]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/arm/arm.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / arm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <linux/kvm_irqfd.h>
31 #include <linux/irqbypass.h>
32 #include <trace/events/kvm.h>
33 #include <kvm/arm_pmu.h>
34 #include <kvm/arm_psci.h>
35
36 #define CREATE_TRACE_POINTS
37 #include "trace.h"
38
39 #include <linux/uaccess.h>
40 #include <asm/ptrace.h>
41 #include <asm/mman.h>
42 #include <asm/tlbflush.h>
43 #include <asm/cacheflush.h>
44 #include <asm/virt.h>
45 #include <asm/kvm_arm.h>
46 #include <asm/kvm_asm.h>
47 #include <asm/kvm_mmu.h>
48 #include <asm/kvm_emulate.h>
49 #include <asm/kvm_coproc.h>
50 #include <asm/sections.h>
51
52 #ifdef REQUIRES_VIRT
53 __asm__(".arch_extension virt");
54 #endif
55
56 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
57 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
58
59 /* Per-CPU variable containing the currently running vcpu. */
60 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
61
62 /* The VMID used in the VTTBR */
63 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
64 static u32 kvm_next_vmid;
65 static unsigned int kvm_vmid_bits __read_mostly;
66 static DEFINE_SPINLOCK(kvm_vmid_lock);
67
68 static bool vgic_present;
69
70 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
71
72 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
73 {
74 BUG_ON(preemptible());
75 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
76 }
77
78 /**
79 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
80 * Must be called from non-preemptible context
81 */
82 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
83 {
84 BUG_ON(preemptible());
85 return __this_cpu_read(kvm_arm_running_vcpu);
86 }
87
88 /**
89 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
90 */
91 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
92 {
93 return &kvm_arm_running_vcpu;
94 }
95
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97 {
98 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
99 }
100
101 int kvm_arch_hardware_setup(void)
102 {
103 return 0;
104 }
105
106 void kvm_arch_check_processor_compat(void *rtn)
107 {
108 *(int *)rtn = 0;
109 }
110
111
112 /**
113 * kvm_arch_init_vm - initializes a VM data structure
114 * @kvm: pointer to the KVM struct
115 */
116 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
117 {
118 int ret, cpu;
119
120 if (type)
121 return -EINVAL;
122
123 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
124 if (!kvm->arch.last_vcpu_ran)
125 return -ENOMEM;
126
127 for_each_possible_cpu(cpu)
128 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
129
130 ret = kvm_alloc_stage2_pgd(kvm);
131 if (ret)
132 goto out_fail_alloc;
133
134 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
135 if (ret)
136 goto out_free_stage2_pgd;
137
138 kvm_vgic_early_init(kvm);
139
140 /* Mark the initial VMID generation invalid */
141 kvm->arch.vmid_gen = 0;
142
143 /* The maximum number of VCPUs is limited by the host's GIC model */
144 kvm->arch.max_vcpus = vgic_present ?
145 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146
147 return ret;
148 out_free_stage2_pgd:
149 kvm_free_stage2_pgd(kvm);
150 out_fail_alloc:
151 free_percpu(kvm->arch.last_vcpu_ran);
152 kvm->arch.last_vcpu_ran = NULL;
153 return ret;
154 }
155
156 bool kvm_arch_has_vcpu_debugfs(void)
157 {
158 return false;
159 }
160
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
162 {
163 return 0;
164 }
165
166 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168 return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173 * kvm_arch_destroy_vm - destroy the VM data structure
174 * @kvm: pointer to the KVM struct
175 */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178 int i;
179
180 kvm_vgic_destroy(kvm);
181
182 free_percpu(kvm->arch.last_vcpu_ran);
183 kvm->arch.last_vcpu_ran = NULL;
184
185 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
186 if (kvm->vcpus[i]) {
187 kvm_arch_vcpu_free(kvm->vcpus[i]);
188 kvm->vcpus[i] = NULL;
189 }
190 }
191 atomic_set(&kvm->online_vcpus, 0);
192 }
193
194 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
195 {
196 int r;
197 switch (ext) {
198 case KVM_CAP_IRQCHIP:
199 r = vgic_present;
200 break;
201 case KVM_CAP_IOEVENTFD:
202 case KVM_CAP_DEVICE_CTRL:
203 case KVM_CAP_USER_MEMORY:
204 case KVM_CAP_SYNC_MMU:
205 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
206 case KVM_CAP_ONE_REG:
207 case KVM_CAP_ARM_PSCI:
208 case KVM_CAP_ARM_PSCI_0_2:
209 case KVM_CAP_READONLY_MEM:
210 case KVM_CAP_MP_STATE:
211 case KVM_CAP_IMMEDIATE_EXIT:
212 r = 1;
213 break;
214 case KVM_CAP_ARM_SET_DEVICE_ADDR:
215 r = 1;
216 break;
217 case KVM_CAP_NR_VCPUS:
218 r = num_online_cpus();
219 break;
220 case KVM_CAP_MAX_VCPUS:
221 r = KVM_MAX_VCPUS;
222 break;
223 case KVM_CAP_MAX_VCPU_ID:
224 r = KVM_MAX_VCPU_ID;
225 break;
226 case KVM_CAP_NR_MEMSLOTS:
227 r = KVM_USER_MEM_SLOTS;
228 break;
229 case KVM_CAP_MSI_DEVID:
230 if (!kvm)
231 r = -EINVAL;
232 else
233 r = kvm->arch.vgic.msis_require_devid;
234 break;
235 case KVM_CAP_ARM_USER_IRQ:
236 /*
237 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
238 * (bump this number if adding more devices)
239 */
240 r = 1;
241 break;
242 default:
243 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
244 break;
245 }
246 return r;
247 }
248
249 long kvm_arch_dev_ioctl(struct file *filp,
250 unsigned int ioctl, unsigned long arg)
251 {
252 return -EINVAL;
253 }
254
255
256 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
257 {
258 int err;
259 struct kvm_vcpu *vcpu;
260
261 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
262 err = -EBUSY;
263 goto out;
264 }
265
266 if (id >= kvm->arch.max_vcpus) {
267 err = -EINVAL;
268 goto out;
269 }
270
271 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
272 if (!vcpu) {
273 err = -ENOMEM;
274 goto out;
275 }
276
277 err = kvm_vcpu_init(vcpu, kvm, id);
278 if (err)
279 goto free_vcpu;
280
281 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
282 if (err)
283 goto vcpu_uninit;
284
285 return vcpu;
286 vcpu_uninit:
287 kvm_vcpu_uninit(vcpu);
288 free_vcpu:
289 kmem_cache_free(kvm_vcpu_cache, vcpu);
290 out:
291 return ERR_PTR(err);
292 }
293
294 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
295 {
296 kvm_vgic_vcpu_early_init(vcpu);
297 }
298
299 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
300 {
301 kvm_mmu_free_memory_caches(vcpu);
302 kvm_timer_vcpu_terminate(vcpu);
303 kvm_pmu_vcpu_destroy(vcpu);
304 kvm_vcpu_uninit(vcpu);
305 kmem_cache_free(kvm_vcpu_cache, vcpu);
306 }
307
308 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
309 {
310 kvm_arch_vcpu_free(vcpu);
311 }
312
313 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
314 {
315 return kvm_timer_is_pending(vcpu);
316 }
317
318 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
319 {
320 kvm_timer_schedule(vcpu);
321 /*
322 * If we're about to block (most likely because we've just hit a
323 * WFI), we need to sync back the state of the GIC CPU interface
324 * so that we have the lastest PMR and group enables. This ensures
325 * that kvm_arch_vcpu_runnable has up-to-date data to decide
326 * whether we have pending interrupts.
327 */
328 preempt_disable();
329 kvm_vgic_vmcr_sync(vcpu);
330 preempt_enable();
331
332 kvm_vgic_v4_enable_doorbell(vcpu);
333 }
334
335 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
336 {
337 kvm_timer_unschedule(vcpu);
338 kvm_vgic_v4_disable_doorbell(vcpu);
339 }
340
341 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
342 {
343 /* Force users to call KVM_ARM_VCPU_INIT */
344 vcpu->arch.target = -1;
345 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
346
347 /* Set up the timer */
348 kvm_timer_vcpu_init(vcpu);
349
350 kvm_arm_reset_debug_ptr(vcpu);
351
352 return kvm_vgic_vcpu_init(vcpu);
353 }
354
355 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
356 {
357 int *last_ran;
358
359 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
360
361 /*
362 * We might get preempted before the vCPU actually runs, but
363 * over-invalidation doesn't affect correctness.
364 */
365 if (*last_ran != vcpu->vcpu_id) {
366 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
367 *last_ran = vcpu->vcpu_id;
368 }
369
370 vcpu->cpu = cpu;
371 vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
372
373 kvm_arm_set_running_vcpu(vcpu);
374 kvm_vgic_load(vcpu);
375 kvm_timer_vcpu_load(vcpu);
376 }
377
378 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
379 {
380 kvm_timer_vcpu_put(vcpu);
381 kvm_vgic_put(vcpu);
382
383 vcpu->cpu = -1;
384
385 kvm_arm_set_running_vcpu(NULL);
386 }
387
388 static void vcpu_power_off(struct kvm_vcpu *vcpu)
389 {
390 vcpu->arch.power_off = true;
391 kvm_make_request(KVM_REQ_SLEEP, vcpu);
392 kvm_vcpu_kick(vcpu);
393 }
394
395 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
396 struct kvm_mp_state *mp_state)
397 {
398 if (vcpu->arch.power_off)
399 mp_state->mp_state = KVM_MP_STATE_STOPPED;
400 else
401 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
402
403 return 0;
404 }
405
406 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
407 struct kvm_mp_state *mp_state)
408 {
409 switch (mp_state->mp_state) {
410 case KVM_MP_STATE_RUNNABLE:
411 vcpu->arch.power_off = false;
412 break;
413 case KVM_MP_STATE_STOPPED:
414 vcpu_power_off(vcpu);
415 break;
416 default:
417 return -EINVAL;
418 }
419
420 return 0;
421 }
422
423 /**
424 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
425 * @v: The VCPU pointer
426 *
427 * If the guest CPU is not waiting for interrupts or an interrupt line is
428 * asserted, the CPU is by definition runnable.
429 */
430 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
431 {
432 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
433 && !v->arch.power_off && !v->arch.pause);
434 }
435
436 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
437 {
438 return vcpu_mode_priv(vcpu);
439 }
440
441 /* Just ensure a guest exit from a particular CPU */
442 static void exit_vm_noop(void *info)
443 {
444 }
445
446 void force_vm_exit(const cpumask_t *mask)
447 {
448 preempt_disable();
449 smp_call_function_many(mask, exit_vm_noop, NULL, true);
450 preempt_enable();
451 }
452
453 /**
454 * need_new_vmid_gen - check that the VMID is still valid
455 * @kvm: The VM's VMID to check
456 *
457 * return true if there is a new generation of VMIDs being used
458 *
459 * The hardware supports only 256 values with the value zero reserved for the
460 * host, so we check if an assigned value belongs to a previous generation,
461 * which which requires us to assign a new value. If we're the first to use a
462 * VMID for the new generation, we must flush necessary caches and TLBs on all
463 * CPUs.
464 */
465 static bool need_new_vmid_gen(struct kvm *kvm)
466 {
467 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
468 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
469 return unlikely(READ_ONCE(kvm->arch.vmid_gen) != current_vmid_gen);
470 }
471
472 /**
473 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
474 * @kvm The guest that we are about to run
475 *
476 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
477 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
478 * caches and TLBs.
479 */
480 static void update_vttbr(struct kvm *kvm)
481 {
482 phys_addr_t pgd_phys;
483 u64 vmid;
484
485 if (!need_new_vmid_gen(kvm))
486 return;
487
488 spin_lock(&kvm_vmid_lock);
489
490 /*
491 * We need to re-check the vmid_gen here to ensure that if another vcpu
492 * already allocated a valid vmid for this vm, then this vcpu should
493 * use the same vmid.
494 */
495 if (!need_new_vmid_gen(kvm)) {
496 spin_unlock(&kvm_vmid_lock);
497 return;
498 }
499
500 /* First user of a new VMID generation? */
501 if (unlikely(kvm_next_vmid == 0)) {
502 atomic64_inc(&kvm_vmid_gen);
503 kvm_next_vmid = 1;
504
505 /*
506 * On SMP we know no other CPUs can use this CPU's or each
507 * other's VMID after force_vm_exit returns since the
508 * kvm_vmid_lock blocks them from reentry to the guest.
509 */
510 force_vm_exit(cpu_all_mask);
511 /*
512 * Now broadcast TLB + ICACHE invalidation over the inner
513 * shareable domain to make sure all data structures are
514 * clean.
515 */
516 kvm_call_hyp(__kvm_flush_vm_context);
517 }
518
519 kvm->arch.vmid = kvm_next_vmid;
520 kvm_next_vmid++;
521 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
522
523 /* update vttbr to be used with the new vmid */
524 pgd_phys = virt_to_phys(kvm->arch.pgd);
525 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
526 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
527 kvm->arch.vttbr = pgd_phys | vmid;
528
529 smp_wmb();
530 WRITE_ONCE(kvm->arch.vmid_gen, atomic64_read(&kvm_vmid_gen));
531
532 spin_unlock(&kvm_vmid_lock);
533 }
534
535 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
536 {
537 struct kvm *kvm = vcpu->kvm;
538 int ret = 0;
539
540 if (likely(vcpu->arch.has_run_once))
541 return 0;
542
543 vcpu->arch.has_run_once = true;
544
545 /*
546 * Map the VGIC hardware resources before running a vcpu the first
547 * time on this VM.
548 */
549 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
550 ret = kvm_vgic_map_resources(kvm);
551 if (ret)
552 return ret;
553 }
554
555 ret = kvm_timer_enable(vcpu);
556 if (ret)
557 return ret;
558
559 ret = kvm_arm_pmu_v3_enable(vcpu);
560
561 return ret;
562 }
563
564 bool kvm_arch_intc_initialized(struct kvm *kvm)
565 {
566 return vgic_initialized(kvm);
567 }
568
569 void kvm_arm_halt_guest(struct kvm *kvm)
570 {
571 int i;
572 struct kvm_vcpu *vcpu;
573
574 kvm_for_each_vcpu(i, vcpu, kvm)
575 vcpu->arch.pause = true;
576 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
577 }
578
579 void kvm_arm_resume_guest(struct kvm *kvm)
580 {
581 int i;
582 struct kvm_vcpu *vcpu;
583
584 kvm_for_each_vcpu(i, vcpu, kvm) {
585 vcpu->arch.pause = false;
586 swake_up(kvm_arch_vcpu_wq(vcpu));
587 }
588 }
589
590 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
591 {
592 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
593
594 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
595 (!vcpu->arch.pause)));
596
597 if (vcpu->arch.power_off || vcpu->arch.pause) {
598 /* Awaken to handle a signal, request we sleep again later. */
599 kvm_make_request(KVM_REQ_SLEEP, vcpu);
600 }
601
602 /*
603 * Make sure we will observe a potential reset request if we've
604 * observed a change to the power state. Pairs with the smp_wmb() in
605 * kvm_psci_vcpu_on().
606 */
607 smp_rmb();
608 }
609
610 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
611 {
612 return vcpu->arch.target >= 0;
613 }
614
615 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
616 {
617 if (kvm_request_pending(vcpu)) {
618 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
619 vcpu_req_sleep(vcpu);
620
621 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
622 kvm_reset_vcpu(vcpu);
623
624 /*
625 * Clear IRQ_PENDING requests that were made to guarantee
626 * that a VCPU sees new virtual interrupts.
627 */
628 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
629 }
630 }
631
632 /**
633 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
634 * @vcpu: The VCPU pointer
635 * @run: The kvm_run structure pointer used for userspace state exchange
636 *
637 * This function is called through the VCPU_RUN ioctl called from user space. It
638 * will execute VM code in a loop until the time slice for the process is used
639 * or some emulation is needed from user space in which case the function will
640 * return with return value 0 and with the kvm_run structure filled in with the
641 * required data for the requested emulation.
642 */
643 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
644 {
645 int ret;
646
647 if (unlikely(!kvm_vcpu_initialized(vcpu)))
648 return -ENOEXEC;
649
650 ret = kvm_vcpu_first_run_init(vcpu);
651 if (ret)
652 return ret;
653
654 if (run->exit_reason == KVM_EXIT_MMIO) {
655 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
656 if (ret)
657 return ret;
658 if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
659 return 0;
660
661 }
662
663 if (run->immediate_exit)
664 return -EINTR;
665
666 kvm_sigset_activate(vcpu);
667
668 ret = 1;
669 run->exit_reason = KVM_EXIT_UNKNOWN;
670 while (ret > 0) {
671 /*
672 * Check conditions before entering the guest
673 */
674 cond_resched();
675
676 update_vttbr(vcpu->kvm);
677
678 check_vcpu_requests(vcpu);
679
680 /*
681 * Preparing the interrupts to be injected also
682 * involves poking the GIC, which must be done in a
683 * non-preemptible context.
684 */
685 preempt_disable();
686
687 /* Flush FP/SIMD state that can't survive guest entry/exit */
688 kvm_fpsimd_flush_cpu_state();
689
690 kvm_pmu_flush_hwstate(vcpu);
691
692 local_irq_disable();
693
694 kvm_vgic_flush_hwstate(vcpu);
695
696 /*
697 * If we have a singal pending, or need to notify a userspace
698 * irqchip about timer or PMU level changes, then we exit (and
699 * update the timer level state in kvm_timer_update_run
700 * below).
701 */
702 if (signal_pending(current) ||
703 kvm_timer_should_notify_user(vcpu) ||
704 kvm_pmu_should_notify_user(vcpu)) {
705 ret = -EINTR;
706 run->exit_reason = KVM_EXIT_INTR;
707 }
708
709 /*
710 * Ensure we set mode to IN_GUEST_MODE after we disable
711 * interrupts and before the final VCPU requests check.
712 * See the comment in kvm_vcpu_exiting_guest_mode() and
713 * Documentation/virtual/kvm/vcpu-requests.rst
714 */
715 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
716
717 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
718 kvm_request_pending(vcpu)) {
719 vcpu->mode = OUTSIDE_GUEST_MODE;
720 kvm_pmu_sync_hwstate(vcpu);
721 kvm_timer_sync_hwstate(vcpu);
722 kvm_vgic_sync_hwstate(vcpu);
723 local_irq_enable();
724 preempt_enable();
725 continue;
726 }
727
728 kvm_arm_setup_debug(vcpu);
729
730 /**************************************************************
731 * Enter the guest
732 */
733 trace_kvm_entry(*vcpu_pc(vcpu));
734 guest_enter_irqoff();
735 if (has_vhe())
736 kvm_arm_vhe_guest_enter();
737
738 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
739
740 if (has_vhe())
741 kvm_arm_vhe_guest_exit();
742 vcpu->mode = OUTSIDE_GUEST_MODE;
743 vcpu->stat.exits++;
744 /*
745 * Back from guest
746 *************************************************************/
747
748 kvm_arm_clear_debug(vcpu);
749
750 /*
751 * We must sync the PMU state before the vgic state so
752 * that the vgic can properly sample the updated state of the
753 * interrupt line.
754 */
755 kvm_pmu_sync_hwstate(vcpu);
756
757 /*
758 * Sync the vgic state before syncing the timer state because
759 * the timer code needs to know if the virtual timer
760 * interrupts are active.
761 */
762 kvm_vgic_sync_hwstate(vcpu);
763
764 /*
765 * Sync the timer hardware state before enabling interrupts as
766 * we don't want vtimer interrupts to race with syncing the
767 * timer virtual interrupt state.
768 */
769 kvm_timer_sync_hwstate(vcpu);
770
771 /*
772 * We may have taken a host interrupt in HYP mode (ie
773 * while executing the guest). This interrupt is still
774 * pending, as we haven't serviced it yet!
775 *
776 * We're now back in SVC mode, with interrupts
777 * disabled. Enabling the interrupts now will have
778 * the effect of taking the interrupt again, in SVC
779 * mode this time.
780 */
781 local_irq_enable();
782
783 /*
784 * We do local_irq_enable() before calling guest_exit() so
785 * that if a timer interrupt hits while running the guest we
786 * account that tick as being spent in the guest. We enable
787 * preemption after calling guest_exit() so that if we get
788 * preempted we make sure ticks after that is not counted as
789 * guest time.
790 */
791 guest_exit();
792 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
793
794 /* Exit types that need handling before we can be preempted */
795 handle_exit_early(vcpu, run, ret);
796
797 preempt_enable();
798
799 ret = handle_exit(vcpu, run, ret);
800 }
801
802 /* Tell userspace about in-kernel device output levels */
803 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
804 kvm_timer_update_run(vcpu);
805 kvm_pmu_update_run(vcpu);
806 }
807
808 kvm_sigset_deactivate(vcpu);
809
810 return ret;
811 }
812
813 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
814 {
815 int bit_index;
816 bool set;
817 unsigned long *ptr;
818
819 if (number == KVM_ARM_IRQ_CPU_IRQ)
820 bit_index = __ffs(HCR_VI);
821 else /* KVM_ARM_IRQ_CPU_FIQ */
822 bit_index = __ffs(HCR_VF);
823
824 ptr = (unsigned long *)&vcpu->arch.irq_lines;
825 if (level)
826 set = test_and_set_bit(bit_index, ptr);
827 else
828 set = test_and_clear_bit(bit_index, ptr);
829
830 /*
831 * If we didn't change anything, no need to wake up or kick other CPUs
832 */
833 if (set == level)
834 return 0;
835
836 /*
837 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
838 * trigger a world-switch round on the running physical CPU to set the
839 * virtual IRQ/FIQ fields in the HCR appropriately.
840 */
841 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
842 kvm_vcpu_kick(vcpu);
843
844 return 0;
845 }
846
847 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
848 bool line_status)
849 {
850 u32 irq = irq_level->irq;
851 unsigned int irq_type, vcpu_idx, irq_num;
852 int nrcpus = atomic_read(&kvm->online_vcpus);
853 struct kvm_vcpu *vcpu = NULL;
854 bool level = irq_level->level;
855
856 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
857 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
858 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
859
860 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
861
862 switch (irq_type) {
863 case KVM_ARM_IRQ_TYPE_CPU:
864 if (irqchip_in_kernel(kvm))
865 return -ENXIO;
866
867 if (vcpu_idx >= nrcpus)
868 return -EINVAL;
869
870 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
871 if (!vcpu)
872 return -EINVAL;
873
874 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
875 return -EINVAL;
876
877 return vcpu_interrupt_line(vcpu, irq_num, level);
878 case KVM_ARM_IRQ_TYPE_PPI:
879 if (!irqchip_in_kernel(kvm))
880 return -ENXIO;
881
882 if (vcpu_idx >= nrcpus)
883 return -EINVAL;
884
885 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
886 if (!vcpu)
887 return -EINVAL;
888
889 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
890 return -EINVAL;
891
892 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
893 case KVM_ARM_IRQ_TYPE_SPI:
894 if (!irqchip_in_kernel(kvm))
895 return -ENXIO;
896
897 if (irq_num < VGIC_NR_PRIVATE_IRQS)
898 return -EINVAL;
899
900 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
901 }
902
903 return -EINVAL;
904 }
905
906 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
907 const struct kvm_vcpu_init *init)
908 {
909 unsigned int i, ret;
910 int phys_target = kvm_target_cpu();
911
912 if (init->target != phys_target)
913 return -EINVAL;
914
915 /*
916 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
917 * use the same target.
918 */
919 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
920 return -EINVAL;
921
922 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
923 for (i = 0; i < sizeof(init->features) * 8; i++) {
924 bool set = (init->features[i / 32] & (1 << (i % 32)));
925
926 if (set && i >= KVM_VCPU_MAX_FEATURES)
927 return -ENOENT;
928
929 /*
930 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
931 * use the same feature set.
932 */
933 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
934 test_bit(i, vcpu->arch.features) != set)
935 return -EINVAL;
936
937 if (set)
938 set_bit(i, vcpu->arch.features);
939 }
940
941 vcpu->arch.target = phys_target;
942
943 /* Now we know what it is, we can reset it. */
944 ret = kvm_reset_vcpu(vcpu);
945 if (ret) {
946 vcpu->arch.target = -1;
947 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
948 }
949
950 return ret;
951 }
952
953 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
954 struct kvm_vcpu_init *init)
955 {
956 int ret;
957
958 ret = kvm_vcpu_set_target(vcpu, init);
959 if (ret)
960 return ret;
961
962 /*
963 * Ensure a rebooted VM will fault in RAM pages and detect if the
964 * guest MMU is turned off and flush the caches as needed.
965 */
966 if (vcpu->arch.has_run_once)
967 stage2_unmap_vm(vcpu->kvm);
968
969 vcpu_reset_hcr(vcpu);
970
971 /*
972 * Handle the "start in power-off" case.
973 */
974 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
975 vcpu_power_off(vcpu);
976 else
977 vcpu->arch.power_off = false;
978
979 return 0;
980 }
981
982 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
983 struct kvm_device_attr *attr)
984 {
985 int ret = -ENXIO;
986
987 switch (attr->group) {
988 default:
989 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
990 break;
991 }
992
993 return ret;
994 }
995
996 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
997 struct kvm_device_attr *attr)
998 {
999 int ret = -ENXIO;
1000
1001 switch (attr->group) {
1002 default:
1003 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1004 break;
1005 }
1006
1007 return ret;
1008 }
1009
1010 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1011 struct kvm_device_attr *attr)
1012 {
1013 int ret = -ENXIO;
1014
1015 switch (attr->group) {
1016 default:
1017 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1018 break;
1019 }
1020
1021 return ret;
1022 }
1023
1024 long kvm_arch_vcpu_ioctl(struct file *filp,
1025 unsigned int ioctl, unsigned long arg)
1026 {
1027 struct kvm_vcpu *vcpu = filp->private_data;
1028 void __user *argp = (void __user *)arg;
1029 struct kvm_device_attr attr;
1030
1031 switch (ioctl) {
1032 case KVM_ARM_VCPU_INIT: {
1033 struct kvm_vcpu_init init;
1034
1035 if (copy_from_user(&init, argp, sizeof(init)))
1036 return -EFAULT;
1037
1038 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1039 }
1040 case KVM_SET_ONE_REG:
1041 case KVM_GET_ONE_REG: {
1042 struct kvm_one_reg reg;
1043
1044 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1045 return -ENOEXEC;
1046
1047 if (copy_from_user(&reg, argp, sizeof(reg)))
1048 return -EFAULT;
1049 if (ioctl == KVM_SET_ONE_REG)
1050 return kvm_arm_set_reg(vcpu, &reg);
1051 else
1052 return kvm_arm_get_reg(vcpu, &reg);
1053 }
1054 case KVM_GET_REG_LIST: {
1055 struct kvm_reg_list __user *user_list = argp;
1056 struct kvm_reg_list reg_list;
1057 unsigned n;
1058
1059 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1060 return -ENOEXEC;
1061
1062 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1063 return -EFAULT;
1064 n = reg_list.n;
1065 reg_list.n = kvm_arm_num_regs(vcpu);
1066 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1067 return -EFAULT;
1068 if (n < reg_list.n)
1069 return -E2BIG;
1070 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1071 }
1072 case KVM_SET_DEVICE_ATTR: {
1073 if (copy_from_user(&attr, argp, sizeof(attr)))
1074 return -EFAULT;
1075 return kvm_arm_vcpu_set_attr(vcpu, &attr);
1076 }
1077 case KVM_GET_DEVICE_ATTR: {
1078 if (copy_from_user(&attr, argp, sizeof(attr)))
1079 return -EFAULT;
1080 return kvm_arm_vcpu_get_attr(vcpu, &attr);
1081 }
1082 case KVM_HAS_DEVICE_ATTR: {
1083 if (copy_from_user(&attr, argp, sizeof(attr)))
1084 return -EFAULT;
1085 return kvm_arm_vcpu_has_attr(vcpu, &attr);
1086 }
1087 default:
1088 return -EINVAL;
1089 }
1090 }
1091
1092 /**
1093 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1094 * @kvm: kvm instance
1095 * @log: slot id and address to which we copy the log
1096 *
1097 * Steps 1-4 below provide general overview of dirty page logging. See
1098 * kvm_get_dirty_log_protect() function description for additional details.
1099 *
1100 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1101 * always flush the TLB (step 4) even if previous step failed and the dirty
1102 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1103 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1104 * writes will be marked dirty for next log read.
1105 *
1106 * 1. Take a snapshot of the bit and clear it if needed.
1107 * 2. Write protect the corresponding page.
1108 * 3. Copy the snapshot to the userspace.
1109 * 4. Flush TLB's if needed.
1110 */
1111 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1112 {
1113 bool is_dirty = false;
1114 int r;
1115
1116 mutex_lock(&kvm->slots_lock);
1117
1118 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1119
1120 if (is_dirty)
1121 kvm_flush_remote_tlbs(kvm);
1122
1123 mutex_unlock(&kvm->slots_lock);
1124 return r;
1125 }
1126
1127 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1128 struct kvm_arm_device_addr *dev_addr)
1129 {
1130 unsigned long dev_id, type;
1131
1132 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1133 KVM_ARM_DEVICE_ID_SHIFT;
1134 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1135 KVM_ARM_DEVICE_TYPE_SHIFT;
1136
1137 switch (dev_id) {
1138 case KVM_ARM_DEVICE_VGIC_V2:
1139 if (!vgic_present)
1140 return -ENXIO;
1141 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1142 default:
1143 return -ENODEV;
1144 }
1145 }
1146
1147 long kvm_arch_vm_ioctl(struct file *filp,
1148 unsigned int ioctl, unsigned long arg)
1149 {
1150 struct kvm *kvm = filp->private_data;
1151 void __user *argp = (void __user *)arg;
1152
1153 switch (ioctl) {
1154 case KVM_CREATE_IRQCHIP: {
1155 int ret;
1156 if (!vgic_present)
1157 return -ENXIO;
1158 mutex_lock(&kvm->lock);
1159 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1160 mutex_unlock(&kvm->lock);
1161 return ret;
1162 }
1163 case KVM_ARM_SET_DEVICE_ADDR: {
1164 struct kvm_arm_device_addr dev_addr;
1165
1166 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1167 return -EFAULT;
1168 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1169 }
1170 case KVM_ARM_PREFERRED_TARGET: {
1171 int err;
1172 struct kvm_vcpu_init init;
1173
1174 err = kvm_vcpu_preferred_target(&init);
1175 if (err)
1176 return err;
1177
1178 if (copy_to_user(argp, &init, sizeof(init)))
1179 return -EFAULT;
1180
1181 return 0;
1182 }
1183 default:
1184 return -EINVAL;
1185 }
1186 }
1187
1188 static void cpu_init_hyp_mode(void *dummy)
1189 {
1190 phys_addr_t pgd_ptr;
1191 unsigned long hyp_stack_ptr;
1192 unsigned long stack_page;
1193 unsigned long vector_ptr;
1194
1195 /* Switch from the HYP stub to our own HYP init vector */
1196 __hyp_set_vectors(kvm_get_idmap_vector());
1197
1198 pgd_ptr = kvm_mmu_get_httbr();
1199 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1200 hyp_stack_ptr = stack_page + PAGE_SIZE;
1201 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1202
1203 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1204 __cpu_init_stage2();
1205 }
1206
1207 static void cpu_hyp_reset(void)
1208 {
1209 if (!is_kernel_in_hyp_mode())
1210 __hyp_reset_vectors();
1211 }
1212
1213 static void cpu_hyp_reinit(void)
1214 {
1215 cpu_hyp_reset();
1216
1217 if (is_kernel_in_hyp_mode()) {
1218 /*
1219 * __cpu_init_stage2() is safe to call even if the PM
1220 * event was cancelled before the CPU was reset.
1221 */
1222 __cpu_init_stage2();
1223 kvm_timer_init_vhe();
1224 } else {
1225 cpu_init_hyp_mode(NULL);
1226 }
1227
1228 kvm_arm_init_debug();
1229
1230 if (vgic_present)
1231 kvm_vgic_init_cpu_hardware();
1232 }
1233
1234 static void _kvm_arch_hardware_enable(void *discard)
1235 {
1236 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1237 cpu_hyp_reinit();
1238 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1239 }
1240 }
1241
1242 int kvm_arch_hardware_enable(void)
1243 {
1244 _kvm_arch_hardware_enable(NULL);
1245 return 0;
1246 }
1247
1248 static void _kvm_arch_hardware_disable(void *discard)
1249 {
1250 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1251 cpu_hyp_reset();
1252 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1253 }
1254 }
1255
1256 void kvm_arch_hardware_disable(void)
1257 {
1258 _kvm_arch_hardware_disable(NULL);
1259 }
1260
1261 #ifdef CONFIG_CPU_PM
1262 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1263 unsigned long cmd,
1264 void *v)
1265 {
1266 /*
1267 * kvm_arm_hardware_enabled is left with its old value over
1268 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1269 * re-enable hyp.
1270 */
1271 switch (cmd) {
1272 case CPU_PM_ENTER:
1273 if (__this_cpu_read(kvm_arm_hardware_enabled))
1274 /*
1275 * don't update kvm_arm_hardware_enabled here
1276 * so that the hardware will be re-enabled
1277 * when we resume. See below.
1278 */
1279 cpu_hyp_reset();
1280
1281 return NOTIFY_OK;
1282 case CPU_PM_ENTER_FAILED:
1283 case CPU_PM_EXIT:
1284 if (__this_cpu_read(kvm_arm_hardware_enabled))
1285 /* The hardware was enabled before suspend. */
1286 cpu_hyp_reinit();
1287
1288 return NOTIFY_OK;
1289
1290 default:
1291 return NOTIFY_DONE;
1292 }
1293 }
1294
1295 static struct notifier_block hyp_init_cpu_pm_nb = {
1296 .notifier_call = hyp_init_cpu_pm_notifier,
1297 };
1298
1299 static void __init hyp_cpu_pm_init(void)
1300 {
1301 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1302 }
1303 static void __init hyp_cpu_pm_exit(void)
1304 {
1305 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1306 }
1307 #else
1308 static inline void hyp_cpu_pm_init(void)
1309 {
1310 }
1311 static inline void hyp_cpu_pm_exit(void)
1312 {
1313 }
1314 #endif
1315
1316 static int init_common_resources(void)
1317 {
1318 /* set size of VMID supported by CPU */
1319 kvm_vmid_bits = kvm_get_vmid_bits();
1320 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1321
1322 return 0;
1323 }
1324
1325 static int init_subsystems(void)
1326 {
1327 int err = 0;
1328
1329 /*
1330 * Enable hardware so that subsystem initialisation can access EL2.
1331 */
1332 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1333
1334 /*
1335 * Register CPU lower-power notifier
1336 */
1337 hyp_cpu_pm_init();
1338
1339 /*
1340 * Init HYP view of VGIC
1341 */
1342 err = kvm_vgic_hyp_init();
1343 switch (err) {
1344 case 0:
1345 vgic_present = true;
1346 break;
1347 case -ENODEV:
1348 case -ENXIO:
1349 vgic_present = false;
1350 err = 0;
1351 break;
1352 default:
1353 goto out;
1354 }
1355
1356 /*
1357 * Init HYP architected timer support
1358 */
1359 err = kvm_timer_hyp_init(vgic_present);
1360 if (err)
1361 goto out;
1362
1363 kvm_perf_init();
1364 kvm_coproc_table_init();
1365
1366 out:
1367 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1368
1369 return err;
1370 }
1371
1372 static void teardown_hyp_mode(void)
1373 {
1374 int cpu;
1375
1376 free_hyp_pgds();
1377 for_each_possible_cpu(cpu)
1378 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1379 hyp_cpu_pm_exit();
1380 }
1381
1382 /**
1383 * Inits Hyp-mode on all online CPUs
1384 */
1385 static int init_hyp_mode(void)
1386 {
1387 int cpu;
1388 int err = 0;
1389
1390 /*
1391 * Allocate Hyp PGD and setup Hyp identity mapping
1392 */
1393 err = kvm_mmu_init();
1394 if (err)
1395 goto out_err;
1396
1397 /*
1398 * Allocate stack pages for Hypervisor-mode
1399 */
1400 for_each_possible_cpu(cpu) {
1401 unsigned long stack_page;
1402
1403 stack_page = __get_free_page(GFP_KERNEL);
1404 if (!stack_page) {
1405 err = -ENOMEM;
1406 goto out_err;
1407 }
1408
1409 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1410 }
1411
1412 /*
1413 * Map the Hyp-code called directly from the host
1414 */
1415 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1416 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1417 if (err) {
1418 kvm_err("Cannot map world-switch code\n");
1419 goto out_err;
1420 }
1421
1422 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1423 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1424 if (err) {
1425 kvm_err("Cannot map rodata section\n");
1426 goto out_err;
1427 }
1428
1429 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1430 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1431 if (err) {
1432 kvm_err("Cannot map bss section\n");
1433 goto out_err;
1434 }
1435
1436 err = kvm_map_vectors();
1437 if (err) {
1438 kvm_err("Cannot map vectors\n");
1439 goto out_err;
1440 }
1441
1442 /*
1443 * Map the Hyp stack pages
1444 */
1445 for_each_possible_cpu(cpu) {
1446 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1447 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1448 PAGE_HYP);
1449
1450 if (err) {
1451 kvm_err("Cannot map hyp stack\n");
1452 goto out_err;
1453 }
1454 }
1455
1456 for_each_possible_cpu(cpu) {
1457 kvm_cpu_context_t *cpu_ctxt;
1458
1459 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1460 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1461
1462 if (err) {
1463 kvm_err("Cannot map host CPU state: %d\n", err);
1464 goto out_err;
1465 }
1466 }
1467
1468 err = hyp_map_aux_data();
1469 if (err)
1470 kvm_err("Cannot map host auxilary data: %d\n", err);
1471
1472 return 0;
1473
1474 out_err:
1475 teardown_hyp_mode();
1476 kvm_err("error initializing Hyp mode: %d\n", err);
1477 return err;
1478 }
1479
1480 static void check_kvm_target_cpu(void *ret)
1481 {
1482 *(int *)ret = kvm_target_cpu();
1483 }
1484
1485 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1486 {
1487 struct kvm_vcpu *vcpu;
1488 int i;
1489
1490 mpidr &= MPIDR_HWID_BITMASK;
1491 kvm_for_each_vcpu(i, vcpu, kvm) {
1492 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1493 return vcpu;
1494 }
1495 return NULL;
1496 }
1497
1498 bool kvm_arch_has_irq_bypass(void)
1499 {
1500 return true;
1501 }
1502
1503 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1504 struct irq_bypass_producer *prod)
1505 {
1506 struct kvm_kernel_irqfd *irqfd =
1507 container_of(cons, struct kvm_kernel_irqfd, consumer);
1508
1509 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1510 &irqfd->irq_entry);
1511 }
1512 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1513 struct irq_bypass_producer *prod)
1514 {
1515 struct kvm_kernel_irqfd *irqfd =
1516 container_of(cons, struct kvm_kernel_irqfd, consumer);
1517
1518 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1519 &irqfd->irq_entry);
1520 }
1521
1522 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1523 {
1524 struct kvm_kernel_irqfd *irqfd =
1525 container_of(cons, struct kvm_kernel_irqfd, consumer);
1526
1527 kvm_arm_halt_guest(irqfd->kvm);
1528 }
1529
1530 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1531 {
1532 struct kvm_kernel_irqfd *irqfd =
1533 container_of(cons, struct kvm_kernel_irqfd, consumer);
1534
1535 kvm_arm_resume_guest(irqfd->kvm);
1536 }
1537
1538 /**
1539 * Initialize Hyp-mode and memory mappings on all CPUs.
1540 */
1541 int kvm_arch_init(void *opaque)
1542 {
1543 int err;
1544 int ret, cpu;
1545 bool in_hyp_mode;
1546
1547 if (!is_hyp_mode_available()) {
1548 kvm_info("HYP mode not available\n");
1549 return -ENODEV;
1550 }
1551
1552 for_each_online_cpu(cpu) {
1553 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1554 if (ret < 0) {
1555 kvm_err("Error, CPU %d not supported!\n", cpu);
1556 return -ENODEV;
1557 }
1558 }
1559
1560 err = init_common_resources();
1561 if (err)
1562 return err;
1563
1564 in_hyp_mode = is_kernel_in_hyp_mode();
1565
1566 if (!in_hyp_mode) {
1567 err = init_hyp_mode();
1568 if (err)
1569 goto out_err;
1570 }
1571
1572 err = init_subsystems();
1573 if (err)
1574 goto out_hyp;
1575
1576 if (in_hyp_mode)
1577 kvm_info("VHE mode initialized successfully\n");
1578 else
1579 kvm_info("Hyp mode initialized successfully\n");
1580
1581 return 0;
1582
1583 out_hyp:
1584 if (!in_hyp_mode)
1585 teardown_hyp_mode();
1586 out_err:
1587 return err;
1588 }
1589
1590 /* NOP: Compiling as a module not supported */
1591 void kvm_arch_exit(void)
1592 {
1593 kvm_perf_teardown();
1594 }
1595
1596 static int arm_init(void)
1597 {
1598 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1599 return rc;
1600 }
1601
1602 module_init(arm_init);