]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - tools/lguest/lguest.c
tools/lguest: rename virtio_pci_cfg_cap field to match spec.
[mirror_ubuntu-artful-kernel.git] / tools / lguest / lguest.c
1 /*P:100
2 * This is the Launcher code, a simple program which lays out the "physical"
3 * memory for the new Guest by mapping the kernel image and the virtual
4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
5 * control it.
6 :*/
7 #define _LARGEFILE64_SOURCE
8 #define _GNU_SOURCE
9 #include <stdio.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <err.h>
13 #include <stdint.h>
14 #include <stdlib.h>
15 #include <elf.h>
16 #include <sys/mman.h>
17 #include <sys/param.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <sys/wait.h>
21 #include <sys/eventfd.h>
22 #include <fcntl.h>
23 #include <stdbool.h>
24 #include <errno.h>
25 #include <ctype.h>
26 #include <sys/socket.h>
27 #include <sys/ioctl.h>
28 #include <sys/time.h>
29 #include <time.h>
30 #include <netinet/in.h>
31 #include <net/if.h>
32 #include <linux/sockios.h>
33 #include <linux/if_tun.h>
34 #include <sys/uio.h>
35 #include <termios.h>
36 #include <getopt.h>
37 #include <assert.h>
38 #include <sched.h>
39 #include <limits.h>
40 #include <stddef.h>
41 #include <signal.h>
42 #include <pwd.h>
43 #include <grp.h>
44 #include <sys/user.h>
45 #include <linux/pci_regs.h>
46
47 #ifndef VIRTIO_F_ANY_LAYOUT
48 #define VIRTIO_F_ANY_LAYOUT 27
49 #endif
50
51 /*L:110
52 * We can ignore the 43 include files we need for this program, but I do want
53 * to draw attention to the use of kernel-style types.
54 *
55 * As Linus said, "C is a Spartan language, and so should your naming be." I
56 * like these abbreviations, so we define them here. Note that u64 is always
57 * unsigned long long, which works on all Linux systems: this means that we can
58 * use %llu in printf for any u64.
59 */
60 typedef unsigned long long u64;
61 typedef uint32_t u32;
62 typedef uint16_t u16;
63 typedef uint8_t u8;
64 /*:*/
65
66 #define VIRTIO_CONFIG_NO_LEGACY
67 #define VIRTIO_PCI_NO_LEGACY
68 #define VIRTIO_BLK_NO_LEGACY
69
70 /* Use in-kernel ones, which defines VIRTIO_F_VERSION_1 */
71 #include "../../include/uapi/linux/virtio_config.h"
72 #include "../../include/uapi/linux/virtio_net.h"
73 #include "../../include/uapi/linux/virtio_blk.h"
74 #include "../../include/uapi/linux/virtio_console.h"
75 #include "../../include/uapi/linux/virtio_rng.h"
76 #include <linux/virtio_ring.h>
77 #include "../../include/uapi/linux/virtio_pci.h"
78 #include <asm/bootparam.h>
79 #include "../../include/linux/lguest_launcher.h"
80
81 #define BRIDGE_PFX "bridge:"
82 #ifndef SIOCBRADDIF
83 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
84 #endif
85 /* We can have up to 256 pages for devices. */
86 #define DEVICE_PAGES 256
87 /* This will occupy 3 pages: it must be a power of 2. */
88 #define VIRTQUEUE_NUM 256
89
90 /*L:120
91 * verbose is both a global flag and a macro. The C preprocessor allows
92 * this, and although I wouldn't recommend it, it works quite nicely here.
93 */
94 static bool verbose;
95 #define verbose(args...) \
96 do { if (verbose) printf(args); } while(0)
97 /*:*/
98
99 /* The pointer to the start of guest memory. */
100 static void *guest_base;
101 /* The maximum guest physical address allowed, and maximum possible. */
102 static unsigned long guest_limit, guest_max, guest_mmio;
103 /* The /dev/lguest file descriptor. */
104 static int lguest_fd;
105
106 /* a per-cpu variable indicating whose vcpu is currently running */
107 static unsigned int __thread cpu_id;
108
109 /* 5 bit device number in the PCI_CONFIG_ADDR => 32 only */
110 #define MAX_PCI_DEVICES 32
111
112 /* This is our list of devices. */
113 struct device_list {
114 /* Counter to assign interrupt numbers. */
115 unsigned int next_irq;
116
117 /* Counter to print out convenient device numbers. */
118 unsigned int device_num;
119
120 /* PCI devices. */
121 struct device *pci[MAX_PCI_DEVICES];
122 };
123
124 /* The list of Guest devices, based on command line arguments. */
125 static struct device_list devices;
126
127 struct virtio_pci_cfg_cap {
128 struct virtio_pci_cap cap;
129 u32 pci_cfg_data; /* Data for BAR access. */
130 };
131
132 struct virtio_pci_mmio {
133 struct virtio_pci_common_cfg cfg;
134 u16 notify;
135 u8 isr;
136 u8 padding;
137 /* Device-specific configuration follows this. */
138 };
139
140 /* This is the layout (little-endian) of the PCI config space. */
141 struct pci_config {
142 u16 vendor_id, device_id;
143 u16 command, status;
144 u8 revid, prog_if, subclass, class;
145 u8 cacheline_size, lat_timer, header_type, bist;
146 u32 bar[6];
147 u32 cardbus_cis_ptr;
148 u16 subsystem_vendor_id, subsystem_device_id;
149 u32 expansion_rom_addr;
150 u8 capabilities, reserved1[3];
151 u32 reserved2;
152 u8 irq_line, irq_pin, min_grant, max_latency;
153
154 /* Now, this is the linked capability list. */
155 struct virtio_pci_cap common;
156 struct virtio_pci_notify_cap notify;
157 struct virtio_pci_cap isr;
158 struct virtio_pci_cap device;
159 struct virtio_pci_cfg_cap cfg_access;
160 };
161
162 /* The device structure describes a single device. */
163 struct device {
164 /* The name of this device, for --verbose. */
165 const char *name;
166
167 /* Any queues attached to this device */
168 struct virtqueue *vq;
169
170 /* Is it operational */
171 bool running;
172
173 /* PCI configuration */
174 union {
175 struct pci_config config;
176 u32 config_words[sizeof(struct pci_config) / sizeof(u32)];
177 };
178
179 /* Features we offer, and those accepted. */
180 u64 features, features_accepted;
181
182 /* Device-specific config hangs off the end of this. */
183 struct virtio_pci_mmio *mmio;
184
185 /* PCI MMIO resources (all in BAR0) */
186 size_t mmio_size;
187 u32 mmio_addr;
188
189 /* Device-specific data. */
190 void *priv;
191 };
192
193 /* The virtqueue structure describes a queue attached to a device. */
194 struct virtqueue {
195 struct virtqueue *next;
196
197 /* Which device owns me. */
198 struct device *dev;
199
200 /* The actual ring of buffers. */
201 struct vring vring;
202
203 /* The information about this virtqueue (we only use queue_size on) */
204 struct virtio_pci_common_cfg pci_config;
205
206 /* Last available index we saw. */
207 u16 last_avail_idx;
208
209 /* How many are used since we sent last irq? */
210 unsigned int pending_used;
211
212 /* Eventfd where Guest notifications arrive. */
213 int eventfd;
214
215 /* Function for the thread which is servicing this virtqueue. */
216 void (*service)(struct virtqueue *vq);
217 pid_t thread;
218 };
219
220 /* Remember the arguments to the program so we can "reboot" */
221 static char **main_args;
222
223 /* The original tty settings to restore on exit. */
224 static struct termios orig_term;
225
226 /*
227 * We have to be careful with barriers: our devices are all run in separate
228 * threads and so we need to make sure that changes visible to the Guest happen
229 * in precise order.
230 */
231 #define wmb() __asm__ __volatile__("" : : : "memory")
232 #define rmb() __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory")
233 #define mb() __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory")
234
235 /* Wrapper for the last available index. Makes it easier to change. */
236 #define lg_last_avail(vq) ((vq)->last_avail_idx)
237
238 /*
239 * The virtio configuration space is defined to be little-endian. x86 is
240 * little-endian too, but it's nice to be explicit so we have these helpers.
241 */
242 #define cpu_to_le16(v16) (v16)
243 #define cpu_to_le32(v32) (v32)
244 #define cpu_to_le64(v64) (v64)
245 #define le16_to_cpu(v16) (v16)
246 #define le32_to_cpu(v32) (v32)
247 #define le64_to_cpu(v64) (v64)
248
249 /* Is this iovec empty? */
250 static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
251 {
252 unsigned int i;
253
254 for (i = 0; i < num_iov; i++)
255 if (iov[i].iov_len)
256 return false;
257 return true;
258 }
259
260 /* Take len bytes from the front of this iovec. */
261 static void iov_consume(struct iovec iov[], unsigned num_iov,
262 void *dest, unsigned len)
263 {
264 unsigned int i;
265
266 for (i = 0; i < num_iov; i++) {
267 unsigned int used;
268
269 used = iov[i].iov_len < len ? iov[i].iov_len : len;
270 if (dest) {
271 memcpy(dest, iov[i].iov_base, used);
272 dest += used;
273 }
274 iov[i].iov_base += used;
275 iov[i].iov_len -= used;
276 len -= used;
277 }
278 if (len != 0)
279 errx(1, "iovec too short!");
280 }
281
282 /*L:100
283 * The Launcher code itself takes us out into userspace, that scary place where
284 * pointers run wild and free! Unfortunately, like most userspace programs,
285 * it's quite boring (which is why everyone likes to hack on the kernel!).
286 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
287 * you through this section. Or, maybe not.
288 *
289 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
290 * memory and stores it in "guest_base". In other words, Guest physical ==
291 * Launcher virtual with an offset.
292 *
293 * This can be tough to get your head around, but usually it just means that we
294 * use these trivial conversion functions when the Guest gives us its
295 * "physical" addresses:
296 */
297 static void *from_guest_phys(unsigned long addr)
298 {
299 return guest_base + addr;
300 }
301
302 static unsigned long to_guest_phys(const void *addr)
303 {
304 return (addr - guest_base);
305 }
306
307 /*L:130
308 * Loading the Kernel.
309 *
310 * We start with couple of simple helper routines. open_or_die() avoids
311 * error-checking code cluttering the callers:
312 */
313 static int open_or_die(const char *name, int flags)
314 {
315 int fd = open(name, flags);
316 if (fd < 0)
317 err(1, "Failed to open %s", name);
318 return fd;
319 }
320
321 /* map_zeroed_pages() takes a number of pages. */
322 static void *map_zeroed_pages(unsigned int num)
323 {
324 int fd = open_or_die("/dev/zero", O_RDONLY);
325 void *addr;
326
327 /*
328 * We use a private mapping (ie. if we write to the page, it will be
329 * copied). We allocate an extra two pages PROT_NONE to act as guard
330 * pages against read/write attempts that exceed allocated space.
331 */
332 addr = mmap(NULL, getpagesize() * (num+2),
333 PROT_NONE, MAP_PRIVATE, fd, 0);
334
335 if (addr == MAP_FAILED)
336 err(1, "Mmapping %u pages of /dev/zero", num);
337
338 if (mprotect(addr + getpagesize(), getpagesize() * num,
339 PROT_READ|PROT_WRITE) == -1)
340 err(1, "mprotect rw %u pages failed", num);
341
342 /*
343 * One neat mmap feature is that you can close the fd, and it
344 * stays mapped.
345 */
346 close(fd);
347
348 /* Return address after PROT_NONE page */
349 return addr + getpagesize();
350 }
351
352 /* Get some bytes which won't be mapped into the guest. */
353 static unsigned long get_mmio_region(size_t size)
354 {
355 unsigned long addr = guest_mmio;
356 size_t i;
357
358 if (!size)
359 return addr;
360
361 /* Size has to be a power of 2 (and multiple of 16) */
362 for (i = 1; i < size; i <<= 1);
363
364 guest_mmio += i;
365
366 return addr;
367 }
368
369 /*
370 * This routine is used to load the kernel or initrd. It tries mmap, but if
371 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
372 * it falls back to reading the memory in.
373 */
374 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
375 {
376 ssize_t r;
377
378 /*
379 * We map writable even though for some segments are marked read-only.
380 * The kernel really wants to be writable: it patches its own
381 * instructions.
382 *
383 * MAP_PRIVATE means that the page won't be copied until a write is
384 * done to it. This allows us to share untouched memory between
385 * Guests.
386 */
387 if (mmap(addr, len, PROT_READ|PROT_WRITE,
388 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
389 return;
390
391 /* pread does a seek and a read in one shot: saves a few lines. */
392 r = pread(fd, addr, len, offset);
393 if (r != len)
394 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
395 }
396
397 /*
398 * This routine takes an open vmlinux image, which is in ELF, and maps it into
399 * the Guest memory. ELF = Embedded Linking Format, which is the format used
400 * by all modern binaries on Linux including the kernel.
401 *
402 * The ELF headers give *two* addresses: a physical address, and a virtual
403 * address. We use the physical address; the Guest will map itself to the
404 * virtual address.
405 *
406 * We return the starting address.
407 */
408 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
409 {
410 Elf32_Phdr phdr[ehdr->e_phnum];
411 unsigned int i;
412
413 /*
414 * Sanity checks on the main ELF header: an x86 executable with a
415 * reasonable number of correctly-sized program headers.
416 */
417 if (ehdr->e_type != ET_EXEC
418 || ehdr->e_machine != EM_386
419 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
420 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
421 errx(1, "Malformed elf header");
422
423 /*
424 * An ELF executable contains an ELF header and a number of "program"
425 * headers which indicate which parts ("segments") of the program to
426 * load where.
427 */
428
429 /* We read in all the program headers at once: */
430 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
431 err(1, "Seeking to program headers");
432 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
433 err(1, "Reading program headers");
434
435 /*
436 * Try all the headers: there are usually only three. A read-only one,
437 * a read-write one, and a "note" section which we don't load.
438 */
439 for (i = 0; i < ehdr->e_phnum; i++) {
440 /* If this isn't a loadable segment, we ignore it */
441 if (phdr[i].p_type != PT_LOAD)
442 continue;
443
444 verbose("Section %i: size %i addr %p\n",
445 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
446
447 /* We map this section of the file at its physical address. */
448 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
449 phdr[i].p_offset, phdr[i].p_filesz);
450 }
451
452 /* The entry point is given in the ELF header. */
453 return ehdr->e_entry;
454 }
455
456 /*L:150
457 * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed
458 * to jump into it and it will unpack itself. We used to have to perform some
459 * hairy magic because the unpacking code scared me.
460 *
461 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
462 * a small patch to jump over the tricky bits in the Guest, so now we just read
463 * the funky header so we know where in the file to load, and away we go!
464 */
465 static unsigned long load_bzimage(int fd)
466 {
467 struct boot_params boot;
468 int r;
469 /* Modern bzImages get loaded at 1M. */
470 void *p = from_guest_phys(0x100000);
471
472 /*
473 * Go back to the start of the file and read the header. It should be
474 * a Linux boot header (see Documentation/x86/boot.txt)
475 */
476 lseek(fd, 0, SEEK_SET);
477 read(fd, &boot, sizeof(boot));
478
479 /* Inside the setup_hdr, we expect the magic "HdrS" */
480 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
481 errx(1, "This doesn't look like a bzImage to me");
482
483 /* Skip over the extra sectors of the header. */
484 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
485
486 /* Now read everything into memory. in nice big chunks. */
487 while ((r = read(fd, p, 65536)) > 0)
488 p += r;
489
490 /* Finally, code32_start tells us where to enter the kernel. */
491 return boot.hdr.code32_start;
492 }
493
494 /*L:140
495 * Loading the kernel is easy when it's a "vmlinux", but most kernels
496 * come wrapped up in the self-decompressing "bzImage" format. With a little
497 * work, we can load those, too.
498 */
499 static unsigned long load_kernel(int fd)
500 {
501 Elf32_Ehdr hdr;
502
503 /* Read in the first few bytes. */
504 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
505 err(1, "Reading kernel");
506
507 /* If it's an ELF file, it starts with "\177ELF" */
508 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
509 return map_elf(fd, &hdr);
510
511 /* Otherwise we assume it's a bzImage, and try to load it. */
512 return load_bzimage(fd);
513 }
514
515 /*
516 * This is a trivial little helper to align pages. Andi Kleen hated it because
517 * it calls getpagesize() twice: "it's dumb code."
518 *
519 * Kernel guys get really het up about optimization, even when it's not
520 * necessary. I leave this code as a reaction against that.
521 */
522 static inline unsigned long page_align(unsigned long addr)
523 {
524 /* Add upwards and truncate downwards. */
525 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
526 }
527
528 /*L:180
529 * An "initial ram disk" is a disk image loaded into memory along with the
530 * kernel which the kernel can use to boot from without needing any drivers.
531 * Most distributions now use this as standard: the initrd contains the code to
532 * load the appropriate driver modules for the current machine.
533 *
534 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
535 * kernels. He sent me this (and tells me when I break it).
536 */
537 static unsigned long load_initrd(const char *name, unsigned long mem)
538 {
539 int ifd;
540 struct stat st;
541 unsigned long len;
542
543 ifd = open_or_die(name, O_RDONLY);
544 /* fstat() is needed to get the file size. */
545 if (fstat(ifd, &st) < 0)
546 err(1, "fstat() on initrd '%s'", name);
547
548 /*
549 * We map the initrd at the top of memory, but mmap wants it to be
550 * page-aligned, so we round the size up for that.
551 */
552 len = page_align(st.st_size);
553 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
554 /*
555 * Once a file is mapped, you can close the file descriptor. It's a
556 * little odd, but quite useful.
557 */
558 close(ifd);
559 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
560
561 /* We return the initrd size. */
562 return len;
563 }
564 /*:*/
565
566 /*
567 * Simple routine to roll all the commandline arguments together with spaces
568 * between them.
569 */
570 static void concat(char *dst, char *args[])
571 {
572 unsigned int i, len = 0;
573
574 for (i = 0; args[i]; i++) {
575 if (i) {
576 strcat(dst+len, " ");
577 len++;
578 }
579 strcpy(dst+len, args[i]);
580 len += strlen(args[i]);
581 }
582 /* In case it's empty. */
583 dst[len] = '\0';
584 }
585
586 /*L:185
587 * This is where we actually tell the kernel to initialize the Guest. We
588 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
589 * the base of Guest "physical" memory, the top physical page to allow and the
590 * entry point for the Guest.
591 */
592 static void tell_kernel(unsigned long start)
593 {
594 unsigned long args[] = { LHREQ_INITIALIZE,
595 (unsigned long)guest_base,
596 guest_limit / getpagesize(), start,
597 (guest_mmio+getpagesize()-1) / getpagesize() };
598 verbose("Guest: %p - %p (%#lx, MMIO %#lx)\n",
599 guest_base, guest_base + guest_limit,
600 guest_limit, guest_mmio);
601 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
602 if (write(lguest_fd, args, sizeof(args)) < 0)
603 err(1, "Writing to /dev/lguest");
604 }
605 /*:*/
606
607 /*L:200
608 * Device Handling.
609 *
610 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
611 * We need to make sure it's not trying to reach into the Launcher itself, so
612 * we have a convenient routine which checks it and exits with an error message
613 * if something funny is going on:
614 */
615 static void *_check_pointer(unsigned long addr, unsigned int size,
616 unsigned int line)
617 {
618 /*
619 * Check if the requested address and size exceeds the allocated memory,
620 * or addr + size wraps around.
621 */
622 if ((addr + size) > guest_limit || (addr + size) < addr)
623 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
624 /*
625 * We return a pointer for the caller's convenience, now we know it's
626 * safe to use.
627 */
628 return from_guest_phys(addr);
629 }
630 /* A macro which transparently hands the line number to the real function. */
631 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
632
633 /*
634 * Each buffer in the virtqueues is actually a chain of descriptors. This
635 * function returns the next descriptor in the chain, or vq->vring.num if we're
636 * at the end.
637 */
638 static unsigned next_desc(struct vring_desc *desc,
639 unsigned int i, unsigned int max)
640 {
641 unsigned int next;
642
643 /* If this descriptor says it doesn't chain, we're done. */
644 if (!(desc[i].flags & VRING_DESC_F_NEXT))
645 return max;
646
647 /* Check they're not leading us off end of descriptors. */
648 next = desc[i].next;
649 /* Make sure compiler knows to grab that: we don't want it changing! */
650 wmb();
651
652 if (next >= max)
653 errx(1, "Desc next is %u", next);
654
655 return next;
656 }
657
658 /*
659 * This actually sends the interrupt for this virtqueue, if we've used a
660 * buffer.
661 */
662 static void trigger_irq(struct virtqueue *vq)
663 {
664 unsigned long buf[] = { LHREQ_IRQ, vq->dev->config.irq_line };
665
666 /* Don't inform them if nothing used. */
667 if (!vq->pending_used)
668 return;
669 vq->pending_used = 0;
670
671 /* If they don't want an interrupt, don't send one... */
672 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
673 return;
674 }
675
676 /* Set isr to 1 (queue interrupt pending) */
677 vq->dev->mmio->isr = 0x1;
678
679 /* Send the Guest an interrupt tell them we used something up. */
680 if (write(lguest_fd, buf, sizeof(buf)) != 0)
681 err(1, "Triggering irq %i", vq->dev->config.irq_line);
682 }
683
684 /*
685 * This looks in the virtqueue for the first available buffer, and converts
686 * it to an iovec for convenient access. Since descriptors consist of some
687 * number of output then some number of input descriptors, it's actually two
688 * iovecs, but we pack them into one and note how many of each there were.
689 *
690 * This function waits if necessary, and returns the descriptor number found.
691 */
692 static unsigned wait_for_vq_desc(struct virtqueue *vq,
693 struct iovec iov[],
694 unsigned int *out_num, unsigned int *in_num)
695 {
696 unsigned int i, head, max;
697 struct vring_desc *desc;
698 u16 last_avail = lg_last_avail(vq);
699
700 /* There's nothing available? */
701 while (last_avail == vq->vring.avail->idx) {
702 u64 event;
703
704 /*
705 * Since we're about to sleep, now is a good time to tell the
706 * Guest about what we've used up to now.
707 */
708 trigger_irq(vq);
709
710 /* OK, now we need to know about added descriptors. */
711 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
712
713 /*
714 * They could have slipped one in as we were doing that: make
715 * sure it's written, then check again.
716 */
717 mb();
718 if (last_avail != vq->vring.avail->idx) {
719 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
720 break;
721 }
722
723 /* Nothing new? Wait for eventfd to tell us they refilled. */
724 if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
725 errx(1, "Event read failed?");
726
727 /* We don't need to be notified again. */
728 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
729 }
730
731 /* Check it isn't doing very strange things with descriptor numbers. */
732 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
733 errx(1, "Guest moved used index from %u to %u",
734 last_avail, vq->vring.avail->idx);
735
736 /*
737 * Make sure we read the descriptor number *after* we read the ring
738 * update; don't let the cpu or compiler change the order.
739 */
740 rmb();
741
742 /*
743 * Grab the next descriptor number they're advertising, and increment
744 * the index we've seen.
745 */
746 head = vq->vring.avail->ring[last_avail % vq->vring.num];
747 lg_last_avail(vq)++;
748
749 /* If their number is silly, that's a fatal mistake. */
750 if (head >= vq->vring.num)
751 errx(1, "Guest says index %u is available", head);
752
753 /* When we start there are none of either input nor output. */
754 *out_num = *in_num = 0;
755
756 max = vq->vring.num;
757 desc = vq->vring.desc;
758 i = head;
759
760 /*
761 * We have to read the descriptor after we read the descriptor number,
762 * but there's a data dependency there so the CPU shouldn't reorder
763 * that: no rmb() required.
764 */
765
766 /*
767 * If this is an indirect entry, then this buffer contains a descriptor
768 * table which we handle as if it's any normal descriptor chain.
769 */
770 if (desc[i].flags & VRING_DESC_F_INDIRECT) {
771 if (desc[i].len % sizeof(struct vring_desc))
772 errx(1, "Invalid size for indirect buffer table");
773
774 max = desc[i].len / sizeof(struct vring_desc);
775 desc = check_pointer(desc[i].addr, desc[i].len);
776 i = 0;
777 }
778
779 do {
780 /* Grab the first descriptor, and check it's OK. */
781 iov[*out_num + *in_num].iov_len = desc[i].len;
782 iov[*out_num + *in_num].iov_base
783 = check_pointer(desc[i].addr, desc[i].len);
784 /* If this is an input descriptor, increment that count. */
785 if (desc[i].flags & VRING_DESC_F_WRITE)
786 (*in_num)++;
787 else {
788 /*
789 * If it's an output descriptor, they're all supposed
790 * to come before any input descriptors.
791 */
792 if (*in_num)
793 errx(1, "Descriptor has out after in");
794 (*out_num)++;
795 }
796
797 /* If we've got too many, that implies a descriptor loop. */
798 if (*out_num + *in_num > max)
799 errx(1, "Looped descriptor");
800 } while ((i = next_desc(desc, i, max)) != max);
801
802 return head;
803 }
804
805 /*
806 * After we've used one of their buffers, we tell the Guest about it. Sometime
807 * later we'll want to send them an interrupt using trigger_irq(); note that
808 * wait_for_vq_desc() does that for us if it has to wait.
809 */
810 static void add_used(struct virtqueue *vq, unsigned int head, int len)
811 {
812 struct vring_used_elem *used;
813
814 /*
815 * The virtqueue contains a ring of used buffers. Get a pointer to the
816 * next entry in that used ring.
817 */
818 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
819 used->id = head;
820 used->len = len;
821 /* Make sure buffer is written before we update index. */
822 wmb();
823 vq->vring.used->idx++;
824 vq->pending_used++;
825 }
826
827 /* And here's the combo meal deal. Supersize me! */
828 static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
829 {
830 add_used(vq, head, len);
831 trigger_irq(vq);
832 }
833
834 /*
835 * The Console
836 *
837 * We associate some data with the console for our exit hack.
838 */
839 struct console_abort {
840 /* How many times have they hit ^C? */
841 int count;
842 /* When did they start? */
843 struct timeval start;
844 };
845
846 /* This is the routine which handles console input (ie. stdin). */
847 static void console_input(struct virtqueue *vq)
848 {
849 int len;
850 unsigned int head, in_num, out_num;
851 struct console_abort *abort = vq->dev->priv;
852 struct iovec iov[vq->vring.num];
853
854 /* Make sure there's a descriptor available. */
855 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
856 if (out_num)
857 errx(1, "Output buffers in console in queue?");
858
859 /* Read into it. This is where we usually wait. */
860 len = readv(STDIN_FILENO, iov, in_num);
861 if (len <= 0) {
862 /* Ran out of input? */
863 warnx("Failed to get console input, ignoring console.");
864 /*
865 * For simplicity, dying threads kill the whole Launcher. So
866 * just nap here.
867 */
868 for (;;)
869 pause();
870 }
871
872 /* Tell the Guest we used a buffer. */
873 add_used_and_trigger(vq, head, len);
874
875 /*
876 * Three ^C within one second? Exit.
877 *
878 * This is such a hack, but works surprisingly well. Each ^C has to
879 * be in a buffer by itself, so they can't be too fast. But we check
880 * that we get three within about a second, so they can't be too
881 * slow.
882 */
883 if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
884 abort->count = 0;
885 return;
886 }
887
888 abort->count++;
889 if (abort->count == 1)
890 gettimeofday(&abort->start, NULL);
891 else if (abort->count == 3) {
892 struct timeval now;
893 gettimeofday(&now, NULL);
894 /* Kill all Launcher processes with SIGINT, like normal ^C */
895 if (now.tv_sec <= abort->start.tv_sec+1)
896 kill(0, SIGINT);
897 abort->count = 0;
898 }
899 }
900
901 /* This is the routine which handles console output (ie. stdout). */
902 static void console_output(struct virtqueue *vq)
903 {
904 unsigned int head, out, in;
905 struct iovec iov[vq->vring.num];
906
907 /* We usually wait in here, for the Guest to give us something. */
908 head = wait_for_vq_desc(vq, iov, &out, &in);
909 if (in)
910 errx(1, "Input buffers in console output queue?");
911
912 /* writev can return a partial write, so we loop here. */
913 while (!iov_empty(iov, out)) {
914 int len = writev(STDOUT_FILENO, iov, out);
915 if (len <= 0) {
916 warn("Write to stdout gave %i (%d)", len, errno);
917 break;
918 }
919 iov_consume(iov, out, NULL, len);
920 }
921
922 /*
923 * We're finished with that buffer: if we're going to sleep,
924 * wait_for_vq_desc() will prod the Guest with an interrupt.
925 */
926 add_used(vq, head, 0);
927 }
928
929 /*
930 * The Network
931 *
932 * Handling output for network is also simple: we get all the output buffers
933 * and write them to /dev/net/tun.
934 */
935 struct net_info {
936 int tunfd;
937 };
938
939 static void net_output(struct virtqueue *vq)
940 {
941 struct net_info *net_info = vq->dev->priv;
942 unsigned int head, out, in;
943 struct iovec iov[vq->vring.num];
944
945 /* We usually wait in here for the Guest to give us a packet. */
946 head = wait_for_vq_desc(vq, iov, &out, &in);
947 if (in)
948 errx(1, "Input buffers in net output queue?");
949 /*
950 * Send the whole thing through to /dev/net/tun. It expects the exact
951 * same format: what a coincidence!
952 */
953 if (writev(net_info->tunfd, iov, out) < 0)
954 warnx("Write to tun failed (%d)?", errno);
955
956 /*
957 * Done with that one; wait_for_vq_desc() will send the interrupt if
958 * all packets are processed.
959 */
960 add_used(vq, head, 0);
961 }
962
963 /*
964 * Handling network input is a bit trickier, because I've tried to optimize it.
965 *
966 * First we have a helper routine which tells is if from this file descriptor
967 * (ie. the /dev/net/tun device) will block:
968 */
969 static bool will_block(int fd)
970 {
971 fd_set fdset;
972 struct timeval zero = { 0, 0 };
973 FD_ZERO(&fdset);
974 FD_SET(fd, &fdset);
975 return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
976 }
977
978 /*
979 * This handles packets coming in from the tun device to our Guest. Like all
980 * service routines, it gets called again as soon as it returns, so you don't
981 * see a while(1) loop here.
982 */
983 static void net_input(struct virtqueue *vq)
984 {
985 int len;
986 unsigned int head, out, in;
987 struct iovec iov[vq->vring.num];
988 struct net_info *net_info = vq->dev->priv;
989
990 /*
991 * Get a descriptor to write an incoming packet into. This will also
992 * send an interrupt if they're out of descriptors.
993 */
994 head = wait_for_vq_desc(vq, iov, &out, &in);
995 if (out)
996 errx(1, "Output buffers in net input queue?");
997
998 /*
999 * If it looks like we'll block reading from the tun device, send them
1000 * an interrupt.
1001 */
1002 if (vq->pending_used && will_block(net_info->tunfd))
1003 trigger_irq(vq);
1004
1005 /*
1006 * Read in the packet. This is where we normally wait (when there's no
1007 * incoming network traffic).
1008 */
1009 len = readv(net_info->tunfd, iov, in);
1010 if (len <= 0)
1011 warn("Failed to read from tun (%d).", errno);
1012
1013 /*
1014 * Mark that packet buffer as used, but don't interrupt here. We want
1015 * to wait until we've done as much work as we can.
1016 */
1017 add_used(vq, head, len);
1018 }
1019 /*:*/
1020
1021 /* This is the helper to create threads: run the service routine in a loop. */
1022 static int do_thread(void *_vq)
1023 {
1024 struct virtqueue *vq = _vq;
1025
1026 for (;;)
1027 vq->service(vq);
1028 return 0;
1029 }
1030
1031 /*
1032 * When a child dies, we kill our entire process group with SIGTERM. This
1033 * also has the side effect that the shell restores the console for us!
1034 */
1035 static void kill_launcher(int signal)
1036 {
1037 kill(0, SIGTERM);
1038 }
1039
1040 static void reset_vq_pci_config(struct virtqueue *vq)
1041 {
1042 vq->pci_config.queue_size = VIRTQUEUE_NUM;
1043 vq->pci_config.queue_enable = 0;
1044 }
1045
1046 static void reset_device(struct device *dev)
1047 {
1048 struct virtqueue *vq;
1049
1050 verbose("Resetting device %s\n", dev->name);
1051
1052 /* Clear any features they've acked. */
1053 dev->features_accepted = 0;
1054
1055 /* We're going to be explicitly killing threads, so ignore them. */
1056 signal(SIGCHLD, SIG_IGN);
1057
1058 /*
1059 * 4.1.4.3.1:
1060 *
1061 * The device MUST present a 0 in queue_enable on reset.
1062 *
1063 * This means we set it here, and reset the saved ones in every vq.
1064 */
1065 dev->mmio->cfg.queue_enable = 0;
1066
1067 /* Get rid of the virtqueue threads */
1068 for (vq = dev->vq; vq; vq = vq->next) {
1069 vq->last_avail_idx = 0;
1070 reset_vq_pci_config(vq);
1071 if (vq->thread != (pid_t)-1) {
1072 kill(vq->thread, SIGTERM);
1073 waitpid(vq->thread, NULL, 0);
1074 vq->thread = (pid_t)-1;
1075 }
1076 }
1077 dev->running = false;
1078
1079 /* Now we care if threads die. */
1080 signal(SIGCHLD, (void *)kill_launcher);
1081 }
1082
1083 static void cleanup_devices(void)
1084 {
1085 unsigned int i;
1086
1087 for (i = 1; i < MAX_PCI_DEVICES; i++) {
1088 struct device *d = devices.pci[i];
1089 if (!d)
1090 continue;
1091 reset_device(d);
1092 }
1093
1094 /* If we saved off the original terminal settings, restore them now. */
1095 if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1096 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1097 }
1098
1099 /*L:217
1100 * We do PCI. This is mainly done to let us test the kernel virtio PCI
1101 * code.
1102 */
1103
1104 /* Linux expects a PCI host bridge: ours is a dummy, and first on the bus. */
1105 static struct device pci_host_bridge;
1106
1107 static void init_pci_host_bridge(void)
1108 {
1109 pci_host_bridge.name = "PCI Host Bridge";
1110 pci_host_bridge.config.class = 0x06; /* bridge */
1111 pci_host_bridge.config.subclass = 0; /* host bridge */
1112 devices.pci[0] = &pci_host_bridge;
1113 }
1114
1115 /* The IO ports used to read the PCI config space. */
1116 #define PCI_CONFIG_ADDR 0xCF8
1117 #define PCI_CONFIG_DATA 0xCFC
1118
1119 /*
1120 * Not really portable, but does help readability: this is what the Guest
1121 * writes to the PCI_CONFIG_ADDR IO port.
1122 */
1123 union pci_config_addr {
1124 struct {
1125 unsigned mbz: 2;
1126 unsigned offset: 6;
1127 unsigned funcnum: 3;
1128 unsigned devnum: 5;
1129 unsigned busnum: 8;
1130 unsigned reserved: 7;
1131 unsigned enabled : 1;
1132 } bits;
1133 u32 val;
1134 };
1135
1136 /*
1137 * We cache what they wrote to the address port, so we know what they're
1138 * talking about when they access the data port.
1139 */
1140 static union pci_config_addr pci_config_addr;
1141
1142 static struct device *find_pci_device(unsigned int index)
1143 {
1144 return devices.pci[index];
1145 }
1146
1147 /* PCI can do 1, 2 and 4 byte reads; we handle that here. */
1148 static void ioread(u16 off, u32 v, u32 mask, u32 *val)
1149 {
1150 assert(off < 4);
1151 assert(mask == 0xFF || mask == 0xFFFF || mask == 0xFFFFFFFF);
1152 *val = (v >> (off * 8)) & mask;
1153 }
1154
1155 /* PCI can do 1, 2 and 4 byte writes; we handle that here. */
1156 static void iowrite(u16 off, u32 v, u32 mask, u32 *dst)
1157 {
1158 assert(off < 4);
1159 assert(mask == 0xFF || mask == 0xFFFF || mask == 0xFFFFFFFF);
1160 *dst &= ~(mask << (off * 8));
1161 *dst |= (v & mask) << (off * 8);
1162 }
1163
1164 /*
1165 * Where PCI_CONFIG_DATA accesses depends on the previous write to
1166 * PCI_CONFIG_ADDR.
1167 */
1168 static struct device *dev_and_reg(u32 *reg)
1169 {
1170 if (!pci_config_addr.bits.enabled)
1171 return NULL;
1172
1173 if (pci_config_addr.bits.funcnum != 0)
1174 return NULL;
1175
1176 if (pci_config_addr.bits.busnum != 0)
1177 return NULL;
1178
1179 if (pci_config_addr.bits.offset * 4 >= sizeof(struct pci_config))
1180 return NULL;
1181
1182 *reg = pci_config_addr.bits.offset;
1183 return find_pci_device(pci_config_addr.bits.devnum);
1184 }
1185
1186 /*
1187 * We can get invalid combinations of values while they're writing, so we
1188 * only fault if they try to write with some invalid bar/offset/length.
1189 */
1190 static bool valid_bar_access(struct device *d,
1191 struct virtio_pci_cfg_cap *cfg_access)
1192 {
1193 /* We only have 1 bar (BAR0) */
1194 if (cfg_access->cap.bar != 0)
1195 return false;
1196
1197 /* Check it's within BAR0. */
1198 if (cfg_access->cap.offset >= d->mmio_size
1199 || cfg_access->cap.offset + cfg_access->cap.length > d->mmio_size)
1200 return false;
1201
1202 /* Check length is 1, 2 or 4. */
1203 if (cfg_access->cap.length != 1
1204 && cfg_access->cap.length != 2
1205 && cfg_access->cap.length != 4)
1206 return false;
1207
1208 /* Offset must be multiple of length */
1209 if (cfg_access->cap.offset % cfg_access->cap.length != 0)
1210 return false;
1211
1212 /* Return pointer into word in BAR0. */
1213 return true;
1214 }
1215
1216 /* Is this accessing the PCI config address port?. */
1217 static bool is_pci_addr_port(u16 port)
1218 {
1219 return port >= PCI_CONFIG_ADDR && port < PCI_CONFIG_ADDR + 4;
1220 }
1221
1222 static bool pci_addr_iowrite(u16 port, u32 mask, u32 val)
1223 {
1224 iowrite(port - PCI_CONFIG_ADDR, val, mask,
1225 &pci_config_addr.val);
1226 verbose("PCI%s: %#x/%x: bus %u dev %u func %u reg %u\n",
1227 pci_config_addr.bits.enabled ? "" : " DISABLED",
1228 val, mask,
1229 pci_config_addr.bits.busnum,
1230 pci_config_addr.bits.devnum,
1231 pci_config_addr.bits.funcnum,
1232 pci_config_addr.bits.offset);
1233 return true;
1234 }
1235
1236 static void pci_addr_ioread(u16 port, u32 mask, u32 *val)
1237 {
1238 ioread(port - PCI_CONFIG_ADDR, pci_config_addr.val, mask, val);
1239 }
1240
1241 /* Is this accessing the PCI config data port?. */
1242 static bool is_pci_data_port(u16 port)
1243 {
1244 return port >= PCI_CONFIG_DATA && port < PCI_CONFIG_DATA + 4;
1245 }
1246
1247 static void emulate_mmio_write(struct device *d, u32 off, u32 val, u32 mask);
1248
1249 static bool pci_data_iowrite(u16 port, u32 mask, u32 val)
1250 {
1251 u32 reg, portoff;
1252 struct device *d = dev_and_reg(&reg);
1253
1254 /* Complain if they don't belong to a device. */
1255 if (!d)
1256 return false;
1257
1258 /* They can do 1 byte writes, etc. */
1259 portoff = port - PCI_CONFIG_DATA;
1260
1261 /*
1262 * PCI uses a weird way to determine the BAR size: the OS
1263 * writes all 1's, and sees which ones stick.
1264 */
1265 if (&d->config_words[reg] == &d->config.bar[0]) {
1266 int i;
1267
1268 iowrite(portoff, val, mask, &d->config.bar[0]);
1269 for (i = 0; (1 << i) < d->mmio_size; i++)
1270 d->config.bar[0] &= ~(1 << i);
1271 return true;
1272 } else if ((&d->config_words[reg] > &d->config.bar[0]
1273 && &d->config_words[reg] <= &d->config.bar[6])
1274 || &d->config_words[reg] == &d->config.expansion_rom_addr) {
1275 /* Allow writing to any other BAR, or expansion ROM */
1276 iowrite(portoff, val, mask, &d->config_words[reg]);
1277 return true;
1278 /* We let them overide latency timer and cacheline size */
1279 } else if (&d->config_words[reg] == (void *)&d->config.cacheline_size) {
1280 /* Only let them change the first two fields. */
1281 if (mask == 0xFFFFFFFF)
1282 mask = 0xFFFF;
1283 iowrite(portoff, val, mask, &d->config_words[reg]);
1284 return true;
1285 } else if (&d->config_words[reg] == (void *)&d->config.command
1286 && mask == 0xFFFF) {
1287 /* Ignore command writes. */
1288 return true;
1289 } else if (&d->config_words[reg]
1290 == (void *)&d->config.cfg_access.cap.bar
1291 || &d->config_words[reg]
1292 == &d->config.cfg_access.cap.length
1293 || &d->config_words[reg]
1294 == &d->config.cfg_access.cap.offset) {
1295
1296 /*
1297 * The VIRTIO_PCI_CAP_PCI_CFG capability
1298 * provides a backdoor to access the MMIO
1299 * regions without mapping them. Weird, but
1300 * useful.
1301 */
1302 iowrite(portoff, val, mask, &d->config_words[reg]);
1303 return true;
1304 } else if (&d->config_words[reg] == &d->config.cfg_access.pci_cfg_data) {
1305 u32 write_mask;
1306
1307 /* Must be bar 0 */
1308 if (!valid_bar_access(d, &d->config.cfg_access))
1309 return false;
1310
1311 /* First copy what they wrote into the window */
1312 iowrite(portoff, val, mask, &d->config.cfg_access.pci_cfg_data);
1313
1314 /*
1315 * Now emulate a write. The mask we use is set by
1316 * len, *not* this write!
1317 */
1318 write_mask = (1ULL<<(8*d->config.cfg_access.cap.length)) - 1;
1319 verbose("Window writing %#x/%#x to bar %u, offset %u len %u\n",
1320 d->config.cfg_access.pci_cfg_data, write_mask,
1321 d->config.cfg_access.cap.bar,
1322 d->config.cfg_access.cap.offset,
1323 d->config.cfg_access.cap.length);
1324
1325 emulate_mmio_write(d, d->config.cfg_access.cap.offset,
1326 d->config.cfg_access.pci_cfg_data,
1327 write_mask);
1328 return true;
1329 }
1330
1331 /* Complain about other writes. */
1332 return false;
1333 }
1334
1335 static u32 emulate_mmio_read(struct device *d, u32 off, u32 mask);
1336
1337 static void pci_data_ioread(u16 port, u32 mask, u32 *val)
1338 {
1339 u32 reg;
1340 struct device *d = dev_and_reg(&reg);
1341
1342 if (!d)
1343 return;
1344
1345 /* Read through the PCI MMIO access window is special */
1346 if (&d->config_words[reg] == &d->config.cfg_access.pci_cfg_data) {
1347 u32 read_mask;
1348
1349 /* Must be bar 0 */
1350 if (!valid_bar_access(d, &d->config.cfg_access))
1351 errx(1, "Invalid cfg_access to bar%u, offset %u len %u",
1352 d->config.cfg_access.cap.bar,
1353 d->config.cfg_access.cap.offset,
1354 d->config.cfg_access.cap.length);
1355
1356 /*
1357 * Read into the window. The mask we use is set by
1358 * len, *not* this read!
1359 */
1360 read_mask = (1ULL<<(8*d->config.cfg_access.cap.length))-1;
1361 d->config.cfg_access.pci_cfg_data
1362 = emulate_mmio_read(d,
1363 d->config.cfg_access.cap.offset,
1364 read_mask);
1365 verbose("Window read %#x/%#x from bar %u, offset %u len %u\n",
1366 d->config.cfg_access.pci_cfg_data, read_mask,
1367 d->config.cfg_access.cap.bar,
1368 d->config.cfg_access.cap.offset,
1369 d->config.cfg_access.cap.length);
1370 }
1371 ioread(port - PCI_CONFIG_DATA, d->config_words[reg], mask, val);
1372 }
1373
1374 /*L:216
1375 * This is where we emulate a handful of Guest instructions. It's ugly
1376 * and we used to do it in the kernel but it grew over time.
1377 */
1378
1379 /*
1380 * We use the ptrace syscall's pt_regs struct to talk about registers
1381 * to lguest: these macros convert the names to the offsets.
1382 */
1383 #define getreg(name) getreg_off(offsetof(struct user_regs_struct, name))
1384 #define setreg(name, val) \
1385 setreg_off(offsetof(struct user_regs_struct, name), (val))
1386
1387 static u32 getreg_off(size_t offset)
1388 {
1389 u32 r;
1390 unsigned long args[] = { LHREQ_GETREG, offset };
1391
1392 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1393 err(1, "Getting register %u", offset);
1394 if (pread(lguest_fd, &r, sizeof(r), cpu_id) != sizeof(r))
1395 err(1, "Reading register %u", offset);
1396
1397 return r;
1398 }
1399
1400 static void setreg_off(size_t offset, u32 val)
1401 {
1402 unsigned long args[] = { LHREQ_SETREG, offset, val };
1403
1404 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1405 err(1, "Setting register %u", offset);
1406 }
1407
1408 /* Get register by instruction encoding */
1409 static u32 getreg_num(unsigned regnum, u32 mask)
1410 {
1411 /* 8 bit ops use regnums 4-7 for high parts of word */
1412 if (mask == 0xFF && (regnum & 0x4))
1413 return getreg_num(regnum & 0x3, 0xFFFF) >> 8;
1414
1415 switch (regnum) {
1416 case 0: return getreg(eax) & mask;
1417 case 1: return getreg(ecx) & mask;
1418 case 2: return getreg(edx) & mask;
1419 case 3: return getreg(ebx) & mask;
1420 case 4: return getreg(esp) & mask;
1421 case 5: return getreg(ebp) & mask;
1422 case 6: return getreg(esi) & mask;
1423 case 7: return getreg(edi) & mask;
1424 }
1425 abort();
1426 }
1427
1428 /* Set register by instruction encoding */
1429 static void setreg_num(unsigned regnum, u32 val, u32 mask)
1430 {
1431 /* Don't try to set bits out of range */
1432 assert(~(val & ~mask));
1433
1434 /* 8 bit ops use regnums 4-7 for high parts of word */
1435 if (mask == 0xFF && (regnum & 0x4)) {
1436 /* Construct the 16 bits we want. */
1437 val = (val << 8) | getreg_num(regnum & 0x3, 0xFF);
1438 setreg_num(regnum & 0x3, val, 0xFFFF);
1439 return;
1440 }
1441
1442 switch (regnum) {
1443 case 0: setreg(eax, val | (getreg(eax) & ~mask)); return;
1444 case 1: setreg(ecx, val | (getreg(ecx) & ~mask)); return;
1445 case 2: setreg(edx, val | (getreg(edx) & ~mask)); return;
1446 case 3: setreg(ebx, val | (getreg(ebx) & ~mask)); return;
1447 case 4: setreg(esp, val | (getreg(esp) & ~mask)); return;
1448 case 5: setreg(ebp, val | (getreg(ebp) & ~mask)); return;
1449 case 6: setreg(esi, val | (getreg(esi) & ~mask)); return;
1450 case 7: setreg(edi, val | (getreg(edi) & ~mask)); return;
1451 }
1452 abort();
1453 }
1454
1455 /* Get bytes of displacement appended to instruction, from r/m encoding */
1456 static u32 insn_displacement_len(u8 mod_reg_rm)
1457 {
1458 /* Switch on the mod bits */
1459 switch (mod_reg_rm >> 6) {
1460 case 0:
1461 /* If mod == 0, and r/m == 101, 16-bit displacement follows */
1462 if ((mod_reg_rm & 0x7) == 0x5)
1463 return 2;
1464 /* Normally, mod == 0 means no literal displacement */
1465 return 0;
1466 case 1:
1467 /* One byte displacement */
1468 return 1;
1469 case 2:
1470 /* Four byte displacement */
1471 return 4;
1472 case 3:
1473 /* Register mode */
1474 return 0;
1475 }
1476 abort();
1477 }
1478
1479 static void emulate_insn(const u8 insn[])
1480 {
1481 unsigned long args[] = { LHREQ_TRAP, 13 };
1482 unsigned int insnlen = 0, in = 0, small_operand = 0, byte_access;
1483 unsigned int eax, port, mask;
1484 /*
1485 * Default is to return all-ones on IO port reads, which traditionally
1486 * means "there's nothing there".
1487 */
1488 u32 val = 0xFFFFFFFF;
1489
1490 /*
1491 * This must be the Guest kernel trying to do something, not userspace!
1492 * The bottom two bits of the CS segment register are the privilege
1493 * level.
1494 */
1495 if ((getreg(xcs) & 3) != 0x1)
1496 goto no_emulate;
1497
1498 /* Decoding x86 instructions is icky. */
1499
1500 /*
1501 * Around 2.6.33, the kernel started using an emulation for the
1502 * cmpxchg8b instruction in early boot on many configurations. This
1503 * code isn't paravirtualized, and it tries to disable interrupts.
1504 * Ignore it, which will Mostly Work.
1505 */
1506 if (insn[insnlen] == 0xfa) {
1507 /* "cli", or Clear Interrupt Enable instruction. Skip it. */
1508 insnlen = 1;
1509 goto skip_insn;
1510 }
1511
1512 /*
1513 * 0x66 is an "operand prefix". It means a 16, not 32 bit in/out.
1514 */
1515 if (insn[insnlen] == 0x66) {
1516 small_operand = 1;
1517 /* The instruction is 1 byte so far, read the next byte. */
1518 insnlen = 1;
1519 }
1520
1521 /* If the lower bit isn't set, it's a single byte access */
1522 byte_access = !(insn[insnlen] & 1);
1523
1524 /*
1525 * Now we can ignore the lower bit and decode the 4 opcodes
1526 * we need to emulate.
1527 */
1528 switch (insn[insnlen] & 0xFE) {
1529 case 0xE4: /* in <next byte>,%al */
1530 port = insn[insnlen+1];
1531 insnlen += 2;
1532 in = 1;
1533 break;
1534 case 0xEC: /* in (%dx),%al */
1535 port = getreg(edx) & 0xFFFF;
1536 insnlen += 1;
1537 in = 1;
1538 break;
1539 case 0xE6: /* out %al,<next byte> */
1540 port = insn[insnlen+1];
1541 insnlen += 2;
1542 break;
1543 case 0xEE: /* out %al,(%dx) */
1544 port = getreg(edx) & 0xFFFF;
1545 insnlen += 1;
1546 break;
1547 default:
1548 /* OK, we don't know what this is, can't emulate. */
1549 goto no_emulate;
1550 }
1551
1552 /* Set a mask of the 1, 2 or 4 bytes, depending on size of IO */
1553 if (byte_access)
1554 mask = 0xFF;
1555 else if (small_operand)
1556 mask = 0xFFFF;
1557 else
1558 mask = 0xFFFFFFFF;
1559
1560 /*
1561 * If it was an "IN" instruction, they expect the result to be read
1562 * into %eax, so we change %eax.
1563 */
1564 eax = getreg(eax);
1565
1566 if (in) {
1567 /* This is the PS/2 keyboard status; 1 means ready for output */
1568 if (port == 0x64)
1569 val = 1;
1570 else if (is_pci_addr_port(port))
1571 pci_addr_ioread(port, mask, &val);
1572 else if (is_pci_data_port(port))
1573 pci_data_ioread(port, mask, &val);
1574
1575 /* Clear the bits we're about to read */
1576 eax &= ~mask;
1577 /* Copy bits in from val. */
1578 eax |= val & mask;
1579 /* Now update the register. */
1580 setreg(eax, eax);
1581 } else {
1582 if (is_pci_addr_port(port)) {
1583 if (!pci_addr_iowrite(port, mask, eax))
1584 goto bad_io;
1585 } else if (is_pci_data_port(port)) {
1586 if (!pci_data_iowrite(port, mask, eax))
1587 goto bad_io;
1588 }
1589 /* There are many other ports, eg. CMOS clock, serial
1590 * and parallel ports, so we ignore them all. */
1591 }
1592
1593 verbose("IO %s of %x to %u: %#08x\n",
1594 in ? "IN" : "OUT", mask, port, eax);
1595 skip_insn:
1596 /* Finally, we've "done" the instruction, so move past it. */
1597 setreg(eip, getreg(eip) + insnlen);
1598 return;
1599
1600 bad_io:
1601 warnx("Attempt to %s port %u (%#x mask)",
1602 in ? "read from" : "write to", port, mask);
1603
1604 no_emulate:
1605 /* Inject trap into Guest. */
1606 if (write(lguest_fd, args, sizeof(args)) < 0)
1607 err(1, "Reinjecting trap 13 for fault at %#x", getreg(eip));
1608 }
1609
1610 static struct device *find_mmio_region(unsigned long paddr, u32 *off)
1611 {
1612 unsigned int i;
1613
1614 for (i = 1; i < MAX_PCI_DEVICES; i++) {
1615 struct device *d = devices.pci[i];
1616
1617 if (!d)
1618 continue;
1619 if (paddr < d->mmio_addr)
1620 continue;
1621 if (paddr >= d->mmio_addr + d->mmio_size)
1622 continue;
1623 *off = paddr - d->mmio_addr;
1624 return d;
1625 }
1626 return NULL;
1627 }
1628
1629 /* FIXME: Use vq array. */
1630 static struct virtqueue *vq_by_num(struct device *d, u32 num)
1631 {
1632 struct virtqueue *vq = d->vq;
1633
1634 while (num-- && vq)
1635 vq = vq->next;
1636
1637 return vq;
1638 }
1639
1640 static void save_vq_config(const struct virtio_pci_common_cfg *cfg,
1641 struct virtqueue *vq)
1642 {
1643 vq->pci_config = *cfg;
1644 }
1645
1646 static void restore_vq_config(struct virtio_pci_common_cfg *cfg,
1647 struct virtqueue *vq)
1648 {
1649 /* Only restore the per-vq part */
1650 size_t off = offsetof(struct virtio_pci_common_cfg, queue_size);
1651
1652 memcpy((void *)cfg + off, (void *)&vq->pci_config + off,
1653 sizeof(*cfg) - off);
1654 }
1655
1656 /*
1657 * When they enable the virtqueue, we check that their setup is valid.
1658 */
1659 static void enable_virtqueue(struct device *d, struct virtqueue *vq)
1660 {
1661 /*
1662 * Create stack for thread. Since the stack grows upwards, we point
1663 * the stack pointer to the end of this region.
1664 */
1665 char *stack = malloc(32768);
1666
1667 /* Because lguest is 32 bit, all the descriptor high bits must be 0 */
1668 if (vq->pci_config.queue_desc_hi
1669 || vq->pci_config.queue_avail_hi
1670 || vq->pci_config.queue_used_hi)
1671 errx(1, "%s: invalid 64-bit queue address", d->name);
1672
1673 /* Initialize the virtqueue and check they're all in range. */
1674 vq->vring.num = vq->pci_config.queue_size;
1675 vq->vring.desc = check_pointer(vq->pci_config.queue_desc_lo,
1676 sizeof(*vq->vring.desc) * vq->vring.num);
1677 vq->vring.avail = check_pointer(vq->pci_config.queue_avail_lo,
1678 sizeof(*vq->vring.avail)
1679 + (sizeof(vq->vring.avail->ring[0])
1680 * vq->vring.num));
1681 vq->vring.used = check_pointer(vq->pci_config.queue_used_lo,
1682 sizeof(*vq->vring.used)
1683 + (sizeof(vq->vring.used->ring[0])
1684 * vq->vring.num));
1685
1686
1687 /* Create a zero-initialized eventfd. */
1688 vq->eventfd = eventfd(0, 0);
1689 if (vq->eventfd < 0)
1690 err(1, "Creating eventfd");
1691
1692 /*
1693 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1694 * we get a signal if it dies.
1695 */
1696 vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1697 if (vq->thread == (pid_t)-1)
1698 err(1, "Creating clone");
1699 }
1700
1701 static void emulate_mmio_write(struct device *d, u32 off, u32 val, u32 mask)
1702 {
1703 struct virtqueue *vq;
1704
1705 switch (off) {
1706 case offsetof(struct virtio_pci_mmio, cfg.device_feature_select):
1707 if (val == 0)
1708 d->mmio->cfg.device_feature = d->features;
1709 else if (val == 1)
1710 d->mmio->cfg.device_feature = (d->features >> 32);
1711 else
1712 d->mmio->cfg.device_feature = 0;
1713 goto write_through32;
1714 case offsetof(struct virtio_pci_mmio, cfg.guest_feature_select):
1715 if (val > 1)
1716 errx(1, "%s: Unexpected driver select %u",
1717 d->name, val);
1718 goto write_through32;
1719 case offsetof(struct virtio_pci_mmio, cfg.guest_feature):
1720 if (d->mmio->cfg.guest_feature_select == 0) {
1721 d->features_accepted &= ~((u64)0xFFFFFFFF);
1722 d->features_accepted |= val;
1723 } else {
1724 assert(d->mmio->cfg.guest_feature_select == 1);
1725 d->features_accepted &= 0xFFFFFFFF;
1726 d->features_accepted |= ((u64)val) << 32;
1727 }
1728 if (d->features_accepted & ~d->features)
1729 errx(1, "%s: over-accepted features %#llx of %#llx",
1730 d->name, d->features_accepted, d->features);
1731 goto write_through32;
1732 case offsetof(struct virtio_pci_mmio, cfg.device_status):
1733 verbose("%s: device status -> %#x\n", d->name, val);
1734 if (val == 0)
1735 reset_device(d);
1736 goto write_through8;
1737 case offsetof(struct virtio_pci_mmio, cfg.queue_select):
1738 vq = vq_by_num(d, val);
1739 /* Out of range? Return size 0 */
1740 if (!vq) {
1741 d->mmio->cfg.queue_size = 0;
1742 goto write_through16;
1743 }
1744 /* Save registers for old vq, if it was a valid vq */
1745 if (d->mmio->cfg.queue_size)
1746 save_vq_config(&d->mmio->cfg,
1747 vq_by_num(d, d->mmio->cfg.queue_select));
1748 /* Restore the registers for the queue they asked for */
1749 restore_vq_config(&d->mmio->cfg, vq);
1750 goto write_through16;
1751 case offsetof(struct virtio_pci_mmio, cfg.queue_size):
1752 if (val & (val-1))
1753 errx(1, "%s: invalid queue size %u\n", d->name, val);
1754 if (d->mmio->cfg.queue_enable)
1755 errx(1, "%s: changing queue size on live device",
1756 d->name);
1757 goto write_through16;
1758 case offsetof(struct virtio_pci_mmio, cfg.queue_msix_vector):
1759 errx(1, "%s: attempt to set MSIX vector to %u",
1760 d->name, val);
1761 case offsetof(struct virtio_pci_mmio, cfg.queue_enable):
1762 if (val != 1)
1763 errx(1, "%s: setting queue_enable to %u", d->name, val);
1764 d->mmio->cfg.queue_enable = val;
1765 save_vq_config(&d->mmio->cfg,
1766 vq_by_num(d, d->mmio->cfg.queue_select));
1767 enable_virtqueue(d, vq_by_num(d, d->mmio->cfg.queue_select));
1768 goto write_through16;
1769 case offsetof(struct virtio_pci_mmio, cfg.queue_notify_off):
1770 errx(1, "%s: attempt to write to queue_notify_off", d->name);
1771 case offsetof(struct virtio_pci_mmio, cfg.queue_desc_lo):
1772 case offsetof(struct virtio_pci_mmio, cfg.queue_desc_hi):
1773 case offsetof(struct virtio_pci_mmio, cfg.queue_avail_lo):
1774 case offsetof(struct virtio_pci_mmio, cfg.queue_avail_hi):
1775 case offsetof(struct virtio_pci_mmio, cfg.queue_used_lo):
1776 case offsetof(struct virtio_pci_mmio, cfg.queue_used_hi):
1777 if (d->mmio->cfg.queue_enable)
1778 errx(1, "%s: changing queue on live device",
1779 d->name);
1780 goto write_through32;
1781 case offsetof(struct virtio_pci_mmio, notify):
1782 vq = vq_by_num(d, val);
1783 if (!vq)
1784 errx(1, "Invalid vq notification on %u", val);
1785 /* Notify the process handling this vq by adding 1 to eventfd */
1786 write(vq->eventfd, "\1\0\0\0\0\0\0\0", 8);
1787 goto write_through16;
1788 case offsetof(struct virtio_pci_mmio, isr):
1789 errx(1, "%s: Unexpected write to isr", d->name);
1790 /* Weird corner case: write to emerg_wr of console */
1791 case sizeof(struct virtio_pci_mmio)
1792 + offsetof(struct virtio_console_config, emerg_wr):
1793 if (strcmp(d->name, "console") == 0) {
1794 char c = val;
1795 write(STDOUT_FILENO, &c, 1);
1796 goto write_through32;
1797 }
1798 /* Fall through... */
1799 default:
1800 errx(1, "%s: Unexpected write to offset %u", d->name, off);
1801 }
1802
1803 write_through32:
1804 if (mask != 0xFFFFFFFF) {
1805 errx(1, "%s: non-32-bit write to offset %u (%#x)",
1806 d->name, off, getreg(eip));
1807 return;
1808 }
1809 memcpy((char *)d->mmio + off, &val, 4);
1810 return;
1811
1812 write_through16:
1813 if (mask != 0xFFFF)
1814 errx(1, "%s: non-16-bit (%#x) write to offset %u (%#x)",
1815 d->name, mask, off, getreg(eip));
1816 memcpy((char *)d->mmio + off, &val, 2);
1817 return;
1818
1819 write_through8:
1820 if (mask != 0xFF)
1821 errx(1, "%s: non-8-bit write to offset %u (%#x)",
1822 d->name, off, getreg(eip));
1823 memcpy((char *)d->mmio + off, &val, 1);
1824 return;
1825 }
1826
1827 static u32 emulate_mmio_read(struct device *d, u32 off, u32 mask)
1828 {
1829 u8 isr;
1830 u32 val = 0;
1831
1832 switch (off) {
1833 case offsetof(struct virtio_pci_mmio, cfg.device_feature_select):
1834 case offsetof(struct virtio_pci_mmio, cfg.device_feature):
1835 case offsetof(struct virtio_pci_mmio, cfg.guest_feature_select):
1836 case offsetof(struct virtio_pci_mmio, cfg.guest_feature):
1837 goto read_through32;
1838 case offsetof(struct virtio_pci_mmio, cfg.msix_config):
1839 errx(1, "%s: read of msix_config", d->name);
1840 case offsetof(struct virtio_pci_mmio, cfg.num_queues):
1841 goto read_through16;
1842 case offsetof(struct virtio_pci_mmio, cfg.device_status):
1843 case offsetof(struct virtio_pci_mmio, cfg.config_generation):
1844 goto read_through8;
1845 case offsetof(struct virtio_pci_mmio, notify):
1846 goto read_through16;
1847 case offsetof(struct virtio_pci_mmio, isr):
1848 if (mask != 0xFF)
1849 errx(1, "%s: non-8-bit read from offset %u (%#x)",
1850 d->name, off, getreg(eip));
1851 /* Read resets the isr */
1852 isr = d->mmio->isr;
1853 d->mmio->isr = 0;
1854 return isr;
1855 case offsetof(struct virtio_pci_mmio, padding):
1856 errx(1, "%s: read from padding (%#x)",
1857 d->name, getreg(eip));
1858 default:
1859 /* Read from device config space, beware unaligned overflow */
1860 if (off > d->mmio_size - 4)
1861 errx(1, "%s: read past end (%#x)",
1862 d->name, getreg(eip));
1863 if (mask == 0xFFFFFFFF)
1864 goto read_through32;
1865 else if (mask == 0xFFFF)
1866 goto read_through16;
1867 else
1868 goto read_through8;
1869 }
1870
1871 read_through32:
1872 if (mask != 0xFFFFFFFF)
1873 errx(1, "%s: non-32-bit read to offset %u (%#x)",
1874 d->name, off, getreg(eip));
1875 memcpy(&val, (char *)d->mmio + off, 4);
1876 return val;
1877
1878 read_through16:
1879 if (mask != 0xFFFF)
1880 errx(1, "%s: non-16-bit read to offset %u (%#x)",
1881 d->name, off, getreg(eip));
1882 memcpy(&val, (char *)d->mmio + off, 2);
1883 return val;
1884
1885 read_through8:
1886 if (mask != 0xFF)
1887 errx(1, "%s: non-8-bit read to offset %u (%#x)",
1888 d->name, off, getreg(eip));
1889 memcpy(&val, (char *)d->mmio + off, 1);
1890 return val;
1891 }
1892
1893 static void emulate_mmio(unsigned long paddr, const u8 *insn)
1894 {
1895 u32 val, off, mask = 0xFFFFFFFF, insnlen = 0;
1896 struct device *d = find_mmio_region(paddr, &off);
1897 unsigned long args[] = { LHREQ_TRAP, 14 };
1898
1899 if (!d) {
1900 warnx("MMIO touching %#08lx (not a device)", paddr);
1901 goto reinject;
1902 }
1903
1904 /* Prefix makes it a 16 bit op */
1905 if (insn[0] == 0x66) {
1906 mask = 0xFFFF;
1907 insnlen++;
1908 }
1909
1910 /* iowrite */
1911 if (insn[insnlen] == 0x89) {
1912 /* Next byte is r/m byte: bits 3-5 are register. */
1913 val = getreg_num((insn[insnlen+1] >> 3) & 0x7, mask);
1914 emulate_mmio_write(d, off, val, mask);
1915 insnlen += 2 + insn_displacement_len(insn[insnlen+1]);
1916 } else if (insn[insnlen] == 0x8b) { /* ioread */
1917 /* Next byte is r/m byte: bits 3-5 are register. */
1918 val = emulate_mmio_read(d, off, mask);
1919 setreg_num((insn[insnlen+1] >> 3) & 0x7, val, mask);
1920 insnlen += 2 + insn_displacement_len(insn[insnlen+1]);
1921 } else if (insn[0] == 0x88) { /* 8-bit iowrite */
1922 mask = 0xff;
1923 /* Next byte is r/m byte: bits 3-5 are register. */
1924 val = getreg_num((insn[1] >> 3) & 0x7, mask);
1925 emulate_mmio_write(d, off, val, mask);
1926 insnlen = 2 + insn_displacement_len(insn[1]);
1927 } else if (insn[0] == 0x8a) { /* 8-bit ioread */
1928 mask = 0xff;
1929 val = emulate_mmio_read(d, off, mask);
1930 setreg_num((insn[1] >> 3) & 0x7, val, mask);
1931 insnlen = 2 + insn_displacement_len(insn[1]);
1932 } else {
1933 warnx("Unknown MMIO instruction touching %#08lx:"
1934 " %02x %02x %02x %02x at %u",
1935 paddr, insn[0], insn[1], insn[2], insn[3], getreg(eip));
1936 reinject:
1937 /* Inject trap into Guest. */
1938 if (write(lguest_fd, args, sizeof(args)) < 0)
1939 err(1, "Reinjecting trap 14 for fault at %#x",
1940 getreg(eip));
1941 return;
1942 }
1943
1944 /* Finally, we've "done" the instruction, so move past it. */
1945 setreg(eip, getreg(eip) + insnlen);
1946 }
1947
1948 /*L:190
1949 * Device Setup
1950 *
1951 * All devices need a descriptor so the Guest knows it exists, and a "struct
1952 * device" so the Launcher can keep track of it. We have common helper
1953 * routines to allocate and manage them.
1954 */
1955 static void add_pci_virtqueue(struct device *dev,
1956 void (*service)(struct virtqueue *))
1957 {
1958 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1959
1960 /* Initialize the virtqueue */
1961 vq->next = NULL;
1962 vq->last_avail_idx = 0;
1963 vq->dev = dev;
1964
1965 /*
1966 * This is the routine the service thread will run, and its Process ID
1967 * once it's running.
1968 */
1969 vq->service = service;
1970 vq->thread = (pid_t)-1;
1971
1972 /* Initialize the configuration. */
1973 reset_vq_pci_config(vq);
1974 vq->pci_config.queue_notify_off = 0;
1975
1976 /* Add one to the number of queues */
1977 vq->dev->mmio->cfg.num_queues++;
1978
1979 /*
1980 * Add to tail of list, so dev->vq is first vq, dev->vq->next is
1981 * second.
1982 */
1983 for (i = &dev->vq; *i; i = &(*i)->next);
1984 *i = vq;
1985 }
1986
1987 /* The Guest accesses the feature bits via the PCI common config MMIO region */
1988 static void add_pci_feature(struct device *dev, unsigned bit)
1989 {
1990 dev->features |= (1ULL << bit);
1991 }
1992
1993 /* For devices with no config. */
1994 static void no_device_config(struct device *dev)
1995 {
1996 dev->mmio_addr = get_mmio_region(dev->mmio_size);
1997
1998 dev->config.bar[0] = dev->mmio_addr;
1999 /* Bottom 4 bits must be zero */
2000 assert(~(dev->config.bar[0] & 0xF));
2001 }
2002
2003 /* This puts the device config into BAR0 */
2004 static void set_device_config(struct device *dev, const void *conf, size_t len)
2005 {
2006 /* Set up BAR 0 */
2007 dev->mmio_size += len;
2008 dev->mmio = realloc(dev->mmio, dev->mmio_size);
2009 memcpy(dev->mmio + 1, conf, len);
2010
2011 /* Hook up device cfg */
2012 dev->config.cfg_access.cap.cap_next
2013 = offsetof(struct pci_config, device);
2014
2015 /* Fix up device cfg field length. */
2016 dev->config.device.length = len;
2017
2018 /* The rest is the same as the no-config case */
2019 no_device_config(dev);
2020 }
2021
2022 static void init_cap(struct virtio_pci_cap *cap, size_t caplen, int type,
2023 size_t bar_offset, size_t bar_bytes, u8 next)
2024 {
2025 cap->cap_vndr = PCI_CAP_ID_VNDR;
2026 cap->cap_next = next;
2027 cap->cap_len = caplen;
2028 cap->cfg_type = type;
2029 cap->bar = 0;
2030 memset(cap->padding, 0, sizeof(cap->padding));
2031 cap->offset = bar_offset;
2032 cap->length = bar_bytes;
2033 }
2034
2035 /*
2036 * This sets up the pci_config structure, as defined in the virtio 1.0
2037 * standard (and PCI standard).
2038 */
2039 static void init_pci_config(struct pci_config *pci, u16 type,
2040 u8 class, u8 subclass)
2041 {
2042 size_t bar_offset, bar_len;
2043
2044 /* Save typing: most thing are happy being zero. */
2045 memset(pci, 0, sizeof(*pci));
2046
2047 /* 4.1.2.1: Devices MUST have the PCI Vendor ID 0x1AF4 */
2048 pci->vendor_id = 0x1AF4;
2049 /* 4.1.2.1: ... PCI Device ID calculated by adding 0x1040 ... */
2050 pci->device_id = 0x1040 + type;
2051
2052 /*
2053 * PCI have specific codes for different types of devices.
2054 * Linux doesn't care, but it's a good clue for people looking
2055 * at the device.
2056 */
2057 pci->class = class;
2058 pci->subclass = subclass;
2059
2060 /*
2061 * 4.1.2.1 Non-transitional devices SHOULD have a PCI Revision
2062 * ID of 1 or higher
2063 */
2064 pci->revid = 1;
2065
2066 /*
2067 * 4.1.2.1 Non-transitional devices SHOULD have a PCI
2068 * Subsystem Device ID of 0x40 or higher.
2069 */
2070 pci->subsystem_device_id = 0x40;
2071
2072 /* We use our dummy interrupt controller, and irq_line is the irq */
2073 pci->irq_line = devices.next_irq++;
2074 pci->irq_pin = 0;
2075
2076 /* Support for extended capabilities. */
2077 pci->status = (1 << 4);
2078
2079 /* Link them in. */
2080 pci->capabilities = offsetof(struct pci_config, common);
2081
2082 bar_offset = offsetof(struct virtio_pci_mmio, cfg);
2083 bar_len = sizeof(((struct virtio_pci_mmio *)0)->cfg);
2084 init_cap(&pci->common, sizeof(pci->common), VIRTIO_PCI_CAP_COMMON_CFG,
2085 bar_offset, bar_len,
2086 offsetof(struct pci_config, notify));
2087
2088 bar_offset += bar_len;
2089 bar_len = sizeof(((struct virtio_pci_mmio *)0)->notify);
2090 /* FIXME: Use a non-zero notify_off, for per-queue notification? */
2091 init_cap(&pci->notify.cap, sizeof(pci->notify),
2092 VIRTIO_PCI_CAP_NOTIFY_CFG,
2093 bar_offset, bar_len,
2094 offsetof(struct pci_config, isr));
2095
2096 bar_offset += bar_len;
2097 bar_len = sizeof(((struct virtio_pci_mmio *)0)->isr);
2098 init_cap(&pci->isr, sizeof(pci->isr),
2099 VIRTIO_PCI_CAP_ISR_CFG,
2100 bar_offset, bar_len,
2101 offsetof(struct pci_config, cfg_access));
2102
2103 /* This doesn't have any presence in the BAR */
2104 init_cap(&pci->cfg_access.cap, sizeof(pci->cfg_access),
2105 VIRTIO_PCI_CAP_PCI_CFG,
2106 0, 0, 0);
2107
2108 bar_offset += bar_len + sizeof(((struct virtio_pci_mmio *)0)->padding);
2109 assert(bar_offset == sizeof(struct virtio_pci_mmio));
2110
2111 /*
2112 * This gets sewn in and length set in set_device_config().
2113 * Some devices don't have a device configuration interface, so
2114 * we never expose this if we don't call set_device_config().
2115 */
2116 init_cap(&pci->device, sizeof(pci->device), VIRTIO_PCI_CAP_DEVICE_CFG,
2117 bar_offset, 0, 0);
2118 }
2119
2120 /*
2121 * This routine does all the creation and setup of a new device, but we don't
2122 * actually place the MMIO region until we know the size (if any) of the
2123 * device-specific config. And we don't actually start the service threads
2124 * until later.
2125 *
2126 * See what I mean about userspace being boring?
2127 */
2128 static struct device *new_pci_device(const char *name, u16 type,
2129 u8 class, u8 subclass)
2130 {
2131 struct device *dev = malloc(sizeof(*dev));
2132
2133 /* Now we populate the fields one at a time. */
2134 dev->name = name;
2135 dev->vq = NULL;
2136 dev->running = false;
2137 dev->mmio_size = sizeof(struct virtio_pci_mmio);
2138 dev->mmio = calloc(1, dev->mmio_size);
2139 dev->features = (u64)1 << VIRTIO_F_VERSION_1;
2140 dev->features_accepted = 0;
2141
2142 if (devices.device_num + 1 >= MAX_PCI_DEVICES)
2143 errx(1, "Can only handle 31 PCI devices");
2144
2145 init_pci_config(&dev->config, type, class, subclass);
2146 assert(!devices.pci[devices.device_num+1]);
2147 devices.pci[++devices.device_num] = dev;
2148
2149 return dev;
2150 }
2151
2152 /*
2153 * Our first setup routine is the console. It's a fairly simple device, but
2154 * UNIX tty handling makes it uglier than it could be.
2155 */
2156 static void setup_console(void)
2157 {
2158 struct device *dev;
2159 struct virtio_console_config conf;
2160
2161 /* If we can save the initial standard input settings... */
2162 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
2163 struct termios term = orig_term;
2164 /*
2165 * Then we turn off echo, line buffering and ^C etc: We want a
2166 * raw input stream to the Guest.
2167 */
2168 term.c_lflag &= ~(ISIG|ICANON|ECHO);
2169 tcsetattr(STDIN_FILENO, TCSANOW, &term);
2170 }
2171
2172 dev = new_pci_device("console", VIRTIO_ID_CONSOLE, 0x07, 0x00);
2173
2174 /* We store the console state in dev->priv, and initialize it. */
2175 dev->priv = malloc(sizeof(struct console_abort));
2176 ((struct console_abort *)dev->priv)->count = 0;
2177
2178 /*
2179 * The console needs two virtqueues: the input then the output. When
2180 * they put something the input queue, we make sure we're listening to
2181 * stdin. When they put something in the output queue, we write it to
2182 * stdout.
2183 */
2184 add_pci_virtqueue(dev, console_input);
2185 add_pci_virtqueue(dev, console_output);
2186
2187 /* We need a configuration area for the emerg_wr early writes. */
2188 add_pci_feature(dev, VIRTIO_CONSOLE_F_EMERG_WRITE);
2189 set_device_config(dev, &conf, sizeof(conf));
2190
2191 verbose("device %u: console\n", devices.device_num);
2192 }
2193 /*:*/
2194
2195 /*M:010
2196 * Inter-guest networking is an interesting area. Simplest is to have a
2197 * --sharenet=<name> option which opens or creates a named pipe. This can be
2198 * used to send packets to another guest in a 1:1 manner.
2199 *
2200 * More sophisticated is to use one of the tools developed for project like UML
2201 * to do networking.
2202 *
2203 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
2204 * completely generic ("here's my vring, attach to your vring") and would work
2205 * for any traffic. Of course, namespace and permissions issues need to be
2206 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
2207 * multiple inter-guest channels behind one interface, although it would
2208 * require some manner of hotplugging new virtio channels.
2209 *
2210 * Finally, we could use a virtio network switch in the kernel, ie. vhost.
2211 :*/
2212
2213 static u32 str2ip(const char *ipaddr)
2214 {
2215 unsigned int b[4];
2216
2217 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
2218 errx(1, "Failed to parse IP address '%s'", ipaddr);
2219 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
2220 }
2221
2222 static void str2mac(const char *macaddr, unsigned char mac[6])
2223 {
2224 unsigned int m[6];
2225 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
2226 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
2227 errx(1, "Failed to parse mac address '%s'", macaddr);
2228 mac[0] = m[0];
2229 mac[1] = m[1];
2230 mac[2] = m[2];
2231 mac[3] = m[3];
2232 mac[4] = m[4];
2233 mac[5] = m[5];
2234 }
2235
2236 /*
2237 * This code is "adapted" from libbridge: it attaches the Host end of the
2238 * network device to the bridge device specified by the command line.
2239 *
2240 * This is yet another James Morris contribution (I'm an IP-level guy, so I
2241 * dislike bridging), and I just try not to break it.
2242 */
2243 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
2244 {
2245 int ifidx;
2246 struct ifreq ifr;
2247
2248 if (!*br_name)
2249 errx(1, "must specify bridge name");
2250
2251 ifidx = if_nametoindex(if_name);
2252 if (!ifidx)
2253 errx(1, "interface %s does not exist!", if_name);
2254
2255 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
2256 ifr.ifr_name[IFNAMSIZ-1] = '\0';
2257 ifr.ifr_ifindex = ifidx;
2258 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
2259 err(1, "can't add %s to bridge %s", if_name, br_name);
2260 }
2261
2262 /*
2263 * This sets up the Host end of the network device with an IP address, brings
2264 * it up so packets will flow, the copies the MAC address into the hwaddr
2265 * pointer.
2266 */
2267 static void configure_device(int fd, const char *tapif, u32 ipaddr)
2268 {
2269 struct ifreq ifr;
2270 struct sockaddr_in sin;
2271
2272 memset(&ifr, 0, sizeof(ifr));
2273 strcpy(ifr.ifr_name, tapif);
2274
2275 /* Don't read these incantations. Just cut & paste them like I did! */
2276 sin.sin_family = AF_INET;
2277 sin.sin_addr.s_addr = htonl(ipaddr);
2278 memcpy(&ifr.ifr_addr, &sin, sizeof(sin));
2279 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
2280 err(1, "Setting %s interface address", tapif);
2281 ifr.ifr_flags = IFF_UP;
2282 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
2283 err(1, "Bringing interface %s up", tapif);
2284 }
2285
2286 static int get_tun_device(char tapif[IFNAMSIZ])
2287 {
2288 struct ifreq ifr;
2289 int vnet_hdr_sz;
2290 int netfd;
2291
2292 /* Start with this zeroed. Messy but sure. */
2293 memset(&ifr, 0, sizeof(ifr));
2294
2295 /*
2296 * We open the /dev/net/tun device and tell it we want a tap device. A
2297 * tap device is like a tun device, only somehow different. To tell
2298 * the truth, I completely blundered my way through this code, but it
2299 * works now!
2300 */
2301 netfd = open_or_die("/dev/net/tun", O_RDWR);
2302 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
2303 strcpy(ifr.ifr_name, "tap%d");
2304 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
2305 err(1, "configuring /dev/net/tun");
2306
2307 if (ioctl(netfd, TUNSETOFFLOAD,
2308 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
2309 err(1, "Could not set features for tun device");
2310
2311 /*
2312 * We don't need checksums calculated for packets coming in this
2313 * device: trust us!
2314 */
2315 ioctl(netfd, TUNSETNOCSUM, 1);
2316
2317 /*
2318 * In virtio before 1.0 (aka legacy virtio), we added a 16-bit
2319 * field at the end of the network header iff
2320 * VIRTIO_NET_F_MRG_RXBUF was negotiated. For virtio 1.0,
2321 * that became the norm, but we need to tell the tun device
2322 * about our expanded header (which is called
2323 * virtio_net_hdr_mrg_rxbuf in the legacy system).
2324 */
2325 vnet_hdr_sz = sizeof(struct virtio_net_hdr_mrg_rxbuf);
2326 if (ioctl(netfd, TUNSETVNETHDRSZ, &vnet_hdr_sz) != 0)
2327 err(1, "Setting tun header size to %u", vnet_hdr_sz);
2328
2329 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
2330 return netfd;
2331 }
2332
2333 /*L:195
2334 * Our network is a Host<->Guest network. This can either use bridging or
2335 * routing, but the principle is the same: it uses the "tun" device to inject
2336 * packets into the Host as if they came in from a normal network card. We
2337 * just shunt packets between the Guest and the tun device.
2338 */
2339 static void setup_tun_net(char *arg)
2340 {
2341 struct device *dev;
2342 struct net_info *net_info = malloc(sizeof(*net_info));
2343 int ipfd;
2344 u32 ip = INADDR_ANY;
2345 bool bridging = false;
2346 char tapif[IFNAMSIZ], *p;
2347 struct virtio_net_config conf;
2348
2349 net_info->tunfd = get_tun_device(tapif);
2350
2351 /* First we create a new network device. */
2352 dev = new_pci_device("net", VIRTIO_ID_NET, 0x02, 0x00);
2353 dev->priv = net_info;
2354
2355 /* Network devices need a recv and a send queue, just like console. */
2356 add_pci_virtqueue(dev, net_input);
2357 add_pci_virtqueue(dev, net_output);
2358
2359 /*
2360 * We need a socket to perform the magic network ioctls to bring up the
2361 * tap interface, connect to the bridge etc. Any socket will do!
2362 */
2363 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
2364 if (ipfd < 0)
2365 err(1, "opening IP socket");
2366
2367 /* If the command line was --tunnet=bridge:<name> do bridging. */
2368 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
2369 arg += strlen(BRIDGE_PFX);
2370 bridging = true;
2371 }
2372
2373 /* A mac address may follow the bridge name or IP address */
2374 p = strchr(arg, ':');
2375 if (p) {
2376 str2mac(p+1, conf.mac);
2377 add_pci_feature(dev, VIRTIO_NET_F_MAC);
2378 *p = '\0';
2379 }
2380
2381 /* arg is now either an IP address or a bridge name */
2382 if (bridging)
2383 add_to_bridge(ipfd, tapif, arg);
2384 else
2385 ip = str2ip(arg);
2386
2387 /* Set up the tun device. */
2388 configure_device(ipfd, tapif, ip);
2389
2390 /* Expect Guest to handle everything except UFO */
2391 add_pci_feature(dev, VIRTIO_NET_F_CSUM);
2392 add_pci_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
2393 add_pci_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
2394 add_pci_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
2395 add_pci_feature(dev, VIRTIO_NET_F_GUEST_ECN);
2396 add_pci_feature(dev, VIRTIO_NET_F_HOST_TSO4);
2397 add_pci_feature(dev, VIRTIO_NET_F_HOST_TSO6);
2398 add_pci_feature(dev, VIRTIO_NET_F_HOST_ECN);
2399 /* We handle indirect ring entries */
2400 add_pci_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
2401 set_device_config(dev, &conf, sizeof(conf));
2402
2403 /* We don't need the socket any more; setup is done. */
2404 close(ipfd);
2405
2406 if (bridging)
2407 verbose("device %u: tun %s attached to bridge: %s\n",
2408 devices.device_num, tapif, arg);
2409 else
2410 verbose("device %u: tun %s: %s\n",
2411 devices.device_num, tapif, arg);
2412 }
2413 /*:*/
2414
2415 /* This hangs off device->priv. */
2416 struct vblk_info {
2417 /* The size of the file. */
2418 off64_t len;
2419
2420 /* The file descriptor for the file. */
2421 int fd;
2422
2423 };
2424
2425 /*L:210
2426 * The Disk
2427 *
2428 * The disk only has one virtqueue, so it only has one thread. It is really
2429 * simple: the Guest asks for a block number and we read or write that position
2430 * in the file.
2431 *
2432 * Before we serviced each virtqueue in a separate thread, that was unacceptably
2433 * slow: the Guest waits until the read is finished before running anything
2434 * else, even if it could have been doing useful work.
2435 *
2436 * We could have used async I/O, except it's reputed to suck so hard that
2437 * characters actually go missing from your code when you try to use it.
2438 */
2439 static void blk_request(struct virtqueue *vq)
2440 {
2441 struct vblk_info *vblk = vq->dev->priv;
2442 unsigned int head, out_num, in_num, wlen;
2443 int ret, i;
2444 u8 *in;
2445 struct virtio_blk_outhdr out;
2446 struct iovec iov[vq->vring.num];
2447 off64_t off;
2448
2449 /*
2450 * Get the next request, where we normally wait. It triggers the
2451 * interrupt to acknowledge previously serviced requests (if any).
2452 */
2453 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
2454
2455 /* Copy the output header from the front of the iov (adjusts iov) */
2456 iov_consume(iov, out_num, &out, sizeof(out));
2457
2458 /* Find and trim end of iov input array, for our status byte. */
2459 in = NULL;
2460 for (i = out_num + in_num - 1; i >= out_num; i--) {
2461 if (iov[i].iov_len > 0) {
2462 in = iov[i].iov_base + iov[i].iov_len - 1;
2463 iov[i].iov_len--;
2464 break;
2465 }
2466 }
2467 if (!in)
2468 errx(1, "Bad virtblk cmd with no room for status");
2469
2470 /*
2471 * For historical reasons, block operations are expressed in 512 byte
2472 * "sectors".
2473 */
2474 off = out.sector * 512;
2475
2476 if (out.type & VIRTIO_BLK_T_OUT) {
2477 /*
2478 * Write
2479 *
2480 * Move to the right location in the block file. This can fail
2481 * if they try to write past end.
2482 */
2483 if (lseek64(vblk->fd, off, SEEK_SET) != off)
2484 err(1, "Bad seek to sector %llu", out.sector);
2485
2486 ret = writev(vblk->fd, iov, out_num);
2487 verbose("WRITE to sector %llu: %i\n", out.sector, ret);
2488
2489 /*
2490 * Grr... Now we know how long the descriptor they sent was, we
2491 * make sure they didn't try to write over the end of the block
2492 * file (possibly extending it).
2493 */
2494 if (ret > 0 && off + ret > vblk->len) {
2495 /* Trim it back to the correct length */
2496 ftruncate64(vblk->fd, vblk->len);
2497 /* Die, bad Guest, die. */
2498 errx(1, "Write past end %llu+%u", off, ret);
2499 }
2500
2501 wlen = sizeof(*in);
2502 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
2503 } else if (out.type & VIRTIO_BLK_T_FLUSH) {
2504 /* Flush */
2505 ret = fdatasync(vblk->fd);
2506 verbose("FLUSH fdatasync: %i\n", ret);
2507 wlen = sizeof(*in);
2508 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
2509 } else {
2510 /*
2511 * Read
2512 *
2513 * Move to the right location in the block file. This can fail
2514 * if they try to read past end.
2515 */
2516 if (lseek64(vblk->fd, off, SEEK_SET) != off)
2517 err(1, "Bad seek to sector %llu", out.sector);
2518
2519 ret = readv(vblk->fd, iov + out_num, in_num);
2520 if (ret >= 0) {
2521 wlen = sizeof(*in) + ret;
2522 *in = VIRTIO_BLK_S_OK;
2523 } else {
2524 wlen = sizeof(*in);
2525 *in = VIRTIO_BLK_S_IOERR;
2526 }
2527 }
2528
2529 /* Finished that request. */
2530 add_used(vq, head, wlen);
2531 }
2532
2533 /*L:198 This actually sets up a virtual block device. */
2534 static void setup_block_file(const char *filename)
2535 {
2536 struct device *dev;
2537 struct vblk_info *vblk;
2538 struct virtio_blk_config conf;
2539
2540 /* Create the device. */
2541 dev = new_pci_device("block", VIRTIO_ID_BLOCK, 0x01, 0x80);
2542
2543 /* The device has one virtqueue, where the Guest places requests. */
2544 add_pci_virtqueue(dev, blk_request);
2545
2546 /* Allocate the room for our own bookkeeping */
2547 vblk = dev->priv = malloc(sizeof(*vblk));
2548
2549 /* First we open the file and store the length. */
2550 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
2551 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
2552
2553 /* Tell Guest how many sectors this device has. */
2554 conf.capacity = cpu_to_le64(vblk->len / 512);
2555
2556 /*
2557 * Tell Guest not to put in too many descriptors at once: two are used
2558 * for the in and out elements.
2559 */
2560 add_pci_feature(dev, VIRTIO_BLK_F_SEG_MAX);
2561 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
2562
2563 set_device_config(dev, &conf, sizeof(struct virtio_blk_config));
2564
2565 verbose("device %u: virtblock %llu sectors\n",
2566 devices.device_num, le64_to_cpu(conf.capacity));
2567 }
2568
2569 /*L:211
2570 * Our random number generator device reads from /dev/urandom into the Guest's
2571 * input buffers. The usual case is that the Guest doesn't want random numbers
2572 * and so has no buffers although /dev/urandom is still readable, whereas
2573 * console is the reverse.
2574 *
2575 * The same logic applies, however.
2576 */
2577 struct rng_info {
2578 int rfd;
2579 };
2580
2581 static void rng_input(struct virtqueue *vq)
2582 {
2583 int len;
2584 unsigned int head, in_num, out_num, totlen = 0;
2585 struct rng_info *rng_info = vq->dev->priv;
2586 struct iovec iov[vq->vring.num];
2587
2588 /* First we need a buffer from the Guests's virtqueue. */
2589 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
2590 if (out_num)
2591 errx(1, "Output buffers in rng?");
2592
2593 /*
2594 * Just like the console write, we loop to cover the whole iovec.
2595 * In this case, short reads actually happen quite a bit.
2596 */
2597 while (!iov_empty(iov, in_num)) {
2598 len = readv(rng_info->rfd, iov, in_num);
2599 if (len <= 0)
2600 err(1, "Read from /dev/urandom gave %i", len);
2601 iov_consume(iov, in_num, NULL, len);
2602 totlen += len;
2603 }
2604
2605 /* Tell the Guest about the new input. */
2606 add_used(vq, head, totlen);
2607 }
2608
2609 /*L:199
2610 * This creates a "hardware" random number device for the Guest.
2611 */
2612 static void setup_rng(void)
2613 {
2614 struct device *dev;
2615 struct rng_info *rng_info = malloc(sizeof(*rng_info));
2616
2617 /* Our device's private info simply contains the /dev/urandom fd. */
2618 rng_info->rfd = open_or_die("/dev/urandom", O_RDONLY);
2619
2620 /* Create the new device. */
2621 dev = new_pci_device("rng", VIRTIO_ID_RNG, 0xff, 0);
2622 dev->priv = rng_info;
2623
2624 /* The device has one virtqueue, where the Guest places inbufs. */
2625 add_pci_virtqueue(dev, rng_input);
2626
2627 /* We don't have any configuration space */
2628 no_device_config(dev);
2629
2630 verbose("device %u: rng\n", devices.device_num);
2631 }
2632 /* That's the end of device setup. */
2633
2634 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
2635 static void __attribute__((noreturn)) restart_guest(void)
2636 {
2637 unsigned int i;
2638
2639 /*
2640 * Since we don't track all open fds, we simply close everything beyond
2641 * stderr.
2642 */
2643 for (i = 3; i < FD_SETSIZE; i++)
2644 close(i);
2645
2646 /* Reset all the devices (kills all threads). */
2647 cleanup_devices();
2648
2649 execv(main_args[0], main_args);
2650 err(1, "Could not exec %s", main_args[0]);
2651 }
2652
2653 /*L:220
2654 * Finally we reach the core of the Launcher which runs the Guest, serves
2655 * its input and output, and finally, lays it to rest.
2656 */
2657 static void __attribute__((noreturn)) run_guest(void)
2658 {
2659 for (;;) {
2660 struct lguest_pending notify;
2661 int readval;
2662
2663 /* We read from the /dev/lguest device to run the Guest. */
2664 readval = pread(lguest_fd, &notify, sizeof(notify), cpu_id);
2665 if (readval == sizeof(notify)) {
2666 if (notify.trap == 13) {
2667 verbose("Emulating instruction at %#x\n",
2668 getreg(eip));
2669 emulate_insn(notify.insn);
2670 } else if (notify.trap == 14) {
2671 verbose("Emulating MMIO at %#x\n",
2672 getreg(eip));
2673 emulate_mmio(notify.addr, notify.insn);
2674 } else
2675 errx(1, "Unknown trap %i addr %#08x\n",
2676 notify.trap, notify.addr);
2677 /* ENOENT means the Guest died. Reading tells us why. */
2678 } else if (errno == ENOENT) {
2679 char reason[1024] = { 0 };
2680 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
2681 errx(1, "%s", reason);
2682 /* ERESTART means that we need to reboot the guest */
2683 } else if (errno == ERESTART) {
2684 restart_guest();
2685 /* Anything else means a bug or incompatible change. */
2686 } else
2687 err(1, "Running guest failed");
2688 }
2689 }
2690 /*L:240
2691 * This is the end of the Launcher. The good news: we are over halfway
2692 * through! The bad news: the most fiendish part of the code still lies ahead
2693 * of us.
2694 *
2695 * Are you ready? Take a deep breath and join me in the core of the Host, in
2696 * "make Host".
2697 :*/
2698
2699 static struct option opts[] = {
2700 { "verbose", 0, NULL, 'v' },
2701 { "tunnet", 1, NULL, 't' },
2702 { "block", 1, NULL, 'b' },
2703 { "rng", 0, NULL, 'r' },
2704 { "initrd", 1, NULL, 'i' },
2705 { "username", 1, NULL, 'u' },
2706 { "chroot", 1, NULL, 'c' },
2707 { NULL },
2708 };
2709 static void usage(void)
2710 {
2711 errx(1, "Usage: lguest [--verbose] "
2712 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
2713 "|--block=<filename>|--initrd=<filename>]...\n"
2714 "<mem-in-mb> vmlinux [args...]");
2715 }
2716
2717 /*L:105 The main routine is where the real work begins: */
2718 int main(int argc, char *argv[])
2719 {
2720 /* Memory, code startpoint and size of the (optional) initrd. */
2721 unsigned long mem = 0, start, initrd_size = 0;
2722 /* Two temporaries. */
2723 int i, c;
2724 /* The boot information for the Guest. */
2725 struct boot_params *boot;
2726 /* If they specify an initrd file to load. */
2727 const char *initrd_name = NULL;
2728
2729 /* Password structure for initgroups/setres[gu]id */
2730 struct passwd *user_details = NULL;
2731
2732 /* Directory to chroot to */
2733 char *chroot_path = NULL;
2734
2735 /* Save the args: we "reboot" by execing ourselves again. */
2736 main_args = argv;
2737
2738 /*
2739 * First we initialize the device list. We remember next interrupt
2740 * number to use for devices (1: remember that 0 is used by the timer).
2741 */
2742 devices.next_irq = 1;
2743
2744 /* We're CPU 0. In fact, that's the only CPU possible right now. */
2745 cpu_id = 0;
2746
2747 /*
2748 * We need to know how much memory so we can set up the device
2749 * descriptor and memory pages for the devices as we parse the command
2750 * line. So we quickly look through the arguments to find the amount
2751 * of memory now.
2752 */
2753 for (i = 1; i < argc; i++) {
2754 if (argv[i][0] != '-') {
2755 mem = atoi(argv[i]) * 1024 * 1024;
2756 /*
2757 * We start by mapping anonymous pages over all of
2758 * guest-physical memory range. This fills it with 0,
2759 * and ensures that the Guest won't be killed when it
2760 * tries to access it.
2761 */
2762 guest_base = map_zeroed_pages(mem / getpagesize()
2763 + DEVICE_PAGES);
2764 guest_limit = mem;
2765 guest_max = guest_mmio = mem + DEVICE_PAGES*getpagesize();
2766 break;
2767 }
2768 }
2769
2770 /* We always have a console device, and it's always device 1. */
2771 setup_console();
2772
2773 /* The options are fairly straight-forward */
2774 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
2775 switch (c) {
2776 case 'v':
2777 verbose = true;
2778 break;
2779 case 't':
2780 setup_tun_net(optarg);
2781 break;
2782 case 'b':
2783 setup_block_file(optarg);
2784 break;
2785 case 'r':
2786 setup_rng();
2787 break;
2788 case 'i':
2789 initrd_name = optarg;
2790 break;
2791 case 'u':
2792 user_details = getpwnam(optarg);
2793 if (!user_details)
2794 err(1, "getpwnam failed, incorrect username?");
2795 break;
2796 case 'c':
2797 chroot_path = optarg;
2798 break;
2799 default:
2800 warnx("Unknown argument %s", argv[optind]);
2801 usage();
2802 }
2803 }
2804 /*
2805 * After the other arguments we expect memory and kernel image name,
2806 * followed by command line arguments for the kernel.
2807 */
2808 if (optind + 2 > argc)
2809 usage();
2810
2811 verbose("Guest base is at %p\n", guest_base);
2812
2813 /* Initialize the (fake) PCI host bridge device. */
2814 init_pci_host_bridge();
2815
2816 /* Now we load the kernel */
2817 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
2818
2819 /* Boot information is stashed at physical address 0 */
2820 boot = from_guest_phys(0);
2821
2822 /* Map the initrd image if requested (at top of physical memory) */
2823 if (initrd_name) {
2824 initrd_size = load_initrd(initrd_name, mem);
2825 /*
2826 * These are the location in the Linux boot header where the
2827 * start and size of the initrd are expected to be found.
2828 */
2829 boot->hdr.ramdisk_image = mem - initrd_size;
2830 boot->hdr.ramdisk_size = initrd_size;
2831 /* The bootloader type 0xFF means "unknown"; that's OK. */
2832 boot->hdr.type_of_loader = 0xFF;
2833 }
2834
2835 /*
2836 * The Linux boot header contains an "E820" memory map: ours is a
2837 * simple, single region.
2838 */
2839 boot->e820_entries = 1;
2840 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
2841 /*
2842 * The boot header contains a command line pointer: we put the command
2843 * line after the boot header.
2844 */
2845 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
2846 /* We use a simple helper to copy the arguments separated by spaces. */
2847 concat((char *)(boot + 1), argv+optind+2);
2848
2849 /* Set kernel alignment to 16M (CONFIG_PHYSICAL_ALIGN) */
2850 boot->hdr.kernel_alignment = 0x1000000;
2851
2852 /* Boot protocol version: 2.07 supports the fields for lguest. */
2853 boot->hdr.version = 0x207;
2854
2855 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
2856 boot->hdr.hardware_subarch = 1;
2857
2858 /* Tell the entry path not to try to reload segment registers. */
2859 boot->hdr.loadflags |= KEEP_SEGMENTS;
2860
2861 /* We tell the kernel to initialize the Guest. */
2862 tell_kernel(start);
2863
2864 /* Ensure that we terminate if a device-servicing child dies. */
2865 signal(SIGCHLD, kill_launcher);
2866
2867 /* If we exit via err(), this kills all the threads, restores tty. */
2868 atexit(cleanup_devices);
2869
2870 /* If requested, chroot to a directory */
2871 if (chroot_path) {
2872 if (chroot(chroot_path) != 0)
2873 err(1, "chroot(\"%s\") failed", chroot_path);
2874
2875 if (chdir("/") != 0)
2876 err(1, "chdir(\"/\") failed");
2877
2878 verbose("chroot done\n");
2879 }
2880
2881 /* If requested, drop privileges */
2882 if (user_details) {
2883 uid_t u;
2884 gid_t g;
2885
2886 u = user_details->pw_uid;
2887 g = user_details->pw_gid;
2888
2889 if (initgroups(user_details->pw_name, g) != 0)
2890 err(1, "initgroups failed");
2891
2892 if (setresgid(g, g, g) != 0)
2893 err(1, "setresgid failed");
2894
2895 if (setresuid(u, u, u) != 0)
2896 err(1, "setresuid failed");
2897
2898 verbose("Dropping privileges completed\n");
2899 }
2900
2901 /* Finally, run the Guest. This doesn't return. */
2902 run_guest();
2903 }
2904 /*:*/
2905
2906 /*M:999
2907 * Mastery is done: you now know everything I do.
2908 *
2909 * But surely you have seen code, features and bugs in your wanderings which
2910 * you now yearn to attack? That is the real game, and I look forward to you
2911 * patching and forking lguest into the Your-Name-Here-visor.
2912 *
2913 * Farewell, and good coding!
2914 * Rusty Russell.
2915 */