]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - virt/kvm/kvm_main.c
Merge branch 'misc' into for-linus
[mirror_ubuntu-zesty-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82 /* Default resets per-vcpu halt_poll_ns . */
83 unsigned int halt_poll_ns_shrink;
84 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
86
87 /*
88 * Ordering of locks:
89 *
90 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
91 */
92
93 DEFINE_SPINLOCK(kvm_lock);
94 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
95 LIST_HEAD(vm_list);
96
97 static cpumask_var_t cpus_hardware_enabled;
98 static int kvm_usage_count;
99 static atomic_t hardware_enable_failed;
100
101 struct kmem_cache *kvm_vcpu_cache;
102 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
103
104 static __read_mostly struct preempt_ops kvm_preempt_ops;
105
106 struct dentry *kvm_debugfs_dir;
107 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
108
109 static int kvm_debugfs_num_entries;
110 static const struct file_operations *stat_fops_per_vm[];
111
112 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
113 unsigned long arg);
114 #ifdef CONFIG_KVM_COMPAT
115 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
116 unsigned long arg);
117 #endif
118 static int hardware_enable_all(void);
119 static void hardware_disable_all(void);
120
121 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
122
123 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
124 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
125
126 __visible bool kvm_rebooting;
127 EXPORT_SYMBOL_GPL(kvm_rebooting);
128
129 static bool largepages_enabled = true;
130
131 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
132 {
133 if (pfn_valid(pfn))
134 return PageReserved(pfn_to_page(pfn));
135
136 return true;
137 }
138
139 /*
140 * Switches to specified vcpu, until a matching vcpu_put()
141 */
142 int vcpu_load(struct kvm_vcpu *vcpu)
143 {
144 int cpu;
145
146 if (mutex_lock_killable(&vcpu->mutex))
147 return -EINTR;
148 cpu = get_cpu();
149 preempt_notifier_register(&vcpu->preempt_notifier);
150 kvm_arch_vcpu_load(vcpu, cpu);
151 put_cpu();
152 return 0;
153 }
154 EXPORT_SYMBOL_GPL(vcpu_load);
155
156 void vcpu_put(struct kvm_vcpu *vcpu)
157 {
158 preempt_disable();
159 kvm_arch_vcpu_put(vcpu);
160 preempt_notifier_unregister(&vcpu->preempt_notifier);
161 preempt_enable();
162 mutex_unlock(&vcpu->mutex);
163 }
164 EXPORT_SYMBOL_GPL(vcpu_put);
165
166 static void ack_flush(void *_completed)
167 {
168 }
169
170 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
171 {
172 int i, cpu, me;
173 cpumask_var_t cpus;
174 bool called = true;
175 struct kvm_vcpu *vcpu;
176
177 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
178
179 me = get_cpu();
180 kvm_for_each_vcpu(i, vcpu, kvm) {
181 kvm_make_request(req, vcpu);
182 cpu = vcpu->cpu;
183
184 /* Set ->requests bit before we read ->mode. */
185 smp_mb__after_atomic();
186
187 if (cpus != NULL && cpu != -1 && cpu != me &&
188 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
189 cpumask_set_cpu(cpu, cpus);
190 }
191 if (unlikely(cpus == NULL))
192 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
193 else if (!cpumask_empty(cpus))
194 smp_call_function_many(cpus, ack_flush, NULL, 1);
195 else
196 called = false;
197 put_cpu();
198 free_cpumask_var(cpus);
199 return called;
200 }
201
202 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
203 void kvm_flush_remote_tlbs(struct kvm *kvm)
204 {
205 /*
206 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
207 * kvm_make_all_cpus_request.
208 */
209 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
210
211 /*
212 * We want to publish modifications to the page tables before reading
213 * mode. Pairs with a memory barrier in arch-specific code.
214 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
215 * and smp_mb in walk_shadow_page_lockless_begin/end.
216 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
217 *
218 * There is already an smp_mb__after_atomic() before
219 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
220 * barrier here.
221 */
222 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
223 ++kvm->stat.remote_tlb_flush;
224 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
225 }
226 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
227 #endif
228
229 void kvm_reload_remote_mmus(struct kvm *kvm)
230 {
231 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
232 }
233
234 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
235 {
236 struct page *page;
237 int r;
238
239 mutex_init(&vcpu->mutex);
240 vcpu->cpu = -1;
241 vcpu->kvm = kvm;
242 vcpu->vcpu_id = id;
243 vcpu->pid = NULL;
244 init_swait_queue_head(&vcpu->wq);
245 kvm_async_pf_vcpu_init(vcpu);
246
247 vcpu->pre_pcpu = -1;
248 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
249
250 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
251 if (!page) {
252 r = -ENOMEM;
253 goto fail;
254 }
255 vcpu->run = page_address(page);
256
257 kvm_vcpu_set_in_spin_loop(vcpu, false);
258 kvm_vcpu_set_dy_eligible(vcpu, false);
259 vcpu->preempted = false;
260
261 r = kvm_arch_vcpu_init(vcpu);
262 if (r < 0)
263 goto fail_free_run;
264 return 0;
265
266 fail_free_run:
267 free_page((unsigned long)vcpu->run);
268 fail:
269 return r;
270 }
271 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
272
273 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
274 {
275 put_pid(vcpu->pid);
276 kvm_arch_vcpu_uninit(vcpu);
277 free_page((unsigned long)vcpu->run);
278 }
279 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
280
281 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
282 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
283 {
284 return container_of(mn, struct kvm, mmu_notifier);
285 }
286
287 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
288 struct mm_struct *mm,
289 unsigned long address)
290 {
291 struct kvm *kvm = mmu_notifier_to_kvm(mn);
292 int need_tlb_flush, idx;
293
294 /*
295 * When ->invalidate_page runs, the linux pte has been zapped
296 * already but the page is still allocated until
297 * ->invalidate_page returns. So if we increase the sequence
298 * here the kvm page fault will notice if the spte can't be
299 * established because the page is going to be freed. If
300 * instead the kvm page fault establishes the spte before
301 * ->invalidate_page runs, kvm_unmap_hva will release it
302 * before returning.
303 *
304 * The sequence increase only need to be seen at spin_unlock
305 * time, and not at spin_lock time.
306 *
307 * Increasing the sequence after the spin_unlock would be
308 * unsafe because the kvm page fault could then establish the
309 * pte after kvm_unmap_hva returned, without noticing the page
310 * is going to be freed.
311 */
312 idx = srcu_read_lock(&kvm->srcu);
313 spin_lock(&kvm->mmu_lock);
314
315 kvm->mmu_notifier_seq++;
316 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
317 /* we've to flush the tlb before the pages can be freed */
318 if (need_tlb_flush)
319 kvm_flush_remote_tlbs(kvm);
320
321 spin_unlock(&kvm->mmu_lock);
322
323 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
324
325 srcu_read_unlock(&kvm->srcu, idx);
326 }
327
328 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
329 struct mm_struct *mm,
330 unsigned long address,
331 pte_t pte)
332 {
333 struct kvm *kvm = mmu_notifier_to_kvm(mn);
334 int idx;
335
336 idx = srcu_read_lock(&kvm->srcu);
337 spin_lock(&kvm->mmu_lock);
338 kvm->mmu_notifier_seq++;
339 kvm_set_spte_hva(kvm, address, pte);
340 spin_unlock(&kvm->mmu_lock);
341 srcu_read_unlock(&kvm->srcu, idx);
342 }
343
344 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
345 struct mm_struct *mm,
346 unsigned long start,
347 unsigned long end)
348 {
349 struct kvm *kvm = mmu_notifier_to_kvm(mn);
350 int need_tlb_flush = 0, idx;
351
352 idx = srcu_read_lock(&kvm->srcu);
353 spin_lock(&kvm->mmu_lock);
354 /*
355 * The count increase must become visible at unlock time as no
356 * spte can be established without taking the mmu_lock and
357 * count is also read inside the mmu_lock critical section.
358 */
359 kvm->mmu_notifier_count++;
360 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
361 need_tlb_flush |= kvm->tlbs_dirty;
362 /* we've to flush the tlb before the pages can be freed */
363 if (need_tlb_flush)
364 kvm_flush_remote_tlbs(kvm);
365
366 spin_unlock(&kvm->mmu_lock);
367 srcu_read_unlock(&kvm->srcu, idx);
368 }
369
370 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
371 struct mm_struct *mm,
372 unsigned long start,
373 unsigned long end)
374 {
375 struct kvm *kvm = mmu_notifier_to_kvm(mn);
376
377 spin_lock(&kvm->mmu_lock);
378 /*
379 * This sequence increase will notify the kvm page fault that
380 * the page that is going to be mapped in the spte could have
381 * been freed.
382 */
383 kvm->mmu_notifier_seq++;
384 smp_wmb();
385 /*
386 * The above sequence increase must be visible before the
387 * below count decrease, which is ensured by the smp_wmb above
388 * in conjunction with the smp_rmb in mmu_notifier_retry().
389 */
390 kvm->mmu_notifier_count--;
391 spin_unlock(&kvm->mmu_lock);
392
393 BUG_ON(kvm->mmu_notifier_count < 0);
394 }
395
396 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
397 struct mm_struct *mm,
398 unsigned long start,
399 unsigned long end)
400 {
401 struct kvm *kvm = mmu_notifier_to_kvm(mn);
402 int young, idx;
403
404 idx = srcu_read_lock(&kvm->srcu);
405 spin_lock(&kvm->mmu_lock);
406
407 young = kvm_age_hva(kvm, start, end);
408 if (young)
409 kvm_flush_remote_tlbs(kvm);
410
411 spin_unlock(&kvm->mmu_lock);
412 srcu_read_unlock(&kvm->srcu, idx);
413
414 return young;
415 }
416
417 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
418 struct mm_struct *mm,
419 unsigned long start,
420 unsigned long end)
421 {
422 struct kvm *kvm = mmu_notifier_to_kvm(mn);
423 int young, idx;
424
425 idx = srcu_read_lock(&kvm->srcu);
426 spin_lock(&kvm->mmu_lock);
427 /*
428 * Even though we do not flush TLB, this will still adversely
429 * affect performance on pre-Haswell Intel EPT, where there is
430 * no EPT Access Bit to clear so that we have to tear down EPT
431 * tables instead. If we find this unacceptable, we can always
432 * add a parameter to kvm_age_hva so that it effectively doesn't
433 * do anything on clear_young.
434 *
435 * Also note that currently we never issue secondary TLB flushes
436 * from clear_young, leaving this job up to the regular system
437 * cadence. If we find this inaccurate, we might come up with a
438 * more sophisticated heuristic later.
439 */
440 young = kvm_age_hva(kvm, start, end);
441 spin_unlock(&kvm->mmu_lock);
442 srcu_read_unlock(&kvm->srcu, idx);
443
444 return young;
445 }
446
447 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
448 struct mm_struct *mm,
449 unsigned long address)
450 {
451 struct kvm *kvm = mmu_notifier_to_kvm(mn);
452 int young, idx;
453
454 idx = srcu_read_lock(&kvm->srcu);
455 spin_lock(&kvm->mmu_lock);
456 young = kvm_test_age_hva(kvm, address);
457 spin_unlock(&kvm->mmu_lock);
458 srcu_read_unlock(&kvm->srcu, idx);
459
460 return young;
461 }
462
463 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
464 struct mm_struct *mm)
465 {
466 struct kvm *kvm = mmu_notifier_to_kvm(mn);
467 int idx;
468
469 idx = srcu_read_lock(&kvm->srcu);
470 kvm_arch_flush_shadow_all(kvm);
471 srcu_read_unlock(&kvm->srcu, idx);
472 }
473
474 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
475 .invalidate_page = kvm_mmu_notifier_invalidate_page,
476 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
477 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
478 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
479 .clear_young = kvm_mmu_notifier_clear_young,
480 .test_young = kvm_mmu_notifier_test_young,
481 .change_pte = kvm_mmu_notifier_change_pte,
482 .release = kvm_mmu_notifier_release,
483 };
484
485 static int kvm_init_mmu_notifier(struct kvm *kvm)
486 {
487 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
488 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
489 }
490
491 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
492
493 static int kvm_init_mmu_notifier(struct kvm *kvm)
494 {
495 return 0;
496 }
497
498 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
499
500 static struct kvm_memslots *kvm_alloc_memslots(void)
501 {
502 int i;
503 struct kvm_memslots *slots;
504
505 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
506 if (!slots)
507 return NULL;
508
509 /*
510 * Init kvm generation close to the maximum to easily test the
511 * code of handling generation number wrap-around.
512 */
513 slots->generation = -150;
514 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
515 slots->id_to_index[i] = slots->memslots[i].id = i;
516
517 return slots;
518 }
519
520 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
521 {
522 if (!memslot->dirty_bitmap)
523 return;
524
525 kvfree(memslot->dirty_bitmap);
526 memslot->dirty_bitmap = NULL;
527 }
528
529 /*
530 * Free any memory in @free but not in @dont.
531 */
532 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
533 struct kvm_memory_slot *dont)
534 {
535 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
536 kvm_destroy_dirty_bitmap(free);
537
538 kvm_arch_free_memslot(kvm, free, dont);
539
540 free->npages = 0;
541 }
542
543 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
544 {
545 struct kvm_memory_slot *memslot;
546
547 if (!slots)
548 return;
549
550 kvm_for_each_memslot(memslot, slots)
551 kvm_free_memslot(kvm, memslot, NULL);
552
553 kvfree(slots);
554 }
555
556 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
557 {
558 int i;
559
560 if (!kvm->debugfs_dentry)
561 return;
562
563 debugfs_remove_recursive(kvm->debugfs_dentry);
564
565 if (kvm->debugfs_stat_data) {
566 for (i = 0; i < kvm_debugfs_num_entries; i++)
567 kfree(kvm->debugfs_stat_data[i]);
568 kfree(kvm->debugfs_stat_data);
569 }
570 }
571
572 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
573 {
574 char dir_name[ITOA_MAX_LEN * 2];
575 struct kvm_stat_data *stat_data;
576 struct kvm_stats_debugfs_item *p;
577
578 if (!debugfs_initialized())
579 return 0;
580
581 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
582 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
583 kvm_debugfs_dir);
584 if (!kvm->debugfs_dentry)
585 return -ENOMEM;
586
587 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
588 sizeof(*kvm->debugfs_stat_data),
589 GFP_KERNEL);
590 if (!kvm->debugfs_stat_data)
591 return -ENOMEM;
592
593 for (p = debugfs_entries; p->name; p++) {
594 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
595 if (!stat_data)
596 return -ENOMEM;
597
598 stat_data->kvm = kvm;
599 stat_data->offset = p->offset;
600 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
601 if (!debugfs_create_file(p->name, 0644,
602 kvm->debugfs_dentry,
603 stat_data,
604 stat_fops_per_vm[p->kind]))
605 return -ENOMEM;
606 }
607 return 0;
608 }
609
610 static struct kvm *kvm_create_vm(unsigned long type)
611 {
612 int r, i;
613 struct kvm *kvm = kvm_arch_alloc_vm();
614
615 if (!kvm)
616 return ERR_PTR(-ENOMEM);
617
618 spin_lock_init(&kvm->mmu_lock);
619 atomic_inc(&current->mm->mm_count);
620 kvm->mm = current->mm;
621 kvm_eventfd_init(kvm);
622 mutex_init(&kvm->lock);
623 mutex_init(&kvm->irq_lock);
624 mutex_init(&kvm->slots_lock);
625 atomic_set(&kvm->users_count, 1);
626 INIT_LIST_HEAD(&kvm->devices);
627
628 r = kvm_arch_init_vm(kvm, type);
629 if (r)
630 goto out_err_no_disable;
631
632 r = hardware_enable_all();
633 if (r)
634 goto out_err_no_disable;
635
636 #ifdef CONFIG_HAVE_KVM_IRQFD
637 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
638 #endif
639
640 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
641
642 r = -ENOMEM;
643 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
644 kvm->memslots[i] = kvm_alloc_memslots();
645 if (!kvm->memslots[i])
646 goto out_err_no_srcu;
647 }
648
649 if (init_srcu_struct(&kvm->srcu))
650 goto out_err_no_srcu;
651 if (init_srcu_struct(&kvm->irq_srcu))
652 goto out_err_no_irq_srcu;
653 for (i = 0; i < KVM_NR_BUSES; i++) {
654 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
655 GFP_KERNEL);
656 if (!kvm->buses[i])
657 goto out_err;
658 }
659
660 r = kvm_init_mmu_notifier(kvm);
661 if (r)
662 goto out_err;
663
664 spin_lock(&kvm_lock);
665 list_add(&kvm->vm_list, &vm_list);
666 spin_unlock(&kvm_lock);
667
668 preempt_notifier_inc();
669
670 return kvm;
671
672 out_err:
673 cleanup_srcu_struct(&kvm->irq_srcu);
674 out_err_no_irq_srcu:
675 cleanup_srcu_struct(&kvm->srcu);
676 out_err_no_srcu:
677 hardware_disable_all();
678 out_err_no_disable:
679 for (i = 0; i < KVM_NR_BUSES; i++)
680 kfree(kvm->buses[i]);
681 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
682 kvm_free_memslots(kvm, kvm->memslots[i]);
683 kvm_arch_free_vm(kvm);
684 mmdrop(current->mm);
685 return ERR_PTR(r);
686 }
687
688 /*
689 * Avoid using vmalloc for a small buffer.
690 * Should not be used when the size is statically known.
691 */
692 void *kvm_kvzalloc(unsigned long size)
693 {
694 if (size > PAGE_SIZE)
695 return vzalloc(size);
696 else
697 return kzalloc(size, GFP_KERNEL);
698 }
699
700 static void kvm_destroy_devices(struct kvm *kvm)
701 {
702 struct kvm_device *dev, *tmp;
703
704 /*
705 * We do not need to take the kvm->lock here, because nobody else
706 * has a reference to the struct kvm at this point and therefore
707 * cannot access the devices list anyhow.
708 */
709 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
710 list_del(&dev->vm_node);
711 dev->ops->destroy(dev);
712 }
713 }
714
715 static void kvm_destroy_vm(struct kvm *kvm)
716 {
717 int i;
718 struct mm_struct *mm = kvm->mm;
719
720 kvm_destroy_vm_debugfs(kvm);
721 kvm_arch_sync_events(kvm);
722 spin_lock(&kvm_lock);
723 list_del(&kvm->vm_list);
724 spin_unlock(&kvm_lock);
725 kvm_free_irq_routing(kvm);
726 for (i = 0; i < KVM_NR_BUSES; i++)
727 kvm_io_bus_destroy(kvm->buses[i]);
728 kvm_coalesced_mmio_free(kvm);
729 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
730 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
731 #else
732 kvm_arch_flush_shadow_all(kvm);
733 #endif
734 kvm_arch_destroy_vm(kvm);
735 kvm_destroy_devices(kvm);
736 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
737 kvm_free_memslots(kvm, kvm->memslots[i]);
738 cleanup_srcu_struct(&kvm->irq_srcu);
739 cleanup_srcu_struct(&kvm->srcu);
740 kvm_arch_free_vm(kvm);
741 preempt_notifier_dec();
742 hardware_disable_all();
743 mmdrop(mm);
744 }
745
746 void kvm_get_kvm(struct kvm *kvm)
747 {
748 atomic_inc(&kvm->users_count);
749 }
750 EXPORT_SYMBOL_GPL(kvm_get_kvm);
751
752 void kvm_put_kvm(struct kvm *kvm)
753 {
754 if (atomic_dec_and_test(&kvm->users_count))
755 kvm_destroy_vm(kvm);
756 }
757 EXPORT_SYMBOL_GPL(kvm_put_kvm);
758
759
760 static int kvm_vm_release(struct inode *inode, struct file *filp)
761 {
762 struct kvm *kvm = filp->private_data;
763
764 kvm_irqfd_release(kvm);
765
766 kvm_put_kvm(kvm);
767 return 0;
768 }
769
770 /*
771 * Allocation size is twice as large as the actual dirty bitmap size.
772 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
773 */
774 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
775 {
776 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
777
778 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
779 if (!memslot->dirty_bitmap)
780 return -ENOMEM;
781
782 return 0;
783 }
784
785 /*
786 * Insert memslot and re-sort memslots based on their GFN,
787 * so binary search could be used to lookup GFN.
788 * Sorting algorithm takes advantage of having initially
789 * sorted array and known changed memslot position.
790 */
791 static void update_memslots(struct kvm_memslots *slots,
792 struct kvm_memory_slot *new)
793 {
794 int id = new->id;
795 int i = slots->id_to_index[id];
796 struct kvm_memory_slot *mslots = slots->memslots;
797
798 WARN_ON(mslots[i].id != id);
799 if (!new->npages) {
800 WARN_ON(!mslots[i].npages);
801 if (mslots[i].npages)
802 slots->used_slots--;
803 } else {
804 if (!mslots[i].npages)
805 slots->used_slots++;
806 }
807
808 while (i < KVM_MEM_SLOTS_NUM - 1 &&
809 new->base_gfn <= mslots[i + 1].base_gfn) {
810 if (!mslots[i + 1].npages)
811 break;
812 mslots[i] = mslots[i + 1];
813 slots->id_to_index[mslots[i].id] = i;
814 i++;
815 }
816
817 /*
818 * The ">=" is needed when creating a slot with base_gfn == 0,
819 * so that it moves before all those with base_gfn == npages == 0.
820 *
821 * On the other hand, if new->npages is zero, the above loop has
822 * already left i pointing to the beginning of the empty part of
823 * mslots, and the ">=" would move the hole backwards in this
824 * case---which is wrong. So skip the loop when deleting a slot.
825 */
826 if (new->npages) {
827 while (i > 0 &&
828 new->base_gfn >= mslots[i - 1].base_gfn) {
829 mslots[i] = mslots[i - 1];
830 slots->id_to_index[mslots[i].id] = i;
831 i--;
832 }
833 } else
834 WARN_ON_ONCE(i != slots->used_slots);
835
836 mslots[i] = *new;
837 slots->id_to_index[mslots[i].id] = i;
838 }
839
840 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
841 {
842 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
843
844 #ifdef __KVM_HAVE_READONLY_MEM
845 valid_flags |= KVM_MEM_READONLY;
846 #endif
847
848 if (mem->flags & ~valid_flags)
849 return -EINVAL;
850
851 return 0;
852 }
853
854 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
855 int as_id, struct kvm_memslots *slots)
856 {
857 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
858
859 /*
860 * Set the low bit in the generation, which disables SPTE caching
861 * until the end of synchronize_srcu_expedited.
862 */
863 WARN_ON(old_memslots->generation & 1);
864 slots->generation = old_memslots->generation + 1;
865
866 rcu_assign_pointer(kvm->memslots[as_id], slots);
867 synchronize_srcu_expedited(&kvm->srcu);
868
869 /*
870 * Increment the new memslot generation a second time. This prevents
871 * vm exits that race with memslot updates from caching a memslot
872 * generation that will (potentially) be valid forever.
873 */
874 slots->generation++;
875
876 kvm_arch_memslots_updated(kvm, slots);
877
878 return old_memslots;
879 }
880
881 /*
882 * Allocate some memory and give it an address in the guest physical address
883 * space.
884 *
885 * Discontiguous memory is allowed, mostly for framebuffers.
886 *
887 * Must be called holding kvm->slots_lock for write.
888 */
889 int __kvm_set_memory_region(struct kvm *kvm,
890 const struct kvm_userspace_memory_region *mem)
891 {
892 int r;
893 gfn_t base_gfn;
894 unsigned long npages;
895 struct kvm_memory_slot *slot;
896 struct kvm_memory_slot old, new;
897 struct kvm_memslots *slots = NULL, *old_memslots;
898 int as_id, id;
899 enum kvm_mr_change change;
900
901 r = check_memory_region_flags(mem);
902 if (r)
903 goto out;
904
905 r = -EINVAL;
906 as_id = mem->slot >> 16;
907 id = (u16)mem->slot;
908
909 /* General sanity checks */
910 if (mem->memory_size & (PAGE_SIZE - 1))
911 goto out;
912 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
913 goto out;
914 /* We can read the guest memory with __xxx_user() later on. */
915 if ((id < KVM_USER_MEM_SLOTS) &&
916 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
917 !access_ok(VERIFY_WRITE,
918 (void __user *)(unsigned long)mem->userspace_addr,
919 mem->memory_size)))
920 goto out;
921 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
922 goto out;
923 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
924 goto out;
925
926 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
927 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
928 npages = mem->memory_size >> PAGE_SHIFT;
929
930 if (npages > KVM_MEM_MAX_NR_PAGES)
931 goto out;
932
933 new = old = *slot;
934
935 new.id = id;
936 new.base_gfn = base_gfn;
937 new.npages = npages;
938 new.flags = mem->flags;
939
940 if (npages) {
941 if (!old.npages)
942 change = KVM_MR_CREATE;
943 else { /* Modify an existing slot. */
944 if ((mem->userspace_addr != old.userspace_addr) ||
945 (npages != old.npages) ||
946 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
947 goto out;
948
949 if (base_gfn != old.base_gfn)
950 change = KVM_MR_MOVE;
951 else if (new.flags != old.flags)
952 change = KVM_MR_FLAGS_ONLY;
953 else { /* Nothing to change. */
954 r = 0;
955 goto out;
956 }
957 }
958 } else {
959 if (!old.npages)
960 goto out;
961
962 change = KVM_MR_DELETE;
963 new.base_gfn = 0;
964 new.flags = 0;
965 }
966
967 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
968 /* Check for overlaps */
969 r = -EEXIST;
970 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
971 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
972 (slot->id == id))
973 continue;
974 if (!((base_gfn + npages <= slot->base_gfn) ||
975 (base_gfn >= slot->base_gfn + slot->npages)))
976 goto out;
977 }
978 }
979
980 /* Free page dirty bitmap if unneeded */
981 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
982 new.dirty_bitmap = NULL;
983
984 r = -ENOMEM;
985 if (change == KVM_MR_CREATE) {
986 new.userspace_addr = mem->userspace_addr;
987
988 if (kvm_arch_create_memslot(kvm, &new, npages))
989 goto out_free;
990 }
991
992 /* Allocate page dirty bitmap if needed */
993 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
994 if (kvm_create_dirty_bitmap(&new) < 0)
995 goto out_free;
996 }
997
998 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
999 if (!slots)
1000 goto out_free;
1001 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1002
1003 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1004 slot = id_to_memslot(slots, id);
1005 slot->flags |= KVM_MEMSLOT_INVALID;
1006
1007 old_memslots = install_new_memslots(kvm, as_id, slots);
1008
1009 /* slot was deleted or moved, clear iommu mapping */
1010 kvm_iommu_unmap_pages(kvm, &old);
1011 /* From this point no new shadow pages pointing to a deleted,
1012 * or moved, memslot will be created.
1013 *
1014 * validation of sp->gfn happens in:
1015 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1016 * - kvm_is_visible_gfn (mmu_check_roots)
1017 */
1018 kvm_arch_flush_shadow_memslot(kvm, slot);
1019
1020 /*
1021 * We can re-use the old_memslots from above, the only difference
1022 * from the currently installed memslots is the invalid flag. This
1023 * will get overwritten by update_memslots anyway.
1024 */
1025 slots = old_memslots;
1026 }
1027
1028 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1029 if (r)
1030 goto out_slots;
1031
1032 /* actual memory is freed via old in kvm_free_memslot below */
1033 if (change == KVM_MR_DELETE) {
1034 new.dirty_bitmap = NULL;
1035 memset(&new.arch, 0, sizeof(new.arch));
1036 }
1037
1038 update_memslots(slots, &new);
1039 old_memslots = install_new_memslots(kvm, as_id, slots);
1040
1041 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1042
1043 kvm_free_memslot(kvm, &old, &new);
1044 kvfree(old_memslots);
1045
1046 /*
1047 * IOMMU mapping: New slots need to be mapped. Old slots need to be
1048 * un-mapped and re-mapped if their base changes. Since base change
1049 * unmapping is handled above with slot deletion, mapping alone is
1050 * needed here. Anything else the iommu might care about for existing
1051 * slots (size changes, userspace addr changes and read-only flag
1052 * changes) is disallowed above, so any other attribute changes getting
1053 * here can be skipped.
1054 */
1055 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1056 r = kvm_iommu_map_pages(kvm, &new);
1057 return r;
1058 }
1059
1060 return 0;
1061
1062 out_slots:
1063 kvfree(slots);
1064 out_free:
1065 kvm_free_memslot(kvm, &new, &old);
1066 out:
1067 return r;
1068 }
1069 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1070
1071 int kvm_set_memory_region(struct kvm *kvm,
1072 const struct kvm_userspace_memory_region *mem)
1073 {
1074 int r;
1075
1076 mutex_lock(&kvm->slots_lock);
1077 r = __kvm_set_memory_region(kvm, mem);
1078 mutex_unlock(&kvm->slots_lock);
1079 return r;
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1082
1083 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1084 struct kvm_userspace_memory_region *mem)
1085 {
1086 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1087 return -EINVAL;
1088
1089 return kvm_set_memory_region(kvm, mem);
1090 }
1091
1092 int kvm_get_dirty_log(struct kvm *kvm,
1093 struct kvm_dirty_log *log, int *is_dirty)
1094 {
1095 struct kvm_memslots *slots;
1096 struct kvm_memory_slot *memslot;
1097 int r, i, as_id, id;
1098 unsigned long n;
1099 unsigned long any = 0;
1100
1101 r = -EINVAL;
1102 as_id = log->slot >> 16;
1103 id = (u16)log->slot;
1104 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1105 goto out;
1106
1107 slots = __kvm_memslots(kvm, as_id);
1108 memslot = id_to_memslot(slots, id);
1109 r = -ENOENT;
1110 if (!memslot->dirty_bitmap)
1111 goto out;
1112
1113 n = kvm_dirty_bitmap_bytes(memslot);
1114
1115 for (i = 0; !any && i < n/sizeof(long); ++i)
1116 any = memslot->dirty_bitmap[i];
1117
1118 r = -EFAULT;
1119 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1120 goto out;
1121
1122 if (any)
1123 *is_dirty = 1;
1124
1125 r = 0;
1126 out:
1127 return r;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1130
1131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1132 /**
1133 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1134 * are dirty write protect them for next write.
1135 * @kvm: pointer to kvm instance
1136 * @log: slot id and address to which we copy the log
1137 * @is_dirty: flag set if any page is dirty
1138 *
1139 * We need to keep it in mind that VCPU threads can write to the bitmap
1140 * concurrently. So, to avoid losing track of dirty pages we keep the
1141 * following order:
1142 *
1143 * 1. Take a snapshot of the bit and clear it if needed.
1144 * 2. Write protect the corresponding page.
1145 * 3. Copy the snapshot to the userspace.
1146 * 4. Upon return caller flushes TLB's if needed.
1147 *
1148 * Between 2 and 4, the guest may write to the page using the remaining TLB
1149 * entry. This is not a problem because the page is reported dirty using
1150 * the snapshot taken before and step 4 ensures that writes done after
1151 * exiting to userspace will be logged for the next call.
1152 *
1153 */
1154 int kvm_get_dirty_log_protect(struct kvm *kvm,
1155 struct kvm_dirty_log *log, bool *is_dirty)
1156 {
1157 struct kvm_memslots *slots;
1158 struct kvm_memory_slot *memslot;
1159 int r, i, as_id, id;
1160 unsigned long n;
1161 unsigned long *dirty_bitmap;
1162 unsigned long *dirty_bitmap_buffer;
1163
1164 r = -EINVAL;
1165 as_id = log->slot >> 16;
1166 id = (u16)log->slot;
1167 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1168 goto out;
1169
1170 slots = __kvm_memslots(kvm, as_id);
1171 memslot = id_to_memslot(slots, id);
1172
1173 dirty_bitmap = memslot->dirty_bitmap;
1174 r = -ENOENT;
1175 if (!dirty_bitmap)
1176 goto out;
1177
1178 n = kvm_dirty_bitmap_bytes(memslot);
1179
1180 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1181 memset(dirty_bitmap_buffer, 0, n);
1182
1183 spin_lock(&kvm->mmu_lock);
1184 *is_dirty = false;
1185 for (i = 0; i < n / sizeof(long); i++) {
1186 unsigned long mask;
1187 gfn_t offset;
1188
1189 if (!dirty_bitmap[i])
1190 continue;
1191
1192 *is_dirty = true;
1193
1194 mask = xchg(&dirty_bitmap[i], 0);
1195 dirty_bitmap_buffer[i] = mask;
1196
1197 if (mask) {
1198 offset = i * BITS_PER_LONG;
1199 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1200 offset, mask);
1201 }
1202 }
1203
1204 spin_unlock(&kvm->mmu_lock);
1205
1206 r = -EFAULT;
1207 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1208 goto out;
1209
1210 r = 0;
1211 out:
1212 return r;
1213 }
1214 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1215 #endif
1216
1217 bool kvm_largepages_enabled(void)
1218 {
1219 return largepages_enabled;
1220 }
1221
1222 void kvm_disable_largepages(void)
1223 {
1224 largepages_enabled = false;
1225 }
1226 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1227
1228 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1229 {
1230 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1231 }
1232 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1233
1234 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1235 {
1236 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1237 }
1238
1239 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1240 {
1241 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1242
1243 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1244 memslot->flags & KVM_MEMSLOT_INVALID)
1245 return false;
1246
1247 return true;
1248 }
1249 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1250
1251 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1252 {
1253 struct vm_area_struct *vma;
1254 unsigned long addr, size;
1255
1256 size = PAGE_SIZE;
1257
1258 addr = gfn_to_hva(kvm, gfn);
1259 if (kvm_is_error_hva(addr))
1260 return PAGE_SIZE;
1261
1262 down_read(&current->mm->mmap_sem);
1263 vma = find_vma(current->mm, addr);
1264 if (!vma)
1265 goto out;
1266
1267 size = vma_kernel_pagesize(vma);
1268
1269 out:
1270 up_read(&current->mm->mmap_sem);
1271
1272 return size;
1273 }
1274
1275 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1276 {
1277 return slot->flags & KVM_MEM_READONLY;
1278 }
1279
1280 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1281 gfn_t *nr_pages, bool write)
1282 {
1283 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1284 return KVM_HVA_ERR_BAD;
1285
1286 if (memslot_is_readonly(slot) && write)
1287 return KVM_HVA_ERR_RO_BAD;
1288
1289 if (nr_pages)
1290 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1291
1292 return __gfn_to_hva_memslot(slot, gfn);
1293 }
1294
1295 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1296 gfn_t *nr_pages)
1297 {
1298 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1299 }
1300
1301 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1302 gfn_t gfn)
1303 {
1304 return gfn_to_hva_many(slot, gfn, NULL);
1305 }
1306 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1307
1308 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1309 {
1310 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1311 }
1312 EXPORT_SYMBOL_GPL(gfn_to_hva);
1313
1314 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1315 {
1316 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1317 }
1318 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1319
1320 /*
1321 * If writable is set to false, the hva returned by this function is only
1322 * allowed to be read.
1323 */
1324 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1325 gfn_t gfn, bool *writable)
1326 {
1327 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1328
1329 if (!kvm_is_error_hva(hva) && writable)
1330 *writable = !memslot_is_readonly(slot);
1331
1332 return hva;
1333 }
1334
1335 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1336 {
1337 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1338
1339 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1340 }
1341
1342 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1343 {
1344 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1345
1346 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1347 }
1348
1349 static int get_user_page_nowait(unsigned long start, int write,
1350 struct page **page)
1351 {
1352 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1353
1354 if (write)
1355 flags |= FOLL_WRITE;
1356
1357 return get_user_pages(start, 1, flags, page, NULL);
1358 }
1359
1360 static inline int check_user_page_hwpoison(unsigned long addr)
1361 {
1362 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1363
1364 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1365 return rc == -EHWPOISON;
1366 }
1367
1368 /*
1369 * The atomic path to get the writable pfn which will be stored in @pfn,
1370 * true indicates success, otherwise false is returned.
1371 */
1372 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1373 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1374 {
1375 struct page *page[1];
1376 int npages;
1377
1378 if (!(async || atomic))
1379 return false;
1380
1381 /*
1382 * Fast pin a writable pfn only if it is a write fault request
1383 * or the caller allows to map a writable pfn for a read fault
1384 * request.
1385 */
1386 if (!(write_fault || writable))
1387 return false;
1388
1389 npages = __get_user_pages_fast(addr, 1, 1, page);
1390 if (npages == 1) {
1391 *pfn = page_to_pfn(page[0]);
1392
1393 if (writable)
1394 *writable = true;
1395 return true;
1396 }
1397
1398 return false;
1399 }
1400
1401 /*
1402 * The slow path to get the pfn of the specified host virtual address,
1403 * 1 indicates success, -errno is returned if error is detected.
1404 */
1405 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1406 bool *writable, kvm_pfn_t *pfn)
1407 {
1408 struct page *page[1];
1409 int npages = 0;
1410
1411 might_sleep();
1412
1413 if (writable)
1414 *writable = write_fault;
1415
1416 if (async) {
1417 down_read(&current->mm->mmap_sem);
1418 npages = get_user_page_nowait(addr, write_fault, page);
1419 up_read(&current->mm->mmap_sem);
1420 } else {
1421 unsigned int flags = FOLL_TOUCH | FOLL_HWPOISON;
1422
1423 if (write_fault)
1424 flags |= FOLL_WRITE;
1425
1426 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1427 page, flags);
1428 }
1429 if (npages != 1)
1430 return npages;
1431
1432 /* map read fault as writable if possible */
1433 if (unlikely(!write_fault) && writable) {
1434 struct page *wpage[1];
1435
1436 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1437 if (npages == 1) {
1438 *writable = true;
1439 put_page(page[0]);
1440 page[0] = wpage[0];
1441 }
1442
1443 npages = 1;
1444 }
1445 *pfn = page_to_pfn(page[0]);
1446 return npages;
1447 }
1448
1449 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1450 {
1451 if (unlikely(!(vma->vm_flags & VM_READ)))
1452 return false;
1453
1454 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1455 return false;
1456
1457 return true;
1458 }
1459
1460 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1461 unsigned long addr, bool *async,
1462 bool write_fault, kvm_pfn_t *p_pfn)
1463 {
1464 unsigned long pfn;
1465 int r;
1466
1467 r = follow_pfn(vma, addr, &pfn);
1468 if (r) {
1469 /*
1470 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1471 * not call the fault handler, so do it here.
1472 */
1473 bool unlocked = false;
1474 r = fixup_user_fault(current, current->mm, addr,
1475 (write_fault ? FAULT_FLAG_WRITE : 0),
1476 &unlocked);
1477 if (unlocked)
1478 return -EAGAIN;
1479 if (r)
1480 return r;
1481
1482 r = follow_pfn(vma, addr, &pfn);
1483 if (r)
1484 return r;
1485
1486 }
1487
1488
1489 /*
1490 * Get a reference here because callers of *hva_to_pfn* and
1491 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1492 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1493 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1494 * simply do nothing for reserved pfns.
1495 *
1496 * Whoever called remap_pfn_range is also going to call e.g.
1497 * unmap_mapping_range before the underlying pages are freed,
1498 * causing a call to our MMU notifier.
1499 */
1500 kvm_get_pfn(pfn);
1501
1502 *p_pfn = pfn;
1503 return 0;
1504 }
1505
1506 /*
1507 * Pin guest page in memory and return its pfn.
1508 * @addr: host virtual address which maps memory to the guest
1509 * @atomic: whether this function can sleep
1510 * @async: whether this function need to wait IO complete if the
1511 * host page is not in the memory
1512 * @write_fault: whether we should get a writable host page
1513 * @writable: whether it allows to map a writable host page for !@write_fault
1514 *
1515 * The function will map a writable host page for these two cases:
1516 * 1): @write_fault = true
1517 * 2): @write_fault = false && @writable, @writable will tell the caller
1518 * whether the mapping is writable.
1519 */
1520 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1521 bool write_fault, bool *writable)
1522 {
1523 struct vm_area_struct *vma;
1524 kvm_pfn_t pfn = 0;
1525 int npages, r;
1526
1527 /* we can do it either atomically or asynchronously, not both */
1528 BUG_ON(atomic && async);
1529
1530 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1531 return pfn;
1532
1533 if (atomic)
1534 return KVM_PFN_ERR_FAULT;
1535
1536 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1537 if (npages == 1)
1538 return pfn;
1539
1540 down_read(&current->mm->mmap_sem);
1541 if (npages == -EHWPOISON ||
1542 (!async && check_user_page_hwpoison(addr))) {
1543 pfn = KVM_PFN_ERR_HWPOISON;
1544 goto exit;
1545 }
1546
1547 retry:
1548 vma = find_vma_intersection(current->mm, addr, addr + 1);
1549
1550 if (vma == NULL)
1551 pfn = KVM_PFN_ERR_FAULT;
1552 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1553 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1554 if (r == -EAGAIN)
1555 goto retry;
1556 if (r < 0)
1557 pfn = KVM_PFN_ERR_FAULT;
1558 } else {
1559 if (async && vma_is_valid(vma, write_fault))
1560 *async = true;
1561 pfn = KVM_PFN_ERR_FAULT;
1562 }
1563 exit:
1564 up_read(&current->mm->mmap_sem);
1565 return pfn;
1566 }
1567
1568 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1569 bool atomic, bool *async, bool write_fault,
1570 bool *writable)
1571 {
1572 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1573
1574 if (addr == KVM_HVA_ERR_RO_BAD) {
1575 if (writable)
1576 *writable = false;
1577 return KVM_PFN_ERR_RO_FAULT;
1578 }
1579
1580 if (kvm_is_error_hva(addr)) {
1581 if (writable)
1582 *writable = false;
1583 return KVM_PFN_NOSLOT;
1584 }
1585
1586 /* Do not map writable pfn in the readonly memslot. */
1587 if (writable && memslot_is_readonly(slot)) {
1588 *writable = false;
1589 writable = NULL;
1590 }
1591
1592 return hva_to_pfn(addr, atomic, async, write_fault,
1593 writable);
1594 }
1595 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1596
1597 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1598 bool *writable)
1599 {
1600 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1601 write_fault, writable);
1602 }
1603 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1604
1605 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1606 {
1607 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1608 }
1609 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1610
1611 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1612 {
1613 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1614 }
1615 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1616
1617 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1618 {
1619 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1620 }
1621 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1622
1623 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1624 {
1625 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1626 }
1627 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1628
1629 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1630 {
1631 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1632 }
1633 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1634
1635 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1636 {
1637 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1638 }
1639 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1640
1641 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1642 struct page **pages, int nr_pages)
1643 {
1644 unsigned long addr;
1645 gfn_t entry;
1646
1647 addr = gfn_to_hva_many(slot, gfn, &entry);
1648 if (kvm_is_error_hva(addr))
1649 return -1;
1650
1651 if (entry < nr_pages)
1652 return 0;
1653
1654 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1655 }
1656 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1657
1658 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1659 {
1660 if (is_error_noslot_pfn(pfn))
1661 return KVM_ERR_PTR_BAD_PAGE;
1662
1663 if (kvm_is_reserved_pfn(pfn)) {
1664 WARN_ON(1);
1665 return KVM_ERR_PTR_BAD_PAGE;
1666 }
1667
1668 return pfn_to_page(pfn);
1669 }
1670
1671 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1672 {
1673 kvm_pfn_t pfn;
1674
1675 pfn = gfn_to_pfn(kvm, gfn);
1676
1677 return kvm_pfn_to_page(pfn);
1678 }
1679 EXPORT_SYMBOL_GPL(gfn_to_page);
1680
1681 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1682 {
1683 kvm_pfn_t pfn;
1684
1685 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1686
1687 return kvm_pfn_to_page(pfn);
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1690
1691 void kvm_release_page_clean(struct page *page)
1692 {
1693 WARN_ON(is_error_page(page));
1694
1695 kvm_release_pfn_clean(page_to_pfn(page));
1696 }
1697 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1698
1699 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1700 {
1701 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1702 put_page(pfn_to_page(pfn));
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1705
1706 void kvm_release_page_dirty(struct page *page)
1707 {
1708 WARN_ON(is_error_page(page));
1709
1710 kvm_release_pfn_dirty(page_to_pfn(page));
1711 }
1712 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1713
1714 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1715 {
1716 kvm_set_pfn_dirty(pfn);
1717 kvm_release_pfn_clean(pfn);
1718 }
1719
1720 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1721 {
1722 if (!kvm_is_reserved_pfn(pfn)) {
1723 struct page *page = pfn_to_page(pfn);
1724
1725 if (!PageReserved(page))
1726 SetPageDirty(page);
1727 }
1728 }
1729 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1730
1731 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1732 {
1733 if (!kvm_is_reserved_pfn(pfn))
1734 mark_page_accessed(pfn_to_page(pfn));
1735 }
1736 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1737
1738 void kvm_get_pfn(kvm_pfn_t pfn)
1739 {
1740 if (!kvm_is_reserved_pfn(pfn))
1741 get_page(pfn_to_page(pfn));
1742 }
1743 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1744
1745 static int next_segment(unsigned long len, int offset)
1746 {
1747 if (len > PAGE_SIZE - offset)
1748 return PAGE_SIZE - offset;
1749 else
1750 return len;
1751 }
1752
1753 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1754 void *data, int offset, int len)
1755 {
1756 int r;
1757 unsigned long addr;
1758
1759 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1760 if (kvm_is_error_hva(addr))
1761 return -EFAULT;
1762 r = __copy_from_user(data, (void __user *)addr + offset, len);
1763 if (r)
1764 return -EFAULT;
1765 return 0;
1766 }
1767
1768 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1769 int len)
1770 {
1771 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1772
1773 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1774 }
1775 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1776
1777 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1778 int offset, int len)
1779 {
1780 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1781
1782 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1783 }
1784 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1785
1786 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1787 {
1788 gfn_t gfn = gpa >> PAGE_SHIFT;
1789 int seg;
1790 int offset = offset_in_page(gpa);
1791 int ret;
1792
1793 while ((seg = next_segment(len, offset)) != 0) {
1794 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1795 if (ret < 0)
1796 return ret;
1797 offset = 0;
1798 len -= seg;
1799 data += seg;
1800 ++gfn;
1801 }
1802 return 0;
1803 }
1804 EXPORT_SYMBOL_GPL(kvm_read_guest);
1805
1806 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1807 {
1808 gfn_t gfn = gpa >> PAGE_SHIFT;
1809 int seg;
1810 int offset = offset_in_page(gpa);
1811 int ret;
1812
1813 while ((seg = next_segment(len, offset)) != 0) {
1814 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1815 if (ret < 0)
1816 return ret;
1817 offset = 0;
1818 len -= seg;
1819 data += seg;
1820 ++gfn;
1821 }
1822 return 0;
1823 }
1824 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1825
1826 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1827 void *data, int offset, unsigned long len)
1828 {
1829 int r;
1830 unsigned long addr;
1831
1832 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1833 if (kvm_is_error_hva(addr))
1834 return -EFAULT;
1835 pagefault_disable();
1836 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1837 pagefault_enable();
1838 if (r)
1839 return -EFAULT;
1840 return 0;
1841 }
1842
1843 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1844 unsigned long len)
1845 {
1846 gfn_t gfn = gpa >> PAGE_SHIFT;
1847 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1848 int offset = offset_in_page(gpa);
1849
1850 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1851 }
1852 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1853
1854 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1855 void *data, unsigned long len)
1856 {
1857 gfn_t gfn = gpa >> PAGE_SHIFT;
1858 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1859 int offset = offset_in_page(gpa);
1860
1861 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1862 }
1863 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1864
1865 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1866 const void *data, int offset, int len)
1867 {
1868 int r;
1869 unsigned long addr;
1870
1871 addr = gfn_to_hva_memslot(memslot, gfn);
1872 if (kvm_is_error_hva(addr))
1873 return -EFAULT;
1874 r = __copy_to_user((void __user *)addr + offset, data, len);
1875 if (r)
1876 return -EFAULT;
1877 mark_page_dirty_in_slot(memslot, gfn);
1878 return 0;
1879 }
1880
1881 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1882 const void *data, int offset, int len)
1883 {
1884 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1885
1886 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1887 }
1888 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1889
1890 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1891 const void *data, int offset, int len)
1892 {
1893 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1894
1895 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1896 }
1897 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1898
1899 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1900 unsigned long len)
1901 {
1902 gfn_t gfn = gpa >> PAGE_SHIFT;
1903 int seg;
1904 int offset = offset_in_page(gpa);
1905 int ret;
1906
1907 while ((seg = next_segment(len, offset)) != 0) {
1908 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1909 if (ret < 0)
1910 return ret;
1911 offset = 0;
1912 len -= seg;
1913 data += seg;
1914 ++gfn;
1915 }
1916 return 0;
1917 }
1918 EXPORT_SYMBOL_GPL(kvm_write_guest);
1919
1920 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1921 unsigned long len)
1922 {
1923 gfn_t gfn = gpa >> PAGE_SHIFT;
1924 int seg;
1925 int offset = offset_in_page(gpa);
1926 int ret;
1927
1928 while ((seg = next_segment(len, offset)) != 0) {
1929 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1930 if (ret < 0)
1931 return ret;
1932 offset = 0;
1933 len -= seg;
1934 data += seg;
1935 ++gfn;
1936 }
1937 return 0;
1938 }
1939 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1940
1941 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1942 gpa_t gpa, unsigned long len)
1943 {
1944 struct kvm_memslots *slots = kvm_memslots(kvm);
1945 int offset = offset_in_page(gpa);
1946 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1947 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1948 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1949 gfn_t nr_pages_avail;
1950
1951 ghc->gpa = gpa;
1952 ghc->generation = slots->generation;
1953 ghc->len = len;
1954 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1955 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1956 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1957 ghc->hva += offset;
1958 } else {
1959 /*
1960 * If the requested region crosses two memslots, we still
1961 * verify that the entire region is valid here.
1962 */
1963 while (start_gfn <= end_gfn) {
1964 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1965 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1966 &nr_pages_avail);
1967 if (kvm_is_error_hva(ghc->hva))
1968 return -EFAULT;
1969 start_gfn += nr_pages_avail;
1970 }
1971 /* Use the slow path for cross page reads and writes. */
1972 ghc->memslot = NULL;
1973 }
1974 return 0;
1975 }
1976 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1977
1978 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1979 void *data, int offset, unsigned long len)
1980 {
1981 struct kvm_memslots *slots = kvm_memslots(kvm);
1982 int r;
1983 gpa_t gpa = ghc->gpa + offset;
1984
1985 BUG_ON(len + offset > ghc->len);
1986
1987 if (slots->generation != ghc->generation)
1988 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1989
1990 if (unlikely(!ghc->memslot))
1991 return kvm_write_guest(kvm, gpa, data, len);
1992
1993 if (kvm_is_error_hva(ghc->hva))
1994 return -EFAULT;
1995
1996 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1997 if (r)
1998 return -EFAULT;
1999 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2000
2001 return 0;
2002 }
2003 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2004
2005 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2006 void *data, unsigned long len)
2007 {
2008 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2009 }
2010 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2011
2012 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2013 void *data, unsigned long len)
2014 {
2015 struct kvm_memslots *slots = kvm_memslots(kvm);
2016 int r;
2017
2018 BUG_ON(len > ghc->len);
2019
2020 if (slots->generation != ghc->generation)
2021 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2022
2023 if (unlikely(!ghc->memslot))
2024 return kvm_read_guest(kvm, ghc->gpa, data, len);
2025
2026 if (kvm_is_error_hva(ghc->hva))
2027 return -EFAULT;
2028
2029 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2030 if (r)
2031 return -EFAULT;
2032
2033 return 0;
2034 }
2035 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2036
2037 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2038 {
2039 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2040
2041 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2042 }
2043 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2044
2045 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2046 {
2047 gfn_t gfn = gpa >> PAGE_SHIFT;
2048 int seg;
2049 int offset = offset_in_page(gpa);
2050 int ret;
2051
2052 while ((seg = next_segment(len, offset)) != 0) {
2053 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2054 if (ret < 0)
2055 return ret;
2056 offset = 0;
2057 len -= seg;
2058 ++gfn;
2059 }
2060 return 0;
2061 }
2062 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2063
2064 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2065 gfn_t gfn)
2066 {
2067 if (memslot && memslot->dirty_bitmap) {
2068 unsigned long rel_gfn = gfn - memslot->base_gfn;
2069
2070 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2071 }
2072 }
2073
2074 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2075 {
2076 struct kvm_memory_slot *memslot;
2077
2078 memslot = gfn_to_memslot(kvm, gfn);
2079 mark_page_dirty_in_slot(memslot, gfn);
2080 }
2081 EXPORT_SYMBOL_GPL(mark_page_dirty);
2082
2083 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2084 {
2085 struct kvm_memory_slot *memslot;
2086
2087 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2088 mark_page_dirty_in_slot(memslot, gfn);
2089 }
2090 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2091
2092 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2093 {
2094 unsigned int old, val, grow;
2095
2096 old = val = vcpu->halt_poll_ns;
2097 grow = READ_ONCE(halt_poll_ns_grow);
2098 /* 10us base */
2099 if (val == 0 && grow)
2100 val = 10000;
2101 else
2102 val *= grow;
2103
2104 if (val > halt_poll_ns)
2105 val = halt_poll_ns;
2106
2107 vcpu->halt_poll_ns = val;
2108 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2109 }
2110
2111 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2112 {
2113 unsigned int old, val, shrink;
2114
2115 old = val = vcpu->halt_poll_ns;
2116 shrink = READ_ONCE(halt_poll_ns_shrink);
2117 if (shrink == 0)
2118 val = 0;
2119 else
2120 val /= shrink;
2121
2122 vcpu->halt_poll_ns = val;
2123 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2124 }
2125
2126 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2127 {
2128 if (kvm_arch_vcpu_runnable(vcpu)) {
2129 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2130 return -EINTR;
2131 }
2132 if (kvm_cpu_has_pending_timer(vcpu))
2133 return -EINTR;
2134 if (signal_pending(current))
2135 return -EINTR;
2136
2137 return 0;
2138 }
2139
2140 /*
2141 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2142 */
2143 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2144 {
2145 ktime_t start, cur;
2146 DECLARE_SWAITQUEUE(wait);
2147 bool waited = false;
2148 u64 block_ns;
2149
2150 start = cur = ktime_get();
2151 if (vcpu->halt_poll_ns) {
2152 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2153
2154 ++vcpu->stat.halt_attempted_poll;
2155 do {
2156 /*
2157 * This sets KVM_REQ_UNHALT if an interrupt
2158 * arrives.
2159 */
2160 if (kvm_vcpu_check_block(vcpu) < 0) {
2161 ++vcpu->stat.halt_successful_poll;
2162 if (!vcpu_valid_wakeup(vcpu))
2163 ++vcpu->stat.halt_poll_invalid;
2164 goto out;
2165 }
2166 cur = ktime_get();
2167 } while (single_task_running() && ktime_before(cur, stop));
2168 }
2169
2170 kvm_arch_vcpu_blocking(vcpu);
2171
2172 for (;;) {
2173 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2174
2175 if (kvm_vcpu_check_block(vcpu) < 0)
2176 break;
2177
2178 waited = true;
2179 schedule();
2180 }
2181
2182 finish_swait(&vcpu->wq, &wait);
2183 cur = ktime_get();
2184
2185 kvm_arch_vcpu_unblocking(vcpu);
2186 out:
2187 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2188
2189 if (!vcpu_valid_wakeup(vcpu))
2190 shrink_halt_poll_ns(vcpu);
2191 else if (halt_poll_ns) {
2192 if (block_ns <= vcpu->halt_poll_ns)
2193 ;
2194 /* we had a long block, shrink polling */
2195 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2196 shrink_halt_poll_ns(vcpu);
2197 /* we had a short halt and our poll time is too small */
2198 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2199 block_ns < halt_poll_ns)
2200 grow_halt_poll_ns(vcpu);
2201 } else
2202 vcpu->halt_poll_ns = 0;
2203
2204 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2205 kvm_arch_vcpu_block_finish(vcpu);
2206 }
2207 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2208
2209 #ifndef CONFIG_S390
2210 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2211 {
2212 struct swait_queue_head *wqp;
2213
2214 wqp = kvm_arch_vcpu_wq(vcpu);
2215 if (swait_active(wqp)) {
2216 swake_up(wqp);
2217 ++vcpu->stat.halt_wakeup;
2218 }
2219
2220 }
2221 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2222
2223 /*
2224 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2225 */
2226 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2227 {
2228 int me;
2229 int cpu = vcpu->cpu;
2230
2231 kvm_vcpu_wake_up(vcpu);
2232 me = get_cpu();
2233 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2234 if (kvm_arch_vcpu_should_kick(vcpu))
2235 smp_send_reschedule(cpu);
2236 put_cpu();
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2239 #endif /* !CONFIG_S390 */
2240
2241 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2242 {
2243 struct pid *pid;
2244 struct task_struct *task = NULL;
2245 int ret = 0;
2246
2247 rcu_read_lock();
2248 pid = rcu_dereference(target->pid);
2249 if (pid)
2250 task = get_pid_task(pid, PIDTYPE_PID);
2251 rcu_read_unlock();
2252 if (!task)
2253 return ret;
2254 ret = yield_to(task, 1);
2255 put_task_struct(task);
2256
2257 return ret;
2258 }
2259 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2260
2261 /*
2262 * Helper that checks whether a VCPU is eligible for directed yield.
2263 * Most eligible candidate to yield is decided by following heuristics:
2264 *
2265 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2266 * (preempted lock holder), indicated by @in_spin_loop.
2267 * Set at the beiginning and cleared at the end of interception/PLE handler.
2268 *
2269 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2270 * chance last time (mostly it has become eligible now since we have probably
2271 * yielded to lockholder in last iteration. This is done by toggling
2272 * @dy_eligible each time a VCPU checked for eligibility.)
2273 *
2274 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2275 * to preempted lock-holder could result in wrong VCPU selection and CPU
2276 * burning. Giving priority for a potential lock-holder increases lock
2277 * progress.
2278 *
2279 * Since algorithm is based on heuristics, accessing another VCPU data without
2280 * locking does not harm. It may result in trying to yield to same VCPU, fail
2281 * and continue with next VCPU and so on.
2282 */
2283 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2284 {
2285 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2286 bool eligible;
2287
2288 eligible = !vcpu->spin_loop.in_spin_loop ||
2289 vcpu->spin_loop.dy_eligible;
2290
2291 if (vcpu->spin_loop.in_spin_loop)
2292 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2293
2294 return eligible;
2295 #else
2296 return true;
2297 #endif
2298 }
2299
2300 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2301 {
2302 struct kvm *kvm = me->kvm;
2303 struct kvm_vcpu *vcpu;
2304 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2305 int yielded = 0;
2306 int try = 3;
2307 int pass;
2308 int i;
2309
2310 kvm_vcpu_set_in_spin_loop(me, true);
2311 /*
2312 * We boost the priority of a VCPU that is runnable but not
2313 * currently running, because it got preempted by something
2314 * else and called schedule in __vcpu_run. Hopefully that
2315 * VCPU is holding the lock that we need and will release it.
2316 * We approximate round-robin by starting at the last boosted VCPU.
2317 */
2318 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2319 kvm_for_each_vcpu(i, vcpu, kvm) {
2320 if (!pass && i <= last_boosted_vcpu) {
2321 i = last_boosted_vcpu;
2322 continue;
2323 } else if (pass && i > last_boosted_vcpu)
2324 break;
2325 if (!ACCESS_ONCE(vcpu->preempted))
2326 continue;
2327 if (vcpu == me)
2328 continue;
2329 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2330 continue;
2331 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2332 continue;
2333
2334 yielded = kvm_vcpu_yield_to(vcpu);
2335 if (yielded > 0) {
2336 kvm->last_boosted_vcpu = i;
2337 break;
2338 } else if (yielded < 0) {
2339 try--;
2340 if (!try)
2341 break;
2342 }
2343 }
2344 }
2345 kvm_vcpu_set_in_spin_loop(me, false);
2346
2347 /* Ensure vcpu is not eligible during next spinloop */
2348 kvm_vcpu_set_dy_eligible(me, false);
2349 }
2350 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2351
2352 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2353 {
2354 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2355 struct page *page;
2356
2357 if (vmf->pgoff == 0)
2358 page = virt_to_page(vcpu->run);
2359 #ifdef CONFIG_X86
2360 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2361 page = virt_to_page(vcpu->arch.pio_data);
2362 #endif
2363 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2364 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2365 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2366 #endif
2367 else
2368 return kvm_arch_vcpu_fault(vcpu, vmf);
2369 get_page(page);
2370 vmf->page = page;
2371 return 0;
2372 }
2373
2374 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2375 .fault = kvm_vcpu_fault,
2376 };
2377
2378 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2379 {
2380 vma->vm_ops = &kvm_vcpu_vm_ops;
2381 return 0;
2382 }
2383
2384 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2385 {
2386 struct kvm_vcpu *vcpu = filp->private_data;
2387
2388 debugfs_remove_recursive(vcpu->debugfs_dentry);
2389 kvm_put_kvm(vcpu->kvm);
2390 return 0;
2391 }
2392
2393 static struct file_operations kvm_vcpu_fops = {
2394 .release = kvm_vcpu_release,
2395 .unlocked_ioctl = kvm_vcpu_ioctl,
2396 #ifdef CONFIG_KVM_COMPAT
2397 .compat_ioctl = kvm_vcpu_compat_ioctl,
2398 #endif
2399 .mmap = kvm_vcpu_mmap,
2400 .llseek = noop_llseek,
2401 };
2402
2403 /*
2404 * Allocates an inode for the vcpu.
2405 */
2406 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2407 {
2408 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2409 }
2410
2411 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2412 {
2413 char dir_name[ITOA_MAX_LEN * 2];
2414 int ret;
2415
2416 if (!kvm_arch_has_vcpu_debugfs())
2417 return 0;
2418
2419 if (!debugfs_initialized())
2420 return 0;
2421
2422 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2423 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2424 vcpu->kvm->debugfs_dentry);
2425 if (!vcpu->debugfs_dentry)
2426 return -ENOMEM;
2427
2428 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2429 if (ret < 0) {
2430 debugfs_remove_recursive(vcpu->debugfs_dentry);
2431 return ret;
2432 }
2433
2434 return 0;
2435 }
2436
2437 /*
2438 * Creates some virtual cpus. Good luck creating more than one.
2439 */
2440 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2441 {
2442 int r;
2443 struct kvm_vcpu *vcpu;
2444
2445 if (id >= KVM_MAX_VCPU_ID)
2446 return -EINVAL;
2447
2448 mutex_lock(&kvm->lock);
2449 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2450 mutex_unlock(&kvm->lock);
2451 return -EINVAL;
2452 }
2453
2454 kvm->created_vcpus++;
2455 mutex_unlock(&kvm->lock);
2456
2457 vcpu = kvm_arch_vcpu_create(kvm, id);
2458 if (IS_ERR(vcpu)) {
2459 r = PTR_ERR(vcpu);
2460 goto vcpu_decrement;
2461 }
2462
2463 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2464
2465 r = kvm_arch_vcpu_setup(vcpu);
2466 if (r)
2467 goto vcpu_destroy;
2468
2469 r = kvm_create_vcpu_debugfs(vcpu);
2470 if (r)
2471 goto vcpu_destroy;
2472
2473 mutex_lock(&kvm->lock);
2474 if (kvm_get_vcpu_by_id(kvm, id)) {
2475 r = -EEXIST;
2476 goto unlock_vcpu_destroy;
2477 }
2478
2479 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2480
2481 /* Now it's all set up, let userspace reach it */
2482 kvm_get_kvm(kvm);
2483 r = create_vcpu_fd(vcpu);
2484 if (r < 0) {
2485 kvm_put_kvm(kvm);
2486 goto unlock_vcpu_destroy;
2487 }
2488
2489 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2490
2491 /*
2492 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2493 * before kvm->online_vcpu's incremented value.
2494 */
2495 smp_wmb();
2496 atomic_inc(&kvm->online_vcpus);
2497
2498 mutex_unlock(&kvm->lock);
2499 kvm_arch_vcpu_postcreate(vcpu);
2500 return r;
2501
2502 unlock_vcpu_destroy:
2503 mutex_unlock(&kvm->lock);
2504 debugfs_remove_recursive(vcpu->debugfs_dentry);
2505 vcpu_destroy:
2506 kvm_arch_vcpu_destroy(vcpu);
2507 vcpu_decrement:
2508 mutex_lock(&kvm->lock);
2509 kvm->created_vcpus--;
2510 mutex_unlock(&kvm->lock);
2511 return r;
2512 }
2513
2514 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2515 {
2516 if (sigset) {
2517 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2518 vcpu->sigset_active = 1;
2519 vcpu->sigset = *sigset;
2520 } else
2521 vcpu->sigset_active = 0;
2522 return 0;
2523 }
2524
2525 static long kvm_vcpu_ioctl(struct file *filp,
2526 unsigned int ioctl, unsigned long arg)
2527 {
2528 struct kvm_vcpu *vcpu = filp->private_data;
2529 void __user *argp = (void __user *)arg;
2530 int r;
2531 struct kvm_fpu *fpu = NULL;
2532 struct kvm_sregs *kvm_sregs = NULL;
2533
2534 if (vcpu->kvm->mm != current->mm)
2535 return -EIO;
2536
2537 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2538 return -EINVAL;
2539
2540 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2541 /*
2542 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2543 * so vcpu_load() would break it.
2544 */
2545 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2546 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2547 #endif
2548
2549
2550 r = vcpu_load(vcpu);
2551 if (r)
2552 return r;
2553 switch (ioctl) {
2554 case KVM_RUN:
2555 r = -EINVAL;
2556 if (arg)
2557 goto out;
2558 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2559 /* The thread running this VCPU changed. */
2560 struct pid *oldpid = vcpu->pid;
2561 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2562
2563 rcu_assign_pointer(vcpu->pid, newpid);
2564 if (oldpid)
2565 synchronize_rcu();
2566 put_pid(oldpid);
2567 }
2568 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2569 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2570 break;
2571 case KVM_GET_REGS: {
2572 struct kvm_regs *kvm_regs;
2573
2574 r = -ENOMEM;
2575 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2576 if (!kvm_regs)
2577 goto out;
2578 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2579 if (r)
2580 goto out_free1;
2581 r = -EFAULT;
2582 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2583 goto out_free1;
2584 r = 0;
2585 out_free1:
2586 kfree(kvm_regs);
2587 break;
2588 }
2589 case KVM_SET_REGS: {
2590 struct kvm_regs *kvm_regs;
2591
2592 r = -ENOMEM;
2593 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2594 if (IS_ERR(kvm_regs)) {
2595 r = PTR_ERR(kvm_regs);
2596 goto out;
2597 }
2598 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2599 kfree(kvm_regs);
2600 break;
2601 }
2602 case KVM_GET_SREGS: {
2603 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2604 r = -ENOMEM;
2605 if (!kvm_sregs)
2606 goto out;
2607 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2608 if (r)
2609 goto out;
2610 r = -EFAULT;
2611 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2612 goto out;
2613 r = 0;
2614 break;
2615 }
2616 case KVM_SET_SREGS: {
2617 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2618 if (IS_ERR(kvm_sregs)) {
2619 r = PTR_ERR(kvm_sregs);
2620 kvm_sregs = NULL;
2621 goto out;
2622 }
2623 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2624 break;
2625 }
2626 case KVM_GET_MP_STATE: {
2627 struct kvm_mp_state mp_state;
2628
2629 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2630 if (r)
2631 goto out;
2632 r = -EFAULT;
2633 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2634 goto out;
2635 r = 0;
2636 break;
2637 }
2638 case KVM_SET_MP_STATE: {
2639 struct kvm_mp_state mp_state;
2640
2641 r = -EFAULT;
2642 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2643 goto out;
2644 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2645 break;
2646 }
2647 case KVM_TRANSLATE: {
2648 struct kvm_translation tr;
2649
2650 r = -EFAULT;
2651 if (copy_from_user(&tr, argp, sizeof(tr)))
2652 goto out;
2653 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2654 if (r)
2655 goto out;
2656 r = -EFAULT;
2657 if (copy_to_user(argp, &tr, sizeof(tr)))
2658 goto out;
2659 r = 0;
2660 break;
2661 }
2662 case KVM_SET_GUEST_DEBUG: {
2663 struct kvm_guest_debug dbg;
2664
2665 r = -EFAULT;
2666 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2667 goto out;
2668 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2669 break;
2670 }
2671 case KVM_SET_SIGNAL_MASK: {
2672 struct kvm_signal_mask __user *sigmask_arg = argp;
2673 struct kvm_signal_mask kvm_sigmask;
2674 sigset_t sigset, *p;
2675
2676 p = NULL;
2677 if (argp) {
2678 r = -EFAULT;
2679 if (copy_from_user(&kvm_sigmask, argp,
2680 sizeof(kvm_sigmask)))
2681 goto out;
2682 r = -EINVAL;
2683 if (kvm_sigmask.len != sizeof(sigset))
2684 goto out;
2685 r = -EFAULT;
2686 if (copy_from_user(&sigset, sigmask_arg->sigset,
2687 sizeof(sigset)))
2688 goto out;
2689 p = &sigset;
2690 }
2691 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2692 break;
2693 }
2694 case KVM_GET_FPU: {
2695 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2696 r = -ENOMEM;
2697 if (!fpu)
2698 goto out;
2699 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2700 if (r)
2701 goto out;
2702 r = -EFAULT;
2703 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2704 goto out;
2705 r = 0;
2706 break;
2707 }
2708 case KVM_SET_FPU: {
2709 fpu = memdup_user(argp, sizeof(*fpu));
2710 if (IS_ERR(fpu)) {
2711 r = PTR_ERR(fpu);
2712 fpu = NULL;
2713 goto out;
2714 }
2715 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2716 break;
2717 }
2718 default:
2719 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2720 }
2721 out:
2722 vcpu_put(vcpu);
2723 kfree(fpu);
2724 kfree(kvm_sregs);
2725 return r;
2726 }
2727
2728 #ifdef CONFIG_KVM_COMPAT
2729 static long kvm_vcpu_compat_ioctl(struct file *filp,
2730 unsigned int ioctl, unsigned long arg)
2731 {
2732 struct kvm_vcpu *vcpu = filp->private_data;
2733 void __user *argp = compat_ptr(arg);
2734 int r;
2735
2736 if (vcpu->kvm->mm != current->mm)
2737 return -EIO;
2738
2739 switch (ioctl) {
2740 case KVM_SET_SIGNAL_MASK: {
2741 struct kvm_signal_mask __user *sigmask_arg = argp;
2742 struct kvm_signal_mask kvm_sigmask;
2743 compat_sigset_t csigset;
2744 sigset_t sigset;
2745
2746 if (argp) {
2747 r = -EFAULT;
2748 if (copy_from_user(&kvm_sigmask, argp,
2749 sizeof(kvm_sigmask)))
2750 goto out;
2751 r = -EINVAL;
2752 if (kvm_sigmask.len != sizeof(csigset))
2753 goto out;
2754 r = -EFAULT;
2755 if (copy_from_user(&csigset, sigmask_arg->sigset,
2756 sizeof(csigset)))
2757 goto out;
2758 sigset_from_compat(&sigset, &csigset);
2759 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2760 } else
2761 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2762 break;
2763 }
2764 default:
2765 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2766 }
2767
2768 out:
2769 return r;
2770 }
2771 #endif
2772
2773 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2774 int (*accessor)(struct kvm_device *dev,
2775 struct kvm_device_attr *attr),
2776 unsigned long arg)
2777 {
2778 struct kvm_device_attr attr;
2779
2780 if (!accessor)
2781 return -EPERM;
2782
2783 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2784 return -EFAULT;
2785
2786 return accessor(dev, &attr);
2787 }
2788
2789 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2790 unsigned long arg)
2791 {
2792 struct kvm_device *dev = filp->private_data;
2793
2794 switch (ioctl) {
2795 case KVM_SET_DEVICE_ATTR:
2796 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2797 case KVM_GET_DEVICE_ATTR:
2798 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2799 case KVM_HAS_DEVICE_ATTR:
2800 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2801 default:
2802 if (dev->ops->ioctl)
2803 return dev->ops->ioctl(dev, ioctl, arg);
2804
2805 return -ENOTTY;
2806 }
2807 }
2808
2809 static int kvm_device_release(struct inode *inode, struct file *filp)
2810 {
2811 struct kvm_device *dev = filp->private_data;
2812 struct kvm *kvm = dev->kvm;
2813
2814 kvm_put_kvm(kvm);
2815 return 0;
2816 }
2817
2818 static const struct file_operations kvm_device_fops = {
2819 .unlocked_ioctl = kvm_device_ioctl,
2820 #ifdef CONFIG_KVM_COMPAT
2821 .compat_ioctl = kvm_device_ioctl,
2822 #endif
2823 .release = kvm_device_release,
2824 };
2825
2826 struct kvm_device *kvm_device_from_filp(struct file *filp)
2827 {
2828 if (filp->f_op != &kvm_device_fops)
2829 return NULL;
2830
2831 return filp->private_data;
2832 }
2833
2834 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2835 #ifdef CONFIG_KVM_MPIC
2836 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2837 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2838 #endif
2839
2840 #ifdef CONFIG_KVM_XICS
2841 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2842 #endif
2843 };
2844
2845 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2846 {
2847 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2848 return -ENOSPC;
2849
2850 if (kvm_device_ops_table[type] != NULL)
2851 return -EEXIST;
2852
2853 kvm_device_ops_table[type] = ops;
2854 return 0;
2855 }
2856
2857 void kvm_unregister_device_ops(u32 type)
2858 {
2859 if (kvm_device_ops_table[type] != NULL)
2860 kvm_device_ops_table[type] = NULL;
2861 }
2862
2863 static int kvm_ioctl_create_device(struct kvm *kvm,
2864 struct kvm_create_device *cd)
2865 {
2866 struct kvm_device_ops *ops = NULL;
2867 struct kvm_device *dev;
2868 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2869 int ret;
2870
2871 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2872 return -ENODEV;
2873
2874 ops = kvm_device_ops_table[cd->type];
2875 if (ops == NULL)
2876 return -ENODEV;
2877
2878 if (test)
2879 return 0;
2880
2881 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2882 if (!dev)
2883 return -ENOMEM;
2884
2885 dev->ops = ops;
2886 dev->kvm = kvm;
2887
2888 mutex_lock(&kvm->lock);
2889 ret = ops->create(dev, cd->type);
2890 if (ret < 0) {
2891 mutex_unlock(&kvm->lock);
2892 kfree(dev);
2893 return ret;
2894 }
2895 list_add(&dev->vm_node, &kvm->devices);
2896 mutex_unlock(&kvm->lock);
2897
2898 if (ops->init)
2899 ops->init(dev);
2900
2901 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2902 if (ret < 0) {
2903 mutex_lock(&kvm->lock);
2904 list_del(&dev->vm_node);
2905 mutex_unlock(&kvm->lock);
2906 ops->destroy(dev);
2907 return ret;
2908 }
2909
2910 kvm_get_kvm(kvm);
2911 cd->fd = ret;
2912 return 0;
2913 }
2914
2915 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2916 {
2917 switch (arg) {
2918 case KVM_CAP_USER_MEMORY:
2919 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2920 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2921 case KVM_CAP_INTERNAL_ERROR_DATA:
2922 #ifdef CONFIG_HAVE_KVM_MSI
2923 case KVM_CAP_SIGNAL_MSI:
2924 #endif
2925 #ifdef CONFIG_HAVE_KVM_IRQFD
2926 case KVM_CAP_IRQFD:
2927 case KVM_CAP_IRQFD_RESAMPLE:
2928 #endif
2929 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2930 case KVM_CAP_CHECK_EXTENSION_VM:
2931 return 1;
2932 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2933 case KVM_CAP_IRQ_ROUTING:
2934 return KVM_MAX_IRQ_ROUTES;
2935 #endif
2936 #if KVM_ADDRESS_SPACE_NUM > 1
2937 case KVM_CAP_MULTI_ADDRESS_SPACE:
2938 return KVM_ADDRESS_SPACE_NUM;
2939 #endif
2940 case KVM_CAP_MAX_VCPU_ID:
2941 return KVM_MAX_VCPU_ID;
2942 default:
2943 break;
2944 }
2945 return kvm_vm_ioctl_check_extension(kvm, arg);
2946 }
2947
2948 static long kvm_vm_ioctl(struct file *filp,
2949 unsigned int ioctl, unsigned long arg)
2950 {
2951 struct kvm *kvm = filp->private_data;
2952 void __user *argp = (void __user *)arg;
2953 int r;
2954
2955 if (kvm->mm != current->mm)
2956 return -EIO;
2957 switch (ioctl) {
2958 case KVM_CREATE_VCPU:
2959 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2960 break;
2961 case KVM_SET_USER_MEMORY_REGION: {
2962 struct kvm_userspace_memory_region kvm_userspace_mem;
2963
2964 r = -EFAULT;
2965 if (copy_from_user(&kvm_userspace_mem, argp,
2966 sizeof(kvm_userspace_mem)))
2967 goto out;
2968
2969 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2970 break;
2971 }
2972 case KVM_GET_DIRTY_LOG: {
2973 struct kvm_dirty_log log;
2974
2975 r = -EFAULT;
2976 if (copy_from_user(&log, argp, sizeof(log)))
2977 goto out;
2978 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2979 break;
2980 }
2981 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2982 case KVM_REGISTER_COALESCED_MMIO: {
2983 struct kvm_coalesced_mmio_zone zone;
2984
2985 r = -EFAULT;
2986 if (copy_from_user(&zone, argp, sizeof(zone)))
2987 goto out;
2988 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2989 break;
2990 }
2991 case KVM_UNREGISTER_COALESCED_MMIO: {
2992 struct kvm_coalesced_mmio_zone zone;
2993
2994 r = -EFAULT;
2995 if (copy_from_user(&zone, argp, sizeof(zone)))
2996 goto out;
2997 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2998 break;
2999 }
3000 #endif
3001 case KVM_IRQFD: {
3002 struct kvm_irqfd data;
3003
3004 r = -EFAULT;
3005 if (copy_from_user(&data, argp, sizeof(data)))
3006 goto out;
3007 r = kvm_irqfd(kvm, &data);
3008 break;
3009 }
3010 case KVM_IOEVENTFD: {
3011 struct kvm_ioeventfd data;
3012
3013 r = -EFAULT;
3014 if (copy_from_user(&data, argp, sizeof(data)))
3015 goto out;
3016 r = kvm_ioeventfd(kvm, &data);
3017 break;
3018 }
3019 #ifdef CONFIG_HAVE_KVM_MSI
3020 case KVM_SIGNAL_MSI: {
3021 struct kvm_msi msi;
3022
3023 r = -EFAULT;
3024 if (copy_from_user(&msi, argp, sizeof(msi)))
3025 goto out;
3026 r = kvm_send_userspace_msi(kvm, &msi);
3027 break;
3028 }
3029 #endif
3030 #ifdef __KVM_HAVE_IRQ_LINE
3031 case KVM_IRQ_LINE_STATUS:
3032 case KVM_IRQ_LINE: {
3033 struct kvm_irq_level irq_event;
3034
3035 r = -EFAULT;
3036 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3037 goto out;
3038
3039 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3040 ioctl == KVM_IRQ_LINE_STATUS);
3041 if (r)
3042 goto out;
3043
3044 r = -EFAULT;
3045 if (ioctl == KVM_IRQ_LINE_STATUS) {
3046 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3047 goto out;
3048 }
3049
3050 r = 0;
3051 break;
3052 }
3053 #endif
3054 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3055 case KVM_SET_GSI_ROUTING: {
3056 struct kvm_irq_routing routing;
3057 struct kvm_irq_routing __user *urouting;
3058 struct kvm_irq_routing_entry *entries = NULL;
3059
3060 r = -EFAULT;
3061 if (copy_from_user(&routing, argp, sizeof(routing)))
3062 goto out;
3063 r = -EINVAL;
3064 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3065 goto out;
3066 if (routing.flags)
3067 goto out;
3068 if (routing.nr) {
3069 r = -ENOMEM;
3070 entries = vmalloc(routing.nr * sizeof(*entries));
3071 if (!entries)
3072 goto out;
3073 r = -EFAULT;
3074 urouting = argp;
3075 if (copy_from_user(entries, urouting->entries,
3076 routing.nr * sizeof(*entries)))
3077 goto out_free_irq_routing;
3078 }
3079 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3080 routing.flags);
3081 out_free_irq_routing:
3082 vfree(entries);
3083 break;
3084 }
3085 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3086 case KVM_CREATE_DEVICE: {
3087 struct kvm_create_device cd;
3088
3089 r = -EFAULT;
3090 if (copy_from_user(&cd, argp, sizeof(cd)))
3091 goto out;
3092
3093 r = kvm_ioctl_create_device(kvm, &cd);
3094 if (r)
3095 goto out;
3096
3097 r = -EFAULT;
3098 if (copy_to_user(argp, &cd, sizeof(cd)))
3099 goto out;
3100
3101 r = 0;
3102 break;
3103 }
3104 case KVM_CHECK_EXTENSION:
3105 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3106 break;
3107 default:
3108 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3109 }
3110 out:
3111 return r;
3112 }
3113
3114 #ifdef CONFIG_KVM_COMPAT
3115 struct compat_kvm_dirty_log {
3116 __u32 slot;
3117 __u32 padding1;
3118 union {
3119 compat_uptr_t dirty_bitmap; /* one bit per page */
3120 __u64 padding2;
3121 };
3122 };
3123
3124 static long kvm_vm_compat_ioctl(struct file *filp,
3125 unsigned int ioctl, unsigned long arg)
3126 {
3127 struct kvm *kvm = filp->private_data;
3128 int r;
3129
3130 if (kvm->mm != current->mm)
3131 return -EIO;
3132 switch (ioctl) {
3133 case KVM_GET_DIRTY_LOG: {
3134 struct compat_kvm_dirty_log compat_log;
3135 struct kvm_dirty_log log;
3136
3137 r = -EFAULT;
3138 if (copy_from_user(&compat_log, (void __user *)arg,
3139 sizeof(compat_log)))
3140 goto out;
3141 log.slot = compat_log.slot;
3142 log.padding1 = compat_log.padding1;
3143 log.padding2 = compat_log.padding2;
3144 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3145
3146 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3147 break;
3148 }
3149 default:
3150 r = kvm_vm_ioctl(filp, ioctl, arg);
3151 }
3152
3153 out:
3154 return r;
3155 }
3156 #endif
3157
3158 static struct file_operations kvm_vm_fops = {
3159 .release = kvm_vm_release,
3160 .unlocked_ioctl = kvm_vm_ioctl,
3161 #ifdef CONFIG_KVM_COMPAT
3162 .compat_ioctl = kvm_vm_compat_ioctl,
3163 #endif
3164 .llseek = noop_llseek,
3165 };
3166
3167 static int kvm_dev_ioctl_create_vm(unsigned long type)
3168 {
3169 int r;
3170 struct kvm *kvm;
3171 struct file *file;
3172
3173 kvm = kvm_create_vm(type);
3174 if (IS_ERR(kvm))
3175 return PTR_ERR(kvm);
3176 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3177 r = kvm_coalesced_mmio_init(kvm);
3178 if (r < 0) {
3179 kvm_put_kvm(kvm);
3180 return r;
3181 }
3182 #endif
3183 r = get_unused_fd_flags(O_CLOEXEC);
3184 if (r < 0) {
3185 kvm_put_kvm(kvm);
3186 return r;
3187 }
3188 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3189 if (IS_ERR(file)) {
3190 put_unused_fd(r);
3191 kvm_put_kvm(kvm);
3192 return PTR_ERR(file);
3193 }
3194
3195 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3196 put_unused_fd(r);
3197 fput(file);
3198 return -ENOMEM;
3199 }
3200
3201 fd_install(r, file);
3202 return r;
3203 }
3204
3205 static long kvm_dev_ioctl(struct file *filp,
3206 unsigned int ioctl, unsigned long arg)
3207 {
3208 long r = -EINVAL;
3209
3210 switch (ioctl) {
3211 case KVM_GET_API_VERSION:
3212 if (arg)
3213 goto out;
3214 r = KVM_API_VERSION;
3215 break;
3216 case KVM_CREATE_VM:
3217 r = kvm_dev_ioctl_create_vm(arg);
3218 break;
3219 case KVM_CHECK_EXTENSION:
3220 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3221 break;
3222 case KVM_GET_VCPU_MMAP_SIZE:
3223 if (arg)
3224 goto out;
3225 r = PAGE_SIZE; /* struct kvm_run */
3226 #ifdef CONFIG_X86
3227 r += PAGE_SIZE; /* pio data page */
3228 #endif
3229 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3230 r += PAGE_SIZE; /* coalesced mmio ring page */
3231 #endif
3232 break;
3233 case KVM_TRACE_ENABLE:
3234 case KVM_TRACE_PAUSE:
3235 case KVM_TRACE_DISABLE:
3236 r = -EOPNOTSUPP;
3237 break;
3238 default:
3239 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3240 }
3241 out:
3242 return r;
3243 }
3244
3245 static struct file_operations kvm_chardev_ops = {
3246 .unlocked_ioctl = kvm_dev_ioctl,
3247 .compat_ioctl = kvm_dev_ioctl,
3248 .llseek = noop_llseek,
3249 };
3250
3251 static struct miscdevice kvm_dev = {
3252 KVM_MINOR,
3253 "kvm",
3254 &kvm_chardev_ops,
3255 };
3256
3257 static void hardware_enable_nolock(void *junk)
3258 {
3259 int cpu = raw_smp_processor_id();
3260 int r;
3261
3262 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3263 return;
3264
3265 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3266
3267 r = kvm_arch_hardware_enable();
3268
3269 if (r) {
3270 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3271 atomic_inc(&hardware_enable_failed);
3272 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3273 }
3274 }
3275
3276 static int kvm_starting_cpu(unsigned int cpu)
3277 {
3278 raw_spin_lock(&kvm_count_lock);
3279 if (kvm_usage_count)
3280 hardware_enable_nolock(NULL);
3281 raw_spin_unlock(&kvm_count_lock);
3282 return 0;
3283 }
3284
3285 static void hardware_disable_nolock(void *junk)
3286 {
3287 int cpu = raw_smp_processor_id();
3288
3289 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3290 return;
3291 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3292 kvm_arch_hardware_disable();
3293 }
3294
3295 static int kvm_dying_cpu(unsigned int cpu)
3296 {
3297 raw_spin_lock(&kvm_count_lock);
3298 if (kvm_usage_count)
3299 hardware_disable_nolock(NULL);
3300 raw_spin_unlock(&kvm_count_lock);
3301 return 0;
3302 }
3303
3304 static void hardware_disable_all_nolock(void)
3305 {
3306 BUG_ON(!kvm_usage_count);
3307
3308 kvm_usage_count--;
3309 if (!kvm_usage_count)
3310 on_each_cpu(hardware_disable_nolock, NULL, 1);
3311 }
3312
3313 static void hardware_disable_all(void)
3314 {
3315 raw_spin_lock(&kvm_count_lock);
3316 hardware_disable_all_nolock();
3317 raw_spin_unlock(&kvm_count_lock);
3318 }
3319
3320 static int hardware_enable_all(void)
3321 {
3322 int r = 0;
3323
3324 raw_spin_lock(&kvm_count_lock);
3325
3326 kvm_usage_count++;
3327 if (kvm_usage_count == 1) {
3328 atomic_set(&hardware_enable_failed, 0);
3329 on_each_cpu(hardware_enable_nolock, NULL, 1);
3330
3331 if (atomic_read(&hardware_enable_failed)) {
3332 hardware_disable_all_nolock();
3333 r = -EBUSY;
3334 }
3335 }
3336
3337 raw_spin_unlock(&kvm_count_lock);
3338
3339 return r;
3340 }
3341
3342 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3343 void *v)
3344 {
3345 /*
3346 * Some (well, at least mine) BIOSes hang on reboot if
3347 * in vmx root mode.
3348 *
3349 * And Intel TXT required VMX off for all cpu when system shutdown.
3350 */
3351 pr_info("kvm: exiting hardware virtualization\n");
3352 kvm_rebooting = true;
3353 on_each_cpu(hardware_disable_nolock, NULL, 1);
3354 return NOTIFY_OK;
3355 }
3356
3357 static struct notifier_block kvm_reboot_notifier = {
3358 .notifier_call = kvm_reboot,
3359 .priority = 0,
3360 };
3361
3362 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3363 {
3364 int i;
3365
3366 for (i = 0; i < bus->dev_count; i++) {
3367 struct kvm_io_device *pos = bus->range[i].dev;
3368
3369 kvm_iodevice_destructor(pos);
3370 }
3371 kfree(bus);
3372 }
3373
3374 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3375 const struct kvm_io_range *r2)
3376 {
3377 gpa_t addr1 = r1->addr;
3378 gpa_t addr2 = r2->addr;
3379
3380 if (addr1 < addr2)
3381 return -1;
3382
3383 /* If r2->len == 0, match the exact address. If r2->len != 0,
3384 * accept any overlapping write. Any order is acceptable for
3385 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3386 * we process all of them.
3387 */
3388 if (r2->len) {
3389 addr1 += r1->len;
3390 addr2 += r2->len;
3391 }
3392
3393 if (addr1 > addr2)
3394 return 1;
3395
3396 return 0;
3397 }
3398
3399 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3400 {
3401 return kvm_io_bus_cmp(p1, p2);
3402 }
3403
3404 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3405 gpa_t addr, int len)
3406 {
3407 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3408 .addr = addr,
3409 .len = len,
3410 .dev = dev,
3411 };
3412
3413 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3414 kvm_io_bus_sort_cmp, NULL);
3415
3416 return 0;
3417 }
3418
3419 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3420 gpa_t addr, int len)
3421 {
3422 struct kvm_io_range *range, key;
3423 int off;
3424
3425 key = (struct kvm_io_range) {
3426 .addr = addr,
3427 .len = len,
3428 };
3429
3430 range = bsearch(&key, bus->range, bus->dev_count,
3431 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3432 if (range == NULL)
3433 return -ENOENT;
3434
3435 off = range - bus->range;
3436
3437 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3438 off--;
3439
3440 return off;
3441 }
3442
3443 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3444 struct kvm_io_range *range, const void *val)
3445 {
3446 int idx;
3447
3448 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3449 if (idx < 0)
3450 return -EOPNOTSUPP;
3451
3452 while (idx < bus->dev_count &&
3453 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3454 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3455 range->len, val))
3456 return idx;
3457 idx++;
3458 }
3459
3460 return -EOPNOTSUPP;
3461 }
3462
3463 /* kvm_io_bus_write - called under kvm->slots_lock */
3464 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3465 int len, const void *val)
3466 {
3467 struct kvm_io_bus *bus;
3468 struct kvm_io_range range;
3469 int r;
3470
3471 range = (struct kvm_io_range) {
3472 .addr = addr,
3473 .len = len,
3474 };
3475
3476 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3477 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3478 return r < 0 ? r : 0;
3479 }
3480
3481 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3482 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3483 gpa_t addr, int len, const void *val, long cookie)
3484 {
3485 struct kvm_io_bus *bus;
3486 struct kvm_io_range range;
3487
3488 range = (struct kvm_io_range) {
3489 .addr = addr,
3490 .len = len,
3491 };
3492
3493 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3494
3495 /* First try the device referenced by cookie. */
3496 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3497 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3498 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3499 val))
3500 return cookie;
3501
3502 /*
3503 * cookie contained garbage; fall back to search and return the
3504 * correct cookie value.
3505 */
3506 return __kvm_io_bus_write(vcpu, bus, &range, val);
3507 }
3508
3509 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3510 struct kvm_io_range *range, void *val)
3511 {
3512 int idx;
3513
3514 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3515 if (idx < 0)
3516 return -EOPNOTSUPP;
3517
3518 while (idx < bus->dev_count &&
3519 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3520 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3521 range->len, val))
3522 return idx;
3523 idx++;
3524 }
3525
3526 return -EOPNOTSUPP;
3527 }
3528 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3529
3530 /* kvm_io_bus_read - called under kvm->slots_lock */
3531 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3532 int len, void *val)
3533 {
3534 struct kvm_io_bus *bus;
3535 struct kvm_io_range range;
3536 int r;
3537
3538 range = (struct kvm_io_range) {
3539 .addr = addr,
3540 .len = len,
3541 };
3542
3543 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3544 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3545 return r < 0 ? r : 0;
3546 }
3547
3548
3549 /* Caller must hold slots_lock. */
3550 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3551 int len, struct kvm_io_device *dev)
3552 {
3553 struct kvm_io_bus *new_bus, *bus;
3554
3555 bus = kvm->buses[bus_idx];
3556 /* exclude ioeventfd which is limited by maximum fd */
3557 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3558 return -ENOSPC;
3559
3560 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3561 sizeof(struct kvm_io_range)), GFP_KERNEL);
3562 if (!new_bus)
3563 return -ENOMEM;
3564 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3565 sizeof(struct kvm_io_range)));
3566 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3567 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3568 synchronize_srcu_expedited(&kvm->srcu);
3569 kfree(bus);
3570
3571 return 0;
3572 }
3573
3574 /* Caller must hold slots_lock. */
3575 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3576 struct kvm_io_device *dev)
3577 {
3578 int i, r;
3579 struct kvm_io_bus *new_bus, *bus;
3580
3581 bus = kvm->buses[bus_idx];
3582 r = -ENOENT;
3583 for (i = 0; i < bus->dev_count; i++)
3584 if (bus->range[i].dev == dev) {
3585 r = 0;
3586 break;
3587 }
3588
3589 if (r)
3590 return r;
3591
3592 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3593 sizeof(struct kvm_io_range)), GFP_KERNEL);
3594 if (!new_bus)
3595 return -ENOMEM;
3596
3597 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3598 new_bus->dev_count--;
3599 memcpy(new_bus->range + i, bus->range + i + 1,
3600 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3601
3602 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3603 synchronize_srcu_expedited(&kvm->srcu);
3604 kfree(bus);
3605 return r;
3606 }
3607
3608 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3609 gpa_t addr)
3610 {
3611 struct kvm_io_bus *bus;
3612 int dev_idx, srcu_idx;
3613 struct kvm_io_device *iodev = NULL;
3614
3615 srcu_idx = srcu_read_lock(&kvm->srcu);
3616
3617 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3618
3619 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3620 if (dev_idx < 0)
3621 goto out_unlock;
3622
3623 iodev = bus->range[dev_idx].dev;
3624
3625 out_unlock:
3626 srcu_read_unlock(&kvm->srcu, srcu_idx);
3627
3628 return iodev;
3629 }
3630 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3631
3632 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3633 int (*get)(void *, u64 *), int (*set)(void *, u64),
3634 const char *fmt)
3635 {
3636 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3637 inode->i_private;
3638
3639 /* The debugfs files are a reference to the kvm struct which
3640 * is still valid when kvm_destroy_vm is called.
3641 * To avoid the race between open and the removal of the debugfs
3642 * directory we test against the users count.
3643 */
3644 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3645 return -ENOENT;
3646
3647 if (simple_attr_open(inode, file, get, set, fmt)) {
3648 kvm_put_kvm(stat_data->kvm);
3649 return -ENOMEM;
3650 }
3651
3652 return 0;
3653 }
3654
3655 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3656 {
3657 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3658 inode->i_private;
3659
3660 simple_attr_release(inode, file);
3661 kvm_put_kvm(stat_data->kvm);
3662
3663 return 0;
3664 }
3665
3666 static int vm_stat_get_per_vm(void *data, u64 *val)
3667 {
3668 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3669
3670 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3671
3672 return 0;
3673 }
3674
3675 static int vm_stat_clear_per_vm(void *data, u64 val)
3676 {
3677 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3678
3679 if (val)
3680 return -EINVAL;
3681
3682 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3683
3684 return 0;
3685 }
3686
3687 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3688 {
3689 __simple_attr_check_format("%llu\n", 0ull);
3690 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3691 vm_stat_clear_per_vm, "%llu\n");
3692 }
3693
3694 static const struct file_operations vm_stat_get_per_vm_fops = {
3695 .owner = THIS_MODULE,
3696 .open = vm_stat_get_per_vm_open,
3697 .release = kvm_debugfs_release,
3698 .read = simple_attr_read,
3699 .write = simple_attr_write,
3700 .llseek = generic_file_llseek,
3701 };
3702
3703 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3704 {
3705 int i;
3706 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3707 struct kvm_vcpu *vcpu;
3708
3709 *val = 0;
3710
3711 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3712 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3713
3714 return 0;
3715 }
3716
3717 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3718 {
3719 int i;
3720 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3721 struct kvm_vcpu *vcpu;
3722
3723 if (val)
3724 return -EINVAL;
3725
3726 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3727 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3728
3729 return 0;
3730 }
3731
3732 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3733 {
3734 __simple_attr_check_format("%llu\n", 0ull);
3735 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3736 vcpu_stat_clear_per_vm, "%llu\n");
3737 }
3738
3739 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3740 .owner = THIS_MODULE,
3741 .open = vcpu_stat_get_per_vm_open,
3742 .release = kvm_debugfs_release,
3743 .read = simple_attr_read,
3744 .write = simple_attr_write,
3745 .llseek = generic_file_llseek,
3746 };
3747
3748 static const struct file_operations *stat_fops_per_vm[] = {
3749 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3750 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3751 };
3752
3753 static int vm_stat_get(void *_offset, u64 *val)
3754 {
3755 unsigned offset = (long)_offset;
3756 struct kvm *kvm;
3757 struct kvm_stat_data stat_tmp = {.offset = offset};
3758 u64 tmp_val;
3759
3760 *val = 0;
3761 spin_lock(&kvm_lock);
3762 list_for_each_entry(kvm, &vm_list, vm_list) {
3763 stat_tmp.kvm = kvm;
3764 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3765 *val += tmp_val;
3766 }
3767 spin_unlock(&kvm_lock);
3768 return 0;
3769 }
3770
3771 static int vm_stat_clear(void *_offset, u64 val)
3772 {
3773 unsigned offset = (long)_offset;
3774 struct kvm *kvm;
3775 struct kvm_stat_data stat_tmp = {.offset = offset};
3776
3777 if (val)
3778 return -EINVAL;
3779
3780 spin_lock(&kvm_lock);
3781 list_for_each_entry(kvm, &vm_list, vm_list) {
3782 stat_tmp.kvm = kvm;
3783 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3784 }
3785 spin_unlock(&kvm_lock);
3786
3787 return 0;
3788 }
3789
3790 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3791
3792 static int vcpu_stat_get(void *_offset, u64 *val)
3793 {
3794 unsigned offset = (long)_offset;
3795 struct kvm *kvm;
3796 struct kvm_stat_data stat_tmp = {.offset = offset};
3797 u64 tmp_val;
3798
3799 *val = 0;
3800 spin_lock(&kvm_lock);
3801 list_for_each_entry(kvm, &vm_list, vm_list) {
3802 stat_tmp.kvm = kvm;
3803 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3804 *val += tmp_val;
3805 }
3806 spin_unlock(&kvm_lock);
3807 return 0;
3808 }
3809
3810 static int vcpu_stat_clear(void *_offset, u64 val)
3811 {
3812 unsigned offset = (long)_offset;
3813 struct kvm *kvm;
3814 struct kvm_stat_data stat_tmp = {.offset = offset};
3815
3816 if (val)
3817 return -EINVAL;
3818
3819 spin_lock(&kvm_lock);
3820 list_for_each_entry(kvm, &vm_list, vm_list) {
3821 stat_tmp.kvm = kvm;
3822 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3823 }
3824 spin_unlock(&kvm_lock);
3825
3826 return 0;
3827 }
3828
3829 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3830 "%llu\n");
3831
3832 static const struct file_operations *stat_fops[] = {
3833 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3834 [KVM_STAT_VM] = &vm_stat_fops,
3835 };
3836
3837 static int kvm_init_debug(void)
3838 {
3839 int r = -EEXIST;
3840 struct kvm_stats_debugfs_item *p;
3841
3842 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3843 if (kvm_debugfs_dir == NULL)
3844 goto out;
3845
3846 kvm_debugfs_num_entries = 0;
3847 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3848 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3849 (void *)(long)p->offset,
3850 stat_fops[p->kind]))
3851 goto out_dir;
3852 }
3853
3854 return 0;
3855
3856 out_dir:
3857 debugfs_remove_recursive(kvm_debugfs_dir);
3858 out:
3859 return r;
3860 }
3861
3862 static int kvm_suspend(void)
3863 {
3864 if (kvm_usage_count)
3865 hardware_disable_nolock(NULL);
3866 return 0;
3867 }
3868
3869 static void kvm_resume(void)
3870 {
3871 if (kvm_usage_count) {
3872 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3873 hardware_enable_nolock(NULL);
3874 }
3875 }
3876
3877 static struct syscore_ops kvm_syscore_ops = {
3878 .suspend = kvm_suspend,
3879 .resume = kvm_resume,
3880 };
3881
3882 static inline
3883 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3884 {
3885 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3886 }
3887
3888 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3889 {
3890 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3891
3892 if (vcpu->preempted)
3893 vcpu->preempted = false;
3894
3895 kvm_arch_sched_in(vcpu, cpu);
3896
3897 kvm_arch_vcpu_load(vcpu, cpu);
3898 }
3899
3900 static void kvm_sched_out(struct preempt_notifier *pn,
3901 struct task_struct *next)
3902 {
3903 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3904
3905 if (current->state == TASK_RUNNING)
3906 vcpu->preempted = true;
3907 kvm_arch_vcpu_put(vcpu);
3908 }
3909
3910 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3911 struct module *module)
3912 {
3913 int r;
3914 int cpu;
3915
3916 r = kvm_arch_init(opaque);
3917 if (r)
3918 goto out_fail;
3919
3920 /*
3921 * kvm_arch_init makes sure there's at most one caller
3922 * for architectures that support multiple implementations,
3923 * like intel and amd on x86.
3924 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3925 * conflicts in case kvm is already setup for another implementation.
3926 */
3927 r = kvm_irqfd_init();
3928 if (r)
3929 goto out_irqfd;
3930
3931 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3932 r = -ENOMEM;
3933 goto out_free_0;
3934 }
3935
3936 r = kvm_arch_hardware_setup();
3937 if (r < 0)
3938 goto out_free_0a;
3939
3940 for_each_online_cpu(cpu) {
3941 smp_call_function_single(cpu,
3942 kvm_arch_check_processor_compat,
3943 &r, 1);
3944 if (r < 0)
3945 goto out_free_1;
3946 }
3947
3948 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3949 kvm_starting_cpu, kvm_dying_cpu);
3950 if (r)
3951 goto out_free_2;
3952 register_reboot_notifier(&kvm_reboot_notifier);
3953
3954 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3955 if (!vcpu_align)
3956 vcpu_align = __alignof__(struct kvm_vcpu);
3957 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3958 0, NULL);
3959 if (!kvm_vcpu_cache) {
3960 r = -ENOMEM;
3961 goto out_free_3;
3962 }
3963
3964 r = kvm_async_pf_init();
3965 if (r)
3966 goto out_free;
3967
3968 kvm_chardev_ops.owner = module;
3969 kvm_vm_fops.owner = module;
3970 kvm_vcpu_fops.owner = module;
3971
3972 r = misc_register(&kvm_dev);
3973 if (r) {
3974 pr_err("kvm: misc device register failed\n");
3975 goto out_unreg;
3976 }
3977
3978 register_syscore_ops(&kvm_syscore_ops);
3979
3980 kvm_preempt_ops.sched_in = kvm_sched_in;
3981 kvm_preempt_ops.sched_out = kvm_sched_out;
3982
3983 r = kvm_init_debug();
3984 if (r) {
3985 pr_err("kvm: create debugfs files failed\n");
3986 goto out_undebugfs;
3987 }
3988
3989 r = kvm_vfio_ops_init();
3990 WARN_ON(r);
3991
3992 return 0;
3993
3994 out_undebugfs:
3995 unregister_syscore_ops(&kvm_syscore_ops);
3996 misc_deregister(&kvm_dev);
3997 out_unreg:
3998 kvm_async_pf_deinit();
3999 out_free:
4000 kmem_cache_destroy(kvm_vcpu_cache);
4001 out_free_3:
4002 unregister_reboot_notifier(&kvm_reboot_notifier);
4003 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4004 out_free_2:
4005 out_free_1:
4006 kvm_arch_hardware_unsetup();
4007 out_free_0a:
4008 free_cpumask_var(cpus_hardware_enabled);
4009 out_free_0:
4010 kvm_irqfd_exit();
4011 out_irqfd:
4012 kvm_arch_exit();
4013 out_fail:
4014 return r;
4015 }
4016 EXPORT_SYMBOL_GPL(kvm_init);
4017
4018 void kvm_exit(void)
4019 {
4020 debugfs_remove_recursive(kvm_debugfs_dir);
4021 misc_deregister(&kvm_dev);
4022 kmem_cache_destroy(kvm_vcpu_cache);
4023 kvm_async_pf_deinit();
4024 unregister_syscore_ops(&kvm_syscore_ops);
4025 unregister_reboot_notifier(&kvm_reboot_notifier);
4026 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4027 on_each_cpu(hardware_disable_nolock, NULL, 1);
4028 kvm_arch_hardware_unsetup();
4029 kvm_arch_exit();
4030 kvm_irqfd_exit();
4031 free_cpumask_var(cpus_hardware_enabled);
4032 kvm_vfio_ops_exit();
4033 }
4034 EXPORT_SYMBOL_GPL(kvm_exit);