]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/kvm_main.c
HID: multitouch: detect serial protocol
[mirror_ubuntu-artful-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 static struct page *hwpoison_page;
104 static pfn_t hwpoison_pfn;
105
106 struct page *fault_page;
107 pfn_t fault_pfn;
108
109 inline int kvm_is_mmio_pfn(pfn_t pfn)
110 {
111 if (pfn_valid(pfn)) {
112 int reserved;
113 struct page *tail = pfn_to_page(pfn);
114 struct page *head = compound_trans_head(tail);
115 reserved = PageReserved(head);
116 if (head != tail) {
117 /*
118 * "head" is not a dangling pointer
119 * (compound_trans_head takes care of that)
120 * but the hugepage may have been splitted
121 * from under us (and we may not hold a
122 * reference count on the head page so it can
123 * be reused before we run PageReferenced), so
124 * we've to check PageTail before returning
125 * what we just read.
126 */
127 smp_rmb();
128 if (PageTail(tail))
129 return reserved;
130 }
131 return PageReserved(tail);
132 }
133
134 return true;
135 }
136
137 /*
138 * Switches to specified vcpu, until a matching vcpu_put()
139 */
140 void vcpu_load(struct kvm_vcpu *vcpu)
141 {
142 int cpu;
143
144 mutex_lock(&vcpu->mutex);
145 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
146 /* The thread running this VCPU changed. */
147 struct pid *oldpid = vcpu->pid;
148 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
149 rcu_assign_pointer(vcpu->pid, newpid);
150 synchronize_rcu();
151 put_pid(oldpid);
152 }
153 cpu = get_cpu();
154 preempt_notifier_register(&vcpu->preempt_notifier);
155 kvm_arch_vcpu_load(vcpu, cpu);
156 put_cpu();
157 }
158
159 void vcpu_put(struct kvm_vcpu *vcpu)
160 {
161 preempt_disable();
162 kvm_arch_vcpu_put(vcpu);
163 preempt_notifier_unregister(&vcpu->preempt_notifier);
164 preempt_enable();
165 mutex_unlock(&vcpu->mutex);
166 }
167
168 static void ack_flush(void *_completed)
169 {
170 }
171
172 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 {
174 int i, cpu, me;
175 cpumask_var_t cpus;
176 bool called = true;
177 struct kvm_vcpu *vcpu;
178
179 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
180
181 me = get_cpu();
182 kvm_for_each_vcpu(i, vcpu, kvm) {
183 kvm_make_request(req, vcpu);
184 cpu = vcpu->cpu;
185
186 /* Set ->requests bit before we read ->mode */
187 smp_mb();
188
189 if (cpus != NULL && cpu != -1 && cpu != me &&
190 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191 cpumask_set_cpu(cpu, cpus);
192 }
193 if (unlikely(cpus == NULL))
194 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195 else if (!cpumask_empty(cpus))
196 smp_call_function_many(cpus, ack_flush, NULL, 1);
197 else
198 called = false;
199 put_cpu();
200 free_cpumask_var(cpus);
201 return called;
202 }
203
204 void kvm_flush_remote_tlbs(struct kvm *kvm)
205 {
206 int dirty_count = kvm->tlbs_dirty;
207
208 smp_mb();
209 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
210 ++kvm->stat.remote_tlb_flush;
211 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
212 }
213
214 void kvm_reload_remote_mmus(struct kvm *kvm)
215 {
216 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
217 }
218
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221 struct page *page;
222 int r;
223
224 mutex_init(&vcpu->mutex);
225 vcpu->cpu = -1;
226 vcpu->kvm = kvm;
227 vcpu->vcpu_id = id;
228 vcpu->pid = NULL;
229 init_waitqueue_head(&vcpu->wq);
230 kvm_async_pf_vcpu_init(vcpu);
231
232 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
233 if (!page) {
234 r = -ENOMEM;
235 goto fail;
236 }
237 vcpu->run = page_address(page);
238
239 r = kvm_arch_vcpu_init(vcpu);
240 if (r < 0)
241 goto fail_free_run;
242 return 0;
243
244 fail_free_run:
245 free_page((unsigned long)vcpu->run);
246 fail:
247 return r;
248 }
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
250
251 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
252 {
253 put_pid(vcpu->pid);
254 kvm_arch_vcpu_uninit(vcpu);
255 free_page((unsigned long)vcpu->run);
256 }
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
258
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
260 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
261 {
262 return container_of(mn, struct kvm, mmu_notifier);
263 }
264
265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
266 struct mm_struct *mm,
267 unsigned long address)
268 {
269 struct kvm *kvm = mmu_notifier_to_kvm(mn);
270 int need_tlb_flush, idx;
271
272 /*
273 * When ->invalidate_page runs, the linux pte has been zapped
274 * already but the page is still allocated until
275 * ->invalidate_page returns. So if we increase the sequence
276 * here the kvm page fault will notice if the spte can't be
277 * established because the page is going to be freed. If
278 * instead the kvm page fault establishes the spte before
279 * ->invalidate_page runs, kvm_unmap_hva will release it
280 * before returning.
281 *
282 * The sequence increase only need to be seen at spin_unlock
283 * time, and not at spin_lock time.
284 *
285 * Increasing the sequence after the spin_unlock would be
286 * unsafe because the kvm page fault could then establish the
287 * pte after kvm_unmap_hva returned, without noticing the page
288 * is going to be freed.
289 */
290 idx = srcu_read_lock(&kvm->srcu);
291 spin_lock(&kvm->mmu_lock);
292 kvm->mmu_notifier_seq++;
293 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294 spin_unlock(&kvm->mmu_lock);
295 srcu_read_unlock(&kvm->srcu, idx);
296
297 /* we've to flush the tlb before the pages can be freed */
298 if (need_tlb_flush)
299 kvm_flush_remote_tlbs(kvm);
300
301 }
302
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304 struct mm_struct *mm,
305 unsigned long address,
306 pte_t pte)
307 {
308 struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 int idx;
310
311 idx = srcu_read_lock(&kvm->srcu);
312 spin_lock(&kvm->mmu_lock);
313 kvm->mmu_notifier_seq++;
314 kvm_set_spte_hva(kvm, address, pte);
315 spin_unlock(&kvm->mmu_lock);
316 srcu_read_unlock(&kvm->srcu, idx);
317 }
318
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320 struct mm_struct *mm,
321 unsigned long start,
322 unsigned long end)
323 {
324 struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 int need_tlb_flush = 0, idx;
326
327 idx = srcu_read_lock(&kvm->srcu);
328 spin_lock(&kvm->mmu_lock);
329 /*
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
333 */
334 kvm->mmu_notifier_count++;
335 for (; start < end; start += PAGE_SIZE)
336 need_tlb_flush |= kvm_unmap_hva(kvm, start);
337 need_tlb_flush |= kvm->tlbs_dirty;
338 spin_unlock(&kvm->mmu_lock);
339 srcu_read_unlock(&kvm->srcu, idx);
340
341 /* we've to flush the tlb before the pages can be freed */
342 if (need_tlb_flush)
343 kvm_flush_remote_tlbs(kvm);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long start,
349 unsigned long end)
350 {
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352
353 spin_lock(&kvm->mmu_lock);
354 /*
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
357 * been freed.
358 */
359 kvm->mmu_notifier_seq++;
360 /*
361 * The above sequence increase must be visible before the
362 * below count decrease but both values are read by the kvm
363 * page fault under mmu_lock spinlock so we don't need to add
364 * a smb_wmb() here in between the two.
365 */
366 kvm->mmu_notifier_count--;
367 spin_unlock(&kvm->mmu_lock);
368
369 BUG_ON(kvm->mmu_notifier_count < 0);
370 }
371
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
373 struct mm_struct *mm,
374 unsigned long address)
375 {
376 struct kvm *kvm = mmu_notifier_to_kvm(mn);
377 int young, idx;
378
379 idx = srcu_read_lock(&kvm->srcu);
380 spin_lock(&kvm->mmu_lock);
381 young = kvm_age_hva(kvm, address);
382 spin_unlock(&kvm->mmu_lock);
383 srcu_read_unlock(&kvm->srcu, idx);
384
385 if (young)
386 kvm_flush_remote_tlbs(kvm);
387
388 return young;
389 }
390
391 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
392 struct mm_struct *mm,
393 unsigned long address)
394 {
395 struct kvm *kvm = mmu_notifier_to_kvm(mn);
396 int young, idx;
397
398 idx = srcu_read_lock(&kvm->srcu);
399 spin_lock(&kvm->mmu_lock);
400 young = kvm_test_age_hva(kvm, address);
401 spin_unlock(&kvm->mmu_lock);
402 srcu_read_unlock(&kvm->srcu, idx);
403
404 return young;
405 }
406
407 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
408 struct mm_struct *mm)
409 {
410 struct kvm *kvm = mmu_notifier_to_kvm(mn);
411 int idx;
412
413 idx = srcu_read_lock(&kvm->srcu);
414 kvm_arch_flush_shadow(kvm);
415 srcu_read_unlock(&kvm->srcu, idx);
416 }
417
418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
419 .invalidate_page = kvm_mmu_notifier_invalidate_page,
420 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
421 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
422 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
423 .test_young = kvm_mmu_notifier_test_young,
424 .change_pte = kvm_mmu_notifier_change_pte,
425 .release = kvm_mmu_notifier_release,
426 };
427
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 {
430 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
431 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
432 }
433
434 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
435
436 static int kvm_init_mmu_notifier(struct kvm *kvm)
437 {
438 return 0;
439 }
440
441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
442
443 static void kvm_init_memslots_id(struct kvm *kvm)
444 {
445 int i;
446 struct kvm_memslots *slots = kvm->memslots;
447
448 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
449 slots->id_to_index[i] = slots->memslots[i].id = i;
450 }
451
452 static struct kvm *kvm_create_vm(void)
453 {
454 int r, i;
455 struct kvm *kvm = kvm_arch_alloc_vm();
456
457 if (!kvm)
458 return ERR_PTR(-ENOMEM);
459
460 r = kvm_arch_init_vm(kvm);
461 if (r)
462 goto out_err_nodisable;
463
464 r = hardware_enable_all();
465 if (r)
466 goto out_err_nodisable;
467
468 #ifdef CONFIG_HAVE_KVM_IRQCHIP
469 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
470 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
471 #endif
472
473 r = -ENOMEM;
474 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
475 if (!kvm->memslots)
476 goto out_err_nosrcu;
477 kvm_init_memslots_id(kvm);
478 if (init_srcu_struct(&kvm->srcu))
479 goto out_err_nosrcu;
480 for (i = 0; i < KVM_NR_BUSES; i++) {
481 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
482 GFP_KERNEL);
483 if (!kvm->buses[i])
484 goto out_err;
485 }
486
487 spin_lock_init(&kvm->mmu_lock);
488 kvm->mm = current->mm;
489 atomic_inc(&kvm->mm->mm_count);
490 kvm_eventfd_init(kvm);
491 mutex_init(&kvm->lock);
492 mutex_init(&kvm->irq_lock);
493 mutex_init(&kvm->slots_lock);
494 atomic_set(&kvm->users_count, 1);
495
496 r = kvm_init_mmu_notifier(kvm);
497 if (r)
498 goto out_err;
499
500 raw_spin_lock(&kvm_lock);
501 list_add(&kvm->vm_list, &vm_list);
502 raw_spin_unlock(&kvm_lock);
503
504 return kvm;
505
506 out_err:
507 cleanup_srcu_struct(&kvm->srcu);
508 out_err_nosrcu:
509 hardware_disable_all();
510 out_err_nodisable:
511 for (i = 0; i < KVM_NR_BUSES; i++)
512 kfree(kvm->buses[i]);
513 kfree(kvm->memslots);
514 kvm_arch_free_vm(kvm);
515 return ERR_PTR(r);
516 }
517
518 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
519 {
520 if (!memslot->dirty_bitmap)
521 return;
522
523 if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
524 vfree(memslot->dirty_bitmap_head);
525 else
526 kfree(memslot->dirty_bitmap_head);
527
528 memslot->dirty_bitmap = NULL;
529 memslot->dirty_bitmap_head = NULL;
530 }
531
532 /*
533 * Free any memory in @free but not in @dont.
534 */
535 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
536 struct kvm_memory_slot *dont)
537 {
538 int i;
539
540 if (!dont || free->rmap != dont->rmap)
541 vfree(free->rmap);
542
543 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
544 kvm_destroy_dirty_bitmap(free);
545
546
547 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
548 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
549 vfree(free->lpage_info[i]);
550 free->lpage_info[i] = NULL;
551 }
552 }
553
554 free->npages = 0;
555 free->rmap = NULL;
556 }
557
558 void kvm_free_physmem(struct kvm *kvm)
559 {
560 struct kvm_memslots *slots = kvm->memslots;
561 struct kvm_memory_slot *memslot;
562
563 kvm_for_each_memslot(memslot, slots)
564 kvm_free_physmem_slot(memslot, NULL);
565
566 kfree(kvm->memslots);
567 }
568
569 static void kvm_destroy_vm(struct kvm *kvm)
570 {
571 int i;
572 struct mm_struct *mm = kvm->mm;
573
574 kvm_arch_sync_events(kvm);
575 raw_spin_lock(&kvm_lock);
576 list_del(&kvm->vm_list);
577 raw_spin_unlock(&kvm_lock);
578 kvm_free_irq_routing(kvm);
579 for (i = 0; i < KVM_NR_BUSES; i++)
580 kvm_io_bus_destroy(kvm->buses[i]);
581 kvm_coalesced_mmio_free(kvm);
582 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
583 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
584 #else
585 kvm_arch_flush_shadow(kvm);
586 #endif
587 kvm_arch_destroy_vm(kvm);
588 kvm_free_physmem(kvm);
589 cleanup_srcu_struct(&kvm->srcu);
590 kvm_arch_free_vm(kvm);
591 hardware_disable_all();
592 mmdrop(mm);
593 }
594
595 void kvm_get_kvm(struct kvm *kvm)
596 {
597 atomic_inc(&kvm->users_count);
598 }
599 EXPORT_SYMBOL_GPL(kvm_get_kvm);
600
601 void kvm_put_kvm(struct kvm *kvm)
602 {
603 if (atomic_dec_and_test(&kvm->users_count))
604 kvm_destroy_vm(kvm);
605 }
606 EXPORT_SYMBOL_GPL(kvm_put_kvm);
607
608
609 static int kvm_vm_release(struct inode *inode, struct file *filp)
610 {
611 struct kvm *kvm = filp->private_data;
612
613 kvm_irqfd_release(kvm);
614
615 kvm_put_kvm(kvm);
616 return 0;
617 }
618
619 #ifndef CONFIG_S390
620 /*
621 * Allocation size is twice as large as the actual dirty bitmap size.
622 * This makes it possible to do double buffering: see x86's
623 * kvm_vm_ioctl_get_dirty_log().
624 */
625 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
626 {
627 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
628
629 if (dirty_bytes > PAGE_SIZE)
630 memslot->dirty_bitmap = vzalloc(dirty_bytes);
631 else
632 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
633
634 if (!memslot->dirty_bitmap)
635 return -ENOMEM;
636
637 memslot->dirty_bitmap_head = memslot->dirty_bitmap;
638 memslot->nr_dirty_pages = 0;
639 return 0;
640 }
641 #endif /* !CONFIG_S390 */
642
643 static struct kvm_memory_slot *
644 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
645 {
646 struct kvm_memory_slot *memslot;
647
648 kvm_for_each_memslot(memslot, slots)
649 if (gfn >= memslot->base_gfn &&
650 gfn < memslot->base_gfn + memslot->npages)
651 return memslot;
652
653 return NULL;
654 }
655
656 static int cmp_memslot(const void *slot1, const void *slot2)
657 {
658 struct kvm_memory_slot *s1, *s2;
659
660 s1 = (struct kvm_memory_slot *)slot1;
661 s2 = (struct kvm_memory_slot *)slot2;
662
663 if (s1->npages < s2->npages)
664 return 1;
665 if (s1->npages > s2->npages)
666 return -1;
667
668 return 0;
669 }
670
671 /*
672 * Sort the memslots base on its size, so the larger slots
673 * will get better fit.
674 */
675 static void sort_memslots(struct kvm_memslots *slots)
676 {
677 int i;
678
679 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
680 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
681
682 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
683 slots->id_to_index[slots->memslots[i].id] = i;
684 }
685
686 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
687 {
688 if (new) {
689 int id = new->id;
690 struct kvm_memory_slot *old = id_to_memslot(slots, id);
691 unsigned long npages = old->npages;
692
693 *old = *new;
694 if (new->npages != npages)
695 sort_memslots(slots);
696 }
697
698 slots->generation++;
699 }
700
701 /*
702 * Allocate some memory and give it an address in the guest physical address
703 * space.
704 *
705 * Discontiguous memory is allowed, mostly for framebuffers.
706 *
707 * Must be called holding mmap_sem for write.
708 */
709 int __kvm_set_memory_region(struct kvm *kvm,
710 struct kvm_userspace_memory_region *mem,
711 int user_alloc)
712 {
713 int r;
714 gfn_t base_gfn;
715 unsigned long npages;
716 unsigned long i;
717 struct kvm_memory_slot *memslot;
718 struct kvm_memory_slot old, new;
719 struct kvm_memslots *slots, *old_memslots;
720
721 r = -EINVAL;
722 /* General sanity checks */
723 if (mem->memory_size & (PAGE_SIZE - 1))
724 goto out;
725 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
726 goto out;
727 /* We can read the guest memory with __xxx_user() later on. */
728 if (user_alloc &&
729 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
730 !access_ok(VERIFY_WRITE,
731 (void __user *)(unsigned long)mem->userspace_addr,
732 mem->memory_size)))
733 goto out;
734 if (mem->slot >= KVM_MEM_SLOTS_NUM)
735 goto out;
736 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
737 goto out;
738
739 memslot = id_to_memslot(kvm->memslots, mem->slot);
740 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
741 npages = mem->memory_size >> PAGE_SHIFT;
742
743 r = -EINVAL;
744 if (npages > KVM_MEM_MAX_NR_PAGES)
745 goto out;
746
747 if (!npages)
748 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
749
750 new = old = *memslot;
751
752 new.id = mem->slot;
753 new.base_gfn = base_gfn;
754 new.npages = npages;
755 new.flags = mem->flags;
756
757 /* Disallow changing a memory slot's size. */
758 r = -EINVAL;
759 if (npages && old.npages && npages != old.npages)
760 goto out_free;
761
762 /* Check for overlaps */
763 r = -EEXIST;
764 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
765 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
766
767 if (s == memslot || !s->npages)
768 continue;
769 if (!((base_gfn + npages <= s->base_gfn) ||
770 (base_gfn >= s->base_gfn + s->npages)))
771 goto out_free;
772 }
773
774 /* Free page dirty bitmap if unneeded */
775 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
776 new.dirty_bitmap = NULL;
777
778 r = -ENOMEM;
779
780 /* Allocate if a slot is being created */
781 #ifndef CONFIG_S390
782 if (npages && !new.rmap) {
783 new.rmap = vzalloc(npages * sizeof(*new.rmap));
784
785 if (!new.rmap)
786 goto out_free;
787
788 new.user_alloc = user_alloc;
789 new.userspace_addr = mem->userspace_addr;
790 }
791 if (!npages)
792 goto skip_lpage;
793
794 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
795 unsigned long ugfn;
796 unsigned long j;
797 int lpages;
798 int level = i + 2;
799
800 /* Avoid unused variable warning if no large pages */
801 (void)level;
802
803 if (new.lpage_info[i])
804 continue;
805
806 lpages = 1 + ((base_gfn + npages - 1)
807 >> KVM_HPAGE_GFN_SHIFT(level));
808 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
809
810 new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
811
812 if (!new.lpage_info[i])
813 goto out_free;
814
815 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
816 new.lpage_info[i][0].write_count = 1;
817 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
818 new.lpage_info[i][lpages - 1].write_count = 1;
819 ugfn = new.userspace_addr >> PAGE_SHIFT;
820 /*
821 * If the gfn and userspace address are not aligned wrt each
822 * other, or if explicitly asked to, disable large page
823 * support for this slot
824 */
825 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
826 !largepages_enabled)
827 for (j = 0; j < lpages; ++j)
828 new.lpage_info[i][j].write_count = 1;
829 }
830
831 skip_lpage:
832
833 /* Allocate page dirty bitmap if needed */
834 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
835 if (kvm_create_dirty_bitmap(&new) < 0)
836 goto out_free;
837 /* destroy any largepage mappings for dirty tracking */
838 }
839 #else /* not defined CONFIG_S390 */
840 new.user_alloc = user_alloc;
841 if (user_alloc)
842 new.userspace_addr = mem->userspace_addr;
843 #endif /* not defined CONFIG_S390 */
844
845 if (!npages) {
846 struct kvm_memory_slot *slot;
847
848 r = -ENOMEM;
849 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
850 GFP_KERNEL);
851 if (!slots)
852 goto out_free;
853 slot = id_to_memslot(slots, mem->slot);
854 slot->flags |= KVM_MEMSLOT_INVALID;
855
856 update_memslots(slots, NULL);
857
858 old_memslots = kvm->memslots;
859 rcu_assign_pointer(kvm->memslots, slots);
860 synchronize_srcu_expedited(&kvm->srcu);
861 /* From this point no new shadow pages pointing to a deleted
862 * memslot will be created.
863 *
864 * validation of sp->gfn happens in:
865 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
866 * - kvm_is_visible_gfn (mmu_check_roots)
867 */
868 kvm_arch_flush_shadow(kvm);
869 kfree(old_memslots);
870 }
871
872 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
873 if (r)
874 goto out_free;
875
876 /* map the pages in iommu page table */
877 if (npages) {
878 r = kvm_iommu_map_pages(kvm, &new);
879 if (r)
880 goto out_free;
881 }
882
883 r = -ENOMEM;
884 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
885 GFP_KERNEL);
886 if (!slots)
887 goto out_free;
888
889 /* actual memory is freed via old in kvm_free_physmem_slot below */
890 if (!npages) {
891 new.rmap = NULL;
892 new.dirty_bitmap = NULL;
893 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
894 new.lpage_info[i] = NULL;
895 }
896
897 update_memslots(slots, &new);
898 old_memslots = kvm->memslots;
899 rcu_assign_pointer(kvm->memslots, slots);
900 synchronize_srcu_expedited(&kvm->srcu);
901
902 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
903
904 /*
905 * If the new memory slot is created, we need to clear all
906 * mmio sptes.
907 */
908 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
909 kvm_arch_flush_shadow(kvm);
910
911 kvm_free_physmem_slot(&old, &new);
912 kfree(old_memslots);
913
914 return 0;
915
916 out_free:
917 kvm_free_physmem_slot(&new, &old);
918 out:
919 return r;
920
921 }
922 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
923
924 int kvm_set_memory_region(struct kvm *kvm,
925 struct kvm_userspace_memory_region *mem,
926 int user_alloc)
927 {
928 int r;
929
930 mutex_lock(&kvm->slots_lock);
931 r = __kvm_set_memory_region(kvm, mem, user_alloc);
932 mutex_unlock(&kvm->slots_lock);
933 return r;
934 }
935 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
936
937 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
938 struct
939 kvm_userspace_memory_region *mem,
940 int user_alloc)
941 {
942 if (mem->slot >= KVM_MEMORY_SLOTS)
943 return -EINVAL;
944 return kvm_set_memory_region(kvm, mem, user_alloc);
945 }
946
947 int kvm_get_dirty_log(struct kvm *kvm,
948 struct kvm_dirty_log *log, int *is_dirty)
949 {
950 struct kvm_memory_slot *memslot;
951 int r, i;
952 unsigned long n;
953 unsigned long any = 0;
954
955 r = -EINVAL;
956 if (log->slot >= KVM_MEMORY_SLOTS)
957 goto out;
958
959 memslot = id_to_memslot(kvm->memslots, log->slot);
960 r = -ENOENT;
961 if (!memslot->dirty_bitmap)
962 goto out;
963
964 n = kvm_dirty_bitmap_bytes(memslot);
965
966 for (i = 0; !any && i < n/sizeof(long); ++i)
967 any = memslot->dirty_bitmap[i];
968
969 r = -EFAULT;
970 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
971 goto out;
972
973 if (any)
974 *is_dirty = 1;
975
976 r = 0;
977 out:
978 return r;
979 }
980
981 void kvm_disable_largepages(void)
982 {
983 largepages_enabled = false;
984 }
985 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
986
987 int is_error_page(struct page *page)
988 {
989 return page == bad_page || page == hwpoison_page || page == fault_page;
990 }
991 EXPORT_SYMBOL_GPL(is_error_page);
992
993 int is_error_pfn(pfn_t pfn)
994 {
995 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
996 }
997 EXPORT_SYMBOL_GPL(is_error_pfn);
998
999 int is_hwpoison_pfn(pfn_t pfn)
1000 {
1001 return pfn == hwpoison_pfn;
1002 }
1003 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
1004
1005 int is_fault_pfn(pfn_t pfn)
1006 {
1007 return pfn == fault_pfn;
1008 }
1009 EXPORT_SYMBOL_GPL(is_fault_pfn);
1010
1011 int is_noslot_pfn(pfn_t pfn)
1012 {
1013 return pfn == bad_pfn;
1014 }
1015 EXPORT_SYMBOL_GPL(is_noslot_pfn);
1016
1017 int is_invalid_pfn(pfn_t pfn)
1018 {
1019 return pfn == hwpoison_pfn || pfn == fault_pfn;
1020 }
1021 EXPORT_SYMBOL_GPL(is_invalid_pfn);
1022
1023 static inline unsigned long bad_hva(void)
1024 {
1025 return PAGE_OFFSET;
1026 }
1027
1028 int kvm_is_error_hva(unsigned long addr)
1029 {
1030 return addr == bad_hva();
1031 }
1032 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1033
1034 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
1035 gfn_t gfn)
1036 {
1037 return search_memslots(slots, gfn);
1038 }
1039
1040 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1041 {
1042 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1043 }
1044 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1045
1046 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1047 {
1048 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1049
1050 if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
1051 memslot->flags & KVM_MEMSLOT_INVALID)
1052 return 0;
1053
1054 return 1;
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1057
1058 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1059 {
1060 struct vm_area_struct *vma;
1061 unsigned long addr, size;
1062
1063 size = PAGE_SIZE;
1064
1065 addr = gfn_to_hva(kvm, gfn);
1066 if (kvm_is_error_hva(addr))
1067 return PAGE_SIZE;
1068
1069 down_read(&current->mm->mmap_sem);
1070 vma = find_vma(current->mm, addr);
1071 if (!vma)
1072 goto out;
1073
1074 size = vma_kernel_pagesize(vma);
1075
1076 out:
1077 up_read(&current->mm->mmap_sem);
1078
1079 return size;
1080 }
1081
1082 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1083 gfn_t *nr_pages)
1084 {
1085 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1086 return bad_hva();
1087
1088 if (nr_pages)
1089 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1090
1091 return gfn_to_hva_memslot(slot, gfn);
1092 }
1093
1094 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1095 {
1096 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1097 }
1098 EXPORT_SYMBOL_GPL(gfn_to_hva);
1099
1100 static pfn_t get_fault_pfn(void)
1101 {
1102 get_page(fault_page);
1103 return fault_pfn;
1104 }
1105
1106 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1107 unsigned long start, int write, struct page **page)
1108 {
1109 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1110
1111 if (write)
1112 flags |= FOLL_WRITE;
1113
1114 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1115 }
1116
1117 static inline int check_user_page_hwpoison(unsigned long addr)
1118 {
1119 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1120
1121 rc = __get_user_pages(current, current->mm, addr, 1,
1122 flags, NULL, NULL, NULL);
1123 return rc == -EHWPOISON;
1124 }
1125
1126 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1127 bool *async, bool write_fault, bool *writable)
1128 {
1129 struct page *page[1];
1130 int npages = 0;
1131 pfn_t pfn;
1132
1133 /* we can do it either atomically or asynchronously, not both */
1134 BUG_ON(atomic && async);
1135
1136 BUG_ON(!write_fault && !writable);
1137
1138 if (writable)
1139 *writable = true;
1140
1141 if (atomic || async)
1142 npages = __get_user_pages_fast(addr, 1, 1, page);
1143
1144 if (unlikely(npages != 1) && !atomic) {
1145 might_sleep();
1146
1147 if (writable)
1148 *writable = write_fault;
1149
1150 if (async) {
1151 down_read(&current->mm->mmap_sem);
1152 npages = get_user_page_nowait(current, current->mm,
1153 addr, write_fault, page);
1154 up_read(&current->mm->mmap_sem);
1155 } else
1156 npages = get_user_pages_fast(addr, 1, write_fault,
1157 page);
1158
1159 /* map read fault as writable if possible */
1160 if (unlikely(!write_fault) && npages == 1) {
1161 struct page *wpage[1];
1162
1163 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1164 if (npages == 1) {
1165 *writable = true;
1166 put_page(page[0]);
1167 page[0] = wpage[0];
1168 }
1169 npages = 1;
1170 }
1171 }
1172
1173 if (unlikely(npages != 1)) {
1174 struct vm_area_struct *vma;
1175
1176 if (atomic)
1177 return get_fault_pfn();
1178
1179 down_read(&current->mm->mmap_sem);
1180 if (npages == -EHWPOISON ||
1181 (!async && check_user_page_hwpoison(addr))) {
1182 up_read(&current->mm->mmap_sem);
1183 get_page(hwpoison_page);
1184 return page_to_pfn(hwpoison_page);
1185 }
1186
1187 vma = find_vma_intersection(current->mm, addr, addr+1);
1188
1189 if (vma == NULL)
1190 pfn = get_fault_pfn();
1191 else if ((vma->vm_flags & VM_PFNMAP)) {
1192 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1193 vma->vm_pgoff;
1194 BUG_ON(!kvm_is_mmio_pfn(pfn));
1195 } else {
1196 if (async && (vma->vm_flags & VM_WRITE))
1197 *async = true;
1198 pfn = get_fault_pfn();
1199 }
1200 up_read(&current->mm->mmap_sem);
1201 } else
1202 pfn = page_to_pfn(page[0]);
1203
1204 return pfn;
1205 }
1206
1207 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1208 {
1209 return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1210 }
1211 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1212
1213 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1214 bool write_fault, bool *writable)
1215 {
1216 unsigned long addr;
1217
1218 if (async)
1219 *async = false;
1220
1221 addr = gfn_to_hva(kvm, gfn);
1222 if (kvm_is_error_hva(addr)) {
1223 get_page(bad_page);
1224 return page_to_pfn(bad_page);
1225 }
1226
1227 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1228 }
1229
1230 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1231 {
1232 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1233 }
1234 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1235
1236 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1237 bool write_fault, bool *writable)
1238 {
1239 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1240 }
1241 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1242
1243 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1244 {
1245 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1246 }
1247 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1248
1249 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1250 bool *writable)
1251 {
1252 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1253 }
1254 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1255
1256 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1257 struct kvm_memory_slot *slot, gfn_t gfn)
1258 {
1259 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1260 return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1261 }
1262
1263 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1264 int nr_pages)
1265 {
1266 unsigned long addr;
1267 gfn_t entry;
1268
1269 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1270 if (kvm_is_error_hva(addr))
1271 return -1;
1272
1273 if (entry < nr_pages)
1274 return 0;
1275
1276 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1277 }
1278 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1279
1280 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1281 {
1282 pfn_t pfn;
1283
1284 pfn = gfn_to_pfn(kvm, gfn);
1285 if (!kvm_is_mmio_pfn(pfn))
1286 return pfn_to_page(pfn);
1287
1288 WARN_ON(kvm_is_mmio_pfn(pfn));
1289
1290 get_page(bad_page);
1291 return bad_page;
1292 }
1293
1294 EXPORT_SYMBOL_GPL(gfn_to_page);
1295
1296 void kvm_release_page_clean(struct page *page)
1297 {
1298 kvm_release_pfn_clean(page_to_pfn(page));
1299 }
1300 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1301
1302 void kvm_release_pfn_clean(pfn_t pfn)
1303 {
1304 if (!kvm_is_mmio_pfn(pfn))
1305 put_page(pfn_to_page(pfn));
1306 }
1307 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1308
1309 void kvm_release_page_dirty(struct page *page)
1310 {
1311 kvm_release_pfn_dirty(page_to_pfn(page));
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1314
1315 void kvm_release_pfn_dirty(pfn_t pfn)
1316 {
1317 kvm_set_pfn_dirty(pfn);
1318 kvm_release_pfn_clean(pfn);
1319 }
1320 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1321
1322 void kvm_set_page_dirty(struct page *page)
1323 {
1324 kvm_set_pfn_dirty(page_to_pfn(page));
1325 }
1326 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1327
1328 void kvm_set_pfn_dirty(pfn_t pfn)
1329 {
1330 if (!kvm_is_mmio_pfn(pfn)) {
1331 struct page *page = pfn_to_page(pfn);
1332 if (!PageReserved(page))
1333 SetPageDirty(page);
1334 }
1335 }
1336 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1337
1338 void kvm_set_pfn_accessed(pfn_t pfn)
1339 {
1340 if (!kvm_is_mmio_pfn(pfn))
1341 mark_page_accessed(pfn_to_page(pfn));
1342 }
1343 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1344
1345 void kvm_get_pfn(pfn_t pfn)
1346 {
1347 if (!kvm_is_mmio_pfn(pfn))
1348 get_page(pfn_to_page(pfn));
1349 }
1350 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1351
1352 static int next_segment(unsigned long len, int offset)
1353 {
1354 if (len > PAGE_SIZE - offset)
1355 return PAGE_SIZE - offset;
1356 else
1357 return len;
1358 }
1359
1360 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1361 int len)
1362 {
1363 int r;
1364 unsigned long addr;
1365
1366 addr = gfn_to_hva(kvm, gfn);
1367 if (kvm_is_error_hva(addr))
1368 return -EFAULT;
1369 r = __copy_from_user(data, (void __user *)addr + offset, len);
1370 if (r)
1371 return -EFAULT;
1372 return 0;
1373 }
1374 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1375
1376 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1377 {
1378 gfn_t gfn = gpa >> PAGE_SHIFT;
1379 int seg;
1380 int offset = offset_in_page(gpa);
1381 int ret;
1382
1383 while ((seg = next_segment(len, offset)) != 0) {
1384 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1385 if (ret < 0)
1386 return ret;
1387 offset = 0;
1388 len -= seg;
1389 data += seg;
1390 ++gfn;
1391 }
1392 return 0;
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_read_guest);
1395
1396 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1397 unsigned long len)
1398 {
1399 int r;
1400 unsigned long addr;
1401 gfn_t gfn = gpa >> PAGE_SHIFT;
1402 int offset = offset_in_page(gpa);
1403
1404 addr = gfn_to_hva(kvm, gfn);
1405 if (kvm_is_error_hva(addr))
1406 return -EFAULT;
1407 pagefault_disable();
1408 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1409 pagefault_enable();
1410 if (r)
1411 return -EFAULT;
1412 return 0;
1413 }
1414 EXPORT_SYMBOL(kvm_read_guest_atomic);
1415
1416 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1417 int offset, int len)
1418 {
1419 int r;
1420 unsigned long addr;
1421
1422 addr = gfn_to_hva(kvm, gfn);
1423 if (kvm_is_error_hva(addr))
1424 return -EFAULT;
1425 r = __copy_to_user((void __user *)addr + offset, data, len);
1426 if (r)
1427 return -EFAULT;
1428 mark_page_dirty(kvm, gfn);
1429 return 0;
1430 }
1431 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1432
1433 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1434 unsigned long len)
1435 {
1436 gfn_t gfn = gpa >> PAGE_SHIFT;
1437 int seg;
1438 int offset = offset_in_page(gpa);
1439 int ret;
1440
1441 while ((seg = next_segment(len, offset)) != 0) {
1442 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1443 if (ret < 0)
1444 return ret;
1445 offset = 0;
1446 len -= seg;
1447 data += seg;
1448 ++gfn;
1449 }
1450 return 0;
1451 }
1452
1453 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1454 gpa_t gpa)
1455 {
1456 struct kvm_memslots *slots = kvm_memslots(kvm);
1457 int offset = offset_in_page(gpa);
1458 gfn_t gfn = gpa >> PAGE_SHIFT;
1459
1460 ghc->gpa = gpa;
1461 ghc->generation = slots->generation;
1462 ghc->memslot = __gfn_to_memslot(slots, gfn);
1463 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1464 if (!kvm_is_error_hva(ghc->hva))
1465 ghc->hva += offset;
1466 else
1467 return -EFAULT;
1468
1469 return 0;
1470 }
1471 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1472
1473 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1474 void *data, unsigned long len)
1475 {
1476 struct kvm_memslots *slots = kvm_memslots(kvm);
1477 int r;
1478
1479 if (slots->generation != ghc->generation)
1480 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1481
1482 if (kvm_is_error_hva(ghc->hva))
1483 return -EFAULT;
1484
1485 r = __copy_to_user((void __user *)ghc->hva, data, len);
1486 if (r)
1487 return -EFAULT;
1488 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1489
1490 return 0;
1491 }
1492 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1493
1494 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1495 void *data, unsigned long len)
1496 {
1497 struct kvm_memslots *slots = kvm_memslots(kvm);
1498 int r;
1499
1500 if (slots->generation != ghc->generation)
1501 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1502
1503 if (kvm_is_error_hva(ghc->hva))
1504 return -EFAULT;
1505
1506 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1507 if (r)
1508 return -EFAULT;
1509
1510 return 0;
1511 }
1512 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1513
1514 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1515 {
1516 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1517 offset, len);
1518 }
1519 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1520
1521 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1522 {
1523 gfn_t gfn = gpa >> PAGE_SHIFT;
1524 int seg;
1525 int offset = offset_in_page(gpa);
1526 int ret;
1527
1528 while ((seg = next_segment(len, offset)) != 0) {
1529 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1530 if (ret < 0)
1531 return ret;
1532 offset = 0;
1533 len -= seg;
1534 ++gfn;
1535 }
1536 return 0;
1537 }
1538 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1539
1540 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1541 gfn_t gfn)
1542 {
1543 if (memslot && memslot->dirty_bitmap) {
1544 unsigned long rel_gfn = gfn - memslot->base_gfn;
1545
1546 if (!__test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap))
1547 memslot->nr_dirty_pages++;
1548 }
1549 }
1550
1551 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1552 {
1553 struct kvm_memory_slot *memslot;
1554
1555 memslot = gfn_to_memslot(kvm, gfn);
1556 mark_page_dirty_in_slot(kvm, memslot, gfn);
1557 }
1558
1559 /*
1560 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1561 */
1562 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1563 {
1564 DEFINE_WAIT(wait);
1565
1566 for (;;) {
1567 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1568
1569 if (kvm_arch_vcpu_runnable(vcpu)) {
1570 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1571 break;
1572 }
1573 if (kvm_cpu_has_pending_timer(vcpu))
1574 break;
1575 if (signal_pending(current))
1576 break;
1577
1578 schedule();
1579 }
1580
1581 finish_wait(&vcpu->wq, &wait);
1582 }
1583
1584 void kvm_resched(struct kvm_vcpu *vcpu)
1585 {
1586 if (!need_resched())
1587 return;
1588 cond_resched();
1589 }
1590 EXPORT_SYMBOL_GPL(kvm_resched);
1591
1592 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1593 {
1594 struct kvm *kvm = me->kvm;
1595 struct kvm_vcpu *vcpu;
1596 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1597 int yielded = 0;
1598 int pass;
1599 int i;
1600
1601 /*
1602 * We boost the priority of a VCPU that is runnable but not
1603 * currently running, because it got preempted by something
1604 * else and called schedule in __vcpu_run. Hopefully that
1605 * VCPU is holding the lock that we need and will release it.
1606 * We approximate round-robin by starting at the last boosted VCPU.
1607 */
1608 for (pass = 0; pass < 2 && !yielded; pass++) {
1609 kvm_for_each_vcpu(i, vcpu, kvm) {
1610 struct task_struct *task = NULL;
1611 struct pid *pid;
1612 if (!pass && i < last_boosted_vcpu) {
1613 i = last_boosted_vcpu;
1614 continue;
1615 } else if (pass && i > last_boosted_vcpu)
1616 break;
1617 if (vcpu == me)
1618 continue;
1619 if (waitqueue_active(&vcpu->wq))
1620 continue;
1621 rcu_read_lock();
1622 pid = rcu_dereference(vcpu->pid);
1623 if (pid)
1624 task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1625 rcu_read_unlock();
1626 if (!task)
1627 continue;
1628 if (task->flags & PF_VCPU) {
1629 put_task_struct(task);
1630 continue;
1631 }
1632 if (yield_to(task, 1)) {
1633 put_task_struct(task);
1634 kvm->last_boosted_vcpu = i;
1635 yielded = 1;
1636 break;
1637 }
1638 put_task_struct(task);
1639 }
1640 }
1641 }
1642 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1643
1644 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1645 {
1646 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1647 struct page *page;
1648
1649 if (vmf->pgoff == 0)
1650 page = virt_to_page(vcpu->run);
1651 #ifdef CONFIG_X86
1652 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1653 page = virt_to_page(vcpu->arch.pio_data);
1654 #endif
1655 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1656 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1657 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1658 #endif
1659 else
1660 return VM_FAULT_SIGBUS;
1661 get_page(page);
1662 vmf->page = page;
1663 return 0;
1664 }
1665
1666 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1667 .fault = kvm_vcpu_fault,
1668 };
1669
1670 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1671 {
1672 vma->vm_ops = &kvm_vcpu_vm_ops;
1673 return 0;
1674 }
1675
1676 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1677 {
1678 struct kvm_vcpu *vcpu = filp->private_data;
1679
1680 kvm_put_kvm(vcpu->kvm);
1681 return 0;
1682 }
1683
1684 static struct file_operations kvm_vcpu_fops = {
1685 .release = kvm_vcpu_release,
1686 .unlocked_ioctl = kvm_vcpu_ioctl,
1687 #ifdef CONFIG_COMPAT
1688 .compat_ioctl = kvm_vcpu_compat_ioctl,
1689 #endif
1690 .mmap = kvm_vcpu_mmap,
1691 .llseek = noop_llseek,
1692 };
1693
1694 /*
1695 * Allocates an inode for the vcpu.
1696 */
1697 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1698 {
1699 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1700 }
1701
1702 /*
1703 * Creates some virtual cpus. Good luck creating more than one.
1704 */
1705 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1706 {
1707 int r;
1708 struct kvm_vcpu *vcpu, *v;
1709
1710 vcpu = kvm_arch_vcpu_create(kvm, id);
1711 if (IS_ERR(vcpu))
1712 return PTR_ERR(vcpu);
1713
1714 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1715
1716 r = kvm_arch_vcpu_setup(vcpu);
1717 if (r)
1718 goto vcpu_destroy;
1719
1720 mutex_lock(&kvm->lock);
1721 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1722 r = -EINVAL;
1723 goto unlock_vcpu_destroy;
1724 }
1725
1726 kvm_for_each_vcpu(r, v, kvm)
1727 if (v->vcpu_id == id) {
1728 r = -EEXIST;
1729 goto unlock_vcpu_destroy;
1730 }
1731
1732 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1733
1734 /* Now it's all set up, let userspace reach it */
1735 kvm_get_kvm(kvm);
1736 r = create_vcpu_fd(vcpu);
1737 if (r < 0) {
1738 kvm_put_kvm(kvm);
1739 goto unlock_vcpu_destroy;
1740 }
1741
1742 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1743 smp_wmb();
1744 atomic_inc(&kvm->online_vcpus);
1745
1746 mutex_unlock(&kvm->lock);
1747 return r;
1748
1749 unlock_vcpu_destroy:
1750 mutex_unlock(&kvm->lock);
1751 vcpu_destroy:
1752 kvm_arch_vcpu_destroy(vcpu);
1753 return r;
1754 }
1755
1756 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1757 {
1758 if (sigset) {
1759 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1760 vcpu->sigset_active = 1;
1761 vcpu->sigset = *sigset;
1762 } else
1763 vcpu->sigset_active = 0;
1764 return 0;
1765 }
1766
1767 static long kvm_vcpu_ioctl(struct file *filp,
1768 unsigned int ioctl, unsigned long arg)
1769 {
1770 struct kvm_vcpu *vcpu = filp->private_data;
1771 void __user *argp = (void __user *)arg;
1772 int r;
1773 struct kvm_fpu *fpu = NULL;
1774 struct kvm_sregs *kvm_sregs = NULL;
1775
1776 if (vcpu->kvm->mm != current->mm)
1777 return -EIO;
1778
1779 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1780 /*
1781 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1782 * so vcpu_load() would break it.
1783 */
1784 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1785 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1786 #endif
1787
1788
1789 vcpu_load(vcpu);
1790 switch (ioctl) {
1791 case KVM_RUN:
1792 r = -EINVAL;
1793 if (arg)
1794 goto out;
1795 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1796 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1797 break;
1798 case KVM_GET_REGS: {
1799 struct kvm_regs *kvm_regs;
1800
1801 r = -ENOMEM;
1802 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1803 if (!kvm_regs)
1804 goto out;
1805 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1806 if (r)
1807 goto out_free1;
1808 r = -EFAULT;
1809 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1810 goto out_free1;
1811 r = 0;
1812 out_free1:
1813 kfree(kvm_regs);
1814 break;
1815 }
1816 case KVM_SET_REGS: {
1817 struct kvm_regs *kvm_regs;
1818
1819 r = -ENOMEM;
1820 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1821 if (IS_ERR(kvm_regs)) {
1822 r = PTR_ERR(kvm_regs);
1823 goto out;
1824 }
1825 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1826 if (r)
1827 goto out_free2;
1828 r = 0;
1829 out_free2:
1830 kfree(kvm_regs);
1831 break;
1832 }
1833 case KVM_GET_SREGS: {
1834 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1835 r = -ENOMEM;
1836 if (!kvm_sregs)
1837 goto out;
1838 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1839 if (r)
1840 goto out;
1841 r = -EFAULT;
1842 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1843 goto out;
1844 r = 0;
1845 break;
1846 }
1847 case KVM_SET_SREGS: {
1848 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1849 if (IS_ERR(kvm_sregs)) {
1850 r = PTR_ERR(kvm_sregs);
1851 goto out;
1852 }
1853 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1854 if (r)
1855 goto out;
1856 r = 0;
1857 break;
1858 }
1859 case KVM_GET_MP_STATE: {
1860 struct kvm_mp_state mp_state;
1861
1862 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1863 if (r)
1864 goto out;
1865 r = -EFAULT;
1866 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1867 goto out;
1868 r = 0;
1869 break;
1870 }
1871 case KVM_SET_MP_STATE: {
1872 struct kvm_mp_state mp_state;
1873
1874 r = -EFAULT;
1875 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1876 goto out;
1877 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1878 if (r)
1879 goto out;
1880 r = 0;
1881 break;
1882 }
1883 case KVM_TRANSLATE: {
1884 struct kvm_translation tr;
1885
1886 r = -EFAULT;
1887 if (copy_from_user(&tr, argp, sizeof tr))
1888 goto out;
1889 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1890 if (r)
1891 goto out;
1892 r = -EFAULT;
1893 if (copy_to_user(argp, &tr, sizeof tr))
1894 goto out;
1895 r = 0;
1896 break;
1897 }
1898 case KVM_SET_GUEST_DEBUG: {
1899 struct kvm_guest_debug dbg;
1900
1901 r = -EFAULT;
1902 if (copy_from_user(&dbg, argp, sizeof dbg))
1903 goto out;
1904 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1905 if (r)
1906 goto out;
1907 r = 0;
1908 break;
1909 }
1910 case KVM_SET_SIGNAL_MASK: {
1911 struct kvm_signal_mask __user *sigmask_arg = argp;
1912 struct kvm_signal_mask kvm_sigmask;
1913 sigset_t sigset, *p;
1914
1915 p = NULL;
1916 if (argp) {
1917 r = -EFAULT;
1918 if (copy_from_user(&kvm_sigmask, argp,
1919 sizeof kvm_sigmask))
1920 goto out;
1921 r = -EINVAL;
1922 if (kvm_sigmask.len != sizeof sigset)
1923 goto out;
1924 r = -EFAULT;
1925 if (copy_from_user(&sigset, sigmask_arg->sigset,
1926 sizeof sigset))
1927 goto out;
1928 p = &sigset;
1929 }
1930 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1931 break;
1932 }
1933 case KVM_GET_FPU: {
1934 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1935 r = -ENOMEM;
1936 if (!fpu)
1937 goto out;
1938 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1939 if (r)
1940 goto out;
1941 r = -EFAULT;
1942 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1943 goto out;
1944 r = 0;
1945 break;
1946 }
1947 case KVM_SET_FPU: {
1948 fpu = memdup_user(argp, sizeof(*fpu));
1949 if (IS_ERR(fpu)) {
1950 r = PTR_ERR(fpu);
1951 goto out;
1952 }
1953 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1954 if (r)
1955 goto out;
1956 r = 0;
1957 break;
1958 }
1959 default:
1960 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1961 }
1962 out:
1963 vcpu_put(vcpu);
1964 kfree(fpu);
1965 kfree(kvm_sregs);
1966 return r;
1967 }
1968
1969 #ifdef CONFIG_COMPAT
1970 static long kvm_vcpu_compat_ioctl(struct file *filp,
1971 unsigned int ioctl, unsigned long arg)
1972 {
1973 struct kvm_vcpu *vcpu = filp->private_data;
1974 void __user *argp = compat_ptr(arg);
1975 int r;
1976
1977 if (vcpu->kvm->mm != current->mm)
1978 return -EIO;
1979
1980 switch (ioctl) {
1981 case KVM_SET_SIGNAL_MASK: {
1982 struct kvm_signal_mask __user *sigmask_arg = argp;
1983 struct kvm_signal_mask kvm_sigmask;
1984 compat_sigset_t csigset;
1985 sigset_t sigset;
1986
1987 if (argp) {
1988 r = -EFAULT;
1989 if (copy_from_user(&kvm_sigmask, argp,
1990 sizeof kvm_sigmask))
1991 goto out;
1992 r = -EINVAL;
1993 if (kvm_sigmask.len != sizeof csigset)
1994 goto out;
1995 r = -EFAULT;
1996 if (copy_from_user(&csigset, sigmask_arg->sigset,
1997 sizeof csigset))
1998 goto out;
1999 }
2000 sigset_from_compat(&sigset, &csigset);
2001 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2002 break;
2003 }
2004 default:
2005 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2006 }
2007
2008 out:
2009 return r;
2010 }
2011 #endif
2012
2013 static long kvm_vm_ioctl(struct file *filp,
2014 unsigned int ioctl, unsigned long arg)
2015 {
2016 struct kvm *kvm = filp->private_data;
2017 void __user *argp = (void __user *)arg;
2018 int r;
2019
2020 if (kvm->mm != current->mm)
2021 return -EIO;
2022 switch (ioctl) {
2023 case KVM_CREATE_VCPU:
2024 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2025 if (r < 0)
2026 goto out;
2027 break;
2028 case KVM_SET_USER_MEMORY_REGION: {
2029 struct kvm_userspace_memory_region kvm_userspace_mem;
2030
2031 r = -EFAULT;
2032 if (copy_from_user(&kvm_userspace_mem, argp,
2033 sizeof kvm_userspace_mem))
2034 goto out;
2035
2036 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2037 if (r)
2038 goto out;
2039 break;
2040 }
2041 case KVM_GET_DIRTY_LOG: {
2042 struct kvm_dirty_log log;
2043
2044 r = -EFAULT;
2045 if (copy_from_user(&log, argp, sizeof log))
2046 goto out;
2047 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2048 if (r)
2049 goto out;
2050 break;
2051 }
2052 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2053 case KVM_REGISTER_COALESCED_MMIO: {
2054 struct kvm_coalesced_mmio_zone zone;
2055 r = -EFAULT;
2056 if (copy_from_user(&zone, argp, sizeof zone))
2057 goto out;
2058 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2059 if (r)
2060 goto out;
2061 r = 0;
2062 break;
2063 }
2064 case KVM_UNREGISTER_COALESCED_MMIO: {
2065 struct kvm_coalesced_mmio_zone zone;
2066 r = -EFAULT;
2067 if (copy_from_user(&zone, argp, sizeof zone))
2068 goto out;
2069 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2070 if (r)
2071 goto out;
2072 r = 0;
2073 break;
2074 }
2075 #endif
2076 case KVM_IRQFD: {
2077 struct kvm_irqfd data;
2078
2079 r = -EFAULT;
2080 if (copy_from_user(&data, argp, sizeof data))
2081 goto out;
2082 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2083 break;
2084 }
2085 case KVM_IOEVENTFD: {
2086 struct kvm_ioeventfd data;
2087
2088 r = -EFAULT;
2089 if (copy_from_user(&data, argp, sizeof data))
2090 goto out;
2091 r = kvm_ioeventfd(kvm, &data);
2092 break;
2093 }
2094 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2095 case KVM_SET_BOOT_CPU_ID:
2096 r = 0;
2097 mutex_lock(&kvm->lock);
2098 if (atomic_read(&kvm->online_vcpus) != 0)
2099 r = -EBUSY;
2100 else
2101 kvm->bsp_vcpu_id = arg;
2102 mutex_unlock(&kvm->lock);
2103 break;
2104 #endif
2105 default:
2106 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2107 if (r == -ENOTTY)
2108 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2109 }
2110 out:
2111 return r;
2112 }
2113
2114 #ifdef CONFIG_COMPAT
2115 struct compat_kvm_dirty_log {
2116 __u32 slot;
2117 __u32 padding1;
2118 union {
2119 compat_uptr_t dirty_bitmap; /* one bit per page */
2120 __u64 padding2;
2121 };
2122 };
2123
2124 static long kvm_vm_compat_ioctl(struct file *filp,
2125 unsigned int ioctl, unsigned long arg)
2126 {
2127 struct kvm *kvm = filp->private_data;
2128 int r;
2129
2130 if (kvm->mm != current->mm)
2131 return -EIO;
2132 switch (ioctl) {
2133 case KVM_GET_DIRTY_LOG: {
2134 struct compat_kvm_dirty_log compat_log;
2135 struct kvm_dirty_log log;
2136
2137 r = -EFAULT;
2138 if (copy_from_user(&compat_log, (void __user *)arg,
2139 sizeof(compat_log)))
2140 goto out;
2141 log.slot = compat_log.slot;
2142 log.padding1 = compat_log.padding1;
2143 log.padding2 = compat_log.padding2;
2144 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2145
2146 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2147 if (r)
2148 goto out;
2149 break;
2150 }
2151 default:
2152 r = kvm_vm_ioctl(filp, ioctl, arg);
2153 }
2154
2155 out:
2156 return r;
2157 }
2158 #endif
2159
2160 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2161 {
2162 struct page *page[1];
2163 unsigned long addr;
2164 int npages;
2165 gfn_t gfn = vmf->pgoff;
2166 struct kvm *kvm = vma->vm_file->private_data;
2167
2168 addr = gfn_to_hva(kvm, gfn);
2169 if (kvm_is_error_hva(addr))
2170 return VM_FAULT_SIGBUS;
2171
2172 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2173 NULL);
2174 if (unlikely(npages != 1))
2175 return VM_FAULT_SIGBUS;
2176
2177 vmf->page = page[0];
2178 return 0;
2179 }
2180
2181 static const struct vm_operations_struct kvm_vm_vm_ops = {
2182 .fault = kvm_vm_fault,
2183 };
2184
2185 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2186 {
2187 vma->vm_ops = &kvm_vm_vm_ops;
2188 return 0;
2189 }
2190
2191 static struct file_operations kvm_vm_fops = {
2192 .release = kvm_vm_release,
2193 .unlocked_ioctl = kvm_vm_ioctl,
2194 #ifdef CONFIG_COMPAT
2195 .compat_ioctl = kvm_vm_compat_ioctl,
2196 #endif
2197 .mmap = kvm_vm_mmap,
2198 .llseek = noop_llseek,
2199 };
2200
2201 static int kvm_dev_ioctl_create_vm(void)
2202 {
2203 int r;
2204 struct kvm *kvm;
2205
2206 kvm = kvm_create_vm();
2207 if (IS_ERR(kvm))
2208 return PTR_ERR(kvm);
2209 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2210 r = kvm_coalesced_mmio_init(kvm);
2211 if (r < 0) {
2212 kvm_put_kvm(kvm);
2213 return r;
2214 }
2215 #endif
2216 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2217 if (r < 0)
2218 kvm_put_kvm(kvm);
2219
2220 return r;
2221 }
2222
2223 static long kvm_dev_ioctl_check_extension_generic(long arg)
2224 {
2225 switch (arg) {
2226 case KVM_CAP_USER_MEMORY:
2227 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2228 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2229 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2230 case KVM_CAP_SET_BOOT_CPU_ID:
2231 #endif
2232 case KVM_CAP_INTERNAL_ERROR_DATA:
2233 return 1;
2234 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2235 case KVM_CAP_IRQ_ROUTING:
2236 return KVM_MAX_IRQ_ROUTES;
2237 #endif
2238 default:
2239 break;
2240 }
2241 return kvm_dev_ioctl_check_extension(arg);
2242 }
2243
2244 static long kvm_dev_ioctl(struct file *filp,
2245 unsigned int ioctl, unsigned long arg)
2246 {
2247 long r = -EINVAL;
2248
2249 switch (ioctl) {
2250 case KVM_GET_API_VERSION:
2251 r = -EINVAL;
2252 if (arg)
2253 goto out;
2254 r = KVM_API_VERSION;
2255 break;
2256 case KVM_CREATE_VM:
2257 r = -EINVAL;
2258 if (arg)
2259 goto out;
2260 r = kvm_dev_ioctl_create_vm();
2261 break;
2262 case KVM_CHECK_EXTENSION:
2263 r = kvm_dev_ioctl_check_extension_generic(arg);
2264 break;
2265 case KVM_GET_VCPU_MMAP_SIZE:
2266 r = -EINVAL;
2267 if (arg)
2268 goto out;
2269 r = PAGE_SIZE; /* struct kvm_run */
2270 #ifdef CONFIG_X86
2271 r += PAGE_SIZE; /* pio data page */
2272 #endif
2273 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2274 r += PAGE_SIZE; /* coalesced mmio ring page */
2275 #endif
2276 break;
2277 case KVM_TRACE_ENABLE:
2278 case KVM_TRACE_PAUSE:
2279 case KVM_TRACE_DISABLE:
2280 r = -EOPNOTSUPP;
2281 break;
2282 default:
2283 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2284 }
2285 out:
2286 return r;
2287 }
2288
2289 static struct file_operations kvm_chardev_ops = {
2290 .unlocked_ioctl = kvm_dev_ioctl,
2291 .compat_ioctl = kvm_dev_ioctl,
2292 .llseek = noop_llseek,
2293 };
2294
2295 static struct miscdevice kvm_dev = {
2296 KVM_MINOR,
2297 "kvm",
2298 &kvm_chardev_ops,
2299 };
2300
2301 static void hardware_enable_nolock(void *junk)
2302 {
2303 int cpu = raw_smp_processor_id();
2304 int r;
2305
2306 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2307 return;
2308
2309 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2310
2311 r = kvm_arch_hardware_enable(NULL);
2312
2313 if (r) {
2314 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2315 atomic_inc(&hardware_enable_failed);
2316 printk(KERN_INFO "kvm: enabling virtualization on "
2317 "CPU%d failed\n", cpu);
2318 }
2319 }
2320
2321 static void hardware_enable(void *junk)
2322 {
2323 raw_spin_lock(&kvm_lock);
2324 hardware_enable_nolock(junk);
2325 raw_spin_unlock(&kvm_lock);
2326 }
2327
2328 static void hardware_disable_nolock(void *junk)
2329 {
2330 int cpu = raw_smp_processor_id();
2331
2332 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2333 return;
2334 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2335 kvm_arch_hardware_disable(NULL);
2336 }
2337
2338 static void hardware_disable(void *junk)
2339 {
2340 raw_spin_lock(&kvm_lock);
2341 hardware_disable_nolock(junk);
2342 raw_spin_unlock(&kvm_lock);
2343 }
2344
2345 static void hardware_disable_all_nolock(void)
2346 {
2347 BUG_ON(!kvm_usage_count);
2348
2349 kvm_usage_count--;
2350 if (!kvm_usage_count)
2351 on_each_cpu(hardware_disable_nolock, NULL, 1);
2352 }
2353
2354 static void hardware_disable_all(void)
2355 {
2356 raw_spin_lock(&kvm_lock);
2357 hardware_disable_all_nolock();
2358 raw_spin_unlock(&kvm_lock);
2359 }
2360
2361 static int hardware_enable_all(void)
2362 {
2363 int r = 0;
2364
2365 raw_spin_lock(&kvm_lock);
2366
2367 kvm_usage_count++;
2368 if (kvm_usage_count == 1) {
2369 atomic_set(&hardware_enable_failed, 0);
2370 on_each_cpu(hardware_enable_nolock, NULL, 1);
2371
2372 if (atomic_read(&hardware_enable_failed)) {
2373 hardware_disable_all_nolock();
2374 r = -EBUSY;
2375 }
2376 }
2377
2378 raw_spin_unlock(&kvm_lock);
2379
2380 return r;
2381 }
2382
2383 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2384 void *v)
2385 {
2386 int cpu = (long)v;
2387
2388 if (!kvm_usage_count)
2389 return NOTIFY_OK;
2390
2391 val &= ~CPU_TASKS_FROZEN;
2392 switch (val) {
2393 case CPU_DYING:
2394 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2395 cpu);
2396 hardware_disable(NULL);
2397 break;
2398 case CPU_STARTING:
2399 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2400 cpu);
2401 hardware_enable(NULL);
2402 break;
2403 }
2404 return NOTIFY_OK;
2405 }
2406
2407
2408 asmlinkage void kvm_spurious_fault(void)
2409 {
2410 /* Fault while not rebooting. We want the trace. */
2411 BUG();
2412 }
2413 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2414
2415 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2416 void *v)
2417 {
2418 /*
2419 * Some (well, at least mine) BIOSes hang on reboot if
2420 * in vmx root mode.
2421 *
2422 * And Intel TXT required VMX off for all cpu when system shutdown.
2423 */
2424 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2425 kvm_rebooting = true;
2426 on_each_cpu(hardware_disable_nolock, NULL, 1);
2427 return NOTIFY_OK;
2428 }
2429
2430 static struct notifier_block kvm_reboot_notifier = {
2431 .notifier_call = kvm_reboot,
2432 .priority = 0,
2433 };
2434
2435 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2436 {
2437 int i;
2438
2439 for (i = 0; i < bus->dev_count; i++) {
2440 struct kvm_io_device *pos = bus->range[i].dev;
2441
2442 kvm_iodevice_destructor(pos);
2443 }
2444 kfree(bus);
2445 }
2446
2447 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2448 {
2449 const struct kvm_io_range *r1 = p1;
2450 const struct kvm_io_range *r2 = p2;
2451
2452 if (r1->addr < r2->addr)
2453 return -1;
2454 if (r1->addr + r1->len > r2->addr + r2->len)
2455 return 1;
2456 return 0;
2457 }
2458
2459 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2460 gpa_t addr, int len)
2461 {
2462 if (bus->dev_count == NR_IOBUS_DEVS)
2463 return -ENOSPC;
2464
2465 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2466 .addr = addr,
2467 .len = len,
2468 .dev = dev,
2469 };
2470
2471 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2472 kvm_io_bus_sort_cmp, NULL);
2473
2474 return 0;
2475 }
2476
2477 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2478 gpa_t addr, int len)
2479 {
2480 struct kvm_io_range *range, key;
2481 int off;
2482
2483 key = (struct kvm_io_range) {
2484 .addr = addr,
2485 .len = len,
2486 };
2487
2488 range = bsearch(&key, bus->range, bus->dev_count,
2489 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2490 if (range == NULL)
2491 return -ENOENT;
2492
2493 off = range - bus->range;
2494
2495 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2496 off--;
2497
2498 return off;
2499 }
2500
2501 /* kvm_io_bus_write - called under kvm->slots_lock */
2502 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2503 int len, const void *val)
2504 {
2505 int idx;
2506 struct kvm_io_bus *bus;
2507 struct kvm_io_range range;
2508
2509 range = (struct kvm_io_range) {
2510 .addr = addr,
2511 .len = len,
2512 };
2513
2514 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2515 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2516 if (idx < 0)
2517 return -EOPNOTSUPP;
2518
2519 while (idx < bus->dev_count &&
2520 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2521 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2522 return 0;
2523 idx++;
2524 }
2525
2526 return -EOPNOTSUPP;
2527 }
2528
2529 /* kvm_io_bus_read - called under kvm->slots_lock */
2530 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2531 int len, void *val)
2532 {
2533 int idx;
2534 struct kvm_io_bus *bus;
2535 struct kvm_io_range range;
2536
2537 range = (struct kvm_io_range) {
2538 .addr = addr,
2539 .len = len,
2540 };
2541
2542 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2543 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2544 if (idx < 0)
2545 return -EOPNOTSUPP;
2546
2547 while (idx < bus->dev_count &&
2548 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2549 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2550 return 0;
2551 idx++;
2552 }
2553
2554 return -EOPNOTSUPP;
2555 }
2556
2557 /* Caller must hold slots_lock. */
2558 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2559 int len, struct kvm_io_device *dev)
2560 {
2561 struct kvm_io_bus *new_bus, *bus;
2562
2563 bus = kvm->buses[bus_idx];
2564 if (bus->dev_count > NR_IOBUS_DEVS-1)
2565 return -ENOSPC;
2566
2567 new_bus = kmemdup(bus, sizeof(struct kvm_io_bus), GFP_KERNEL);
2568 if (!new_bus)
2569 return -ENOMEM;
2570 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2571 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2572 synchronize_srcu_expedited(&kvm->srcu);
2573 kfree(bus);
2574
2575 return 0;
2576 }
2577
2578 /* Caller must hold slots_lock. */
2579 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2580 struct kvm_io_device *dev)
2581 {
2582 int i, r;
2583 struct kvm_io_bus *new_bus, *bus;
2584
2585 bus = kvm->buses[bus_idx];
2586
2587 new_bus = kmemdup(bus, sizeof(*bus), GFP_KERNEL);
2588 if (!new_bus)
2589 return -ENOMEM;
2590
2591 r = -ENOENT;
2592 for (i = 0; i < new_bus->dev_count; i++)
2593 if (new_bus->range[i].dev == dev) {
2594 r = 0;
2595 new_bus->dev_count--;
2596 new_bus->range[i] = new_bus->range[new_bus->dev_count];
2597 sort(new_bus->range, new_bus->dev_count,
2598 sizeof(struct kvm_io_range),
2599 kvm_io_bus_sort_cmp, NULL);
2600 break;
2601 }
2602
2603 if (r) {
2604 kfree(new_bus);
2605 return r;
2606 }
2607
2608 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2609 synchronize_srcu_expedited(&kvm->srcu);
2610 kfree(bus);
2611 return r;
2612 }
2613
2614 static struct notifier_block kvm_cpu_notifier = {
2615 .notifier_call = kvm_cpu_hotplug,
2616 };
2617
2618 static int vm_stat_get(void *_offset, u64 *val)
2619 {
2620 unsigned offset = (long)_offset;
2621 struct kvm *kvm;
2622
2623 *val = 0;
2624 raw_spin_lock(&kvm_lock);
2625 list_for_each_entry(kvm, &vm_list, vm_list)
2626 *val += *(u32 *)((void *)kvm + offset);
2627 raw_spin_unlock(&kvm_lock);
2628 return 0;
2629 }
2630
2631 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2632
2633 static int vcpu_stat_get(void *_offset, u64 *val)
2634 {
2635 unsigned offset = (long)_offset;
2636 struct kvm *kvm;
2637 struct kvm_vcpu *vcpu;
2638 int i;
2639
2640 *val = 0;
2641 raw_spin_lock(&kvm_lock);
2642 list_for_each_entry(kvm, &vm_list, vm_list)
2643 kvm_for_each_vcpu(i, vcpu, kvm)
2644 *val += *(u32 *)((void *)vcpu + offset);
2645
2646 raw_spin_unlock(&kvm_lock);
2647 return 0;
2648 }
2649
2650 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2651
2652 static const struct file_operations *stat_fops[] = {
2653 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2654 [KVM_STAT_VM] = &vm_stat_fops,
2655 };
2656
2657 static int kvm_init_debug(void)
2658 {
2659 int r = -EFAULT;
2660 struct kvm_stats_debugfs_item *p;
2661
2662 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2663 if (kvm_debugfs_dir == NULL)
2664 goto out;
2665
2666 for (p = debugfs_entries; p->name; ++p) {
2667 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2668 (void *)(long)p->offset,
2669 stat_fops[p->kind]);
2670 if (p->dentry == NULL)
2671 goto out_dir;
2672 }
2673
2674 return 0;
2675
2676 out_dir:
2677 debugfs_remove_recursive(kvm_debugfs_dir);
2678 out:
2679 return r;
2680 }
2681
2682 static void kvm_exit_debug(void)
2683 {
2684 struct kvm_stats_debugfs_item *p;
2685
2686 for (p = debugfs_entries; p->name; ++p)
2687 debugfs_remove(p->dentry);
2688 debugfs_remove(kvm_debugfs_dir);
2689 }
2690
2691 static int kvm_suspend(void)
2692 {
2693 if (kvm_usage_count)
2694 hardware_disable_nolock(NULL);
2695 return 0;
2696 }
2697
2698 static void kvm_resume(void)
2699 {
2700 if (kvm_usage_count) {
2701 WARN_ON(raw_spin_is_locked(&kvm_lock));
2702 hardware_enable_nolock(NULL);
2703 }
2704 }
2705
2706 static struct syscore_ops kvm_syscore_ops = {
2707 .suspend = kvm_suspend,
2708 .resume = kvm_resume,
2709 };
2710
2711 struct page *bad_page;
2712 pfn_t bad_pfn;
2713
2714 static inline
2715 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2716 {
2717 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2718 }
2719
2720 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2721 {
2722 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2723
2724 kvm_arch_vcpu_load(vcpu, cpu);
2725 }
2726
2727 static void kvm_sched_out(struct preempt_notifier *pn,
2728 struct task_struct *next)
2729 {
2730 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2731
2732 kvm_arch_vcpu_put(vcpu);
2733 }
2734
2735 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2736 struct module *module)
2737 {
2738 int r;
2739 int cpu;
2740
2741 r = kvm_arch_init(opaque);
2742 if (r)
2743 goto out_fail;
2744
2745 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2746
2747 if (bad_page == NULL) {
2748 r = -ENOMEM;
2749 goto out;
2750 }
2751
2752 bad_pfn = page_to_pfn(bad_page);
2753
2754 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2755
2756 if (hwpoison_page == NULL) {
2757 r = -ENOMEM;
2758 goto out_free_0;
2759 }
2760
2761 hwpoison_pfn = page_to_pfn(hwpoison_page);
2762
2763 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2764
2765 if (fault_page == NULL) {
2766 r = -ENOMEM;
2767 goto out_free_0;
2768 }
2769
2770 fault_pfn = page_to_pfn(fault_page);
2771
2772 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2773 r = -ENOMEM;
2774 goto out_free_0;
2775 }
2776
2777 r = kvm_arch_hardware_setup();
2778 if (r < 0)
2779 goto out_free_0a;
2780
2781 for_each_online_cpu(cpu) {
2782 smp_call_function_single(cpu,
2783 kvm_arch_check_processor_compat,
2784 &r, 1);
2785 if (r < 0)
2786 goto out_free_1;
2787 }
2788
2789 r = register_cpu_notifier(&kvm_cpu_notifier);
2790 if (r)
2791 goto out_free_2;
2792 register_reboot_notifier(&kvm_reboot_notifier);
2793
2794 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2795 if (!vcpu_align)
2796 vcpu_align = __alignof__(struct kvm_vcpu);
2797 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2798 0, NULL);
2799 if (!kvm_vcpu_cache) {
2800 r = -ENOMEM;
2801 goto out_free_3;
2802 }
2803
2804 r = kvm_async_pf_init();
2805 if (r)
2806 goto out_free;
2807
2808 kvm_chardev_ops.owner = module;
2809 kvm_vm_fops.owner = module;
2810 kvm_vcpu_fops.owner = module;
2811
2812 r = misc_register(&kvm_dev);
2813 if (r) {
2814 printk(KERN_ERR "kvm: misc device register failed\n");
2815 goto out_unreg;
2816 }
2817
2818 register_syscore_ops(&kvm_syscore_ops);
2819
2820 kvm_preempt_ops.sched_in = kvm_sched_in;
2821 kvm_preempt_ops.sched_out = kvm_sched_out;
2822
2823 r = kvm_init_debug();
2824 if (r) {
2825 printk(KERN_ERR "kvm: create debugfs files failed\n");
2826 goto out_undebugfs;
2827 }
2828
2829 return 0;
2830
2831 out_undebugfs:
2832 unregister_syscore_ops(&kvm_syscore_ops);
2833 out_unreg:
2834 kvm_async_pf_deinit();
2835 out_free:
2836 kmem_cache_destroy(kvm_vcpu_cache);
2837 out_free_3:
2838 unregister_reboot_notifier(&kvm_reboot_notifier);
2839 unregister_cpu_notifier(&kvm_cpu_notifier);
2840 out_free_2:
2841 out_free_1:
2842 kvm_arch_hardware_unsetup();
2843 out_free_0a:
2844 free_cpumask_var(cpus_hardware_enabled);
2845 out_free_0:
2846 if (fault_page)
2847 __free_page(fault_page);
2848 if (hwpoison_page)
2849 __free_page(hwpoison_page);
2850 __free_page(bad_page);
2851 out:
2852 kvm_arch_exit();
2853 out_fail:
2854 return r;
2855 }
2856 EXPORT_SYMBOL_GPL(kvm_init);
2857
2858 void kvm_exit(void)
2859 {
2860 kvm_exit_debug();
2861 misc_deregister(&kvm_dev);
2862 kmem_cache_destroy(kvm_vcpu_cache);
2863 kvm_async_pf_deinit();
2864 unregister_syscore_ops(&kvm_syscore_ops);
2865 unregister_reboot_notifier(&kvm_reboot_notifier);
2866 unregister_cpu_notifier(&kvm_cpu_notifier);
2867 on_each_cpu(hardware_disable_nolock, NULL, 1);
2868 kvm_arch_hardware_unsetup();
2869 kvm_arch_exit();
2870 free_cpumask_var(cpus_hardware_enabled);
2871 __free_page(hwpoison_page);
2872 __free_page(bad_page);
2873 }
2874 EXPORT_SYMBOL_GPL(kvm_exit);