]> git.proxmox.com Git - qemu.git/blob - vl.c
fix error in win32_rearm_timer
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #include <arpa/inet.h>
48 #include <dirent.h>
49 #include <netdb.h>
50 #include <sys/select.h>
51 #ifdef CONFIG_BSD
52 #include <sys/stat.h>
53 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
54 #include <libutil.h>
55 #else
56 #include <util.h>
57 #endif
58 #else
59 #ifdef __linux__
60 #include <pty.h>
61 #include <malloc.h>
62 #include <linux/rtc.h>
63 #include <sys/prctl.h>
64
65 /* For the benefit of older linux systems which don't supply it,
66 we use a local copy of hpet.h. */
67 /* #include <linux/hpet.h> */
68 #include "hpet.h"
69
70 #include <linux/ppdev.h>
71 #include <linux/parport.h>
72 #endif
73 #ifdef __sun__
74 #include <sys/stat.h>
75 #include <sys/ethernet.h>
76 #include <sys/sockio.h>
77 #include <netinet/arp.h>
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip_icmp.h> // must come after ip.h
82 #include <netinet/udp.h>
83 #include <netinet/tcp.h>
84 #include <net/if.h>
85 #include <syslog.h>
86 #include <stropts.h>
87 /* See MySQL bug #7156 (http://bugs.mysql.com/bug.php?id=7156) for
88 discussion about Solaris header problems */
89 extern int madvise(caddr_t, size_t, int);
90 #endif
91 #endif
92 #endif
93
94 #if defined(__OpenBSD__)
95 #include <util.h>
96 #endif
97
98 #if defined(CONFIG_VDE)
99 #include <libvdeplug.h>
100 #endif
101
102 #ifdef _WIN32
103 #include <windows.h>
104 #include <mmsystem.h>
105 #endif
106
107 #ifdef CONFIG_SDL
108 #if defined(__APPLE__) || defined(main)
109 #include <SDL.h>
110 int qemu_main(int argc, char **argv, char **envp);
111 int main(int argc, char **argv)
112 {
113 return qemu_main(argc, argv, NULL);
114 }
115 #undef main
116 #define main qemu_main
117 #endif
118 #endif /* CONFIG_SDL */
119
120 #ifdef CONFIG_COCOA
121 #undef main
122 #define main qemu_main
123 #endif /* CONFIG_COCOA */
124
125 #include "hw/hw.h"
126 #include "hw/boards.h"
127 #include "hw/usb.h"
128 #include "hw/pcmcia.h"
129 #include "hw/pc.h"
130 #include "hw/audiodev.h"
131 #include "hw/isa.h"
132 #include "hw/baum.h"
133 #include "hw/bt.h"
134 #include "hw/watchdog.h"
135 #include "hw/smbios.h"
136 #include "hw/xen.h"
137 #include "hw/qdev.h"
138 #include "hw/loader.h"
139 #include "bt-host.h"
140 #include "net.h"
141 #include "net/slirp.h"
142 #include "monitor.h"
143 #include "console.h"
144 #include "sysemu.h"
145 #include "gdbstub.h"
146 #include "qemu-timer.h"
147 #include "qemu-char.h"
148 #include "cache-utils.h"
149 #include "block.h"
150 #include "block_int.h"
151 #include "block-migration.h"
152 #include "dma.h"
153 #include "audio/audio.h"
154 #include "migration.h"
155 #include "kvm.h"
156 #include "balloon.h"
157 #include "qemu-option.h"
158 #include "qemu-config.h"
159 #include "qemu-objects.h"
160
161 #include "disas.h"
162
163 #include "exec-all.h"
164
165 #include "qemu_socket.h"
166
167 #include "slirp/libslirp.h"
168
169 #include "qemu-queue.h"
170
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
173
174 #define DEFAULT_RAM_SIZE 128
175
176 #define MAX_VIRTIO_CONSOLES 1
177
178 static const char *data_dir;
179 const char *bios_name = NULL;
180 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
181 to store the VM snapshots */
182 struct drivelist drives = QTAILQ_HEAD_INITIALIZER(drives);
183 struct driveoptlist driveopts = QTAILQ_HEAD_INITIALIZER(driveopts);
184 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
185 DisplayType display_type = DT_DEFAULT;
186 const char* keyboard_layout = NULL;
187 ram_addr_t ram_size;
188 const char *mem_path = NULL;
189 #ifdef MAP_POPULATE
190 int mem_prealloc = 0; /* force preallocation of physical target memory */
191 #endif
192 int nb_nics;
193 NICInfo nd_table[MAX_NICS];
194 int vm_running;
195 int autostart;
196 static int rtc_utc = 1;
197 static int rtc_date_offset = -1; /* -1 means no change */
198 QEMUClock *rtc_clock;
199 int vga_interface_type = VGA_NONE;
200 #ifdef TARGET_SPARC
201 int graphic_width = 1024;
202 int graphic_height = 768;
203 int graphic_depth = 8;
204 #else
205 int graphic_width = 800;
206 int graphic_height = 600;
207 int graphic_depth = 15;
208 #endif
209 static int full_screen = 0;
210 #ifdef CONFIG_SDL
211 static int no_frame = 0;
212 #endif
213 int no_quit = 0;
214 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
215 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
216 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
217 #ifdef TARGET_I386
218 int win2k_install_hack = 0;
219 int rtc_td_hack = 0;
220 #endif
221 int usb_enabled = 0;
222 int singlestep = 0;
223 int smp_cpus = 1;
224 int max_cpus = 0;
225 int smp_cores = 1;
226 int smp_threads = 1;
227 const char *vnc_display;
228 int acpi_enabled = 1;
229 int no_hpet = 0;
230 int fd_bootchk = 1;
231 int no_reboot = 0;
232 int no_shutdown = 0;
233 int cursor_hide = 1;
234 int graphic_rotate = 0;
235 uint8_t irq0override = 1;
236 #ifndef _WIN32
237 int daemonize = 0;
238 #endif
239 const char *watchdog;
240 const char *option_rom[MAX_OPTION_ROMS];
241 int nb_option_roms;
242 int semihosting_enabled = 0;
243 #ifdef TARGET_ARM
244 int old_param = 0;
245 #endif
246 const char *qemu_name;
247 int alt_grab = 0;
248 int ctrl_grab = 0;
249 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
250 unsigned int nb_prom_envs = 0;
251 const char *prom_envs[MAX_PROM_ENVS];
252 #endif
253 int boot_menu;
254
255 int nb_numa_nodes;
256 uint64_t node_mem[MAX_NODES];
257 uint64_t node_cpumask[MAX_NODES];
258
259 static CPUState *cur_cpu;
260 static CPUState *next_cpu;
261 static int timer_alarm_pending = 1;
262 /* Conversion factor from emulated instructions to virtual clock ticks. */
263 static int icount_time_shift;
264 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
265 #define MAX_ICOUNT_SHIFT 10
266 /* Compensate for varying guest execution speed. */
267 static int64_t qemu_icount_bias;
268 static QEMUTimer *icount_rt_timer;
269 static QEMUTimer *icount_vm_timer;
270 static QEMUTimer *nographic_timer;
271
272 uint8_t qemu_uuid[16];
273
274 static QEMUBootSetHandler *boot_set_handler;
275 static void *boot_set_opaque;
276
277 #ifdef SIGRTMIN
278 #define SIG_IPI (SIGRTMIN+4)
279 #else
280 #define SIG_IPI SIGUSR1
281 #endif
282
283 static int default_serial = 1;
284 static int default_parallel = 1;
285 static int default_virtcon = 1;
286 static int default_monitor = 1;
287 static int default_vga = 1;
288 static int default_floppy = 1;
289 static int default_cdrom = 1;
290 static int default_sdcard = 1;
291
292 static struct {
293 const char *driver;
294 int *flag;
295 } default_list[] = {
296 { .driver = "isa-serial", .flag = &default_serial },
297 { .driver = "isa-parallel", .flag = &default_parallel },
298 { .driver = "isa-fdc", .flag = &default_floppy },
299 { .driver = "ide-drive", .flag = &default_cdrom },
300 { .driver = "virtio-serial-pci", .flag = &default_virtcon },
301 { .driver = "virtio-serial-s390", .flag = &default_virtcon },
302 { .driver = "virtio-serial", .flag = &default_virtcon },
303 { .driver = "VGA", .flag = &default_vga },
304 { .driver = "cirrus-vga", .flag = &default_vga },
305 { .driver = "vmware-svga", .flag = &default_vga },
306 };
307
308 static int default_driver_check(QemuOpts *opts, void *opaque)
309 {
310 const char *driver = qemu_opt_get(opts, "driver");
311 int i;
312
313 if (!driver)
314 return 0;
315 for (i = 0; i < ARRAY_SIZE(default_list); i++) {
316 if (strcmp(default_list[i].driver, driver) != 0)
317 continue;
318 *(default_list[i].flag) = 0;
319 }
320 return 0;
321 }
322
323 /***********************************************************/
324 /* x86 ISA bus support */
325
326 target_phys_addr_t isa_mem_base = 0;
327 PicState2 *isa_pic;
328
329 /***********************************************************/
330 void hw_error(const char *fmt, ...)
331 {
332 va_list ap;
333 CPUState *env;
334
335 va_start(ap, fmt);
336 fprintf(stderr, "qemu: hardware error: ");
337 vfprintf(stderr, fmt, ap);
338 fprintf(stderr, "\n");
339 for(env = first_cpu; env != NULL; env = env->next_cpu) {
340 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
341 #ifdef TARGET_I386
342 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
343 #else
344 cpu_dump_state(env, stderr, fprintf, 0);
345 #endif
346 }
347 va_end(ap);
348 abort();
349 }
350
351 static void set_proc_name(const char *s)
352 {
353 #if defined(__linux__) && defined(PR_SET_NAME)
354 char name[16];
355 if (!s)
356 return;
357 name[sizeof(name) - 1] = 0;
358 strncpy(name, s, sizeof(name));
359 /* Could rewrite argv[0] too, but that's a bit more complicated.
360 This simple way is enough for `top'. */
361 prctl(PR_SET_NAME, name);
362 #endif
363 }
364
365 /***************/
366 /* ballooning */
367
368 static QEMUBalloonEvent *qemu_balloon_event;
369 void *qemu_balloon_event_opaque;
370
371 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
372 {
373 qemu_balloon_event = func;
374 qemu_balloon_event_opaque = opaque;
375 }
376
377 int qemu_balloon(ram_addr_t target, MonitorCompletion cb, void *opaque)
378 {
379 if (qemu_balloon_event) {
380 qemu_balloon_event(qemu_balloon_event_opaque, target, cb, opaque);
381 return 1;
382 } else {
383 return 0;
384 }
385 }
386
387 int qemu_balloon_status(MonitorCompletion cb, void *opaque)
388 {
389 if (qemu_balloon_event) {
390 qemu_balloon_event(qemu_balloon_event_opaque, 0, cb, opaque);
391 return 1;
392 } else {
393 return 0;
394 }
395 }
396
397
398 /***********************************************************/
399 /* real time host monotonic timer */
400
401 /* compute with 96 bit intermediate result: (a*b)/c */
402 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
403 {
404 union {
405 uint64_t ll;
406 struct {
407 #ifdef HOST_WORDS_BIGENDIAN
408 uint32_t high, low;
409 #else
410 uint32_t low, high;
411 #endif
412 } l;
413 } u, res;
414 uint64_t rl, rh;
415
416 u.ll = a;
417 rl = (uint64_t)u.l.low * (uint64_t)b;
418 rh = (uint64_t)u.l.high * (uint64_t)b;
419 rh += (rl >> 32);
420 res.l.high = rh / c;
421 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
422 return res.ll;
423 }
424
425 static int64_t get_clock_realtime(void)
426 {
427 struct timeval tv;
428
429 gettimeofday(&tv, NULL);
430 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
431 }
432
433 #ifdef WIN32
434
435 static int64_t clock_freq;
436
437 static void init_get_clock(void)
438 {
439 LARGE_INTEGER freq;
440 int ret;
441 ret = QueryPerformanceFrequency(&freq);
442 if (ret == 0) {
443 fprintf(stderr, "Could not calibrate ticks\n");
444 exit(1);
445 }
446 clock_freq = freq.QuadPart;
447 }
448
449 static int64_t get_clock(void)
450 {
451 LARGE_INTEGER ti;
452 QueryPerformanceCounter(&ti);
453 return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
454 }
455
456 #else
457
458 static int use_rt_clock;
459
460 static void init_get_clock(void)
461 {
462 use_rt_clock = 0;
463 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
464 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
465 {
466 struct timespec ts;
467 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
468 use_rt_clock = 1;
469 }
470 }
471 #endif
472 }
473
474 static int64_t get_clock(void)
475 {
476 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
477 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
478 if (use_rt_clock) {
479 struct timespec ts;
480 clock_gettime(CLOCK_MONOTONIC, &ts);
481 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
482 } else
483 #endif
484 {
485 /* XXX: using gettimeofday leads to problems if the date
486 changes, so it should be avoided. */
487 return get_clock_realtime();
488 }
489 }
490 #endif
491
492 /* Return the virtual CPU time, based on the instruction counter. */
493 static int64_t cpu_get_icount(void)
494 {
495 int64_t icount;
496 CPUState *env = cpu_single_env;;
497 icount = qemu_icount;
498 if (env) {
499 if (!can_do_io(env))
500 fprintf(stderr, "Bad clock read\n");
501 icount -= (env->icount_decr.u16.low + env->icount_extra);
502 }
503 return qemu_icount_bias + (icount << icount_time_shift);
504 }
505
506 /***********************************************************/
507 /* guest cycle counter */
508
509 typedef struct TimersState {
510 int64_t cpu_ticks_prev;
511 int64_t cpu_ticks_offset;
512 int64_t cpu_clock_offset;
513 int32_t cpu_ticks_enabled;
514 int64_t dummy;
515 } TimersState;
516
517 TimersState timers_state;
518
519 /* return the host CPU cycle counter and handle stop/restart */
520 int64_t cpu_get_ticks(void)
521 {
522 if (use_icount) {
523 return cpu_get_icount();
524 }
525 if (!timers_state.cpu_ticks_enabled) {
526 return timers_state.cpu_ticks_offset;
527 } else {
528 int64_t ticks;
529 ticks = cpu_get_real_ticks();
530 if (timers_state.cpu_ticks_prev > ticks) {
531 /* Note: non increasing ticks may happen if the host uses
532 software suspend */
533 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
534 }
535 timers_state.cpu_ticks_prev = ticks;
536 return ticks + timers_state.cpu_ticks_offset;
537 }
538 }
539
540 /* return the host CPU monotonic timer and handle stop/restart */
541 static int64_t cpu_get_clock(void)
542 {
543 int64_t ti;
544 if (!timers_state.cpu_ticks_enabled) {
545 return timers_state.cpu_clock_offset;
546 } else {
547 ti = get_clock();
548 return ti + timers_state.cpu_clock_offset;
549 }
550 }
551
552 /* enable cpu_get_ticks() */
553 void cpu_enable_ticks(void)
554 {
555 if (!timers_state.cpu_ticks_enabled) {
556 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
557 timers_state.cpu_clock_offset -= get_clock();
558 timers_state.cpu_ticks_enabled = 1;
559 }
560 }
561
562 /* disable cpu_get_ticks() : the clock is stopped. You must not call
563 cpu_get_ticks() after that. */
564 void cpu_disable_ticks(void)
565 {
566 if (timers_state.cpu_ticks_enabled) {
567 timers_state.cpu_ticks_offset = cpu_get_ticks();
568 timers_state.cpu_clock_offset = cpu_get_clock();
569 timers_state.cpu_ticks_enabled = 0;
570 }
571 }
572
573 /***********************************************************/
574 /* timers */
575
576 #define QEMU_CLOCK_REALTIME 0
577 #define QEMU_CLOCK_VIRTUAL 1
578 #define QEMU_CLOCK_HOST 2
579
580 struct QEMUClock {
581 int type;
582 /* XXX: add frequency */
583 };
584
585 struct QEMUTimer {
586 QEMUClock *clock;
587 int64_t expire_time;
588 QEMUTimerCB *cb;
589 void *opaque;
590 struct QEMUTimer *next;
591 };
592
593 struct qemu_alarm_timer {
594 char const *name;
595 unsigned int flags;
596
597 int (*start)(struct qemu_alarm_timer *t);
598 void (*stop)(struct qemu_alarm_timer *t);
599 void (*rearm)(struct qemu_alarm_timer *t);
600 void *priv;
601 };
602
603 #define ALARM_FLAG_DYNTICKS 0x1
604 #define ALARM_FLAG_EXPIRED 0x2
605
606 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
607 {
608 return t && (t->flags & ALARM_FLAG_DYNTICKS);
609 }
610
611 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
612 {
613 if (!alarm_has_dynticks(t))
614 return;
615
616 t->rearm(t);
617 }
618
619 /* TODO: MIN_TIMER_REARM_US should be optimized */
620 #define MIN_TIMER_REARM_US 250
621
622 static struct qemu_alarm_timer *alarm_timer;
623
624 #ifdef _WIN32
625
626 struct qemu_alarm_win32 {
627 MMRESULT timerId;
628 unsigned int period;
629 } alarm_win32_data = {0, 0};
630
631 static int win32_start_timer(struct qemu_alarm_timer *t);
632 static void win32_stop_timer(struct qemu_alarm_timer *t);
633 static void win32_rearm_timer(struct qemu_alarm_timer *t);
634
635 #else
636
637 static int unix_start_timer(struct qemu_alarm_timer *t);
638 static void unix_stop_timer(struct qemu_alarm_timer *t);
639
640 #ifdef __linux__
641
642 static int dynticks_start_timer(struct qemu_alarm_timer *t);
643 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
644 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
645
646 static int hpet_start_timer(struct qemu_alarm_timer *t);
647 static void hpet_stop_timer(struct qemu_alarm_timer *t);
648
649 static int rtc_start_timer(struct qemu_alarm_timer *t);
650 static void rtc_stop_timer(struct qemu_alarm_timer *t);
651
652 #endif /* __linux__ */
653
654 #endif /* _WIN32 */
655
656 /* Correlation between real and virtual time is always going to be
657 fairly approximate, so ignore small variation.
658 When the guest is idle real and virtual time will be aligned in
659 the IO wait loop. */
660 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
661
662 static void icount_adjust(void)
663 {
664 int64_t cur_time;
665 int64_t cur_icount;
666 int64_t delta;
667 static int64_t last_delta;
668 /* If the VM is not running, then do nothing. */
669 if (!vm_running)
670 return;
671
672 cur_time = cpu_get_clock();
673 cur_icount = qemu_get_clock(vm_clock);
674 delta = cur_icount - cur_time;
675 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
676 if (delta > 0
677 && last_delta + ICOUNT_WOBBLE < delta * 2
678 && icount_time_shift > 0) {
679 /* The guest is getting too far ahead. Slow time down. */
680 icount_time_shift--;
681 }
682 if (delta < 0
683 && last_delta - ICOUNT_WOBBLE > delta * 2
684 && icount_time_shift < MAX_ICOUNT_SHIFT) {
685 /* The guest is getting too far behind. Speed time up. */
686 icount_time_shift++;
687 }
688 last_delta = delta;
689 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
690 }
691
692 static void icount_adjust_rt(void * opaque)
693 {
694 qemu_mod_timer(icount_rt_timer,
695 qemu_get_clock(rt_clock) + 1000);
696 icount_adjust();
697 }
698
699 static void icount_adjust_vm(void * opaque)
700 {
701 qemu_mod_timer(icount_vm_timer,
702 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
703 icount_adjust();
704 }
705
706 static void init_icount_adjust(void)
707 {
708 /* Have both realtime and virtual time triggers for speed adjustment.
709 The realtime trigger catches emulated time passing too slowly,
710 the virtual time trigger catches emulated time passing too fast.
711 Realtime triggers occur even when idle, so use them less frequently
712 than VM triggers. */
713 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
714 qemu_mod_timer(icount_rt_timer,
715 qemu_get_clock(rt_clock) + 1000);
716 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
717 qemu_mod_timer(icount_vm_timer,
718 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
719 }
720
721 static struct qemu_alarm_timer alarm_timers[] = {
722 #ifndef _WIN32
723 #ifdef __linux__
724 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
725 dynticks_stop_timer, dynticks_rearm_timer, NULL},
726 /* HPET - if available - is preferred */
727 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
728 /* ...otherwise try RTC */
729 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
730 #endif
731 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
732 #else
733 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
734 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
735 {"win32", 0, win32_start_timer,
736 win32_stop_timer, NULL, &alarm_win32_data},
737 #endif
738 {NULL, }
739 };
740
741 static void show_available_alarms(void)
742 {
743 int i;
744
745 printf("Available alarm timers, in order of precedence:\n");
746 for (i = 0; alarm_timers[i].name; i++)
747 printf("%s\n", alarm_timers[i].name);
748 }
749
750 static void configure_alarms(char const *opt)
751 {
752 int i;
753 int cur = 0;
754 int count = ARRAY_SIZE(alarm_timers) - 1;
755 char *arg;
756 char *name;
757 struct qemu_alarm_timer tmp;
758
759 if (!strcmp(opt, "?")) {
760 show_available_alarms();
761 exit(0);
762 }
763
764 arg = qemu_strdup(opt);
765
766 /* Reorder the array */
767 name = strtok(arg, ",");
768 while (name) {
769 for (i = 0; i < count && alarm_timers[i].name; i++) {
770 if (!strcmp(alarm_timers[i].name, name))
771 break;
772 }
773
774 if (i == count) {
775 fprintf(stderr, "Unknown clock %s\n", name);
776 goto next;
777 }
778
779 if (i < cur)
780 /* Ignore */
781 goto next;
782
783 /* Swap */
784 tmp = alarm_timers[i];
785 alarm_timers[i] = alarm_timers[cur];
786 alarm_timers[cur] = tmp;
787
788 cur++;
789 next:
790 name = strtok(NULL, ",");
791 }
792
793 qemu_free(arg);
794
795 if (cur) {
796 /* Disable remaining timers */
797 for (i = cur; i < count; i++)
798 alarm_timers[i].name = NULL;
799 } else {
800 show_available_alarms();
801 exit(1);
802 }
803 }
804
805 #define QEMU_NUM_CLOCKS 3
806
807 QEMUClock *rt_clock;
808 QEMUClock *vm_clock;
809 QEMUClock *host_clock;
810
811 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
812
813 static QEMUClock *qemu_new_clock(int type)
814 {
815 QEMUClock *clock;
816 clock = qemu_mallocz(sizeof(QEMUClock));
817 clock->type = type;
818 return clock;
819 }
820
821 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
822 {
823 QEMUTimer *ts;
824
825 ts = qemu_mallocz(sizeof(QEMUTimer));
826 ts->clock = clock;
827 ts->cb = cb;
828 ts->opaque = opaque;
829 return ts;
830 }
831
832 void qemu_free_timer(QEMUTimer *ts)
833 {
834 qemu_free(ts);
835 }
836
837 /* stop a timer, but do not dealloc it */
838 void qemu_del_timer(QEMUTimer *ts)
839 {
840 QEMUTimer **pt, *t;
841
842 /* NOTE: this code must be signal safe because
843 qemu_timer_expired() can be called from a signal. */
844 pt = &active_timers[ts->clock->type];
845 for(;;) {
846 t = *pt;
847 if (!t)
848 break;
849 if (t == ts) {
850 *pt = t->next;
851 break;
852 }
853 pt = &t->next;
854 }
855 }
856
857 /* modify the current timer so that it will be fired when current_time
858 >= expire_time. The corresponding callback will be called. */
859 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
860 {
861 QEMUTimer **pt, *t;
862
863 qemu_del_timer(ts);
864
865 /* add the timer in the sorted list */
866 /* NOTE: this code must be signal safe because
867 qemu_timer_expired() can be called from a signal. */
868 pt = &active_timers[ts->clock->type];
869 for(;;) {
870 t = *pt;
871 if (!t)
872 break;
873 if (t->expire_time > expire_time)
874 break;
875 pt = &t->next;
876 }
877 ts->expire_time = expire_time;
878 ts->next = *pt;
879 *pt = ts;
880
881 /* Rearm if necessary */
882 if (pt == &active_timers[ts->clock->type]) {
883 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
884 qemu_rearm_alarm_timer(alarm_timer);
885 }
886 /* Interrupt execution to force deadline recalculation. */
887 if (use_icount)
888 qemu_notify_event();
889 }
890 }
891
892 int qemu_timer_pending(QEMUTimer *ts)
893 {
894 QEMUTimer *t;
895 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
896 if (t == ts)
897 return 1;
898 }
899 return 0;
900 }
901
902 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
903 {
904 if (!timer_head)
905 return 0;
906 return (timer_head->expire_time <= current_time);
907 }
908
909 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
910 {
911 QEMUTimer *ts;
912
913 for(;;) {
914 ts = *ptimer_head;
915 if (!ts || ts->expire_time > current_time)
916 break;
917 /* remove timer from the list before calling the callback */
918 *ptimer_head = ts->next;
919 ts->next = NULL;
920
921 /* run the callback (the timer list can be modified) */
922 ts->cb(ts->opaque);
923 }
924 }
925
926 int64_t qemu_get_clock(QEMUClock *clock)
927 {
928 switch(clock->type) {
929 case QEMU_CLOCK_REALTIME:
930 return get_clock() / 1000000;
931 default:
932 case QEMU_CLOCK_VIRTUAL:
933 if (use_icount) {
934 return cpu_get_icount();
935 } else {
936 return cpu_get_clock();
937 }
938 case QEMU_CLOCK_HOST:
939 return get_clock_realtime();
940 }
941 }
942
943 int64_t qemu_get_clock_ns(QEMUClock *clock)
944 {
945 switch(clock->type) {
946 case QEMU_CLOCK_REALTIME:
947 return get_clock();
948 default:
949 case QEMU_CLOCK_VIRTUAL:
950 if (use_icount) {
951 return cpu_get_icount();
952 } else {
953 return cpu_get_clock();
954 }
955 case QEMU_CLOCK_HOST:
956 return get_clock_realtime();
957 }
958 }
959
960 static void init_clocks(void)
961 {
962 init_get_clock();
963 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
964 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
965 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
966
967 rtc_clock = host_clock;
968 }
969
970 /* save a timer */
971 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
972 {
973 uint64_t expire_time;
974
975 if (qemu_timer_pending(ts)) {
976 expire_time = ts->expire_time;
977 } else {
978 expire_time = -1;
979 }
980 qemu_put_be64(f, expire_time);
981 }
982
983 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
984 {
985 uint64_t expire_time;
986
987 expire_time = qemu_get_be64(f);
988 if (expire_time != -1) {
989 qemu_mod_timer(ts, expire_time);
990 } else {
991 qemu_del_timer(ts);
992 }
993 }
994
995 static const VMStateDescription vmstate_timers = {
996 .name = "timer",
997 .version_id = 2,
998 .minimum_version_id = 1,
999 .minimum_version_id_old = 1,
1000 .fields = (VMStateField []) {
1001 VMSTATE_INT64(cpu_ticks_offset, TimersState),
1002 VMSTATE_INT64(dummy, TimersState),
1003 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
1004 VMSTATE_END_OF_LIST()
1005 }
1006 };
1007
1008 static void qemu_event_increment(void);
1009
1010 #ifdef _WIN32
1011 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1012 DWORD_PTR dwUser, DWORD_PTR dw1,
1013 DWORD_PTR dw2)
1014 #else
1015 static void host_alarm_handler(int host_signum)
1016 #endif
1017 {
1018 #if 0
1019 #define DISP_FREQ 1000
1020 {
1021 static int64_t delta_min = INT64_MAX;
1022 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1023 static int count;
1024 ti = qemu_get_clock(vm_clock);
1025 if (last_clock != 0) {
1026 delta = ti - last_clock;
1027 if (delta < delta_min)
1028 delta_min = delta;
1029 if (delta > delta_max)
1030 delta_max = delta;
1031 delta_cum += delta;
1032 if (++count == DISP_FREQ) {
1033 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1034 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
1035 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
1036 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
1037 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
1038 count = 0;
1039 delta_min = INT64_MAX;
1040 delta_max = 0;
1041 delta_cum = 0;
1042 }
1043 }
1044 last_clock = ti;
1045 }
1046 #endif
1047 if (alarm_has_dynticks(alarm_timer) ||
1048 (!use_icount &&
1049 qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
1050 qemu_get_clock(vm_clock))) ||
1051 qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
1052 qemu_get_clock(rt_clock)) ||
1053 qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
1054 qemu_get_clock(host_clock))) {
1055 qemu_event_increment();
1056 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1057
1058 #ifndef CONFIG_IOTHREAD
1059 if (next_cpu) {
1060 /* stop the currently executing cpu because a timer occured */
1061 cpu_exit(next_cpu);
1062 }
1063 #endif
1064 timer_alarm_pending = 1;
1065 qemu_notify_event();
1066 }
1067 }
1068
1069 static int64_t qemu_next_deadline(void)
1070 {
1071 /* To avoid problems with overflow limit this to 2^32. */
1072 int64_t delta = INT32_MAX;
1073
1074 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
1075 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
1076 qemu_get_clock(vm_clock);
1077 }
1078 if (active_timers[QEMU_CLOCK_HOST]) {
1079 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
1080 qemu_get_clock(host_clock);
1081 if (hdelta < delta)
1082 delta = hdelta;
1083 }
1084
1085 if (delta < 0)
1086 delta = 0;
1087
1088 return delta;
1089 }
1090
1091 #if defined(__linux__)
1092 static uint64_t qemu_next_deadline_dyntick(void)
1093 {
1094 int64_t delta;
1095 int64_t rtdelta;
1096
1097 if (use_icount)
1098 delta = INT32_MAX;
1099 else
1100 delta = (qemu_next_deadline() + 999) / 1000;
1101
1102 if (active_timers[QEMU_CLOCK_REALTIME]) {
1103 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
1104 qemu_get_clock(rt_clock))*1000;
1105 if (rtdelta < delta)
1106 delta = rtdelta;
1107 }
1108
1109 if (delta < MIN_TIMER_REARM_US)
1110 delta = MIN_TIMER_REARM_US;
1111
1112 return delta;
1113 }
1114 #endif
1115
1116 #ifndef _WIN32
1117
1118 /* Sets a specific flag */
1119 static int fcntl_setfl(int fd, int flag)
1120 {
1121 int flags;
1122
1123 flags = fcntl(fd, F_GETFL);
1124 if (flags == -1)
1125 return -errno;
1126
1127 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1128 return -errno;
1129
1130 return 0;
1131 }
1132
1133 #if defined(__linux__)
1134
1135 #define RTC_FREQ 1024
1136
1137 static void enable_sigio_timer(int fd)
1138 {
1139 struct sigaction act;
1140
1141 /* timer signal */
1142 sigfillset(&act.sa_mask);
1143 act.sa_flags = 0;
1144 act.sa_handler = host_alarm_handler;
1145
1146 sigaction(SIGIO, &act, NULL);
1147 fcntl_setfl(fd, O_ASYNC);
1148 fcntl(fd, F_SETOWN, getpid());
1149 }
1150
1151 static int hpet_start_timer(struct qemu_alarm_timer *t)
1152 {
1153 struct hpet_info info;
1154 int r, fd;
1155
1156 fd = qemu_open("/dev/hpet", O_RDONLY);
1157 if (fd < 0)
1158 return -1;
1159
1160 /* Set frequency */
1161 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1162 if (r < 0) {
1163 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1164 "error, but for better emulation accuracy type:\n"
1165 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1166 goto fail;
1167 }
1168
1169 /* Check capabilities */
1170 r = ioctl(fd, HPET_INFO, &info);
1171 if (r < 0)
1172 goto fail;
1173
1174 /* Enable periodic mode */
1175 r = ioctl(fd, HPET_EPI, 0);
1176 if (info.hi_flags && (r < 0))
1177 goto fail;
1178
1179 /* Enable interrupt */
1180 r = ioctl(fd, HPET_IE_ON, 0);
1181 if (r < 0)
1182 goto fail;
1183
1184 enable_sigio_timer(fd);
1185 t->priv = (void *)(long)fd;
1186
1187 return 0;
1188 fail:
1189 close(fd);
1190 return -1;
1191 }
1192
1193 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1194 {
1195 int fd = (long)t->priv;
1196
1197 close(fd);
1198 }
1199
1200 static int rtc_start_timer(struct qemu_alarm_timer *t)
1201 {
1202 int rtc_fd;
1203 unsigned long current_rtc_freq = 0;
1204
1205 TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
1206 if (rtc_fd < 0)
1207 return -1;
1208 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1209 if (current_rtc_freq != RTC_FREQ &&
1210 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1211 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1212 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1213 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1214 goto fail;
1215 }
1216 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1217 fail:
1218 close(rtc_fd);
1219 return -1;
1220 }
1221
1222 enable_sigio_timer(rtc_fd);
1223
1224 t->priv = (void *)(long)rtc_fd;
1225
1226 return 0;
1227 }
1228
1229 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1230 {
1231 int rtc_fd = (long)t->priv;
1232
1233 close(rtc_fd);
1234 }
1235
1236 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1237 {
1238 struct sigevent ev;
1239 timer_t host_timer;
1240 struct sigaction act;
1241
1242 sigfillset(&act.sa_mask);
1243 act.sa_flags = 0;
1244 act.sa_handler = host_alarm_handler;
1245
1246 sigaction(SIGALRM, &act, NULL);
1247
1248 /*
1249 * Initialize ev struct to 0 to avoid valgrind complaining
1250 * about uninitialized data in timer_create call
1251 */
1252 memset(&ev, 0, sizeof(ev));
1253 ev.sigev_value.sival_int = 0;
1254 ev.sigev_notify = SIGEV_SIGNAL;
1255 ev.sigev_signo = SIGALRM;
1256
1257 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1258 perror("timer_create");
1259
1260 /* disable dynticks */
1261 fprintf(stderr, "Dynamic Ticks disabled\n");
1262
1263 return -1;
1264 }
1265
1266 t->priv = (void *)(long)host_timer;
1267
1268 return 0;
1269 }
1270
1271 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1272 {
1273 timer_t host_timer = (timer_t)(long)t->priv;
1274
1275 timer_delete(host_timer);
1276 }
1277
1278 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1279 {
1280 timer_t host_timer = (timer_t)(long)t->priv;
1281 struct itimerspec timeout;
1282 int64_t nearest_delta_us = INT64_MAX;
1283 int64_t current_us;
1284
1285 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1286 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1287 !active_timers[QEMU_CLOCK_HOST])
1288 return;
1289
1290 nearest_delta_us = qemu_next_deadline_dyntick();
1291
1292 /* check whether a timer is already running */
1293 if (timer_gettime(host_timer, &timeout)) {
1294 perror("gettime");
1295 fprintf(stderr, "Internal timer error: aborting\n");
1296 exit(1);
1297 }
1298 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1299 if (current_us && current_us <= nearest_delta_us)
1300 return;
1301
1302 timeout.it_interval.tv_sec = 0;
1303 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1304 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1305 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1306 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1307 perror("settime");
1308 fprintf(stderr, "Internal timer error: aborting\n");
1309 exit(1);
1310 }
1311 }
1312
1313 #endif /* defined(__linux__) */
1314
1315 static int unix_start_timer(struct qemu_alarm_timer *t)
1316 {
1317 struct sigaction act;
1318 struct itimerval itv;
1319 int err;
1320
1321 /* timer signal */
1322 sigfillset(&act.sa_mask);
1323 act.sa_flags = 0;
1324 act.sa_handler = host_alarm_handler;
1325
1326 sigaction(SIGALRM, &act, NULL);
1327
1328 itv.it_interval.tv_sec = 0;
1329 /* for i386 kernel 2.6 to get 1 ms */
1330 itv.it_interval.tv_usec = 999;
1331 itv.it_value.tv_sec = 0;
1332 itv.it_value.tv_usec = 10 * 1000;
1333
1334 err = setitimer(ITIMER_REAL, &itv, NULL);
1335 if (err)
1336 return -1;
1337
1338 return 0;
1339 }
1340
1341 static void unix_stop_timer(struct qemu_alarm_timer *t)
1342 {
1343 struct itimerval itv;
1344
1345 memset(&itv, 0, sizeof(itv));
1346 setitimer(ITIMER_REAL, &itv, NULL);
1347 }
1348
1349 #endif /* !defined(_WIN32) */
1350
1351
1352 #ifdef _WIN32
1353
1354 static int win32_start_timer(struct qemu_alarm_timer *t)
1355 {
1356 TIMECAPS tc;
1357 struct qemu_alarm_win32 *data = t->priv;
1358 UINT flags;
1359
1360 memset(&tc, 0, sizeof(tc));
1361 timeGetDevCaps(&tc, sizeof(tc));
1362
1363 data->period = tc.wPeriodMin;
1364 timeBeginPeriod(data->period);
1365
1366 flags = TIME_CALLBACK_FUNCTION;
1367 if (alarm_has_dynticks(t))
1368 flags |= TIME_ONESHOT;
1369 else
1370 flags |= TIME_PERIODIC;
1371
1372 data->timerId = timeSetEvent(1, // interval (ms)
1373 data->period, // resolution
1374 host_alarm_handler, // function
1375 (DWORD)t, // parameter
1376 flags);
1377
1378 if (!data->timerId) {
1379 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1380 GetLastError());
1381 timeEndPeriod(data->period);
1382 return -1;
1383 }
1384
1385 return 0;
1386 }
1387
1388 static void win32_stop_timer(struct qemu_alarm_timer *t)
1389 {
1390 struct qemu_alarm_win32 *data = t->priv;
1391
1392 timeKillEvent(data->timerId);
1393 timeEndPeriod(data->period);
1394 }
1395
1396 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1397 {
1398 struct qemu_alarm_win32 *data = t->priv;
1399
1400 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1401 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1402 !active_timers[QEMU_CLOCK_HOST])
1403 return;
1404
1405 timeKillEvent(data->timerId);
1406
1407 data->timerId = timeSetEvent(1,
1408 data->period,
1409 host_alarm_handler,
1410 (DWORD)t,
1411 TIME_ONESHOT | TIME_CALLBACK_FUNCTION);
1412
1413 if (!data->timerId) {
1414 fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1415 GetLastError());
1416
1417 timeEndPeriod(data->period);
1418 exit(1);
1419 }
1420 }
1421
1422 #endif /* _WIN32 */
1423
1424 static int init_timer_alarm(void)
1425 {
1426 struct qemu_alarm_timer *t = NULL;
1427 int i, err = -1;
1428
1429 for (i = 0; alarm_timers[i].name; i++) {
1430 t = &alarm_timers[i];
1431
1432 err = t->start(t);
1433 if (!err)
1434 break;
1435 }
1436
1437 if (err) {
1438 err = -ENOENT;
1439 goto fail;
1440 }
1441
1442 alarm_timer = t;
1443
1444 return 0;
1445
1446 fail:
1447 return err;
1448 }
1449
1450 static void quit_timers(void)
1451 {
1452 alarm_timer->stop(alarm_timer);
1453 alarm_timer = NULL;
1454 }
1455
1456 /***********************************************************/
1457 /* host time/date access */
1458 void qemu_get_timedate(struct tm *tm, int offset)
1459 {
1460 time_t ti;
1461 struct tm *ret;
1462
1463 time(&ti);
1464 ti += offset;
1465 if (rtc_date_offset == -1) {
1466 if (rtc_utc)
1467 ret = gmtime(&ti);
1468 else
1469 ret = localtime(&ti);
1470 } else {
1471 ti -= rtc_date_offset;
1472 ret = gmtime(&ti);
1473 }
1474
1475 memcpy(tm, ret, sizeof(struct tm));
1476 }
1477
1478 int qemu_timedate_diff(struct tm *tm)
1479 {
1480 time_t seconds;
1481
1482 if (rtc_date_offset == -1)
1483 if (rtc_utc)
1484 seconds = mktimegm(tm);
1485 else
1486 seconds = mktime(tm);
1487 else
1488 seconds = mktimegm(tm) + rtc_date_offset;
1489
1490 return seconds - time(NULL);
1491 }
1492
1493 void rtc_change_mon_event(struct tm *tm)
1494 {
1495 QObject *data;
1496
1497 data = qobject_from_jsonf("{ 'offset': %d }", qemu_timedate_diff(tm));
1498 monitor_protocol_event(QEVENT_RTC_CHANGE, data);
1499 qobject_decref(data);
1500 }
1501
1502 static void configure_rtc_date_offset(const char *startdate, int legacy)
1503 {
1504 time_t rtc_start_date;
1505 struct tm tm;
1506
1507 if (!strcmp(startdate, "now") && legacy) {
1508 rtc_date_offset = -1;
1509 } else {
1510 if (sscanf(startdate, "%d-%d-%dT%d:%d:%d",
1511 &tm.tm_year,
1512 &tm.tm_mon,
1513 &tm.tm_mday,
1514 &tm.tm_hour,
1515 &tm.tm_min,
1516 &tm.tm_sec) == 6) {
1517 /* OK */
1518 } else if (sscanf(startdate, "%d-%d-%d",
1519 &tm.tm_year,
1520 &tm.tm_mon,
1521 &tm.tm_mday) == 3) {
1522 tm.tm_hour = 0;
1523 tm.tm_min = 0;
1524 tm.tm_sec = 0;
1525 } else {
1526 goto date_fail;
1527 }
1528 tm.tm_year -= 1900;
1529 tm.tm_mon--;
1530 rtc_start_date = mktimegm(&tm);
1531 if (rtc_start_date == -1) {
1532 date_fail:
1533 fprintf(stderr, "Invalid date format. Valid formats are:\n"
1534 "'2006-06-17T16:01:21' or '2006-06-17'\n");
1535 exit(1);
1536 }
1537 rtc_date_offset = time(NULL) - rtc_start_date;
1538 }
1539 }
1540
1541 static void configure_rtc(QemuOpts *opts)
1542 {
1543 const char *value;
1544
1545 value = qemu_opt_get(opts, "base");
1546 if (value) {
1547 if (!strcmp(value, "utc")) {
1548 rtc_utc = 1;
1549 } else if (!strcmp(value, "localtime")) {
1550 rtc_utc = 0;
1551 } else {
1552 configure_rtc_date_offset(value, 0);
1553 }
1554 }
1555 value = qemu_opt_get(opts, "clock");
1556 if (value) {
1557 if (!strcmp(value, "host")) {
1558 rtc_clock = host_clock;
1559 } else if (!strcmp(value, "vm")) {
1560 rtc_clock = vm_clock;
1561 } else {
1562 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1563 exit(1);
1564 }
1565 }
1566 #ifdef CONFIG_TARGET_I386
1567 value = qemu_opt_get(opts, "driftfix");
1568 if (value) {
1569 if (!strcmp(buf, "slew")) {
1570 rtc_td_hack = 1;
1571 } else if (!strcmp(buf, "none")) {
1572 rtc_td_hack = 0;
1573 } else {
1574 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1575 exit(1);
1576 }
1577 }
1578 #endif
1579 }
1580
1581 #ifdef _WIN32
1582 static void socket_cleanup(void)
1583 {
1584 WSACleanup();
1585 }
1586
1587 static int socket_init(void)
1588 {
1589 WSADATA Data;
1590 int ret, err;
1591
1592 ret = WSAStartup(MAKEWORD(2,2), &Data);
1593 if (ret != 0) {
1594 err = WSAGetLastError();
1595 fprintf(stderr, "WSAStartup: %d\n", err);
1596 return -1;
1597 }
1598 atexit(socket_cleanup);
1599 return 0;
1600 }
1601 #endif
1602
1603 /***********************************************************/
1604 /* Bluetooth support */
1605 static int nb_hcis;
1606 static int cur_hci;
1607 static struct HCIInfo *hci_table[MAX_NICS];
1608
1609 static struct bt_vlan_s {
1610 struct bt_scatternet_s net;
1611 int id;
1612 struct bt_vlan_s *next;
1613 } *first_bt_vlan;
1614
1615 /* find or alloc a new bluetooth "VLAN" */
1616 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1617 {
1618 struct bt_vlan_s **pvlan, *vlan;
1619 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1620 if (vlan->id == id)
1621 return &vlan->net;
1622 }
1623 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1624 vlan->id = id;
1625 pvlan = &first_bt_vlan;
1626 while (*pvlan != NULL)
1627 pvlan = &(*pvlan)->next;
1628 *pvlan = vlan;
1629 return &vlan->net;
1630 }
1631
1632 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1633 {
1634 }
1635
1636 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1637 {
1638 return -ENOTSUP;
1639 }
1640
1641 static struct HCIInfo null_hci = {
1642 .cmd_send = null_hci_send,
1643 .sco_send = null_hci_send,
1644 .acl_send = null_hci_send,
1645 .bdaddr_set = null_hci_addr_set,
1646 };
1647
1648 struct HCIInfo *qemu_next_hci(void)
1649 {
1650 if (cur_hci == nb_hcis)
1651 return &null_hci;
1652
1653 return hci_table[cur_hci++];
1654 }
1655
1656 static struct HCIInfo *hci_init(const char *str)
1657 {
1658 char *endp;
1659 struct bt_scatternet_s *vlan = 0;
1660
1661 if (!strcmp(str, "null"))
1662 /* null */
1663 return &null_hci;
1664 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1665 /* host[:hciN] */
1666 return bt_host_hci(str[4] ? str + 5 : "hci0");
1667 else if (!strncmp(str, "hci", 3)) {
1668 /* hci[,vlan=n] */
1669 if (str[3]) {
1670 if (!strncmp(str + 3, ",vlan=", 6)) {
1671 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1672 if (*endp)
1673 vlan = 0;
1674 }
1675 } else
1676 vlan = qemu_find_bt_vlan(0);
1677 if (vlan)
1678 return bt_new_hci(vlan);
1679 }
1680
1681 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1682
1683 return 0;
1684 }
1685
1686 static int bt_hci_parse(const char *str)
1687 {
1688 struct HCIInfo *hci;
1689 bdaddr_t bdaddr;
1690
1691 if (nb_hcis >= MAX_NICS) {
1692 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1693 return -1;
1694 }
1695
1696 hci = hci_init(str);
1697 if (!hci)
1698 return -1;
1699
1700 bdaddr.b[0] = 0x52;
1701 bdaddr.b[1] = 0x54;
1702 bdaddr.b[2] = 0x00;
1703 bdaddr.b[3] = 0x12;
1704 bdaddr.b[4] = 0x34;
1705 bdaddr.b[5] = 0x56 + nb_hcis;
1706 hci->bdaddr_set(hci, bdaddr.b);
1707
1708 hci_table[nb_hcis++] = hci;
1709
1710 return 0;
1711 }
1712
1713 static void bt_vhci_add(int vlan_id)
1714 {
1715 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1716
1717 if (!vlan->slave)
1718 fprintf(stderr, "qemu: warning: adding a VHCI to "
1719 "an empty scatternet %i\n", vlan_id);
1720
1721 bt_vhci_init(bt_new_hci(vlan));
1722 }
1723
1724 static struct bt_device_s *bt_device_add(const char *opt)
1725 {
1726 struct bt_scatternet_s *vlan;
1727 int vlan_id = 0;
1728 char *endp = strstr(opt, ",vlan=");
1729 int len = (endp ? endp - opt : strlen(opt)) + 1;
1730 char devname[10];
1731
1732 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1733
1734 if (endp) {
1735 vlan_id = strtol(endp + 6, &endp, 0);
1736 if (*endp) {
1737 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1738 return 0;
1739 }
1740 }
1741
1742 vlan = qemu_find_bt_vlan(vlan_id);
1743
1744 if (!vlan->slave)
1745 fprintf(stderr, "qemu: warning: adding a slave device to "
1746 "an empty scatternet %i\n", vlan_id);
1747
1748 if (!strcmp(devname, "keyboard"))
1749 return bt_keyboard_init(vlan);
1750
1751 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1752 return 0;
1753 }
1754
1755 static int bt_parse(const char *opt)
1756 {
1757 const char *endp, *p;
1758 int vlan;
1759
1760 if (strstart(opt, "hci", &endp)) {
1761 if (!*endp || *endp == ',') {
1762 if (*endp)
1763 if (!strstart(endp, ",vlan=", 0))
1764 opt = endp + 1;
1765
1766 return bt_hci_parse(opt);
1767 }
1768 } else if (strstart(opt, "vhci", &endp)) {
1769 if (!*endp || *endp == ',') {
1770 if (*endp) {
1771 if (strstart(endp, ",vlan=", &p)) {
1772 vlan = strtol(p, (char **) &endp, 0);
1773 if (*endp) {
1774 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1775 return 1;
1776 }
1777 } else {
1778 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1779 return 1;
1780 }
1781 } else
1782 vlan = 0;
1783
1784 bt_vhci_add(vlan);
1785 return 0;
1786 }
1787 } else if (strstart(opt, "device:", &endp))
1788 return !bt_device_add(endp);
1789
1790 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1791 return 1;
1792 }
1793
1794 /***********************************************************/
1795 /* QEMU Block devices */
1796
1797 #define HD_ALIAS "index=%d,media=disk"
1798 #define CDROM_ALIAS "index=2,media=cdrom"
1799 #define FD_ALIAS "index=%d,if=floppy"
1800 #define PFLASH_ALIAS "if=pflash"
1801 #define MTD_ALIAS "if=mtd"
1802 #define SD_ALIAS "index=0,if=sd"
1803
1804 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1805 {
1806 va_list ap;
1807 char optstr[1024];
1808 QemuOpts *opts;
1809
1810 va_start(ap, fmt);
1811 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1812 va_end(ap);
1813
1814 opts = qemu_opts_parse(&qemu_drive_opts, optstr, 0);
1815 if (!opts) {
1816 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1817 __FUNCTION__, optstr);
1818 return NULL;
1819 }
1820 if (file)
1821 qemu_opt_set(opts, "file", file);
1822 return opts;
1823 }
1824
1825 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1826 {
1827 DriveInfo *dinfo;
1828
1829 /* seek interface, bus and unit */
1830
1831 QTAILQ_FOREACH(dinfo, &drives, next) {
1832 if (dinfo->type == type &&
1833 dinfo->bus == bus &&
1834 dinfo->unit == unit)
1835 return dinfo;
1836 }
1837
1838 return NULL;
1839 }
1840
1841 DriveInfo *drive_get_by_id(const char *id)
1842 {
1843 DriveInfo *dinfo;
1844
1845 QTAILQ_FOREACH(dinfo, &drives, next) {
1846 if (strcmp(id, dinfo->id))
1847 continue;
1848 return dinfo;
1849 }
1850 return NULL;
1851 }
1852
1853 int drive_get_max_bus(BlockInterfaceType type)
1854 {
1855 int max_bus;
1856 DriveInfo *dinfo;
1857
1858 max_bus = -1;
1859 QTAILQ_FOREACH(dinfo, &drives, next) {
1860 if(dinfo->type == type &&
1861 dinfo->bus > max_bus)
1862 max_bus = dinfo->bus;
1863 }
1864 return max_bus;
1865 }
1866
1867 const char *drive_get_serial(BlockDriverState *bdrv)
1868 {
1869 DriveInfo *dinfo;
1870
1871 QTAILQ_FOREACH(dinfo, &drives, next) {
1872 if (dinfo->bdrv == bdrv)
1873 return dinfo->serial;
1874 }
1875
1876 return "\0";
1877 }
1878
1879 BlockInterfaceErrorAction drive_get_on_error(
1880 BlockDriverState *bdrv, int is_read)
1881 {
1882 DriveInfo *dinfo;
1883
1884 QTAILQ_FOREACH(dinfo, &drives, next) {
1885 if (dinfo->bdrv == bdrv)
1886 return is_read ? dinfo->on_read_error : dinfo->on_write_error;
1887 }
1888
1889 return is_read ? BLOCK_ERR_REPORT : BLOCK_ERR_STOP_ENOSPC;
1890 }
1891
1892 static void bdrv_format_print(void *opaque, const char *name)
1893 {
1894 fprintf(stderr, " %s", name);
1895 }
1896
1897 void drive_uninit(DriveInfo *dinfo)
1898 {
1899 qemu_opts_del(dinfo->opts);
1900 bdrv_delete(dinfo->bdrv);
1901 QTAILQ_REMOVE(&drives, dinfo, next);
1902 qemu_free(dinfo);
1903 }
1904
1905 static int parse_block_error_action(const char *buf, int is_read)
1906 {
1907 if (!strcmp(buf, "ignore")) {
1908 return BLOCK_ERR_IGNORE;
1909 } else if (!is_read && !strcmp(buf, "enospc")) {
1910 return BLOCK_ERR_STOP_ENOSPC;
1911 } else if (!strcmp(buf, "stop")) {
1912 return BLOCK_ERR_STOP_ANY;
1913 } else if (!strcmp(buf, "report")) {
1914 return BLOCK_ERR_REPORT;
1915 } else {
1916 fprintf(stderr, "qemu: '%s' invalid %s error action\n",
1917 buf, is_read ? "read" : "write");
1918 return -1;
1919 }
1920 }
1921
1922 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1923 int *fatal_error)
1924 {
1925 const char *buf;
1926 const char *file = NULL;
1927 char devname[128];
1928 const char *serial;
1929 const char *mediastr = "";
1930 BlockInterfaceType type;
1931 enum { MEDIA_DISK, MEDIA_CDROM } media;
1932 int bus_id, unit_id;
1933 int cyls, heads, secs, translation;
1934 BlockDriver *drv = NULL;
1935 QEMUMachine *machine = opaque;
1936 int max_devs;
1937 int index;
1938 int cache;
1939 int aio = 0;
1940 int ro = 0;
1941 int bdrv_flags;
1942 int on_read_error, on_write_error;
1943 const char *devaddr;
1944 DriveInfo *dinfo;
1945 int snapshot = 0;
1946
1947 *fatal_error = 1;
1948
1949 translation = BIOS_ATA_TRANSLATION_AUTO;
1950 cache = 1;
1951
1952 if (machine && machine->use_scsi) {
1953 type = IF_SCSI;
1954 max_devs = MAX_SCSI_DEVS;
1955 pstrcpy(devname, sizeof(devname), "scsi");
1956 } else {
1957 type = IF_IDE;
1958 max_devs = MAX_IDE_DEVS;
1959 pstrcpy(devname, sizeof(devname), "ide");
1960 }
1961 media = MEDIA_DISK;
1962
1963 /* extract parameters */
1964 bus_id = qemu_opt_get_number(opts, "bus", 0);
1965 unit_id = qemu_opt_get_number(opts, "unit", -1);
1966 index = qemu_opt_get_number(opts, "index", -1);
1967
1968 cyls = qemu_opt_get_number(opts, "cyls", 0);
1969 heads = qemu_opt_get_number(opts, "heads", 0);
1970 secs = qemu_opt_get_number(opts, "secs", 0);
1971
1972 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
1973 ro = qemu_opt_get_bool(opts, "readonly", 0);
1974
1975 file = qemu_opt_get(opts, "file");
1976 serial = qemu_opt_get(opts, "serial");
1977
1978 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
1979 pstrcpy(devname, sizeof(devname), buf);
1980 if (!strcmp(buf, "ide")) {
1981 type = IF_IDE;
1982 max_devs = MAX_IDE_DEVS;
1983 } else if (!strcmp(buf, "scsi")) {
1984 type = IF_SCSI;
1985 max_devs = MAX_SCSI_DEVS;
1986 } else if (!strcmp(buf, "floppy")) {
1987 type = IF_FLOPPY;
1988 max_devs = 0;
1989 } else if (!strcmp(buf, "pflash")) {
1990 type = IF_PFLASH;
1991 max_devs = 0;
1992 } else if (!strcmp(buf, "mtd")) {
1993 type = IF_MTD;
1994 max_devs = 0;
1995 } else if (!strcmp(buf, "sd")) {
1996 type = IF_SD;
1997 max_devs = 0;
1998 } else if (!strcmp(buf, "virtio")) {
1999 type = IF_VIRTIO;
2000 max_devs = 0;
2001 } else if (!strcmp(buf, "xen")) {
2002 type = IF_XEN;
2003 max_devs = 0;
2004 } else if (!strcmp(buf, "none")) {
2005 type = IF_NONE;
2006 max_devs = 0;
2007 } else {
2008 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
2009 return NULL;
2010 }
2011 }
2012
2013 if (cyls || heads || secs) {
2014 if (cyls < 1 || (type == IF_IDE && cyls > 16383)) {
2015 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
2016 return NULL;
2017 }
2018 if (heads < 1 || (type == IF_IDE && heads > 16)) {
2019 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
2020 return NULL;
2021 }
2022 if (secs < 1 || (type == IF_IDE && secs > 63)) {
2023 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2024 return NULL;
2025 }
2026 }
2027
2028 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2029 if (!cyls) {
2030 fprintf(stderr,
2031 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2032 buf);
2033 return NULL;
2034 }
2035 if (!strcmp(buf, "none"))
2036 translation = BIOS_ATA_TRANSLATION_NONE;
2037 else if (!strcmp(buf, "lba"))
2038 translation = BIOS_ATA_TRANSLATION_LBA;
2039 else if (!strcmp(buf, "auto"))
2040 translation = BIOS_ATA_TRANSLATION_AUTO;
2041 else {
2042 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2043 return NULL;
2044 }
2045 }
2046
2047 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2048 if (!strcmp(buf, "disk")) {
2049 media = MEDIA_DISK;
2050 } else if (!strcmp(buf, "cdrom")) {
2051 if (cyls || secs || heads) {
2052 fprintf(stderr,
2053 "qemu: '%s' invalid physical CHS format\n", buf);
2054 return NULL;
2055 }
2056 media = MEDIA_CDROM;
2057 } else {
2058 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2059 return NULL;
2060 }
2061 }
2062
2063 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2064 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2065 cache = 0;
2066 else if (!strcmp(buf, "writethrough"))
2067 cache = 1;
2068 else if (!strcmp(buf, "writeback"))
2069 cache = 2;
2070 else {
2071 fprintf(stderr, "qemu: invalid cache option\n");
2072 return NULL;
2073 }
2074 }
2075
2076 #ifdef CONFIG_LINUX_AIO
2077 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2078 if (!strcmp(buf, "threads"))
2079 aio = 0;
2080 else if (!strcmp(buf, "native"))
2081 aio = 1;
2082 else {
2083 fprintf(stderr, "qemu: invalid aio option\n");
2084 return NULL;
2085 }
2086 }
2087 #endif
2088
2089 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2090 if (strcmp(buf, "?") == 0) {
2091 fprintf(stderr, "qemu: Supported formats:");
2092 bdrv_iterate_format(bdrv_format_print, NULL);
2093 fprintf(stderr, "\n");
2094 return NULL;
2095 }
2096 drv = bdrv_find_whitelisted_format(buf);
2097 if (!drv) {
2098 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2099 return NULL;
2100 }
2101 }
2102
2103 on_write_error = BLOCK_ERR_STOP_ENOSPC;
2104 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2105 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2106 fprintf(stderr, "werror is no supported by this format\n");
2107 return NULL;
2108 }
2109
2110 on_write_error = parse_block_error_action(buf, 0);
2111 if (on_write_error < 0) {
2112 return NULL;
2113 }
2114 }
2115
2116 on_read_error = BLOCK_ERR_REPORT;
2117 if ((buf = qemu_opt_get(opts, "rerror")) != NULL) {
2118 if (type != IF_IDE && type != IF_VIRTIO) {
2119 fprintf(stderr, "rerror is no supported by this format\n");
2120 return NULL;
2121 }
2122
2123 on_read_error = parse_block_error_action(buf, 1);
2124 if (on_read_error < 0) {
2125 return NULL;
2126 }
2127 }
2128
2129 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2130 if (type != IF_VIRTIO) {
2131 fprintf(stderr, "addr is not supported\n");
2132 return NULL;
2133 }
2134 }
2135
2136 /* compute bus and unit according index */
2137
2138 if (index != -1) {
2139 if (bus_id != 0 || unit_id != -1) {
2140 fprintf(stderr,
2141 "qemu: index cannot be used with bus and unit\n");
2142 return NULL;
2143 }
2144 if (max_devs == 0)
2145 {
2146 unit_id = index;
2147 bus_id = 0;
2148 } else {
2149 unit_id = index % max_devs;
2150 bus_id = index / max_devs;
2151 }
2152 }
2153
2154 /* if user doesn't specify a unit_id,
2155 * try to find the first free
2156 */
2157
2158 if (unit_id == -1) {
2159 unit_id = 0;
2160 while (drive_get(type, bus_id, unit_id) != NULL) {
2161 unit_id++;
2162 if (max_devs && unit_id >= max_devs) {
2163 unit_id -= max_devs;
2164 bus_id++;
2165 }
2166 }
2167 }
2168
2169 /* check unit id */
2170
2171 if (max_devs && unit_id >= max_devs) {
2172 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2173 unit_id, max_devs - 1);
2174 return NULL;
2175 }
2176
2177 /*
2178 * ignore multiple definitions
2179 */
2180
2181 if (drive_get(type, bus_id, unit_id) != NULL) {
2182 *fatal_error = 0;
2183 return NULL;
2184 }
2185
2186 /* init */
2187
2188 dinfo = qemu_mallocz(sizeof(*dinfo));
2189 if ((buf = qemu_opts_id(opts)) != NULL) {
2190 dinfo->id = qemu_strdup(buf);
2191 } else {
2192 /* no id supplied -> create one */
2193 dinfo->id = qemu_mallocz(32);
2194 if (type == IF_IDE || type == IF_SCSI)
2195 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2196 if (max_devs)
2197 snprintf(dinfo->id, 32, "%s%i%s%i",
2198 devname, bus_id, mediastr, unit_id);
2199 else
2200 snprintf(dinfo->id, 32, "%s%s%i",
2201 devname, mediastr, unit_id);
2202 }
2203 dinfo->bdrv = bdrv_new(dinfo->id);
2204 dinfo->devaddr = devaddr;
2205 dinfo->type = type;
2206 dinfo->bus = bus_id;
2207 dinfo->unit = unit_id;
2208 dinfo->on_read_error = on_read_error;
2209 dinfo->on_write_error = on_write_error;
2210 dinfo->opts = opts;
2211 if (serial)
2212 strncpy(dinfo->serial, serial, sizeof(serial));
2213 QTAILQ_INSERT_TAIL(&drives, dinfo, next);
2214
2215 switch(type) {
2216 case IF_IDE:
2217 case IF_SCSI:
2218 case IF_XEN:
2219 case IF_NONE:
2220 switch(media) {
2221 case MEDIA_DISK:
2222 if (cyls != 0) {
2223 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2224 bdrv_set_translation_hint(dinfo->bdrv, translation);
2225 }
2226 break;
2227 case MEDIA_CDROM:
2228 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2229 break;
2230 }
2231 break;
2232 case IF_SD:
2233 /* FIXME: This isn't really a floppy, but it's a reasonable
2234 approximation. */
2235 case IF_FLOPPY:
2236 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2237 break;
2238 case IF_PFLASH:
2239 case IF_MTD:
2240 break;
2241 case IF_VIRTIO:
2242 /* add virtio block device */
2243 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2244 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2245 qemu_opt_set(opts, "drive", dinfo->id);
2246 if (devaddr)
2247 qemu_opt_set(opts, "addr", devaddr);
2248 break;
2249 case IF_COUNT:
2250 abort();
2251 }
2252 if (!file) {
2253 *fatal_error = 0;
2254 return NULL;
2255 }
2256 bdrv_flags = 0;
2257 if (snapshot) {
2258 bdrv_flags |= BDRV_O_SNAPSHOT;
2259 cache = 2; /* always use write-back with snapshot */
2260 }
2261 if (cache == 0) /* no caching */
2262 bdrv_flags |= BDRV_O_NOCACHE;
2263 else if (cache == 2) /* write-back */
2264 bdrv_flags |= BDRV_O_CACHE_WB;
2265
2266 if (aio == 1) {
2267 bdrv_flags |= BDRV_O_NATIVE_AIO;
2268 } else {
2269 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2270 }
2271
2272 if (ro == 1) {
2273 if (type != IF_SCSI && type != IF_VIRTIO && type != IF_FLOPPY) {
2274 fprintf(stderr, "qemu: readonly flag not supported for drive with this interface\n");
2275 return NULL;
2276 }
2277 }
2278 /*
2279 * cdrom is read-only. Set it now, after above interface checking
2280 * since readonly attribute not explicitly required, so no error.
2281 */
2282 if (media == MEDIA_CDROM) {
2283 ro = 1;
2284 }
2285 bdrv_flags |= ro ? 0 : BDRV_O_RDWR;
2286
2287 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2288 fprintf(stderr, "qemu: could not open disk image %s: %s\n",
2289 file, strerror(errno));
2290 return NULL;
2291 }
2292
2293 if (bdrv_key_required(dinfo->bdrv))
2294 autostart = 0;
2295 *fatal_error = 0;
2296 return dinfo;
2297 }
2298
2299 static int drive_init_func(QemuOpts *opts, void *opaque)
2300 {
2301 QEMUMachine *machine = opaque;
2302 int fatal_error = 0;
2303
2304 if (drive_init(opts, machine, &fatal_error) == NULL) {
2305 if (fatal_error)
2306 return 1;
2307 }
2308 return 0;
2309 }
2310
2311 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2312 {
2313 if (NULL == qemu_opt_get(opts, "snapshot")) {
2314 qemu_opt_set(opts, "snapshot", "on");
2315 }
2316 return 0;
2317 }
2318
2319 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2320 {
2321 boot_set_handler = func;
2322 boot_set_opaque = opaque;
2323 }
2324
2325 int qemu_boot_set(const char *boot_devices)
2326 {
2327 if (!boot_set_handler) {
2328 return -EINVAL;
2329 }
2330 return boot_set_handler(boot_set_opaque, boot_devices);
2331 }
2332
2333 static int parse_bootdevices(char *devices)
2334 {
2335 /* We just do some generic consistency checks */
2336 const char *p;
2337 int bitmap = 0;
2338
2339 for (p = devices; *p != '\0'; p++) {
2340 /* Allowed boot devices are:
2341 * a-b: floppy disk drives
2342 * c-f: IDE disk drives
2343 * g-m: machine implementation dependant drives
2344 * n-p: network devices
2345 * It's up to each machine implementation to check if the given boot
2346 * devices match the actual hardware implementation and firmware
2347 * features.
2348 */
2349 if (*p < 'a' || *p > 'p') {
2350 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2351 exit(1);
2352 }
2353 if (bitmap & (1 << (*p - 'a'))) {
2354 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2355 exit(1);
2356 }
2357 bitmap |= 1 << (*p - 'a');
2358 }
2359 return bitmap;
2360 }
2361
2362 static void restore_boot_devices(void *opaque)
2363 {
2364 char *standard_boot_devices = opaque;
2365
2366 qemu_boot_set(standard_boot_devices);
2367
2368 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2369 qemu_free(standard_boot_devices);
2370 }
2371
2372 static void numa_add(const char *optarg)
2373 {
2374 char option[128];
2375 char *endptr;
2376 unsigned long long value, endvalue;
2377 int nodenr;
2378
2379 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2380 if (!strcmp(option, "node")) {
2381 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2382 nodenr = nb_numa_nodes;
2383 } else {
2384 nodenr = strtoull(option, NULL, 10);
2385 }
2386
2387 if (get_param_value(option, 128, "mem", optarg) == 0) {
2388 node_mem[nodenr] = 0;
2389 } else {
2390 value = strtoull(option, &endptr, 0);
2391 switch (*endptr) {
2392 case 0: case 'M': case 'm':
2393 value <<= 20;
2394 break;
2395 case 'G': case 'g':
2396 value <<= 30;
2397 break;
2398 }
2399 node_mem[nodenr] = value;
2400 }
2401 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2402 node_cpumask[nodenr] = 0;
2403 } else {
2404 value = strtoull(option, &endptr, 10);
2405 if (value >= 64) {
2406 value = 63;
2407 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2408 } else {
2409 if (*endptr == '-') {
2410 endvalue = strtoull(endptr+1, &endptr, 10);
2411 if (endvalue >= 63) {
2412 endvalue = 62;
2413 fprintf(stderr,
2414 "only 63 CPUs in NUMA mode supported.\n");
2415 }
2416 value = (2ULL << endvalue) - (1ULL << value);
2417 } else {
2418 value = 1ULL << value;
2419 }
2420 }
2421 node_cpumask[nodenr] = value;
2422 }
2423 nb_numa_nodes++;
2424 }
2425 return;
2426 }
2427
2428 static void smp_parse(const char *optarg)
2429 {
2430 int smp, sockets = 0, threads = 0, cores = 0;
2431 char *endptr;
2432 char option[128];
2433
2434 smp = strtoul(optarg, &endptr, 10);
2435 if (endptr != optarg) {
2436 if (*endptr == ',') {
2437 endptr++;
2438 }
2439 }
2440 if (get_param_value(option, 128, "sockets", endptr) != 0)
2441 sockets = strtoull(option, NULL, 10);
2442 if (get_param_value(option, 128, "cores", endptr) != 0)
2443 cores = strtoull(option, NULL, 10);
2444 if (get_param_value(option, 128, "threads", endptr) != 0)
2445 threads = strtoull(option, NULL, 10);
2446 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2447 max_cpus = strtoull(option, NULL, 10);
2448
2449 /* compute missing values, prefer sockets over cores over threads */
2450 if (smp == 0 || sockets == 0) {
2451 sockets = sockets > 0 ? sockets : 1;
2452 cores = cores > 0 ? cores : 1;
2453 threads = threads > 0 ? threads : 1;
2454 if (smp == 0) {
2455 smp = cores * threads * sockets;
2456 }
2457 } else {
2458 if (cores == 0) {
2459 threads = threads > 0 ? threads : 1;
2460 cores = smp / (sockets * threads);
2461 } else {
2462 if (sockets) {
2463 threads = smp / (cores * sockets);
2464 }
2465 }
2466 }
2467 smp_cpus = smp;
2468 smp_cores = cores > 0 ? cores : 1;
2469 smp_threads = threads > 0 ? threads : 1;
2470 if (max_cpus == 0)
2471 max_cpus = smp_cpus;
2472 }
2473
2474 /***********************************************************/
2475 /* USB devices */
2476
2477 static int usb_device_add(const char *devname, int is_hotplug)
2478 {
2479 const char *p;
2480 USBDevice *dev = NULL;
2481
2482 if (!usb_enabled)
2483 return -1;
2484
2485 /* drivers with .usbdevice_name entry in USBDeviceInfo */
2486 dev = usbdevice_create(devname);
2487 if (dev)
2488 goto done;
2489
2490 /* the other ones */
2491 if (strstart(devname, "host:", &p)) {
2492 dev = usb_host_device_open(p);
2493 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2494 dev = usb_bt_init(devname[2] ? hci_init(p) :
2495 bt_new_hci(qemu_find_bt_vlan(0)));
2496 } else {
2497 return -1;
2498 }
2499 if (!dev)
2500 return -1;
2501
2502 done:
2503 return 0;
2504 }
2505
2506 static int usb_device_del(const char *devname)
2507 {
2508 int bus_num, addr;
2509 const char *p;
2510
2511 if (strstart(devname, "host:", &p))
2512 return usb_host_device_close(p);
2513
2514 if (!usb_enabled)
2515 return -1;
2516
2517 p = strchr(devname, '.');
2518 if (!p)
2519 return -1;
2520 bus_num = strtoul(devname, NULL, 0);
2521 addr = strtoul(p + 1, NULL, 0);
2522
2523 return usb_device_delete_addr(bus_num, addr);
2524 }
2525
2526 static int usb_parse(const char *cmdline)
2527 {
2528 int r;
2529 r = usb_device_add(cmdline, 0);
2530 if (r < 0) {
2531 fprintf(stderr, "qemu: could not add USB device '%s'\n", cmdline);
2532 }
2533 return r;
2534 }
2535
2536 void do_usb_add(Monitor *mon, const QDict *qdict)
2537 {
2538 const char *devname = qdict_get_str(qdict, "devname");
2539 if (usb_device_add(devname, 1) < 0) {
2540 error_report("could not add USB device '%s'", devname);
2541 }
2542 }
2543
2544 void do_usb_del(Monitor *mon, const QDict *qdict)
2545 {
2546 const char *devname = qdict_get_str(qdict, "devname");
2547 if (usb_device_del(devname) < 0) {
2548 error_report("could not delete USB device '%s'", devname);
2549 }
2550 }
2551
2552 /***********************************************************/
2553 /* PCMCIA/Cardbus */
2554
2555 static struct pcmcia_socket_entry_s {
2556 PCMCIASocket *socket;
2557 struct pcmcia_socket_entry_s *next;
2558 } *pcmcia_sockets = 0;
2559
2560 void pcmcia_socket_register(PCMCIASocket *socket)
2561 {
2562 struct pcmcia_socket_entry_s *entry;
2563
2564 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2565 entry->socket = socket;
2566 entry->next = pcmcia_sockets;
2567 pcmcia_sockets = entry;
2568 }
2569
2570 void pcmcia_socket_unregister(PCMCIASocket *socket)
2571 {
2572 struct pcmcia_socket_entry_s *entry, **ptr;
2573
2574 ptr = &pcmcia_sockets;
2575 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2576 if (entry->socket == socket) {
2577 *ptr = entry->next;
2578 qemu_free(entry);
2579 }
2580 }
2581
2582 void pcmcia_info(Monitor *mon)
2583 {
2584 struct pcmcia_socket_entry_s *iter;
2585
2586 if (!pcmcia_sockets)
2587 monitor_printf(mon, "No PCMCIA sockets\n");
2588
2589 for (iter = pcmcia_sockets; iter; iter = iter->next)
2590 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2591 iter->socket->attached ? iter->socket->card_string :
2592 "Empty");
2593 }
2594
2595 /***********************************************************/
2596 /* I/O handling */
2597
2598 typedef struct IOHandlerRecord {
2599 int fd;
2600 IOCanRWHandler *fd_read_poll;
2601 IOHandler *fd_read;
2602 IOHandler *fd_write;
2603 int deleted;
2604 void *opaque;
2605 /* temporary data */
2606 struct pollfd *ufd;
2607 struct IOHandlerRecord *next;
2608 } IOHandlerRecord;
2609
2610 static IOHandlerRecord *first_io_handler;
2611
2612 /* XXX: fd_read_poll should be suppressed, but an API change is
2613 necessary in the character devices to suppress fd_can_read(). */
2614 int qemu_set_fd_handler2(int fd,
2615 IOCanRWHandler *fd_read_poll,
2616 IOHandler *fd_read,
2617 IOHandler *fd_write,
2618 void *opaque)
2619 {
2620 IOHandlerRecord **pioh, *ioh;
2621
2622 if (!fd_read && !fd_write) {
2623 pioh = &first_io_handler;
2624 for(;;) {
2625 ioh = *pioh;
2626 if (ioh == NULL)
2627 break;
2628 if (ioh->fd == fd) {
2629 ioh->deleted = 1;
2630 break;
2631 }
2632 pioh = &ioh->next;
2633 }
2634 } else {
2635 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2636 if (ioh->fd == fd)
2637 goto found;
2638 }
2639 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2640 ioh->next = first_io_handler;
2641 first_io_handler = ioh;
2642 found:
2643 ioh->fd = fd;
2644 ioh->fd_read_poll = fd_read_poll;
2645 ioh->fd_read = fd_read;
2646 ioh->fd_write = fd_write;
2647 ioh->opaque = opaque;
2648 ioh->deleted = 0;
2649 }
2650 return 0;
2651 }
2652
2653 int qemu_set_fd_handler(int fd,
2654 IOHandler *fd_read,
2655 IOHandler *fd_write,
2656 void *opaque)
2657 {
2658 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2659 }
2660
2661 #ifdef _WIN32
2662 /***********************************************************/
2663 /* Polling handling */
2664
2665 typedef struct PollingEntry {
2666 PollingFunc *func;
2667 void *opaque;
2668 struct PollingEntry *next;
2669 } PollingEntry;
2670
2671 static PollingEntry *first_polling_entry;
2672
2673 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2674 {
2675 PollingEntry **ppe, *pe;
2676 pe = qemu_mallocz(sizeof(PollingEntry));
2677 pe->func = func;
2678 pe->opaque = opaque;
2679 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2680 *ppe = pe;
2681 return 0;
2682 }
2683
2684 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2685 {
2686 PollingEntry **ppe, *pe;
2687 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2688 pe = *ppe;
2689 if (pe->func == func && pe->opaque == opaque) {
2690 *ppe = pe->next;
2691 qemu_free(pe);
2692 break;
2693 }
2694 }
2695 }
2696
2697 /***********************************************************/
2698 /* Wait objects support */
2699 typedef struct WaitObjects {
2700 int num;
2701 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2702 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2703 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2704 } WaitObjects;
2705
2706 static WaitObjects wait_objects = {0};
2707
2708 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2709 {
2710 WaitObjects *w = &wait_objects;
2711
2712 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2713 return -1;
2714 w->events[w->num] = handle;
2715 w->func[w->num] = func;
2716 w->opaque[w->num] = opaque;
2717 w->num++;
2718 return 0;
2719 }
2720
2721 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2722 {
2723 int i, found;
2724 WaitObjects *w = &wait_objects;
2725
2726 found = 0;
2727 for (i = 0; i < w->num; i++) {
2728 if (w->events[i] == handle)
2729 found = 1;
2730 if (found) {
2731 w->events[i] = w->events[i + 1];
2732 w->func[i] = w->func[i + 1];
2733 w->opaque[i] = w->opaque[i + 1];
2734 }
2735 }
2736 if (found)
2737 w->num--;
2738 }
2739 #endif
2740
2741 /***********************************************************/
2742 /* ram save/restore */
2743
2744 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
2745 #define RAM_SAVE_FLAG_COMPRESS 0x02
2746 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2747 #define RAM_SAVE_FLAG_PAGE 0x08
2748 #define RAM_SAVE_FLAG_EOS 0x10
2749
2750 static int is_dup_page(uint8_t *page, uint8_t ch)
2751 {
2752 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2753 uint32_t *array = (uint32_t *)page;
2754 int i;
2755
2756 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2757 if (array[i] != val)
2758 return 0;
2759 }
2760
2761 return 1;
2762 }
2763
2764 static int ram_save_block(QEMUFile *f)
2765 {
2766 static ram_addr_t current_addr = 0;
2767 ram_addr_t saved_addr = current_addr;
2768 ram_addr_t addr = 0;
2769 int found = 0;
2770
2771 while (addr < last_ram_offset) {
2772 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2773 uint8_t *p;
2774
2775 cpu_physical_memory_reset_dirty(current_addr,
2776 current_addr + TARGET_PAGE_SIZE,
2777 MIGRATION_DIRTY_FLAG);
2778
2779 p = qemu_get_ram_ptr(current_addr);
2780
2781 if (is_dup_page(p, *p)) {
2782 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2783 qemu_put_byte(f, *p);
2784 } else {
2785 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2786 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2787 }
2788
2789 found = 1;
2790 break;
2791 }
2792 addr += TARGET_PAGE_SIZE;
2793 current_addr = (saved_addr + addr) % last_ram_offset;
2794 }
2795
2796 return found;
2797 }
2798
2799 static uint64_t bytes_transferred;
2800
2801 static ram_addr_t ram_save_remaining(void)
2802 {
2803 ram_addr_t addr;
2804 ram_addr_t count = 0;
2805
2806 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2807 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2808 count++;
2809 }
2810
2811 return count;
2812 }
2813
2814 uint64_t ram_bytes_remaining(void)
2815 {
2816 return ram_save_remaining() * TARGET_PAGE_SIZE;
2817 }
2818
2819 uint64_t ram_bytes_transferred(void)
2820 {
2821 return bytes_transferred;
2822 }
2823
2824 uint64_t ram_bytes_total(void)
2825 {
2826 return last_ram_offset;
2827 }
2828
2829 static int ram_save_live(Monitor *mon, QEMUFile *f, int stage, void *opaque)
2830 {
2831 ram_addr_t addr;
2832 uint64_t bytes_transferred_last;
2833 double bwidth = 0;
2834 uint64_t expected_time = 0;
2835
2836 if (stage < 0) {
2837 cpu_physical_memory_set_dirty_tracking(0);
2838 return 0;
2839 }
2840
2841 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2842 qemu_file_set_error(f);
2843 return 0;
2844 }
2845
2846 if (stage == 1) {
2847 bytes_transferred = 0;
2848
2849 /* Make sure all dirty bits are set */
2850 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2851 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2852 cpu_physical_memory_set_dirty(addr);
2853 }
2854
2855 /* Enable dirty memory tracking */
2856 cpu_physical_memory_set_dirty_tracking(1);
2857
2858 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
2859 }
2860
2861 bytes_transferred_last = bytes_transferred;
2862 bwidth = qemu_get_clock_ns(rt_clock);
2863
2864 while (!qemu_file_rate_limit(f)) {
2865 int ret;
2866
2867 ret = ram_save_block(f);
2868 bytes_transferred += ret * TARGET_PAGE_SIZE;
2869 if (ret == 0) /* no more blocks */
2870 break;
2871 }
2872
2873 bwidth = qemu_get_clock_ns(rt_clock) - bwidth;
2874 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
2875
2876 /* if we haven't transferred anything this round, force expected_time to a
2877 * a very high value, but without crashing */
2878 if (bwidth == 0)
2879 bwidth = 0.000001;
2880
2881 /* try transferring iterative blocks of memory */
2882 if (stage == 3) {
2883 /* flush all remaining blocks regardless of rate limiting */
2884 while (ram_save_block(f) != 0) {
2885 bytes_transferred += TARGET_PAGE_SIZE;
2886 }
2887 cpu_physical_memory_set_dirty_tracking(0);
2888 }
2889
2890 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2891
2892 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
2893
2894 return (stage == 2) && (expected_time <= migrate_max_downtime());
2895 }
2896
2897 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2898 {
2899 ram_addr_t addr;
2900 int flags;
2901
2902 if (version_id != 3)
2903 return -EINVAL;
2904
2905 do {
2906 addr = qemu_get_be64(f);
2907
2908 flags = addr & ~TARGET_PAGE_MASK;
2909 addr &= TARGET_PAGE_MASK;
2910
2911 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
2912 if (addr != last_ram_offset)
2913 return -EINVAL;
2914 }
2915
2916 if (flags & RAM_SAVE_FLAG_COMPRESS) {
2917 uint8_t ch = qemu_get_byte(f);
2918 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
2919 #ifndef _WIN32
2920 if (ch == 0 &&
2921 (!kvm_enabled() || kvm_has_sync_mmu())) {
2922 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
2923 }
2924 #endif
2925 } else if (flags & RAM_SAVE_FLAG_PAGE) {
2926 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
2927 }
2928 if (qemu_file_has_error(f)) {
2929 return -EIO;
2930 }
2931 } while (!(flags & RAM_SAVE_FLAG_EOS));
2932
2933 return 0;
2934 }
2935
2936 void qemu_service_io(void)
2937 {
2938 qemu_notify_event();
2939 }
2940
2941 /***********************************************************/
2942 /* machine registration */
2943
2944 static QEMUMachine *first_machine = NULL;
2945 QEMUMachine *current_machine = NULL;
2946
2947 int qemu_register_machine(QEMUMachine *m)
2948 {
2949 QEMUMachine **pm;
2950 pm = &first_machine;
2951 while (*pm != NULL)
2952 pm = &(*pm)->next;
2953 m->next = NULL;
2954 *pm = m;
2955 return 0;
2956 }
2957
2958 static QEMUMachine *find_machine(const char *name)
2959 {
2960 QEMUMachine *m;
2961
2962 for(m = first_machine; m != NULL; m = m->next) {
2963 if (!strcmp(m->name, name))
2964 return m;
2965 if (m->alias && !strcmp(m->alias, name))
2966 return m;
2967 }
2968 return NULL;
2969 }
2970
2971 static QEMUMachine *find_default_machine(void)
2972 {
2973 QEMUMachine *m;
2974
2975 for(m = first_machine; m != NULL; m = m->next) {
2976 if (m->is_default) {
2977 return m;
2978 }
2979 }
2980 return NULL;
2981 }
2982
2983 /***********************************************************/
2984 /* main execution loop */
2985
2986 static void gui_update(void *opaque)
2987 {
2988 uint64_t interval = GUI_REFRESH_INTERVAL;
2989 DisplayState *ds = opaque;
2990 DisplayChangeListener *dcl = ds->listeners;
2991
2992 qemu_flush_coalesced_mmio_buffer();
2993 dpy_refresh(ds);
2994
2995 while (dcl != NULL) {
2996 if (dcl->gui_timer_interval &&
2997 dcl->gui_timer_interval < interval)
2998 interval = dcl->gui_timer_interval;
2999 dcl = dcl->next;
3000 }
3001 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3002 }
3003
3004 static void nographic_update(void *opaque)
3005 {
3006 uint64_t interval = GUI_REFRESH_INTERVAL;
3007
3008 qemu_flush_coalesced_mmio_buffer();
3009 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3010 }
3011
3012 void cpu_synchronize_all_states(void)
3013 {
3014 CPUState *cpu;
3015
3016 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
3017 cpu_synchronize_state(cpu);
3018 }
3019 }
3020
3021 void cpu_synchronize_all_post_reset(void)
3022 {
3023 CPUState *cpu;
3024
3025 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
3026 cpu_synchronize_post_reset(cpu);
3027 }
3028 }
3029
3030 void cpu_synchronize_all_post_init(void)
3031 {
3032 CPUState *cpu;
3033
3034 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
3035 cpu_synchronize_post_init(cpu);
3036 }
3037 }
3038
3039 struct vm_change_state_entry {
3040 VMChangeStateHandler *cb;
3041 void *opaque;
3042 QLIST_ENTRY (vm_change_state_entry) entries;
3043 };
3044
3045 static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3046
3047 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3048 void *opaque)
3049 {
3050 VMChangeStateEntry *e;
3051
3052 e = qemu_mallocz(sizeof (*e));
3053
3054 e->cb = cb;
3055 e->opaque = opaque;
3056 QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3057 return e;
3058 }
3059
3060 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3061 {
3062 QLIST_REMOVE (e, entries);
3063 qemu_free (e);
3064 }
3065
3066 static void vm_state_notify(int running, int reason)
3067 {
3068 VMChangeStateEntry *e;
3069
3070 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3071 e->cb(e->opaque, running, reason);
3072 }
3073 }
3074
3075 static void resume_all_vcpus(void);
3076 static void pause_all_vcpus(void);
3077
3078 void vm_start(void)
3079 {
3080 if (!vm_running) {
3081 cpu_enable_ticks();
3082 vm_running = 1;
3083 vm_state_notify(1, 0);
3084 qemu_rearm_alarm_timer(alarm_timer);
3085 resume_all_vcpus();
3086 }
3087 }
3088
3089 /* reset/shutdown handler */
3090
3091 typedef struct QEMUResetEntry {
3092 QTAILQ_ENTRY(QEMUResetEntry) entry;
3093 QEMUResetHandler *func;
3094 void *opaque;
3095 } QEMUResetEntry;
3096
3097 static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3098 QTAILQ_HEAD_INITIALIZER(reset_handlers);
3099 static int reset_requested;
3100 static int shutdown_requested;
3101 static int powerdown_requested;
3102 static int debug_requested;
3103 static int vmstop_requested;
3104
3105 int qemu_shutdown_requested(void)
3106 {
3107 int r = shutdown_requested;
3108 shutdown_requested = 0;
3109 return r;
3110 }
3111
3112 int qemu_reset_requested(void)
3113 {
3114 int r = reset_requested;
3115 reset_requested = 0;
3116 return r;
3117 }
3118
3119 int qemu_powerdown_requested(void)
3120 {
3121 int r = powerdown_requested;
3122 powerdown_requested = 0;
3123 return r;
3124 }
3125
3126 static int qemu_debug_requested(void)
3127 {
3128 int r = debug_requested;
3129 debug_requested = 0;
3130 return r;
3131 }
3132
3133 static int qemu_vmstop_requested(void)
3134 {
3135 int r = vmstop_requested;
3136 vmstop_requested = 0;
3137 return r;
3138 }
3139
3140 static void do_vm_stop(int reason)
3141 {
3142 if (vm_running) {
3143 cpu_disable_ticks();
3144 vm_running = 0;
3145 pause_all_vcpus();
3146 vm_state_notify(0, reason);
3147 monitor_protocol_event(QEVENT_STOP, NULL);
3148 }
3149 }
3150
3151 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3152 {
3153 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3154
3155 re->func = func;
3156 re->opaque = opaque;
3157 QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3158 }
3159
3160 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3161 {
3162 QEMUResetEntry *re;
3163
3164 QTAILQ_FOREACH(re, &reset_handlers, entry) {
3165 if (re->func == func && re->opaque == opaque) {
3166 QTAILQ_REMOVE(&reset_handlers, re, entry);
3167 qemu_free(re);
3168 return;
3169 }
3170 }
3171 }
3172
3173 void qemu_system_reset(void)
3174 {
3175 QEMUResetEntry *re, *nre;
3176
3177 /* reset all devices */
3178 QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3179 re->func(re->opaque);
3180 }
3181 monitor_protocol_event(QEVENT_RESET, NULL);
3182 cpu_synchronize_all_post_reset();
3183 }
3184
3185 void qemu_system_reset_request(void)
3186 {
3187 if (no_reboot) {
3188 shutdown_requested = 1;
3189 } else {
3190 reset_requested = 1;
3191 }
3192 qemu_notify_event();
3193 }
3194
3195 void qemu_system_shutdown_request(void)
3196 {
3197 shutdown_requested = 1;
3198 qemu_notify_event();
3199 }
3200
3201 void qemu_system_powerdown_request(void)
3202 {
3203 powerdown_requested = 1;
3204 qemu_notify_event();
3205 }
3206
3207 #ifdef CONFIG_IOTHREAD
3208 static void qemu_system_vmstop_request(int reason)
3209 {
3210 vmstop_requested = reason;
3211 qemu_notify_event();
3212 }
3213 #endif
3214
3215 #ifndef _WIN32
3216 static int io_thread_fd = -1;
3217
3218 static void qemu_event_increment(void)
3219 {
3220 /* Write 8 bytes to be compatible with eventfd. */
3221 static uint64_t val = 1;
3222 ssize_t ret;
3223
3224 if (io_thread_fd == -1)
3225 return;
3226
3227 do {
3228 ret = write(io_thread_fd, &val, sizeof(val));
3229 } while (ret < 0 && errno == EINTR);
3230
3231 /* EAGAIN is fine, a read must be pending. */
3232 if (ret < 0 && errno != EAGAIN) {
3233 fprintf(stderr, "qemu_event_increment: write() filed: %s\n",
3234 strerror(errno));
3235 exit (1);
3236 }
3237 }
3238
3239 static void qemu_event_read(void *opaque)
3240 {
3241 int fd = (unsigned long)opaque;
3242 ssize_t len;
3243 char buffer[512];
3244
3245 /* Drain the notify pipe. For eventfd, only 8 bytes will be read. */
3246 do {
3247 len = read(fd, buffer, sizeof(buffer));
3248 } while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
3249 }
3250
3251 static int qemu_event_init(void)
3252 {
3253 int err;
3254 int fds[2];
3255
3256 err = qemu_eventfd(fds);
3257 if (err == -1)
3258 return -errno;
3259
3260 err = fcntl_setfl(fds[0], O_NONBLOCK);
3261 if (err < 0)
3262 goto fail;
3263
3264 err = fcntl_setfl(fds[1], O_NONBLOCK);
3265 if (err < 0)
3266 goto fail;
3267
3268 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3269 (void *)(unsigned long)fds[0]);
3270
3271 io_thread_fd = fds[1];
3272 return 0;
3273
3274 fail:
3275 close(fds[0]);
3276 close(fds[1]);
3277 return err;
3278 }
3279 #else
3280 HANDLE qemu_event_handle;
3281
3282 static void dummy_event_handler(void *opaque)
3283 {
3284 }
3285
3286 static int qemu_event_init(void)
3287 {
3288 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3289 if (!qemu_event_handle) {
3290 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
3291 return -1;
3292 }
3293 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3294 return 0;
3295 }
3296
3297 static void qemu_event_increment(void)
3298 {
3299 if (!SetEvent(qemu_event_handle)) {
3300 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
3301 GetLastError());
3302 exit (1);
3303 }
3304 }
3305 #endif
3306
3307 static int cpu_can_run(CPUState *env)
3308 {
3309 if (env->stop)
3310 return 0;
3311 if (env->stopped)
3312 return 0;
3313 if (!vm_running)
3314 return 0;
3315 return 1;
3316 }
3317
3318 #ifndef CONFIG_IOTHREAD
3319 static int qemu_init_main_loop(void)
3320 {
3321 return qemu_event_init();
3322 }
3323
3324 void qemu_init_vcpu(void *_env)
3325 {
3326 CPUState *env = _env;
3327
3328 env->nr_cores = smp_cores;
3329 env->nr_threads = smp_threads;
3330 if (kvm_enabled())
3331 kvm_init_vcpu(env);
3332 return;
3333 }
3334
3335 int qemu_cpu_self(void *env)
3336 {
3337 return 1;
3338 }
3339
3340 static void resume_all_vcpus(void)
3341 {
3342 }
3343
3344 static void pause_all_vcpus(void)
3345 {
3346 }
3347
3348 void qemu_cpu_kick(void *env)
3349 {
3350 return;
3351 }
3352
3353 void qemu_notify_event(void)
3354 {
3355 CPUState *env = cpu_single_env;
3356
3357 if (env) {
3358 cpu_exit(env);
3359 }
3360 }
3361
3362 void qemu_mutex_lock_iothread(void) {}
3363 void qemu_mutex_unlock_iothread(void) {}
3364
3365 void vm_stop(int reason)
3366 {
3367 do_vm_stop(reason);
3368 }
3369
3370 #else /* CONFIG_IOTHREAD */
3371
3372 #include "qemu-thread.h"
3373
3374 QemuMutex qemu_global_mutex;
3375 static QemuMutex qemu_fair_mutex;
3376
3377 static QemuThread io_thread;
3378
3379 static QemuThread *tcg_cpu_thread;
3380 static QemuCond *tcg_halt_cond;
3381
3382 static int qemu_system_ready;
3383 /* cpu creation */
3384 static QemuCond qemu_cpu_cond;
3385 /* system init */
3386 static QemuCond qemu_system_cond;
3387 static QemuCond qemu_pause_cond;
3388
3389 static void tcg_block_io_signals(void);
3390 static void kvm_block_io_signals(CPUState *env);
3391 static void unblock_io_signals(void);
3392 static int tcg_has_work(void);
3393 static int cpu_has_work(CPUState *env);
3394
3395 static int qemu_init_main_loop(void)
3396 {
3397 int ret;
3398
3399 ret = qemu_event_init();
3400 if (ret)
3401 return ret;
3402
3403 qemu_cond_init(&qemu_pause_cond);
3404 qemu_mutex_init(&qemu_fair_mutex);
3405 qemu_mutex_init(&qemu_global_mutex);
3406 qemu_mutex_lock(&qemu_global_mutex);
3407
3408 unblock_io_signals();
3409 qemu_thread_self(&io_thread);
3410
3411 return 0;
3412 }
3413
3414 static void qemu_wait_io_event_common(CPUState *env)
3415 {
3416 if (env->stop) {
3417 env->stop = 0;
3418 env->stopped = 1;
3419 qemu_cond_signal(&qemu_pause_cond);
3420 }
3421 }
3422
3423 static void qemu_wait_io_event(CPUState *env)
3424 {
3425 while (!tcg_has_work())
3426 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3427
3428 qemu_mutex_unlock(&qemu_global_mutex);
3429
3430 /*
3431 * Users of qemu_global_mutex can be starved, having no chance
3432 * to acquire it since this path will get to it first.
3433 * So use another lock to provide fairness.
3434 */
3435 qemu_mutex_lock(&qemu_fair_mutex);
3436 qemu_mutex_unlock(&qemu_fair_mutex);
3437
3438 qemu_mutex_lock(&qemu_global_mutex);
3439 qemu_wait_io_event_common(env);
3440 }
3441
3442 static void qemu_kvm_eat_signal(CPUState *env, int timeout)
3443 {
3444 struct timespec ts;
3445 int r, e;
3446 siginfo_t siginfo;
3447 sigset_t waitset;
3448
3449 ts.tv_sec = timeout / 1000;
3450 ts.tv_nsec = (timeout % 1000) * 1000000;
3451
3452 sigemptyset(&waitset);
3453 sigaddset(&waitset, SIG_IPI);
3454
3455 qemu_mutex_unlock(&qemu_global_mutex);
3456 r = sigtimedwait(&waitset, &siginfo, &ts);
3457 e = errno;
3458 qemu_mutex_lock(&qemu_global_mutex);
3459
3460 if (r == -1 && !(e == EAGAIN || e == EINTR)) {
3461 fprintf(stderr, "sigtimedwait: %s\n", strerror(e));
3462 exit(1);
3463 }
3464 }
3465
3466 static void qemu_kvm_wait_io_event(CPUState *env)
3467 {
3468 while (!cpu_has_work(env))
3469 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3470
3471 qemu_kvm_eat_signal(env, 0);
3472 qemu_wait_io_event_common(env);
3473 }
3474
3475 static int qemu_cpu_exec(CPUState *env);
3476
3477 static void *kvm_cpu_thread_fn(void *arg)
3478 {
3479 CPUState *env = arg;
3480
3481 qemu_thread_self(env->thread);
3482 if (kvm_enabled())
3483 kvm_init_vcpu(env);
3484
3485 kvm_block_io_signals(env);
3486
3487 /* signal CPU creation */
3488 qemu_mutex_lock(&qemu_global_mutex);
3489 env->created = 1;
3490 qemu_cond_signal(&qemu_cpu_cond);
3491
3492 /* and wait for machine initialization */
3493 while (!qemu_system_ready)
3494 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3495
3496 while (1) {
3497 if (cpu_can_run(env))
3498 qemu_cpu_exec(env);
3499 qemu_kvm_wait_io_event(env);
3500 }
3501
3502 return NULL;
3503 }
3504
3505 static void tcg_cpu_exec(void);
3506
3507 static void *tcg_cpu_thread_fn(void *arg)
3508 {
3509 CPUState *env = arg;
3510
3511 tcg_block_io_signals();
3512 qemu_thread_self(env->thread);
3513
3514 /* signal CPU creation */
3515 qemu_mutex_lock(&qemu_global_mutex);
3516 for (env = first_cpu; env != NULL; env = env->next_cpu)
3517 env->created = 1;
3518 qemu_cond_signal(&qemu_cpu_cond);
3519
3520 /* and wait for machine initialization */
3521 while (!qemu_system_ready)
3522 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3523
3524 while (1) {
3525 tcg_cpu_exec();
3526 qemu_wait_io_event(cur_cpu);
3527 }
3528
3529 return NULL;
3530 }
3531
3532 void qemu_cpu_kick(void *_env)
3533 {
3534 CPUState *env = _env;
3535 qemu_cond_broadcast(env->halt_cond);
3536 if (kvm_enabled())
3537 qemu_thread_signal(env->thread, SIG_IPI);
3538 }
3539
3540 int qemu_cpu_self(void *_env)
3541 {
3542 CPUState *env = _env;
3543 QemuThread this;
3544
3545 qemu_thread_self(&this);
3546
3547 return qemu_thread_equal(&this, env->thread);
3548 }
3549
3550 static void cpu_signal(int sig)
3551 {
3552 if (cpu_single_env)
3553 cpu_exit(cpu_single_env);
3554 }
3555
3556 static void tcg_block_io_signals(void)
3557 {
3558 sigset_t set;
3559 struct sigaction sigact;
3560
3561 sigemptyset(&set);
3562 sigaddset(&set, SIGUSR2);
3563 sigaddset(&set, SIGIO);
3564 sigaddset(&set, SIGALRM);
3565 sigaddset(&set, SIGCHLD);
3566 pthread_sigmask(SIG_BLOCK, &set, NULL);
3567
3568 sigemptyset(&set);
3569 sigaddset(&set, SIG_IPI);
3570 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3571
3572 memset(&sigact, 0, sizeof(sigact));
3573 sigact.sa_handler = cpu_signal;
3574 sigaction(SIG_IPI, &sigact, NULL);
3575 }
3576
3577 static void dummy_signal(int sig)
3578 {
3579 }
3580
3581 static void kvm_block_io_signals(CPUState *env)
3582 {
3583 int r;
3584 sigset_t set;
3585 struct sigaction sigact;
3586
3587 sigemptyset(&set);
3588 sigaddset(&set, SIGUSR2);
3589 sigaddset(&set, SIGIO);
3590 sigaddset(&set, SIGALRM);
3591 sigaddset(&set, SIGCHLD);
3592 sigaddset(&set, SIG_IPI);
3593 pthread_sigmask(SIG_BLOCK, &set, NULL);
3594
3595 pthread_sigmask(SIG_BLOCK, NULL, &set);
3596 sigdelset(&set, SIG_IPI);
3597
3598 memset(&sigact, 0, sizeof(sigact));
3599 sigact.sa_handler = dummy_signal;
3600 sigaction(SIG_IPI, &sigact, NULL);
3601
3602 r = kvm_set_signal_mask(env, &set);
3603 if (r) {
3604 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(r));
3605 exit(1);
3606 }
3607 }
3608
3609 static void unblock_io_signals(void)
3610 {
3611 sigset_t set;
3612
3613 sigemptyset(&set);
3614 sigaddset(&set, SIGUSR2);
3615 sigaddset(&set, SIGIO);
3616 sigaddset(&set, SIGALRM);
3617 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3618
3619 sigemptyset(&set);
3620 sigaddset(&set, SIG_IPI);
3621 pthread_sigmask(SIG_BLOCK, &set, NULL);
3622 }
3623
3624 static void qemu_signal_lock(unsigned int msecs)
3625 {
3626 qemu_mutex_lock(&qemu_fair_mutex);
3627
3628 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3629 qemu_thread_signal(tcg_cpu_thread, SIG_IPI);
3630 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3631 break;
3632 }
3633 qemu_mutex_unlock(&qemu_fair_mutex);
3634 }
3635
3636 void qemu_mutex_lock_iothread(void)
3637 {
3638 if (kvm_enabled()) {
3639 qemu_mutex_lock(&qemu_fair_mutex);
3640 qemu_mutex_lock(&qemu_global_mutex);
3641 qemu_mutex_unlock(&qemu_fair_mutex);
3642 } else
3643 qemu_signal_lock(100);
3644 }
3645
3646 void qemu_mutex_unlock_iothread(void)
3647 {
3648 qemu_mutex_unlock(&qemu_global_mutex);
3649 }
3650
3651 static int all_vcpus_paused(void)
3652 {
3653 CPUState *penv = first_cpu;
3654
3655 while (penv) {
3656 if (!penv->stopped)
3657 return 0;
3658 penv = (CPUState *)penv->next_cpu;
3659 }
3660
3661 return 1;
3662 }
3663
3664 static void pause_all_vcpus(void)
3665 {
3666 CPUState *penv = first_cpu;
3667
3668 while (penv) {
3669 penv->stop = 1;
3670 qemu_thread_signal(penv->thread, SIG_IPI);
3671 qemu_cpu_kick(penv);
3672 penv = (CPUState *)penv->next_cpu;
3673 }
3674
3675 while (!all_vcpus_paused()) {
3676 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3677 penv = first_cpu;
3678 while (penv) {
3679 qemu_thread_signal(penv->thread, SIG_IPI);
3680 penv = (CPUState *)penv->next_cpu;
3681 }
3682 }
3683 }
3684
3685 static void resume_all_vcpus(void)
3686 {
3687 CPUState *penv = first_cpu;
3688
3689 while (penv) {
3690 penv->stop = 0;
3691 penv->stopped = 0;
3692 qemu_thread_signal(penv->thread, SIG_IPI);
3693 qemu_cpu_kick(penv);
3694 penv = (CPUState *)penv->next_cpu;
3695 }
3696 }
3697
3698 static void tcg_init_vcpu(void *_env)
3699 {
3700 CPUState *env = _env;
3701 /* share a single thread for all cpus with TCG */
3702 if (!tcg_cpu_thread) {
3703 env->thread = qemu_mallocz(sizeof(QemuThread));
3704 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3705 qemu_cond_init(env->halt_cond);
3706 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3707 while (env->created == 0)
3708 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3709 tcg_cpu_thread = env->thread;
3710 tcg_halt_cond = env->halt_cond;
3711 } else {
3712 env->thread = tcg_cpu_thread;
3713 env->halt_cond = tcg_halt_cond;
3714 }
3715 }
3716
3717 static void kvm_start_vcpu(CPUState *env)
3718 {
3719 env->thread = qemu_mallocz(sizeof(QemuThread));
3720 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3721 qemu_cond_init(env->halt_cond);
3722 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3723 while (env->created == 0)
3724 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3725 }
3726
3727 void qemu_init_vcpu(void *_env)
3728 {
3729 CPUState *env = _env;
3730
3731 env->nr_cores = smp_cores;
3732 env->nr_threads = smp_threads;
3733 if (kvm_enabled())
3734 kvm_start_vcpu(env);
3735 else
3736 tcg_init_vcpu(env);
3737 }
3738
3739 void qemu_notify_event(void)
3740 {
3741 qemu_event_increment();
3742 }
3743
3744 void vm_stop(int reason)
3745 {
3746 QemuThread me;
3747 qemu_thread_self(&me);
3748
3749 if (!qemu_thread_equal(&me, &io_thread)) {
3750 qemu_system_vmstop_request(reason);
3751 /*
3752 * FIXME: should not return to device code in case
3753 * vm_stop() has been requested.
3754 */
3755 if (cpu_single_env) {
3756 cpu_exit(cpu_single_env);
3757 cpu_single_env->stop = 1;
3758 }
3759 return;
3760 }
3761 do_vm_stop(reason);
3762 }
3763
3764 #endif
3765
3766
3767 #ifdef _WIN32
3768 static void host_main_loop_wait(int *timeout)
3769 {
3770 int ret, ret2, i;
3771 PollingEntry *pe;
3772
3773
3774 /* XXX: need to suppress polling by better using win32 events */
3775 ret = 0;
3776 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3777 ret |= pe->func(pe->opaque);
3778 }
3779 if (ret == 0) {
3780 int err;
3781 WaitObjects *w = &wait_objects;
3782
3783 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3784 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3785 if (w->func[ret - WAIT_OBJECT_0])
3786 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3787
3788 /* Check for additional signaled events */
3789 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3790
3791 /* Check if event is signaled */
3792 ret2 = WaitForSingleObject(w->events[i], 0);
3793 if(ret2 == WAIT_OBJECT_0) {
3794 if (w->func[i])
3795 w->func[i](w->opaque[i]);
3796 } else if (ret2 == WAIT_TIMEOUT) {
3797 } else {
3798 err = GetLastError();
3799 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3800 }
3801 }
3802 } else if (ret == WAIT_TIMEOUT) {
3803 } else {
3804 err = GetLastError();
3805 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3806 }
3807 }
3808
3809 *timeout = 0;
3810 }
3811 #else
3812 static void host_main_loop_wait(int *timeout)
3813 {
3814 }
3815 #endif
3816
3817 void main_loop_wait(int timeout)
3818 {
3819 IOHandlerRecord *ioh;
3820 fd_set rfds, wfds, xfds;
3821 int ret, nfds;
3822 struct timeval tv;
3823
3824 qemu_bh_update_timeout(&timeout);
3825
3826 host_main_loop_wait(&timeout);
3827
3828 /* poll any events */
3829 /* XXX: separate device handlers from system ones */
3830 nfds = -1;
3831 FD_ZERO(&rfds);
3832 FD_ZERO(&wfds);
3833 FD_ZERO(&xfds);
3834 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3835 if (ioh->deleted)
3836 continue;
3837 if (ioh->fd_read &&
3838 (!ioh->fd_read_poll ||
3839 ioh->fd_read_poll(ioh->opaque) != 0)) {
3840 FD_SET(ioh->fd, &rfds);
3841 if (ioh->fd > nfds)
3842 nfds = ioh->fd;
3843 }
3844 if (ioh->fd_write) {
3845 FD_SET(ioh->fd, &wfds);
3846 if (ioh->fd > nfds)
3847 nfds = ioh->fd;
3848 }
3849 }
3850
3851 tv.tv_sec = timeout / 1000;
3852 tv.tv_usec = (timeout % 1000) * 1000;
3853
3854 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3855
3856 qemu_mutex_unlock_iothread();
3857 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3858 qemu_mutex_lock_iothread();
3859 if (ret > 0) {
3860 IOHandlerRecord **pioh;
3861
3862 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3863 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3864 ioh->fd_read(ioh->opaque);
3865 }
3866 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3867 ioh->fd_write(ioh->opaque);
3868 }
3869 }
3870
3871 /* remove deleted IO handlers */
3872 pioh = &first_io_handler;
3873 while (*pioh) {
3874 ioh = *pioh;
3875 if (ioh->deleted) {
3876 *pioh = ioh->next;
3877 qemu_free(ioh);
3878 } else
3879 pioh = &ioh->next;
3880 }
3881 }
3882
3883 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
3884
3885 /* rearm timer, if not periodic */
3886 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3887 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3888 qemu_rearm_alarm_timer(alarm_timer);
3889 }
3890
3891 /* vm time timers */
3892 if (vm_running) {
3893 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3894 qemu_run_timers(&active_timers[QEMU_CLOCK_VIRTUAL],
3895 qemu_get_clock(vm_clock));
3896 }
3897
3898 /* real time timers */
3899 qemu_run_timers(&active_timers[QEMU_CLOCK_REALTIME],
3900 qemu_get_clock(rt_clock));
3901
3902 qemu_run_timers(&active_timers[QEMU_CLOCK_HOST],
3903 qemu_get_clock(host_clock));
3904
3905 /* Check bottom-halves last in case any of the earlier events triggered
3906 them. */
3907 qemu_bh_poll();
3908
3909 }
3910
3911 static int qemu_cpu_exec(CPUState *env)
3912 {
3913 int ret;
3914 #ifdef CONFIG_PROFILER
3915 int64_t ti;
3916 #endif
3917
3918 #ifdef CONFIG_PROFILER
3919 ti = profile_getclock();
3920 #endif
3921 if (use_icount) {
3922 int64_t count;
3923 int decr;
3924 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3925 env->icount_decr.u16.low = 0;
3926 env->icount_extra = 0;
3927 count = qemu_next_deadline();
3928 count = (count + (1 << icount_time_shift) - 1)
3929 >> icount_time_shift;
3930 qemu_icount += count;
3931 decr = (count > 0xffff) ? 0xffff : count;
3932 count -= decr;
3933 env->icount_decr.u16.low = decr;
3934 env->icount_extra = count;
3935 }
3936 ret = cpu_exec(env);
3937 #ifdef CONFIG_PROFILER
3938 qemu_time += profile_getclock() - ti;
3939 #endif
3940 if (use_icount) {
3941 /* Fold pending instructions back into the
3942 instruction counter, and clear the interrupt flag. */
3943 qemu_icount -= (env->icount_decr.u16.low
3944 + env->icount_extra);
3945 env->icount_decr.u32 = 0;
3946 env->icount_extra = 0;
3947 }
3948 return ret;
3949 }
3950
3951 static void tcg_cpu_exec(void)
3952 {
3953 int ret = 0;
3954
3955 if (next_cpu == NULL)
3956 next_cpu = first_cpu;
3957 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
3958 CPUState *env = cur_cpu = next_cpu;
3959
3960 if (timer_alarm_pending) {
3961 timer_alarm_pending = 0;
3962 break;
3963 }
3964 if (cpu_can_run(env))
3965 ret = qemu_cpu_exec(env);
3966 else if (env->stop)
3967 break;
3968
3969 if (ret == EXCP_DEBUG) {
3970 gdb_set_stop_cpu(env);
3971 debug_requested = 1;
3972 break;
3973 }
3974 }
3975 }
3976
3977 static int cpu_has_work(CPUState *env)
3978 {
3979 if (env->stop)
3980 return 1;
3981 if (env->stopped)
3982 return 0;
3983 if (!env->halted)
3984 return 1;
3985 if (qemu_cpu_has_work(env))
3986 return 1;
3987 return 0;
3988 }
3989
3990 static int tcg_has_work(void)
3991 {
3992 CPUState *env;
3993
3994 for (env = first_cpu; env != NULL; env = env->next_cpu)
3995 if (cpu_has_work(env))
3996 return 1;
3997 return 0;
3998 }
3999
4000 static int qemu_calculate_timeout(void)
4001 {
4002 #ifndef CONFIG_IOTHREAD
4003 int timeout;
4004
4005 if (!vm_running)
4006 timeout = 5000;
4007 else if (tcg_has_work())
4008 timeout = 0;
4009 else if (!use_icount)
4010 timeout = 5000;
4011 else {
4012 /* XXX: use timeout computed from timers */
4013 int64_t add;
4014 int64_t delta;
4015 /* Advance virtual time to the next event. */
4016 if (use_icount == 1) {
4017 /* When not using an adaptive execution frequency
4018 we tend to get badly out of sync with real time,
4019 so just delay for a reasonable amount of time. */
4020 delta = 0;
4021 } else {
4022 delta = cpu_get_icount() - cpu_get_clock();
4023 }
4024 if (delta > 0) {
4025 /* If virtual time is ahead of real time then just
4026 wait for IO. */
4027 timeout = (delta / 1000000) + 1;
4028 } else {
4029 /* Wait for either IO to occur or the next
4030 timer event. */
4031 add = qemu_next_deadline();
4032 /* We advance the timer before checking for IO.
4033 Limit the amount we advance so that early IO
4034 activity won't get the guest too far ahead. */
4035 if (add > 10000000)
4036 add = 10000000;
4037 delta += add;
4038 add = (add + (1 << icount_time_shift) - 1)
4039 >> icount_time_shift;
4040 qemu_icount += add;
4041 timeout = delta / 1000000;
4042 if (timeout < 0)
4043 timeout = 0;
4044 }
4045 }
4046
4047 return timeout;
4048 #else /* CONFIG_IOTHREAD */
4049 return 1000;
4050 #endif
4051 }
4052
4053 static int vm_can_run(void)
4054 {
4055 if (powerdown_requested)
4056 return 0;
4057 if (reset_requested)
4058 return 0;
4059 if (shutdown_requested)
4060 return 0;
4061 if (debug_requested)
4062 return 0;
4063 return 1;
4064 }
4065
4066 qemu_irq qemu_system_powerdown;
4067
4068 static void main_loop(void)
4069 {
4070 int r;
4071
4072 #ifdef CONFIG_IOTHREAD
4073 qemu_system_ready = 1;
4074 qemu_cond_broadcast(&qemu_system_cond);
4075 #endif
4076
4077 for (;;) {
4078 do {
4079 #ifdef CONFIG_PROFILER
4080 int64_t ti;
4081 #endif
4082 #ifndef CONFIG_IOTHREAD
4083 tcg_cpu_exec();
4084 #endif
4085 #ifdef CONFIG_PROFILER
4086 ti = profile_getclock();
4087 #endif
4088 main_loop_wait(qemu_calculate_timeout());
4089 #ifdef CONFIG_PROFILER
4090 dev_time += profile_getclock() - ti;
4091 #endif
4092 } while (vm_can_run());
4093
4094 if (qemu_debug_requested()) {
4095 vm_stop(EXCP_DEBUG);
4096 }
4097 if (qemu_shutdown_requested()) {
4098 monitor_protocol_event(QEVENT_SHUTDOWN, NULL);
4099 if (no_shutdown) {
4100 vm_stop(0);
4101 no_shutdown = 0;
4102 } else
4103 break;
4104 }
4105 if (qemu_reset_requested()) {
4106 pause_all_vcpus();
4107 qemu_system_reset();
4108 resume_all_vcpus();
4109 }
4110 if (qemu_powerdown_requested()) {
4111 monitor_protocol_event(QEVENT_POWERDOWN, NULL);
4112 qemu_irq_raise(qemu_system_powerdown);
4113 }
4114 if ((r = qemu_vmstop_requested())) {
4115 vm_stop(r);
4116 }
4117 }
4118 pause_all_vcpus();
4119 }
4120
4121 static void version(void)
4122 {
4123 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4124 }
4125
4126 static void help(int exitcode)
4127 {
4128 const char *options_help =
4129 #define DEF(option, opt_arg, opt_enum, opt_help) \
4130 opt_help
4131 #define DEFHEADING(text) stringify(text) "\n"
4132 #include "qemu-options.h"
4133 #undef DEF
4134 #undef DEFHEADING
4135 #undef GEN_DOCS
4136 ;
4137 version();
4138 printf("usage: %s [options] [disk_image]\n"
4139 "\n"
4140 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4141 "\n"
4142 "%s\n"
4143 "During emulation, the following keys are useful:\n"
4144 "ctrl-alt-f toggle full screen\n"
4145 "ctrl-alt-n switch to virtual console 'n'\n"
4146 "ctrl-alt toggle mouse and keyboard grab\n"
4147 "\n"
4148 "When using -nographic, press 'ctrl-a h' to get some help.\n",
4149 "qemu",
4150 options_help);
4151 exit(exitcode);
4152 }
4153
4154 #define HAS_ARG 0x0001
4155
4156 enum {
4157 #define DEF(option, opt_arg, opt_enum, opt_help) \
4158 opt_enum,
4159 #define DEFHEADING(text)
4160 #include "qemu-options.h"
4161 #undef DEF
4162 #undef DEFHEADING
4163 #undef GEN_DOCS
4164 };
4165
4166 typedef struct QEMUOption {
4167 const char *name;
4168 int flags;
4169 int index;
4170 } QEMUOption;
4171
4172 static const QEMUOption qemu_options[] = {
4173 { "h", 0, QEMU_OPTION_h },
4174 #define DEF(option, opt_arg, opt_enum, opt_help) \
4175 { option, opt_arg, opt_enum },
4176 #define DEFHEADING(text)
4177 #include "qemu-options.h"
4178 #undef DEF
4179 #undef DEFHEADING
4180 #undef GEN_DOCS
4181 { NULL },
4182 };
4183
4184 #ifdef HAS_AUDIO
4185 struct soundhw soundhw[] = {
4186 #ifdef HAS_AUDIO_CHOICE
4187 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4188 {
4189 "pcspk",
4190 "PC speaker",
4191 0,
4192 1,
4193 { .init_isa = pcspk_audio_init }
4194 },
4195 #endif
4196
4197 #ifdef CONFIG_SB16
4198 {
4199 "sb16",
4200 "Creative Sound Blaster 16",
4201 0,
4202 1,
4203 { .init_isa = SB16_init }
4204 },
4205 #endif
4206
4207 #ifdef CONFIG_CS4231A
4208 {
4209 "cs4231a",
4210 "CS4231A",
4211 0,
4212 1,
4213 { .init_isa = cs4231a_init }
4214 },
4215 #endif
4216
4217 #ifdef CONFIG_ADLIB
4218 {
4219 "adlib",
4220 #ifdef HAS_YMF262
4221 "Yamaha YMF262 (OPL3)",
4222 #else
4223 "Yamaha YM3812 (OPL2)",
4224 #endif
4225 0,
4226 1,
4227 { .init_isa = Adlib_init }
4228 },
4229 #endif
4230
4231 #ifdef CONFIG_GUS
4232 {
4233 "gus",
4234 "Gravis Ultrasound GF1",
4235 0,
4236 1,
4237 { .init_isa = GUS_init }
4238 },
4239 #endif
4240
4241 #ifdef CONFIG_AC97
4242 {
4243 "ac97",
4244 "Intel 82801AA AC97 Audio",
4245 0,
4246 0,
4247 { .init_pci = ac97_init }
4248 },
4249 #endif
4250
4251 #ifdef CONFIG_ES1370
4252 {
4253 "es1370",
4254 "ENSONIQ AudioPCI ES1370",
4255 0,
4256 0,
4257 { .init_pci = es1370_init }
4258 },
4259 #endif
4260
4261 #endif /* HAS_AUDIO_CHOICE */
4262
4263 { NULL, NULL, 0, 0, { NULL } }
4264 };
4265
4266 static void select_soundhw (const char *optarg)
4267 {
4268 struct soundhw *c;
4269
4270 if (*optarg == '?') {
4271 show_valid_cards:
4272
4273 printf ("Valid sound card names (comma separated):\n");
4274 for (c = soundhw; c->name; ++c) {
4275 printf ("%-11s %s\n", c->name, c->descr);
4276 }
4277 printf ("\n-soundhw all will enable all of the above\n");
4278 exit (*optarg != '?');
4279 }
4280 else {
4281 size_t l;
4282 const char *p;
4283 char *e;
4284 int bad_card = 0;
4285
4286 if (!strcmp (optarg, "all")) {
4287 for (c = soundhw; c->name; ++c) {
4288 c->enabled = 1;
4289 }
4290 return;
4291 }
4292
4293 p = optarg;
4294 while (*p) {
4295 e = strchr (p, ',');
4296 l = !e ? strlen (p) : (size_t) (e - p);
4297
4298 for (c = soundhw; c->name; ++c) {
4299 if (!strncmp (c->name, p, l) && !c->name[l]) {
4300 c->enabled = 1;
4301 break;
4302 }
4303 }
4304
4305 if (!c->name) {
4306 if (l > 80) {
4307 fprintf (stderr,
4308 "Unknown sound card name (too big to show)\n");
4309 }
4310 else {
4311 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4312 (int) l, p);
4313 }
4314 bad_card = 1;
4315 }
4316 p += l + (e != NULL);
4317 }
4318
4319 if (bad_card)
4320 goto show_valid_cards;
4321 }
4322 }
4323 #endif
4324
4325 static void select_vgahw (const char *p)
4326 {
4327 const char *opts;
4328
4329 default_vga = 0;
4330 vga_interface_type = VGA_NONE;
4331 if (strstart(p, "std", &opts)) {
4332 vga_interface_type = VGA_STD;
4333 } else if (strstart(p, "cirrus", &opts)) {
4334 vga_interface_type = VGA_CIRRUS;
4335 } else if (strstart(p, "vmware", &opts)) {
4336 vga_interface_type = VGA_VMWARE;
4337 } else if (strstart(p, "xenfb", &opts)) {
4338 vga_interface_type = VGA_XENFB;
4339 } else if (!strstart(p, "none", &opts)) {
4340 invalid_vga:
4341 fprintf(stderr, "Unknown vga type: %s\n", p);
4342 exit(1);
4343 }
4344 while (*opts) {
4345 const char *nextopt;
4346
4347 if (strstart(opts, ",retrace=", &nextopt)) {
4348 opts = nextopt;
4349 if (strstart(opts, "dumb", &nextopt))
4350 vga_retrace_method = VGA_RETRACE_DUMB;
4351 else if (strstart(opts, "precise", &nextopt))
4352 vga_retrace_method = VGA_RETRACE_PRECISE;
4353 else goto invalid_vga;
4354 } else goto invalid_vga;
4355 opts = nextopt;
4356 }
4357 }
4358
4359 #ifdef TARGET_I386
4360 static int balloon_parse(const char *arg)
4361 {
4362 QemuOpts *opts;
4363
4364 if (strcmp(arg, "none") == 0) {
4365 return 0;
4366 }
4367
4368 if (!strncmp(arg, "virtio", 6)) {
4369 if (arg[6] == ',') {
4370 /* have params -> parse them */
4371 opts = qemu_opts_parse(&qemu_device_opts, arg+7, 0);
4372 if (!opts)
4373 return -1;
4374 } else {
4375 /* create empty opts */
4376 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4377 }
4378 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4379 return 0;
4380 }
4381
4382 return -1;
4383 }
4384 #endif
4385
4386 #ifdef _WIN32
4387 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4388 {
4389 exit(STATUS_CONTROL_C_EXIT);
4390 return TRUE;
4391 }
4392 #endif
4393
4394 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4395 {
4396 int ret;
4397
4398 if(strlen(str) != 36)
4399 return -1;
4400
4401 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4402 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4403 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4404
4405 if(ret != 16)
4406 return -1;
4407
4408 #ifdef TARGET_I386
4409 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4410 #endif
4411
4412 return 0;
4413 }
4414
4415 #ifndef _WIN32
4416
4417 static void termsig_handler(int signal)
4418 {
4419 qemu_system_shutdown_request();
4420 }
4421
4422 static void sigchld_handler(int signal)
4423 {
4424 waitpid(-1, NULL, WNOHANG);
4425 }
4426
4427 static void sighandler_setup(void)
4428 {
4429 struct sigaction act;
4430
4431 memset(&act, 0, sizeof(act));
4432 act.sa_handler = termsig_handler;
4433 sigaction(SIGINT, &act, NULL);
4434 sigaction(SIGHUP, &act, NULL);
4435 sigaction(SIGTERM, &act, NULL);
4436
4437 act.sa_handler = sigchld_handler;
4438 act.sa_flags = SA_NOCLDSTOP;
4439 sigaction(SIGCHLD, &act, NULL);
4440 }
4441
4442 #endif
4443
4444 #ifdef _WIN32
4445 /* Look for support files in the same directory as the executable. */
4446 static char *find_datadir(const char *argv0)
4447 {
4448 char *p;
4449 char buf[MAX_PATH];
4450 DWORD len;
4451
4452 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4453 if (len == 0) {
4454 return NULL;
4455 }
4456
4457 buf[len] = 0;
4458 p = buf + len - 1;
4459 while (p != buf && *p != '\\')
4460 p--;
4461 *p = 0;
4462 if (access(buf, R_OK) == 0) {
4463 return qemu_strdup(buf);
4464 }
4465 return NULL;
4466 }
4467 #else /* !_WIN32 */
4468
4469 /* Find a likely location for support files using the location of the binary.
4470 For installed binaries this will be "$bindir/../share/qemu". When
4471 running from the build tree this will be "$bindir/../pc-bios". */
4472 #define SHARE_SUFFIX "/share/qemu"
4473 #define BUILD_SUFFIX "/pc-bios"
4474 static char *find_datadir(const char *argv0)
4475 {
4476 char *dir;
4477 char *p = NULL;
4478 char *res;
4479 char buf[PATH_MAX];
4480 size_t max_len;
4481
4482 #if defined(__linux__)
4483 {
4484 int len;
4485 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4486 if (len > 0) {
4487 buf[len] = 0;
4488 p = buf;
4489 }
4490 }
4491 #elif defined(__FreeBSD__)
4492 {
4493 int len;
4494 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4495 if (len > 0) {
4496 buf[len] = 0;
4497 p = buf;
4498 }
4499 }
4500 #endif
4501 /* If we don't have any way of figuring out the actual executable
4502 location then try argv[0]. */
4503 if (!p) {
4504 p = realpath(argv0, buf);
4505 if (!p) {
4506 return NULL;
4507 }
4508 }
4509 dir = dirname(p);
4510 dir = dirname(dir);
4511
4512 max_len = strlen(dir) +
4513 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4514 res = qemu_mallocz(max_len);
4515 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4516 if (access(res, R_OK)) {
4517 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4518 if (access(res, R_OK)) {
4519 qemu_free(res);
4520 res = NULL;
4521 }
4522 }
4523
4524 return res;
4525 }
4526 #undef SHARE_SUFFIX
4527 #undef BUILD_SUFFIX
4528 #endif
4529
4530 char *qemu_find_file(int type, const char *name)
4531 {
4532 int len;
4533 const char *subdir;
4534 char *buf;
4535
4536 /* If name contains path separators then try it as a straight path. */
4537 if ((strchr(name, '/') || strchr(name, '\\'))
4538 && access(name, R_OK) == 0) {
4539 return qemu_strdup(name);
4540 }
4541 switch (type) {
4542 case QEMU_FILE_TYPE_BIOS:
4543 subdir = "";
4544 break;
4545 case QEMU_FILE_TYPE_KEYMAP:
4546 subdir = "keymaps/";
4547 break;
4548 default:
4549 abort();
4550 }
4551 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4552 buf = qemu_mallocz(len);
4553 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4554 if (access(buf, R_OK)) {
4555 qemu_free(buf);
4556 return NULL;
4557 }
4558 return buf;
4559 }
4560
4561 static int device_help_func(QemuOpts *opts, void *opaque)
4562 {
4563 return qdev_device_help(opts);
4564 }
4565
4566 static int device_init_func(QemuOpts *opts, void *opaque)
4567 {
4568 DeviceState *dev;
4569
4570 dev = qdev_device_add(opts);
4571 if (!dev)
4572 return -1;
4573 return 0;
4574 }
4575
4576 static int chardev_init_func(QemuOpts *opts, void *opaque)
4577 {
4578 CharDriverState *chr;
4579
4580 chr = qemu_chr_open_opts(opts, NULL);
4581 if (!chr)
4582 return -1;
4583 return 0;
4584 }
4585
4586 static int mon_init_func(QemuOpts *opts, void *opaque)
4587 {
4588 CharDriverState *chr;
4589 const char *chardev;
4590 const char *mode;
4591 int flags;
4592
4593 mode = qemu_opt_get(opts, "mode");
4594 if (mode == NULL) {
4595 mode = "readline";
4596 }
4597 if (strcmp(mode, "readline") == 0) {
4598 flags = MONITOR_USE_READLINE;
4599 } else if (strcmp(mode, "control") == 0) {
4600 flags = MONITOR_USE_CONTROL;
4601 } else {
4602 fprintf(stderr, "unknown monitor mode \"%s\"\n", mode);
4603 exit(1);
4604 }
4605
4606 if (qemu_opt_get_bool(opts, "default", 0))
4607 flags |= MONITOR_IS_DEFAULT;
4608
4609 chardev = qemu_opt_get(opts, "chardev");
4610 chr = qemu_chr_find(chardev);
4611 if (chr == NULL) {
4612 fprintf(stderr, "chardev \"%s\" not found\n", chardev);
4613 exit(1);
4614 }
4615
4616 monitor_init(chr, flags);
4617 return 0;
4618 }
4619
4620 static void monitor_parse(const char *optarg, const char *mode)
4621 {
4622 static int monitor_device_index = 0;
4623 QemuOpts *opts;
4624 const char *p;
4625 char label[32];
4626 int def = 0;
4627
4628 if (strstart(optarg, "chardev:", &p)) {
4629 snprintf(label, sizeof(label), "%s", p);
4630 } else {
4631 if (monitor_device_index) {
4632 snprintf(label, sizeof(label), "monitor%d",
4633 monitor_device_index);
4634 } else {
4635 snprintf(label, sizeof(label), "monitor");
4636 def = 1;
4637 }
4638 opts = qemu_chr_parse_compat(label, optarg);
4639 if (!opts) {
4640 fprintf(stderr, "parse error: %s\n", optarg);
4641 exit(1);
4642 }
4643 }
4644
4645 opts = qemu_opts_create(&qemu_mon_opts, label, 1);
4646 if (!opts) {
4647 fprintf(stderr, "duplicate chardev: %s\n", label);
4648 exit(1);
4649 }
4650 qemu_opt_set(opts, "mode", mode);
4651 qemu_opt_set(opts, "chardev", label);
4652 if (def)
4653 qemu_opt_set(opts, "default", "on");
4654 monitor_device_index++;
4655 }
4656
4657 struct device_config {
4658 enum {
4659 DEV_USB, /* -usbdevice */
4660 DEV_BT, /* -bt */
4661 DEV_SERIAL, /* -serial */
4662 DEV_PARALLEL, /* -parallel */
4663 DEV_VIRTCON, /* -virtioconsole */
4664 DEV_DEBUGCON, /* -debugcon */
4665 } type;
4666 const char *cmdline;
4667 QTAILQ_ENTRY(device_config) next;
4668 };
4669 QTAILQ_HEAD(, device_config) device_configs = QTAILQ_HEAD_INITIALIZER(device_configs);
4670
4671 static void add_device_config(int type, const char *cmdline)
4672 {
4673 struct device_config *conf;
4674
4675 conf = qemu_mallocz(sizeof(*conf));
4676 conf->type = type;
4677 conf->cmdline = cmdline;
4678 QTAILQ_INSERT_TAIL(&device_configs, conf, next);
4679 }
4680
4681 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4682 {
4683 struct device_config *conf;
4684 int rc;
4685
4686 QTAILQ_FOREACH(conf, &device_configs, next) {
4687 if (conf->type != type)
4688 continue;
4689 rc = func(conf->cmdline);
4690 if (0 != rc)
4691 return rc;
4692 }
4693 return 0;
4694 }
4695
4696 static int serial_parse(const char *devname)
4697 {
4698 static int index = 0;
4699 char label[32];
4700
4701 if (strcmp(devname, "none") == 0)
4702 return 0;
4703 if (index == MAX_SERIAL_PORTS) {
4704 fprintf(stderr, "qemu: too many serial ports\n");
4705 exit(1);
4706 }
4707 snprintf(label, sizeof(label), "serial%d", index);
4708 serial_hds[index] = qemu_chr_open(label, devname, NULL);
4709 if (!serial_hds[index]) {
4710 fprintf(stderr, "qemu: could not open serial device '%s': %s\n",
4711 devname, strerror(errno));
4712 return -1;
4713 }
4714 index++;
4715 return 0;
4716 }
4717
4718 static int parallel_parse(const char *devname)
4719 {
4720 static int index = 0;
4721 char label[32];
4722
4723 if (strcmp(devname, "none") == 0)
4724 return 0;
4725 if (index == MAX_PARALLEL_PORTS) {
4726 fprintf(stderr, "qemu: too many parallel ports\n");
4727 exit(1);
4728 }
4729 snprintf(label, sizeof(label), "parallel%d", index);
4730 parallel_hds[index] = qemu_chr_open(label, devname, NULL);
4731 if (!parallel_hds[index]) {
4732 fprintf(stderr, "qemu: could not open parallel device '%s': %s\n",
4733 devname, strerror(errno));
4734 return -1;
4735 }
4736 index++;
4737 return 0;
4738 }
4739
4740 static int virtcon_parse(const char *devname)
4741 {
4742 static int index = 0;
4743 char label[32];
4744 QemuOpts *bus_opts, *dev_opts;
4745
4746 if (strcmp(devname, "none") == 0)
4747 return 0;
4748 if (index == MAX_VIRTIO_CONSOLES) {
4749 fprintf(stderr, "qemu: too many virtio consoles\n");
4750 exit(1);
4751 }
4752
4753 bus_opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4754 qemu_opt_set(bus_opts, "driver", "virtio-serial");
4755
4756 dev_opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4757 qemu_opt_set(dev_opts, "driver", "virtconsole");
4758
4759 snprintf(label, sizeof(label), "virtcon%d", index);
4760 virtcon_hds[index] = qemu_chr_open(label, devname, NULL);
4761 if (!virtcon_hds[index]) {
4762 fprintf(stderr, "qemu: could not open virtio console '%s': %s\n",
4763 devname, strerror(errno));
4764 return -1;
4765 }
4766 qemu_opt_set(dev_opts, "chardev", label);
4767
4768 index++;
4769 return 0;
4770 }
4771
4772 static int debugcon_parse(const char *devname)
4773 {
4774 QemuOpts *opts;
4775
4776 if (!qemu_chr_open("debugcon", devname, NULL)) {
4777 exit(1);
4778 }
4779 opts = qemu_opts_create(&qemu_device_opts, "debugcon", 1);
4780 if (!opts) {
4781 fprintf(stderr, "qemu: already have a debugcon device\n");
4782 exit(1);
4783 }
4784 qemu_opt_set(opts, "driver", "isa-debugcon");
4785 qemu_opt_set(opts, "chardev", "debugcon");
4786 return 0;
4787 }
4788
4789 static const QEMUOption *lookup_opt(int argc, char **argv,
4790 const char **poptarg, int *poptind)
4791 {
4792 const QEMUOption *popt;
4793 int optind = *poptind;
4794 char *r = argv[optind];
4795 const char *optarg;
4796
4797 loc_set_cmdline(argv, optind, 1);
4798 optind++;
4799 /* Treat --foo the same as -foo. */
4800 if (r[1] == '-')
4801 r++;
4802 popt = qemu_options;
4803 for(;;) {
4804 if (!popt->name) {
4805 error_report("invalid option");
4806 exit(1);
4807 }
4808 if (!strcmp(popt->name, r + 1))
4809 break;
4810 popt++;
4811 }
4812 if (popt->flags & HAS_ARG) {
4813 if (optind >= argc) {
4814 error_report("requires an argument");
4815 exit(1);
4816 }
4817 optarg = argv[optind++];
4818 loc_set_cmdline(argv, optind - 2, 2);
4819 } else {
4820 optarg = NULL;
4821 }
4822
4823 *poptarg = optarg;
4824 *poptind = optind;
4825
4826 return popt;
4827 }
4828
4829 int main(int argc, char **argv, char **envp)
4830 {
4831 const char *gdbstub_dev = NULL;
4832 uint32_t boot_devices_bitmap = 0;
4833 int i;
4834 int snapshot, linux_boot, net_boot;
4835 const char *initrd_filename;
4836 const char *kernel_filename, *kernel_cmdline;
4837 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4838 DisplayState *ds;
4839 DisplayChangeListener *dcl;
4840 int cyls, heads, secs, translation;
4841 QemuOpts *hda_opts = NULL, *opts;
4842 int optind;
4843 const char *optarg;
4844 const char *loadvm = NULL;
4845 QEMUMachine *machine;
4846 const char *cpu_model;
4847 #ifndef _WIN32
4848 int fds[2];
4849 #endif
4850 int tb_size;
4851 const char *pid_file = NULL;
4852 const char *incoming = NULL;
4853 #ifndef _WIN32
4854 int fd = 0;
4855 struct passwd *pwd = NULL;
4856 const char *chroot_dir = NULL;
4857 const char *run_as = NULL;
4858 #endif
4859 CPUState *env;
4860 int show_vnc_port = 0;
4861 int defconfig = 1;
4862
4863 error_set_progname(argv[0]);
4864
4865 init_clocks();
4866
4867 qemu_cache_utils_init(envp);
4868
4869 QLIST_INIT (&vm_change_state_head);
4870 #ifndef _WIN32
4871 {
4872 struct sigaction act;
4873 sigfillset(&act.sa_mask);
4874 act.sa_flags = 0;
4875 act.sa_handler = SIG_IGN;
4876 sigaction(SIGPIPE, &act, NULL);
4877 }
4878 #else
4879 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4880 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4881 QEMU to run on a single CPU */
4882 {
4883 HANDLE h;
4884 DWORD mask, smask;
4885 int i;
4886 h = GetCurrentProcess();
4887 if (GetProcessAffinityMask(h, &mask, &smask)) {
4888 for(i = 0; i < 32; i++) {
4889 if (mask & (1 << i))
4890 break;
4891 }
4892 if (i != 32) {
4893 mask = 1 << i;
4894 SetProcessAffinityMask(h, mask);
4895 }
4896 }
4897 }
4898 #endif
4899
4900 module_call_init(MODULE_INIT_MACHINE);
4901 machine = find_default_machine();
4902 cpu_model = NULL;
4903 initrd_filename = NULL;
4904 ram_size = 0;
4905 snapshot = 0;
4906 kernel_filename = NULL;
4907 kernel_cmdline = "";
4908 cyls = heads = secs = 0;
4909 translation = BIOS_ATA_TRANSLATION_AUTO;
4910
4911 for (i = 0; i < MAX_NODES; i++) {
4912 node_mem[i] = 0;
4913 node_cpumask[i] = 0;
4914 }
4915
4916 nb_numa_nodes = 0;
4917 nb_nics = 0;
4918
4919 tb_size = 0;
4920 autostart= 1;
4921
4922 /* first pass of option parsing */
4923 optind = 1;
4924 while (optind < argc) {
4925 if (argv[optind][0] != '-') {
4926 /* disk image */
4927 optind++;
4928 continue;
4929 } else {
4930 const QEMUOption *popt;
4931
4932 popt = lookup_opt(argc, argv, &optarg, &optind);
4933 switch (popt->index) {
4934 case QEMU_OPTION_nodefconfig:
4935 defconfig=0;
4936 break;
4937 }
4938 }
4939 }
4940
4941 if (defconfig) {
4942 const char *fname;
4943 FILE *fp;
4944
4945 fname = CONFIG_QEMU_CONFDIR "/qemu.conf";
4946 fp = fopen(fname, "r");
4947 if (fp) {
4948 if (qemu_config_parse(fp, fname) != 0) {
4949 exit(1);
4950 }
4951 fclose(fp);
4952 }
4953
4954 fname = CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf";
4955 fp = fopen(fname, "r");
4956 if (fp) {
4957 if (qemu_config_parse(fp, fname) != 0) {
4958 exit(1);
4959 }
4960 fclose(fp);
4961 }
4962 }
4963 #if defined(cpudef_setup)
4964 cpudef_setup(); /* parse cpu definitions in target config file */
4965 #endif
4966
4967 /* second pass of option parsing */
4968 optind = 1;
4969 for(;;) {
4970 if (optind >= argc)
4971 break;
4972 if (argv[optind][0] != '-') {
4973 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4974 } else {
4975 const QEMUOption *popt;
4976
4977 popt = lookup_opt(argc, argv, &optarg, &optind);
4978 switch(popt->index) {
4979 case QEMU_OPTION_M:
4980 machine = find_machine(optarg);
4981 if (!machine) {
4982 QEMUMachine *m;
4983 printf("Supported machines are:\n");
4984 for(m = first_machine; m != NULL; m = m->next) {
4985 if (m->alias)
4986 printf("%-10s %s (alias of %s)\n",
4987 m->alias, m->desc, m->name);
4988 printf("%-10s %s%s\n",
4989 m->name, m->desc,
4990 m->is_default ? " (default)" : "");
4991 }
4992 exit(*optarg != '?');
4993 }
4994 break;
4995 case QEMU_OPTION_cpu:
4996 /* hw initialization will check this */
4997 if (*optarg == '?') {
4998 /* XXX: implement xxx_cpu_list for targets that still miss it */
4999 #if defined(cpu_list_id)
5000 cpu_list_id(stdout, &fprintf, optarg);
5001 #elif defined(cpu_list)
5002 cpu_list(stdout, &fprintf); /* deprecated */
5003 #endif
5004 exit(0);
5005 } else {
5006 cpu_model = optarg;
5007 }
5008 break;
5009 case QEMU_OPTION_initrd:
5010 initrd_filename = optarg;
5011 break;
5012 case QEMU_OPTION_hda:
5013 if (cyls == 0)
5014 hda_opts = drive_add(optarg, HD_ALIAS, 0);
5015 else
5016 hda_opts = drive_add(optarg, HD_ALIAS
5017 ",cyls=%d,heads=%d,secs=%d%s",
5018 0, cyls, heads, secs,
5019 translation == BIOS_ATA_TRANSLATION_LBA ?
5020 ",trans=lba" :
5021 translation == BIOS_ATA_TRANSLATION_NONE ?
5022 ",trans=none" : "");
5023 break;
5024 case QEMU_OPTION_hdb:
5025 case QEMU_OPTION_hdc:
5026 case QEMU_OPTION_hdd:
5027 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5028 break;
5029 case QEMU_OPTION_drive:
5030 drive_add(NULL, "%s", optarg);
5031 break;
5032 case QEMU_OPTION_set:
5033 if (qemu_set_option(optarg) != 0)
5034 exit(1);
5035 break;
5036 case QEMU_OPTION_global:
5037 if (qemu_global_option(optarg) != 0)
5038 exit(1);
5039 break;
5040 case QEMU_OPTION_mtdblock:
5041 drive_add(optarg, MTD_ALIAS);
5042 break;
5043 case QEMU_OPTION_sd:
5044 drive_add(optarg, SD_ALIAS);
5045 break;
5046 case QEMU_OPTION_pflash:
5047 drive_add(optarg, PFLASH_ALIAS);
5048 break;
5049 case QEMU_OPTION_snapshot:
5050 snapshot = 1;
5051 break;
5052 case QEMU_OPTION_hdachs:
5053 {
5054 const char *p;
5055 p = optarg;
5056 cyls = strtol(p, (char **)&p, 0);
5057 if (cyls < 1 || cyls > 16383)
5058 goto chs_fail;
5059 if (*p != ',')
5060 goto chs_fail;
5061 p++;
5062 heads = strtol(p, (char **)&p, 0);
5063 if (heads < 1 || heads > 16)
5064 goto chs_fail;
5065 if (*p != ',')
5066 goto chs_fail;
5067 p++;
5068 secs = strtol(p, (char **)&p, 0);
5069 if (secs < 1 || secs > 63)
5070 goto chs_fail;
5071 if (*p == ',') {
5072 p++;
5073 if (!strcmp(p, "none"))
5074 translation = BIOS_ATA_TRANSLATION_NONE;
5075 else if (!strcmp(p, "lba"))
5076 translation = BIOS_ATA_TRANSLATION_LBA;
5077 else if (!strcmp(p, "auto"))
5078 translation = BIOS_ATA_TRANSLATION_AUTO;
5079 else
5080 goto chs_fail;
5081 } else if (*p != '\0') {
5082 chs_fail:
5083 fprintf(stderr, "qemu: invalid physical CHS format\n");
5084 exit(1);
5085 }
5086 if (hda_opts != NULL) {
5087 char num[16];
5088 snprintf(num, sizeof(num), "%d", cyls);
5089 qemu_opt_set(hda_opts, "cyls", num);
5090 snprintf(num, sizeof(num), "%d", heads);
5091 qemu_opt_set(hda_opts, "heads", num);
5092 snprintf(num, sizeof(num), "%d", secs);
5093 qemu_opt_set(hda_opts, "secs", num);
5094 if (translation == BIOS_ATA_TRANSLATION_LBA)
5095 qemu_opt_set(hda_opts, "trans", "lba");
5096 if (translation == BIOS_ATA_TRANSLATION_NONE)
5097 qemu_opt_set(hda_opts, "trans", "none");
5098 }
5099 }
5100 break;
5101 case QEMU_OPTION_numa:
5102 if (nb_numa_nodes >= MAX_NODES) {
5103 fprintf(stderr, "qemu: too many NUMA nodes\n");
5104 exit(1);
5105 }
5106 numa_add(optarg);
5107 break;
5108 case QEMU_OPTION_nographic:
5109 display_type = DT_NOGRAPHIC;
5110 break;
5111 #ifdef CONFIG_CURSES
5112 case QEMU_OPTION_curses:
5113 display_type = DT_CURSES;
5114 break;
5115 #endif
5116 case QEMU_OPTION_portrait:
5117 graphic_rotate = 1;
5118 break;
5119 case QEMU_OPTION_kernel:
5120 kernel_filename = optarg;
5121 break;
5122 case QEMU_OPTION_append:
5123 kernel_cmdline = optarg;
5124 break;
5125 case QEMU_OPTION_cdrom:
5126 drive_add(optarg, CDROM_ALIAS);
5127 break;
5128 case QEMU_OPTION_boot:
5129 {
5130 static const char * const params[] = {
5131 "order", "once", "menu", NULL
5132 };
5133 char buf[sizeof(boot_devices)];
5134 char *standard_boot_devices;
5135 int legacy = 0;
5136
5137 if (!strchr(optarg, '=')) {
5138 legacy = 1;
5139 pstrcpy(buf, sizeof(buf), optarg);
5140 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5141 fprintf(stderr,
5142 "qemu: unknown boot parameter '%s' in '%s'\n",
5143 buf, optarg);
5144 exit(1);
5145 }
5146
5147 if (legacy ||
5148 get_param_value(buf, sizeof(buf), "order", optarg)) {
5149 boot_devices_bitmap = parse_bootdevices(buf);
5150 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5151 }
5152 if (!legacy) {
5153 if (get_param_value(buf, sizeof(buf),
5154 "once", optarg)) {
5155 boot_devices_bitmap |= parse_bootdevices(buf);
5156 standard_boot_devices = qemu_strdup(boot_devices);
5157 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5158 qemu_register_reset(restore_boot_devices,
5159 standard_boot_devices);
5160 }
5161 if (get_param_value(buf, sizeof(buf),
5162 "menu", optarg)) {
5163 if (!strcmp(buf, "on")) {
5164 boot_menu = 1;
5165 } else if (!strcmp(buf, "off")) {
5166 boot_menu = 0;
5167 } else {
5168 fprintf(stderr,
5169 "qemu: invalid option value '%s'\n",
5170 buf);
5171 exit(1);
5172 }
5173 }
5174 }
5175 }
5176 break;
5177 case QEMU_OPTION_fda:
5178 case QEMU_OPTION_fdb:
5179 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5180 break;
5181 #ifdef TARGET_I386
5182 case QEMU_OPTION_no_fd_bootchk:
5183 fd_bootchk = 0;
5184 break;
5185 #endif
5186 case QEMU_OPTION_netdev:
5187 if (net_client_parse(&qemu_netdev_opts, optarg) == -1) {
5188 exit(1);
5189 }
5190 break;
5191 case QEMU_OPTION_net:
5192 if (net_client_parse(&qemu_net_opts, optarg) == -1) {
5193 exit(1);
5194 }
5195 break;
5196 #ifdef CONFIG_SLIRP
5197 case QEMU_OPTION_tftp:
5198 legacy_tftp_prefix = optarg;
5199 break;
5200 case QEMU_OPTION_bootp:
5201 legacy_bootp_filename = optarg;
5202 break;
5203 #ifndef _WIN32
5204 case QEMU_OPTION_smb:
5205 if (net_slirp_smb(optarg) < 0)
5206 exit(1);
5207 break;
5208 #endif
5209 case QEMU_OPTION_redir:
5210 if (net_slirp_redir(optarg) < 0)
5211 exit(1);
5212 break;
5213 #endif
5214 case QEMU_OPTION_bt:
5215 add_device_config(DEV_BT, optarg);
5216 break;
5217 #ifdef HAS_AUDIO
5218 case QEMU_OPTION_audio_help:
5219 AUD_help ();
5220 exit (0);
5221 break;
5222 case QEMU_OPTION_soundhw:
5223 select_soundhw (optarg);
5224 break;
5225 #endif
5226 case QEMU_OPTION_h:
5227 help(0);
5228 break;
5229 case QEMU_OPTION_version:
5230 version();
5231 exit(0);
5232 break;
5233 case QEMU_OPTION_m: {
5234 uint64_t value;
5235 char *ptr;
5236
5237 value = strtoul(optarg, &ptr, 10);
5238 switch (*ptr) {
5239 case 0: case 'M': case 'm':
5240 value <<= 20;
5241 break;
5242 case 'G': case 'g':
5243 value <<= 30;
5244 break;
5245 default:
5246 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5247 exit(1);
5248 }
5249
5250 /* On 32-bit hosts, QEMU is limited by virtual address space */
5251 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5252 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5253 exit(1);
5254 }
5255 if (value != (uint64_t)(ram_addr_t)value) {
5256 fprintf(stderr, "qemu: ram size too large\n");
5257 exit(1);
5258 }
5259 ram_size = value;
5260 break;
5261 }
5262 case QEMU_OPTION_mempath:
5263 mem_path = optarg;
5264 break;
5265 #ifdef MAP_POPULATE
5266 case QEMU_OPTION_mem_prealloc:
5267 mem_prealloc = 1;
5268 break;
5269 #endif
5270 case QEMU_OPTION_d:
5271 {
5272 int mask;
5273 const CPULogItem *item;
5274
5275 mask = cpu_str_to_log_mask(optarg);
5276 if (!mask) {
5277 printf("Log items (comma separated):\n");
5278 for(item = cpu_log_items; item->mask != 0; item++) {
5279 printf("%-10s %s\n", item->name, item->help);
5280 }
5281 exit(1);
5282 }
5283 cpu_set_log(mask);
5284 }
5285 break;
5286 case QEMU_OPTION_s:
5287 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5288 break;
5289 case QEMU_OPTION_gdb:
5290 gdbstub_dev = optarg;
5291 break;
5292 case QEMU_OPTION_L:
5293 data_dir = optarg;
5294 break;
5295 case QEMU_OPTION_bios:
5296 bios_name = optarg;
5297 break;
5298 case QEMU_OPTION_singlestep:
5299 singlestep = 1;
5300 break;
5301 case QEMU_OPTION_S:
5302 autostart = 0;
5303 break;
5304 case QEMU_OPTION_k:
5305 keyboard_layout = optarg;
5306 break;
5307 case QEMU_OPTION_localtime:
5308 rtc_utc = 0;
5309 break;
5310 case QEMU_OPTION_vga:
5311 select_vgahw (optarg);
5312 break;
5313 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5314 case QEMU_OPTION_g:
5315 {
5316 const char *p;
5317 int w, h, depth;
5318 p = optarg;
5319 w = strtol(p, (char **)&p, 10);
5320 if (w <= 0) {
5321 graphic_error:
5322 fprintf(stderr, "qemu: invalid resolution or depth\n");
5323 exit(1);
5324 }
5325 if (*p != 'x')
5326 goto graphic_error;
5327 p++;
5328 h = strtol(p, (char **)&p, 10);
5329 if (h <= 0)
5330 goto graphic_error;
5331 if (*p == 'x') {
5332 p++;
5333 depth = strtol(p, (char **)&p, 10);
5334 if (depth != 8 && depth != 15 && depth != 16 &&
5335 depth != 24 && depth != 32)
5336 goto graphic_error;
5337 } else if (*p == '\0') {
5338 depth = graphic_depth;
5339 } else {
5340 goto graphic_error;
5341 }
5342
5343 graphic_width = w;
5344 graphic_height = h;
5345 graphic_depth = depth;
5346 }
5347 break;
5348 #endif
5349 case QEMU_OPTION_echr:
5350 {
5351 char *r;
5352 term_escape_char = strtol(optarg, &r, 0);
5353 if (r == optarg)
5354 printf("Bad argument to echr\n");
5355 break;
5356 }
5357 case QEMU_OPTION_monitor:
5358 monitor_parse(optarg, "readline");
5359 default_monitor = 0;
5360 break;
5361 case QEMU_OPTION_qmp:
5362 monitor_parse(optarg, "control");
5363 default_monitor = 0;
5364 break;
5365 case QEMU_OPTION_mon:
5366 opts = qemu_opts_parse(&qemu_mon_opts, optarg, 1);
5367 if (!opts) {
5368 fprintf(stderr, "parse error: %s\n", optarg);
5369 exit(1);
5370 }
5371 default_monitor = 0;
5372 break;
5373 case QEMU_OPTION_chardev:
5374 opts = qemu_opts_parse(&qemu_chardev_opts, optarg, 1);
5375 if (!opts) {
5376 fprintf(stderr, "parse error: %s\n", optarg);
5377 exit(1);
5378 }
5379 break;
5380 case QEMU_OPTION_serial:
5381 add_device_config(DEV_SERIAL, optarg);
5382 default_serial = 0;
5383 if (strncmp(optarg, "mon:", 4) == 0) {
5384 default_monitor = 0;
5385 }
5386 break;
5387 case QEMU_OPTION_watchdog:
5388 if (watchdog) {
5389 fprintf(stderr,
5390 "qemu: only one watchdog option may be given\n");
5391 return 1;
5392 }
5393 watchdog = optarg;
5394 break;
5395 case QEMU_OPTION_watchdog_action:
5396 if (select_watchdog_action(optarg) == -1) {
5397 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5398 exit(1);
5399 }
5400 break;
5401 case QEMU_OPTION_virtiocon:
5402 add_device_config(DEV_VIRTCON, optarg);
5403 default_virtcon = 0;
5404 if (strncmp(optarg, "mon:", 4) == 0) {
5405 default_monitor = 0;
5406 }
5407 break;
5408 case QEMU_OPTION_parallel:
5409 add_device_config(DEV_PARALLEL, optarg);
5410 default_parallel = 0;
5411 if (strncmp(optarg, "mon:", 4) == 0) {
5412 default_monitor = 0;
5413 }
5414 break;
5415 case QEMU_OPTION_debugcon:
5416 add_device_config(DEV_DEBUGCON, optarg);
5417 break;
5418 case QEMU_OPTION_loadvm:
5419 loadvm = optarg;
5420 break;
5421 case QEMU_OPTION_full_screen:
5422 full_screen = 1;
5423 break;
5424 #ifdef CONFIG_SDL
5425 case QEMU_OPTION_no_frame:
5426 no_frame = 1;
5427 break;
5428 case QEMU_OPTION_alt_grab:
5429 alt_grab = 1;
5430 break;
5431 case QEMU_OPTION_ctrl_grab:
5432 ctrl_grab = 1;
5433 break;
5434 case QEMU_OPTION_no_quit:
5435 no_quit = 1;
5436 break;
5437 case QEMU_OPTION_sdl:
5438 display_type = DT_SDL;
5439 break;
5440 #endif
5441 case QEMU_OPTION_pidfile:
5442 pid_file = optarg;
5443 break;
5444 #ifdef TARGET_I386
5445 case QEMU_OPTION_win2k_hack:
5446 win2k_install_hack = 1;
5447 break;
5448 case QEMU_OPTION_rtc_td_hack:
5449 rtc_td_hack = 1;
5450 break;
5451 case QEMU_OPTION_acpitable:
5452 if(acpi_table_add(optarg) < 0) {
5453 fprintf(stderr, "Wrong acpi table provided\n");
5454 exit(1);
5455 }
5456 break;
5457 case QEMU_OPTION_smbios:
5458 if(smbios_entry_add(optarg) < 0) {
5459 fprintf(stderr, "Wrong smbios provided\n");
5460 exit(1);
5461 }
5462 break;
5463 #endif
5464 #ifdef CONFIG_KVM
5465 case QEMU_OPTION_enable_kvm:
5466 kvm_allowed = 1;
5467 break;
5468 #endif
5469 case QEMU_OPTION_usb:
5470 usb_enabled = 1;
5471 break;
5472 case QEMU_OPTION_usbdevice:
5473 usb_enabled = 1;
5474 add_device_config(DEV_USB, optarg);
5475 break;
5476 case QEMU_OPTION_device:
5477 if (!qemu_opts_parse(&qemu_device_opts, optarg, 1)) {
5478 exit(1);
5479 }
5480 break;
5481 case QEMU_OPTION_smp:
5482 smp_parse(optarg);
5483 if (smp_cpus < 1) {
5484 fprintf(stderr, "Invalid number of CPUs\n");
5485 exit(1);
5486 }
5487 if (max_cpus < smp_cpus) {
5488 fprintf(stderr, "maxcpus must be equal to or greater than "
5489 "smp\n");
5490 exit(1);
5491 }
5492 if (max_cpus > 255) {
5493 fprintf(stderr, "Unsupported number of maxcpus\n");
5494 exit(1);
5495 }
5496 break;
5497 case QEMU_OPTION_vnc:
5498 display_type = DT_VNC;
5499 vnc_display = optarg;
5500 break;
5501 #ifdef TARGET_I386
5502 case QEMU_OPTION_no_acpi:
5503 acpi_enabled = 0;
5504 break;
5505 case QEMU_OPTION_no_hpet:
5506 no_hpet = 1;
5507 break;
5508 case QEMU_OPTION_balloon:
5509 if (balloon_parse(optarg) < 0) {
5510 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5511 exit(1);
5512 }
5513 break;
5514 #endif
5515 case QEMU_OPTION_no_reboot:
5516 no_reboot = 1;
5517 break;
5518 case QEMU_OPTION_no_shutdown:
5519 no_shutdown = 1;
5520 break;
5521 case QEMU_OPTION_show_cursor:
5522 cursor_hide = 0;
5523 break;
5524 case QEMU_OPTION_uuid:
5525 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5526 fprintf(stderr, "Fail to parse UUID string."
5527 " Wrong format.\n");
5528 exit(1);
5529 }
5530 break;
5531 #ifndef _WIN32
5532 case QEMU_OPTION_daemonize:
5533 daemonize = 1;
5534 break;
5535 #endif
5536 case QEMU_OPTION_option_rom:
5537 if (nb_option_roms >= MAX_OPTION_ROMS) {
5538 fprintf(stderr, "Too many option ROMs\n");
5539 exit(1);
5540 }
5541 option_rom[nb_option_roms] = optarg;
5542 nb_option_roms++;
5543 break;
5544 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5545 case QEMU_OPTION_semihosting:
5546 semihosting_enabled = 1;
5547 break;
5548 #endif
5549 case QEMU_OPTION_name:
5550 qemu_name = qemu_strdup(optarg);
5551 {
5552 char *p = strchr(qemu_name, ',');
5553 if (p != NULL) {
5554 *p++ = 0;
5555 if (strncmp(p, "process=", 8)) {
5556 fprintf(stderr, "Unknown subargument %s to -name", p);
5557 exit(1);
5558 }
5559 p += 8;
5560 set_proc_name(p);
5561 }
5562 }
5563 break;
5564 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5565 case QEMU_OPTION_prom_env:
5566 if (nb_prom_envs >= MAX_PROM_ENVS) {
5567 fprintf(stderr, "Too many prom variables\n");
5568 exit(1);
5569 }
5570 prom_envs[nb_prom_envs] = optarg;
5571 nb_prom_envs++;
5572 break;
5573 #endif
5574 #ifdef TARGET_ARM
5575 case QEMU_OPTION_old_param:
5576 old_param = 1;
5577 break;
5578 #endif
5579 case QEMU_OPTION_clock:
5580 configure_alarms(optarg);
5581 break;
5582 case QEMU_OPTION_startdate:
5583 configure_rtc_date_offset(optarg, 1);
5584 break;
5585 case QEMU_OPTION_rtc:
5586 opts = qemu_opts_parse(&qemu_rtc_opts, optarg, 0);
5587 if (!opts) {
5588 fprintf(stderr, "parse error: %s\n", optarg);
5589 exit(1);
5590 }
5591 configure_rtc(opts);
5592 break;
5593 case QEMU_OPTION_tb_size:
5594 tb_size = strtol(optarg, NULL, 0);
5595 if (tb_size < 0)
5596 tb_size = 0;
5597 break;
5598 case QEMU_OPTION_icount:
5599 use_icount = 1;
5600 if (strcmp(optarg, "auto") == 0) {
5601 icount_time_shift = -1;
5602 } else {
5603 icount_time_shift = strtol(optarg, NULL, 0);
5604 }
5605 break;
5606 case QEMU_OPTION_incoming:
5607 incoming = optarg;
5608 break;
5609 case QEMU_OPTION_nodefaults:
5610 default_serial = 0;
5611 default_parallel = 0;
5612 default_virtcon = 0;
5613 default_monitor = 0;
5614 default_vga = 0;
5615 default_net = 0;
5616 default_floppy = 0;
5617 default_cdrom = 0;
5618 default_sdcard = 0;
5619 break;
5620 #ifndef _WIN32
5621 case QEMU_OPTION_chroot:
5622 chroot_dir = optarg;
5623 break;
5624 case QEMU_OPTION_runas:
5625 run_as = optarg;
5626 break;
5627 #endif
5628 #ifdef CONFIG_XEN
5629 case QEMU_OPTION_xen_domid:
5630 xen_domid = atoi(optarg);
5631 break;
5632 case QEMU_OPTION_xen_create:
5633 xen_mode = XEN_CREATE;
5634 break;
5635 case QEMU_OPTION_xen_attach:
5636 xen_mode = XEN_ATTACH;
5637 break;
5638 #endif
5639 case QEMU_OPTION_readconfig:
5640 {
5641 FILE *fp;
5642 fp = fopen(optarg, "r");
5643 if (fp == NULL) {
5644 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5645 exit(1);
5646 }
5647 if (qemu_config_parse(fp, optarg) != 0) {
5648 exit(1);
5649 }
5650 fclose(fp);
5651 break;
5652 }
5653 case QEMU_OPTION_writeconfig:
5654 {
5655 FILE *fp;
5656 if (strcmp(optarg, "-") == 0) {
5657 fp = stdout;
5658 } else {
5659 fp = fopen(optarg, "w");
5660 if (fp == NULL) {
5661 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5662 exit(1);
5663 }
5664 }
5665 qemu_config_write(fp);
5666 fclose(fp);
5667 break;
5668 }
5669 }
5670 }
5671 }
5672 loc_set_none();
5673
5674 /* If no data_dir is specified then try to find it relative to the
5675 executable path. */
5676 if (!data_dir) {
5677 data_dir = find_datadir(argv[0]);
5678 }
5679 /* If all else fails use the install patch specified when building. */
5680 if (!data_dir) {
5681 data_dir = CONFIG_QEMU_SHAREDIR;
5682 }
5683
5684 /*
5685 * Default to max_cpus = smp_cpus, in case the user doesn't
5686 * specify a max_cpus value.
5687 */
5688 if (!max_cpus)
5689 max_cpus = smp_cpus;
5690
5691 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5692 if (smp_cpus > machine->max_cpus) {
5693 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5694 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5695 machine->max_cpus);
5696 exit(1);
5697 }
5698
5699 qemu_opts_foreach(&qemu_device_opts, default_driver_check, NULL, 0);
5700 qemu_opts_foreach(&qemu_global_opts, default_driver_check, NULL, 0);
5701
5702 if (machine->no_serial) {
5703 default_serial = 0;
5704 }
5705 if (machine->no_parallel) {
5706 default_parallel = 0;
5707 }
5708 if (!machine->use_virtcon) {
5709 default_virtcon = 0;
5710 }
5711 if (machine->no_vga) {
5712 default_vga = 0;
5713 }
5714 if (machine->no_floppy) {
5715 default_floppy = 0;
5716 }
5717 if (machine->no_cdrom) {
5718 default_cdrom = 0;
5719 }
5720 if (machine->no_sdcard) {
5721 default_sdcard = 0;
5722 }
5723
5724 if (display_type == DT_NOGRAPHIC) {
5725 if (default_parallel)
5726 add_device_config(DEV_PARALLEL, "null");
5727 if (default_serial && default_monitor) {
5728 add_device_config(DEV_SERIAL, "mon:stdio");
5729 } else if (default_virtcon && default_monitor) {
5730 add_device_config(DEV_VIRTCON, "mon:stdio");
5731 } else {
5732 if (default_serial)
5733 add_device_config(DEV_SERIAL, "stdio");
5734 if (default_virtcon)
5735 add_device_config(DEV_VIRTCON, "stdio");
5736 if (default_monitor)
5737 monitor_parse("stdio", "readline");
5738 }
5739 } else {
5740 if (default_serial)
5741 add_device_config(DEV_SERIAL, "vc:80Cx24C");
5742 if (default_parallel)
5743 add_device_config(DEV_PARALLEL, "vc:80Cx24C");
5744 if (default_monitor)
5745 monitor_parse("vc:80Cx24C", "readline");
5746 if (default_virtcon)
5747 add_device_config(DEV_VIRTCON, "vc:80Cx24C");
5748 }
5749 if (default_vga)
5750 vga_interface_type = VGA_CIRRUS;
5751
5752 if (qemu_opts_foreach(&qemu_chardev_opts, chardev_init_func, NULL, 1) != 0)
5753 exit(1);
5754
5755 #ifndef _WIN32
5756 if (daemonize) {
5757 pid_t pid;
5758
5759 if (pipe(fds) == -1)
5760 exit(1);
5761
5762 pid = fork();
5763 if (pid > 0) {
5764 uint8_t status;
5765 ssize_t len;
5766
5767 close(fds[1]);
5768
5769 again:
5770 len = read(fds[0], &status, 1);
5771 if (len == -1 && (errno == EINTR))
5772 goto again;
5773
5774 if (len != 1)
5775 exit(1);
5776 else if (status == 1) {
5777 fprintf(stderr, "Could not acquire pidfile: %s\n", strerror(errno));
5778 exit(1);
5779 } else
5780 exit(0);
5781 } else if (pid < 0)
5782 exit(1);
5783
5784 close(fds[0]);
5785 qemu_set_cloexec(fds[1]);
5786
5787 setsid();
5788
5789 pid = fork();
5790 if (pid > 0)
5791 exit(0);
5792 else if (pid < 0)
5793 exit(1);
5794
5795 umask(027);
5796
5797 signal(SIGTSTP, SIG_IGN);
5798 signal(SIGTTOU, SIG_IGN);
5799 signal(SIGTTIN, SIG_IGN);
5800 }
5801 #endif
5802
5803 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5804 #ifndef _WIN32
5805 if (daemonize) {
5806 uint8_t status = 1;
5807 if (write(fds[1], &status, 1) != 1) {
5808 perror("daemonize. Writing to pipe\n");
5809 }
5810 } else
5811 #endif
5812 fprintf(stderr, "Could not acquire pid file: %s\n", strerror(errno));
5813 exit(1);
5814 }
5815
5816 if (kvm_enabled()) {
5817 int ret;
5818
5819 ret = kvm_init(smp_cpus);
5820 if (ret < 0) {
5821 fprintf(stderr, "failed to initialize KVM\n");
5822 exit(1);
5823 }
5824 }
5825
5826 if (qemu_init_main_loop()) {
5827 fprintf(stderr, "qemu_init_main_loop failed\n");
5828 exit(1);
5829 }
5830 linux_boot = (kernel_filename != NULL);
5831
5832 if (!linux_boot && *kernel_cmdline != '\0') {
5833 fprintf(stderr, "-append only allowed with -kernel option\n");
5834 exit(1);
5835 }
5836
5837 if (!linux_boot && initrd_filename != NULL) {
5838 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5839 exit(1);
5840 }
5841
5842 #ifndef _WIN32
5843 /* Win32 doesn't support line-buffering and requires size >= 2 */
5844 setvbuf(stdout, NULL, _IOLBF, 0);
5845 #endif
5846
5847 if (init_timer_alarm() < 0) {
5848 fprintf(stderr, "could not initialize alarm timer\n");
5849 exit(1);
5850 }
5851 if (use_icount && icount_time_shift < 0) {
5852 use_icount = 2;
5853 /* 125MIPS seems a reasonable initial guess at the guest speed.
5854 It will be corrected fairly quickly anyway. */
5855 icount_time_shift = 3;
5856 init_icount_adjust();
5857 }
5858
5859 #ifdef _WIN32
5860 socket_init();
5861 #endif
5862
5863 if (net_init_clients() < 0) {
5864 exit(1);
5865 }
5866
5867 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5868 net_set_boot_mask(net_boot);
5869
5870 /* init the bluetooth world */
5871 if (foreach_device_config(DEV_BT, bt_parse))
5872 exit(1);
5873
5874 /* init the memory */
5875 if (ram_size == 0)
5876 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5877
5878 /* init the dynamic translator */
5879 cpu_exec_init_all(tb_size * 1024 * 1024);
5880
5881 bdrv_init_with_whitelist();
5882
5883 blk_mig_init();
5884
5885 if (default_cdrom) {
5886 /* we always create the cdrom drive, even if no disk is there */
5887 drive_add(NULL, CDROM_ALIAS);
5888 }
5889
5890 if (default_floppy) {
5891 /* we always create at least one floppy */
5892 drive_add(NULL, FD_ALIAS, 0);
5893 }
5894
5895 if (default_sdcard) {
5896 /* we always create one sd slot, even if no card is in it */
5897 drive_add(NULL, SD_ALIAS);
5898 }
5899
5900 /* open the virtual block devices */
5901 if (snapshot)
5902 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5903 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5904 exit(1);
5905
5906 vmstate_register(0, &vmstate_timers ,&timers_state);
5907 register_savevm_live("ram", 0, 3, NULL, ram_save_live, NULL,
5908 ram_load, NULL);
5909
5910 if (nb_numa_nodes > 0) {
5911 int i;
5912
5913 if (nb_numa_nodes > smp_cpus) {
5914 nb_numa_nodes = smp_cpus;
5915 }
5916
5917 /* If no memory size if given for any node, assume the default case
5918 * and distribute the available memory equally across all nodes
5919 */
5920 for (i = 0; i < nb_numa_nodes; i++) {
5921 if (node_mem[i] != 0)
5922 break;
5923 }
5924 if (i == nb_numa_nodes) {
5925 uint64_t usedmem = 0;
5926
5927 /* On Linux, the each node's border has to be 8MB aligned,
5928 * the final node gets the rest.
5929 */
5930 for (i = 0; i < nb_numa_nodes - 1; i++) {
5931 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5932 usedmem += node_mem[i];
5933 }
5934 node_mem[i] = ram_size - usedmem;
5935 }
5936
5937 for (i = 0; i < nb_numa_nodes; i++) {
5938 if (node_cpumask[i] != 0)
5939 break;
5940 }
5941 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5942 * must cope with this anyway, because there are BIOSes out there in
5943 * real machines which also use this scheme.
5944 */
5945 if (i == nb_numa_nodes) {
5946 for (i = 0; i < smp_cpus; i++) {
5947 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5948 }
5949 }
5950 }
5951
5952 if (foreach_device_config(DEV_SERIAL, serial_parse) < 0)
5953 exit(1);
5954 if (foreach_device_config(DEV_PARALLEL, parallel_parse) < 0)
5955 exit(1);
5956 if (foreach_device_config(DEV_VIRTCON, virtcon_parse) < 0)
5957 exit(1);
5958 if (foreach_device_config(DEV_DEBUGCON, debugcon_parse) < 0)
5959 exit(1);
5960
5961 module_call_init(MODULE_INIT_DEVICE);
5962
5963 if (qemu_opts_foreach(&qemu_device_opts, device_help_func, NULL, 0) != 0)
5964 exit(0);
5965
5966 if (watchdog) {
5967 i = select_watchdog(watchdog);
5968 if (i > 0)
5969 exit (i == 1 ? 1 : 0);
5970 }
5971
5972 if (machine->compat_props) {
5973 qdev_prop_register_global_list(machine->compat_props);
5974 }
5975 qemu_add_globals();
5976
5977 machine->init(ram_size, boot_devices,
5978 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5979
5980 cpu_synchronize_all_post_init();
5981
5982 #ifndef _WIN32
5983 /* must be after terminal init, SDL library changes signal handlers */
5984 sighandler_setup();
5985 #endif
5986
5987 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5988 for (i = 0; i < nb_numa_nodes; i++) {
5989 if (node_cpumask[i] & (1 << env->cpu_index)) {
5990 env->numa_node = i;
5991 }
5992 }
5993 }
5994
5995 current_machine = machine;
5996
5997 /* init USB devices */
5998 if (usb_enabled) {
5999 if (foreach_device_config(DEV_USB, usb_parse) < 0)
6000 exit(1);
6001 }
6002
6003 /* init generic devices */
6004 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
6005 exit(1);
6006
6007 net_check_clients();
6008
6009 /* just use the first displaystate for the moment */
6010 ds = get_displaystate();
6011
6012 if (display_type == DT_DEFAULT) {
6013 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
6014 display_type = DT_SDL;
6015 #else
6016 display_type = DT_VNC;
6017 vnc_display = "localhost:0,to=99";
6018 show_vnc_port = 1;
6019 #endif
6020 }
6021
6022
6023 switch (display_type) {
6024 case DT_NOGRAPHIC:
6025 break;
6026 #if defined(CONFIG_CURSES)
6027 case DT_CURSES:
6028 curses_display_init(ds, full_screen);
6029 break;
6030 #endif
6031 #if defined(CONFIG_SDL)
6032 case DT_SDL:
6033 sdl_display_init(ds, full_screen, no_frame);
6034 break;
6035 #elif defined(CONFIG_COCOA)
6036 case DT_SDL:
6037 cocoa_display_init(ds, full_screen);
6038 break;
6039 #endif
6040 case DT_VNC:
6041 vnc_display_init(ds);
6042 if (vnc_display_open(ds, vnc_display) < 0)
6043 exit(1);
6044
6045 if (show_vnc_port) {
6046 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6047 }
6048 break;
6049 default:
6050 break;
6051 }
6052 dpy_resize(ds);
6053
6054 dcl = ds->listeners;
6055 while (dcl != NULL) {
6056 if (dcl->dpy_refresh != NULL) {
6057 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6058 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6059 }
6060 dcl = dcl->next;
6061 }
6062
6063 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6064 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6065 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6066 }
6067
6068 text_consoles_set_display(ds);
6069
6070 if (qemu_opts_foreach(&qemu_mon_opts, mon_init_func, NULL, 1) != 0)
6071 exit(1);
6072
6073 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6074 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6075 gdbstub_dev);
6076 exit(1);
6077 }
6078
6079 qdev_machine_creation_done();
6080
6081 if (rom_load_all() != 0) {
6082 fprintf(stderr, "rom loading failed\n");
6083 exit(1);
6084 }
6085
6086 qemu_system_reset();
6087 if (loadvm) {
6088 if (load_vmstate(loadvm) < 0) {
6089 autostart = 0;
6090 }
6091 }
6092
6093 if (incoming) {
6094 qemu_start_incoming_migration(incoming);
6095 } else if (autostart) {
6096 vm_start();
6097 }
6098
6099 #ifndef _WIN32
6100 if (daemonize) {
6101 uint8_t status = 0;
6102 ssize_t len;
6103
6104 again1:
6105 len = write(fds[1], &status, 1);
6106 if (len == -1 && (errno == EINTR))
6107 goto again1;
6108
6109 if (len != 1)
6110 exit(1);
6111
6112 if (chdir("/")) {
6113 perror("not able to chdir to /");
6114 exit(1);
6115 }
6116 TFR(fd = qemu_open("/dev/null", O_RDWR));
6117 if (fd == -1)
6118 exit(1);
6119 }
6120
6121 if (run_as) {
6122 pwd = getpwnam(run_as);
6123 if (!pwd) {
6124 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6125 exit(1);
6126 }
6127 }
6128
6129 if (chroot_dir) {
6130 if (chroot(chroot_dir) < 0) {
6131 fprintf(stderr, "chroot failed\n");
6132 exit(1);
6133 }
6134 if (chdir("/")) {
6135 perror("not able to chdir to /");
6136 exit(1);
6137 }
6138 }
6139
6140 if (run_as) {
6141 if (setgid(pwd->pw_gid) < 0) {
6142 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6143 exit(1);
6144 }
6145 if (setuid(pwd->pw_uid) < 0) {
6146 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6147 exit(1);
6148 }
6149 if (setuid(0) != -1) {
6150 fprintf(stderr, "Dropping privileges failed\n");
6151 exit(1);
6152 }
6153 }
6154
6155 if (daemonize) {
6156 dup2(fd, 0);
6157 dup2(fd, 1);
6158 dup2(fd, 2);
6159
6160 close(fd);
6161 }
6162 #endif
6163
6164 main_loop();
6165 quit_timers();
6166 net_cleanup();
6167
6168 return 0;
6169 }