]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/kvm_main.c
Merge tag 'usb-4.9-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[mirror_ubuntu-artful-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
79
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
83
84 /*
85 * Ordering of locks:
86 *
87 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
88 */
89
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
93
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
97
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
100
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
102
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
105
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
108
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110 unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113 unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
117
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
119
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
122
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
125
126 static bool largepages_enabled = true;
127
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
129 {
130 if (pfn_valid(pfn))
131 return PageReserved(pfn_to_page(pfn));
132
133 return true;
134 }
135
136 /*
137 * Switches to specified vcpu, until a matching vcpu_put()
138 */
139 int vcpu_load(struct kvm_vcpu *vcpu)
140 {
141 int cpu;
142
143 if (mutex_lock_killable(&vcpu->mutex))
144 return -EINTR;
145 cpu = get_cpu();
146 preempt_notifier_register(&vcpu->preempt_notifier);
147 kvm_arch_vcpu_load(vcpu, cpu);
148 put_cpu();
149 return 0;
150 }
151 EXPORT_SYMBOL_GPL(vcpu_load);
152
153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155 preempt_disable();
156 kvm_arch_vcpu_put(vcpu);
157 preempt_notifier_unregister(&vcpu->preempt_notifier);
158 preempt_enable();
159 mutex_unlock(&vcpu->mutex);
160 }
161 EXPORT_SYMBOL_GPL(vcpu_put);
162
163 static void ack_flush(void *_completed)
164 {
165 }
166
167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
168 {
169 int i, cpu, me;
170 cpumask_var_t cpus;
171 bool called = true;
172 struct kvm_vcpu *vcpu;
173
174 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
175
176 me = get_cpu();
177 kvm_for_each_vcpu(i, vcpu, kvm) {
178 kvm_make_request(req, vcpu);
179 cpu = vcpu->cpu;
180
181 /* Set ->requests bit before we read ->mode. */
182 smp_mb__after_atomic();
183
184 if (cpus != NULL && cpu != -1 && cpu != me &&
185 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
186 cpumask_set_cpu(cpu, cpus);
187 }
188 if (unlikely(cpus == NULL))
189 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
190 else if (!cpumask_empty(cpus))
191 smp_call_function_many(cpus, ack_flush, NULL, 1);
192 else
193 called = false;
194 put_cpu();
195 free_cpumask_var(cpus);
196 return called;
197 }
198
199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 /*
203 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
204 * kvm_make_all_cpus_request.
205 */
206 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
207
208 /*
209 * We want to publish modifications to the page tables before reading
210 * mode. Pairs with a memory barrier in arch-specific code.
211 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
212 * and smp_mb in walk_shadow_page_lockless_begin/end.
213 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
214 *
215 * There is already an smp_mb__after_atomic() before
216 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
217 * barrier here.
218 */
219 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
220 ++kvm->stat.remote_tlb_flush;
221 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
222 }
223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
224 #endif
225
226 void kvm_reload_remote_mmus(struct kvm *kvm)
227 {
228 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
229 }
230
231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
232 {
233 struct page *page;
234 int r;
235
236 mutex_init(&vcpu->mutex);
237 vcpu->cpu = -1;
238 vcpu->kvm = kvm;
239 vcpu->vcpu_id = id;
240 vcpu->pid = NULL;
241 init_swait_queue_head(&vcpu->wq);
242 kvm_async_pf_vcpu_init(vcpu);
243
244 vcpu->pre_pcpu = -1;
245 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
246
247 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
248 if (!page) {
249 r = -ENOMEM;
250 goto fail;
251 }
252 vcpu->run = page_address(page);
253
254 kvm_vcpu_set_in_spin_loop(vcpu, false);
255 kvm_vcpu_set_dy_eligible(vcpu, false);
256 vcpu->preempted = false;
257
258 r = kvm_arch_vcpu_init(vcpu);
259 if (r < 0)
260 goto fail_free_run;
261 return 0;
262
263 fail_free_run:
264 free_page((unsigned long)vcpu->run);
265 fail:
266 return r;
267 }
268 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
269
270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
271 {
272 put_pid(vcpu->pid);
273 kvm_arch_vcpu_uninit(vcpu);
274 free_page((unsigned long)vcpu->run);
275 }
276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
277
278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
280 {
281 return container_of(mn, struct kvm, mmu_notifier);
282 }
283
284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
285 struct mm_struct *mm,
286 unsigned long address)
287 {
288 struct kvm *kvm = mmu_notifier_to_kvm(mn);
289 int need_tlb_flush, idx;
290
291 /*
292 * When ->invalidate_page runs, the linux pte has been zapped
293 * already but the page is still allocated until
294 * ->invalidate_page returns. So if we increase the sequence
295 * here the kvm page fault will notice if the spte can't be
296 * established because the page is going to be freed. If
297 * instead the kvm page fault establishes the spte before
298 * ->invalidate_page runs, kvm_unmap_hva will release it
299 * before returning.
300 *
301 * The sequence increase only need to be seen at spin_unlock
302 * time, and not at spin_lock time.
303 *
304 * Increasing the sequence after the spin_unlock would be
305 * unsafe because the kvm page fault could then establish the
306 * pte after kvm_unmap_hva returned, without noticing the page
307 * is going to be freed.
308 */
309 idx = srcu_read_lock(&kvm->srcu);
310 spin_lock(&kvm->mmu_lock);
311
312 kvm->mmu_notifier_seq++;
313 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
314 /* we've to flush the tlb before the pages can be freed */
315 if (need_tlb_flush)
316 kvm_flush_remote_tlbs(kvm);
317
318 spin_unlock(&kvm->mmu_lock);
319
320 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
321
322 srcu_read_unlock(&kvm->srcu, idx);
323 }
324
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326 struct mm_struct *mm,
327 unsigned long address,
328 pte_t pte)
329 {
330 struct kvm *kvm = mmu_notifier_to_kvm(mn);
331 int idx;
332
333 idx = srcu_read_lock(&kvm->srcu);
334 spin_lock(&kvm->mmu_lock);
335 kvm->mmu_notifier_seq++;
336 kvm_set_spte_hva(kvm, address, pte);
337 spin_unlock(&kvm->mmu_lock);
338 srcu_read_unlock(&kvm->srcu, idx);
339 }
340
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342 struct mm_struct *mm,
343 unsigned long start,
344 unsigned long end)
345 {
346 struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 int need_tlb_flush = 0, idx;
348
349 idx = srcu_read_lock(&kvm->srcu);
350 spin_lock(&kvm->mmu_lock);
351 /*
352 * The count increase must become visible at unlock time as no
353 * spte can be established without taking the mmu_lock and
354 * count is also read inside the mmu_lock critical section.
355 */
356 kvm->mmu_notifier_count++;
357 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358 need_tlb_flush |= kvm->tlbs_dirty;
359 /* we've to flush the tlb before the pages can be freed */
360 if (need_tlb_flush)
361 kvm_flush_remote_tlbs(kvm);
362
363 spin_unlock(&kvm->mmu_lock);
364 srcu_read_unlock(&kvm->srcu, idx);
365 }
366
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368 struct mm_struct *mm,
369 unsigned long start,
370 unsigned long end)
371 {
372 struct kvm *kvm = mmu_notifier_to_kvm(mn);
373
374 spin_lock(&kvm->mmu_lock);
375 /*
376 * This sequence increase will notify the kvm page fault that
377 * the page that is going to be mapped in the spte could have
378 * been freed.
379 */
380 kvm->mmu_notifier_seq++;
381 smp_wmb();
382 /*
383 * The above sequence increase must be visible before the
384 * below count decrease, which is ensured by the smp_wmb above
385 * in conjunction with the smp_rmb in mmu_notifier_retry().
386 */
387 kvm->mmu_notifier_count--;
388 spin_unlock(&kvm->mmu_lock);
389
390 BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394 struct mm_struct *mm,
395 unsigned long start,
396 unsigned long end)
397 {
398 struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 int young, idx;
400
401 idx = srcu_read_lock(&kvm->srcu);
402 spin_lock(&kvm->mmu_lock);
403
404 young = kvm_age_hva(kvm, start, end);
405 if (young)
406 kvm_flush_remote_tlbs(kvm);
407
408 spin_unlock(&kvm->mmu_lock);
409 srcu_read_unlock(&kvm->srcu, idx);
410
411 return young;
412 }
413
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415 struct mm_struct *mm,
416 unsigned long start,
417 unsigned long end)
418 {
419 struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 int young, idx;
421
422 idx = srcu_read_lock(&kvm->srcu);
423 spin_lock(&kvm->mmu_lock);
424 /*
425 * Even though we do not flush TLB, this will still adversely
426 * affect performance on pre-Haswell Intel EPT, where there is
427 * no EPT Access Bit to clear so that we have to tear down EPT
428 * tables instead. If we find this unacceptable, we can always
429 * add a parameter to kvm_age_hva so that it effectively doesn't
430 * do anything on clear_young.
431 *
432 * Also note that currently we never issue secondary TLB flushes
433 * from clear_young, leaving this job up to the regular system
434 * cadence. If we find this inaccurate, we might come up with a
435 * more sophisticated heuristic later.
436 */
437 young = kvm_age_hva(kvm, start, end);
438 spin_unlock(&kvm->mmu_lock);
439 srcu_read_unlock(&kvm->srcu, idx);
440
441 return young;
442 }
443
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445 struct mm_struct *mm,
446 unsigned long address)
447 {
448 struct kvm *kvm = mmu_notifier_to_kvm(mn);
449 int young, idx;
450
451 idx = srcu_read_lock(&kvm->srcu);
452 spin_lock(&kvm->mmu_lock);
453 young = kvm_test_age_hva(kvm, address);
454 spin_unlock(&kvm->mmu_lock);
455 srcu_read_unlock(&kvm->srcu, idx);
456
457 return young;
458 }
459
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461 struct mm_struct *mm)
462 {
463 struct kvm *kvm = mmu_notifier_to_kvm(mn);
464 int idx;
465
466 idx = srcu_read_lock(&kvm->srcu);
467 kvm_arch_flush_shadow_all(kvm);
468 srcu_read_unlock(&kvm->srcu, idx);
469 }
470
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472 .invalidate_page = kvm_mmu_notifier_invalidate_page,
473 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
474 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
475 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
476 .clear_young = kvm_mmu_notifier_clear_young,
477 .test_young = kvm_mmu_notifier_test_young,
478 .change_pte = kvm_mmu_notifier_change_pte,
479 .release = kvm_mmu_notifier_release,
480 };
481
482 static int kvm_init_mmu_notifier(struct kvm *kvm)
483 {
484 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
485 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
486 }
487
488 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
489
490 static int kvm_init_mmu_notifier(struct kvm *kvm)
491 {
492 return 0;
493 }
494
495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
496
497 static struct kvm_memslots *kvm_alloc_memslots(void)
498 {
499 int i;
500 struct kvm_memslots *slots;
501
502 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
503 if (!slots)
504 return NULL;
505
506 /*
507 * Init kvm generation close to the maximum to easily test the
508 * code of handling generation number wrap-around.
509 */
510 slots->generation = -150;
511 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512 slots->id_to_index[i] = slots->memslots[i].id = i;
513
514 return slots;
515 }
516
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519 if (!memslot->dirty_bitmap)
520 return;
521
522 kvfree(memslot->dirty_bitmap);
523 memslot->dirty_bitmap = NULL;
524 }
525
526 /*
527 * Free any memory in @free but not in @dont.
528 */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530 struct kvm_memory_slot *dont)
531 {
532 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533 kvm_destroy_dirty_bitmap(free);
534
535 kvm_arch_free_memslot(kvm, free, dont);
536
537 free->npages = 0;
538 }
539
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542 struct kvm_memory_slot *memslot;
543
544 if (!slots)
545 return;
546
547 kvm_for_each_memslot(memslot, slots)
548 kvm_free_memslot(kvm, memslot, NULL);
549
550 kvfree(slots);
551 }
552
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555 int i;
556
557 if (!kvm->debugfs_dentry)
558 return;
559
560 debugfs_remove_recursive(kvm->debugfs_dentry);
561
562 if (kvm->debugfs_stat_data) {
563 for (i = 0; i < kvm_debugfs_num_entries; i++)
564 kfree(kvm->debugfs_stat_data[i]);
565 kfree(kvm->debugfs_stat_data);
566 }
567 }
568
569 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
570 {
571 char dir_name[ITOA_MAX_LEN * 2];
572 struct kvm_stat_data *stat_data;
573 struct kvm_stats_debugfs_item *p;
574
575 if (!debugfs_initialized())
576 return 0;
577
578 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
579 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
580 kvm_debugfs_dir);
581 if (!kvm->debugfs_dentry)
582 return -ENOMEM;
583
584 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
585 sizeof(*kvm->debugfs_stat_data),
586 GFP_KERNEL);
587 if (!kvm->debugfs_stat_data)
588 return -ENOMEM;
589
590 for (p = debugfs_entries; p->name; p++) {
591 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
592 if (!stat_data)
593 return -ENOMEM;
594
595 stat_data->kvm = kvm;
596 stat_data->offset = p->offset;
597 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
598 if (!debugfs_create_file(p->name, 0444,
599 kvm->debugfs_dentry,
600 stat_data,
601 stat_fops_per_vm[p->kind]))
602 return -ENOMEM;
603 }
604 return 0;
605 }
606
607 static struct kvm *kvm_create_vm(unsigned long type)
608 {
609 int r, i;
610 struct kvm *kvm = kvm_arch_alloc_vm();
611
612 if (!kvm)
613 return ERR_PTR(-ENOMEM);
614
615 spin_lock_init(&kvm->mmu_lock);
616 atomic_inc(&current->mm->mm_count);
617 kvm->mm = current->mm;
618 kvm_eventfd_init(kvm);
619 mutex_init(&kvm->lock);
620 mutex_init(&kvm->irq_lock);
621 mutex_init(&kvm->slots_lock);
622 atomic_set(&kvm->users_count, 1);
623 INIT_LIST_HEAD(&kvm->devices);
624
625 r = kvm_arch_init_vm(kvm, type);
626 if (r)
627 goto out_err_no_disable;
628
629 r = hardware_enable_all();
630 if (r)
631 goto out_err_no_disable;
632
633 #ifdef CONFIG_HAVE_KVM_IRQFD
634 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
635 #endif
636
637 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
638
639 r = -ENOMEM;
640 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
641 kvm->memslots[i] = kvm_alloc_memslots();
642 if (!kvm->memslots[i])
643 goto out_err_no_srcu;
644 }
645
646 if (init_srcu_struct(&kvm->srcu))
647 goto out_err_no_srcu;
648 if (init_srcu_struct(&kvm->irq_srcu))
649 goto out_err_no_irq_srcu;
650 for (i = 0; i < KVM_NR_BUSES; i++) {
651 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
652 GFP_KERNEL);
653 if (!kvm->buses[i])
654 goto out_err;
655 }
656
657 r = kvm_init_mmu_notifier(kvm);
658 if (r)
659 goto out_err;
660
661 spin_lock(&kvm_lock);
662 list_add(&kvm->vm_list, &vm_list);
663 spin_unlock(&kvm_lock);
664
665 preempt_notifier_inc();
666
667 return kvm;
668
669 out_err:
670 cleanup_srcu_struct(&kvm->irq_srcu);
671 out_err_no_irq_srcu:
672 cleanup_srcu_struct(&kvm->srcu);
673 out_err_no_srcu:
674 hardware_disable_all();
675 out_err_no_disable:
676 for (i = 0; i < KVM_NR_BUSES; i++)
677 kfree(kvm->buses[i]);
678 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
679 kvm_free_memslots(kvm, kvm->memslots[i]);
680 kvm_arch_free_vm(kvm);
681 mmdrop(current->mm);
682 return ERR_PTR(r);
683 }
684
685 /*
686 * Avoid using vmalloc for a small buffer.
687 * Should not be used when the size is statically known.
688 */
689 void *kvm_kvzalloc(unsigned long size)
690 {
691 if (size > PAGE_SIZE)
692 return vzalloc(size);
693 else
694 return kzalloc(size, GFP_KERNEL);
695 }
696
697 static void kvm_destroy_devices(struct kvm *kvm)
698 {
699 struct kvm_device *dev, *tmp;
700
701 /*
702 * We do not need to take the kvm->lock here, because nobody else
703 * has a reference to the struct kvm at this point and therefore
704 * cannot access the devices list anyhow.
705 */
706 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
707 list_del(&dev->vm_node);
708 dev->ops->destroy(dev);
709 }
710 }
711
712 static void kvm_destroy_vm(struct kvm *kvm)
713 {
714 int i;
715 struct mm_struct *mm = kvm->mm;
716
717 kvm_destroy_vm_debugfs(kvm);
718 kvm_arch_sync_events(kvm);
719 spin_lock(&kvm_lock);
720 list_del(&kvm->vm_list);
721 spin_unlock(&kvm_lock);
722 kvm_free_irq_routing(kvm);
723 for (i = 0; i < KVM_NR_BUSES; i++)
724 kvm_io_bus_destroy(kvm->buses[i]);
725 kvm_coalesced_mmio_free(kvm);
726 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
727 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
728 #else
729 kvm_arch_flush_shadow_all(kvm);
730 #endif
731 kvm_arch_destroy_vm(kvm);
732 kvm_destroy_devices(kvm);
733 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
734 kvm_free_memslots(kvm, kvm->memslots[i]);
735 cleanup_srcu_struct(&kvm->irq_srcu);
736 cleanup_srcu_struct(&kvm->srcu);
737 kvm_arch_free_vm(kvm);
738 preempt_notifier_dec();
739 hardware_disable_all();
740 mmdrop(mm);
741 }
742
743 void kvm_get_kvm(struct kvm *kvm)
744 {
745 atomic_inc(&kvm->users_count);
746 }
747 EXPORT_SYMBOL_GPL(kvm_get_kvm);
748
749 void kvm_put_kvm(struct kvm *kvm)
750 {
751 if (atomic_dec_and_test(&kvm->users_count))
752 kvm_destroy_vm(kvm);
753 }
754 EXPORT_SYMBOL_GPL(kvm_put_kvm);
755
756
757 static int kvm_vm_release(struct inode *inode, struct file *filp)
758 {
759 struct kvm *kvm = filp->private_data;
760
761 kvm_irqfd_release(kvm);
762
763 kvm_put_kvm(kvm);
764 return 0;
765 }
766
767 /*
768 * Allocation size is twice as large as the actual dirty bitmap size.
769 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
770 */
771 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
772 {
773 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
774
775 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
776 if (!memslot->dirty_bitmap)
777 return -ENOMEM;
778
779 return 0;
780 }
781
782 /*
783 * Insert memslot and re-sort memslots based on their GFN,
784 * so binary search could be used to lookup GFN.
785 * Sorting algorithm takes advantage of having initially
786 * sorted array and known changed memslot position.
787 */
788 static void update_memslots(struct kvm_memslots *slots,
789 struct kvm_memory_slot *new)
790 {
791 int id = new->id;
792 int i = slots->id_to_index[id];
793 struct kvm_memory_slot *mslots = slots->memslots;
794
795 WARN_ON(mslots[i].id != id);
796 if (!new->npages) {
797 WARN_ON(!mslots[i].npages);
798 if (mslots[i].npages)
799 slots->used_slots--;
800 } else {
801 if (!mslots[i].npages)
802 slots->used_slots++;
803 }
804
805 while (i < KVM_MEM_SLOTS_NUM - 1 &&
806 new->base_gfn <= mslots[i + 1].base_gfn) {
807 if (!mslots[i + 1].npages)
808 break;
809 mslots[i] = mslots[i + 1];
810 slots->id_to_index[mslots[i].id] = i;
811 i++;
812 }
813
814 /*
815 * The ">=" is needed when creating a slot with base_gfn == 0,
816 * so that it moves before all those with base_gfn == npages == 0.
817 *
818 * On the other hand, if new->npages is zero, the above loop has
819 * already left i pointing to the beginning of the empty part of
820 * mslots, and the ">=" would move the hole backwards in this
821 * case---which is wrong. So skip the loop when deleting a slot.
822 */
823 if (new->npages) {
824 while (i > 0 &&
825 new->base_gfn >= mslots[i - 1].base_gfn) {
826 mslots[i] = mslots[i - 1];
827 slots->id_to_index[mslots[i].id] = i;
828 i--;
829 }
830 } else
831 WARN_ON_ONCE(i != slots->used_slots);
832
833 mslots[i] = *new;
834 slots->id_to_index[mslots[i].id] = i;
835 }
836
837 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
838 {
839 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
840
841 #ifdef __KVM_HAVE_READONLY_MEM
842 valid_flags |= KVM_MEM_READONLY;
843 #endif
844
845 if (mem->flags & ~valid_flags)
846 return -EINVAL;
847
848 return 0;
849 }
850
851 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
852 int as_id, struct kvm_memslots *slots)
853 {
854 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
855
856 /*
857 * Set the low bit in the generation, which disables SPTE caching
858 * until the end of synchronize_srcu_expedited.
859 */
860 WARN_ON(old_memslots->generation & 1);
861 slots->generation = old_memslots->generation + 1;
862
863 rcu_assign_pointer(kvm->memslots[as_id], slots);
864 synchronize_srcu_expedited(&kvm->srcu);
865
866 /*
867 * Increment the new memslot generation a second time. This prevents
868 * vm exits that race with memslot updates from caching a memslot
869 * generation that will (potentially) be valid forever.
870 */
871 slots->generation++;
872
873 kvm_arch_memslots_updated(kvm, slots);
874
875 return old_memslots;
876 }
877
878 /*
879 * Allocate some memory and give it an address in the guest physical address
880 * space.
881 *
882 * Discontiguous memory is allowed, mostly for framebuffers.
883 *
884 * Must be called holding kvm->slots_lock for write.
885 */
886 int __kvm_set_memory_region(struct kvm *kvm,
887 const struct kvm_userspace_memory_region *mem)
888 {
889 int r;
890 gfn_t base_gfn;
891 unsigned long npages;
892 struct kvm_memory_slot *slot;
893 struct kvm_memory_slot old, new;
894 struct kvm_memslots *slots = NULL, *old_memslots;
895 int as_id, id;
896 enum kvm_mr_change change;
897
898 r = check_memory_region_flags(mem);
899 if (r)
900 goto out;
901
902 r = -EINVAL;
903 as_id = mem->slot >> 16;
904 id = (u16)mem->slot;
905
906 /* General sanity checks */
907 if (mem->memory_size & (PAGE_SIZE - 1))
908 goto out;
909 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
910 goto out;
911 /* We can read the guest memory with __xxx_user() later on. */
912 if ((id < KVM_USER_MEM_SLOTS) &&
913 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
914 !access_ok(VERIFY_WRITE,
915 (void __user *)(unsigned long)mem->userspace_addr,
916 mem->memory_size)))
917 goto out;
918 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
919 goto out;
920 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
921 goto out;
922
923 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
924 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
925 npages = mem->memory_size >> PAGE_SHIFT;
926
927 if (npages > KVM_MEM_MAX_NR_PAGES)
928 goto out;
929
930 new = old = *slot;
931
932 new.id = id;
933 new.base_gfn = base_gfn;
934 new.npages = npages;
935 new.flags = mem->flags;
936
937 if (npages) {
938 if (!old.npages)
939 change = KVM_MR_CREATE;
940 else { /* Modify an existing slot. */
941 if ((mem->userspace_addr != old.userspace_addr) ||
942 (npages != old.npages) ||
943 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
944 goto out;
945
946 if (base_gfn != old.base_gfn)
947 change = KVM_MR_MOVE;
948 else if (new.flags != old.flags)
949 change = KVM_MR_FLAGS_ONLY;
950 else { /* Nothing to change. */
951 r = 0;
952 goto out;
953 }
954 }
955 } else {
956 if (!old.npages)
957 goto out;
958
959 change = KVM_MR_DELETE;
960 new.base_gfn = 0;
961 new.flags = 0;
962 }
963
964 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
965 /* Check for overlaps */
966 r = -EEXIST;
967 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
968 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
969 (slot->id == id))
970 continue;
971 if (!((base_gfn + npages <= slot->base_gfn) ||
972 (base_gfn >= slot->base_gfn + slot->npages)))
973 goto out;
974 }
975 }
976
977 /* Free page dirty bitmap if unneeded */
978 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
979 new.dirty_bitmap = NULL;
980
981 r = -ENOMEM;
982 if (change == KVM_MR_CREATE) {
983 new.userspace_addr = mem->userspace_addr;
984
985 if (kvm_arch_create_memslot(kvm, &new, npages))
986 goto out_free;
987 }
988
989 /* Allocate page dirty bitmap if needed */
990 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
991 if (kvm_create_dirty_bitmap(&new) < 0)
992 goto out_free;
993 }
994
995 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
996 if (!slots)
997 goto out_free;
998 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
999
1000 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1001 slot = id_to_memslot(slots, id);
1002 slot->flags |= KVM_MEMSLOT_INVALID;
1003
1004 old_memslots = install_new_memslots(kvm, as_id, slots);
1005
1006 /* slot was deleted or moved, clear iommu mapping */
1007 kvm_iommu_unmap_pages(kvm, &old);
1008 /* From this point no new shadow pages pointing to a deleted,
1009 * or moved, memslot will be created.
1010 *
1011 * validation of sp->gfn happens in:
1012 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1013 * - kvm_is_visible_gfn (mmu_check_roots)
1014 */
1015 kvm_arch_flush_shadow_memslot(kvm, slot);
1016
1017 /*
1018 * We can re-use the old_memslots from above, the only difference
1019 * from the currently installed memslots is the invalid flag. This
1020 * will get overwritten by update_memslots anyway.
1021 */
1022 slots = old_memslots;
1023 }
1024
1025 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1026 if (r)
1027 goto out_slots;
1028
1029 /* actual memory is freed via old in kvm_free_memslot below */
1030 if (change == KVM_MR_DELETE) {
1031 new.dirty_bitmap = NULL;
1032 memset(&new.arch, 0, sizeof(new.arch));
1033 }
1034
1035 update_memslots(slots, &new);
1036 old_memslots = install_new_memslots(kvm, as_id, slots);
1037
1038 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1039
1040 kvm_free_memslot(kvm, &old, &new);
1041 kvfree(old_memslots);
1042
1043 /*
1044 * IOMMU mapping: New slots need to be mapped. Old slots need to be
1045 * un-mapped and re-mapped if their base changes. Since base change
1046 * unmapping is handled above with slot deletion, mapping alone is
1047 * needed here. Anything else the iommu might care about for existing
1048 * slots (size changes, userspace addr changes and read-only flag
1049 * changes) is disallowed above, so any other attribute changes getting
1050 * here can be skipped.
1051 */
1052 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1053 r = kvm_iommu_map_pages(kvm, &new);
1054 return r;
1055 }
1056
1057 return 0;
1058
1059 out_slots:
1060 kvfree(slots);
1061 out_free:
1062 kvm_free_memslot(kvm, &new, &old);
1063 out:
1064 return r;
1065 }
1066 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1067
1068 int kvm_set_memory_region(struct kvm *kvm,
1069 const struct kvm_userspace_memory_region *mem)
1070 {
1071 int r;
1072
1073 mutex_lock(&kvm->slots_lock);
1074 r = __kvm_set_memory_region(kvm, mem);
1075 mutex_unlock(&kvm->slots_lock);
1076 return r;
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1079
1080 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1081 struct kvm_userspace_memory_region *mem)
1082 {
1083 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1084 return -EINVAL;
1085
1086 return kvm_set_memory_region(kvm, mem);
1087 }
1088
1089 int kvm_get_dirty_log(struct kvm *kvm,
1090 struct kvm_dirty_log *log, int *is_dirty)
1091 {
1092 struct kvm_memslots *slots;
1093 struct kvm_memory_slot *memslot;
1094 int r, i, as_id, id;
1095 unsigned long n;
1096 unsigned long any = 0;
1097
1098 r = -EINVAL;
1099 as_id = log->slot >> 16;
1100 id = (u16)log->slot;
1101 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1102 goto out;
1103
1104 slots = __kvm_memslots(kvm, as_id);
1105 memslot = id_to_memslot(slots, id);
1106 r = -ENOENT;
1107 if (!memslot->dirty_bitmap)
1108 goto out;
1109
1110 n = kvm_dirty_bitmap_bytes(memslot);
1111
1112 for (i = 0; !any && i < n/sizeof(long); ++i)
1113 any = memslot->dirty_bitmap[i];
1114
1115 r = -EFAULT;
1116 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1117 goto out;
1118
1119 if (any)
1120 *is_dirty = 1;
1121
1122 r = 0;
1123 out:
1124 return r;
1125 }
1126 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1127
1128 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1129 /**
1130 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1131 * are dirty write protect them for next write.
1132 * @kvm: pointer to kvm instance
1133 * @log: slot id and address to which we copy the log
1134 * @is_dirty: flag set if any page is dirty
1135 *
1136 * We need to keep it in mind that VCPU threads can write to the bitmap
1137 * concurrently. So, to avoid losing track of dirty pages we keep the
1138 * following order:
1139 *
1140 * 1. Take a snapshot of the bit and clear it if needed.
1141 * 2. Write protect the corresponding page.
1142 * 3. Copy the snapshot to the userspace.
1143 * 4. Upon return caller flushes TLB's if needed.
1144 *
1145 * Between 2 and 4, the guest may write to the page using the remaining TLB
1146 * entry. This is not a problem because the page is reported dirty using
1147 * the snapshot taken before and step 4 ensures that writes done after
1148 * exiting to userspace will be logged for the next call.
1149 *
1150 */
1151 int kvm_get_dirty_log_protect(struct kvm *kvm,
1152 struct kvm_dirty_log *log, bool *is_dirty)
1153 {
1154 struct kvm_memslots *slots;
1155 struct kvm_memory_slot *memslot;
1156 int r, i, as_id, id;
1157 unsigned long n;
1158 unsigned long *dirty_bitmap;
1159 unsigned long *dirty_bitmap_buffer;
1160
1161 r = -EINVAL;
1162 as_id = log->slot >> 16;
1163 id = (u16)log->slot;
1164 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1165 goto out;
1166
1167 slots = __kvm_memslots(kvm, as_id);
1168 memslot = id_to_memslot(slots, id);
1169
1170 dirty_bitmap = memslot->dirty_bitmap;
1171 r = -ENOENT;
1172 if (!dirty_bitmap)
1173 goto out;
1174
1175 n = kvm_dirty_bitmap_bytes(memslot);
1176
1177 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1178 memset(dirty_bitmap_buffer, 0, n);
1179
1180 spin_lock(&kvm->mmu_lock);
1181 *is_dirty = false;
1182 for (i = 0; i < n / sizeof(long); i++) {
1183 unsigned long mask;
1184 gfn_t offset;
1185
1186 if (!dirty_bitmap[i])
1187 continue;
1188
1189 *is_dirty = true;
1190
1191 mask = xchg(&dirty_bitmap[i], 0);
1192 dirty_bitmap_buffer[i] = mask;
1193
1194 if (mask) {
1195 offset = i * BITS_PER_LONG;
1196 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1197 offset, mask);
1198 }
1199 }
1200
1201 spin_unlock(&kvm->mmu_lock);
1202
1203 r = -EFAULT;
1204 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1205 goto out;
1206
1207 r = 0;
1208 out:
1209 return r;
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1212 #endif
1213
1214 bool kvm_largepages_enabled(void)
1215 {
1216 return largepages_enabled;
1217 }
1218
1219 void kvm_disable_largepages(void)
1220 {
1221 largepages_enabled = false;
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1224
1225 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1226 {
1227 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1228 }
1229 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1230
1231 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1232 {
1233 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1234 }
1235
1236 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1237 {
1238 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1239
1240 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1241 memslot->flags & KVM_MEMSLOT_INVALID)
1242 return false;
1243
1244 return true;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1247
1248 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1249 {
1250 struct vm_area_struct *vma;
1251 unsigned long addr, size;
1252
1253 size = PAGE_SIZE;
1254
1255 addr = gfn_to_hva(kvm, gfn);
1256 if (kvm_is_error_hva(addr))
1257 return PAGE_SIZE;
1258
1259 down_read(&current->mm->mmap_sem);
1260 vma = find_vma(current->mm, addr);
1261 if (!vma)
1262 goto out;
1263
1264 size = vma_kernel_pagesize(vma);
1265
1266 out:
1267 up_read(&current->mm->mmap_sem);
1268
1269 return size;
1270 }
1271
1272 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1273 {
1274 return slot->flags & KVM_MEM_READONLY;
1275 }
1276
1277 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1278 gfn_t *nr_pages, bool write)
1279 {
1280 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1281 return KVM_HVA_ERR_BAD;
1282
1283 if (memslot_is_readonly(slot) && write)
1284 return KVM_HVA_ERR_RO_BAD;
1285
1286 if (nr_pages)
1287 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1288
1289 return __gfn_to_hva_memslot(slot, gfn);
1290 }
1291
1292 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1293 gfn_t *nr_pages)
1294 {
1295 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1296 }
1297
1298 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1299 gfn_t gfn)
1300 {
1301 return gfn_to_hva_many(slot, gfn, NULL);
1302 }
1303 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1304
1305 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1306 {
1307 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1308 }
1309 EXPORT_SYMBOL_GPL(gfn_to_hva);
1310
1311 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1312 {
1313 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1314 }
1315 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1316
1317 /*
1318 * If writable is set to false, the hva returned by this function is only
1319 * allowed to be read.
1320 */
1321 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1322 gfn_t gfn, bool *writable)
1323 {
1324 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1325
1326 if (!kvm_is_error_hva(hva) && writable)
1327 *writable = !memslot_is_readonly(slot);
1328
1329 return hva;
1330 }
1331
1332 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1333 {
1334 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1335
1336 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338
1339 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1340 {
1341 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1342
1343 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1344 }
1345
1346 static int get_user_page_nowait(unsigned long start, int write,
1347 struct page **page)
1348 {
1349 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1350
1351 if (write)
1352 flags |= FOLL_WRITE;
1353
1354 return get_user_pages(start, 1, flags, page, NULL);
1355 }
1356
1357 static inline int check_user_page_hwpoison(unsigned long addr)
1358 {
1359 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1360
1361 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1362 return rc == -EHWPOISON;
1363 }
1364
1365 /*
1366 * The atomic path to get the writable pfn which will be stored in @pfn,
1367 * true indicates success, otherwise false is returned.
1368 */
1369 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1370 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1371 {
1372 struct page *page[1];
1373 int npages;
1374
1375 if (!(async || atomic))
1376 return false;
1377
1378 /*
1379 * Fast pin a writable pfn only if it is a write fault request
1380 * or the caller allows to map a writable pfn for a read fault
1381 * request.
1382 */
1383 if (!(write_fault || writable))
1384 return false;
1385
1386 npages = __get_user_pages_fast(addr, 1, 1, page);
1387 if (npages == 1) {
1388 *pfn = page_to_pfn(page[0]);
1389
1390 if (writable)
1391 *writable = true;
1392 return true;
1393 }
1394
1395 return false;
1396 }
1397
1398 /*
1399 * The slow path to get the pfn of the specified host virtual address,
1400 * 1 indicates success, -errno is returned if error is detected.
1401 */
1402 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1403 bool *writable, kvm_pfn_t *pfn)
1404 {
1405 struct page *page[1];
1406 int npages = 0;
1407
1408 might_sleep();
1409
1410 if (writable)
1411 *writable = write_fault;
1412
1413 if (async) {
1414 down_read(&current->mm->mmap_sem);
1415 npages = get_user_page_nowait(addr, write_fault, page);
1416 up_read(&current->mm->mmap_sem);
1417 } else {
1418 unsigned int flags = FOLL_TOUCH | FOLL_HWPOISON;
1419
1420 if (write_fault)
1421 flags |= FOLL_WRITE;
1422
1423 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1424 page, flags);
1425 }
1426 if (npages != 1)
1427 return npages;
1428
1429 /* map read fault as writable if possible */
1430 if (unlikely(!write_fault) && writable) {
1431 struct page *wpage[1];
1432
1433 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1434 if (npages == 1) {
1435 *writable = true;
1436 put_page(page[0]);
1437 page[0] = wpage[0];
1438 }
1439
1440 npages = 1;
1441 }
1442 *pfn = page_to_pfn(page[0]);
1443 return npages;
1444 }
1445
1446 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1447 {
1448 if (unlikely(!(vma->vm_flags & VM_READ)))
1449 return false;
1450
1451 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1452 return false;
1453
1454 return true;
1455 }
1456
1457 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1458 unsigned long addr, bool *async,
1459 bool write_fault, kvm_pfn_t *p_pfn)
1460 {
1461 unsigned long pfn;
1462 int r;
1463
1464 r = follow_pfn(vma, addr, &pfn);
1465 if (r) {
1466 /*
1467 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1468 * not call the fault handler, so do it here.
1469 */
1470 bool unlocked = false;
1471 r = fixup_user_fault(current, current->mm, addr,
1472 (write_fault ? FAULT_FLAG_WRITE : 0),
1473 &unlocked);
1474 if (unlocked)
1475 return -EAGAIN;
1476 if (r)
1477 return r;
1478
1479 r = follow_pfn(vma, addr, &pfn);
1480 if (r)
1481 return r;
1482
1483 }
1484
1485
1486 /*
1487 * Get a reference here because callers of *hva_to_pfn* and
1488 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1489 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1490 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1491 * simply do nothing for reserved pfns.
1492 *
1493 * Whoever called remap_pfn_range is also going to call e.g.
1494 * unmap_mapping_range before the underlying pages are freed,
1495 * causing a call to our MMU notifier.
1496 */
1497 kvm_get_pfn(pfn);
1498
1499 *p_pfn = pfn;
1500 return 0;
1501 }
1502
1503 /*
1504 * Pin guest page in memory and return its pfn.
1505 * @addr: host virtual address which maps memory to the guest
1506 * @atomic: whether this function can sleep
1507 * @async: whether this function need to wait IO complete if the
1508 * host page is not in the memory
1509 * @write_fault: whether we should get a writable host page
1510 * @writable: whether it allows to map a writable host page for !@write_fault
1511 *
1512 * The function will map a writable host page for these two cases:
1513 * 1): @write_fault = true
1514 * 2): @write_fault = false && @writable, @writable will tell the caller
1515 * whether the mapping is writable.
1516 */
1517 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1518 bool write_fault, bool *writable)
1519 {
1520 struct vm_area_struct *vma;
1521 kvm_pfn_t pfn = 0;
1522 int npages, r;
1523
1524 /* we can do it either atomically or asynchronously, not both */
1525 BUG_ON(atomic && async);
1526
1527 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1528 return pfn;
1529
1530 if (atomic)
1531 return KVM_PFN_ERR_FAULT;
1532
1533 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1534 if (npages == 1)
1535 return pfn;
1536
1537 down_read(&current->mm->mmap_sem);
1538 if (npages == -EHWPOISON ||
1539 (!async && check_user_page_hwpoison(addr))) {
1540 pfn = KVM_PFN_ERR_HWPOISON;
1541 goto exit;
1542 }
1543
1544 retry:
1545 vma = find_vma_intersection(current->mm, addr, addr + 1);
1546
1547 if (vma == NULL)
1548 pfn = KVM_PFN_ERR_FAULT;
1549 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1550 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1551 if (r == -EAGAIN)
1552 goto retry;
1553 if (r < 0)
1554 pfn = KVM_PFN_ERR_FAULT;
1555 } else {
1556 if (async && vma_is_valid(vma, write_fault))
1557 *async = true;
1558 pfn = KVM_PFN_ERR_FAULT;
1559 }
1560 exit:
1561 up_read(&current->mm->mmap_sem);
1562 return pfn;
1563 }
1564
1565 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1566 bool atomic, bool *async, bool write_fault,
1567 bool *writable)
1568 {
1569 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1570
1571 if (addr == KVM_HVA_ERR_RO_BAD) {
1572 if (writable)
1573 *writable = false;
1574 return KVM_PFN_ERR_RO_FAULT;
1575 }
1576
1577 if (kvm_is_error_hva(addr)) {
1578 if (writable)
1579 *writable = false;
1580 return KVM_PFN_NOSLOT;
1581 }
1582
1583 /* Do not map writable pfn in the readonly memslot. */
1584 if (writable && memslot_is_readonly(slot)) {
1585 *writable = false;
1586 writable = NULL;
1587 }
1588
1589 return hva_to_pfn(addr, atomic, async, write_fault,
1590 writable);
1591 }
1592 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1593
1594 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1595 bool *writable)
1596 {
1597 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1598 write_fault, writable);
1599 }
1600 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1601
1602 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1603 {
1604 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1605 }
1606 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1607
1608 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1609 {
1610 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1611 }
1612 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1613
1614 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1615 {
1616 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1617 }
1618 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1619
1620 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1621 {
1622 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1623 }
1624 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1625
1626 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1627 {
1628 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1629 }
1630 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1631
1632 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1633 {
1634 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1635 }
1636 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1637
1638 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1639 struct page **pages, int nr_pages)
1640 {
1641 unsigned long addr;
1642 gfn_t entry;
1643
1644 addr = gfn_to_hva_many(slot, gfn, &entry);
1645 if (kvm_is_error_hva(addr))
1646 return -1;
1647
1648 if (entry < nr_pages)
1649 return 0;
1650
1651 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1652 }
1653 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1654
1655 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1656 {
1657 if (is_error_noslot_pfn(pfn))
1658 return KVM_ERR_PTR_BAD_PAGE;
1659
1660 if (kvm_is_reserved_pfn(pfn)) {
1661 WARN_ON(1);
1662 return KVM_ERR_PTR_BAD_PAGE;
1663 }
1664
1665 return pfn_to_page(pfn);
1666 }
1667
1668 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1669 {
1670 kvm_pfn_t pfn;
1671
1672 pfn = gfn_to_pfn(kvm, gfn);
1673
1674 return kvm_pfn_to_page(pfn);
1675 }
1676 EXPORT_SYMBOL_GPL(gfn_to_page);
1677
1678 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1679 {
1680 kvm_pfn_t pfn;
1681
1682 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1683
1684 return kvm_pfn_to_page(pfn);
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1687
1688 void kvm_release_page_clean(struct page *page)
1689 {
1690 WARN_ON(is_error_page(page));
1691
1692 kvm_release_pfn_clean(page_to_pfn(page));
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1695
1696 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1697 {
1698 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1699 put_page(pfn_to_page(pfn));
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1702
1703 void kvm_release_page_dirty(struct page *page)
1704 {
1705 WARN_ON(is_error_page(page));
1706
1707 kvm_release_pfn_dirty(page_to_pfn(page));
1708 }
1709 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1710
1711 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1712 {
1713 kvm_set_pfn_dirty(pfn);
1714 kvm_release_pfn_clean(pfn);
1715 }
1716
1717 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1718 {
1719 if (!kvm_is_reserved_pfn(pfn)) {
1720 struct page *page = pfn_to_page(pfn);
1721
1722 if (!PageReserved(page))
1723 SetPageDirty(page);
1724 }
1725 }
1726 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1727
1728 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1729 {
1730 if (!kvm_is_reserved_pfn(pfn))
1731 mark_page_accessed(pfn_to_page(pfn));
1732 }
1733 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1734
1735 void kvm_get_pfn(kvm_pfn_t pfn)
1736 {
1737 if (!kvm_is_reserved_pfn(pfn))
1738 get_page(pfn_to_page(pfn));
1739 }
1740 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1741
1742 static int next_segment(unsigned long len, int offset)
1743 {
1744 if (len > PAGE_SIZE - offset)
1745 return PAGE_SIZE - offset;
1746 else
1747 return len;
1748 }
1749
1750 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1751 void *data, int offset, int len)
1752 {
1753 int r;
1754 unsigned long addr;
1755
1756 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1757 if (kvm_is_error_hva(addr))
1758 return -EFAULT;
1759 r = __copy_from_user(data, (void __user *)addr + offset, len);
1760 if (r)
1761 return -EFAULT;
1762 return 0;
1763 }
1764
1765 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1766 int len)
1767 {
1768 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1769
1770 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1771 }
1772 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1773
1774 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1775 int offset, int len)
1776 {
1777 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1778
1779 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1780 }
1781 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1782
1783 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1784 {
1785 gfn_t gfn = gpa >> PAGE_SHIFT;
1786 int seg;
1787 int offset = offset_in_page(gpa);
1788 int ret;
1789
1790 while ((seg = next_segment(len, offset)) != 0) {
1791 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1792 if (ret < 0)
1793 return ret;
1794 offset = 0;
1795 len -= seg;
1796 data += seg;
1797 ++gfn;
1798 }
1799 return 0;
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_read_guest);
1802
1803 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1804 {
1805 gfn_t gfn = gpa >> PAGE_SHIFT;
1806 int seg;
1807 int offset = offset_in_page(gpa);
1808 int ret;
1809
1810 while ((seg = next_segment(len, offset)) != 0) {
1811 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1812 if (ret < 0)
1813 return ret;
1814 offset = 0;
1815 len -= seg;
1816 data += seg;
1817 ++gfn;
1818 }
1819 return 0;
1820 }
1821 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1822
1823 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1824 void *data, int offset, unsigned long len)
1825 {
1826 int r;
1827 unsigned long addr;
1828
1829 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1830 if (kvm_is_error_hva(addr))
1831 return -EFAULT;
1832 pagefault_disable();
1833 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1834 pagefault_enable();
1835 if (r)
1836 return -EFAULT;
1837 return 0;
1838 }
1839
1840 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1841 unsigned long len)
1842 {
1843 gfn_t gfn = gpa >> PAGE_SHIFT;
1844 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1845 int offset = offset_in_page(gpa);
1846
1847 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1848 }
1849 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1850
1851 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1852 void *data, unsigned long len)
1853 {
1854 gfn_t gfn = gpa >> PAGE_SHIFT;
1855 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1856 int offset = offset_in_page(gpa);
1857
1858 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1859 }
1860 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1861
1862 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1863 const void *data, int offset, int len)
1864 {
1865 int r;
1866 unsigned long addr;
1867
1868 addr = gfn_to_hva_memslot(memslot, gfn);
1869 if (kvm_is_error_hva(addr))
1870 return -EFAULT;
1871 r = __copy_to_user((void __user *)addr + offset, data, len);
1872 if (r)
1873 return -EFAULT;
1874 mark_page_dirty_in_slot(memslot, gfn);
1875 return 0;
1876 }
1877
1878 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1879 const void *data, int offset, int len)
1880 {
1881 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1882
1883 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1884 }
1885 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1886
1887 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1888 const void *data, int offset, int len)
1889 {
1890 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1891
1892 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1893 }
1894 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1895
1896 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1897 unsigned long len)
1898 {
1899 gfn_t gfn = gpa >> PAGE_SHIFT;
1900 int seg;
1901 int offset = offset_in_page(gpa);
1902 int ret;
1903
1904 while ((seg = next_segment(len, offset)) != 0) {
1905 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1906 if (ret < 0)
1907 return ret;
1908 offset = 0;
1909 len -= seg;
1910 data += seg;
1911 ++gfn;
1912 }
1913 return 0;
1914 }
1915 EXPORT_SYMBOL_GPL(kvm_write_guest);
1916
1917 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1918 unsigned long len)
1919 {
1920 gfn_t gfn = gpa >> PAGE_SHIFT;
1921 int seg;
1922 int offset = offset_in_page(gpa);
1923 int ret;
1924
1925 while ((seg = next_segment(len, offset)) != 0) {
1926 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1927 if (ret < 0)
1928 return ret;
1929 offset = 0;
1930 len -= seg;
1931 data += seg;
1932 ++gfn;
1933 }
1934 return 0;
1935 }
1936 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1937
1938 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1939 gpa_t gpa, unsigned long len)
1940 {
1941 struct kvm_memslots *slots = kvm_memslots(kvm);
1942 int offset = offset_in_page(gpa);
1943 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1944 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1945 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1946 gfn_t nr_pages_avail;
1947
1948 ghc->gpa = gpa;
1949 ghc->generation = slots->generation;
1950 ghc->len = len;
1951 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1952 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1953 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1954 ghc->hva += offset;
1955 } else {
1956 /*
1957 * If the requested region crosses two memslots, we still
1958 * verify that the entire region is valid here.
1959 */
1960 while (start_gfn <= end_gfn) {
1961 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1962 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1963 &nr_pages_avail);
1964 if (kvm_is_error_hva(ghc->hva))
1965 return -EFAULT;
1966 start_gfn += nr_pages_avail;
1967 }
1968 /* Use the slow path for cross page reads and writes. */
1969 ghc->memslot = NULL;
1970 }
1971 return 0;
1972 }
1973 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1974
1975 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1976 void *data, unsigned long len)
1977 {
1978 struct kvm_memslots *slots = kvm_memslots(kvm);
1979 int r;
1980
1981 BUG_ON(len > ghc->len);
1982
1983 if (slots->generation != ghc->generation)
1984 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1985
1986 if (unlikely(!ghc->memslot))
1987 return kvm_write_guest(kvm, ghc->gpa, data, len);
1988
1989 if (kvm_is_error_hva(ghc->hva))
1990 return -EFAULT;
1991
1992 r = __copy_to_user((void __user *)ghc->hva, data, len);
1993 if (r)
1994 return -EFAULT;
1995 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1996
1997 return 0;
1998 }
1999 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2000
2001 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2002 void *data, unsigned long len)
2003 {
2004 struct kvm_memslots *slots = kvm_memslots(kvm);
2005 int r;
2006
2007 BUG_ON(len > ghc->len);
2008
2009 if (slots->generation != ghc->generation)
2010 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2011
2012 if (unlikely(!ghc->memslot))
2013 return kvm_read_guest(kvm, ghc->gpa, data, len);
2014
2015 if (kvm_is_error_hva(ghc->hva))
2016 return -EFAULT;
2017
2018 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2019 if (r)
2020 return -EFAULT;
2021
2022 return 0;
2023 }
2024 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2025
2026 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2027 {
2028 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2029
2030 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2031 }
2032 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2033
2034 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2035 {
2036 gfn_t gfn = gpa >> PAGE_SHIFT;
2037 int seg;
2038 int offset = offset_in_page(gpa);
2039 int ret;
2040
2041 while ((seg = next_segment(len, offset)) != 0) {
2042 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2043 if (ret < 0)
2044 return ret;
2045 offset = 0;
2046 len -= seg;
2047 ++gfn;
2048 }
2049 return 0;
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2052
2053 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2054 gfn_t gfn)
2055 {
2056 if (memslot && memslot->dirty_bitmap) {
2057 unsigned long rel_gfn = gfn - memslot->base_gfn;
2058
2059 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2060 }
2061 }
2062
2063 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2064 {
2065 struct kvm_memory_slot *memslot;
2066
2067 memslot = gfn_to_memslot(kvm, gfn);
2068 mark_page_dirty_in_slot(memslot, gfn);
2069 }
2070 EXPORT_SYMBOL_GPL(mark_page_dirty);
2071
2072 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2073 {
2074 struct kvm_memory_slot *memslot;
2075
2076 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2077 mark_page_dirty_in_slot(memslot, gfn);
2078 }
2079 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2080
2081 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2082 {
2083 unsigned int old, val, grow;
2084
2085 old = val = vcpu->halt_poll_ns;
2086 grow = READ_ONCE(halt_poll_ns_grow);
2087 /* 10us base */
2088 if (val == 0 && grow)
2089 val = 10000;
2090 else
2091 val *= grow;
2092
2093 if (val > halt_poll_ns)
2094 val = halt_poll_ns;
2095
2096 vcpu->halt_poll_ns = val;
2097 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2098 }
2099
2100 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2101 {
2102 unsigned int old, val, shrink;
2103
2104 old = val = vcpu->halt_poll_ns;
2105 shrink = READ_ONCE(halt_poll_ns_shrink);
2106 if (shrink == 0)
2107 val = 0;
2108 else
2109 val /= shrink;
2110
2111 vcpu->halt_poll_ns = val;
2112 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2113 }
2114
2115 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2116 {
2117 if (kvm_arch_vcpu_runnable(vcpu)) {
2118 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2119 return -EINTR;
2120 }
2121 if (kvm_cpu_has_pending_timer(vcpu))
2122 return -EINTR;
2123 if (signal_pending(current))
2124 return -EINTR;
2125
2126 return 0;
2127 }
2128
2129 /*
2130 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2131 */
2132 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2133 {
2134 ktime_t start, cur;
2135 DECLARE_SWAITQUEUE(wait);
2136 bool waited = false;
2137 u64 block_ns;
2138
2139 start = cur = ktime_get();
2140 if (vcpu->halt_poll_ns) {
2141 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2142
2143 ++vcpu->stat.halt_attempted_poll;
2144 do {
2145 /*
2146 * This sets KVM_REQ_UNHALT if an interrupt
2147 * arrives.
2148 */
2149 if (kvm_vcpu_check_block(vcpu) < 0) {
2150 ++vcpu->stat.halt_successful_poll;
2151 if (!vcpu_valid_wakeup(vcpu))
2152 ++vcpu->stat.halt_poll_invalid;
2153 goto out;
2154 }
2155 cur = ktime_get();
2156 } while (single_task_running() && ktime_before(cur, stop));
2157 }
2158
2159 kvm_arch_vcpu_blocking(vcpu);
2160
2161 for (;;) {
2162 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2163
2164 if (kvm_vcpu_check_block(vcpu) < 0)
2165 break;
2166
2167 waited = true;
2168 schedule();
2169 }
2170
2171 finish_swait(&vcpu->wq, &wait);
2172 cur = ktime_get();
2173
2174 kvm_arch_vcpu_unblocking(vcpu);
2175 out:
2176 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2177
2178 if (!vcpu_valid_wakeup(vcpu))
2179 shrink_halt_poll_ns(vcpu);
2180 else if (halt_poll_ns) {
2181 if (block_ns <= vcpu->halt_poll_ns)
2182 ;
2183 /* we had a long block, shrink polling */
2184 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2185 shrink_halt_poll_ns(vcpu);
2186 /* we had a short halt and our poll time is too small */
2187 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2188 block_ns < halt_poll_ns)
2189 grow_halt_poll_ns(vcpu);
2190 } else
2191 vcpu->halt_poll_ns = 0;
2192
2193 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2194 kvm_arch_vcpu_block_finish(vcpu);
2195 }
2196 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2197
2198 #ifndef CONFIG_S390
2199 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2200 {
2201 struct swait_queue_head *wqp;
2202
2203 wqp = kvm_arch_vcpu_wq(vcpu);
2204 if (swait_active(wqp)) {
2205 swake_up(wqp);
2206 ++vcpu->stat.halt_wakeup;
2207 }
2208
2209 }
2210 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2211
2212 /*
2213 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2214 */
2215 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2216 {
2217 int me;
2218 int cpu = vcpu->cpu;
2219
2220 kvm_vcpu_wake_up(vcpu);
2221 me = get_cpu();
2222 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2223 if (kvm_arch_vcpu_should_kick(vcpu))
2224 smp_send_reschedule(cpu);
2225 put_cpu();
2226 }
2227 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2228 #endif /* !CONFIG_S390 */
2229
2230 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2231 {
2232 struct pid *pid;
2233 struct task_struct *task = NULL;
2234 int ret = 0;
2235
2236 rcu_read_lock();
2237 pid = rcu_dereference(target->pid);
2238 if (pid)
2239 task = get_pid_task(pid, PIDTYPE_PID);
2240 rcu_read_unlock();
2241 if (!task)
2242 return ret;
2243 ret = yield_to(task, 1);
2244 put_task_struct(task);
2245
2246 return ret;
2247 }
2248 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2249
2250 /*
2251 * Helper that checks whether a VCPU is eligible for directed yield.
2252 * Most eligible candidate to yield is decided by following heuristics:
2253 *
2254 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2255 * (preempted lock holder), indicated by @in_spin_loop.
2256 * Set at the beiginning and cleared at the end of interception/PLE handler.
2257 *
2258 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2259 * chance last time (mostly it has become eligible now since we have probably
2260 * yielded to lockholder in last iteration. This is done by toggling
2261 * @dy_eligible each time a VCPU checked for eligibility.)
2262 *
2263 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2264 * to preempted lock-holder could result in wrong VCPU selection and CPU
2265 * burning. Giving priority for a potential lock-holder increases lock
2266 * progress.
2267 *
2268 * Since algorithm is based on heuristics, accessing another VCPU data without
2269 * locking does not harm. It may result in trying to yield to same VCPU, fail
2270 * and continue with next VCPU and so on.
2271 */
2272 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2273 {
2274 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2275 bool eligible;
2276
2277 eligible = !vcpu->spin_loop.in_spin_loop ||
2278 vcpu->spin_loop.dy_eligible;
2279
2280 if (vcpu->spin_loop.in_spin_loop)
2281 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2282
2283 return eligible;
2284 #else
2285 return true;
2286 #endif
2287 }
2288
2289 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2290 {
2291 struct kvm *kvm = me->kvm;
2292 struct kvm_vcpu *vcpu;
2293 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2294 int yielded = 0;
2295 int try = 3;
2296 int pass;
2297 int i;
2298
2299 kvm_vcpu_set_in_spin_loop(me, true);
2300 /*
2301 * We boost the priority of a VCPU that is runnable but not
2302 * currently running, because it got preempted by something
2303 * else and called schedule in __vcpu_run. Hopefully that
2304 * VCPU is holding the lock that we need and will release it.
2305 * We approximate round-robin by starting at the last boosted VCPU.
2306 */
2307 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2308 kvm_for_each_vcpu(i, vcpu, kvm) {
2309 if (!pass && i <= last_boosted_vcpu) {
2310 i = last_boosted_vcpu;
2311 continue;
2312 } else if (pass && i > last_boosted_vcpu)
2313 break;
2314 if (!ACCESS_ONCE(vcpu->preempted))
2315 continue;
2316 if (vcpu == me)
2317 continue;
2318 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2319 continue;
2320 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2321 continue;
2322
2323 yielded = kvm_vcpu_yield_to(vcpu);
2324 if (yielded > 0) {
2325 kvm->last_boosted_vcpu = i;
2326 break;
2327 } else if (yielded < 0) {
2328 try--;
2329 if (!try)
2330 break;
2331 }
2332 }
2333 }
2334 kvm_vcpu_set_in_spin_loop(me, false);
2335
2336 /* Ensure vcpu is not eligible during next spinloop */
2337 kvm_vcpu_set_dy_eligible(me, false);
2338 }
2339 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2340
2341 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2342 {
2343 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2344 struct page *page;
2345
2346 if (vmf->pgoff == 0)
2347 page = virt_to_page(vcpu->run);
2348 #ifdef CONFIG_X86
2349 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2350 page = virt_to_page(vcpu->arch.pio_data);
2351 #endif
2352 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2353 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2354 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2355 #endif
2356 else
2357 return kvm_arch_vcpu_fault(vcpu, vmf);
2358 get_page(page);
2359 vmf->page = page;
2360 return 0;
2361 }
2362
2363 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2364 .fault = kvm_vcpu_fault,
2365 };
2366
2367 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2368 {
2369 vma->vm_ops = &kvm_vcpu_vm_ops;
2370 return 0;
2371 }
2372
2373 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2374 {
2375 struct kvm_vcpu *vcpu = filp->private_data;
2376
2377 debugfs_remove_recursive(vcpu->debugfs_dentry);
2378 kvm_put_kvm(vcpu->kvm);
2379 return 0;
2380 }
2381
2382 static struct file_operations kvm_vcpu_fops = {
2383 .release = kvm_vcpu_release,
2384 .unlocked_ioctl = kvm_vcpu_ioctl,
2385 #ifdef CONFIG_KVM_COMPAT
2386 .compat_ioctl = kvm_vcpu_compat_ioctl,
2387 #endif
2388 .mmap = kvm_vcpu_mmap,
2389 .llseek = noop_llseek,
2390 };
2391
2392 /*
2393 * Allocates an inode for the vcpu.
2394 */
2395 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2396 {
2397 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2398 }
2399
2400 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2401 {
2402 char dir_name[ITOA_MAX_LEN * 2];
2403 int ret;
2404
2405 if (!kvm_arch_has_vcpu_debugfs())
2406 return 0;
2407
2408 if (!debugfs_initialized())
2409 return 0;
2410
2411 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2412 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2413 vcpu->kvm->debugfs_dentry);
2414 if (!vcpu->debugfs_dentry)
2415 return -ENOMEM;
2416
2417 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2418 if (ret < 0) {
2419 debugfs_remove_recursive(vcpu->debugfs_dentry);
2420 return ret;
2421 }
2422
2423 return 0;
2424 }
2425
2426 /*
2427 * Creates some virtual cpus. Good luck creating more than one.
2428 */
2429 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2430 {
2431 int r;
2432 struct kvm_vcpu *vcpu;
2433
2434 if (id >= KVM_MAX_VCPU_ID)
2435 return -EINVAL;
2436
2437 mutex_lock(&kvm->lock);
2438 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2439 mutex_unlock(&kvm->lock);
2440 return -EINVAL;
2441 }
2442
2443 kvm->created_vcpus++;
2444 mutex_unlock(&kvm->lock);
2445
2446 vcpu = kvm_arch_vcpu_create(kvm, id);
2447 if (IS_ERR(vcpu)) {
2448 r = PTR_ERR(vcpu);
2449 goto vcpu_decrement;
2450 }
2451
2452 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2453
2454 r = kvm_arch_vcpu_setup(vcpu);
2455 if (r)
2456 goto vcpu_destroy;
2457
2458 r = kvm_create_vcpu_debugfs(vcpu);
2459 if (r)
2460 goto vcpu_destroy;
2461
2462 mutex_lock(&kvm->lock);
2463 if (kvm_get_vcpu_by_id(kvm, id)) {
2464 r = -EEXIST;
2465 goto unlock_vcpu_destroy;
2466 }
2467
2468 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2469
2470 /* Now it's all set up, let userspace reach it */
2471 kvm_get_kvm(kvm);
2472 r = create_vcpu_fd(vcpu);
2473 if (r < 0) {
2474 kvm_put_kvm(kvm);
2475 goto unlock_vcpu_destroy;
2476 }
2477
2478 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2479
2480 /*
2481 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2482 * before kvm->online_vcpu's incremented value.
2483 */
2484 smp_wmb();
2485 atomic_inc(&kvm->online_vcpus);
2486
2487 mutex_unlock(&kvm->lock);
2488 kvm_arch_vcpu_postcreate(vcpu);
2489 return r;
2490
2491 unlock_vcpu_destroy:
2492 mutex_unlock(&kvm->lock);
2493 debugfs_remove_recursive(vcpu->debugfs_dentry);
2494 vcpu_destroy:
2495 kvm_arch_vcpu_destroy(vcpu);
2496 vcpu_decrement:
2497 mutex_lock(&kvm->lock);
2498 kvm->created_vcpus--;
2499 mutex_unlock(&kvm->lock);
2500 return r;
2501 }
2502
2503 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2504 {
2505 if (sigset) {
2506 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2507 vcpu->sigset_active = 1;
2508 vcpu->sigset = *sigset;
2509 } else
2510 vcpu->sigset_active = 0;
2511 return 0;
2512 }
2513
2514 static long kvm_vcpu_ioctl(struct file *filp,
2515 unsigned int ioctl, unsigned long arg)
2516 {
2517 struct kvm_vcpu *vcpu = filp->private_data;
2518 void __user *argp = (void __user *)arg;
2519 int r;
2520 struct kvm_fpu *fpu = NULL;
2521 struct kvm_sregs *kvm_sregs = NULL;
2522
2523 if (vcpu->kvm->mm != current->mm)
2524 return -EIO;
2525
2526 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2527 return -EINVAL;
2528
2529 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2530 /*
2531 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2532 * so vcpu_load() would break it.
2533 */
2534 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2535 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2536 #endif
2537
2538
2539 r = vcpu_load(vcpu);
2540 if (r)
2541 return r;
2542 switch (ioctl) {
2543 case KVM_RUN:
2544 r = -EINVAL;
2545 if (arg)
2546 goto out;
2547 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2548 /* The thread running this VCPU changed. */
2549 struct pid *oldpid = vcpu->pid;
2550 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2551
2552 rcu_assign_pointer(vcpu->pid, newpid);
2553 if (oldpid)
2554 synchronize_rcu();
2555 put_pid(oldpid);
2556 }
2557 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2558 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2559 break;
2560 case KVM_GET_REGS: {
2561 struct kvm_regs *kvm_regs;
2562
2563 r = -ENOMEM;
2564 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2565 if (!kvm_regs)
2566 goto out;
2567 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2568 if (r)
2569 goto out_free1;
2570 r = -EFAULT;
2571 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2572 goto out_free1;
2573 r = 0;
2574 out_free1:
2575 kfree(kvm_regs);
2576 break;
2577 }
2578 case KVM_SET_REGS: {
2579 struct kvm_regs *kvm_regs;
2580
2581 r = -ENOMEM;
2582 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2583 if (IS_ERR(kvm_regs)) {
2584 r = PTR_ERR(kvm_regs);
2585 goto out;
2586 }
2587 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2588 kfree(kvm_regs);
2589 break;
2590 }
2591 case KVM_GET_SREGS: {
2592 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2593 r = -ENOMEM;
2594 if (!kvm_sregs)
2595 goto out;
2596 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2597 if (r)
2598 goto out;
2599 r = -EFAULT;
2600 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2601 goto out;
2602 r = 0;
2603 break;
2604 }
2605 case KVM_SET_SREGS: {
2606 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2607 if (IS_ERR(kvm_sregs)) {
2608 r = PTR_ERR(kvm_sregs);
2609 kvm_sregs = NULL;
2610 goto out;
2611 }
2612 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2613 break;
2614 }
2615 case KVM_GET_MP_STATE: {
2616 struct kvm_mp_state mp_state;
2617
2618 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2619 if (r)
2620 goto out;
2621 r = -EFAULT;
2622 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2623 goto out;
2624 r = 0;
2625 break;
2626 }
2627 case KVM_SET_MP_STATE: {
2628 struct kvm_mp_state mp_state;
2629
2630 r = -EFAULT;
2631 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2632 goto out;
2633 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2634 break;
2635 }
2636 case KVM_TRANSLATE: {
2637 struct kvm_translation tr;
2638
2639 r = -EFAULT;
2640 if (copy_from_user(&tr, argp, sizeof(tr)))
2641 goto out;
2642 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2643 if (r)
2644 goto out;
2645 r = -EFAULT;
2646 if (copy_to_user(argp, &tr, sizeof(tr)))
2647 goto out;
2648 r = 0;
2649 break;
2650 }
2651 case KVM_SET_GUEST_DEBUG: {
2652 struct kvm_guest_debug dbg;
2653
2654 r = -EFAULT;
2655 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2656 goto out;
2657 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2658 break;
2659 }
2660 case KVM_SET_SIGNAL_MASK: {
2661 struct kvm_signal_mask __user *sigmask_arg = argp;
2662 struct kvm_signal_mask kvm_sigmask;
2663 sigset_t sigset, *p;
2664
2665 p = NULL;
2666 if (argp) {
2667 r = -EFAULT;
2668 if (copy_from_user(&kvm_sigmask, argp,
2669 sizeof(kvm_sigmask)))
2670 goto out;
2671 r = -EINVAL;
2672 if (kvm_sigmask.len != sizeof(sigset))
2673 goto out;
2674 r = -EFAULT;
2675 if (copy_from_user(&sigset, sigmask_arg->sigset,
2676 sizeof(sigset)))
2677 goto out;
2678 p = &sigset;
2679 }
2680 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2681 break;
2682 }
2683 case KVM_GET_FPU: {
2684 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2685 r = -ENOMEM;
2686 if (!fpu)
2687 goto out;
2688 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2689 if (r)
2690 goto out;
2691 r = -EFAULT;
2692 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2693 goto out;
2694 r = 0;
2695 break;
2696 }
2697 case KVM_SET_FPU: {
2698 fpu = memdup_user(argp, sizeof(*fpu));
2699 if (IS_ERR(fpu)) {
2700 r = PTR_ERR(fpu);
2701 fpu = NULL;
2702 goto out;
2703 }
2704 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2705 break;
2706 }
2707 default:
2708 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2709 }
2710 out:
2711 vcpu_put(vcpu);
2712 kfree(fpu);
2713 kfree(kvm_sregs);
2714 return r;
2715 }
2716
2717 #ifdef CONFIG_KVM_COMPAT
2718 static long kvm_vcpu_compat_ioctl(struct file *filp,
2719 unsigned int ioctl, unsigned long arg)
2720 {
2721 struct kvm_vcpu *vcpu = filp->private_data;
2722 void __user *argp = compat_ptr(arg);
2723 int r;
2724
2725 if (vcpu->kvm->mm != current->mm)
2726 return -EIO;
2727
2728 switch (ioctl) {
2729 case KVM_SET_SIGNAL_MASK: {
2730 struct kvm_signal_mask __user *sigmask_arg = argp;
2731 struct kvm_signal_mask kvm_sigmask;
2732 compat_sigset_t csigset;
2733 sigset_t sigset;
2734
2735 if (argp) {
2736 r = -EFAULT;
2737 if (copy_from_user(&kvm_sigmask, argp,
2738 sizeof(kvm_sigmask)))
2739 goto out;
2740 r = -EINVAL;
2741 if (kvm_sigmask.len != sizeof(csigset))
2742 goto out;
2743 r = -EFAULT;
2744 if (copy_from_user(&csigset, sigmask_arg->sigset,
2745 sizeof(csigset)))
2746 goto out;
2747 sigset_from_compat(&sigset, &csigset);
2748 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2749 } else
2750 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2751 break;
2752 }
2753 default:
2754 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2755 }
2756
2757 out:
2758 return r;
2759 }
2760 #endif
2761
2762 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2763 int (*accessor)(struct kvm_device *dev,
2764 struct kvm_device_attr *attr),
2765 unsigned long arg)
2766 {
2767 struct kvm_device_attr attr;
2768
2769 if (!accessor)
2770 return -EPERM;
2771
2772 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2773 return -EFAULT;
2774
2775 return accessor(dev, &attr);
2776 }
2777
2778 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2779 unsigned long arg)
2780 {
2781 struct kvm_device *dev = filp->private_data;
2782
2783 switch (ioctl) {
2784 case KVM_SET_DEVICE_ATTR:
2785 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2786 case KVM_GET_DEVICE_ATTR:
2787 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2788 case KVM_HAS_DEVICE_ATTR:
2789 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2790 default:
2791 if (dev->ops->ioctl)
2792 return dev->ops->ioctl(dev, ioctl, arg);
2793
2794 return -ENOTTY;
2795 }
2796 }
2797
2798 static int kvm_device_release(struct inode *inode, struct file *filp)
2799 {
2800 struct kvm_device *dev = filp->private_data;
2801 struct kvm *kvm = dev->kvm;
2802
2803 kvm_put_kvm(kvm);
2804 return 0;
2805 }
2806
2807 static const struct file_operations kvm_device_fops = {
2808 .unlocked_ioctl = kvm_device_ioctl,
2809 #ifdef CONFIG_KVM_COMPAT
2810 .compat_ioctl = kvm_device_ioctl,
2811 #endif
2812 .release = kvm_device_release,
2813 };
2814
2815 struct kvm_device *kvm_device_from_filp(struct file *filp)
2816 {
2817 if (filp->f_op != &kvm_device_fops)
2818 return NULL;
2819
2820 return filp->private_data;
2821 }
2822
2823 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2824 #ifdef CONFIG_KVM_MPIC
2825 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2826 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2827 #endif
2828
2829 #ifdef CONFIG_KVM_XICS
2830 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2831 #endif
2832 };
2833
2834 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2835 {
2836 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2837 return -ENOSPC;
2838
2839 if (kvm_device_ops_table[type] != NULL)
2840 return -EEXIST;
2841
2842 kvm_device_ops_table[type] = ops;
2843 return 0;
2844 }
2845
2846 void kvm_unregister_device_ops(u32 type)
2847 {
2848 if (kvm_device_ops_table[type] != NULL)
2849 kvm_device_ops_table[type] = NULL;
2850 }
2851
2852 static int kvm_ioctl_create_device(struct kvm *kvm,
2853 struct kvm_create_device *cd)
2854 {
2855 struct kvm_device_ops *ops = NULL;
2856 struct kvm_device *dev;
2857 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2858 int ret;
2859
2860 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2861 return -ENODEV;
2862
2863 ops = kvm_device_ops_table[cd->type];
2864 if (ops == NULL)
2865 return -ENODEV;
2866
2867 if (test)
2868 return 0;
2869
2870 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2871 if (!dev)
2872 return -ENOMEM;
2873
2874 dev->ops = ops;
2875 dev->kvm = kvm;
2876
2877 mutex_lock(&kvm->lock);
2878 ret = ops->create(dev, cd->type);
2879 if (ret < 0) {
2880 mutex_unlock(&kvm->lock);
2881 kfree(dev);
2882 return ret;
2883 }
2884 list_add(&dev->vm_node, &kvm->devices);
2885 mutex_unlock(&kvm->lock);
2886
2887 if (ops->init)
2888 ops->init(dev);
2889
2890 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2891 if (ret < 0) {
2892 ops->destroy(dev);
2893 mutex_lock(&kvm->lock);
2894 list_del(&dev->vm_node);
2895 mutex_unlock(&kvm->lock);
2896 return ret;
2897 }
2898
2899 kvm_get_kvm(kvm);
2900 cd->fd = ret;
2901 return 0;
2902 }
2903
2904 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2905 {
2906 switch (arg) {
2907 case KVM_CAP_USER_MEMORY:
2908 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2909 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2910 case KVM_CAP_INTERNAL_ERROR_DATA:
2911 #ifdef CONFIG_HAVE_KVM_MSI
2912 case KVM_CAP_SIGNAL_MSI:
2913 #endif
2914 #ifdef CONFIG_HAVE_KVM_IRQFD
2915 case KVM_CAP_IRQFD:
2916 case KVM_CAP_IRQFD_RESAMPLE:
2917 #endif
2918 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2919 case KVM_CAP_CHECK_EXTENSION_VM:
2920 return 1;
2921 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2922 case KVM_CAP_IRQ_ROUTING:
2923 return KVM_MAX_IRQ_ROUTES;
2924 #endif
2925 #if KVM_ADDRESS_SPACE_NUM > 1
2926 case KVM_CAP_MULTI_ADDRESS_SPACE:
2927 return KVM_ADDRESS_SPACE_NUM;
2928 #endif
2929 case KVM_CAP_MAX_VCPU_ID:
2930 return KVM_MAX_VCPU_ID;
2931 default:
2932 break;
2933 }
2934 return kvm_vm_ioctl_check_extension(kvm, arg);
2935 }
2936
2937 static long kvm_vm_ioctl(struct file *filp,
2938 unsigned int ioctl, unsigned long arg)
2939 {
2940 struct kvm *kvm = filp->private_data;
2941 void __user *argp = (void __user *)arg;
2942 int r;
2943
2944 if (kvm->mm != current->mm)
2945 return -EIO;
2946 switch (ioctl) {
2947 case KVM_CREATE_VCPU:
2948 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2949 break;
2950 case KVM_SET_USER_MEMORY_REGION: {
2951 struct kvm_userspace_memory_region kvm_userspace_mem;
2952
2953 r = -EFAULT;
2954 if (copy_from_user(&kvm_userspace_mem, argp,
2955 sizeof(kvm_userspace_mem)))
2956 goto out;
2957
2958 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2959 break;
2960 }
2961 case KVM_GET_DIRTY_LOG: {
2962 struct kvm_dirty_log log;
2963
2964 r = -EFAULT;
2965 if (copy_from_user(&log, argp, sizeof(log)))
2966 goto out;
2967 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2968 break;
2969 }
2970 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2971 case KVM_REGISTER_COALESCED_MMIO: {
2972 struct kvm_coalesced_mmio_zone zone;
2973
2974 r = -EFAULT;
2975 if (copy_from_user(&zone, argp, sizeof(zone)))
2976 goto out;
2977 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2978 break;
2979 }
2980 case KVM_UNREGISTER_COALESCED_MMIO: {
2981 struct kvm_coalesced_mmio_zone zone;
2982
2983 r = -EFAULT;
2984 if (copy_from_user(&zone, argp, sizeof(zone)))
2985 goto out;
2986 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2987 break;
2988 }
2989 #endif
2990 case KVM_IRQFD: {
2991 struct kvm_irqfd data;
2992
2993 r = -EFAULT;
2994 if (copy_from_user(&data, argp, sizeof(data)))
2995 goto out;
2996 r = kvm_irqfd(kvm, &data);
2997 break;
2998 }
2999 case KVM_IOEVENTFD: {
3000 struct kvm_ioeventfd data;
3001
3002 r = -EFAULT;
3003 if (copy_from_user(&data, argp, sizeof(data)))
3004 goto out;
3005 r = kvm_ioeventfd(kvm, &data);
3006 break;
3007 }
3008 #ifdef CONFIG_HAVE_KVM_MSI
3009 case KVM_SIGNAL_MSI: {
3010 struct kvm_msi msi;
3011
3012 r = -EFAULT;
3013 if (copy_from_user(&msi, argp, sizeof(msi)))
3014 goto out;
3015 r = kvm_send_userspace_msi(kvm, &msi);
3016 break;
3017 }
3018 #endif
3019 #ifdef __KVM_HAVE_IRQ_LINE
3020 case KVM_IRQ_LINE_STATUS:
3021 case KVM_IRQ_LINE: {
3022 struct kvm_irq_level irq_event;
3023
3024 r = -EFAULT;
3025 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3026 goto out;
3027
3028 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3029 ioctl == KVM_IRQ_LINE_STATUS);
3030 if (r)
3031 goto out;
3032
3033 r = -EFAULT;
3034 if (ioctl == KVM_IRQ_LINE_STATUS) {
3035 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3036 goto out;
3037 }
3038
3039 r = 0;
3040 break;
3041 }
3042 #endif
3043 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3044 case KVM_SET_GSI_ROUTING: {
3045 struct kvm_irq_routing routing;
3046 struct kvm_irq_routing __user *urouting;
3047 struct kvm_irq_routing_entry *entries = NULL;
3048
3049 r = -EFAULT;
3050 if (copy_from_user(&routing, argp, sizeof(routing)))
3051 goto out;
3052 r = -EINVAL;
3053 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3054 goto out;
3055 if (routing.flags)
3056 goto out;
3057 if (routing.nr) {
3058 r = -ENOMEM;
3059 entries = vmalloc(routing.nr * sizeof(*entries));
3060 if (!entries)
3061 goto out;
3062 r = -EFAULT;
3063 urouting = argp;
3064 if (copy_from_user(entries, urouting->entries,
3065 routing.nr * sizeof(*entries)))
3066 goto out_free_irq_routing;
3067 }
3068 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3069 routing.flags);
3070 out_free_irq_routing:
3071 vfree(entries);
3072 break;
3073 }
3074 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3075 case KVM_CREATE_DEVICE: {
3076 struct kvm_create_device cd;
3077
3078 r = -EFAULT;
3079 if (copy_from_user(&cd, argp, sizeof(cd)))
3080 goto out;
3081
3082 r = kvm_ioctl_create_device(kvm, &cd);
3083 if (r)
3084 goto out;
3085
3086 r = -EFAULT;
3087 if (copy_to_user(argp, &cd, sizeof(cd)))
3088 goto out;
3089
3090 r = 0;
3091 break;
3092 }
3093 case KVM_CHECK_EXTENSION:
3094 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3095 break;
3096 default:
3097 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3098 }
3099 out:
3100 return r;
3101 }
3102
3103 #ifdef CONFIG_KVM_COMPAT
3104 struct compat_kvm_dirty_log {
3105 __u32 slot;
3106 __u32 padding1;
3107 union {
3108 compat_uptr_t dirty_bitmap; /* one bit per page */
3109 __u64 padding2;
3110 };
3111 };
3112
3113 static long kvm_vm_compat_ioctl(struct file *filp,
3114 unsigned int ioctl, unsigned long arg)
3115 {
3116 struct kvm *kvm = filp->private_data;
3117 int r;
3118
3119 if (kvm->mm != current->mm)
3120 return -EIO;
3121 switch (ioctl) {
3122 case KVM_GET_DIRTY_LOG: {
3123 struct compat_kvm_dirty_log compat_log;
3124 struct kvm_dirty_log log;
3125
3126 r = -EFAULT;
3127 if (copy_from_user(&compat_log, (void __user *)arg,
3128 sizeof(compat_log)))
3129 goto out;
3130 log.slot = compat_log.slot;
3131 log.padding1 = compat_log.padding1;
3132 log.padding2 = compat_log.padding2;
3133 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3134
3135 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3136 break;
3137 }
3138 default:
3139 r = kvm_vm_ioctl(filp, ioctl, arg);
3140 }
3141
3142 out:
3143 return r;
3144 }
3145 #endif
3146
3147 static struct file_operations kvm_vm_fops = {
3148 .release = kvm_vm_release,
3149 .unlocked_ioctl = kvm_vm_ioctl,
3150 #ifdef CONFIG_KVM_COMPAT
3151 .compat_ioctl = kvm_vm_compat_ioctl,
3152 #endif
3153 .llseek = noop_llseek,
3154 };
3155
3156 static int kvm_dev_ioctl_create_vm(unsigned long type)
3157 {
3158 int r;
3159 struct kvm *kvm;
3160 struct file *file;
3161
3162 kvm = kvm_create_vm(type);
3163 if (IS_ERR(kvm))
3164 return PTR_ERR(kvm);
3165 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3166 r = kvm_coalesced_mmio_init(kvm);
3167 if (r < 0) {
3168 kvm_put_kvm(kvm);
3169 return r;
3170 }
3171 #endif
3172 r = get_unused_fd_flags(O_CLOEXEC);
3173 if (r < 0) {
3174 kvm_put_kvm(kvm);
3175 return r;
3176 }
3177 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3178 if (IS_ERR(file)) {
3179 put_unused_fd(r);
3180 kvm_put_kvm(kvm);
3181 return PTR_ERR(file);
3182 }
3183
3184 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3185 put_unused_fd(r);
3186 fput(file);
3187 return -ENOMEM;
3188 }
3189
3190 fd_install(r, file);
3191 return r;
3192 }
3193
3194 static long kvm_dev_ioctl(struct file *filp,
3195 unsigned int ioctl, unsigned long arg)
3196 {
3197 long r = -EINVAL;
3198
3199 switch (ioctl) {
3200 case KVM_GET_API_VERSION:
3201 if (arg)
3202 goto out;
3203 r = KVM_API_VERSION;
3204 break;
3205 case KVM_CREATE_VM:
3206 r = kvm_dev_ioctl_create_vm(arg);
3207 break;
3208 case KVM_CHECK_EXTENSION:
3209 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3210 break;
3211 case KVM_GET_VCPU_MMAP_SIZE:
3212 if (arg)
3213 goto out;
3214 r = PAGE_SIZE; /* struct kvm_run */
3215 #ifdef CONFIG_X86
3216 r += PAGE_SIZE; /* pio data page */
3217 #endif
3218 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3219 r += PAGE_SIZE; /* coalesced mmio ring page */
3220 #endif
3221 break;
3222 case KVM_TRACE_ENABLE:
3223 case KVM_TRACE_PAUSE:
3224 case KVM_TRACE_DISABLE:
3225 r = -EOPNOTSUPP;
3226 break;
3227 default:
3228 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3229 }
3230 out:
3231 return r;
3232 }
3233
3234 static struct file_operations kvm_chardev_ops = {
3235 .unlocked_ioctl = kvm_dev_ioctl,
3236 .compat_ioctl = kvm_dev_ioctl,
3237 .llseek = noop_llseek,
3238 };
3239
3240 static struct miscdevice kvm_dev = {
3241 KVM_MINOR,
3242 "kvm",
3243 &kvm_chardev_ops,
3244 };
3245
3246 static void hardware_enable_nolock(void *junk)
3247 {
3248 int cpu = raw_smp_processor_id();
3249 int r;
3250
3251 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3252 return;
3253
3254 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3255
3256 r = kvm_arch_hardware_enable();
3257
3258 if (r) {
3259 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3260 atomic_inc(&hardware_enable_failed);
3261 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3262 }
3263 }
3264
3265 static int kvm_starting_cpu(unsigned int cpu)
3266 {
3267 raw_spin_lock(&kvm_count_lock);
3268 if (kvm_usage_count)
3269 hardware_enable_nolock(NULL);
3270 raw_spin_unlock(&kvm_count_lock);
3271 return 0;
3272 }
3273
3274 static void hardware_disable_nolock(void *junk)
3275 {
3276 int cpu = raw_smp_processor_id();
3277
3278 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3279 return;
3280 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3281 kvm_arch_hardware_disable();
3282 }
3283
3284 static int kvm_dying_cpu(unsigned int cpu)
3285 {
3286 raw_spin_lock(&kvm_count_lock);
3287 if (kvm_usage_count)
3288 hardware_disable_nolock(NULL);
3289 raw_spin_unlock(&kvm_count_lock);
3290 return 0;
3291 }
3292
3293 static void hardware_disable_all_nolock(void)
3294 {
3295 BUG_ON(!kvm_usage_count);
3296
3297 kvm_usage_count--;
3298 if (!kvm_usage_count)
3299 on_each_cpu(hardware_disable_nolock, NULL, 1);
3300 }
3301
3302 static void hardware_disable_all(void)
3303 {
3304 raw_spin_lock(&kvm_count_lock);
3305 hardware_disable_all_nolock();
3306 raw_spin_unlock(&kvm_count_lock);
3307 }
3308
3309 static int hardware_enable_all(void)
3310 {
3311 int r = 0;
3312
3313 raw_spin_lock(&kvm_count_lock);
3314
3315 kvm_usage_count++;
3316 if (kvm_usage_count == 1) {
3317 atomic_set(&hardware_enable_failed, 0);
3318 on_each_cpu(hardware_enable_nolock, NULL, 1);
3319
3320 if (atomic_read(&hardware_enable_failed)) {
3321 hardware_disable_all_nolock();
3322 r = -EBUSY;
3323 }
3324 }
3325
3326 raw_spin_unlock(&kvm_count_lock);
3327
3328 return r;
3329 }
3330
3331 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3332 void *v)
3333 {
3334 /*
3335 * Some (well, at least mine) BIOSes hang on reboot if
3336 * in vmx root mode.
3337 *
3338 * And Intel TXT required VMX off for all cpu when system shutdown.
3339 */
3340 pr_info("kvm: exiting hardware virtualization\n");
3341 kvm_rebooting = true;
3342 on_each_cpu(hardware_disable_nolock, NULL, 1);
3343 return NOTIFY_OK;
3344 }
3345
3346 static struct notifier_block kvm_reboot_notifier = {
3347 .notifier_call = kvm_reboot,
3348 .priority = 0,
3349 };
3350
3351 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3352 {
3353 int i;
3354
3355 for (i = 0; i < bus->dev_count; i++) {
3356 struct kvm_io_device *pos = bus->range[i].dev;
3357
3358 kvm_iodevice_destructor(pos);
3359 }
3360 kfree(bus);
3361 }
3362
3363 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3364 const struct kvm_io_range *r2)
3365 {
3366 gpa_t addr1 = r1->addr;
3367 gpa_t addr2 = r2->addr;
3368
3369 if (addr1 < addr2)
3370 return -1;
3371
3372 /* If r2->len == 0, match the exact address. If r2->len != 0,
3373 * accept any overlapping write. Any order is acceptable for
3374 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3375 * we process all of them.
3376 */
3377 if (r2->len) {
3378 addr1 += r1->len;
3379 addr2 += r2->len;
3380 }
3381
3382 if (addr1 > addr2)
3383 return 1;
3384
3385 return 0;
3386 }
3387
3388 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3389 {
3390 return kvm_io_bus_cmp(p1, p2);
3391 }
3392
3393 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3394 gpa_t addr, int len)
3395 {
3396 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3397 .addr = addr,
3398 .len = len,
3399 .dev = dev,
3400 };
3401
3402 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3403 kvm_io_bus_sort_cmp, NULL);
3404
3405 return 0;
3406 }
3407
3408 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3409 gpa_t addr, int len)
3410 {
3411 struct kvm_io_range *range, key;
3412 int off;
3413
3414 key = (struct kvm_io_range) {
3415 .addr = addr,
3416 .len = len,
3417 };
3418
3419 range = bsearch(&key, bus->range, bus->dev_count,
3420 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3421 if (range == NULL)
3422 return -ENOENT;
3423
3424 off = range - bus->range;
3425
3426 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3427 off--;
3428
3429 return off;
3430 }
3431
3432 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3433 struct kvm_io_range *range, const void *val)
3434 {
3435 int idx;
3436
3437 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3438 if (idx < 0)
3439 return -EOPNOTSUPP;
3440
3441 while (idx < bus->dev_count &&
3442 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3443 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3444 range->len, val))
3445 return idx;
3446 idx++;
3447 }
3448
3449 return -EOPNOTSUPP;
3450 }
3451
3452 /* kvm_io_bus_write - called under kvm->slots_lock */
3453 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3454 int len, const void *val)
3455 {
3456 struct kvm_io_bus *bus;
3457 struct kvm_io_range range;
3458 int r;
3459
3460 range = (struct kvm_io_range) {
3461 .addr = addr,
3462 .len = len,
3463 };
3464
3465 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3466 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3467 return r < 0 ? r : 0;
3468 }
3469
3470 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3471 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3472 gpa_t addr, int len, const void *val, long cookie)
3473 {
3474 struct kvm_io_bus *bus;
3475 struct kvm_io_range range;
3476
3477 range = (struct kvm_io_range) {
3478 .addr = addr,
3479 .len = len,
3480 };
3481
3482 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3483
3484 /* First try the device referenced by cookie. */
3485 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3486 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3487 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3488 val))
3489 return cookie;
3490
3491 /*
3492 * cookie contained garbage; fall back to search and return the
3493 * correct cookie value.
3494 */
3495 return __kvm_io_bus_write(vcpu, bus, &range, val);
3496 }
3497
3498 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3499 struct kvm_io_range *range, void *val)
3500 {
3501 int idx;
3502
3503 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3504 if (idx < 0)
3505 return -EOPNOTSUPP;
3506
3507 while (idx < bus->dev_count &&
3508 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3509 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3510 range->len, val))
3511 return idx;
3512 idx++;
3513 }
3514
3515 return -EOPNOTSUPP;
3516 }
3517 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3518
3519 /* kvm_io_bus_read - called under kvm->slots_lock */
3520 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3521 int len, void *val)
3522 {
3523 struct kvm_io_bus *bus;
3524 struct kvm_io_range range;
3525 int r;
3526
3527 range = (struct kvm_io_range) {
3528 .addr = addr,
3529 .len = len,
3530 };
3531
3532 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3533 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3534 return r < 0 ? r : 0;
3535 }
3536
3537
3538 /* Caller must hold slots_lock. */
3539 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3540 int len, struct kvm_io_device *dev)
3541 {
3542 struct kvm_io_bus *new_bus, *bus;
3543
3544 bus = kvm->buses[bus_idx];
3545 /* exclude ioeventfd which is limited by maximum fd */
3546 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3547 return -ENOSPC;
3548
3549 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3550 sizeof(struct kvm_io_range)), GFP_KERNEL);
3551 if (!new_bus)
3552 return -ENOMEM;
3553 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3554 sizeof(struct kvm_io_range)));
3555 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3556 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3557 synchronize_srcu_expedited(&kvm->srcu);
3558 kfree(bus);
3559
3560 return 0;
3561 }
3562
3563 /* Caller must hold slots_lock. */
3564 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3565 struct kvm_io_device *dev)
3566 {
3567 int i, r;
3568 struct kvm_io_bus *new_bus, *bus;
3569
3570 bus = kvm->buses[bus_idx];
3571 r = -ENOENT;
3572 for (i = 0; i < bus->dev_count; i++)
3573 if (bus->range[i].dev == dev) {
3574 r = 0;
3575 break;
3576 }
3577
3578 if (r)
3579 return r;
3580
3581 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3582 sizeof(struct kvm_io_range)), GFP_KERNEL);
3583 if (!new_bus)
3584 return -ENOMEM;
3585
3586 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3587 new_bus->dev_count--;
3588 memcpy(new_bus->range + i, bus->range + i + 1,
3589 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3590
3591 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3592 synchronize_srcu_expedited(&kvm->srcu);
3593 kfree(bus);
3594 return r;
3595 }
3596
3597 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3598 gpa_t addr)
3599 {
3600 struct kvm_io_bus *bus;
3601 int dev_idx, srcu_idx;
3602 struct kvm_io_device *iodev = NULL;
3603
3604 srcu_idx = srcu_read_lock(&kvm->srcu);
3605
3606 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3607
3608 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3609 if (dev_idx < 0)
3610 goto out_unlock;
3611
3612 iodev = bus->range[dev_idx].dev;
3613
3614 out_unlock:
3615 srcu_read_unlock(&kvm->srcu, srcu_idx);
3616
3617 return iodev;
3618 }
3619 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3620
3621 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3622 int (*get)(void *, u64 *), int (*set)(void *, u64),
3623 const char *fmt)
3624 {
3625 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3626 inode->i_private;
3627
3628 /* The debugfs files are a reference to the kvm struct which
3629 * is still valid when kvm_destroy_vm is called.
3630 * To avoid the race between open and the removal of the debugfs
3631 * directory we test against the users count.
3632 */
3633 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3634 return -ENOENT;
3635
3636 if (simple_attr_open(inode, file, get, set, fmt)) {
3637 kvm_put_kvm(stat_data->kvm);
3638 return -ENOMEM;
3639 }
3640
3641 return 0;
3642 }
3643
3644 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3645 {
3646 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3647 inode->i_private;
3648
3649 simple_attr_release(inode, file);
3650 kvm_put_kvm(stat_data->kvm);
3651
3652 return 0;
3653 }
3654
3655 static int vm_stat_get_per_vm(void *data, u64 *val)
3656 {
3657 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3658
3659 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3660
3661 return 0;
3662 }
3663
3664 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3665 {
3666 __simple_attr_check_format("%llu\n", 0ull);
3667 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3668 NULL, "%llu\n");
3669 }
3670
3671 static const struct file_operations vm_stat_get_per_vm_fops = {
3672 .owner = THIS_MODULE,
3673 .open = vm_stat_get_per_vm_open,
3674 .release = kvm_debugfs_release,
3675 .read = simple_attr_read,
3676 .write = simple_attr_write,
3677 .llseek = generic_file_llseek,
3678 };
3679
3680 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3681 {
3682 int i;
3683 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3684 struct kvm_vcpu *vcpu;
3685
3686 *val = 0;
3687
3688 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3689 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3690
3691 return 0;
3692 }
3693
3694 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3695 {
3696 __simple_attr_check_format("%llu\n", 0ull);
3697 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3698 NULL, "%llu\n");
3699 }
3700
3701 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3702 .owner = THIS_MODULE,
3703 .open = vcpu_stat_get_per_vm_open,
3704 .release = kvm_debugfs_release,
3705 .read = simple_attr_read,
3706 .write = simple_attr_write,
3707 .llseek = generic_file_llseek,
3708 };
3709
3710 static const struct file_operations *stat_fops_per_vm[] = {
3711 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3712 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3713 };
3714
3715 static int vm_stat_get(void *_offset, u64 *val)
3716 {
3717 unsigned offset = (long)_offset;
3718 struct kvm *kvm;
3719 struct kvm_stat_data stat_tmp = {.offset = offset};
3720 u64 tmp_val;
3721
3722 *val = 0;
3723 spin_lock(&kvm_lock);
3724 list_for_each_entry(kvm, &vm_list, vm_list) {
3725 stat_tmp.kvm = kvm;
3726 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3727 *val += tmp_val;
3728 }
3729 spin_unlock(&kvm_lock);
3730 return 0;
3731 }
3732
3733 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3734
3735 static int vcpu_stat_get(void *_offset, u64 *val)
3736 {
3737 unsigned offset = (long)_offset;
3738 struct kvm *kvm;
3739 struct kvm_stat_data stat_tmp = {.offset = offset};
3740 u64 tmp_val;
3741
3742 *val = 0;
3743 spin_lock(&kvm_lock);
3744 list_for_each_entry(kvm, &vm_list, vm_list) {
3745 stat_tmp.kvm = kvm;
3746 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3747 *val += tmp_val;
3748 }
3749 spin_unlock(&kvm_lock);
3750 return 0;
3751 }
3752
3753 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3754
3755 static const struct file_operations *stat_fops[] = {
3756 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3757 [KVM_STAT_VM] = &vm_stat_fops,
3758 };
3759
3760 static int kvm_init_debug(void)
3761 {
3762 int r = -EEXIST;
3763 struct kvm_stats_debugfs_item *p;
3764
3765 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3766 if (kvm_debugfs_dir == NULL)
3767 goto out;
3768
3769 kvm_debugfs_num_entries = 0;
3770 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3771 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3772 (void *)(long)p->offset,
3773 stat_fops[p->kind]))
3774 goto out_dir;
3775 }
3776
3777 return 0;
3778
3779 out_dir:
3780 debugfs_remove_recursive(kvm_debugfs_dir);
3781 out:
3782 return r;
3783 }
3784
3785 static int kvm_suspend(void)
3786 {
3787 if (kvm_usage_count)
3788 hardware_disable_nolock(NULL);
3789 return 0;
3790 }
3791
3792 static void kvm_resume(void)
3793 {
3794 if (kvm_usage_count) {
3795 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3796 hardware_enable_nolock(NULL);
3797 }
3798 }
3799
3800 static struct syscore_ops kvm_syscore_ops = {
3801 .suspend = kvm_suspend,
3802 .resume = kvm_resume,
3803 };
3804
3805 static inline
3806 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3807 {
3808 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3809 }
3810
3811 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3812 {
3813 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3814
3815 if (vcpu->preempted)
3816 vcpu->preempted = false;
3817
3818 kvm_arch_sched_in(vcpu, cpu);
3819
3820 kvm_arch_vcpu_load(vcpu, cpu);
3821 }
3822
3823 static void kvm_sched_out(struct preempt_notifier *pn,
3824 struct task_struct *next)
3825 {
3826 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3827
3828 if (current->state == TASK_RUNNING)
3829 vcpu->preempted = true;
3830 kvm_arch_vcpu_put(vcpu);
3831 }
3832
3833 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3834 struct module *module)
3835 {
3836 int r;
3837 int cpu;
3838
3839 r = kvm_arch_init(opaque);
3840 if (r)
3841 goto out_fail;
3842
3843 /*
3844 * kvm_arch_init makes sure there's at most one caller
3845 * for architectures that support multiple implementations,
3846 * like intel and amd on x86.
3847 */
3848
3849 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3850 r = -ENOMEM;
3851 goto out_free_0;
3852 }
3853
3854 r = kvm_arch_hardware_setup();
3855 if (r < 0)
3856 goto out_free_0a;
3857
3858 for_each_online_cpu(cpu) {
3859 smp_call_function_single(cpu,
3860 kvm_arch_check_processor_compat,
3861 &r, 1);
3862 if (r < 0)
3863 goto out_free_1;
3864 }
3865
3866 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3867 kvm_starting_cpu, kvm_dying_cpu);
3868 if (r)
3869 goto out_free_2;
3870 register_reboot_notifier(&kvm_reboot_notifier);
3871
3872 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3873 if (!vcpu_align)
3874 vcpu_align = __alignof__(struct kvm_vcpu);
3875 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3876 0, NULL);
3877 if (!kvm_vcpu_cache) {
3878 r = -ENOMEM;
3879 goto out_free_3;
3880 }
3881
3882 r = kvm_async_pf_init();
3883 if (r)
3884 goto out_free;
3885
3886 kvm_chardev_ops.owner = module;
3887 kvm_vm_fops.owner = module;
3888 kvm_vcpu_fops.owner = module;
3889
3890 r = misc_register(&kvm_dev);
3891 if (r) {
3892 pr_err("kvm: misc device register failed\n");
3893 goto out_unreg;
3894 }
3895
3896 register_syscore_ops(&kvm_syscore_ops);
3897
3898 kvm_preempt_ops.sched_in = kvm_sched_in;
3899 kvm_preempt_ops.sched_out = kvm_sched_out;
3900
3901 r = kvm_init_debug();
3902 if (r) {
3903 pr_err("kvm: create debugfs files failed\n");
3904 goto out_undebugfs;
3905 }
3906
3907 r = kvm_vfio_ops_init();
3908 WARN_ON(r);
3909
3910 return 0;
3911
3912 out_undebugfs:
3913 unregister_syscore_ops(&kvm_syscore_ops);
3914 misc_deregister(&kvm_dev);
3915 out_unreg:
3916 kvm_async_pf_deinit();
3917 out_free:
3918 kmem_cache_destroy(kvm_vcpu_cache);
3919 out_free_3:
3920 unregister_reboot_notifier(&kvm_reboot_notifier);
3921 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3922 out_free_2:
3923 out_free_1:
3924 kvm_arch_hardware_unsetup();
3925 out_free_0a:
3926 free_cpumask_var(cpus_hardware_enabled);
3927 out_free_0:
3928 kvm_irqfd_exit();
3929 kvm_arch_exit();
3930 out_fail:
3931 return r;
3932 }
3933 EXPORT_SYMBOL_GPL(kvm_init);
3934
3935 void kvm_exit(void)
3936 {
3937 debugfs_remove_recursive(kvm_debugfs_dir);
3938 misc_deregister(&kvm_dev);
3939 kmem_cache_destroy(kvm_vcpu_cache);
3940 kvm_async_pf_deinit();
3941 unregister_syscore_ops(&kvm_syscore_ops);
3942 unregister_reboot_notifier(&kvm_reboot_notifier);
3943 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3944 on_each_cpu(hardware_disable_nolock, NULL, 1);
3945 kvm_arch_hardware_unsetup();
3946 kvm_arch_exit();
3947 kvm_irqfd_exit();
3948 free_cpumask_var(cpus_hardware_enabled);
3949 kvm_vfio_ops_exit();
3950 }
3951 EXPORT_SYMBOL_GPL(kvm_exit);