = 0x00000000,
858 .mmu_version = mmu_us_12,
859 .nwindows = 8,
860 .maxtl = 5,
861 .features = CPU_DEFAULT_FEATURES,
862 },
863 {
864 .name = "Sun UltraSparc III Cu",
865 .iu_version = ((0x3eULL << 48) | (0x15ULL << 32) | (0x41ULL << 24)),
866 .fpu_version = 0x00000000,
867 .mmu_version = mmu_us_3,
868 .nwindows = 8,
869 .maxtl = 5,
870 .features = CPU_DEFAULT_FEATURES,
871 },
872 {
873 .name = "Sun UltraSparc IIIi",
874 .iu_version = ((0x3eULL << 48) | (0x16ULL << 32) | (0x34ULL << 24)),
875 .fpu_version = 0x00000000,
876 .mmu_version = mmu_us_12,
877 .nwindows = 8,
878 .maxtl = 5,
879 .features = CPU_DEFAULT_FEATURES,
880 },
881 {
882 .name = "Sun UltraSparc IV",
883 .iu_version = ((0x3eULL << 48) | (0x18ULL << 32) | (0x31ULL << 24)),
884 .fpu_version = 0x00000000,
885 .mmu_version = mmu_us_4,
886 .nwindows = 8,
887 .maxtl = 5,
888 .features = CPU_DEFAULT_FEATURES,
889 },
890 {
891 .name = "Sun UltraSparc IV+",
892 .iu_version = ((0x3eULL << 48) | (0x19ULL << 32) | (0x22ULL << 24)),
893 .fpu_version = 0x00000000,
894 .mmu_version = mmu_us_12,
895 .nwindows = 8,
896 .maxtl = 5,
897 .features = CPU_DEFAULT_FEATURES | CPU_FEATURE_CMT,
898 },
899 {
900 .name = "Sun UltraSparc IIIi+",
901 .iu_version = ((0x3eULL << 48) | (0x22ULL << 32) | (0ULL << 24)),
902 .fpu_version = 0x00000000,
903 .mmu_version = mmu_us_3,
904 .nwindows = 8,
905 .maxtl = 5,
906 .features = CPU_DEFAULT_FEATURES,
907 },
908 {
909 .name = "Sun UltraSparc T1",
910 // defined in sparc_ifu_fdp.v and ctu.h
911 .iu_version = ((0x3eULL << 48) | (0x23ULL << 32) | (0x02ULL << 24)),
912 .fpu_version = 0x00000000,
913 .mmu_version = mmu_sun4v,
914 .nwindows = 8,
915 .maxtl = 6,
916 .features = CPU_DEFAULT_FEATURES | CPU_FEATURE_HYPV | CPU_FEATURE_CMT
917 | CPU_FEATURE_GL,
918 },
919 {
920 .name = "Sun UltraSparc T2",
921 // defined in tlu_asi_ctl.v and n2_revid_cust.v
922 .iu_version = ((0x3eULL << 48) | (0x24ULL << 32) | (0x02ULL << 24)),
923 .fpu_version = 0x00000000,
924 .mmu_version = mmu_sun4v,
925 .nwindows = 8,
926 .maxtl = 6,
927 .features = CPU_DEFAULT_FEATURES | CPU_FEATURE_HYPV | CPU_FEATURE_CMT
928 | CPU_FEATURE_GL,
929 },
930 {
931 .name = "NEC UltraSparc I",
932 .iu_version = ((0x22ULL << 48) | (0x10ULL << 32) | (0x40ULL << 24)),
933 .fpu_version = 0x00000000,
934 .mmu_version = mmu_us_12,
935 .nwindows = 8,
936 .maxtl = 5,
937 .features = CPU_DEFAULT_FEATURES,
938 },
939 #else
940 {
941 .name = "Fujitsu MB86900",
942 .iu_version = 0x00 << 24, /* Impl 0, ver 0 */
943 .fpu_version = 4 << 17, /* FPU version 4 (Meiko) */
944 .mmu_version = 0x00 << 24, /* Impl 0, ver 0 */
945 .mmu_bm = 0x00004000,
946 .mmu_ctpr_mask = 0x007ffff0,
947 .mmu_cxr_mask = 0x0000003f,
948 .mmu_sfsr_mask = 0xffffffff,
949 .mmu_trcr_mask = 0xffffffff,
950 .nwindows = 7,
951 .features = CPU_FEATURE_FLOAT | CPU_FEATURE_FSMULD,
952 },
953 {
954 .name = "Fujitsu MB86904",
955 .iu_version = 0x04 << 24, /* Impl 0, ver 4 */
956 .fpu_version = 4 << 17, /* FPU version 4 (Meiko) */
957 .mmu_version = 0x04 << 24, /* Impl 0, ver 4 */
958 .mmu_bm = 0x00004000,
959 .mmu_ctpr_mask = 0x00ffffc0,
960 .mmu_cxr_mask = 0x000000ff,
961 .mmu_sfsr_mask = 0x00016fff,
962 .mmu_trcr_mask = 0x00ffffff,
963 .nwindows = 8,
964 .features = CPU_DEFAULT_FEATURES,
965 },
966 {
967 .name = "Fujitsu MB86907",
968 .iu_version = 0x05 << 24, /* Impl 0, ver 5 */
969 .fpu_version = 4 << 17, /* FPU version 4 (Meiko) */
970 .mmu_version = 0x05 << 24, /* Impl 0, ver 5 */
971 .mmu_bm = 0x00004000,
972 .mmu_ctpr_mask = 0xffffffc0,
973 .mmu_cxr_mask = 0x000000ff,
974 .mmu_sfsr_mask = 0x00016fff,
975 .mmu_trcr_mask = 0xffffffff,
976 .nwindows = 8,
977 .features = CPU_DEFAULT_FEATURES,
978 },
979 {
980 .name = "LSI L64811",
981 .iu_version = 0x10 << 24, /* Impl 1, ver 0 */
982 .fpu_version = 1 << 17, /* FPU version 1 (LSI L64814) */
983 .mmu_version = 0x10 << 24,
984 .mmu_bm = 0x00004000,
985 .mmu_ctpr_mask = 0x007ffff0,
986 .mmu_cxr_mask = 0x0000003f,
987 .mmu_sfsr_mask = 0xffffffff,
988 .mmu_trcr_mask = 0xffffffff,
989 .nwindows = 8,
990 .features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_FSQRT |
991 CPU_FEATURE_FSMULD,
992 },
993 {
994 .name = "Cypress CY7C601",
995 .iu_version = 0x11 << 24, /* Impl 1, ver 1 */
996 .fpu_version = 3 << 17, /* FPU version 3 (Cypress CY7C602) */
997 .mmu_version = 0x10 << 24,
998 .mmu_bm = 0x00004000,
999 .mmu_ctpr_mask = 0x007ffff0,
1000 .mmu_cxr_mask = 0x0000003f,
1001 .mmu_sfsr_mask = 0xffffffff,
1002 .mmu_trcr_mask = 0xffffffff,
1003 .nwindows = 8,
1004 .features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_FSQRT |
1005 CPU_FEATURE_FSMULD,
1006 },
1007 {
1008 .name = "Cypress CY7C611",
1009 .iu_version = 0x13 << 24, /* Impl 1, ver 3 */
1010 .fpu_version = 3 << 17, /* FPU version 3 (Cypress CY7C602) */
1011 .mmu_version = 0x10 << 24,
1012 .mmu_bm = 0x00004000,
1013 .mmu_ctpr_mask = 0x007ffff0,
1014 .mmu_cxr_mask = 0x0000003f,
1015 .mmu_sfsr_mask = 0xffffffff,
1016 .mmu_trcr_mask = 0xffffffff,
1017 .nwindows = 8,
1018 .features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_FSQRT |
1019 CPU_FEATURE_FSMULD,
1020 },
1021 {
1022 .name = "TI MicroSparc I",
1023 .iu_version = 0x41000000,
1024 .fpu_version = 4 << 17,
1025 .mmu_version = 0x41000000,
1026 .mmu_bm = 0x00004000,
1027 .mmu_ctpr_mask = 0x007ffff0,
1028 .mmu_cxr_mask = 0x0000003f,
1029 .mmu_sfsr_mask = 0x00016fff,
1030 .mmu_trcr_mask = 0x0000003f,
1031 .nwindows = 7,
1032 .features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_MUL |
1033 CPU_FEATURE_DIV | CPU_FEATURE_FLUSH | CPU_FEATURE_FSQRT |
1034 CPU_FEATURE_FMUL,
1035 },
1036 {
1037 .name = "TI MicroSparc II",
1038 .iu_version = 0x42000000,
1039 .fpu_version = 4 << 17,
1040 .mmu_version = 0x02000000,
1041 .mmu_bm = 0x00004000,
1042 .mmu_ctpr_mask = 0x00ffffc0,
1043 .mmu_cxr_mask = 0x000000ff,
1044 .mmu_sfsr_mask = 0x00016fff,
1045 .mmu_trcr_mask = 0x00ffffff,
1046 .nwindows = 8,
1047 .features = CPU_DEFAULT_FEATURES,
1048 },
1049 {
1050 .name = "TI MicroSparc IIep",
1051 .iu_version = 0x42000000,
1052 .fpu_version = 4 << 17,
1053 .mmu_version = 0x04000000,
1054 .mmu_bm = 0x00004000,
1055 .mmu_ctpr_mask = 0x00ffffc0,
1056 .mmu_cxr_mask = 0x000000ff,
1057 .mmu_sfsr_mask = 0x00016bff,
1058 .mmu_trcr_mask = 0x00ffffff,
1059 .nwindows = 8,
1060 .features = CPU_DEFAULT_FEATURES,
1061 },
1062 {
1063 .name = "TI SuperSparc 40", // STP1020NPGA
1064 .iu_version = 0x41000000, // SuperSPARC 2.x
1065 .fpu_version = 0 << 17,
1066 .mmu_version = 0x00000800, // SuperSPARC 2.x, no MXCC
1067 .mmu_bm = 0x00002000,
1068 .mmu_ctpr_mask = 0xffffffc0,
1069 .mmu_cxr_mask = 0x0000ffff,
1070 .mmu_sfsr_mask = 0xffffffff,
1071 .mmu_trcr_mask = 0xffffffff,
1072 .nwindows = 8,
1073 .features = CPU_DEFAULT_FEATURES,
1074 },
1075 {
1076 .name = "TI SuperSparc 50", // STP1020PGA
1077 .iu_version = 0x40000000, // SuperSPARC 3.x
1078 .fpu_version = 0 << 17,
1079 .mmu_version = 0x01000800, // SuperSPARC 3.x, no MXCC
1080 .mmu_bm = 0x00002000,
1081 .mmu_ctpr_mask = 0xffffffc0,
1082 .mmu_cxr_mask = 0x0000ffff,
1083 .mmu_sfsr_mask = 0xffffffff,
1084 .mmu_trcr_mask = 0xffffffff,
1085 .nwindows = 8,
1086 .features = CPU_DEFAULT_FEATURES,
1087 },
1088 {
1089 .name = "TI SuperSparc 51",
1090 .iu_version = 0x40000000, // SuperSPARC 3.x
1091 .fpu_version = 0 << 17,
1092 .mmu_version = 0x01000000, // SuperSPARC 3.x, MXCC
1093 .mmu_bm = 0x00002000,
1094 .mmu_ctpr_mask = 0xffffffc0,
1095 .mmu_cxr_mask = 0x0000ffff,
1096 .mmu_sfsr_mask = 0xffffffff,
1097 .mmu_trcr_mask = 0xffffffff,
1098 .mxcc_version = 0x00000104,
1099 .nwindows = 8,
1100 .features = CPU_DEFAULT_FEATURES,
1101 },
1102 {
1103 .name = "TI SuperSparc 60", // STP1020APGA
1104 .iu_version = 0x40000000, // SuperSPARC 3.x
1105 .fpu_version = 0 << 17,
1106 .mmu_version = 0x01000800, // SuperSPARC 3.x, no MXCC
1107 .mmu_bm = 0x00002000,
1108 .mmu_ctpr_mask = 0xffffffc0,
1109 .mmu_cxr_mask = 0x0000ffff,
1110 .mmu_sfsr_mask = 0xffffffff,
1111 .mmu_trcr_mask = 0xffffffff,
1112 .nwindows = 8,
1113 .features = CPU_DEFAULT_FEATURES,
1114 },
1115 {
1116 .name = "TI SuperSparc 61",
1117 .iu_version = 0x44000000, // SuperSPARC 3.x
1118 .fpu_version = 0 << 17,
1119 .mmu_version = 0x01000000, // SuperSPARC 3.x, MXCC
1120 .mmu_bm = 0x00002000,
1121 .mmu_ctpr_mask = 0xffffffc0,
1122 .mmu_cxr_mask = 0x0000ffff,
1123 .mmu_sfsr_mask = 0xffffffff,
1124 .mmu_trcr_mask = 0xffffffff,
1125 .mxcc_version = 0x00000104,
1126 .nwindows = 8,
1127 .features = CPU_DEFAULT_FEATURES,
1128 },
1129 {
1130 .name = "TI SuperSparc II",
1131 .iu_version = 0x40000000, // SuperSPARC II 1.x
1132 .fpu_version = 0 << 17,
1133 .mmu_version = 0x08000000, // SuperSPARC II 1.x, MXCC
1134 .mmu_bm = 0x00002000,
1135 .mmu_ctpr_mask = 0xffffffc0,
1136 .mmu_cxr_mask = 0x0000ffff,
1137 .mmu_sfsr_mask = 0xffffffff,
1138 .mmu_trcr_mask = 0xffffffff,
1139 .mxcc_version = 0x00000104,
1140 .nwindows = 8,
1141 .features = CPU_DEFAULT_FEATURES,
1142 },
1143 {
1144 .name = "Ross RT625",
1145 .iu_version = 0x1e000000,
1146 .fpu_version = 1 << 17,
1147 .mmu_version = 0x1e000000,
1148 .mmu_bm = 0x00004000,
1149 .mmu_ctpr_mask = 0x007ffff0,
1150 .mmu_cxr_mask = 0x0000003f,
1151 .mmu_sfsr_mask = 0xffffffff,
1152 .mmu_trcr_mask = 0xffffffff,
1153 .nwindows = 8,
1154 .features = CPU_DEFAULT_FEATURES,
1155 },
1156 {
1157 .name = "Ross RT620",
1158 .iu_version = 0x1f000000,
1159 .fpu_version = 1 << 17,
1160 .mmu_version = 0x1f000000,
1161 .mmu_bm = 0x00004000,
1162 .mmu_ctpr_mask = 0x007ffff0,
1163 .mmu_cxr_mask = 0x0000003f,
1164 .mmu_sfsr_mask = 0xffffffff,
1165 .mmu_trcr_mask = 0xffffffff,
1166 .nwindows = 8,
1167 .features = CPU_DEFAULT_FEATURES,
1168 },
1169 {
1170 .name = "BIT B5010",
1171 .iu_version = 0x20000000,
1172 .fpu_version = 0 << 17, /* B5010/B5110/B5120/B5210 */
1173 .mmu_version = 0x20000000,
1174 .mmu_bm = 0x00004000,
1175 .mmu_ctpr_mask = 0x007ffff0,
1176 .mmu_cxr_mask = 0x0000003f,
1177 .mmu_sfsr_mask = 0xffffffff,
1178 .mmu_trcr_mask = 0xffffffff,
1179 .nwindows = 8,
1180 .features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_FSQRT |
1181 CPU_FEATURE_FSMULD,
1182 },
1183 {
1184 .name = "Matsushita MN10501",
1185 .iu_version = 0x50000000,
1186 .fpu_version = 0 << 17,
1187 .mmu_version = 0x50000000,
1188 .mmu_bm = 0x00004000,
1189 .mmu_ctpr_mask = 0x007ffff0,
1190 .mmu_cxr_mask = 0x0000003f,
1191 .mmu_sfsr_mask = 0xffffffff,
1192 .mmu_trcr_mask = 0xffffffff,
1193 .nwindows = 8,
1194 .features = CPU_FEATURE_FLOAT | CPU_FEATURE_MUL | CPU_FEATURE_FSQRT |
1195 CPU_FEATURE_FSMULD,
1196 },
1197 {
1198 .name = "Weitek W8601",
1199 .iu_version = 0x90 << 24, /* Impl 9, ver 0 */
1200 .fpu_version = 3 << 17, /* FPU version 3 (Weitek WTL3170/2) */
1201 .mmu_version = 0x10 << 24,
1202 .mmu_bm = 0x00004000,
1203 .mmu_ctpr_mask = 0x007ffff0,
1204 .mmu_cxr_mask = 0x0000003f,
1205 .mmu_sfsr_mask = 0xffffffff,
1206 .mmu_trcr_mask = 0xffffffff,
1207 .nwindows = 8,
1208 .features = CPU_DEFAULT_FEATURES,
1209 },
1210 {
1211 .name = "LEON2",
1212 .iu_version = 0xf2000000,
1213 .fpu_version = 4 << 17, /* FPU version 4 (Meiko) */
1214 .mmu_version = 0xf2000000,
1215 .mmu_bm = 0x00004000,
1216 .mmu_ctpr_mask = 0x007ffff0,
1217 .mmu_cxr_mask = 0x0000003f,
1218 .mmu_sfsr_mask = 0xffffffff,
1219 .mmu_trcr_mask = 0xffffffff,
1220 .nwindows = 8,
1221 .features = CPU_DEFAULT_FEATURES,
1222 },
1223 {
1224 .name = "LEON3",
1225 .iu_version = 0xf3000000,
1226 .fpu_version = 4 << 17, /* FPU version 4 (Meiko) */
1227 .mmu_version = 0xf3000000,
1228 .mmu_bm = 0x00004000,
1229 .mmu_ctpr_mask = 0x007ffff0,
1230 .mmu_cxr_mask = 0x0000003f,
1231 .mmu_sfsr_mask = 0xffffffff,
1232 .mmu_trcr_mask = 0xffffffff,
1233 .nwindows = 8,
1234 .features = CPU_DEFAULT_FEATURES,
1235 },
1236 #endif
1237 };
1238
1239 static const char * const feature_name[] = {
1240 "float",
1241 "float128",
1242 "swap",
1243 "mul",
1244 "div",
1245 "flush",
1246 "fsqrt",
1247 "fmul",
1248 "vis1",
1249 "vis2",
1250 "fsmuld",
1251 "hypv",
1252 "cmt",
1253 "gl",
1254 };
1255
1256 static void print_features(FILE *f,
1257 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
1258 uint32_t features, const char *prefix)
1259 {
1260 unsigned int i;
1261
1262 for (i = 0; i < ARRAY_SIZE(feature_name); i++)
1263 if (feature_name[i] && (features & (1 << i))) {
1264 if (prefix)
1265 (*cpu_fprintf)(f, "%s", prefix);
1266 (*cpu_fprintf)(f, "%s ", feature_name[i]);
1267 }
1268 }
1269
1270 static void add_flagname_to_bitmaps(const char *flagname, uint32_t *features)
1271 {
1272 unsigned int i;
1273
1274 for (i = 0; i < ARRAY_SIZE(feature_name); i++)
1275 if (feature_name[i] && !strcmp(flagname, feature_name[i])) {
1276 *features |= 1 << i;
1277 return;
1278 }
1279 fprintf(stderr, "CPU feature %s not found\n", flagname);
1280 }
1281
1282 static int cpu_sparc_find_by_name(sparc_def_t *cpu_def, const char *cpu_model)
1283 {
1284 unsigned int i;
1285 const sparc_def_t *def = NULL;
1286 char *s = strdup(cpu_model);
1287 char *featurestr, *name = strtok(s, ",");
1288 uint32_t plus_features = 0;
1289 uint32_t minus_features = 0;
1290 long long iu_version;
1291 uint32_t fpu_version, mmu_version, nwindows;
1292
1293 for (i = 0; i < ARRAY_SIZE(sparc_defs); i++) {
1294 if (strcasecmp(name, sparc_defs[i].name) == 0) {
1295 def = &sparc_defs[i];
1296 }
1297 }
1298 if (!def)
1299 goto error;
1300 memcpy(cpu_def, def, sizeof(*def));
1301
1302 featurestr = strtok(NULL, ",");
1303 while (featurestr) {
1304 char *val;
1305
1306 if (featurestr[0] == '+') {
1307 add_flagname_to_bitmaps(featurestr + 1, &plus_features);
1308 } else if (featurestr[0] == '-') {
1309 add_flagname_to_bitmaps(featurestr + 1, &minus_features);
1310 } else if ((val = strchr(featurestr, '='))) {
1311 *val = 0; val++;
1312 if (!strcmp(featurestr, "iu_version")) {
1313 char *err;
1314
1315 iu_version = strtoll(val, &err, 0);
1316 if (!*val || *err) {
1317 fprintf(stderr, "bad numerical value %s\n", val);
1318 goto error;
1319 }
1320 cpu_def->iu_version = iu_version;
1321 #ifdef DEBUG_FEATURES
1322 fprintf(stderr, "iu_version %llx\n", iu_version);
1323 #endif
1324 } else if (!strcmp(featurestr, "fpu_version")) {
1325 char *err;
1326
1327 fpu_version = strtol(val, &err, 0);
1328 if (!*val || *err) {
1329 fprintf(stderr, "bad numerical value %s\n", val);
1330 goto error;
1331 }
1332 cpu_def->fpu_version = fpu_version;
1333 #ifdef DEBUG_FEATURES
1334 fprintf(stderr, "fpu_version %x\n", fpu_version);
1335 #endif
1336 } else if (!strcmp(featurestr, "mmu_version")) {
1337 char *err;
1338
1339 mmu_version = strtol(val, &err, 0);
1340 if (!*val || *err) {
1341 fprintf(stderr, "bad numerical value %s\n", val);
1342 goto error;
1343 }
1344 cpu_def->mmu_version = mmu_version;
1345 #ifdef DEBUG_FEATURES
1346 fprintf(stderr, "mmu_version %x\n", mmu_version);
1347 #endif
1348 } else if (!strcmp(featurestr, "nwindows")) {
1349 char *err;
1350
1351 nwindows = strtol(val, &err, 0);
1352 if (!*val || *err || nwindows > MAX_NWINDOWS ||
1353 nwindows < MIN_NWINDOWS) {
1354 fprintf(stderr, "bad numerical value %s\n", val);
1355 goto error;
1356 }
1357 cpu_def->nwindows = nwindows;
1358 #ifdef DEBUG_FEATURES
1359 fprintf(stderr, "nwindows %d\n", nwindows);
1360 #endif
1361 } else {
1362 fprintf(stderr, "unrecognized feature %s\n", featurestr);
1363 goto error;
1364 }
1365 } else {
1366 fprintf(stderr, "feature string `%s' not in format "
1367 "(+feature|-feature|feature=xyz)\n", featurestr);
1368 goto error;
1369 }
1370 featurestr = strtok(NULL, ",");
1371 }
1372 cpu_def->features |= plus_features;
1373 cpu_def->features &= ~minus_features;
1374 #ifdef DEBUG_FEATURES
1375 print_features(stderr, fprintf, cpu_def->features, NULL);
1376 #endif
1377 free(s);
1378 return 0;
1379
1380 error:
1381 free(s);
1382 return -1;
1383 }
1384
1385 void sparc_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
1386 {
1387 unsigned int i;
1388
1389 for (i = 0; i < ARRAY_SIZE(sparc_defs); i++) {
1390 (*cpu_fprintf)(f, "Sparc %16s IU " TARGET_FMT_lx " FPU %08x MMU %08x NWINS %d ",
1391 sparc_defs[i].name,
1392 sparc_defs[i].iu_version,
1393 sparc_defs[i].fpu_version,
1394 sparc_defs[i].mmu_version,
1395 sparc_defs[i].nwindows);
1396 print_features(f, cpu_fprintf, CPU_DEFAULT_FEATURES &
1397 ~sparc_defs[i].features, "-");
1398 print_features(f, cpu_fprintf, ~CPU_DEFAULT_FEATURES &
1399 sparc_defs[i].features, "+");
1400 (*cpu_fprintf)(f, "\n");
1401 }
1402 (*cpu_fprintf)(f, "Default CPU feature flags (use '-' to remove): ");
1403 print_features(f, cpu_fprintf, CPU_DEFAULT_FEATURES, NULL);
1404 (*cpu_fprintf)(f, "\n");
1405 (*cpu_fprintf)(f, "Available CPU feature flags (use '+' to add): ");
1406 print_features(f, cpu_fprintf, ~CPU_DEFAULT_FEATURES, NULL);
1407 (*cpu_fprintf)(f, "\n");
1408 (*cpu_fprintf)(f, "Numerical features (use '=' to set): iu_version "
1409 "fpu_version mmu_version nwindows\n");
1410 }
1411
1412 void cpu_dump_state(CPUState *env, FILE *f,
1413 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
1414 int flags)
1415 {
1416 int i, x;
1417
1418 cpu_fprintf(f, "pc: " TARGET_FMT_lx " npc: " TARGET_FMT_lx "\n", env->pc,
1419 env->npc);
1420 cpu_fprintf(f, "General Registers:\n");
1421 for (i = 0; i < 4; i++)
1422 cpu_fprintf(f, "%%g%c: " TARGET_FMT_lx "\t", i + '0', env->gregs[i]);
1423 cpu_fprintf(f, "\n");
1424 for (; i < 8; i++)
1425 cpu_fprintf(f, "%%g%c: " TARGET_FMT_lx "\t", i + '0', env->gregs[i]);
1426 cpu_fprintf(f, "\nCurrent Register Window:\n");
1427 for (x = 0; x < 3; x++) {
1428 for (i = 0; i < 4; i++)
1429 cpu_fprintf(f, "%%%c%d: " TARGET_FMT_lx "\t",
1430 (x == 0 ? 'o' : (x == 1 ? 'l' : 'i')), i,
1431 env->regwptr[i + x * 8]);
1432 cpu_fprintf(f, "\n");
1433 for (; i < 8; i++)
1434 cpu_fprintf(f, "%%%c%d: " TARGET_FMT_lx "\t",
1435 (x == 0 ? 'o' : x == 1 ? 'l' : 'i'), i,
1436 env->regwptr[i + x * 8]);
1437 cpu_fprintf(f, "\n");
1438 }
1439 cpu_fprintf(f, "\nFloating Point Registers:\n");
1440 for (i = 0; i < 32; i++) {
1441 if ((i & 3) == 0)
1442 cpu_fprintf(f, "%%f%02d:", i);
1443 cpu_fprintf(f, " %016f", *(float *)&env->fpr[i]);
1444 if ((i & 3) == 3)
1445 cpu_fprintf(f, "\n");
1446 }
1447 #ifdef TARGET_SPARC64
1448 cpu_fprintf(f, "pstate: 0x%08x ccr: 0x%02x asi: 0x%02x tl: %d fprs: %d\n",
1449 env->pstate, GET_CCR(env), env->asi, env->tl, env->fprs);
1450 cpu_fprintf(f, "pil=%x\n", env->psrpil);
1451 cpu_fprintf(f, "cansave: %d canrestore: %d otherwin: %d wstate %d "
1452 "cleanwin %d cwp %d\n",
1453 env->cansave, env->canrestore, env->otherwin, env->wstate,
1454 env->cleanwin, env->nwindows - 1 - env->cwp);
1455 #else
1456
1457 #define GET_FLAG(a,b) ((env->psr & a)?b:'-')
1458
1459 cpu_fprintf(f, "psr: 0x%08x -> %c%c%c%c %c%c%c wim: 0x%08x\n",
1460 GET_PSR(env), GET_FLAG(PSR_ZERO, 'Z'), GET_FLAG(PSR_OVF, 'V'),
1461 GET_FLAG(PSR_NEG, 'N'), GET_FLAG(PSR_CARRY, 'C'),
1462 env->psrs?'S':'-', env->psrps?'P':'-',
1463 env->psret?'E':'-', env->wim);
1464 #endif
1465 cpu_fprintf(f, "fsr: 0x%08x\n", env->fsr);
1466 }