]> git.proxmox.com Git - mirror_qemu.git/blob - util/cutils.c
Merge remote-tracking branch 'remotes/cschoenebeck/tags/pull-9p-20210316' into staging
[mirror_qemu.git] / util / cutils.c
1 /*
2 * Simple C functions to supplement the C library
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/host-utils.h"
27 #include <math.h>
28
29 #include "qemu-common.h"
30 #include "qemu/sockets.h"
31 #include "qemu/iov.h"
32 #include "net/net.h"
33 #include "qemu/ctype.h"
34 #include "qemu/cutils.h"
35 #include "qemu/error-report.h"
36
37 void strpadcpy(char *buf, int buf_size, const char *str, char pad)
38 {
39 int len = qemu_strnlen(str, buf_size);
40 memcpy(buf, str, len);
41 memset(buf + len, pad, buf_size - len);
42 }
43
44 void pstrcpy(char *buf, int buf_size, const char *str)
45 {
46 int c;
47 char *q = buf;
48
49 if (buf_size <= 0)
50 return;
51
52 for(;;) {
53 c = *str++;
54 if (c == 0 || q >= buf + buf_size - 1)
55 break;
56 *q++ = c;
57 }
58 *q = '\0';
59 }
60
61 /* strcat and truncate. */
62 char *pstrcat(char *buf, int buf_size, const char *s)
63 {
64 int len;
65 len = strlen(buf);
66 if (len < buf_size)
67 pstrcpy(buf + len, buf_size - len, s);
68 return buf;
69 }
70
71 int strstart(const char *str, const char *val, const char **ptr)
72 {
73 const char *p, *q;
74 p = str;
75 q = val;
76 while (*q != '\0') {
77 if (*p != *q)
78 return 0;
79 p++;
80 q++;
81 }
82 if (ptr)
83 *ptr = p;
84 return 1;
85 }
86
87 int stristart(const char *str, const char *val, const char **ptr)
88 {
89 const char *p, *q;
90 p = str;
91 q = val;
92 while (*q != '\0') {
93 if (qemu_toupper(*p) != qemu_toupper(*q))
94 return 0;
95 p++;
96 q++;
97 }
98 if (ptr)
99 *ptr = p;
100 return 1;
101 }
102
103 /* XXX: use host strnlen if available ? */
104 int qemu_strnlen(const char *s, int max_len)
105 {
106 int i;
107
108 for(i = 0; i < max_len; i++) {
109 if (s[i] == '\0') {
110 break;
111 }
112 }
113 return i;
114 }
115
116 char *qemu_strsep(char **input, const char *delim)
117 {
118 char *result = *input;
119 if (result != NULL) {
120 char *p;
121
122 for (p = result; *p != '\0'; p++) {
123 if (strchr(delim, *p)) {
124 break;
125 }
126 }
127 if (*p == '\0') {
128 *input = NULL;
129 } else {
130 *p = '\0';
131 *input = p + 1;
132 }
133 }
134 return result;
135 }
136
137 time_t mktimegm(struct tm *tm)
138 {
139 time_t t;
140 int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
141 if (m < 3) {
142 m += 12;
143 y--;
144 }
145 t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
146 y / 400 - 719469);
147 t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
148 return t;
149 }
150
151 /*
152 * Make sure data goes on disk, but if possible do not bother to
153 * write out the inode just for timestamp updates.
154 *
155 * Unfortunately even in 2009 many operating systems do not support
156 * fdatasync and have to fall back to fsync.
157 */
158 int qemu_fdatasync(int fd)
159 {
160 #ifdef CONFIG_FDATASYNC
161 return fdatasync(fd);
162 #else
163 return fsync(fd);
164 #endif
165 }
166
167 /**
168 * Sync changes made to the memory mapped file back to the backing
169 * storage. For POSIX compliant systems this will fallback
170 * to regular msync call. Otherwise it will trigger whole file sync
171 * (including the metadata case there is no support to skip that otherwise)
172 *
173 * @addr - start of the memory area to be synced
174 * @length - length of the are to be synced
175 * @fd - file descriptor for the file to be synced
176 * (mandatory only for POSIX non-compliant systems)
177 */
178 int qemu_msync(void *addr, size_t length, int fd)
179 {
180 #ifdef CONFIG_POSIX
181 size_t align_mask = ~(qemu_real_host_page_size - 1);
182
183 /**
184 * There are no strict reqs as per the length of mapping
185 * to be synced. Still the length needs to follow the address
186 * alignment changes. Additionally - round the size to the multiple
187 * of PAGE_SIZE
188 */
189 length += ((uintptr_t)addr & (qemu_real_host_page_size - 1));
190 length = (length + ~align_mask) & align_mask;
191
192 addr = (void *)((uintptr_t)addr & align_mask);
193
194 return msync(addr, length, MS_SYNC);
195 #else /* CONFIG_POSIX */
196 /**
197 * Perform the sync based on the file descriptor
198 * The sync range will most probably be wider than the one
199 * requested - but it will still get the job done
200 */
201 return qemu_fdatasync(fd);
202 #endif /* CONFIG_POSIX */
203 }
204
205 #ifndef _WIN32
206 /* Sets a specific flag */
207 int fcntl_setfl(int fd, int flag)
208 {
209 int flags;
210
211 flags = fcntl(fd, F_GETFL);
212 if (flags == -1)
213 return -errno;
214
215 if (fcntl(fd, F_SETFL, flags | flag) == -1)
216 return -errno;
217
218 return 0;
219 }
220 #endif
221
222 static int64_t suffix_mul(char suffix, int64_t unit)
223 {
224 switch (qemu_toupper(suffix)) {
225 case 'B':
226 return 1;
227 case 'K':
228 return unit;
229 case 'M':
230 return unit * unit;
231 case 'G':
232 return unit * unit * unit;
233 case 'T':
234 return unit * unit * unit * unit;
235 case 'P':
236 return unit * unit * unit * unit * unit;
237 case 'E':
238 return unit * unit * unit * unit * unit * unit;
239 }
240 return -1;
241 }
242
243 /*
244 * Convert size string to bytes.
245 *
246 * The size parsing supports the following syntaxes
247 * - 12345 - decimal, scale determined by @default_suffix and @unit
248 * - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit
249 * - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and
250 * fractional portion is truncated to byte
251 * - 0x7fEE - hexadecimal, unit determined by @default_suffix
252 *
253 * The following cause a deprecation warning, and may be removed in the future
254 * - 0xabc{kKmMgGtTpP} - hex with scaling suffix
255 *
256 * The following are intentionally not supported
257 * - octal, such as 08
258 * - fractional hex, such as 0x1.8
259 * - floating point exponents, such as 1e3
260 *
261 * The end pointer will be returned in *end, if not NULL. If there is
262 * no fraction, the input can be decimal or hexadecimal; if there is a
263 * fraction, then the input must be decimal and there must be a suffix
264 * (possibly by @default_suffix) larger than Byte, and the fractional
265 * portion may suffer from precision loss or rounding. The input must
266 * be positive.
267 *
268 * Return -ERANGE on overflow (with *@end advanced), and -EINVAL on
269 * other error (with *@end left unchanged).
270 */
271 static int do_strtosz(const char *nptr, const char **end,
272 const char default_suffix, int64_t unit,
273 uint64_t *result)
274 {
275 int retval;
276 const char *endptr, *f;
277 unsigned char c;
278 bool hex = false;
279 uint64_t val, valf = 0;
280 int64_t mul;
281
282 /* Parse integral portion as decimal. */
283 retval = qemu_strtou64(nptr, &endptr, 10, &val);
284 if (retval) {
285 goto out;
286 }
287 if (memchr(nptr, '-', endptr - nptr) != NULL) {
288 endptr = nptr;
289 retval = -EINVAL;
290 goto out;
291 }
292 if (val == 0 && (*endptr == 'x' || *endptr == 'X')) {
293 /* Input looks like hex, reparse, and insist on no fraction. */
294 retval = qemu_strtou64(nptr, &endptr, 16, &val);
295 if (retval) {
296 goto out;
297 }
298 if (*endptr == '.') {
299 endptr = nptr;
300 retval = -EINVAL;
301 goto out;
302 }
303 hex = true;
304 } else if (*endptr == '.') {
305 /*
306 * Input looks like a fraction. Make sure even 1.k works
307 * without fractional digits. If we see an exponent, treat
308 * the entire input as invalid instead.
309 */
310 double fraction;
311
312 f = endptr;
313 retval = qemu_strtod_finite(f, &endptr, &fraction);
314 if (retval) {
315 endptr++;
316 } else if (memchr(f, 'e', endptr - f) || memchr(f, 'E', endptr - f)) {
317 endptr = nptr;
318 retval = -EINVAL;
319 goto out;
320 } else {
321 /* Extract into a 64-bit fixed-point fraction. */
322 valf = (uint64_t)(fraction * 0x1p64);
323 }
324 }
325 c = *endptr;
326 mul = suffix_mul(c, unit);
327 if (mul > 0) {
328 if (hex) {
329 warn_report("Using a multiplier suffix on hex numbers "
330 "is deprecated: %s", nptr);
331 }
332 endptr++;
333 } else {
334 mul = suffix_mul(default_suffix, unit);
335 assert(mul > 0);
336 }
337 if (mul == 1) {
338 /* When a fraction is present, a scale is required. */
339 if (valf != 0) {
340 endptr = nptr;
341 retval = -EINVAL;
342 goto out;
343 }
344 } else {
345 uint64_t valh, tmp;
346
347 /* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */
348 mulu64(&val, &valh, val, mul);
349 mulu64(&valf, &tmp, valf, mul);
350 val += tmp;
351 valh += val < tmp;
352
353 /* Round 0.5 upward. */
354 tmp = valf >> 63;
355 val += tmp;
356 valh += val < tmp;
357
358 /* Report overflow. */
359 if (valh != 0) {
360 retval = -ERANGE;
361 goto out;
362 }
363 }
364
365 *result = val;
366 retval = 0;
367
368 out:
369 if (end) {
370 *end = endptr;
371 } else if (*endptr) {
372 retval = -EINVAL;
373 }
374
375 return retval;
376 }
377
378 int qemu_strtosz(const char *nptr, const char **end, uint64_t *result)
379 {
380 return do_strtosz(nptr, end, 'B', 1024, result);
381 }
382
383 int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result)
384 {
385 return do_strtosz(nptr, end, 'M', 1024, result);
386 }
387
388 int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result)
389 {
390 return do_strtosz(nptr, end, 'B', 1000, result);
391 }
392
393 /**
394 * Helper function for error checking after strtol() and the like
395 */
396 static int check_strtox_error(const char *nptr, char *ep,
397 const char **endptr, int libc_errno)
398 {
399 assert(ep >= nptr);
400 if (endptr) {
401 *endptr = ep;
402 }
403
404 /* Turn "no conversion" into an error */
405 if (libc_errno == 0 && ep == nptr) {
406 return -EINVAL;
407 }
408
409 /* Fail when we're expected to consume the string, but didn't */
410 if (!endptr && *ep) {
411 return -EINVAL;
412 }
413
414 return -libc_errno;
415 }
416
417 /**
418 * Convert string @nptr to an integer, and store it in @result.
419 *
420 * This is a wrapper around strtol() that is harder to misuse.
421 * Semantics of @nptr, @endptr, @base match strtol() with differences
422 * noted below.
423 *
424 * @nptr may be null, and no conversion is performed then.
425 *
426 * If no conversion is performed, store @nptr in *@endptr and return
427 * -EINVAL.
428 *
429 * If @endptr is null, and the string isn't fully converted, return
430 * -EINVAL. This is the case when the pointer that would be stored in
431 * a non-null @endptr points to a character other than '\0'.
432 *
433 * If the conversion overflows @result, store INT_MAX in @result,
434 * and return -ERANGE.
435 *
436 * If the conversion underflows @result, store INT_MIN in @result,
437 * and return -ERANGE.
438 *
439 * Else store the converted value in @result, and return zero.
440 */
441 int qemu_strtoi(const char *nptr, const char **endptr, int base,
442 int *result)
443 {
444 char *ep;
445 long long lresult;
446
447 assert((unsigned) base <= 36 && base != 1);
448 if (!nptr) {
449 if (endptr) {
450 *endptr = nptr;
451 }
452 return -EINVAL;
453 }
454
455 errno = 0;
456 lresult = strtoll(nptr, &ep, base);
457 if (lresult < INT_MIN) {
458 *result = INT_MIN;
459 errno = ERANGE;
460 } else if (lresult > INT_MAX) {
461 *result = INT_MAX;
462 errno = ERANGE;
463 } else {
464 *result = lresult;
465 }
466 return check_strtox_error(nptr, ep, endptr, errno);
467 }
468
469 /**
470 * Convert string @nptr to an unsigned integer, and store it in @result.
471 *
472 * This is a wrapper around strtoul() that is harder to misuse.
473 * Semantics of @nptr, @endptr, @base match strtoul() with differences
474 * noted below.
475 *
476 * @nptr may be null, and no conversion is performed then.
477 *
478 * If no conversion is performed, store @nptr in *@endptr and return
479 * -EINVAL.
480 *
481 * If @endptr is null, and the string isn't fully converted, return
482 * -EINVAL. This is the case when the pointer that would be stored in
483 * a non-null @endptr points to a character other than '\0'.
484 *
485 * If the conversion overflows @result, store UINT_MAX in @result,
486 * and return -ERANGE.
487 *
488 * Else store the converted value in @result, and return zero.
489 *
490 * Note that a number with a leading minus sign gets converted without
491 * the minus sign, checked for overflow (see above), then negated (in
492 * @result's type). This is exactly how strtoul() works.
493 */
494 int qemu_strtoui(const char *nptr, const char **endptr, int base,
495 unsigned int *result)
496 {
497 char *ep;
498 long long lresult;
499
500 assert((unsigned) base <= 36 && base != 1);
501 if (!nptr) {
502 if (endptr) {
503 *endptr = nptr;
504 }
505 return -EINVAL;
506 }
507
508 errno = 0;
509 lresult = strtoull(nptr, &ep, base);
510
511 /* Windows returns 1 for negative out-of-range values. */
512 if (errno == ERANGE) {
513 *result = -1;
514 } else {
515 if (lresult > UINT_MAX) {
516 *result = UINT_MAX;
517 errno = ERANGE;
518 } else if (lresult < INT_MIN) {
519 *result = UINT_MAX;
520 errno = ERANGE;
521 } else {
522 *result = lresult;
523 }
524 }
525 return check_strtox_error(nptr, ep, endptr, errno);
526 }
527
528 /**
529 * Convert string @nptr to a long integer, and store it in @result.
530 *
531 * This is a wrapper around strtol() that is harder to misuse.
532 * Semantics of @nptr, @endptr, @base match strtol() with differences
533 * noted below.
534 *
535 * @nptr may be null, and no conversion is performed then.
536 *
537 * If no conversion is performed, store @nptr in *@endptr and return
538 * -EINVAL.
539 *
540 * If @endptr is null, and the string isn't fully converted, return
541 * -EINVAL. This is the case when the pointer that would be stored in
542 * a non-null @endptr points to a character other than '\0'.
543 *
544 * If the conversion overflows @result, store LONG_MAX in @result,
545 * and return -ERANGE.
546 *
547 * If the conversion underflows @result, store LONG_MIN in @result,
548 * and return -ERANGE.
549 *
550 * Else store the converted value in @result, and return zero.
551 */
552 int qemu_strtol(const char *nptr, const char **endptr, int base,
553 long *result)
554 {
555 char *ep;
556
557 assert((unsigned) base <= 36 && base != 1);
558 if (!nptr) {
559 if (endptr) {
560 *endptr = nptr;
561 }
562 return -EINVAL;
563 }
564
565 errno = 0;
566 *result = strtol(nptr, &ep, base);
567 return check_strtox_error(nptr, ep, endptr, errno);
568 }
569
570 /**
571 * Convert string @nptr to an unsigned long, and store it in @result.
572 *
573 * This is a wrapper around strtoul() that is harder to misuse.
574 * Semantics of @nptr, @endptr, @base match strtoul() with differences
575 * noted below.
576 *
577 * @nptr may be null, and no conversion is performed then.
578 *
579 * If no conversion is performed, store @nptr in *@endptr and return
580 * -EINVAL.
581 *
582 * If @endptr is null, and the string isn't fully converted, return
583 * -EINVAL. This is the case when the pointer that would be stored in
584 * a non-null @endptr points to a character other than '\0'.
585 *
586 * If the conversion overflows @result, store ULONG_MAX in @result,
587 * and return -ERANGE.
588 *
589 * Else store the converted value in @result, and return zero.
590 *
591 * Note that a number with a leading minus sign gets converted without
592 * the minus sign, checked for overflow (see above), then negated (in
593 * @result's type). This is exactly how strtoul() works.
594 */
595 int qemu_strtoul(const char *nptr, const char **endptr, int base,
596 unsigned long *result)
597 {
598 char *ep;
599
600 assert((unsigned) base <= 36 && base != 1);
601 if (!nptr) {
602 if (endptr) {
603 *endptr = nptr;
604 }
605 return -EINVAL;
606 }
607
608 errno = 0;
609 *result = strtoul(nptr, &ep, base);
610 /* Windows returns 1 for negative out-of-range values. */
611 if (errno == ERANGE) {
612 *result = -1;
613 }
614 return check_strtox_error(nptr, ep, endptr, errno);
615 }
616
617 /**
618 * Convert string @nptr to an int64_t.
619 *
620 * Works like qemu_strtol(), except it stores INT64_MAX on overflow,
621 * and INT64_MIN on underflow.
622 */
623 int qemu_strtoi64(const char *nptr, const char **endptr, int base,
624 int64_t *result)
625 {
626 char *ep;
627
628 assert((unsigned) base <= 36 && base != 1);
629 if (!nptr) {
630 if (endptr) {
631 *endptr = nptr;
632 }
633 return -EINVAL;
634 }
635
636 /* This assumes int64_t is long long TODO relax */
637 QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long));
638 errno = 0;
639 *result = strtoll(nptr, &ep, base);
640 return check_strtox_error(nptr, ep, endptr, errno);
641 }
642
643 /**
644 * Convert string @nptr to an uint64_t.
645 *
646 * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow.
647 */
648 int qemu_strtou64(const char *nptr, const char **endptr, int base,
649 uint64_t *result)
650 {
651 char *ep;
652
653 assert((unsigned) base <= 36 && base != 1);
654 if (!nptr) {
655 if (endptr) {
656 *endptr = nptr;
657 }
658 return -EINVAL;
659 }
660
661 /* This assumes uint64_t is unsigned long long TODO relax */
662 QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long));
663 errno = 0;
664 *result = strtoull(nptr, &ep, base);
665 /* Windows returns 1 for negative out-of-range values. */
666 if (errno == ERANGE) {
667 *result = -1;
668 }
669 return check_strtox_error(nptr, ep, endptr, errno);
670 }
671
672 /**
673 * Convert string @nptr to a double.
674 *
675 * This is a wrapper around strtod() that is harder to misuse.
676 * Semantics of @nptr and @endptr match strtod() with differences
677 * noted below.
678 *
679 * @nptr may be null, and no conversion is performed then.
680 *
681 * If no conversion is performed, store @nptr in *@endptr and return
682 * -EINVAL.
683 *
684 * If @endptr is null, and the string isn't fully converted, return
685 * -EINVAL. This is the case when the pointer that would be stored in
686 * a non-null @endptr points to a character other than '\0'.
687 *
688 * If the conversion overflows, store +/-HUGE_VAL in @result, depending
689 * on the sign, and return -ERANGE.
690 *
691 * If the conversion underflows, store +/-0.0 in @result, depending on the
692 * sign, and return -ERANGE.
693 *
694 * Else store the converted value in @result, and return zero.
695 */
696 int qemu_strtod(const char *nptr, const char **endptr, double *result)
697 {
698 char *ep;
699
700 if (!nptr) {
701 if (endptr) {
702 *endptr = nptr;
703 }
704 return -EINVAL;
705 }
706
707 errno = 0;
708 *result = strtod(nptr, &ep);
709 return check_strtox_error(nptr, ep, endptr, errno);
710 }
711
712 /**
713 * Convert string @nptr to a finite double.
714 *
715 * Works like qemu_strtod(), except that "NaN" and "inf" are rejected
716 * with -EINVAL and no conversion is performed.
717 */
718 int qemu_strtod_finite(const char *nptr, const char **endptr, double *result)
719 {
720 double tmp;
721 int ret;
722
723 ret = qemu_strtod(nptr, endptr, &tmp);
724 if (!ret && !isfinite(tmp)) {
725 if (endptr) {
726 *endptr = nptr;
727 }
728 ret = -EINVAL;
729 }
730
731 if (ret != -EINVAL) {
732 *result = tmp;
733 }
734 return ret;
735 }
736
737 /**
738 * Searches for the first occurrence of 'c' in 's', and returns a pointer
739 * to the trailing null byte if none was found.
740 */
741 #ifndef HAVE_STRCHRNUL
742 const char *qemu_strchrnul(const char *s, int c)
743 {
744 const char *e = strchr(s, c);
745 if (!e) {
746 e = s + strlen(s);
747 }
748 return e;
749 }
750 #endif
751
752 /**
753 * parse_uint:
754 *
755 * @s: String to parse
756 * @value: Destination for parsed integer value
757 * @endptr: Destination for pointer to first character not consumed
758 * @base: integer base, between 2 and 36 inclusive, or 0
759 *
760 * Parse unsigned integer
761 *
762 * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional
763 * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits.
764 *
765 * If @s is null, or @base is invalid, or @s doesn't start with an
766 * integer in the syntax above, set *@value to 0, *@endptr to @s, and
767 * return -EINVAL.
768 *
769 * Set *@endptr to point right beyond the parsed integer (even if the integer
770 * overflows or is negative, all digits will be parsed and *@endptr will
771 * point right beyond them).
772 *
773 * If the integer is negative, set *@value to 0, and return -ERANGE.
774 *
775 * If the integer overflows unsigned long long, set *@value to
776 * ULLONG_MAX, and return -ERANGE.
777 *
778 * Else, set *@value to the parsed integer, and return 0.
779 */
780 int parse_uint(const char *s, unsigned long long *value, char **endptr,
781 int base)
782 {
783 int r = 0;
784 char *endp = (char *)s;
785 unsigned long long val = 0;
786
787 assert((unsigned) base <= 36 && base != 1);
788 if (!s) {
789 r = -EINVAL;
790 goto out;
791 }
792
793 errno = 0;
794 val = strtoull(s, &endp, base);
795 if (errno) {
796 r = -errno;
797 goto out;
798 }
799
800 if (endp == s) {
801 r = -EINVAL;
802 goto out;
803 }
804
805 /* make sure we reject negative numbers: */
806 while (qemu_isspace(*s)) {
807 s++;
808 }
809 if (*s == '-') {
810 val = 0;
811 r = -ERANGE;
812 goto out;
813 }
814
815 out:
816 *value = val;
817 *endptr = endp;
818 return r;
819 }
820
821 /**
822 * parse_uint_full:
823 *
824 * @s: String to parse
825 * @value: Destination for parsed integer value
826 * @base: integer base, between 2 and 36 inclusive, or 0
827 *
828 * Parse unsigned integer from entire string
829 *
830 * Have the same behavior of parse_uint(), but with an additional check
831 * for additional data after the parsed number. If extra characters are present
832 * after the parsed number, the function will return -EINVAL, and *@v will
833 * be set to 0.
834 */
835 int parse_uint_full(const char *s, unsigned long long *value, int base)
836 {
837 char *endp;
838 int r;
839
840 r = parse_uint(s, value, &endp, base);
841 if (r < 0) {
842 return r;
843 }
844 if (*endp) {
845 *value = 0;
846 return -EINVAL;
847 }
848
849 return 0;
850 }
851
852 int qemu_parse_fd(const char *param)
853 {
854 long fd;
855 char *endptr;
856
857 errno = 0;
858 fd = strtol(param, &endptr, 10);
859 if (param == endptr /* no conversion performed */ ||
860 errno != 0 /* not representable as long; possibly others */ ||
861 *endptr != '\0' /* final string not empty */ ||
862 fd < 0 /* invalid as file descriptor */ ||
863 fd > INT_MAX /* not representable as int */) {
864 return -1;
865 }
866 return fd;
867 }
868
869 /*
870 * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128)
871 * Input is limited to 14-bit numbers
872 */
873 int uleb128_encode_small(uint8_t *out, uint32_t n)
874 {
875 g_assert(n <= 0x3fff);
876 if (n < 0x80) {
877 *out = n;
878 return 1;
879 } else {
880 *out++ = (n & 0x7f) | 0x80;
881 *out = n >> 7;
882 return 2;
883 }
884 }
885
886 int uleb128_decode_small(const uint8_t *in, uint32_t *n)
887 {
888 if (!(*in & 0x80)) {
889 *n = *in;
890 return 1;
891 } else {
892 *n = *in++ & 0x7f;
893 /* we exceed 14 bit number */
894 if (*in & 0x80) {
895 return -1;
896 }
897 *n |= *in << 7;
898 return 2;
899 }
900 }
901
902 /*
903 * helper to parse debug environment variables
904 */
905 int parse_debug_env(const char *name, int max, int initial)
906 {
907 char *debug_env = getenv(name);
908 char *inv = NULL;
909 long debug;
910
911 if (!debug_env) {
912 return initial;
913 }
914 errno = 0;
915 debug = strtol(debug_env, &inv, 10);
916 if (inv == debug_env) {
917 return initial;
918 }
919 if (debug < 0 || debug > max || errno != 0) {
920 warn_report("%s not in [0, %d]", name, max);
921 return initial;
922 }
923 return debug;
924 }
925
926 /*
927 * Helper to print ethernet mac address
928 */
929 const char *qemu_ether_ntoa(const MACAddr *mac)
930 {
931 static char ret[18];
932
933 snprintf(ret, sizeof(ret), "%02x:%02x:%02x:%02x:%02x:%02x",
934 mac->a[0], mac->a[1], mac->a[2], mac->a[3], mac->a[4], mac->a[5]);
935
936 return ret;
937 }
938
939 /*
940 * Return human readable string for size @val.
941 * @val can be anything that uint64_t allows (no more than "16 EiB").
942 * Use IEC binary units like KiB, MiB, and so forth.
943 * Caller is responsible for passing it to g_free().
944 */
945 char *size_to_str(uint64_t val)
946 {
947 static const char *suffixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" };
948 uint64_t div;
949 int i;
950
951 /*
952 * The exponent (returned in i) minus one gives us
953 * floor(log2(val * 1024 / 1000). The correction makes us
954 * switch to the higher power when the integer part is >= 1000.
955 * (see e41b509d68afb1f for more info)
956 */
957 frexp(val / (1000.0 / 1024.0), &i);
958 i = (i - 1) / 10;
959 div = 1ULL << (i * 10);
960
961 return g_strdup_printf("%0.3g %sB", (double)val / div, suffixes[i]);
962 }
963
964 char *freq_to_str(uint64_t freq_hz)
965 {
966 static const char *const suffixes[] = { "", "K", "M", "G", "T", "P", "E" };
967 double freq = freq_hz;
968 size_t idx = 0;
969
970 while (freq >= 1000.0) {
971 freq /= 1000.0;
972 idx++;
973 }
974 assert(idx < ARRAY_SIZE(suffixes));
975
976 return g_strdup_printf("%0.3g %sHz", freq, suffixes[idx]);
977 }
978
979 int qemu_pstrcmp0(const char **str1, const char **str2)
980 {
981 return g_strcmp0(*str1, *str2);
982 }
983
984 static inline bool starts_with_prefix(const char *dir)
985 {
986 size_t prefix_len = strlen(CONFIG_PREFIX);
987 return !memcmp(dir, CONFIG_PREFIX, prefix_len) &&
988 (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len]));
989 }
990
991 /* Return the next path component in dir, and store its length in *p_len. */
992 static inline const char *next_component(const char *dir, int *p_len)
993 {
994 int len;
995 while ((*dir && G_IS_DIR_SEPARATOR(*dir)) ||
996 (*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) {
997 dir++;
998 }
999 len = 0;
1000 while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) {
1001 len++;
1002 }
1003 *p_len = len;
1004 return dir;
1005 }
1006
1007 char *get_relocated_path(const char *dir)
1008 {
1009 size_t prefix_len = strlen(CONFIG_PREFIX);
1010 const char *bindir = CONFIG_BINDIR;
1011 const char *exec_dir = qemu_get_exec_dir();
1012 GString *result;
1013 int len_dir, len_bindir;
1014
1015 /* Fail if qemu_init_exec_dir was not called. */
1016 assert(exec_dir[0]);
1017 if (!starts_with_prefix(dir) || !starts_with_prefix(bindir)) {
1018 return g_strdup(dir);
1019 }
1020
1021 result = g_string_new(exec_dir);
1022
1023 /* Advance over common components. */
1024 len_dir = len_bindir = prefix_len;
1025 do {
1026 dir += len_dir;
1027 bindir += len_bindir;
1028 dir = next_component(dir, &len_dir);
1029 bindir = next_component(bindir, &len_bindir);
1030 } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir));
1031
1032 /* Ascend from bindir to the common prefix with dir. */
1033 while (len_bindir) {
1034 bindir += len_bindir;
1035 g_string_append(result, "/..");
1036 bindir = next_component(bindir, &len_bindir);
1037 }
1038
1039 if (*dir) {
1040 assert(G_IS_DIR_SEPARATOR(dir[-1]));
1041 g_string_append(result, dir - 1);
1042 }
1043 return result->str;
1044 }