]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - virt/kvm/arm/vgic.c
86cec79246117095412834c8f033331e454387f9
[mirror_ubuntu-zesty-kernel.git] / virt / kvm / arm / vgic.c
1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/uaccess.h>
28
29 #include <linux/irqchip/arm-gic.h>
30
31 #include <asm/kvm_emulate.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_mmu.h>
34
35 /*
36 * How the whole thing works (courtesy of Christoffer Dall):
37 *
38 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39 * something is pending on the CPU interface.
40 * - Interrupts that are pending on the distributor are stored on the
41 * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
42 * ioctls and guest mmio ops, and other in-kernel peripherals such as the
43 * arch. timers).
44 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45 * recalculated
46 * - To calculate the oracle, we need info for each cpu from
47 * compute_pending_for_cpu, which considers:
48 * - PPI: dist->irq_pending & dist->irq_enable
49 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
50 * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
51 * registers, stored on each vcpu. We only keep one bit of
52 * information per interrupt, making sure that only one vcpu can
53 * accept the interrupt.
54 * - If any of the above state changes, we must recalculate the oracle.
55 * - The same is true when injecting an interrupt, except that we only
56 * consider a single interrupt at a time. The irq_spi_cpu array
57 * contains the target CPU for each SPI.
58 *
59 * The handling of level interrupts adds some extra complexity. We
60 * need to track when the interrupt has been EOIed, so we can sample
61 * the 'line' again. This is achieved as such:
62 *
63 * - When a level interrupt is moved onto a vcpu, the corresponding
64 * bit in irq_queued is set. As long as this bit is set, the line
65 * will be ignored for further interrupts. The interrupt is injected
66 * into the vcpu with the GICH_LR_EOI bit set (generate a
67 * maintenance interrupt on EOI).
68 * - When the interrupt is EOIed, the maintenance interrupt fires,
69 * and clears the corresponding bit in irq_queued. This allows the
70 * interrupt line to be sampled again.
71 * - Note that level-triggered interrupts can also be set to pending from
72 * writes to GICD_ISPENDRn and lowering the external input line does not
73 * cause the interrupt to become inactive in such a situation.
74 * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
75 * inactive as long as the external input line is held high.
76 */
77
78 #include "vgic.h"
79
80 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
81 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
82 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
83 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
84
85 static const struct vgic_ops *vgic_ops;
86 static const struct vgic_params *vgic;
87
88 static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
89 {
90 vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
91 }
92
93 static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
94 {
95 return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
96 }
97
98 int kvm_vgic_map_resources(struct kvm *kvm)
99 {
100 return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
101 }
102
103 /*
104 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
105 * extracts u32s out of them.
106 *
107 * This does not work on 64-bit BE systems, because the bitmap access
108 * will store two consecutive 32-bit words with the higher-addressed
109 * register's bits at the lower index and the lower-addressed register's
110 * bits at the higher index.
111 *
112 * Therefore, swizzle the register index when accessing the 32-bit word
113 * registers to access the right register's value.
114 */
115 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
116 #define REG_OFFSET_SWIZZLE 1
117 #else
118 #define REG_OFFSET_SWIZZLE 0
119 #endif
120
121 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
122 {
123 int nr_longs;
124
125 nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
126
127 b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
128 if (!b->private)
129 return -ENOMEM;
130
131 b->shared = b->private + nr_cpus;
132
133 return 0;
134 }
135
136 static void vgic_free_bitmap(struct vgic_bitmap *b)
137 {
138 kfree(b->private);
139 b->private = NULL;
140 b->shared = NULL;
141 }
142
143 /*
144 * Call this function to convert a u64 value to an unsigned long * bitmask
145 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
146 *
147 * Warning: Calling this function may modify *val.
148 */
149 static unsigned long *u64_to_bitmask(u64 *val)
150 {
151 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
152 *val = (*val >> 32) | (*val << 32);
153 #endif
154 return (unsigned long *)val;
155 }
156
157 u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
158 {
159 offset >>= 2;
160 if (!offset)
161 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
162 else
163 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
164 }
165
166 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
167 int cpuid, int irq)
168 {
169 if (irq < VGIC_NR_PRIVATE_IRQS)
170 return test_bit(irq, x->private + cpuid);
171
172 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
173 }
174
175 void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
176 int irq, int val)
177 {
178 unsigned long *reg;
179
180 if (irq < VGIC_NR_PRIVATE_IRQS) {
181 reg = x->private + cpuid;
182 } else {
183 reg = x->shared;
184 irq -= VGIC_NR_PRIVATE_IRQS;
185 }
186
187 if (val)
188 set_bit(irq, reg);
189 else
190 clear_bit(irq, reg);
191 }
192
193 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
194 {
195 return x->private + cpuid;
196 }
197
198 unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
199 {
200 return x->shared;
201 }
202
203 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
204 {
205 int size;
206
207 size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
208 size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
209
210 x->private = kzalloc(size, GFP_KERNEL);
211 if (!x->private)
212 return -ENOMEM;
213
214 x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
215 return 0;
216 }
217
218 static void vgic_free_bytemap(struct vgic_bytemap *b)
219 {
220 kfree(b->private);
221 b->private = NULL;
222 b->shared = NULL;
223 }
224
225 u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
226 {
227 u32 *reg;
228
229 if (offset < VGIC_NR_PRIVATE_IRQS) {
230 reg = x->private;
231 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
232 } else {
233 reg = x->shared;
234 offset -= VGIC_NR_PRIVATE_IRQS;
235 }
236
237 return reg + (offset / sizeof(u32));
238 }
239
240 #define VGIC_CFG_LEVEL 0
241 #define VGIC_CFG_EDGE 1
242
243 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
244 {
245 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
246 int irq_val;
247
248 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
249 return irq_val == VGIC_CFG_EDGE;
250 }
251
252 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
253 {
254 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
255
256 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
257 }
258
259 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
260 {
261 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
262
263 return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
264 }
265
266 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
267 {
268 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
269
270 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
271 }
272
273 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
274 {
275 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
276
277 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
278 }
279
280 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
281 {
282 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
283
284 return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
285 }
286
287 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
288 {
289 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
290
291 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
292 }
293
294 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
295 {
296 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
297
298 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
299 }
300
301 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
302 {
303 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
304
305 return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
306 }
307
308 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
309 {
310 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
311
312 vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
313 }
314
315 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
316 {
317 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
318
319 return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
320 }
321
322 void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
323 {
324 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
325
326 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
327 }
328
329 void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
330 {
331 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
332
333 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
334 }
335
336 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
337 {
338 if (irq < VGIC_NR_PRIVATE_IRQS)
339 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
340 else
341 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
342 vcpu->arch.vgic_cpu.pending_shared);
343 }
344
345 void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
346 {
347 if (irq < VGIC_NR_PRIVATE_IRQS)
348 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
349 else
350 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
351 vcpu->arch.vgic_cpu.pending_shared);
352 }
353
354 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
355 {
356 return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
357 }
358
359 /**
360 * vgic_reg_access - access vgic register
361 * @mmio: pointer to the data describing the mmio access
362 * @reg: pointer to the virtual backing of vgic distributor data
363 * @offset: least significant 2 bits used for word offset
364 * @mode: ACCESS_ mode (see defines above)
365 *
366 * Helper to make vgic register access easier using one of the access
367 * modes defined for vgic register access
368 * (read,raz,write-ignored,setbit,clearbit,write)
369 */
370 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
371 phys_addr_t offset, int mode)
372 {
373 int word_offset = (offset & 3) * 8;
374 u32 mask = (1UL << (mmio->len * 8)) - 1;
375 u32 regval;
376
377 /*
378 * Any alignment fault should have been delivered to the guest
379 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
380 */
381
382 if (reg) {
383 regval = *reg;
384 } else {
385 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
386 regval = 0;
387 }
388
389 if (mmio->is_write) {
390 u32 data = mmio_data_read(mmio, mask) << word_offset;
391 switch (ACCESS_WRITE_MASK(mode)) {
392 case ACCESS_WRITE_IGNORED:
393 return;
394
395 case ACCESS_WRITE_SETBIT:
396 regval |= data;
397 break;
398
399 case ACCESS_WRITE_CLEARBIT:
400 regval &= ~data;
401 break;
402
403 case ACCESS_WRITE_VALUE:
404 regval = (regval & ~(mask << word_offset)) | data;
405 break;
406 }
407 *reg = regval;
408 } else {
409 switch (ACCESS_READ_MASK(mode)) {
410 case ACCESS_READ_RAZ:
411 regval = 0;
412 /* fall through */
413
414 case ACCESS_READ_VALUE:
415 mmio_data_write(mmio, mask, regval >> word_offset);
416 }
417 }
418 }
419
420 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
421 phys_addr_t offset)
422 {
423 vgic_reg_access(mmio, NULL, offset,
424 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
425 return false;
426 }
427
428 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
429 phys_addr_t offset, int vcpu_id, int access)
430 {
431 u32 *reg;
432 int mode = ACCESS_READ_VALUE | access;
433 struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
434
435 reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
436 vgic_reg_access(mmio, reg, offset, mode);
437 if (mmio->is_write) {
438 if (access & ACCESS_WRITE_CLEARBIT) {
439 if (offset < 4) /* Force SGI enabled */
440 *reg |= 0xffff;
441 vgic_retire_disabled_irqs(target_vcpu);
442 }
443 vgic_update_state(kvm);
444 return true;
445 }
446
447 return false;
448 }
449
450 bool vgic_handle_set_pending_reg(struct kvm *kvm,
451 struct kvm_exit_mmio *mmio,
452 phys_addr_t offset, int vcpu_id)
453 {
454 u32 *reg, orig;
455 u32 level_mask;
456 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
457 struct vgic_dist *dist = &kvm->arch.vgic;
458
459 reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
460 level_mask = (~(*reg));
461
462 /* Mark both level and edge triggered irqs as pending */
463 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
464 orig = *reg;
465 vgic_reg_access(mmio, reg, offset, mode);
466
467 if (mmio->is_write) {
468 /* Set the soft-pending flag only for level-triggered irqs */
469 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
470 vcpu_id, offset);
471 vgic_reg_access(mmio, reg, offset, mode);
472 *reg &= level_mask;
473
474 /* Ignore writes to SGIs */
475 if (offset < 2) {
476 *reg &= ~0xffff;
477 *reg |= orig & 0xffff;
478 }
479
480 vgic_update_state(kvm);
481 return true;
482 }
483
484 return false;
485 }
486
487 bool vgic_handle_clear_pending_reg(struct kvm *kvm,
488 struct kvm_exit_mmio *mmio,
489 phys_addr_t offset, int vcpu_id)
490 {
491 u32 *level_active;
492 u32 *reg, orig;
493 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
494 struct vgic_dist *dist = &kvm->arch.vgic;
495
496 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
497 orig = *reg;
498 vgic_reg_access(mmio, reg, offset, mode);
499 if (mmio->is_write) {
500 /* Re-set level triggered level-active interrupts */
501 level_active = vgic_bitmap_get_reg(&dist->irq_level,
502 vcpu_id, offset);
503 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
504 *reg |= *level_active;
505
506 /* Ignore writes to SGIs */
507 if (offset < 2) {
508 *reg &= ~0xffff;
509 *reg |= orig & 0xffff;
510 }
511
512 /* Clear soft-pending flags */
513 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
514 vcpu_id, offset);
515 vgic_reg_access(mmio, reg, offset, mode);
516
517 vgic_update_state(kvm);
518 return true;
519 }
520 return false;
521 }
522
523 static u32 vgic_cfg_expand(u16 val)
524 {
525 u32 res = 0;
526 int i;
527
528 /*
529 * Turn a 16bit value like abcd...mnop into a 32bit word
530 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
531 */
532 for (i = 0; i < 16; i++)
533 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
534
535 return res;
536 }
537
538 static u16 vgic_cfg_compress(u32 val)
539 {
540 u16 res = 0;
541 int i;
542
543 /*
544 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
545 * abcd...mnop which is what we really care about.
546 */
547 for (i = 0; i < 16; i++)
548 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
549
550 return res;
551 }
552
553 /*
554 * The distributor uses 2 bits per IRQ for the CFG register, but the
555 * LSB is always 0. As such, we only keep the upper bit, and use the
556 * two above functions to compress/expand the bits
557 */
558 bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
559 phys_addr_t offset)
560 {
561 u32 val;
562
563 if (offset & 4)
564 val = *reg >> 16;
565 else
566 val = *reg & 0xffff;
567
568 val = vgic_cfg_expand(val);
569 vgic_reg_access(mmio, &val, offset,
570 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
571 if (mmio->is_write) {
572 if (offset < 8) {
573 *reg = ~0U; /* Force PPIs/SGIs to 1 */
574 return false;
575 }
576
577 val = vgic_cfg_compress(val);
578 if (offset & 4) {
579 *reg &= 0xffff;
580 *reg |= val << 16;
581 } else {
582 *reg &= 0xffff << 16;
583 *reg |= val;
584 }
585 }
586
587 return false;
588 }
589
590 /**
591 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
592 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
593 *
594 * Move any pending IRQs that have already been assigned to LRs back to the
595 * emulated distributor state so that the complete emulated state can be read
596 * from the main emulation structures without investigating the LRs.
597 *
598 * Note that IRQs in the active state in the LRs get their pending state moved
599 * to the distributor but the active state stays in the LRs, because we don't
600 * track the active state on the distributor side.
601 */
602 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
603 {
604 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
605 int i;
606
607 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
608 struct vgic_lr lr = vgic_get_lr(vcpu, i);
609
610 /*
611 * There are three options for the state bits:
612 *
613 * 01: pending
614 * 10: active
615 * 11: pending and active
616 *
617 * If the LR holds only an active interrupt (not pending) then
618 * just leave it alone.
619 */
620 if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
621 continue;
622
623 /*
624 * Reestablish the pending state on the distributor and the
625 * CPU interface. It may have already been pending, but that
626 * is fine, then we are only setting a few bits that were
627 * already set.
628 */
629 vgic_dist_irq_set_pending(vcpu, lr.irq);
630 if (lr.irq < VGIC_NR_SGIS)
631 add_sgi_source(vcpu, lr.irq, lr.source);
632 lr.state &= ~LR_STATE_PENDING;
633 vgic_set_lr(vcpu, i, lr);
634
635 /*
636 * If there's no state left on the LR (it could still be
637 * active), then the LR does not hold any useful info and can
638 * be marked as free for other use.
639 */
640 if (!(lr.state & LR_STATE_MASK)) {
641 vgic_retire_lr(i, lr.irq, vcpu);
642 vgic_irq_clear_queued(vcpu, lr.irq);
643 }
644
645 /* Finally update the VGIC state. */
646 vgic_update_state(vcpu->kvm);
647 }
648 }
649
650 const
651 struct kvm_mmio_range *vgic_find_range(const struct kvm_mmio_range *ranges,
652 struct kvm_exit_mmio *mmio,
653 phys_addr_t offset)
654 {
655 const struct kvm_mmio_range *r = ranges;
656
657 while (r->len) {
658 if (offset >= r->base &&
659 (offset + mmio->len) <= (r->base + r->len))
660 return r;
661 r++;
662 }
663
664 return NULL;
665 }
666
667 static bool vgic_validate_access(const struct vgic_dist *dist,
668 const struct kvm_mmio_range *range,
669 unsigned long offset)
670 {
671 int irq;
672
673 if (!range->bits_per_irq)
674 return true; /* Not an irq-based access */
675
676 irq = offset * 8 / range->bits_per_irq;
677 if (irq >= dist->nr_irqs)
678 return false;
679
680 return true;
681 }
682
683 /*
684 * Call the respective handler function for the given range.
685 * We split up any 64 bit accesses into two consecutive 32 bit
686 * handler calls and merge the result afterwards.
687 * We do this in a little endian fashion regardless of the host's
688 * or guest's endianness, because the GIC is always LE and the rest of
689 * the code (vgic_reg_access) also puts it in a LE fashion already.
690 * At this point we have already identified the handle function, so
691 * range points to that one entry and offset is relative to this.
692 */
693 static bool call_range_handler(struct kvm_vcpu *vcpu,
694 struct kvm_exit_mmio *mmio,
695 unsigned long offset,
696 const struct kvm_mmio_range *range)
697 {
698 u32 *data32 = (void *)mmio->data;
699 struct kvm_exit_mmio mmio32;
700 bool ret;
701
702 if (likely(mmio->len <= 4))
703 return range->handle_mmio(vcpu, mmio, offset);
704
705 /*
706 * Any access bigger than 4 bytes (that we currently handle in KVM)
707 * is actually 8 bytes long, caused by a 64-bit access
708 */
709
710 mmio32.len = 4;
711 mmio32.is_write = mmio->is_write;
712 mmio32.private = mmio->private;
713
714 mmio32.phys_addr = mmio->phys_addr + 4;
715 if (mmio->is_write)
716 *(u32 *)mmio32.data = data32[1];
717 ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
718 if (!mmio->is_write)
719 data32[1] = *(u32 *)mmio32.data;
720
721 mmio32.phys_addr = mmio->phys_addr;
722 if (mmio->is_write)
723 *(u32 *)mmio32.data = data32[0];
724 ret |= range->handle_mmio(vcpu, &mmio32, offset);
725 if (!mmio->is_write)
726 data32[0] = *(u32 *)mmio32.data;
727
728 return ret;
729 }
730
731 /**
732 * vgic_handle_mmio_range - handle an in-kernel MMIO access
733 * @vcpu: pointer to the vcpu performing the access
734 * @run: pointer to the kvm_run structure
735 * @mmio: pointer to the data describing the access
736 * @ranges: array of MMIO ranges in a given region
737 * @mmio_base: base address of that region
738 *
739 * returns true if the MMIO access could be performed
740 */
741 bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run,
742 struct kvm_exit_mmio *mmio,
743 const struct kvm_mmio_range *ranges,
744 unsigned long mmio_base)
745 {
746 const struct kvm_mmio_range *range;
747 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
748 bool updated_state;
749 unsigned long offset;
750
751 offset = mmio->phys_addr - mmio_base;
752 range = vgic_find_range(ranges, mmio, offset);
753 if (unlikely(!range || !range->handle_mmio)) {
754 pr_warn("Unhandled access %d %08llx %d\n",
755 mmio->is_write, mmio->phys_addr, mmio->len);
756 return false;
757 }
758
759 spin_lock(&vcpu->kvm->arch.vgic.lock);
760 offset -= range->base;
761 if (vgic_validate_access(dist, range, offset)) {
762 updated_state = call_range_handler(vcpu, mmio, offset, range);
763 } else {
764 if (!mmio->is_write)
765 memset(mmio->data, 0, mmio->len);
766 updated_state = false;
767 }
768 spin_unlock(&vcpu->kvm->arch.vgic.lock);
769 kvm_prepare_mmio(run, mmio);
770 kvm_handle_mmio_return(vcpu, run);
771
772 if (updated_state)
773 vgic_kick_vcpus(vcpu->kvm);
774
775 return true;
776 }
777
778 /**
779 * vgic_handle_mmio - handle an in-kernel MMIO access for the GIC emulation
780 * @vcpu: pointer to the vcpu performing the access
781 * @run: pointer to the kvm_run structure
782 * @mmio: pointer to the data describing the access
783 *
784 * returns true if the MMIO access has been performed in kernel space,
785 * and false if it needs to be emulated in user space.
786 * Calls the actual handling routine for the selected VGIC model.
787 */
788 bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
789 struct kvm_exit_mmio *mmio)
790 {
791 if (!irqchip_in_kernel(vcpu->kvm))
792 return false;
793
794 /*
795 * This will currently call either vgic_v2_handle_mmio() or
796 * vgic_v3_handle_mmio(), which in turn will call
797 * vgic_handle_mmio_range() defined above.
798 */
799 return vcpu->kvm->arch.vgic.vm_ops.handle_mmio(vcpu, run, mmio);
800 }
801
802 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
803 {
804 return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
805 }
806
807 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
808 {
809 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
810 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
811 unsigned long pending_private, pending_shared;
812 int nr_shared = vgic_nr_shared_irqs(dist);
813 int vcpu_id;
814
815 vcpu_id = vcpu->vcpu_id;
816 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
817 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
818
819 pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
820 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
821 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
822
823 pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
824 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
825 bitmap_and(pend_shared, pending, enabled, nr_shared);
826 bitmap_and(pend_shared, pend_shared,
827 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
828 nr_shared);
829
830 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
831 pending_shared = find_first_bit(pend_shared, nr_shared);
832 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
833 pending_shared < vgic_nr_shared_irqs(dist));
834 }
835
836 /*
837 * Update the interrupt state and determine which CPUs have pending
838 * interrupts. Must be called with distributor lock held.
839 */
840 void vgic_update_state(struct kvm *kvm)
841 {
842 struct vgic_dist *dist = &kvm->arch.vgic;
843 struct kvm_vcpu *vcpu;
844 int c;
845
846 if (!dist->enabled) {
847 set_bit(0, dist->irq_pending_on_cpu);
848 return;
849 }
850
851 kvm_for_each_vcpu(c, vcpu, kvm) {
852 if (compute_pending_for_cpu(vcpu)) {
853 pr_debug("CPU%d has pending interrupts\n", c);
854 set_bit(c, dist->irq_pending_on_cpu);
855 }
856 }
857 }
858
859 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
860 {
861 return vgic_ops->get_lr(vcpu, lr);
862 }
863
864 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
865 struct vgic_lr vlr)
866 {
867 vgic_ops->set_lr(vcpu, lr, vlr);
868 }
869
870 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
871 struct vgic_lr vlr)
872 {
873 vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
874 }
875
876 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
877 {
878 return vgic_ops->get_elrsr(vcpu);
879 }
880
881 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
882 {
883 return vgic_ops->get_eisr(vcpu);
884 }
885
886 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
887 {
888 return vgic_ops->get_interrupt_status(vcpu);
889 }
890
891 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
892 {
893 vgic_ops->enable_underflow(vcpu);
894 }
895
896 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
897 {
898 vgic_ops->disable_underflow(vcpu);
899 }
900
901 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
902 {
903 vgic_ops->get_vmcr(vcpu, vmcr);
904 }
905
906 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
907 {
908 vgic_ops->set_vmcr(vcpu, vmcr);
909 }
910
911 static inline void vgic_enable(struct kvm_vcpu *vcpu)
912 {
913 vgic_ops->enable(vcpu);
914 }
915
916 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
917 {
918 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
919 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
920
921 vlr.state = 0;
922 vgic_set_lr(vcpu, lr_nr, vlr);
923 clear_bit(lr_nr, vgic_cpu->lr_used);
924 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
925 }
926
927 /*
928 * An interrupt may have been disabled after being made pending on the
929 * CPU interface (the classic case is a timer running while we're
930 * rebooting the guest - the interrupt would kick as soon as the CPU
931 * interface gets enabled, with deadly consequences).
932 *
933 * The solution is to examine already active LRs, and check the
934 * interrupt is still enabled. If not, just retire it.
935 */
936 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
937 {
938 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
939 int lr;
940
941 for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
942 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
943
944 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
945 vgic_retire_lr(lr, vlr.irq, vcpu);
946 if (vgic_irq_is_queued(vcpu, vlr.irq))
947 vgic_irq_clear_queued(vcpu, vlr.irq);
948 }
949 }
950 }
951
952 /*
953 * Queue an interrupt to a CPU virtual interface. Return true on success,
954 * or false if it wasn't possible to queue it.
955 * sgi_source must be zero for any non-SGI interrupts.
956 */
957 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
958 {
959 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
960 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
961 struct vgic_lr vlr;
962 int lr;
963
964 /* Sanitize the input... */
965 BUG_ON(sgi_source_id & ~7);
966 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
967 BUG_ON(irq >= dist->nr_irqs);
968
969 kvm_debug("Queue IRQ%d\n", irq);
970
971 lr = vgic_cpu->vgic_irq_lr_map[irq];
972
973 /* Do we have an active interrupt for the same CPUID? */
974 if (lr != LR_EMPTY) {
975 vlr = vgic_get_lr(vcpu, lr);
976 if (vlr.source == sgi_source_id) {
977 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
978 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
979 vlr.state |= LR_STATE_PENDING;
980 vgic_set_lr(vcpu, lr, vlr);
981 return true;
982 }
983 }
984
985 /* Try to use another LR for this interrupt */
986 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
987 vgic->nr_lr);
988 if (lr >= vgic->nr_lr)
989 return false;
990
991 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
992 vgic_cpu->vgic_irq_lr_map[irq] = lr;
993 set_bit(lr, vgic_cpu->lr_used);
994
995 vlr.irq = irq;
996 vlr.source = sgi_source_id;
997 vlr.state = LR_STATE_PENDING;
998 if (!vgic_irq_is_edge(vcpu, irq))
999 vlr.state |= LR_EOI_INT;
1000
1001 vgic_set_lr(vcpu, lr, vlr);
1002
1003 return true;
1004 }
1005
1006 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1007 {
1008 if (!vgic_can_sample_irq(vcpu, irq))
1009 return true; /* level interrupt, already queued */
1010
1011 if (vgic_queue_irq(vcpu, 0, irq)) {
1012 if (vgic_irq_is_edge(vcpu, irq)) {
1013 vgic_dist_irq_clear_pending(vcpu, irq);
1014 vgic_cpu_irq_clear(vcpu, irq);
1015 } else {
1016 vgic_irq_set_queued(vcpu, irq);
1017 }
1018
1019 return true;
1020 }
1021
1022 return false;
1023 }
1024
1025 /*
1026 * Fill the list registers with pending interrupts before running the
1027 * guest.
1028 */
1029 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1030 {
1031 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1032 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1033 int i, vcpu_id;
1034 int overflow = 0;
1035
1036 vcpu_id = vcpu->vcpu_id;
1037
1038 /*
1039 * We may not have any pending interrupt, or the interrupts
1040 * may have been serviced from another vcpu. In all cases,
1041 * move along.
1042 */
1043 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1044 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1045 goto epilog;
1046 }
1047
1048 /* SGIs */
1049 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1050 if (!queue_sgi(vcpu, i))
1051 overflow = 1;
1052 }
1053
1054 /* PPIs */
1055 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1056 if (!vgic_queue_hwirq(vcpu, i))
1057 overflow = 1;
1058 }
1059
1060 /* SPIs */
1061 for_each_set_bit(i, vgic_cpu->pending_shared, vgic_nr_shared_irqs(dist)) {
1062 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1063 overflow = 1;
1064 }
1065
1066 epilog:
1067 if (overflow) {
1068 vgic_enable_underflow(vcpu);
1069 } else {
1070 vgic_disable_underflow(vcpu);
1071 /*
1072 * We're about to run this VCPU, and we've consumed
1073 * everything the distributor had in store for
1074 * us. Claim we don't have anything pending. We'll
1075 * adjust that if needed while exiting.
1076 */
1077 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1078 }
1079 }
1080
1081 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1082 {
1083 u32 status = vgic_get_interrupt_status(vcpu);
1084 bool level_pending = false;
1085
1086 kvm_debug("STATUS = %08x\n", status);
1087
1088 if (status & INT_STATUS_EOI) {
1089 /*
1090 * Some level interrupts have been EOIed. Clear their
1091 * active bit.
1092 */
1093 u64 eisr = vgic_get_eisr(vcpu);
1094 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1095 int lr;
1096
1097 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1098 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1099 WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1100
1101 vgic_irq_clear_queued(vcpu, vlr.irq);
1102 WARN_ON(vlr.state & LR_STATE_MASK);
1103 vlr.state = 0;
1104 vgic_set_lr(vcpu, lr, vlr);
1105
1106 /*
1107 * If the IRQ was EOIed it was also ACKed and we we
1108 * therefore assume we can clear the soft pending
1109 * state (should it had been set) for this interrupt.
1110 *
1111 * Note: if the IRQ soft pending state was set after
1112 * the IRQ was acked, it actually shouldn't be
1113 * cleared, but we have no way of knowing that unless
1114 * we start trapping ACKs when the soft-pending state
1115 * is set.
1116 */
1117 vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1118
1119 /* Any additional pending interrupt? */
1120 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1121 vgic_cpu_irq_set(vcpu, vlr.irq);
1122 level_pending = true;
1123 } else {
1124 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1125 vgic_cpu_irq_clear(vcpu, vlr.irq);
1126 }
1127
1128 /*
1129 * Despite being EOIed, the LR may not have
1130 * been marked as empty.
1131 */
1132 vgic_sync_lr_elrsr(vcpu, lr, vlr);
1133 }
1134 }
1135
1136 if (status & INT_STATUS_UNDERFLOW)
1137 vgic_disable_underflow(vcpu);
1138
1139 return level_pending;
1140 }
1141
1142 /*
1143 * Sync back the VGIC state after a guest run. The distributor lock is
1144 * needed so we don't get preempted in the middle of the state processing.
1145 */
1146 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1147 {
1148 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1149 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1150 u64 elrsr;
1151 unsigned long *elrsr_ptr;
1152 int lr, pending;
1153 bool level_pending;
1154
1155 level_pending = vgic_process_maintenance(vcpu);
1156 elrsr = vgic_get_elrsr(vcpu);
1157 elrsr_ptr = u64_to_bitmask(&elrsr);
1158
1159 /* Clear mappings for empty LRs */
1160 for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1161 struct vgic_lr vlr;
1162
1163 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1164 continue;
1165
1166 vlr = vgic_get_lr(vcpu, lr);
1167
1168 BUG_ON(vlr.irq >= dist->nr_irqs);
1169 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1170 }
1171
1172 /* Check if we still have something up our sleeve... */
1173 pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1174 if (level_pending || pending < vgic->nr_lr)
1175 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1176 }
1177
1178 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1179 {
1180 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1181
1182 if (!irqchip_in_kernel(vcpu->kvm))
1183 return;
1184
1185 spin_lock(&dist->lock);
1186 __kvm_vgic_flush_hwstate(vcpu);
1187 spin_unlock(&dist->lock);
1188 }
1189
1190 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1191 {
1192 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1193
1194 if (!irqchip_in_kernel(vcpu->kvm))
1195 return;
1196
1197 spin_lock(&dist->lock);
1198 __kvm_vgic_sync_hwstate(vcpu);
1199 spin_unlock(&dist->lock);
1200 }
1201
1202 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1203 {
1204 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1205
1206 if (!irqchip_in_kernel(vcpu->kvm))
1207 return 0;
1208
1209 return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1210 }
1211
1212 void vgic_kick_vcpus(struct kvm *kvm)
1213 {
1214 struct kvm_vcpu *vcpu;
1215 int c;
1216
1217 /*
1218 * We've injected an interrupt, time to find out who deserves
1219 * a good kick...
1220 */
1221 kvm_for_each_vcpu(c, vcpu, kvm) {
1222 if (kvm_vgic_vcpu_pending_irq(vcpu))
1223 kvm_vcpu_kick(vcpu);
1224 }
1225 }
1226
1227 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1228 {
1229 int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1230
1231 /*
1232 * Only inject an interrupt if:
1233 * - edge triggered and we have a rising edge
1234 * - level triggered and we change level
1235 */
1236 if (edge_triggered) {
1237 int state = vgic_dist_irq_is_pending(vcpu, irq);
1238 return level > state;
1239 } else {
1240 int state = vgic_dist_irq_get_level(vcpu, irq);
1241 return level != state;
1242 }
1243 }
1244
1245 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1246 unsigned int irq_num, bool level)
1247 {
1248 struct vgic_dist *dist = &kvm->arch.vgic;
1249 struct kvm_vcpu *vcpu;
1250 int edge_triggered, level_triggered;
1251 int enabled;
1252 bool ret = true, can_inject = true;
1253
1254 spin_lock(&dist->lock);
1255
1256 vcpu = kvm_get_vcpu(kvm, cpuid);
1257 edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1258 level_triggered = !edge_triggered;
1259
1260 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1261 ret = false;
1262 goto out;
1263 }
1264
1265 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1266 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1267 if (cpuid == VCPU_NOT_ALLOCATED) {
1268 /* Pretend we use CPU0, and prevent injection */
1269 cpuid = 0;
1270 can_inject = false;
1271 }
1272 vcpu = kvm_get_vcpu(kvm, cpuid);
1273 }
1274
1275 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1276
1277 if (level) {
1278 if (level_triggered)
1279 vgic_dist_irq_set_level(vcpu, irq_num);
1280 vgic_dist_irq_set_pending(vcpu, irq_num);
1281 } else {
1282 if (level_triggered) {
1283 vgic_dist_irq_clear_level(vcpu, irq_num);
1284 if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1285 vgic_dist_irq_clear_pending(vcpu, irq_num);
1286 }
1287
1288 ret = false;
1289 goto out;
1290 }
1291
1292 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1293
1294 if (!enabled || !can_inject) {
1295 ret = false;
1296 goto out;
1297 }
1298
1299 if (!vgic_can_sample_irq(vcpu, irq_num)) {
1300 /*
1301 * Level interrupt in progress, will be picked up
1302 * when EOId.
1303 */
1304 ret = false;
1305 goto out;
1306 }
1307
1308 if (level) {
1309 vgic_cpu_irq_set(vcpu, irq_num);
1310 set_bit(cpuid, dist->irq_pending_on_cpu);
1311 }
1312
1313 out:
1314 spin_unlock(&dist->lock);
1315
1316 return ret ? cpuid : -EINVAL;
1317 }
1318
1319 /**
1320 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1321 * @kvm: The VM structure pointer
1322 * @cpuid: The CPU for PPIs
1323 * @irq_num: The IRQ number that is assigned to the device
1324 * @level: Edge-triggered: true: to trigger the interrupt
1325 * false: to ignore the call
1326 * Level-sensitive true: activates an interrupt
1327 * false: deactivates an interrupt
1328 *
1329 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1330 * level-sensitive interrupts. You can think of the level parameter as 1
1331 * being HIGH and 0 being LOW and all devices being active-HIGH.
1332 */
1333 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1334 bool level)
1335 {
1336 int ret = 0;
1337 int vcpu_id;
1338
1339 if (unlikely(!vgic_initialized(kvm))) {
1340 /*
1341 * We only provide the automatic initialization of the VGIC
1342 * for the legacy case of a GICv2. Any other type must
1343 * be explicitly initialized once setup with the respective
1344 * KVM device call.
1345 */
1346 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
1347 ret = -EBUSY;
1348 goto out;
1349 }
1350 mutex_lock(&kvm->lock);
1351 ret = vgic_init(kvm);
1352 mutex_unlock(&kvm->lock);
1353
1354 if (ret)
1355 goto out;
1356 }
1357
1358 vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
1359 if (vcpu_id >= 0) {
1360 /* kick the specified vcpu */
1361 kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
1362 }
1363
1364 out:
1365 return ret;
1366 }
1367
1368 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1369 {
1370 /*
1371 * We cannot rely on the vgic maintenance interrupt to be
1372 * delivered synchronously. This means we can only use it to
1373 * exit the VM, and we perform the handling of EOIed
1374 * interrupts on the exit path (see vgic_process_maintenance).
1375 */
1376 return IRQ_HANDLED;
1377 }
1378
1379 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1380 {
1381 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1382
1383 kfree(vgic_cpu->pending_shared);
1384 kfree(vgic_cpu->vgic_irq_lr_map);
1385 vgic_cpu->pending_shared = NULL;
1386 vgic_cpu->vgic_irq_lr_map = NULL;
1387 }
1388
1389 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1390 {
1391 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1392
1393 int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1394 vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1395 vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1396
1397 if (!vgic_cpu->pending_shared || !vgic_cpu->vgic_irq_lr_map) {
1398 kvm_vgic_vcpu_destroy(vcpu);
1399 return -ENOMEM;
1400 }
1401
1402 memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1403
1404 /*
1405 * Store the number of LRs per vcpu, so we don't have to go
1406 * all the way to the distributor structure to find out. Only
1407 * assembly code should use this one.
1408 */
1409 vgic_cpu->nr_lr = vgic->nr_lr;
1410
1411 return 0;
1412 }
1413
1414 /**
1415 * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1416 *
1417 * The host's GIC naturally limits the maximum amount of VCPUs a guest
1418 * can use.
1419 */
1420 int kvm_vgic_get_max_vcpus(void)
1421 {
1422 return vgic->max_gic_vcpus;
1423 }
1424
1425 void kvm_vgic_destroy(struct kvm *kvm)
1426 {
1427 struct vgic_dist *dist = &kvm->arch.vgic;
1428 struct kvm_vcpu *vcpu;
1429 int i;
1430
1431 kvm_for_each_vcpu(i, vcpu, kvm)
1432 kvm_vgic_vcpu_destroy(vcpu);
1433
1434 vgic_free_bitmap(&dist->irq_enabled);
1435 vgic_free_bitmap(&dist->irq_level);
1436 vgic_free_bitmap(&dist->irq_pending);
1437 vgic_free_bitmap(&dist->irq_soft_pend);
1438 vgic_free_bitmap(&dist->irq_queued);
1439 vgic_free_bitmap(&dist->irq_cfg);
1440 vgic_free_bytemap(&dist->irq_priority);
1441 if (dist->irq_spi_target) {
1442 for (i = 0; i < dist->nr_cpus; i++)
1443 vgic_free_bitmap(&dist->irq_spi_target[i]);
1444 }
1445 kfree(dist->irq_sgi_sources);
1446 kfree(dist->irq_spi_cpu);
1447 kfree(dist->irq_spi_mpidr);
1448 kfree(dist->irq_spi_target);
1449 kfree(dist->irq_pending_on_cpu);
1450 dist->irq_sgi_sources = NULL;
1451 dist->irq_spi_cpu = NULL;
1452 dist->irq_spi_target = NULL;
1453 dist->irq_pending_on_cpu = NULL;
1454 dist->nr_cpus = 0;
1455 }
1456
1457 /*
1458 * Allocate and initialize the various data structures. Must be called
1459 * with kvm->lock held!
1460 */
1461 int vgic_init(struct kvm *kvm)
1462 {
1463 struct vgic_dist *dist = &kvm->arch.vgic;
1464 struct kvm_vcpu *vcpu;
1465 int nr_cpus, nr_irqs;
1466 int ret, i, vcpu_id;
1467
1468 if (vgic_initialized(kvm))
1469 return 0;
1470
1471 nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1472 if (!nr_cpus) /* No vcpus? Can't be good... */
1473 return -ENODEV;
1474
1475 /*
1476 * If nobody configured the number of interrupts, use the
1477 * legacy one.
1478 */
1479 if (!dist->nr_irqs)
1480 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1481
1482 nr_irqs = dist->nr_irqs;
1483
1484 ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1485 ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1486 ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1487 ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1488 ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1489 ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1490 ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1491
1492 if (ret)
1493 goto out;
1494
1495 dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1496 dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1497 dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1498 GFP_KERNEL);
1499 dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1500 GFP_KERNEL);
1501 if (!dist->irq_sgi_sources ||
1502 !dist->irq_spi_cpu ||
1503 !dist->irq_spi_target ||
1504 !dist->irq_pending_on_cpu) {
1505 ret = -ENOMEM;
1506 goto out;
1507 }
1508
1509 for (i = 0; i < nr_cpus; i++)
1510 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1511 nr_cpus, nr_irqs);
1512
1513 if (ret)
1514 goto out;
1515
1516 ret = kvm->arch.vgic.vm_ops.init_model(kvm);
1517 if (ret)
1518 goto out;
1519
1520 kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
1521 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1522 if (ret) {
1523 kvm_err("VGIC: Failed to allocate vcpu memory\n");
1524 break;
1525 }
1526
1527 for (i = 0; i < dist->nr_irqs; i++) {
1528 if (i < VGIC_NR_PPIS)
1529 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1530 vcpu->vcpu_id, i, 1);
1531 if (i < VGIC_NR_PRIVATE_IRQS)
1532 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1533 vcpu->vcpu_id, i,
1534 VGIC_CFG_EDGE);
1535 }
1536
1537 vgic_enable(vcpu);
1538 }
1539
1540 out:
1541 if (ret)
1542 kvm_vgic_destroy(kvm);
1543
1544 return ret;
1545 }
1546
1547 static int init_vgic_model(struct kvm *kvm, int type)
1548 {
1549 switch (type) {
1550 case KVM_DEV_TYPE_ARM_VGIC_V2:
1551 vgic_v2_init_emulation(kvm);
1552 break;
1553 #ifdef CONFIG_ARM_GIC_V3
1554 case KVM_DEV_TYPE_ARM_VGIC_V3:
1555 vgic_v3_init_emulation(kvm);
1556 break;
1557 #endif
1558 default:
1559 return -ENODEV;
1560 }
1561
1562 if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
1563 return -E2BIG;
1564
1565 return 0;
1566 }
1567
1568 int kvm_vgic_create(struct kvm *kvm, u32 type)
1569 {
1570 int i, vcpu_lock_idx = -1, ret;
1571 struct kvm_vcpu *vcpu;
1572
1573 mutex_lock(&kvm->lock);
1574
1575 if (irqchip_in_kernel(kvm)) {
1576 ret = -EEXIST;
1577 goto out;
1578 }
1579
1580 /*
1581 * This function is also called by the KVM_CREATE_IRQCHIP handler,
1582 * which had no chance yet to check the availability of the GICv2
1583 * emulation. So check this here again. KVM_CREATE_DEVICE does
1584 * the proper checks already.
1585 */
1586 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2)
1587 return -ENODEV;
1588
1589 /*
1590 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1591 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1592 * that no other VCPUs are run while we create the vgic.
1593 */
1594 ret = -EBUSY;
1595 kvm_for_each_vcpu(i, vcpu, kvm) {
1596 if (!mutex_trylock(&vcpu->mutex))
1597 goto out_unlock;
1598 vcpu_lock_idx = i;
1599 }
1600
1601 kvm_for_each_vcpu(i, vcpu, kvm) {
1602 if (vcpu->arch.has_run_once)
1603 goto out_unlock;
1604 }
1605 ret = 0;
1606
1607 ret = init_vgic_model(kvm, type);
1608 if (ret)
1609 goto out_unlock;
1610
1611 spin_lock_init(&kvm->arch.vgic.lock);
1612 kvm->arch.vgic.in_kernel = true;
1613 kvm->arch.vgic.vgic_model = type;
1614 kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1615 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1616 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1617 kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
1618
1619 out_unlock:
1620 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1621 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1622 mutex_unlock(&vcpu->mutex);
1623 }
1624
1625 out:
1626 mutex_unlock(&kvm->lock);
1627 return ret;
1628 }
1629
1630 static int vgic_ioaddr_overlap(struct kvm *kvm)
1631 {
1632 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1633 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1634
1635 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1636 return 0;
1637 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1638 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1639 return -EBUSY;
1640 return 0;
1641 }
1642
1643 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1644 phys_addr_t addr, phys_addr_t size)
1645 {
1646 int ret;
1647
1648 if (addr & ~KVM_PHYS_MASK)
1649 return -E2BIG;
1650
1651 if (addr & (SZ_4K - 1))
1652 return -EINVAL;
1653
1654 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1655 return -EEXIST;
1656 if (addr + size < addr)
1657 return -EINVAL;
1658
1659 *ioaddr = addr;
1660 ret = vgic_ioaddr_overlap(kvm);
1661 if (ret)
1662 *ioaddr = VGIC_ADDR_UNDEF;
1663
1664 return ret;
1665 }
1666
1667 /**
1668 * kvm_vgic_addr - set or get vgic VM base addresses
1669 * @kvm: pointer to the vm struct
1670 * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
1671 * @addr: pointer to address value
1672 * @write: if true set the address in the VM address space, if false read the
1673 * address
1674 *
1675 * Set or get the vgic base addresses for the distributor and the virtual CPU
1676 * interface in the VM physical address space. These addresses are properties
1677 * of the emulated core/SoC and therefore user space initially knows this
1678 * information.
1679 */
1680 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
1681 {
1682 int r = 0;
1683 struct vgic_dist *vgic = &kvm->arch.vgic;
1684 int type_needed;
1685 phys_addr_t *addr_ptr, block_size;
1686 phys_addr_t alignment;
1687
1688 mutex_lock(&kvm->lock);
1689 switch (type) {
1690 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1691 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1692 addr_ptr = &vgic->vgic_dist_base;
1693 block_size = KVM_VGIC_V2_DIST_SIZE;
1694 alignment = SZ_4K;
1695 break;
1696 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1697 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1698 addr_ptr = &vgic->vgic_cpu_base;
1699 block_size = KVM_VGIC_V2_CPU_SIZE;
1700 alignment = SZ_4K;
1701 break;
1702 #ifdef CONFIG_ARM_GIC_V3
1703 case KVM_VGIC_V3_ADDR_TYPE_DIST:
1704 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1705 addr_ptr = &vgic->vgic_dist_base;
1706 block_size = KVM_VGIC_V3_DIST_SIZE;
1707 alignment = SZ_64K;
1708 break;
1709 case KVM_VGIC_V3_ADDR_TYPE_REDIST:
1710 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1711 addr_ptr = &vgic->vgic_redist_base;
1712 block_size = KVM_VGIC_V3_REDIST_SIZE;
1713 alignment = SZ_64K;
1714 break;
1715 #endif
1716 default:
1717 r = -ENODEV;
1718 goto out;
1719 }
1720
1721 if (vgic->vgic_model != type_needed) {
1722 r = -ENODEV;
1723 goto out;
1724 }
1725
1726 if (write) {
1727 if (!IS_ALIGNED(*addr, alignment))
1728 r = -EINVAL;
1729 else
1730 r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
1731 block_size);
1732 } else {
1733 *addr = *addr_ptr;
1734 }
1735
1736 out:
1737 mutex_unlock(&kvm->lock);
1738 return r;
1739 }
1740
1741 int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1742 {
1743 int r;
1744
1745 switch (attr->group) {
1746 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1747 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1748 u64 addr;
1749 unsigned long type = (unsigned long)attr->attr;
1750
1751 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1752 return -EFAULT;
1753
1754 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1755 return (r == -ENODEV) ? -ENXIO : r;
1756 }
1757 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
1758 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1759 u32 val;
1760 int ret = 0;
1761
1762 if (get_user(val, uaddr))
1763 return -EFAULT;
1764
1765 /*
1766 * We require:
1767 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
1768 * - at most 1024 interrupts
1769 * - a multiple of 32 interrupts
1770 */
1771 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
1772 val > VGIC_MAX_IRQS ||
1773 (val & 31))
1774 return -EINVAL;
1775
1776 mutex_lock(&dev->kvm->lock);
1777
1778 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
1779 ret = -EBUSY;
1780 else
1781 dev->kvm->arch.vgic.nr_irqs = val;
1782
1783 mutex_unlock(&dev->kvm->lock);
1784
1785 return ret;
1786 }
1787 case KVM_DEV_ARM_VGIC_GRP_CTRL: {
1788 switch (attr->attr) {
1789 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1790 r = vgic_init(dev->kvm);
1791 return r;
1792 }
1793 break;
1794 }
1795 }
1796
1797 return -ENXIO;
1798 }
1799
1800 int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1801 {
1802 int r = -ENXIO;
1803
1804 switch (attr->group) {
1805 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1806 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1807 u64 addr;
1808 unsigned long type = (unsigned long)attr->attr;
1809
1810 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
1811 if (r)
1812 return (r == -ENODEV) ? -ENXIO : r;
1813
1814 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1815 return -EFAULT;
1816 break;
1817 }
1818 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
1819 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1820
1821 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
1822 break;
1823 }
1824
1825 }
1826
1827 return r;
1828 }
1829
1830 int vgic_has_attr_regs(const struct kvm_mmio_range *ranges, phys_addr_t offset)
1831 {
1832 struct kvm_exit_mmio dev_attr_mmio;
1833
1834 dev_attr_mmio.len = 4;
1835 if (vgic_find_range(ranges, &dev_attr_mmio, offset))
1836 return 0;
1837 else
1838 return -ENXIO;
1839 }
1840
1841 static void vgic_init_maintenance_interrupt(void *info)
1842 {
1843 enable_percpu_irq(vgic->maint_irq, 0);
1844 }
1845
1846 static int vgic_cpu_notify(struct notifier_block *self,
1847 unsigned long action, void *cpu)
1848 {
1849 switch (action) {
1850 case CPU_STARTING:
1851 case CPU_STARTING_FROZEN:
1852 vgic_init_maintenance_interrupt(NULL);
1853 break;
1854 case CPU_DYING:
1855 case CPU_DYING_FROZEN:
1856 disable_percpu_irq(vgic->maint_irq);
1857 break;
1858 }
1859
1860 return NOTIFY_OK;
1861 }
1862
1863 static struct notifier_block vgic_cpu_nb = {
1864 .notifier_call = vgic_cpu_notify,
1865 };
1866
1867 static const struct of_device_id vgic_ids[] = {
1868 { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
1869 { .compatible = "arm,cortex-a7-gic", .data = vgic_v2_probe, },
1870 { .compatible = "arm,gic-400", .data = vgic_v2_probe, },
1871 { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
1872 {},
1873 };
1874
1875 int kvm_vgic_hyp_init(void)
1876 {
1877 const struct of_device_id *matched_id;
1878 const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
1879 const struct vgic_params **);
1880 struct device_node *vgic_node;
1881 int ret;
1882
1883 vgic_node = of_find_matching_node_and_match(NULL,
1884 vgic_ids, &matched_id);
1885 if (!vgic_node) {
1886 kvm_err("error: no compatible GIC node found\n");
1887 return -ENODEV;
1888 }
1889
1890 vgic_probe = matched_id->data;
1891 ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
1892 if (ret)
1893 return ret;
1894
1895 ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
1896 "vgic", kvm_get_running_vcpus());
1897 if (ret) {
1898 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
1899 return ret;
1900 }
1901
1902 ret = __register_cpu_notifier(&vgic_cpu_nb);
1903 if (ret) {
1904 kvm_err("Cannot register vgic CPU notifier\n");
1905 goto out_free_irq;
1906 }
1907
1908 /* Callback into for arch code for setup */
1909 vgic_arch_setup(vgic);
1910
1911 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
1912
1913 return 0;
1914
1915 out_free_irq:
1916 free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
1917 return ret;
1918 }