]> git.proxmox.com Git - qemu.git/blob - vl.c
Fix Windows build failure, by Stefan Weil.
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2007 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "vl.h"
25
26 #include <unistd.h>
27 #include <fcntl.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <errno.h>
31 #include <sys/time.h>
32 #include <zlib.h>
33
34 #ifndef _WIN32
35 #include <sys/times.h>
36 #include <sys/wait.h>
37 #include <termios.h>
38 #include <sys/poll.h>
39 #include <sys/mman.h>
40 #include <sys/ioctl.h>
41 #include <sys/socket.h>
42 #include <netinet/in.h>
43 #include <dirent.h>
44 #include <netdb.h>
45 #include <sys/select.h>
46 #include <arpa/inet.h>
47 #ifdef _BSD
48 #include <sys/stat.h>
49 #ifndef __APPLE__
50 #include <libutil.h>
51 #endif
52 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
53 #include <freebsd/stdlib.h>
54 #else
55 #ifndef __sun__
56 #include <linux/if.h>
57 #include <linux/if_tun.h>
58 #include <pty.h>
59 #include <malloc.h>
60 #include <linux/rtc.h>
61
62 /* For the benefit of older linux systems which don't supply it,
63 we use a local copy of hpet.h. */
64 /* #include <linux/hpet.h> */
65 #include "hpet.h"
66
67 #include <linux/ppdev.h>
68 #include <linux/parport.h>
69 #else
70 #include <sys/stat.h>
71 #include <sys/ethernet.h>
72 #include <sys/sockio.h>
73 #include <netinet/arp.h>
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/ip.h>
77 #include <netinet/ip_icmp.h> // must come after ip.h
78 #include <netinet/udp.h>
79 #include <netinet/tcp.h>
80 #include <net/if.h>
81 #include <syslog.h>
82 #include <stropts.h>
83 #endif
84 #endif
85 #else
86 #include <winsock2.h>
87 int inet_aton(const char *cp, struct in_addr *ia);
88 #endif
89
90 #if defined(CONFIG_SLIRP)
91 #include "libslirp.h"
92 #endif
93
94 #ifdef _WIN32
95 #include <malloc.h>
96 #include <sys/timeb.h>
97 #include <windows.h>
98 #define getopt_long_only getopt_long
99 #define memalign(align, size) malloc(size)
100 #endif
101
102 #include "qemu_socket.h"
103
104 #ifdef CONFIG_SDL
105 #ifdef __APPLE__
106 #include <SDL/SDL.h>
107 #endif
108 #endif /* CONFIG_SDL */
109
110 #ifdef CONFIG_COCOA
111 #undef main
112 #define main qemu_main
113 #endif /* CONFIG_COCOA */
114
115 #include "disas.h"
116
117 #include "exec-all.h"
118
119 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
120 #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
121 #ifdef __sun__
122 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
123 #else
124 #define SMBD_COMMAND "/usr/sbin/smbd"
125 #endif
126
127 //#define DEBUG_UNUSED_IOPORT
128 //#define DEBUG_IOPORT
129
130 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
131
132 #ifdef TARGET_PPC
133 #define DEFAULT_RAM_SIZE 144
134 #else
135 #define DEFAULT_RAM_SIZE 128
136 #endif
137 /* in ms */
138 #define GUI_REFRESH_INTERVAL 30
139
140 /* Max number of USB devices that can be specified on the commandline. */
141 #define MAX_USB_CMDLINE 8
142
143 /* XXX: use a two level table to limit memory usage */
144 #define MAX_IOPORTS 65536
145
146 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
147 const char *bios_name = NULL;
148 char phys_ram_file[1024];
149 void *ioport_opaque[MAX_IOPORTS];
150 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
151 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
152 /* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
153 to store the VM snapshots */
154 BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
155 BlockDriverState *pflash_table[MAX_PFLASH];
156 BlockDriverState *sd_bdrv;
157 BlockDriverState *mtd_bdrv;
158 /* point to the block driver where the snapshots are managed */
159 BlockDriverState *bs_snapshots;
160 int vga_ram_size;
161 static DisplayState display_state;
162 int nographic;
163 const char* keyboard_layout = NULL;
164 int64_t ticks_per_sec;
165 int boot_device = 'c';
166 int ram_size;
167 int pit_min_timer_count = 0;
168 int nb_nics;
169 NICInfo nd_table[MAX_NICS];
170 int vm_running;
171 int rtc_utc = 1;
172 int cirrus_vga_enabled = 1;
173 int vmsvga_enabled = 0;
174 #ifdef TARGET_SPARC
175 int graphic_width = 1024;
176 int graphic_height = 768;
177 int graphic_depth = 8;
178 #else
179 int graphic_width = 800;
180 int graphic_height = 600;
181 int graphic_depth = 15;
182 #endif
183 int full_screen = 0;
184 int no_frame = 0;
185 int no_quit = 0;
186 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
187 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
188 #ifdef TARGET_I386
189 int win2k_install_hack = 0;
190 #endif
191 int usb_enabled = 0;
192 static VLANState *first_vlan;
193 int smp_cpus = 1;
194 const char *vnc_display;
195 #if defined(TARGET_SPARC)
196 #define MAX_CPUS 16
197 #elif defined(TARGET_I386)
198 #define MAX_CPUS 255
199 #else
200 #define MAX_CPUS 1
201 #endif
202 int acpi_enabled = 1;
203 int fd_bootchk = 1;
204 int no_reboot = 0;
205 int cursor_hide = 1;
206 int graphic_rotate = 0;
207 int daemonize = 0;
208 const char *option_rom[MAX_OPTION_ROMS];
209 int nb_option_roms;
210 int semihosting_enabled = 0;
211 int autostart = 1;
212 #ifdef TARGET_ARM
213 int old_param = 0;
214 #endif
215 const char *qemu_name;
216 int alt_grab = 0;
217 #ifdef TARGET_SPARC
218 unsigned int nb_prom_envs = 0;
219 const char *prom_envs[MAX_PROM_ENVS];
220 #endif
221
222 #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
223
224 /***********************************************************/
225 /* x86 ISA bus support */
226
227 target_phys_addr_t isa_mem_base = 0;
228 PicState2 *isa_pic;
229
230 uint32_t default_ioport_readb(void *opaque, uint32_t address)
231 {
232 #ifdef DEBUG_UNUSED_IOPORT
233 fprintf(stderr, "unused inb: port=0x%04x\n", address);
234 #endif
235 return 0xff;
236 }
237
238 void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
239 {
240 #ifdef DEBUG_UNUSED_IOPORT
241 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
242 #endif
243 }
244
245 /* default is to make two byte accesses */
246 uint32_t default_ioport_readw(void *opaque, uint32_t address)
247 {
248 uint32_t data;
249 data = ioport_read_table[0][address](ioport_opaque[address], address);
250 address = (address + 1) & (MAX_IOPORTS - 1);
251 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
252 return data;
253 }
254
255 void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
256 {
257 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
258 address = (address + 1) & (MAX_IOPORTS - 1);
259 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
260 }
261
262 uint32_t default_ioport_readl(void *opaque, uint32_t address)
263 {
264 #ifdef DEBUG_UNUSED_IOPORT
265 fprintf(stderr, "unused inl: port=0x%04x\n", address);
266 #endif
267 return 0xffffffff;
268 }
269
270 void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
271 {
272 #ifdef DEBUG_UNUSED_IOPORT
273 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
274 #endif
275 }
276
277 void init_ioports(void)
278 {
279 int i;
280
281 for(i = 0; i < MAX_IOPORTS; i++) {
282 ioport_read_table[0][i] = default_ioport_readb;
283 ioport_write_table[0][i] = default_ioport_writeb;
284 ioport_read_table[1][i] = default_ioport_readw;
285 ioport_write_table[1][i] = default_ioport_writew;
286 ioport_read_table[2][i] = default_ioport_readl;
287 ioport_write_table[2][i] = default_ioport_writel;
288 }
289 }
290
291 /* size is the word size in byte */
292 int register_ioport_read(int start, int length, int size,
293 IOPortReadFunc *func, void *opaque)
294 {
295 int i, bsize;
296
297 if (size == 1) {
298 bsize = 0;
299 } else if (size == 2) {
300 bsize = 1;
301 } else if (size == 4) {
302 bsize = 2;
303 } else {
304 hw_error("register_ioport_read: invalid size");
305 return -1;
306 }
307 for(i = start; i < start + length; i += size) {
308 ioport_read_table[bsize][i] = func;
309 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
310 hw_error("register_ioport_read: invalid opaque");
311 ioport_opaque[i] = opaque;
312 }
313 return 0;
314 }
315
316 /* size is the word size in byte */
317 int register_ioport_write(int start, int length, int size,
318 IOPortWriteFunc *func, void *opaque)
319 {
320 int i, bsize;
321
322 if (size == 1) {
323 bsize = 0;
324 } else if (size == 2) {
325 bsize = 1;
326 } else if (size == 4) {
327 bsize = 2;
328 } else {
329 hw_error("register_ioport_write: invalid size");
330 return -1;
331 }
332 for(i = start; i < start + length; i += size) {
333 ioport_write_table[bsize][i] = func;
334 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
335 hw_error("register_ioport_write: invalid opaque");
336 ioport_opaque[i] = opaque;
337 }
338 return 0;
339 }
340
341 void isa_unassign_ioport(int start, int length)
342 {
343 int i;
344
345 for(i = start; i < start + length; i++) {
346 ioport_read_table[0][i] = default_ioport_readb;
347 ioport_read_table[1][i] = default_ioport_readw;
348 ioport_read_table[2][i] = default_ioport_readl;
349
350 ioport_write_table[0][i] = default_ioport_writeb;
351 ioport_write_table[1][i] = default_ioport_writew;
352 ioport_write_table[2][i] = default_ioport_writel;
353 }
354 }
355
356 /***********************************************************/
357
358 void cpu_outb(CPUState *env, int addr, int val)
359 {
360 #ifdef DEBUG_IOPORT
361 if (loglevel & CPU_LOG_IOPORT)
362 fprintf(logfile, "outb: %04x %02x\n", addr, val);
363 #endif
364 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
365 #ifdef USE_KQEMU
366 if (env)
367 env->last_io_time = cpu_get_time_fast();
368 #endif
369 }
370
371 void cpu_outw(CPUState *env, int addr, int val)
372 {
373 #ifdef DEBUG_IOPORT
374 if (loglevel & CPU_LOG_IOPORT)
375 fprintf(logfile, "outw: %04x %04x\n", addr, val);
376 #endif
377 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
378 #ifdef USE_KQEMU
379 if (env)
380 env->last_io_time = cpu_get_time_fast();
381 #endif
382 }
383
384 void cpu_outl(CPUState *env, int addr, int val)
385 {
386 #ifdef DEBUG_IOPORT
387 if (loglevel & CPU_LOG_IOPORT)
388 fprintf(logfile, "outl: %04x %08x\n", addr, val);
389 #endif
390 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
391 #ifdef USE_KQEMU
392 if (env)
393 env->last_io_time = cpu_get_time_fast();
394 #endif
395 }
396
397 int cpu_inb(CPUState *env, int addr)
398 {
399 int val;
400 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
401 #ifdef DEBUG_IOPORT
402 if (loglevel & CPU_LOG_IOPORT)
403 fprintf(logfile, "inb : %04x %02x\n", addr, val);
404 #endif
405 #ifdef USE_KQEMU
406 if (env)
407 env->last_io_time = cpu_get_time_fast();
408 #endif
409 return val;
410 }
411
412 int cpu_inw(CPUState *env, int addr)
413 {
414 int val;
415 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
416 #ifdef DEBUG_IOPORT
417 if (loglevel & CPU_LOG_IOPORT)
418 fprintf(logfile, "inw : %04x %04x\n", addr, val);
419 #endif
420 #ifdef USE_KQEMU
421 if (env)
422 env->last_io_time = cpu_get_time_fast();
423 #endif
424 return val;
425 }
426
427 int cpu_inl(CPUState *env, int addr)
428 {
429 int val;
430 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
431 #ifdef DEBUG_IOPORT
432 if (loglevel & CPU_LOG_IOPORT)
433 fprintf(logfile, "inl : %04x %08x\n", addr, val);
434 #endif
435 #ifdef USE_KQEMU
436 if (env)
437 env->last_io_time = cpu_get_time_fast();
438 #endif
439 return val;
440 }
441
442 /***********************************************************/
443 void hw_error(const char *fmt, ...)
444 {
445 va_list ap;
446 CPUState *env;
447
448 va_start(ap, fmt);
449 fprintf(stderr, "qemu: hardware error: ");
450 vfprintf(stderr, fmt, ap);
451 fprintf(stderr, "\n");
452 for(env = first_cpu; env != NULL; env = env->next_cpu) {
453 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
454 #ifdef TARGET_I386
455 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
456 #else
457 cpu_dump_state(env, stderr, fprintf, 0);
458 #endif
459 }
460 va_end(ap);
461 abort();
462 }
463
464 /***********************************************************/
465 /* keyboard/mouse */
466
467 static QEMUPutKBDEvent *qemu_put_kbd_event;
468 static void *qemu_put_kbd_event_opaque;
469 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
470 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
471
472 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
473 {
474 qemu_put_kbd_event_opaque = opaque;
475 qemu_put_kbd_event = func;
476 }
477
478 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
479 void *opaque, int absolute,
480 const char *name)
481 {
482 QEMUPutMouseEntry *s, *cursor;
483
484 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
485 if (!s)
486 return NULL;
487
488 s->qemu_put_mouse_event = func;
489 s->qemu_put_mouse_event_opaque = opaque;
490 s->qemu_put_mouse_event_absolute = absolute;
491 s->qemu_put_mouse_event_name = qemu_strdup(name);
492 s->next = NULL;
493
494 if (!qemu_put_mouse_event_head) {
495 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
496 return s;
497 }
498
499 cursor = qemu_put_mouse_event_head;
500 while (cursor->next != NULL)
501 cursor = cursor->next;
502
503 cursor->next = s;
504 qemu_put_mouse_event_current = s;
505
506 return s;
507 }
508
509 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
510 {
511 QEMUPutMouseEntry *prev = NULL, *cursor;
512
513 if (!qemu_put_mouse_event_head || entry == NULL)
514 return;
515
516 cursor = qemu_put_mouse_event_head;
517 while (cursor != NULL && cursor != entry) {
518 prev = cursor;
519 cursor = cursor->next;
520 }
521
522 if (cursor == NULL) // does not exist or list empty
523 return;
524 else if (prev == NULL) { // entry is head
525 qemu_put_mouse_event_head = cursor->next;
526 if (qemu_put_mouse_event_current == entry)
527 qemu_put_mouse_event_current = cursor->next;
528 qemu_free(entry->qemu_put_mouse_event_name);
529 qemu_free(entry);
530 return;
531 }
532
533 prev->next = entry->next;
534
535 if (qemu_put_mouse_event_current == entry)
536 qemu_put_mouse_event_current = prev;
537
538 qemu_free(entry->qemu_put_mouse_event_name);
539 qemu_free(entry);
540 }
541
542 void kbd_put_keycode(int keycode)
543 {
544 if (qemu_put_kbd_event) {
545 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
546 }
547 }
548
549 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
550 {
551 QEMUPutMouseEvent *mouse_event;
552 void *mouse_event_opaque;
553 int width;
554
555 if (!qemu_put_mouse_event_current) {
556 return;
557 }
558
559 mouse_event =
560 qemu_put_mouse_event_current->qemu_put_mouse_event;
561 mouse_event_opaque =
562 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
563
564 if (mouse_event) {
565 if (graphic_rotate) {
566 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
567 width = 0x7fff;
568 else
569 width = graphic_width;
570 mouse_event(mouse_event_opaque,
571 width - dy, dx, dz, buttons_state);
572 } else
573 mouse_event(mouse_event_opaque,
574 dx, dy, dz, buttons_state);
575 }
576 }
577
578 int kbd_mouse_is_absolute(void)
579 {
580 if (!qemu_put_mouse_event_current)
581 return 0;
582
583 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
584 }
585
586 void do_info_mice(void)
587 {
588 QEMUPutMouseEntry *cursor;
589 int index = 0;
590
591 if (!qemu_put_mouse_event_head) {
592 term_printf("No mouse devices connected\n");
593 return;
594 }
595
596 term_printf("Mouse devices available:\n");
597 cursor = qemu_put_mouse_event_head;
598 while (cursor != NULL) {
599 term_printf("%c Mouse #%d: %s\n",
600 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
601 index, cursor->qemu_put_mouse_event_name);
602 index++;
603 cursor = cursor->next;
604 }
605 }
606
607 void do_mouse_set(int index)
608 {
609 QEMUPutMouseEntry *cursor;
610 int i = 0;
611
612 if (!qemu_put_mouse_event_head) {
613 term_printf("No mouse devices connected\n");
614 return;
615 }
616
617 cursor = qemu_put_mouse_event_head;
618 while (cursor != NULL && index != i) {
619 i++;
620 cursor = cursor->next;
621 }
622
623 if (cursor != NULL)
624 qemu_put_mouse_event_current = cursor;
625 else
626 term_printf("Mouse at given index not found\n");
627 }
628
629 /* compute with 96 bit intermediate result: (a*b)/c */
630 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
631 {
632 union {
633 uint64_t ll;
634 struct {
635 #ifdef WORDS_BIGENDIAN
636 uint32_t high, low;
637 #else
638 uint32_t low, high;
639 #endif
640 } l;
641 } u, res;
642 uint64_t rl, rh;
643
644 u.ll = a;
645 rl = (uint64_t)u.l.low * (uint64_t)b;
646 rh = (uint64_t)u.l.high * (uint64_t)b;
647 rh += (rl >> 32);
648 res.l.high = rh / c;
649 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
650 return res.ll;
651 }
652
653 /***********************************************************/
654 /* real time host monotonic timer */
655
656 #define QEMU_TIMER_BASE 1000000000LL
657
658 #ifdef WIN32
659
660 static int64_t clock_freq;
661
662 static void init_get_clock(void)
663 {
664 LARGE_INTEGER freq;
665 int ret;
666 ret = QueryPerformanceFrequency(&freq);
667 if (ret == 0) {
668 fprintf(stderr, "Could not calibrate ticks\n");
669 exit(1);
670 }
671 clock_freq = freq.QuadPart;
672 }
673
674 static int64_t get_clock(void)
675 {
676 LARGE_INTEGER ti;
677 QueryPerformanceCounter(&ti);
678 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
679 }
680
681 #else
682
683 static int use_rt_clock;
684
685 static void init_get_clock(void)
686 {
687 use_rt_clock = 0;
688 #if defined(__linux__)
689 {
690 struct timespec ts;
691 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
692 use_rt_clock = 1;
693 }
694 }
695 #endif
696 }
697
698 static int64_t get_clock(void)
699 {
700 #if defined(__linux__)
701 if (use_rt_clock) {
702 struct timespec ts;
703 clock_gettime(CLOCK_MONOTONIC, &ts);
704 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
705 } else
706 #endif
707 {
708 /* XXX: using gettimeofday leads to problems if the date
709 changes, so it should be avoided. */
710 struct timeval tv;
711 gettimeofday(&tv, NULL);
712 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
713 }
714 }
715
716 #endif
717
718 /***********************************************************/
719 /* guest cycle counter */
720
721 static int64_t cpu_ticks_prev;
722 static int64_t cpu_ticks_offset;
723 static int64_t cpu_clock_offset;
724 static int cpu_ticks_enabled;
725
726 /* return the host CPU cycle counter and handle stop/restart */
727 int64_t cpu_get_ticks(void)
728 {
729 if (!cpu_ticks_enabled) {
730 return cpu_ticks_offset;
731 } else {
732 int64_t ticks;
733 ticks = cpu_get_real_ticks();
734 if (cpu_ticks_prev > ticks) {
735 /* Note: non increasing ticks may happen if the host uses
736 software suspend */
737 cpu_ticks_offset += cpu_ticks_prev - ticks;
738 }
739 cpu_ticks_prev = ticks;
740 return ticks + cpu_ticks_offset;
741 }
742 }
743
744 /* return the host CPU monotonic timer and handle stop/restart */
745 static int64_t cpu_get_clock(void)
746 {
747 int64_t ti;
748 if (!cpu_ticks_enabled) {
749 return cpu_clock_offset;
750 } else {
751 ti = get_clock();
752 return ti + cpu_clock_offset;
753 }
754 }
755
756 /* enable cpu_get_ticks() */
757 void cpu_enable_ticks(void)
758 {
759 if (!cpu_ticks_enabled) {
760 cpu_ticks_offset -= cpu_get_real_ticks();
761 cpu_clock_offset -= get_clock();
762 cpu_ticks_enabled = 1;
763 }
764 }
765
766 /* disable cpu_get_ticks() : the clock is stopped. You must not call
767 cpu_get_ticks() after that. */
768 void cpu_disable_ticks(void)
769 {
770 if (cpu_ticks_enabled) {
771 cpu_ticks_offset = cpu_get_ticks();
772 cpu_clock_offset = cpu_get_clock();
773 cpu_ticks_enabled = 0;
774 }
775 }
776
777 /***********************************************************/
778 /* timers */
779
780 #define QEMU_TIMER_REALTIME 0
781 #define QEMU_TIMER_VIRTUAL 1
782
783 struct QEMUClock {
784 int type;
785 /* XXX: add frequency */
786 };
787
788 struct QEMUTimer {
789 QEMUClock *clock;
790 int64_t expire_time;
791 QEMUTimerCB *cb;
792 void *opaque;
793 struct QEMUTimer *next;
794 };
795
796 struct qemu_alarm_timer {
797 char const *name;
798 unsigned int flags;
799
800 int (*start)(struct qemu_alarm_timer *t);
801 void (*stop)(struct qemu_alarm_timer *t);
802 void (*rearm)(struct qemu_alarm_timer *t);
803 void *priv;
804 };
805
806 #define ALARM_FLAG_DYNTICKS 0x1
807
808 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
809 {
810 return t->flags & ALARM_FLAG_DYNTICKS;
811 }
812
813 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
814 {
815 if (!alarm_has_dynticks(t))
816 return;
817
818 t->rearm(t);
819 }
820
821 /* TODO: MIN_TIMER_REARM_US should be optimized */
822 #define MIN_TIMER_REARM_US 250
823
824 static struct qemu_alarm_timer *alarm_timer;
825
826 #ifdef _WIN32
827
828 struct qemu_alarm_win32 {
829 MMRESULT timerId;
830 HANDLE host_alarm;
831 unsigned int period;
832 } alarm_win32_data = {0, NULL, -1};
833
834 static int win32_start_timer(struct qemu_alarm_timer *t);
835 static void win32_stop_timer(struct qemu_alarm_timer *t);
836 static void win32_rearm_timer(struct qemu_alarm_timer *t);
837
838 #else
839
840 static int unix_start_timer(struct qemu_alarm_timer *t);
841 static void unix_stop_timer(struct qemu_alarm_timer *t);
842
843 #ifdef __linux__
844
845 static int dynticks_start_timer(struct qemu_alarm_timer *t);
846 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
847 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
848
849 static int hpet_start_timer(struct qemu_alarm_timer *t);
850 static void hpet_stop_timer(struct qemu_alarm_timer *t);
851
852 static int rtc_start_timer(struct qemu_alarm_timer *t);
853 static void rtc_stop_timer(struct qemu_alarm_timer *t);
854
855 #endif /* __linux__ */
856
857 #endif /* _WIN32 */
858
859 static struct qemu_alarm_timer alarm_timers[] = {
860 #ifndef _WIN32
861 #ifdef __linux__
862 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
863 dynticks_stop_timer, dynticks_rearm_timer, NULL},
864 /* HPET - if available - is preferred */
865 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
866 /* ...otherwise try RTC */
867 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
868 #endif
869 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
870 #else
871 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
872 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
873 {"win32", 0, win32_start_timer,
874 win32_stop_timer, NULL, &alarm_win32_data},
875 #endif
876 {NULL, }
877 };
878
879 static void show_available_alarms()
880 {
881 int i;
882
883 printf("Available alarm timers, in order of precedence:\n");
884 for (i = 0; alarm_timers[i].name; i++)
885 printf("%s\n", alarm_timers[i].name);
886 }
887
888 static void configure_alarms(char const *opt)
889 {
890 int i;
891 int cur = 0;
892 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
893 char *arg;
894 char *name;
895
896 if (!strcmp(opt, "help")) {
897 show_available_alarms();
898 exit(0);
899 }
900
901 arg = strdup(opt);
902
903 /* Reorder the array */
904 name = strtok(arg, ",");
905 while (name) {
906 struct qemu_alarm_timer tmp;
907
908 for (i = 0; i < count && alarm_timers[i].name; i++) {
909 if (!strcmp(alarm_timers[i].name, name))
910 break;
911 }
912
913 if (i == count) {
914 fprintf(stderr, "Unknown clock %s\n", name);
915 goto next;
916 }
917
918 if (i < cur)
919 /* Ignore */
920 goto next;
921
922 /* Swap */
923 tmp = alarm_timers[i];
924 alarm_timers[i] = alarm_timers[cur];
925 alarm_timers[cur] = tmp;
926
927 cur++;
928 next:
929 name = strtok(NULL, ",");
930 }
931
932 free(arg);
933
934 if (cur) {
935 /* Disable remaining timers */
936 for (i = cur; i < count; i++)
937 alarm_timers[i].name = NULL;
938 }
939
940 /* debug */
941 show_available_alarms();
942 }
943
944 QEMUClock *rt_clock;
945 QEMUClock *vm_clock;
946
947 static QEMUTimer *active_timers[2];
948
949 QEMUClock *qemu_new_clock(int type)
950 {
951 QEMUClock *clock;
952 clock = qemu_mallocz(sizeof(QEMUClock));
953 if (!clock)
954 return NULL;
955 clock->type = type;
956 return clock;
957 }
958
959 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
960 {
961 QEMUTimer *ts;
962
963 ts = qemu_mallocz(sizeof(QEMUTimer));
964 ts->clock = clock;
965 ts->cb = cb;
966 ts->opaque = opaque;
967 return ts;
968 }
969
970 void qemu_free_timer(QEMUTimer *ts)
971 {
972 qemu_free(ts);
973 }
974
975 /* stop a timer, but do not dealloc it */
976 void qemu_del_timer(QEMUTimer *ts)
977 {
978 QEMUTimer **pt, *t;
979
980 /* NOTE: this code must be signal safe because
981 qemu_timer_expired() can be called from a signal. */
982 pt = &active_timers[ts->clock->type];
983 for(;;) {
984 t = *pt;
985 if (!t)
986 break;
987 if (t == ts) {
988 *pt = t->next;
989 break;
990 }
991 pt = &t->next;
992 }
993 }
994
995 /* modify the current timer so that it will be fired when current_time
996 >= expire_time. The corresponding callback will be called. */
997 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
998 {
999 QEMUTimer **pt, *t;
1000
1001 qemu_del_timer(ts);
1002
1003 /* add the timer in the sorted list */
1004 /* NOTE: this code must be signal safe because
1005 qemu_timer_expired() can be called from a signal. */
1006 pt = &active_timers[ts->clock->type];
1007 for(;;) {
1008 t = *pt;
1009 if (!t)
1010 break;
1011 if (t->expire_time > expire_time)
1012 break;
1013 pt = &t->next;
1014 }
1015 ts->expire_time = expire_time;
1016 ts->next = *pt;
1017 *pt = ts;
1018 }
1019
1020 int qemu_timer_pending(QEMUTimer *ts)
1021 {
1022 QEMUTimer *t;
1023 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1024 if (t == ts)
1025 return 1;
1026 }
1027 return 0;
1028 }
1029
1030 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1031 {
1032 if (!timer_head)
1033 return 0;
1034 return (timer_head->expire_time <= current_time);
1035 }
1036
1037 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1038 {
1039 QEMUTimer *ts;
1040
1041 for(;;) {
1042 ts = *ptimer_head;
1043 if (!ts || ts->expire_time > current_time)
1044 break;
1045 /* remove timer from the list before calling the callback */
1046 *ptimer_head = ts->next;
1047 ts->next = NULL;
1048
1049 /* run the callback (the timer list can be modified) */
1050 ts->cb(ts->opaque);
1051 }
1052 qemu_rearm_alarm_timer(alarm_timer);
1053 }
1054
1055 int64_t qemu_get_clock(QEMUClock *clock)
1056 {
1057 switch(clock->type) {
1058 case QEMU_TIMER_REALTIME:
1059 return get_clock() / 1000000;
1060 default:
1061 case QEMU_TIMER_VIRTUAL:
1062 return cpu_get_clock();
1063 }
1064 }
1065
1066 static void init_timers(void)
1067 {
1068 init_get_clock();
1069 ticks_per_sec = QEMU_TIMER_BASE;
1070 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1071 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1072 }
1073
1074 /* save a timer */
1075 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1076 {
1077 uint64_t expire_time;
1078
1079 if (qemu_timer_pending(ts)) {
1080 expire_time = ts->expire_time;
1081 } else {
1082 expire_time = -1;
1083 }
1084 qemu_put_be64(f, expire_time);
1085 }
1086
1087 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1088 {
1089 uint64_t expire_time;
1090
1091 expire_time = qemu_get_be64(f);
1092 if (expire_time != -1) {
1093 qemu_mod_timer(ts, expire_time);
1094 } else {
1095 qemu_del_timer(ts);
1096 }
1097 }
1098
1099 static void timer_save(QEMUFile *f, void *opaque)
1100 {
1101 if (cpu_ticks_enabled) {
1102 hw_error("cannot save state if virtual timers are running");
1103 }
1104 qemu_put_be64s(f, &cpu_ticks_offset);
1105 qemu_put_be64s(f, &ticks_per_sec);
1106 qemu_put_be64s(f, &cpu_clock_offset);
1107 }
1108
1109 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1110 {
1111 if (version_id != 1 && version_id != 2)
1112 return -EINVAL;
1113 if (cpu_ticks_enabled) {
1114 return -EINVAL;
1115 }
1116 qemu_get_be64s(f, &cpu_ticks_offset);
1117 qemu_get_be64s(f, &ticks_per_sec);
1118 if (version_id == 2) {
1119 qemu_get_be64s(f, &cpu_clock_offset);
1120 }
1121 return 0;
1122 }
1123
1124 #ifdef _WIN32
1125 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1126 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1127 #else
1128 static void host_alarm_handler(int host_signum)
1129 #endif
1130 {
1131 #if 0
1132 #define DISP_FREQ 1000
1133 {
1134 static int64_t delta_min = INT64_MAX;
1135 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1136 static int count;
1137 ti = qemu_get_clock(vm_clock);
1138 if (last_clock != 0) {
1139 delta = ti - last_clock;
1140 if (delta < delta_min)
1141 delta_min = delta;
1142 if (delta > delta_max)
1143 delta_max = delta;
1144 delta_cum += delta;
1145 if (++count == DISP_FREQ) {
1146 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1147 muldiv64(delta_min, 1000000, ticks_per_sec),
1148 muldiv64(delta_max, 1000000, ticks_per_sec),
1149 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1150 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1151 count = 0;
1152 delta_min = INT64_MAX;
1153 delta_max = 0;
1154 delta_cum = 0;
1155 }
1156 }
1157 last_clock = ti;
1158 }
1159 #endif
1160 if (alarm_has_dynticks(alarm_timer) ||
1161 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1162 qemu_get_clock(vm_clock)) ||
1163 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1164 qemu_get_clock(rt_clock))) {
1165 #ifdef _WIN32
1166 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1167 SetEvent(data->host_alarm);
1168 #endif
1169 CPUState *env = cpu_single_env;
1170 if (env) {
1171 /* stop the currently executing cpu because a timer occured */
1172 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1173 #ifdef USE_KQEMU
1174 if (env->kqemu_enabled) {
1175 kqemu_cpu_interrupt(env);
1176 }
1177 #endif
1178 }
1179 }
1180 }
1181
1182 static uint64_t qemu_next_deadline(void)
1183 {
1184 int64_t nearest_delta_us = INT64_MAX;
1185 int64_t vmdelta_us;
1186
1187 if (active_timers[QEMU_TIMER_REALTIME])
1188 nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1189 qemu_get_clock(rt_clock))*1000;
1190
1191 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1192 /* round up */
1193 vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1194 qemu_get_clock(vm_clock)+999)/1000;
1195 if (vmdelta_us < nearest_delta_us)
1196 nearest_delta_us = vmdelta_us;
1197 }
1198
1199 /* Avoid arming the timer to negative, zero, or too low values */
1200 if (nearest_delta_us <= MIN_TIMER_REARM_US)
1201 nearest_delta_us = MIN_TIMER_REARM_US;
1202
1203 return nearest_delta_us;
1204 }
1205
1206 #ifndef _WIN32
1207
1208 #if defined(__linux__)
1209
1210 #define RTC_FREQ 1024
1211
1212 static void enable_sigio_timer(int fd)
1213 {
1214 struct sigaction act;
1215
1216 /* timer signal */
1217 sigfillset(&act.sa_mask);
1218 act.sa_flags = 0;
1219 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
1220 act.sa_flags |= SA_ONSTACK;
1221 #endif
1222 act.sa_handler = host_alarm_handler;
1223
1224 sigaction(SIGIO, &act, NULL);
1225 fcntl(fd, F_SETFL, O_ASYNC);
1226 fcntl(fd, F_SETOWN, getpid());
1227 }
1228
1229 static int hpet_start_timer(struct qemu_alarm_timer *t)
1230 {
1231 struct hpet_info info;
1232 int r, fd;
1233
1234 fd = open("/dev/hpet", O_RDONLY);
1235 if (fd < 0)
1236 return -1;
1237
1238 /* Set frequency */
1239 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1240 if (r < 0) {
1241 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1242 "error, but for better emulation accuracy type:\n"
1243 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1244 goto fail;
1245 }
1246
1247 /* Check capabilities */
1248 r = ioctl(fd, HPET_INFO, &info);
1249 if (r < 0)
1250 goto fail;
1251
1252 /* Enable periodic mode */
1253 r = ioctl(fd, HPET_EPI, 0);
1254 if (info.hi_flags && (r < 0))
1255 goto fail;
1256
1257 /* Enable interrupt */
1258 r = ioctl(fd, HPET_IE_ON, 0);
1259 if (r < 0)
1260 goto fail;
1261
1262 enable_sigio_timer(fd);
1263 t->priv = (void *)(long)fd;
1264
1265 return 0;
1266 fail:
1267 close(fd);
1268 return -1;
1269 }
1270
1271 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1272 {
1273 int fd = (long)t->priv;
1274
1275 close(fd);
1276 }
1277
1278 static int rtc_start_timer(struct qemu_alarm_timer *t)
1279 {
1280 int rtc_fd;
1281
1282 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1283 if (rtc_fd < 0)
1284 return -1;
1285 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1286 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1287 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1288 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1289 goto fail;
1290 }
1291 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1292 fail:
1293 close(rtc_fd);
1294 return -1;
1295 }
1296
1297 enable_sigio_timer(rtc_fd);
1298
1299 t->priv = (void *)(long)rtc_fd;
1300
1301 return 0;
1302 }
1303
1304 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1305 {
1306 int rtc_fd = (long)t->priv;
1307
1308 close(rtc_fd);
1309 }
1310
1311 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1312 {
1313 struct sigevent ev;
1314 timer_t host_timer;
1315 struct sigaction act;
1316
1317 sigfillset(&act.sa_mask);
1318 act.sa_flags = 0;
1319 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1320 act.sa_flags |= SA_ONSTACK;
1321 #endif
1322 act.sa_handler = host_alarm_handler;
1323
1324 sigaction(SIGALRM, &act, NULL);
1325
1326 ev.sigev_value.sival_int = 0;
1327 ev.sigev_notify = SIGEV_SIGNAL;
1328 ev.sigev_signo = SIGALRM;
1329
1330 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1331 perror("timer_create");
1332
1333 /* disable dynticks */
1334 fprintf(stderr, "Dynamic Ticks disabled\n");
1335
1336 return -1;
1337 }
1338
1339 t->priv = (void *)host_timer;
1340
1341 return 0;
1342 }
1343
1344 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1345 {
1346 timer_t host_timer = (timer_t)t->priv;
1347
1348 timer_delete(host_timer);
1349 }
1350
1351 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1352 {
1353 timer_t host_timer = (timer_t)t->priv;
1354 struct itimerspec timeout;
1355 int64_t nearest_delta_us = INT64_MAX;
1356 int64_t current_us;
1357
1358 if (!active_timers[QEMU_TIMER_REALTIME] &&
1359 !active_timers[QEMU_TIMER_VIRTUAL])
1360 return;
1361
1362 nearest_delta_us = qemu_next_deadline();
1363
1364 /* check whether a timer is already running */
1365 if (timer_gettime(host_timer, &timeout)) {
1366 perror("gettime");
1367 fprintf(stderr, "Internal timer error: aborting\n");
1368 exit(1);
1369 }
1370 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1371 if (current_us && current_us <= nearest_delta_us)
1372 return;
1373
1374 timeout.it_interval.tv_sec = 0;
1375 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1376 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1377 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1378 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1379 perror("settime");
1380 fprintf(stderr, "Internal timer error: aborting\n");
1381 exit(1);
1382 }
1383 }
1384
1385 #endif /* defined(__linux__) */
1386
1387 static int unix_start_timer(struct qemu_alarm_timer *t)
1388 {
1389 struct sigaction act;
1390 struct itimerval itv;
1391 int err;
1392
1393 /* timer signal */
1394 sigfillset(&act.sa_mask);
1395 act.sa_flags = 0;
1396 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1397 act.sa_flags |= SA_ONSTACK;
1398 #endif
1399 act.sa_handler = host_alarm_handler;
1400
1401 sigaction(SIGALRM, &act, NULL);
1402
1403 itv.it_interval.tv_sec = 0;
1404 /* for i386 kernel 2.6 to get 1 ms */
1405 itv.it_interval.tv_usec = 999;
1406 itv.it_value.tv_sec = 0;
1407 itv.it_value.tv_usec = 10 * 1000;
1408
1409 err = setitimer(ITIMER_REAL, &itv, NULL);
1410 if (err)
1411 return -1;
1412
1413 return 0;
1414 }
1415
1416 static void unix_stop_timer(struct qemu_alarm_timer *t)
1417 {
1418 struct itimerval itv;
1419
1420 memset(&itv, 0, sizeof(itv));
1421 setitimer(ITIMER_REAL, &itv, NULL);
1422 }
1423
1424 #endif /* !defined(_WIN32) */
1425
1426 #ifdef _WIN32
1427
1428 static int win32_start_timer(struct qemu_alarm_timer *t)
1429 {
1430 TIMECAPS tc;
1431 struct qemu_alarm_win32 *data = t->priv;
1432 UINT flags;
1433
1434 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1435 if (!data->host_alarm) {
1436 perror("Failed CreateEvent");
1437 return -1;
1438 }
1439
1440 memset(&tc, 0, sizeof(tc));
1441 timeGetDevCaps(&tc, sizeof(tc));
1442
1443 if (data->period < tc.wPeriodMin)
1444 data->period = tc.wPeriodMin;
1445
1446 timeBeginPeriod(data->period);
1447
1448 flags = TIME_CALLBACK_FUNCTION;
1449 if (alarm_has_dynticks(t))
1450 flags |= TIME_ONESHOT;
1451 else
1452 flags |= TIME_PERIODIC;
1453
1454 data->timerId = timeSetEvent(1, // interval (ms)
1455 data->period, // resolution
1456 host_alarm_handler, // function
1457 (DWORD)t, // parameter
1458 flags);
1459
1460 if (!data->timerId) {
1461 perror("Failed to initialize win32 alarm timer");
1462
1463 timeEndPeriod(data->period);
1464 CloseHandle(data->host_alarm);
1465 return -1;
1466 }
1467
1468 qemu_add_wait_object(data->host_alarm, NULL, NULL);
1469
1470 return 0;
1471 }
1472
1473 static void win32_stop_timer(struct qemu_alarm_timer *t)
1474 {
1475 struct qemu_alarm_win32 *data = t->priv;
1476
1477 timeKillEvent(data->timerId);
1478 timeEndPeriod(data->period);
1479
1480 CloseHandle(data->host_alarm);
1481 }
1482
1483 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1484 {
1485 struct qemu_alarm_win32 *data = t->priv;
1486 uint64_t nearest_delta_us;
1487
1488 if (!active_timers[QEMU_TIMER_REALTIME] &&
1489 !active_timers[QEMU_TIMER_VIRTUAL])
1490 return;
1491
1492 nearest_delta_us = qemu_next_deadline();
1493 nearest_delta_us /= 1000;
1494
1495 timeKillEvent(data->timerId);
1496
1497 data->timerId = timeSetEvent(1,
1498 data->period,
1499 host_alarm_handler,
1500 (DWORD)t,
1501 TIME_ONESHOT | TIME_PERIODIC);
1502
1503 if (!data->timerId) {
1504 perror("Failed to re-arm win32 alarm timer");
1505
1506 timeEndPeriod(data->period);
1507 CloseHandle(data->host_alarm);
1508 exit(1);
1509 }
1510 }
1511
1512 #endif /* _WIN32 */
1513
1514 static void init_timer_alarm(void)
1515 {
1516 struct qemu_alarm_timer *t;
1517 int i, err = -1;
1518
1519 for (i = 0; alarm_timers[i].name; i++) {
1520 t = &alarm_timers[i];
1521
1522 err = t->start(t);
1523 if (!err)
1524 break;
1525 }
1526
1527 if (err) {
1528 fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1529 fprintf(stderr, "Terminating\n");
1530 exit(1);
1531 }
1532
1533 alarm_timer = t;
1534 }
1535
1536 void quit_timers(void)
1537 {
1538 alarm_timer->stop(alarm_timer);
1539 alarm_timer = NULL;
1540 }
1541
1542 /***********************************************************/
1543 /* character device */
1544
1545 static void qemu_chr_event(CharDriverState *s, int event)
1546 {
1547 if (!s->chr_event)
1548 return;
1549 s->chr_event(s->handler_opaque, event);
1550 }
1551
1552 static void qemu_chr_reset_bh(void *opaque)
1553 {
1554 CharDriverState *s = opaque;
1555 qemu_chr_event(s, CHR_EVENT_RESET);
1556 qemu_bh_delete(s->bh);
1557 s->bh = NULL;
1558 }
1559
1560 void qemu_chr_reset(CharDriverState *s)
1561 {
1562 if (s->bh == NULL) {
1563 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1564 qemu_bh_schedule(s->bh);
1565 }
1566 }
1567
1568 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1569 {
1570 return s->chr_write(s, buf, len);
1571 }
1572
1573 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1574 {
1575 if (!s->chr_ioctl)
1576 return -ENOTSUP;
1577 return s->chr_ioctl(s, cmd, arg);
1578 }
1579
1580 int qemu_chr_can_read(CharDriverState *s)
1581 {
1582 if (!s->chr_can_read)
1583 return 0;
1584 return s->chr_can_read(s->handler_opaque);
1585 }
1586
1587 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1588 {
1589 s->chr_read(s->handler_opaque, buf, len);
1590 }
1591
1592
1593 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1594 {
1595 char buf[4096];
1596 va_list ap;
1597 va_start(ap, fmt);
1598 vsnprintf(buf, sizeof(buf), fmt, ap);
1599 qemu_chr_write(s, buf, strlen(buf));
1600 va_end(ap);
1601 }
1602
1603 void qemu_chr_send_event(CharDriverState *s, int event)
1604 {
1605 if (s->chr_send_event)
1606 s->chr_send_event(s, event);
1607 }
1608
1609 void qemu_chr_add_handlers(CharDriverState *s,
1610 IOCanRWHandler *fd_can_read,
1611 IOReadHandler *fd_read,
1612 IOEventHandler *fd_event,
1613 void *opaque)
1614 {
1615 s->chr_can_read = fd_can_read;
1616 s->chr_read = fd_read;
1617 s->chr_event = fd_event;
1618 s->handler_opaque = opaque;
1619 if (s->chr_update_read_handler)
1620 s->chr_update_read_handler(s);
1621 }
1622
1623 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1624 {
1625 return len;
1626 }
1627
1628 static CharDriverState *qemu_chr_open_null(void)
1629 {
1630 CharDriverState *chr;
1631
1632 chr = qemu_mallocz(sizeof(CharDriverState));
1633 if (!chr)
1634 return NULL;
1635 chr->chr_write = null_chr_write;
1636 return chr;
1637 }
1638
1639 /* MUX driver for serial I/O splitting */
1640 static int term_timestamps;
1641 static int64_t term_timestamps_start;
1642 #define MAX_MUX 4
1643 typedef struct {
1644 IOCanRWHandler *chr_can_read[MAX_MUX];
1645 IOReadHandler *chr_read[MAX_MUX];
1646 IOEventHandler *chr_event[MAX_MUX];
1647 void *ext_opaque[MAX_MUX];
1648 CharDriverState *drv;
1649 int mux_cnt;
1650 int term_got_escape;
1651 int max_size;
1652 } MuxDriver;
1653
1654
1655 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1656 {
1657 MuxDriver *d = chr->opaque;
1658 int ret;
1659 if (!term_timestamps) {
1660 ret = d->drv->chr_write(d->drv, buf, len);
1661 } else {
1662 int i;
1663
1664 ret = 0;
1665 for(i = 0; i < len; i++) {
1666 ret += d->drv->chr_write(d->drv, buf+i, 1);
1667 if (buf[i] == '\n') {
1668 char buf1[64];
1669 int64_t ti;
1670 int secs;
1671
1672 ti = get_clock();
1673 if (term_timestamps_start == -1)
1674 term_timestamps_start = ti;
1675 ti -= term_timestamps_start;
1676 secs = ti / 1000000000;
1677 snprintf(buf1, sizeof(buf1),
1678 "[%02d:%02d:%02d.%03d] ",
1679 secs / 3600,
1680 (secs / 60) % 60,
1681 secs % 60,
1682 (int)((ti / 1000000) % 1000));
1683 d->drv->chr_write(d->drv, buf1, strlen(buf1));
1684 }
1685 }
1686 }
1687 return ret;
1688 }
1689
1690 static char *mux_help[] = {
1691 "% h print this help\n\r",
1692 "% x exit emulator\n\r",
1693 "% s save disk data back to file (if -snapshot)\n\r",
1694 "% t toggle console timestamps\n\r"
1695 "% b send break (magic sysrq)\n\r",
1696 "% c switch between console and monitor\n\r",
1697 "% % sends %\n\r",
1698 NULL
1699 };
1700
1701 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1702 static void mux_print_help(CharDriverState *chr)
1703 {
1704 int i, j;
1705 char ebuf[15] = "Escape-Char";
1706 char cbuf[50] = "\n\r";
1707
1708 if (term_escape_char > 0 && term_escape_char < 26) {
1709 sprintf(cbuf,"\n\r");
1710 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1711 } else {
1712 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1713 }
1714 chr->chr_write(chr, cbuf, strlen(cbuf));
1715 for (i = 0; mux_help[i] != NULL; i++) {
1716 for (j=0; mux_help[i][j] != '\0'; j++) {
1717 if (mux_help[i][j] == '%')
1718 chr->chr_write(chr, ebuf, strlen(ebuf));
1719 else
1720 chr->chr_write(chr, &mux_help[i][j], 1);
1721 }
1722 }
1723 }
1724
1725 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1726 {
1727 if (d->term_got_escape) {
1728 d->term_got_escape = 0;
1729 if (ch == term_escape_char)
1730 goto send_char;
1731 switch(ch) {
1732 case '?':
1733 case 'h':
1734 mux_print_help(chr);
1735 break;
1736 case 'x':
1737 {
1738 char *term = "QEMU: Terminated\n\r";
1739 chr->chr_write(chr,term,strlen(term));
1740 exit(0);
1741 break;
1742 }
1743 case 's':
1744 {
1745 int i;
1746 for (i = 0; i < MAX_DISKS; i++) {
1747 if (bs_table[i])
1748 bdrv_commit(bs_table[i]);
1749 }
1750 if (mtd_bdrv)
1751 bdrv_commit(mtd_bdrv);
1752 }
1753 break;
1754 case 'b':
1755 qemu_chr_event(chr, CHR_EVENT_BREAK);
1756 break;
1757 case 'c':
1758 /* Switch to the next registered device */
1759 chr->focus++;
1760 if (chr->focus >= d->mux_cnt)
1761 chr->focus = 0;
1762 break;
1763 case 't':
1764 term_timestamps = !term_timestamps;
1765 term_timestamps_start = -1;
1766 break;
1767 }
1768 } else if (ch == term_escape_char) {
1769 d->term_got_escape = 1;
1770 } else {
1771 send_char:
1772 return 1;
1773 }
1774 return 0;
1775 }
1776
1777 static int mux_chr_can_read(void *opaque)
1778 {
1779 CharDriverState *chr = opaque;
1780 MuxDriver *d = chr->opaque;
1781 if (d->chr_can_read[chr->focus])
1782 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1783 return 0;
1784 }
1785
1786 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1787 {
1788 CharDriverState *chr = opaque;
1789 MuxDriver *d = chr->opaque;
1790 int i;
1791 for(i = 0; i < size; i++)
1792 if (mux_proc_byte(chr, d, buf[i]))
1793 d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1794 }
1795
1796 static void mux_chr_event(void *opaque, int event)
1797 {
1798 CharDriverState *chr = opaque;
1799 MuxDriver *d = chr->opaque;
1800 int i;
1801
1802 /* Send the event to all registered listeners */
1803 for (i = 0; i < d->mux_cnt; i++)
1804 if (d->chr_event[i])
1805 d->chr_event[i](d->ext_opaque[i], event);
1806 }
1807
1808 static void mux_chr_update_read_handler(CharDriverState *chr)
1809 {
1810 MuxDriver *d = chr->opaque;
1811
1812 if (d->mux_cnt >= MAX_MUX) {
1813 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1814 return;
1815 }
1816 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1817 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1818 d->chr_read[d->mux_cnt] = chr->chr_read;
1819 d->chr_event[d->mux_cnt] = chr->chr_event;
1820 /* Fix up the real driver with mux routines */
1821 if (d->mux_cnt == 0) {
1822 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1823 mux_chr_event, chr);
1824 }
1825 chr->focus = d->mux_cnt;
1826 d->mux_cnt++;
1827 }
1828
1829 CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1830 {
1831 CharDriverState *chr;
1832 MuxDriver *d;
1833
1834 chr = qemu_mallocz(sizeof(CharDriverState));
1835 if (!chr)
1836 return NULL;
1837 d = qemu_mallocz(sizeof(MuxDriver));
1838 if (!d) {
1839 free(chr);
1840 return NULL;
1841 }
1842
1843 chr->opaque = d;
1844 d->drv = drv;
1845 chr->focus = -1;
1846 chr->chr_write = mux_chr_write;
1847 chr->chr_update_read_handler = mux_chr_update_read_handler;
1848 return chr;
1849 }
1850
1851
1852 #ifdef _WIN32
1853
1854 static void socket_cleanup(void)
1855 {
1856 WSACleanup();
1857 }
1858
1859 static int socket_init(void)
1860 {
1861 WSADATA Data;
1862 int ret, err;
1863
1864 ret = WSAStartup(MAKEWORD(2,2), &Data);
1865 if (ret != 0) {
1866 err = WSAGetLastError();
1867 fprintf(stderr, "WSAStartup: %d\n", err);
1868 return -1;
1869 }
1870 atexit(socket_cleanup);
1871 return 0;
1872 }
1873
1874 static int send_all(int fd, const uint8_t *buf, int len1)
1875 {
1876 int ret, len;
1877
1878 len = len1;
1879 while (len > 0) {
1880 ret = send(fd, buf, len, 0);
1881 if (ret < 0) {
1882 int errno;
1883 errno = WSAGetLastError();
1884 if (errno != WSAEWOULDBLOCK) {
1885 return -1;
1886 }
1887 } else if (ret == 0) {
1888 break;
1889 } else {
1890 buf += ret;
1891 len -= ret;
1892 }
1893 }
1894 return len1 - len;
1895 }
1896
1897 void socket_set_nonblock(int fd)
1898 {
1899 unsigned long opt = 1;
1900 ioctlsocket(fd, FIONBIO, &opt);
1901 }
1902
1903 #else
1904
1905 static int unix_write(int fd, const uint8_t *buf, int len1)
1906 {
1907 int ret, len;
1908
1909 len = len1;
1910 while (len > 0) {
1911 ret = write(fd, buf, len);
1912 if (ret < 0) {
1913 if (errno != EINTR && errno != EAGAIN)
1914 return -1;
1915 } else if (ret == 0) {
1916 break;
1917 } else {
1918 buf += ret;
1919 len -= ret;
1920 }
1921 }
1922 return len1 - len;
1923 }
1924
1925 static inline int send_all(int fd, const uint8_t *buf, int len1)
1926 {
1927 return unix_write(fd, buf, len1);
1928 }
1929
1930 void socket_set_nonblock(int fd)
1931 {
1932 fcntl(fd, F_SETFL, O_NONBLOCK);
1933 }
1934 #endif /* !_WIN32 */
1935
1936 #ifndef _WIN32
1937
1938 typedef struct {
1939 int fd_in, fd_out;
1940 int max_size;
1941 } FDCharDriver;
1942
1943 #define STDIO_MAX_CLIENTS 1
1944 static int stdio_nb_clients = 0;
1945
1946 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1947 {
1948 FDCharDriver *s = chr->opaque;
1949 return unix_write(s->fd_out, buf, len);
1950 }
1951
1952 static int fd_chr_read_poll(void *opaque)
1953 {
1954 CharDriverState *chr = opaque;
1955 FDCharDriver *s = chr->opaque;
1956
1957 s->max_size = qemu_chr_can_read(chr);
1958 return s->max_size;
1959 }
1960
1961 static void fd_chr_read(void *opaque)
1962 {
1963 CharDriverState *chr = opaque;
1964 FDCharDriver *s = chr->opaque;
1965 int size, len;
1966 uint8_t buf[1024];
1967
1968 len = sizeof(buf);
1969 if (len > s->max_size)
1970 len = s->max_size;
1971 if (len == 0)
1972 return;
1973 size = read(s->fd_in, buf, len);
1974 if (size == 0) {
1975 /* FD has been closed. Remove it from the active list. */
1976 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1977 return;
1978 }
1979 if (size > 0) {
1980 qemu_chr_read(chr, buf, size);
1981 }
1982 }
1983
1984 static void fd_chr_update_read_handler(CharDriverState *chr)
1985 {
1986 FDCharDriver *s = chr->opaque;
1987
1988 if (s->fd_in >= 0) {
1989 if (nographic && s->fd_in == 0) {
1990 } else {
1991 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1992 fd_chr_read, NULL, chr);
1993 }
1994 }
1995 }
1996
1997 /* open a character device to a unix fd */
1998 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1999 {
2000 CharDriverState *chr;
2001 FDCharDriver *s;
2002
2003 chr = qemu_mallocz(sizeof(CharDriverState));
2004 if (!chr)
2005 return NULL;
2006 s = qemu_mallocz(sizeof(FDCharDriver));
2007 if (!s) {
2008 free(chr);
2009 return NULL;
2010 }
2011 s->fd_in = fd_in;
2012 s->fd_out = fd_out;
2013 chr->opaque = s;
2014 chr->chr_write = fd_chr_write;
2015 chr->chr_update_read_handler = fd_chr_update_read_handler;
2016
2017 qemu_chr_reset(chr);
2018
2019 return chr;
2020 }
2021
2022 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2023 {
2024 int fd_out;
2025
2026 TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2027 if (fd_out < 0)
2028 return NULL;
2029 return qemu_chr_open_fd(-1, fd_out);
2030 }
2031
2032 static CharDriverState *qemu_chr_open_pipe(const char *filename)
2033 {
2034 int fd_in, fd_out;
2035 char filename_in[256], filename_out[256];
2036
2037 snprintf(filename_in, 256, "%s.in", filename);
2038 snprintf(filename_out, 256, "%s.out", filename);
2039 TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2040 TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2041 if (fd_in < 0 || fd_out < 0) {
2042 if (fd_in >= 0)
2043 close(fd_in);
2044 if (fd_out >= 0)
2045 close(fd_out);
2046 TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2047 if (fd_in < 0)
2048 return NULL;
2049 }
2050 return qemu_chr_open_fd(fd_in, fd_out);
2051 }
2052
2053
2054 /* for STDIO, we handle the case where several clients use it
2055 (nographic mode) */
2056
2057 #define TERM_FIFO_MAX_SIZE 1
2058
2059 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2060 static int term_fifo_size;
2061
2062 static int stdio_read_poll(void *opaque)
2063 {
2064 CharDriverState *chr = opaque;
2065
2066 /* try to flush the queue if needed */
2067 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2068 qemu_chr_read(chr, term_fifo, 1);
2069 term_fifo_size = 0;
2070 }
2071 /* see if we can absorb more chars */
2072 if (term_fifo_size == 0)
2073 return 1;
2074 else
2075 return 0;
2076 }
2077
2078 static void stdio_read(void *opaque)
2079 {
2080 int size;
2081 uint8_t buf[1];
2082 CharDriverState *chr = opaque;
2083
2084 size = read(0, buf, 1);
2085 if (size == 0) {
2086 /* stdin has been closed. Remove it from the active list. */
2087 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2088 return;
2089 }
2090 if (size > 0) {
2091 if (qemu_chr_can_read(chr) > 0) {
2092 qemu_chr_read(chr, buf, 1);
2093 } else if (term_fifo_size == 0) {
2094 term_fifo[term_fifo_size++] = buf[0];
2095 }
2096 }
2097 }
2098
2099 /* init terminal so that we can grab keys */
2100 static struct termios oldtty;
2101 static int old_fd0_flags;
2102
2103 static void term_exit(void)
2104 {
2105 tcsetattr (0, TCSANOW, &oldtty);
2106 fcntl(0, F_SETFL, old_fd0_flags);
2107 }
2108
2109 static void term_init(void)
2110 {
2111 struct termios tty;
2112
2113 tcgetattr (0, &tty);
2114 oldtty = tty;
2115 old_fd0_flags = fcntl(0, F_GETFL);
2116
2117 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2118 |INLCR|IGNCR|ICRNL|IXON);
2119 tty.c_oflag |= OPOST;
2120 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2121 /* if graphical mode, we allow Ctrl-C handling */
2122 if (nographic)
2123 tty.c_lflag &= ~ISIG;
2124 tty.c_cflag &= ~(CSIZE|PARENB);
2125 tty.c_cflag |= CS8;
2126 tty.c_cc[VMIN] = 1;
2127 tty.c_cc[VTIME] = 0;
2128
2129 tcsetattr (0, TCSANOW, &tty);
2130
2131 atexit(term_exit);
2132
2133 fcntl(0, F_SETFL, O_NONBLOCK);
2134 }
2135
2136 static CharDriverState *qemu_chr_open_stdio(void)
2137 {
2138 CharDriverState *chr;
2139
2140 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2141 return NULL;
2142 chr = qemu_chr_open_fd(0, 1);
2143 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2144 stdio_nb_clients++;
2145 term_init();
2146
2147 return chr;
2148 }
2149
2150 #if defined(__linux__) || defined(__sun__)
2151 static CharDriverState *qemu_chr_open_pty(void)
2152 {
2153 struct termios tty;
2154 char slave_name[1024];
2155 int master_fd, slave_fd;
2156
2157 #if defined(__linux__)
2158 /* Not satisfying */
2159 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2160 return NULL;
2161 }
2162 #endif
2163
2164 /* Disabling local echo and line-buffered output */
2165 tcgetattr (master_fd, &tty);
2166 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2167 tty.c_cc[VMIN] = 1;
2168 tty.c_cc[VTIME] = 0;
2169 tcsetattr (master_fd, TCSAFLUSH, &tty);
2170
2171 fprintf(stderr, "char device redirected to %s\n", slave_name);
2172 return qemu_chr_open_fd(master_fd, master_fd);
2173 }
2174
2175 static void tty_serial_init(int fd, int speed,
2176 int parity, int data_bits, int stop_bits)
2177 {
2178 struct termios tty;
2179 speed_t spd;
2180
2181 #if 0
2182 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2183 speed, parity, data_bits, stop_bits);
2184 #endif
2185 tcgetattr (fd, &tty);
2186
2187 switch(speed) {
2188 case 50:
2189 spd = B50;
2190 break;
2191 case 75:
2192 spd = B75;
2193 break;
2194 case 300:
2195 spd = B300;
2196 break;
2197 case 600:
2198 spd = B600;
2199 break;
2200 case 1200:
2201 spd = B1200;
2202 break;
2203 case 2400:
2204 spd = B2400;
2205 break;
2206 case 4800:
2207 spd = B4800;
2208 break;
2209 case 9600:
2210 spd = B9600;
2211 break;
2212 case 19200:
2213 spd = B19200;
2214 break;
2215 case 38400:
2216 spd = B38400;
2217 break;
2218 case 57600:
2219 spd = B57600;
2220 break;
2221 default:
2222 case 115200:
2223 spd = B115200;
2224 break;
2225 }
2226
2227 cfsetispeed(&tty, spd);
2228 cfsetospeed(&tty, spd);
2229
2230 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2231 |INLCR|IGNCR|ICRNL|IXON);
2232 tty.c_oflag |= OPOST;
2233 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2234 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2235 switch(data_bits) {
2236 default:
2237 case 8:
2238 tty.c_cflag |= CS8;
2239 break;
2240 case 7:
2241 tty.c_cflag |= CS7;
2242 break;
2243 case 6:
2244 tty.c_cflag |= CS6;
2245 break;
2246 case 5:
2247 tty.c_cflag |= CS5;
2248 break;
2249 }
2250 switch(parity) {
2251 default:
2252 case 'N':
2253 break;
2254 case 'E':
2255 tty.c_cflag |= PARENB;
2256 break;
2257 case 'O':
2258 tty.c_cflag |= PARENB | PARODD;
2259 break;
2260 }
2261 if (stop_bits == 2)
2262 tty.c_cflag |= CSTOPB;
2263
2264 tcsetattr (fd, TCSANOW, &tty);
2265 }
2266
2267 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2268 {
2269 FDCharDriver *s = chr->opaque;
2270
2271 switch(cmd) {
2272 case CHR_IOCTL_SERIAL_SET_PARAMS:
2273 {
2274 QEMUSerialSetParams *ssp = arg;
2275 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2276 ssp->data_bits, ssp->stop_bits);
2277 }
2278 break;
2279 case CHR_IOCTL_SERIAL_SET_BREAK:
2280 {
2281 int enable = *(int *)arg;
2282 if (enable)
2283 tcsendbreak(s->fd_in, 1);
2284 }
2285 break;
2286 default:
2287 return -ENOTSUP;
2288 }
2289 return 0;
2290 }
2291
2292 static CharDriverState *qemu_chr_open_tty(const char *filename)
2293 {
2294 CharDriverState *chr;
2295 int fd;
2296
2297 TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2298 fcntl(fd, F_SETFL, O_NONBLOCK);
2299 tty_serial_init(fd, 115200, 'N', 8, 1);
2300 chr = qemu_chr_open_fd(fd, fd);
2301 if (!chr) {
2302 close(fd);
2303 return NULL;
2304 }
2305 chr->chr_ioctl = tty_serial_ioctl;
2306 qemu_chr_reset(chr);
2307 return chr;
2308 }
2309 #else /* ! __linux__ && ! __sun__ */
2310 static CharDriverState *qemu_chr_open_pty(void)
2311 {
2312 return NULL;
2313 }
2314 #endif /* __linux__ || __sun__ */
2315
2316 #if defined(__linux__)
2317 typedef struct {
2318 int fd;
2319 int mode;
2320 } ParallelCharDriver;
2321
2322 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2323 {
2324 if (s->mode != mode) {
2325 int m = mode;
2326 if (ioctl(s->fd, PPSETMODE, &m) < 0)
2327 return 0;
2328 s->mode = mode;
2329 }
2330 return 1;
2331 }
2332
2333 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2334 {
2335 ParallelCharDriver *drv = chr->opaque;
2336 int fd = drv->fd;
2337 uint8_t b;
2338
2339 switch(cmd) {
2340 case CHR_IOCTL_PP_READ_DATA:
2341 if (ioctl(fd, PPRDATA, &b) < 0)
2342 return -ENOTSUP;
2343 *(uint8_t *)arg = b;
2344 break;
2345 case CHR_IOCTL_PP_WRITE_DATA:
2346 b = *(uint8_t *)arg;
2347 if (ioctl(fd, PPWDATA, &b) < 0)
2348 return -ENOTSUP;
2349 break;
2350 case CHR_IOCTL_PP_READ_CONTROL:
2351 if (ioctl(fd, PPRCONTROL, &b) < 0)
2352 return -ENOTSUP;
2353 /* Linux gives only the lowest bits, and no way to know data
2354 direction! For better compatibility set the fixed upper
2355 bits. */
2356 *(uint8_t *)arg = b | 0xc0;
2357 break;
2358 case CHR_IOCTL_PP_WRITE_CONTROL:
2359 b = *(uint8_t *)arg;
2360 if (ioctl(fd, PPWCONTROL, &b) < 0)
2361 return -ENOTSUP;
2362 break;
2363 case CHR_IOCTL_PP_READ_STATUS:
2364 if (ioctl(fd, PPRSTATUS, &b) < 0)
2365 return -ENOTSUP;
2366 *(uint8_t *)arg = b;
2367 break;
2368 case CHR_IOCTL_PP_EPP_READ_ADDR:
2369 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2370 struct ParallelIOArg *parg = arg;
2371 int n = read(fd, parg->buffer, parg->count);
2372 if (n != parg->count) {
2373 return -EIO;
2374 }
2375 }
2376 break;
2377 case CHR_IOCTL_PP_EPP_READ:
2378 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2379 struct ParallelIOArg *parg = arg;
2380 int n = read(fd, parg->buffer, parg->count);
2381 if (n != parg->count) {
2382 return -EIO;
2383 }
2384 }
2385 break;
2386 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2387 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2388 struct ParallelIOArg *parg = arg;
2389 int n = write(fd, parg->buffer, parg->count);
2390 if (n != parg->count) {
2391 return -EIO;
2392 }
2393 }
2394 break;
2395 case CHR_IOCTL_PP_EPP_WRITE:
2396 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2397 struct ParallelIOArg *parg = arg;
2398 int n = write(fd, parg->buffer, parg->count);
2399 if (n != parg->count) {
2400 return -EIO;
2401 }
2402 }
2403 break;
2404 default:
2405 return -ENOTSUP;
2406 }
2407 return 0;
2408 }
2409
2410 static void pp_close(CharDriverState *chr)
2411 {
2412 ParallelCharDriver *drv = chr->opaque;
2413 int fd = drv->fd;
2414
2415 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2416 ioctl(fd, PPRELEASE);
2417 close(fd);
2418 qemu_free(drv);
2419 }
2420
2421 static CharDriverState *qemu_chr_open_pp(const char *filename)
2422 {
2423 CharDriverState *chr;
2424 ParallelCharDriver *drv;
2425 int fd;
2426
2427 TFR(fd = open(filename, O_RDWR));
2428 if (fd < 0)
2429 return NULL;
2430
2431 if (ioctl(fd, PPCLAIM) < 0) {
2432 close(fd);
2433 return NULL;
2434 }
2435
2436 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2437 if (!drv) {
2438 close(fd);
2439 return NULL;
2440 }
2441 drv->fd = fd;
2442 drv->mode = IEEE1284_MODE_COMPAT;
2443
2444 chr = qemu_mallocz(sizeof(CharDriverState));
2445 if (!chr) {
2446 qemu_free(drv);
2447 close(fd);
2448 return NULL;
2449 }
2450 chr->chr_write = null_chr_write;
2451 chr->chr_ioctl = pp_ioctl;
2452 chr->chr_close = pp_close;
2453 chr->opaque = drv;
2454
2455 qemu_chr_reset(chr);
2456
2457 return chr;
2458 }
2459 #endif /* __linux__ */
2460
2461 #else /* _WIN32 */
2462
2463 typedef struct {
2464 int max_size;
2465 HANDLE hcom, hrecv, hsend;
2466 OVERLAPPED orecv, osend;
2467 BOOL fpipe;
2468 DWORD len;
2469 } WinCharState;
2470
2471 #define NSENDBUF 2048
2472 #define NRECVBUF 2048
2473 #define MAXCONNECT 1
2474 #define NTIMEOUT 5000
2475
2476 static int win_chr_poll(void *opaque);
2477 static int win_chr_pipe_poll(void *opaque);
2478
2479 static void win_chr_close(CharDriverState *chr)
2480 {
2481 WinCharState *s = chr->opaque;
2482
2483 if (s->hsend) {
2484 CloseHandle(s->hsend);
2485 s->hsend = NULL;
2486 }
2487 if (s->hrecv) {
2488 CloseHandle(s->hrecv);
2489 s->hrecv = NULL;
2490 }
2491 if (s->hcom) {
2492 CloseHandle(s->hcom);
2493 s->hcom = NULL;
2494 }
2495 if (s->fpipe)
2496 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2497 else
2498 qemu_del_polling_cb(win_chr_poll, chr);
2499 }
2500
2501 static int win_chr_init(CharDriverState *chr, const char *filename)
2502 {
2503 WinCharState *s = chr->opaque;
2504 COMMCONFIG comcfg;
2505 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2506 COMSTAT comstat;
2507 DWORD size;
2508 DWORD err;
2509
2510 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2511 if (!s->hsend) {
2512 fprintf(stderr, "Failed CreateEvent\n");
2513 goto fail;
2514 }
2515 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2516 if (!s->hrecv) {
2517 fprintf(stderr, "Failed CreateEvent\n");
2518 goto fail;
2519 }
2520
2521 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2522 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2523 if (s->hcom == INVALID_HANDLE_VALUE) {
2524 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2525 s->hcom = NULL;
2526 goto fail;
2527 }
2528
2529 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2530 fprintf(stderr, "Failed SetupComm\n");
2531 goto fail;
2532 }
2533
2534 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2535 size = sizeof(COMMCONFIG);
2536 GetDefaultCommConfig(filename, &comcfg, &size);
2537 comcfg.dcb.DCBlength = sizeof(DCB);
2538 CommConfigDialog(filename, NULL, &comcfg);
2539
2540 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2541 fprintf(stderr, "Failed SetCommState\n");
2542 goto fail;
2543 }
2544
2545 if (!SetCommMask(s->hcom, EV_ERR)) {
2546 fprintf(stderr, "Failed SetCommMask\n");
2547 goto fail;
2548 }
2549
2550 cto.ReadIntervalTimeout = MAXDWORD;
2551 if (!SetCommTimeouts(s->hcom, &cto)) {
2552 fprintf(stderr, "Failed SetCommTimeouts\n");
2553 goto fail;
2554 }
2555
2556 if (!ClearCommError(s->hcom, &err, &comstat)) {
2557 fprintf(stderr, "Failed ClearCommError\n");
2558 goto fail;
2559 }
2560 qemu_add_polling_cb(win_chr_poll, chr);
2561 return 0;
2562
2563 fail:
2564 win_chr_close(chr);
2565 return -1;
2566 }
2567
2568 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2569 {
2570 WinCharState *s = chr->opaque;
2571 DWORD len, ret, size, err;
2572
2573 len = len1;
2574 ZeroMemory(&s->osend, sizeof(s->osend));
2575 s->osend.hEvent = s->hsend;
2576 while (len > 0) {
2577 if (s->hsend)
2578 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2579 else
2580 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2581 if (!ret) {
2582 err = GetLastError();
2583 if (err == ERROR_IO_PENDING) {
2584 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2585 if (ret) {
2586 buf += size;
2587 len -= size;
2588 } else {
2589 break;
2590 }
2591 } else {
2592 break;
2593 }
2594 } else {
2595 buf += size;
2596 len -= size;
2597 }
2598 }
2599 return len1 - len;
2600 }
2601
2602 static int win_chr_read_poll(CharDriverState *chr)
2603 {
2604 WinCharState *s = chr->opaque;
2605
2606 s->max_size = qemu_chr_can_read(chr);
2607 return s->max_size;
2608 }
2609
2610 static void win_chr_readfile(CharDriverState *chr)
2611 {
2612 WinCharState *s = chr->opaque;
2613 int ret, err;
2614 uint8_t buf[1024];
2615 DWORD size;
2616
2617 ZeroMemory(&s->orecv, sizeof(s->orecv));
2618 s->orecv.hEvent = s->hrecv;
2619 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2620 if (!ret) {
2621 err = GetLastError();
2622 if (err == ERROR_IO_PENDING) {
2623 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2624 }
2625 }
2626
2627 if (size > 0) {
2628 qemu_chr_read(chr, buf, size);
2629 }
2630 }
2631
2632 static void win_chr_read(CharDriverState *chr)
2633 {
2634 WinCharState *s = chr->opaque;
2635
2636 if (s->len > s->max_size)
2637 s->len = s->max_size;
2638 if (s->len == 0)
2639 return;
2640
2641 win_chr_readfile(chr);
2642 }
2643
2644 static int win_chr_poll(void *opaque)
2645 {
2646 CharDriverState *chr = opaque;
2647 WinCharState *s = chr->opaque;
2648 COMSTAT status;
2649 DWORD comerr;
2650
2651 ClearCommError(s->hcom, &comerr, &status);
2652 if (status.cbInQue > 0) {
2653 s->len = status.cbInQue;
2654 win_chr_read_poll(chr);
2655 win_chr_read(chr);
2656 return 1;
2657 }
2658 return 0;
2659 }
2660
2661 static CharDriverState *qemu_chr_open_win(const char *filename)
2662 {
2663 CharDriverState *chr;
2664 WinCharState *s;
2665
2666 chr = qemu_mallocz(sizeof(CharDriverState));
2667 if (!chr)
2668 return NULL;
2669 s = qemu_mallocz(sizeof(WinCharState));
2670 if (!s) {
2671 free(chr);
2672 return NULL;
2673 }
2674 chr->opaque = s;
2675 chr->chr_write = win_chr_write;
2676 chr->chr_close = win_chr_close;
2677
2678 if (win_chr_init(chr, filename) < 0) {
2679 free(s);
2680 free(chr);
2681 return NULL;
2682 }
2683 qemu_chr_reset(chr);
2684 return chr;
2685 }
2686
2687 static int win_chr_pipe_poll(void *opaque)
2688 {
2689 CharDriverState *chr = opaque;
2690 WinCharState *s = chr->opaque;
2691 DWORD size;
2692
2693 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2694 if (size > 0) {
2695 s->len = size;
2696 win_chr_read_poll(chr);
2697 win_chr_read(chr);
2698 return 1;
2699 }
2700 return 0;
2701 }
2702
2703 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2704 {
2705 WinCharState *s = chr->opaque;
2706 OVERLAPPED ov;
2707 int ret;
2708 DWORD size;
2709 char openname[256];
2710
2711 s->fpipe = TRUE;
2712
2713 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2714 if (!s->hsend) {
2715 fprintf(stderr, "Failed CreateEvent\n");
2716 goto fail;
2717 }
2718 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2719 if (!s->hrecv) {
2720 fprintf(stderr, "Failed CreateEvent\n");
2721 goto fail;
2722 }
2723
2724 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2725 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2726 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2727 PIPE_WAIT,
2728 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2729 if (s->hcom == INVALID_HANDLE_VALUE) {
2730 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2731 s->hcom = NULL;
2732 goto fail;
2733 }
2734
2735 ZeroMemory(&ov, sizeof(ov));
2736 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2737 ret = ConnectNamedPipe(s->hcom, &ov);
2738 if (ret) {
2739 fprintf(stderr, "Failed ConnectNamedPipe\n");
2740 goto fail;
2741 }
2742
2743 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2744 if (!ret) {
2745 fprintf(stderr, "Failed GetOverlappedResult\n");
2746 if (ov.hEvent) {
2747 CloseHandle(ov.hEvent);
2748 ov.hEvent = NULL;
2749 }
2750 goto fail;
2751 }
2752
2753 if (ov.hEvent) {
2754 CloseHandle(ov.hEvent);
2755 ov.hEvent = NULL;
2756 }
2757 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2758 return 0;
2759
2760 fail:
2761 win_chr_close(chr);
2762 return -1;
2763 }
2764
2765
2766 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2767 {
2768 CharDriverState *chr;
2769 WinCharState *s;
2770
2771 chr = qemu_mallocz(sizeof(CharDriverState));
2772 if (!chr)
2773 return NULL;
2774 s = qemu_mallocz(sizeof(WinCharState));
2775 if (!s) {
2776 free(chr);
2777 return NULL;
2778 }
2779 chr->opaque = s;
2780 chr->chr_write = win_chr_write;
2781 chr->chr_close = win_chr_close;
2782
2783 if (win_chr_pipe_init(chr, filename) < 0) {
2784 free(s);
2785 free(chr);
2786 return NULL;
2787 }
2788 qemu_chr_reset(chr);
2789 return chr;
2790 }
2791
2792 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2793 {
2794 CharDriverState *chr;
2795 WinCharState *s;
2796
2797 chr = qemu_mallocz(sizeof(CharDriverState));
2798 if (!chr)
2799 return NULL;
2800 s = qemu_mallocz(sizeof(WinCharState));
2801 if (!s) {
2802 free(chr);
2803 return NULL;
2804 }
2805 s->hcom = fd_out;
2806 chr->opaque = s;
2807 chr->chr_write = win_chr_write;
2808 qemu_chr_reset(chr);
2809 return chr;
2810 }
2811
2812 static CharDriverState *qemu_chr_open_win_con(const char *filename)
2813 {
2814 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2815 }
2816
2817 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2818 {
2819 HANDLE fd_out;
2820
2821 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2822 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2823 if (fd_out == INVALID_HANDLE_VALUE)
2824 return NULL;
2825
2826 return qemu_chr_open_win_file(fd_out);
2827 }
2828 #endif /* !_WIN32 */
2829
2830 /***********************************************************/
2831 /* UDP Net console */
2832
2833 typedef struct {
2834 int fd;
2835 struct sockaddr_in daddr;
2836 char buf[1024];
2837 int bufcnt;
2838 int bufptr;
2839 int max_size;
2840 } NetCharDriver;
2841
2842 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2843 {
2844 NetCharDriver *s = chr->opaque;
2845
2846 return sendto(s->fd, buf, len, 0,
2847 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2848 }
2849
2850 static int udp_chr_read_poll(void *opaque)
2851 {
2852 CharDriverState *chr = opaque;
2853 NetCharDriver *s = chr->opaque;
2854
2855 s->max_size = qemu_chr_can_read(chr);
2856
2857 /* If there were any stray characters in the queue process them
2858 * first
2859 */
2860 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2861 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2862 s->bufptr++;
2863 s->max_size = qemu_chr_can_read(chr);
2864 }
2865 return s->max_size;
2866 }
2867
2868 static void udp_chr_read(void *opaque)
2869 {
2870 CharDriverState *chr = opaque;
2871 NetCharDriver *s = chr->opaque;
2872
2873 if (s->max_size == 0)
2874 return;
2875 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2876 s->bufptr = s->bufcnt;
2877 if (s->bufcnt <= 0)
2878 return;
2879
2880 s->bufptr = 0;
2881 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2882 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2883 s->bufptr++;
2884 s->max_size = qemu_chr_can_read(chr);
2885 }
2886 }
2887
2888 static void udp_chr_update_read_handler(CharDriverState *chr)
2889 {
2890 NetCharDriver *s = chr->opaque;
2891
2892 if (s->fd >= 0) {
2893 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2894 udp_chr_read, NULL, chr);
2895 }
2896 }
2897
2898 int parse_host_port(struct sockaddr_in *saddr, const char *str);
2899 #ifndef _WIN32
2900 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2901 #endif
2902 int parse_host_src_port(struct sockaddr_in *haddr,
2903 struct sockaddr_in *saddr,
2904 const char *str);
2905
2906 static CharDriverState *qemu_chr_open_udp(const char *def)
2907 {
2908 CharDriverState *chr = NULL;
2909 NetCharDriver *s = NULL;
2910 int fd = -1;
2911 struct sockaddr_in saddr;
2912
2913 chr = qemu_mallocz(sizeof(CharDriverState));
2914 if (!chr)
2915 goto return_err;
2916 s = qemu_mallocz(sizeof(NetCharDriver));
2917 if (!s)
2918 goto return_err;
2919
2920 fd = socket(PF_INET, SOCK_DGRAM, 0);
2921 if (fd < 0) {
2922 perror("socket(PF_INET, SOCK_DGRAM)");
2923 goto return_err;
2924 }
2925
2926 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2927 printf("Could not parse: %s\n", def);
2928 goto return_err;
2929 }
2930
2931 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2932 {
2933 perror("bind");
2934 goto return_err;
2935 }
2936
2937 s->fd = fd;
2938 s->bufcnt = 0;
2939 s->bufptr = 0;
2940 chr->opaque = s;
2941 chr->chr_write = udp_chr_write;
2942 chr->chr_update_read_handler = udp_chr_update_read_handler;
2943 return chr;
2944
2945 return_err:
2946 if (chr)
2947 free(chr);
2948 if (s)
2949 free(s);
2950 if (fd >= 0)
2951 closesocket(fd);
2952 return NULL;
2953 }
2954
2955 /***********************************************************/
2956 /* TCP Net console */
2957
2958 typedef struct {
2959 int fd, listen_fd;
2960 int connected;
2961 int max_size;
2962 int do_telnetopt;
2963 int do_nodelay;
2964 int is_unix;
2965 } TCPCharDriver;
2966
2967 static void tcp_chr_accept(void *opaque);
2968
2969 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2970 {
2971 TCPCharDriver *s = chr->opaque;
2972 if (s->connected) {
2973 return send_all(s->fd, buf, len);
2974 } else {
2975 /* XXX: indicate an error ? */
2976 return len;
2977 }
2978 }
2979
2980 static int tcp_chr_read_poll(void *opaque)
2981 {
2982 CharDriverState *chr = opaque;
2983 TCPCharDriver *s = chr->opaque;
2984 if (!s->connected)
2985 return 0;
2986 s->max_size = qemu_chr_can_read(chr);
2987 return s->max_size;
2988 }
2989
2990 #define IAC 255
2991 #define IAC_BREAK 243
2992 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2993 TCPCharDriver *s,
2994 char *buf, int *size)
2995 {
2996 /* Handle any telnet client's basic IAC options to satisfy char by
2997 * char mode with no echo. All IAC options will be removed from
2998 * the buf and the do_telnetopt variable will be used to track the
2999 * state of the width of the IAC information.
3000 *
3001 * IAC commands come in sets of 3 bytes with the exception of the
3002 * "IAC BREAK" command and the double IAC.
3003 */
3004
3005 int i;
3006 int j = 0;
3007
3008 for (i = 0; i < *size; i++) {
3009 if (s->do_telnetopt > 1) {
3010 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3011 /* Double IAC means send an IAC */
3012 if (j != i)
3013 buf[j] = buf[i];
3014 j++;
3015 s->do_telnetopt = 1;
3016 } else {
3017 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3018 /* Handle IAC break commands by sending a serial break */
3019 qemu_chr_event(chr, CHR_EVENT_BREAK);
3020 s->do_telnetopt++;
3021 }
3022 s->do_telnetopt++;
3023 }
3024 if (s->do_telnetopt >= 4) {
3025 s->do_telnetopt = 1;
3026 }
3027 } else {
3028 if ((unsigned char)buf[i] == IAC) {
3029 s->do_telnetopt = 2;
3030 } else {
3031 if (j != i)
3032 buf[j] = buf[i];
3033 j++;
3034 }
3035 }
3036 }
3037 *size = j;
3038 }
3039
3040 static void tcp_chr_read(void *opaque)
3041 {
3042 CharDriverState *chr = opaque;
3043 TCPCharDriver *s = chr->opaque;
3044 uint8_t buf[1024];
3045 int len, size;
3046
3047 if (!s->connected || s->max_size <= 0)
3048 return;
3049 len = sizeof(buf);
3050 if (len > s->max_size)
3051 len = s->max_size;
3052 size = recv(s->fd, buf, len, 0);
3053 if (size == 0) {
3054 /* connection closed */
3055 s->connected = 0;
3056 if (s->listen_fd >= 0) {
3057 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3058 }
3059 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3060 closesocket(s->fd);
3061 s->fd = -1;
3062 } else if (size > 0) {
3063 if (s->do_telnetopt)
3064 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3065 if (size > 0)
3066 qemu_chr_read(chr, buf, size);
3067 }
3068 }
3069
3070 static void tcp_chr_connect(void *opaque)
3071 {
3072 CharDriverState *chr = opaque;
3073 TCPCharDriver *s = chr->opaque;
3074
3075 s->connected = 1;
3076 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3077 tcp_chr_read, NULL, chr);
3078 qemu_chr_reset(chr);
3079 }
3080
3081 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3082 static void tcp_chr_telnet_init(int fd)
3083 {
3084 char buf[3];
3085 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3086 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
3087 send(fd, (char *)buf, 3, 0);
3088 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
3089 send(fd, (char *)buf, 3, 0);
3090 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
3091 send(fd, (char *)buf, 3, 0);
3092 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
3093 send(fd, (char *)buf, 3, 0);
3094 }
3095
3096 static void socket_set_nodelay(int fd)
3097 {
3098 int val = 1;
3099 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3100 }
3101
3102 static void tcp_chr_accept(void *opaque)
3103 {
3104 CharDriverState *chr = opaque;
3105 TCPCharDriver *s = chr->opaque;
3106 struct sockaddr_in saddr;
3107 #ifndef _WIN32
3108 struct sockaddr_un uaddr;
3109 #endif
3110 struct sockaddr *addr;
3111 socklen_t len;
3112 int fd;
3113
3114 for(;;) {
3115 #ifndef _WIN32
3116 if (s->is_unix) {
3117 len = sizeof(uaddr);
3118 addr = (struct sockaddr *)&uaddr;
3119 } else
3120 #endif
3121 {
3122 len = sizeof(saddr);
3123 addr = (struct sockaddr *)&saddr;
3124 }
3125 fd = accept(s->listen_fd, addr, &len);
3126 if (fd < 0 && errno != EINTR) {
3127 return;
3128 } else if (fd >= 0) {
3129 if (s->do_telnetopt)
3130 tcp_chr_telnet_init(fd);
3131 break;
3132 }
3133 }
3134 socket_set_nonblock(fd);
3135 if (s->do_nodelay)
3136 socket_set_nodelay(fd);
3137 s->fd = fd;
3138 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3139 tcp_chr_connect(chr);
3140 }
3141
3142 static void tcp_chr_close(CharDriverState *chr)
3143 {
3144 TCPCharDriver *s = chr->opaque;
3145 if (s->fd >= 0)
3146 closesocket(s->fd);
3147 if (s->listen_fd >= 0)
3148 closesocket(s->listen_fd);
3149 qemu_free(s);
3150 }
3151
3152 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3153 int is_telnet,
3154 int is_unix)
3155 {
3156 CharDriverState *chr = NULL;
3157 TCPCharDriver *s = NULL;
3158 int fd = -1, ret, err, val;
3159 int is_listen = 0;
3160 int is_waitconnect = 1;
3161 int do_nodelay = 0;
3162 const char *ptr;
3163 struct sockaddr_in saddr;
3164 #ifndef _WIN32
3165 struct sockaddr_un uaddr;
3166 #endif
3167 struct sockaddr *addr;
3168 socklen_t addrlen;
3169
3170 #ifndef _WIN32
3171 if (is_unix) {
3172 addr = (struct sockaddr *)&uaddr;
3173 addrlen = sizeof(uaddr);
3174 if (parse_unix_path(&uaddr, host_str) < 0)
3175 goto fail;
3176 } else
3177 #endif
3178 {
3179 addr = (struct sockaddr *)&saddr;
3180 addrlen = sizeof(saddr);
3181 if (parse_host_port(&saddr, host_str) < 0)
3182 goto fail;
3183 }
3184
3185 ptr = host_str;
3186 while((ptr = strchr(ptr,','))) {
3187 ptr++;
3188 if (!strncmp(ptr,"server",6)) {
3189 is_listen = 1;
3190 } else if (!strncmp(ptr,"nowait",6)) {
3191 is_waitconnect = 0;
3192 } else if (!strncmp(ptr,"nodelay",6)) {
3193 do_nodelay = 1;
3194 } else {
3195 printf("Unknown option: %s\n", ptr);
3196 goto fail;
3197 }
3198 }
3199 if (!is_listen)
3200 is_waitconnect = 0;
3201
3202 chr = qemu_mallocz(sizeof(CharDriverState));
3203 if (!chr)
3204 goto fail;
3205 s = qemu_mallocz(sizeof(TCPCharDriver));
3206 if (!s)
3207 goto fail;
3208
3209 #ifndef _WIN32
3210 if (is_unix)
3211 fd = socket(PF_UNIX, SOCK_STREAM, 0);
3212 else
3213 #endif
3214 fd = socket(PF_INET, SOCK_STREAM, 0);
3215
3216 if (fd < 0)
3217 goto fail;
3218
3219 if (!is_waitconnect)
3220 socket_set_nonblock(fd);
3221
3222 s->connected = 0;
3223 s->fd = -1;
3224 s->listen_fd = -1;
3225 s->is_unix = is_unix;
3226 s->do_nodelay = do_nodelay && !is_unix;
3227
3228 chr->opaque = s;
3229 chr->chr_write = tcp_chr_write;
3230 chr->chr_close = tcp_chr_close;
3231
3232 if (is_listen) {
3233 /* allow fast reuse */
3234 #ifndef _WIN32
3235 if (is_unix) {
3236 char path[109];
3237 strncpy(path, uaddr.sun_path, 108);
3238 path[108] = 0;
3239 unlink(path);
3240 } else
3241 #endif
3242 {
3243 val = 1;
3244 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3245 }
3246
3247 ret = bind(fd, addr, addrlen);
3248 if (ret < 0)
3249 goto fail;
3250
3251 ret = listen(fd, 0);
3252 if (ret < 0)
3253 goto fail;
3254
3255 s->listen_fd = fd;
3256 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3257 if (is_telnet)
3258 s->do_telnetopt = 1;
3259 } else {
3260 for(;;) {
3261 ret = connect(fd, addr, addrlen);
3262 if (ret < 0) {
3263 err = socket_error();
3264 if (err == EINTR || err == EWOULDBLOCK) {
3265 } else if (err == EINPROGRESS) {
3266 break;
3267 #ifdef _WIN32
3268 } else if (err == WSAEALREADY) {
3269 break;
3270 #endif
3271 } else {
3272 goto fail;
3273 }
3274 } else {
3275 s->connected = 1;
3276 break;
3277 }
3278 }
3279 s->fd = fd;
3280 socket_set_nodelay(fd);
3281 if (s->connected)
3282 tcp_chr_connect(chr);
3283 else
3284 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3285 }
3286
3287 if (is_listen && is_waitconnect) {
3288 printf("QEMU waiting for connection on: %s\n", host_str);
3289 tcp_chr_accept(chr);
3290 socket_set_nonblock(s->listen_fd);
3291 }
3292
3293 return chr;
3294 fail:
3295 if (fd >= 0)
3296 closesocket(fd);
3297 qemu_free(s);
3298 qemu_free(chr);
3299 return NULL;
3300 }
3301
3302 CharDriverState *qemu_chr_open(const char *filename)
3303 {
3304 const char *p;
3305
3306 if (!strcmp(filename, "vc")) {
3307 return text_console_init(&display_state, 0);
3308 } else if (strstart(filename, "vc:", &p)) {
3309 return text_console_init(&display_state, p);
3310 } else if (!strcmp(filename, "null")) {
3311 return qemu_chr_open_null();
3312 } else
3313 if (strstart(filename, "tcp:", &p)) {
3314 return qemu_chr_open_tcp(p, 0, 0);
3315 } else
3316 if (strstart(filename, "telnet:", &p)) {
3317 return qemu_chr_open_tcp(p, 1, 0);
3318 } else
3319 if (strstart(filename, "udp:", &p)) {
3320 return qemu_chr_open_udp(p);
3321 } else
3322 if (strstart(filename, "mon:", &p)) {
3323 CharDriverState *drv = qemu_chr_open(p);
3324 if (drv) {
3325 drv = qemu_chr_open_mux(drv);
3326 monitor_init(drv, !nographic);
3327 return drv;
3328 }
3329 printf("Unable to open driver: %s\n", p);
3330 return 0;
3331 } else
3332 #ifndef _WIN32
3333 if (strstart(filename, "unix:", &p)) {
3334 return qemu_chr_open_tcp(p, 0, 1);
3335 } else if (strstart(filename, "file:", &p)) {
3336 return qemu_chr_open_file_out(p);
3337 } else if (strstart(filename, "pipe:", &p)) {
3338 return qemu_chr_open_pipe(p);
3339 } else if (!strcmp(filename, "pty")) {
3340 return qemu_chr_open_pty();
3341 } else if (!strcmp(filename, "stdio")) {
3342 return qemu_chr_open_stdio();
3343 } else
3344 #if defined(__linux__)
3345 if (strstart(filename, "/dev/parport", NULL)) {
3346 return qemu_chr_open_pp(filename);
3347 } else
3348 #endif
3349 #if defined(__linux__) || defined(__sun__)
3350 if (strstart(filename, "/dev/", NULL)) {
3351 return qemu_chr_open_tty(filename);
3352 } else
3353 #endif
3354 #else /* !_WIN32 */
3355 if (strstart(filename, "COM", NULL)) {
3356 return qemu_chr_open_win(filename);
3357 } else
3358 if (strstart(filename, "pipe:", &p)) {
3359 return qemu_chr_open_win_pipe(p);
3360 } else
3361 if (strstart(filename, "con:", NULL)) {
3362 return qemu_chr_open_win_con(filename);
3363 } else
3364 if (strstart(filename, "file:", &p)) {
3365 return qemu_chr_open_win_file_out(p);
3366 }
3367 #endif
3368 {
3369 return NULL;
3370 }
3371 }
3372
3373 void qemu_chr_close(CharDriverState *chr)
3374 {
3375 if (chr->chr_close)
3376 chr->chr_close(chr);
3377 }
3378
3379 /***********************************************************/
3380 /* network device redirectors */
3381
3382 void hex_dump(FILE *f, const uint8_t *buf, int size)
3383 {
3384 int len, i, j, c;
3385
3386 for(i=0;i<size;i+=16) {
3387 len = size - i;
3388 if (len > 16)
3389 len = 16;
3390 fprintf(f, "%08x ", i);
3391 for(j=0;j<16;j++) {
3392 if (j < len)
3393 fprintf(f, " %02x", buf[i+j]);
3394 else
3395 fprintf(f, " ");
3396 }
3397 fprintf(f, " ");
3398 for(j=0;j<len;j++) {
3399 c = buf[i+j];
3400 if (c < ' ' || c > '~')
3401 c = '.';
3402 fprintf(f, "%c", c);
3403 }
3404 fprintf(f, "\n");
3405 }
3406 }
3407
3408 static int parse_macaddr(uint8_t *macaddr, const char *p)
3409 {
3410 int i;
3411 for(i = 0; i < 6; i++) {
3412 macaddr[i] = strtol(p, (char **)&p, 16);
3413 if (i == 5) {
3414 if (*p != '\0')
3415 return -1;
3416 } else {
3417 if (*p != ':')
3418 return -1;
3419 p++;
3420 }
3421 }
3422 return 0;
3423 }
3424
3425 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3426 {
3427 const char *p, *p1;
3428 int len;
3429 p = *pp;
3430 p1 = strchr(p, sep);
3431 if (!p1)
3432 return -1;
3433 len = p1 - p;
3434 p1++;
3435 if (buf_size > 0) {
3436 if (len > buf_size - 1)
3437 len = buf_size - 1;
3438 memcpy(buf, p, len);
3439 buf[len] = '\0';
3440 }
3441 *pp = p1;
3442 return 0;
3443 }
3444
3445 int parse_host_src_port(struct sockaddr_in *haddr,
3446 struct sockaddr_in *saddr,
3447 const char *input_str)
3448 {
3449 char *str = strdup(input_str);
3450 char *host_str = str;
3451 char *src_str;
3452 char *ptr;
3453
3454 /*
3455 * Chop off any extra arguments at the end of the string which
3456 * would start with a comma, then fill in the src port information
3457 * if it was provided else use the "any address" and "any port".
3458 */
3459 if ((ptr = strchr(str,',')))
3460 *ptr = '\0';
3461
3462 if ((src_str = strchr(input_str,'@'))) {
3463 *src_str = '\0';
3464 src_str++;
3465 }
3466
3467 if (parse_host_port(haddr, host_str) < 0)
3468 goto fail;
3469
3470 if (!src_str || *src_str == '\0')
3471 src_str = ":0";
3472
3473 if (parse_host_port(saddr, src_str) < 0)
3474 goto fail;
3475
3476 free(str);
3477 return(0);
3478
3479 fail:
3480 free(str);
3481 return -1;
3482 }
3483
3484 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3485 {
3486 char buf[512];
3487 struct hostent *he;
3488 const char *p, *r;
3489 int port;
3490
3491 p = str;
3492 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3493 return -1;
3494 saddr->sin_family = AF_INET;
3495 if (buf[0] == '\0') {
3496 saddr->sin_addr.s_addr = 0;
3497 } else {
3498 if (isdigit(buf[0])) {
3499 if (!inet_aton(buf, &saddr->sin_addr))
3500 return -1;
3501 } else {
3502 if ((he = gethostbyname(buf)) == NULL)
3503 return - 1;
3504 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3505 }
3506 }
3507 port = strtol(p, (char **)&r, 0);
3508 if (r == p)
3509 return -1;
3510 saddr->sin_port = htons(port);
3511 return 0;
3512 }
3513
3514 #ifndef _WIN32
3515 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3516 {
3517 const char *p;
3518 int len;
3519
3520 len = MIN(108, strlen(str));
3521 p = strchr(str, ',');
3522 if (p)
3523 len = MIN(len, p - str);
3524
3525 memset(uaddr, 0, sizeof(*uaddr));
3526
3527 uaddr->sun_family = AF_UNIX;
3528 memcpy(uaddr->sun_path, str, len);
3529
3530 return 0;
3531 }
3532 #endif
3533
3534 /* find or alloc a new VLAN */
3535 VLANState *qemu_find_vlan(int id)
3536 {
3537 VLANState **pvlan, *vlan;
3538 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3539 if (vlan->id == id)
3540 return vlan;
3541 }
3542 vlan = qemu_mallocz(sizeof(VLANState));
3543 if (!vlan)
3544 return NULL;
3545 vlan->id = id;
3546 vlan->next = NULL;
3547 pvlan = &first_vlan;
3548 while (*pvlan != NULL)
3549 pvlan = &(*pvlan)->next;
3550 *pvlan = vlan;
3551 return vlan;
3552 }
3553
3554 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3555 IOReadHandler *fd_read,
3556 IOCanRWHandler *fd_can_read,
3557 void *opaque)
3558 {
3559 VLANClientState *vc, **pvc;
3560 vc = qemu_mallocz(sizeof(VLANClientState));
3561 if (!vc)
3562 return NULL;
3563 vc->fd_read = fd_read;
3564 vc->fd_can_read = fd_can_read;
3565 vc->opaque = opaque;
3566 vc->vlan = vlan;
3567
3568 vc->next = NULL;
3569 pvc = &vlan->first_client;
3570 while (*pvc != NULL)
3571 pvc = &(*pvc)->next;
3572 *pvc = vc;
3573 return vc;
3574 }
3575
3576 int qemu_can_send_packet(VLANClientState *vc1)
3577 {
3578 VLANState *vlan = vc1->vlan;
3579 VLANClientState *vc;
3580
3581 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3582 if (vc != vc1) {
3583 if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3584 return 1;
3585 }
3586 }
3587 return 0;
3588 }
3589
3590 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3591 {
3592 VLANState *vlan = vc1->vlan;
3593 VLANClientState *vc;
3594
3595 #if 0
3596 printf("vlan %d send:\n", vlan->id);
3597 hex_dump(stdout, buf, size);
3598 #endif
3599 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3600 if (vc != vc1) {
3601 vc->fd_read(vc->opaque, buf, size);
3602 }
3603 }
3604 }
3605
3606 #if defined(CONFIG_SLIRP)
3607
3608 /* slirp network adapter */
3609
3610 static int slirp_inited;
3611 static VLANClientState *slirp_vc;
3612
3613 int slirp_can_output(void)
3614 {
3615 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3616 }
3617
3618 void slirp_output(const uint8_t *pkt, int pkt_len)
3619 {
3620 #if 0
3621 printf("slirp output:\n");
3622 hex_dump(stdout, pkt, pkt_len);
3623 #endif
3624 if (!slirp_vc)
3625 return;
3626 qemu_send_packet(slirp_vc, pkt, pkt_len);
3627 }
3628
3629 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3630 {
3631 #if 0
3632 printf("slirp input:\n");
3633 hex_dump(stdout, buf, size);
3634 #endif
3635 slirp_input(buf, size);
3636 }
3637
3638 static int net_slirp_init(VLANState *vlan)
3639 {
3640 if (!slirp_inited) {
3641 slirp_inited = 1;
3642 slirp_init();
3643 }
3644 slirp_vc = qemu_new_vlan_client(vlan,
3645 slirp_receive, NULL, NULL);
3646 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3647 return 0;
3648 }
3649
3650 static void net_slirp_redir(const char *redir_str)
3651 {
3652 int is_udp;
3653 char buf[256], *r;
3654 const char *p;
3655 struct in_addr guest_addr;
3656 int host_port, guest_port;
3657
3658 if (!slirp_inited) {
3659 slirp_inited = 1;
3660 slirp_init();
3661 }
3662
3663 p = redir_str;
3664 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3665 goto fail;
3666 if (!strcmp(buf, "tcp")) {
3667 is_udp = 0;
3668 } else if (!strcmp(buf, "udp")) {
3669 is_udp = 1;
3670 } else {
3671 goto fail;
3672 }
3673
3674 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3675 goto fail;
3676 host_port = strtol(buf, &r, 0);
3677 if (r == buf)
3678 goto fail;
3679
3680 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3681 goto fail;
3682 if (buf[0] == '\0') {
3683 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3684 }
3685 if (!inet_aton(buf, &guest_addr))
3686 goto fail;
3687
3688 guest_port = strtol(p, &r, 0);
3689 if (r == p)
3690 goto fail;
3691
3692 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3693 fprintf(stderr, "qemu: could not set up redirection\n");
3694 exit(1);
3695 }
3696 return;
3697 fail:
3698 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3699 exit(1);
3700 }
3701
3702 #ifndef _WIN32
3703
3704 char smb_dir[1024];
3705
3706 static void smb_exit(void)
3707 {
3708 DIR *d;
3709 struct dirent *de;
3710 char filename[1024];
3711
3712 /* erase all the files in the directory */
3713 d = opendir(smb_dir);
3714 for(;;) {
3715 de = readdir(d);
3716 if (!de)
3717 break;
3718 if (strcmp(de->d_name, ".") != 0 &&
3719 strcmp(de->d_name, "..") != 0) {
3720 snprintf(filename, sizeof(filename), "%s/%s",
3721 smb_dir, de->d_name);
3722 unlink(filename);
3723 }
3724 }
3725 closedir(d);
3726 rmdir(smb_dir);
3727 }
3728
3729 /* automatic user mode samba server configuration */
3730 void net_slirp_smb(const char *exported_dir)
3731 {
3732 char smb_conf[1024];
3733 char smb_cmdline[1024];
3734 FILE *f;
3735
3736 if (!slirp_inited) {
3737 slirp_inited = 1;
3738 slirp_init();
3739 }
3740
3741 /* XXX: better tmp dir construction */
3742 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3743 if (mkdir(smb_dir, 0700) < 0) {
3744 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3745 exit(1);
3746 }
3747 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3748
3749 f = fopen(smb_conf, "w");
3750 if (!f) {
3751 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3752 exit(1);
3753 }
3754 fprintf(f,
3755 "[global]\n"
3756 "private dir=%s\n"
3757 "smb ports=0\n"
3758 "socket address=127.0.0.1\n"
3759 "pid directory=%s\n"
3760 "lock directory=%s\n"
3761 "log file=%s/log.smbd\n"
3762 "smb passwd file=%s/smbpasswd\n"
3763 "security = share\n"
3764 "[qemu]\n"
3765 "path=%s\n"
3766 "read only=no\n"
3767 "guest ok=yes\n",
3768 smb_dir,
3769 smb_dir,
3770 smb_dir,
3771 smb_dir,
3772 smb_dir,
3773 exported_dir
3774 );
3775 fclose(f);
3776 atexit(smb_exit);
3777
3778 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3779 SMBD_COMMAND, smb_conf);
3780
3781 slirp_add_exec(0, smb_cmdline, 4, 139);
3782 }
3783
3784 #endif /* !defined(_WIN32) */
3785
3786 #endif /* CONFIG_SLIRP */
3787
3788 #if !defined(_WIN32)
3789
3790 typedef struct TAPState {
3791 VLANClientState *vc;
3792 int fd;
3793 char down_script[1024];
3794 } TAPState;
3795
3796 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3797 {
3798 TAPState *s = opaque;
3799 int ret;
3800 for(;;) {
3801 ret = write(s->fd, buf, size);
3802 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3803 } else {
3804 break;
3805 }
3806 }
3807 }
3808
3809 static void tap_send(void *opaque)
3810 {
3811 TAPState *s = opaque;
3812 uint8_t buf[4096];
3813 int size;
3814
3815 #ifdef __sun__
3816 struct strbuf sbuf;
3817 int f = 0;
3818 sbuf.maxlen = sizeof(buf);
3819 sbuf.buf = buf;
3820 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3821 #else
3822 size = read(s->fd, buf, sizeof(buf));
3823 #endif
3824 if (size > 0) {
3825 qemu_send_packet(s->vc, buf, size);
3826 }
3827 }
3828
3829 /* fd support */
3830
3831 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3832 {
3833 TAPState *s;
3834
3835 s = qemu_mallocz(sizeof(TAPState));
3836 if (!s)
3837 return NULL;
3838 s->fd = fd;
3839 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3840 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3841 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3842 return s;
3843 }
3844
3845 #if defined (_BSD) || defined (__FreeBSD_kernel__)
3846 static int tap_open(char *ifname, int ifname_size)
3847 {
3848 int fd;
3849 char *dev;
3850 struct stat s;
3851
3852 TFR(fd = open("/dev/tap", O_RDWR));
3853 if (fd < 0) {
3854 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3855 return -1;
3856 }
3857
3858 fstat(fd, &s);
3859 dev = devname(s.st_rdev, S_IFCHR);
3860 pstrcpy(ifname, ifname_size, dev);
3861
3862 fcntl(fd, F_SETFL, O_NONBLOCK);
3863 return fd;
3864 }
3865 #elif defined(__sun__)
3866 #define TUNNEWPPA (('T'<<16) | 0x0001)
3867 /*
3868 * Allocate TAP device, returns opened fd.
3869 * Stores dev name in the first arg(must be large enough).
3870 */
3871 int tap_alloc(char *dev)
3872 {
3873 int tap_fd, if_fd, ppa = -1;
3874 static int ip_fd = 0;
3875 char *ptr;
3876
3877 static int arp_fd = 0;
3878 int ip_muxid, arp_muxid;
3879 struct strioctl strioc_if, strioc_ppa;
3880 int link_type = I_PLINK;;
3881 struct lifreq ifr;
3882 char actual_name[32] = "";
3883
3884 memset(&ifr, 0x0, sizeof(ifr));
3885
3886 if( *dev ){
3887 ptr = dev;
3888 while( *ptr && !isdigit((int)*ptr) ) ptr++;
3889 ppa = atoi(ptr);
3890 }
3891
3892 /* Check if IP device was opened */
3893 if( ip_fd )
3894 close(ip_fd);
3895
3896 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
3897 if (ip_fd < 0) {
3898 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3899 return -1;
3900 }
3901
3902 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
3903 if (tap_fd < 0) {
3904 syslog(LOG_ERR, "Can't open /dev/tap");
3905 return -1;
3906 }
3907
3908 /* Assign a new PPA and get its unit number. */
3909 strioc_ppa.ic_cmd = TUNNEWPPA;
3910 strioc_ppa.ic_timout = 0;
3911 strioc_ppa.ic_len = sizeof(ppa);
3912 strioc_ppa.ic_dp = (char *)&ppa;
3913 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3914 syslog (LOG_ERR, "Can't assign new interface");
3915
3916 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
3917 if (if_fd < 0) {
3918 syslog(LOG_ERR, "Can't open /dev/tap (2)");
3919 return -1;
3920 }
3921 if(ioctl(if_fd, I_PUSH, "ip") < 0){
3922 syslog(LOG_ERR, "Can't push IP module");
3923 return -1;
3924 }
3925
3926 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3927 syslog(LOG_ERR, "Can't get flags\n");
3928
3929 snprintf (actual_name, 32, "tap%d", ppa);
3930 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3931
3932 ifr.lifr_ppa = ppa;
3933 /* Assign ppa according to the unit number returned by tun device */
3934
3935 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3936 syslog (LOG_ERR, "Can't set PPA %d", ppa);
3937 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3938 syslog (LOG_ERR, "Can't get flags\n");
3939 /* Push arp module to if_fd */
3940 if (ioctl (if_fd, I_PUSH, "arp") < 0)
3941 syslog (LOG_ERR, "Can't push ARP module (2)");
3942
3943 /* Push arp module to ip_fd */
3944 if (ioctl (ip_fd, I_POP, NULL) < 0)
3945 syslog (LOG_ERR, "I_POP failed\n");
3946 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3947 syslog (LOG_ERR, "Can't push ARP module (3)\n");
3948 /* Open arp_fd */
3949 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
3950 if (arp_fd < 0)
3951 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3952
3953 /* Set ifname to arp */
3954 strioc_if.ic_cmd = SIOCSLIFNAME;
3955 strioc_if.ic_timout = 0;
3956 strioc_if.ic_len = sizeof(ifr);
3957 strioc_if.ic_dp = (char *)&ifr;
3958 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3959 syslog (LOG_ERR, "Can't set ifname to arp\n");
3960 }
3961
3962 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3963 syslog(LOG_ERR, "Can't link TAP device to IP");
3964 return -1;
3965 }
3966
3967 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3968 syslog (LOG_ERR, "Can't link TAP device to ARP");
3969
3970 close (if_fd);
3971
3972 memset(&ifr, 0x0, sizeof(ifr));
3973 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3974 ifr.lifr_ip_muxid = ip_muxid;
3975 ifr.lifr_arp_muxid = arp_muxid;
3976
3977 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3978 {
3979 ioctl (ip_fd, I_PUNLINK , arp_muxid);
3980 ioctl (ip_fd, I_PUNLINK, ip_muxid);
3981 syslog (LOG_ERR, "Can't set multiplexor id");
3982 }
3983
3984 sprintf(dev, "tap%d", ppa);
3985 return tap_fd;
3986 }
3987
3988 static int tap_open(char *ifname, int ifname_size)
3989 {
3990 char dev[10]="";
3991 int fd;
3992 if( (fd = tap_alloc(dev)) < 0 ){
3993 fprintf(stderr, "Cannot allocate TAP device\n");
3994 return -1;
3995 }
3996 pstrcpy(ifname, ifname_size, dev);
3997 fcntl(fd, F_SETFL, O_NONBLOCK);
3998 return fd;
3999 }
4000 #else
4001 static int tap_open(char *ifname, int ifname_size)
4002 {
4003 struct ifreq ifr;
4004 int fd, ret;
4005
4006 TFR(fd = open("/dev/net/tun", O_RDWR));
4007 if (fd < 0) {
4008 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4009 return -1;
4010 }
4011 memset(&ifr, 0, sizeof(ifr));
4012 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4013 if (ifname[0] != '\0')
4014 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4015 else
4016 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4017 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4018 if (ret != 0) {
4019 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4020 close(fd);
4021 return -1;
4022 }
4023 pstrcpy(ifname, ifname_size, ifr.ifr_name);
4024 fcntl(fd, F_SETFL, O_NONBLOCK);
4025 return fd;
4026 }
4027 #endif
4028
4029 static int launch_script(const char *setup_script, const char *ifname, int fd)
4030 {
4031 int pid, status;
4032 char *args[3];
4033 char **parg;
4034
4035 /* try to launch network script */
4036 pid = fork();
4037 if (pid >= 0) {
4038 if (pid == 0) {
4039 int open_max = sysconf (_SC_OPEN_MAX), i;
4040 for (i = 0; i < open_max; i++)
4041 if (i != STDIN_FILENO &&
4042 i != STDOUT_FILENO &&
4043 i != STDERR_FILENO &&
4044 i != fd)
4045 close(i);
4046
4047 parg = args;
4048 *parg++ = (char *)setup_script;
4049 *parg++ = (char *)ifname;
4050 *parg++ = NULL;
4051 execv(setup_script, args);
4052 _exit(1);
4053 }
4054 while (waitpid(pid, &status, 0) != pid);
4055 if (!WIFEXITED(status) ||
4056 WEXITSTATUS(status) != 0) {
4057 fprintf(stderr, "%s: could not launch network script\n",
4058 setup_script);
4059 return -1;
4060 }
4061 }
4062 return 0;
4063 }
4064
4065 static int net_tap_init(VLANState *vlan, const char *ifname1,
4066 const char *setup_script, const char *down_script)
4067 {
4068 TAPState *s;
4069 int fd;
4070 char ifname[128];
4071
4072 if (ifname1 != NULL)
4073 pstrcpy(ifname, sizeof(ifname), ifname1);
4074 else
4075 ifname[0] = '\0';
4076 TFR(fd = tap_open(ifname, sizeof(ifname)));
4077 if (fd < 0)
4078 return -1;
4079
4080 if (!setup_script || !strcmp(setup_script, "no"))
4081 setup_script = "";
4082 if (setup_script[0] != '\0') {
4083 if (launch_script(setup_script, ifname, fd))
4084 return -1;
4085 }
4086 s = net_tap_fd_init(vlan, fd);
4087 if (!s)
4088 return -1;
4089 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4090 "tap: ifname=%s setup_script=%s", ifname, setup_script);
4091 if (down_script && strcmp(down_script, "no"))
4092 snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4093 return 0;
4094 }
4095
4096 #endif /* !_WIN32 */
4097
4098 /* network connection */
4099 typedef struct NetSocketState {
4100 VLANClientState *vc;
4101 int fd;
4102 int state; /* 0 = getting length, 1 = getting data */
4103 int index;
4104 int packet_len;
4105 uint8_t buf[4096];
4106 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4107 } NetSocketState;
4108
4109 typedef struct NetSocketListenState {
4110 VLANState *vlan;
4111 int fd;
4112 } NetSocketListenState;
4113
4114 /* XXX: we consider we can send the whole packet without blocking */
4115 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4116 {
4117 NetSocketState *s = opaque;
4118 uint32_t len;
4119 len = htonl(size);
4120
4121 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4122 send_all(s->fd, buf, size);
4123 }
4124
4125 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4126 {
4127 NetSocketState *s = opaque;
4128 sendto(s->fd, buf, size, 0,
4129 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4130 }
4131
4132 static void net_socket_send(void *opaque)
4133 {
4134 NetSocketState *s = opaque;
4135 int l, size, err;
4136 uint8_t buf1[4096];
4137 const uint8_t *buf;
4138
4139 size = recv(s->fd, buf1, sizeof(buf1), 0);
4140 if (size < 0) {
4141 err = socket_error();
4142 if (err != EWOULDBLOCK)
4143 goto eoc;
4144 } else if (size == 0) {
4145 /* end of connection */
4146 eoc:
4147 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4148 closesocket(s->fd);
4149 return;
4150 }
4151 buf = buf1;
4152 while (size > 0) {
4153 /* reassemble a packet from the network */
4154 switch(s->state) {
4155 case 0:
4156 l = 4 - s->index;
4157 if (l > size)
4158 l = size;
4159 memcpy(s->buf + s->index, buf, l);
4160 buf += l;
4161 size -= l;
4162 s->index += l;
4163 if (s->index == 4) {
4164 /* got length */
4165 s->packet_len = ntohl(*(uint32_t *)s->buf);
4166 s->index = 0;
4167 s->state = 1;
4168 }
4169 break;
4170 case 1:
4171 l = s->packet_len - s->index;
4172 if (l > size)
4173 l = size;
4174 memcpy(s->buf + s->index, buf, l);
4175 s->index += l;
4176 buf += l;
4177 size -= l;
4178 if (s->index >= s->packet_len) {
4179 qemu_send_packet(s->vc, s->buf, s->packet_len);
4180 s->index = 0;
4181 s->state = 0;
4182 }
4183 break;
4184 }
4185 }
4186 }
4187
4188 static void net_socket_send_dgram(void *opaque)
4189 {
4190 NetSocketState *s = opaque;
4191 int size;
4192
4193 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4194 if (size < 0)
4195 return;
4196 if (size == 0) {
4197 /* end of connection */
4198 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4199 return;
4200 }
4201 qemu_send_packet(s->vc, s->buf, size);
4202 }
4203
4204 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4205 {
4206 struct ip_mreq imr;
4207 int fd;
4208 int val, ret;
4209 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4210 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4211 inet_ntoa(mcastaddr->sin_addr),
4212 (int)ntohl(mcastaddr->sin_addr.s_addr));
4213 return -1;
4214
4215 }
4216 fd = socket(PF_INET, SOCK_DGRAM, 0);
4217 if (fd < 0) {
4218 perror("socket(PF_INET, SOCK_DGRAM)");
4219 return -1;
4220 }
4221
4222 val = 1;
4223 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4224 (const char *)&val, sizeof(val));
4225 if (ret < 0) {
4226 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4227 goto fail;
4228 }
4229
4230 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4231 if (ret < 0) {
4232 perror("bind");
4233 goto fail;
4234 }
4235
4236 /* Add host to multicast group */
4237 imr.imr_multiaddr = mcastaddr->sin_addr;
4238 imr.imr_interface.s_addr = htonl(INADDR_ANY);
4239
4240 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4241 (const char *)&imr, sizeof(struct ip_mreq));
4242 if (ret < 0) {
4243 perror("setsockopt(IP_ADD_MEMBERSHIP)");
4244 goto fail;
4245 }
4246
4247 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4248 val = 1;
4249 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4250 (const char *)&val, sizeof(val));
4251 if (ret < 0) {
4252 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4253 goto fail;
4254 }
4255
4256 socket_set_nonblock(fd);
4257 return fd;
4258 fail:
4259 if (fd >= 0)
4260 closesocket(fd);
4261 return -1;
4262 }
4263
4264 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4265 int is_connected)
4266 {
4267 struct sockaddr_in saddr;
4268 int newfd;
4269 socklen_t saddr_len;
4270 NetSocketState *s;
4271
4272 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4273 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4274 * by ONLY ONE process: we must "clone" this dgram socket --jjo
4275 */
4276
4277 if (is_connected) {
4278 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4279 /* must be bound */
4280 if (saddr.sin_addr.s_addr==0) {
4281 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4282 fd);
4283 return NULL;
4284 }
4285 /* clone dgram socket */
4286 newfd = net_socket_mcast_create(&saddr);
4287 if (newfd < 0) {
4288 /* error already reported by net_socket_mcast_create() */
4289 close(fd);
4290 return NULL;
4291 }
4292 /* clone newfd to fd, close newfd */
4293 dup2(newfd, fd);
4294 close(newfd);
4295
4296 } else {
4297 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4298 fd, strerror(errno));
4299 return NULL;
4300 }
4301 }
4302
4303 s = qemu_mallocz(sizeof(NetSocketState));
4304 if (!s)
4305 return NULL;
4306 s->fd = fd;
4307
4308 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4309 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4310
4311 /* mcast: save bound address as dst */
4312 if (is_connected) s->dgram_dst=saddr;
4313
4314 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4315 "socket: fd=%d (%s mcast=%s:%d)",
4316 fd, is_connected? "cloned" : "",
4317 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4318 return s;
4319 }
4320
4321 static void net_socket_connect(void *opaque)
4322 {
4323 NetSocketState *s = opaque;
4324 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4325 }
4326
4327 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4328 int is_connected)
4329 {
4330 NetSocketState *s;
4331 s = qemu_mallocz(sizeof(NetSocketState));
4332 if (!s)
4333 return NULL;
4334 s->fd = fd;
4335 s->vc = qemu_new_vlan_client(vlan,
4336 net_socket_receive, NULL, s);
4337 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4338 "socket: fd=%d", fd);
4339 if (is_connected) {
4340 net_socket_connect(s);
4341 } else {
4342 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4343 }
4344 return s;
4345 }
4346
4347 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4348 int is_connected)
4349 {
4350 int so_type=-1, optlen=sizeof(so_type);
4351
4352 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
4353 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4354 return NULL;
4355 }
4356 switch(so_type) {
4357 case SOCK_DGRAM:
4358 return net_socket_fd_init_dgram(vlan, fd, is_connected);
4359 case SOCK_STREAM:
4360 return net_socket_fd_init_stream(vlan, fd, is_connected);
4361 default:
4362 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4363 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4364 return net_socket_fd_init_stream(vlan, fd, is_connected);
4365 }
4366 return NULL;
4367 }
4368
4369 static void net_socket_accept(void *opaque)
4370 {
4371 NetSocketListenState *s = opaque;
4372 NetSocketState *s1;
4373 struct sockaddr_in saddr;
4374 socklen_t len;
4375 int fd;
4376
4377 for(;;) {
4378 len = sizeof(saddr);
4379 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4380 if (fd < 0 && errno != EINTR) {
4381 return;
4382 } else if (fd >= 0) {
4383 break;
4384 }
4385 }
4386 s1 = net_socket_fd_init(s->vlan, fd, 1);
4387 if (!s1) {
4388 closesocket(fd);
4389 } else {
4390 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4391 "socket: connection from %s:%d",
4392 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4393 }
4394 }
4395
4396 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4397 {
4398 NetSocketListenState *s;
4399 int fd, val, ret;
4400 struct sockaddr_in saddr;
4401
4402 if (parse_host_port(&saddr, host_str) < 0)
4403 return -1;
4404
4405 s = qemu_mallocz(sizeof(NetSocketListenState));
4406 if (!s)
4407 return -1;
4408
4409 fd = socket(PF_INET, SOCK_STREAM, 0);
4410 if (fd < 0) {
4411 perror("socket");
4412 return -1;
4413 }
4414 socket_set_nonblock(fd);
4415
4416 /* allow fast reuse */
4417 val = 1;
4418 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4419
4420 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4421 if (ret < 0) {
4422 perror("bind");
4423 return -1;
4424 }
4425 ret = listen(fd, 0);
4426 if (ret < 0) {
4427 perror("listen");
4428 return -1;
4429 }
4430 s->vlan = vlan;
4431 s->fd = fd;
4432 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4433 return 0;
4434 }
4435
4436 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4437 {
4438 NetSocketState *s;
4439 int fd, connected, ret, err;
4440 struct sockaddr_in saddr;
4441
4442 if (parse_host_port(&saddr, host_str) < 0)
4443 return -1;
4444
4445 fd = socket(PF_INET, SOCK_STREAM, 0);
4446 if (fd < 0) {
4447 perror("socket");
4448 return -1;
4449 }
4450 socket_set_nonblock(fd);
4451
4452 connected = 0;
4453 for(;;) {
4454 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4455 if (ret < 0) {
4456 err = socket_error();
4457 if (err == EINTR || err == EWOULDBLOCK) {
4458 } else if (err == EINPROGRESS) {
4459 break;
4460 #ifdef _WIN32
4461 } else if (err == WSAEALREADY) {
4462 break;
4463 #endif
4464 } else {
4465 perror("connect");
4466 closesocket(fd);
4467 return -1;
4468 }
4469 } else {
4470 connected = 1;
4471 break;
4472 }
4473 }
4474 s = net_socket_fd_init(vlan, fd, connected);
4475 if (!s)
4476 return -1;
4477 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4478 "socket: connect to %s:%d",
4479 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4480 return 0;
4481 }
4482
4483 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4484 {
4485 NetSocketState *s;
4486 int fd;
4487 struct sockaddr_in saddr;
4488
4489 if (parse_host_port(&saddr, host_str) < 0)
4490 return -1;
4491
4492
4493 fd = net_socket_mcast_create(&saddr);
4494 if (fd < 0)
4495 return -1;
4496
4497 s = net_socket_fd_init(vlan, fd, 0);
4498 if (!s)
4499 return -1;
4500
4501 s->dgram_dst = saddr;
4502
4503 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4504 "socket: mcast=%s:%d",
4505 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4506 return 0;
4507
4508 }
4509
4510 static int get_param_value(char *buf, int buf_size,
4511 const char *tag, const char *str)
4512 {
4513 const char *p;
4514 char *q;
4515 char option[128];
4516
4517 p = str;
4518 for(;;) {
4519 q = option;
4520 while (*p != '\0' && *p != '=') {
4521 if ((q - option) < sizeof(option) - 1)
4522 *q++ = *p;
4523 p++;
4524 }
4525 *q = '\0';
4526 if (*p != '=')
4527 break;
4528 p++;
4529 if (!strcmp(tag, option)) {
4530 q = buf;
4531 while (*p != '\0' && *p != ',') {
4532 if ((q - buf) < buf_size - 1)
4533 *q++ = *p;
4534 p++;
4535 }
4536 *q = '\0';
4537 return q - buf;
4538 } else {
4539 while (*p != '\0' && *p != ',') {
4540 p++;
4541 }
4542 }
4543 if (*p != ',')
4544 break;
4545 p++;
4546 }
4547 return 0;
4548 }
4549
4550 static int net_client_init(const char *str)
4551 {
4552 const char *p;
4553 char *q;
4554 char device[64];
4555 char buf[1024];
4556 int vlan_id, ret;
4557 VLANState *vlan;
4558
4559 p = str;
4560 q = device;
4561 while (*p != '\0' && *p != ',') {
4562 if ((q - device) < sizeof(device) - 1)
4563 *q++ = *p;
4564 p++;
4565 }
4566 *q = '\0';
4567 if (*p == ',')
4568 p++;
4569 vlan_id = 0;
4570 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4571 vlan_id = strtol(buf, NULL, 0);
4572 }
4573 vlan = qemu_find_vlan(vlan_id);
4574 if (!vlan) {
4575 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4576 return -1;
4577 }
4578 if (!strcmp(device, "nic")) {
4579 NICInfo *nd;
4580 uint8_t *macaddr;
4581
4582 if (nb_nics >= MAX_NICS) {
4583 fprintf(stderr, "Too Many NICs\n");
4584 return -1;
4585 }
4586 nd = &nd_table[nb_nics];
4587 macaddr = nd->macaddr;
4588 macaddr[0] = 0x52;
4589 macaddr[1] = 0x54;
4590 macaddr[2] = 0x00;
4591 macaddr[3] = 0x12;
4592 macaddr[4] = 0x34;
4593 macaddr[5] = 0x56 + nb_nics;
4594
4595 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4596 if (parse_macaddr(macaddr, buf) < 0) {
4597 fprintf(stderr, "invalid syntax for ethernet address\n");
4598 return -1;
4599 }
4600 }
4601 if (get_param_value(buf, sizeof(buf), "model", p)) {
4602 nd->model = strdup(buf);
4603 }
4604 nd->vlan = vlan;
4605 nb_nics++;
4606 vlan->nb_guest_devs++;
4607 ret = 0;
4608 } else
4609 if (!strcmp(device, "none")) {
4610 /* does nothing. It is needed to signal that no network cards
4611 are wanted */
4612 ret = 0;
4613 } else
4614 #ifdef CONFIG_SLIRP
4615 if (!strcmp(device, "user")) {
4616 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4617 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4618 }
4619 vlan->nb_host_devs++;
4620 ret = net_slirp_init(vlan);
4621 } else
4622 #endif
4623 #ifdef _WIN32
4624 if (!strcmp(device, "tap")) {
4625 char ifname[64];
4626 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4627 fprintf(stderr, "tap: no interface name\n");
4628 return -1;
4629 }
4630 vlan->nb_host_devs++;
4631 ret = tap_win32_init(vlan, ifname);
4632 } else
4633 #else
4634 if (!strcmp(device, "tap")) {
4635 char ifname[64];
4636 char setup_script[1024], down_script[1024];
4637 int fd;
4638 vlan->nb_host_devs++;
4639 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4640 fd = strtol(buf, NULL, 0);
4641 ret = -1;
4642 if (net_tap_fd_init(vlan, fd))
4643 ret = 0;
4644 } else {
4645 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4646 ifname[0] = '\0';
4647 }
4648 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4649 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4650 }
4651 if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4652 pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4653 }
4654 ret = net_tap_init(vlan, ifname, setup_script, down_script);
4655 }
4656 } else
4657 #endif
4658 if (!strcmp(device, "socket")) {
4659 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4660 int fd;
4661 fd = strtol(buf, NULL, 0);
4662 ret = -1;
4663 if (net_socket_fd_init(vlan, fd, 1))
4664 ret = 0;
4665 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4666 ret = net_socket_listen_init(vlan, buf);
4667 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4668 ret = net_socket_connect_init(vlan, buf);
4669 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4670 ret = net_socket_mcast_init(vlan, buf);
4671 } else {
4672 fprintf(stderr, "Unknown socket options: %s\n", p);
4673 return -1;
4674 }
4675 vlan->nb_host_devs++;
4676 } else
4677 {
4678 fprintf(stderr, "Unknown network device: %s\n", device);
4679 return -1;
4680 }
4681 if (ret < 0) {
4682 fprintf(stderr, "Could not initialize device '%s'\n", device);
4683 }
4684
4685 return ret;
4686 }
4687
4688 void do_info_network(void)
4689 {
4690 VLANState *vlan;
4691 VLANClientState *vc;
4692
4693 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4694 term_printf("VLAN %d devices:\n", vlan->id);
4695 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4696 term_printf(" %s\n", vc->info_str);
4697 }
4698 }
4699
4700 /***********************************************************/
4701 /* USB devices */
4702
4703 static USBPort *used_usb_ports;
4704 static USBPort *free_usb_ports;
4705
4706 /* ??? Maybe change this to register a hub to keep track of the topology. */
4707 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4708 usb_attachfn attach)
4709 {
4710 port->opaque = opaque;
4711 port->index = index;
4712 port->attach = attach;
4713 port->next = free_usb_ports;
4714 free_usb_ports = port;
4715 }
4716
4717 static int usb_device_add(const char *devname)
4718 {
4719 const char *p;
4720 USBDevice *dev;
4721 USBPort *port;
4722
4723 if (!free_usb_ports)
4724 return -1;
4725
4726 if (strstart(devname, "host:", &p)) {
4727 dev = usb_host_device_open(p);
4728 } else if (!strcmp(devname, "mouse")) {
4729 dev = usb_mouse_init();
4730 } else if (!strcmp(devname, "tablet")) {
4731 dev = usb_tablet_init();
4732 } else if (!strcmp(devname, "keyboard")) {
4733 dev = usb_keyboard_init();
4734 } else if (strstart(devname, "disk:", &p)) {
4735 dev = usb_msd_init(p);
4736 } else if (!strcmp(devname, "wacom-tablet")) {
4737 dev = usb_wacom_init();
4738 } else {
4739 return -1;
4740 }
4741 if (!dev)
4742 return -1;
4743
4744 /* Find a USB port to add the device to. */
4745 port = free_usb_ports;
4746 if (!port->next) {
4747 USBDevice *hub;
4748
4749 /* Create a new hub and chain it on. */
4750 free_usb_ports = NULL;
4751 port->next = used_usb_ports;
4752 used_usb_ports = port;
4753
4754 hub = usb_hub_init(VM_USB_HUB_SIZE);
4755 usb_attach(port, hub);
4756 port = free_usb_ports;
4757 }
4758
4759 free_usb_ports = port->next;
4760 port->next = used_usb_ports;
4761 used_usb_ports = port;
4762 usb_attach(port, dev);
4763 return 0;
4764 }
4765
4766 static int usb_device_del(const char *devname)
4767 {
4768 USBPort *port;
4769 USBPort **lastp;
4770 USBDevice *dev;
4771 int bus_num, addr;
4772 const char *p;
4773
4774 if (!used_usb_ports)
4775 return -1;
4776
4777 p = strchr(devname, '.');
4778 if (!p)
4779 return -1;
4780 bus_num = strtoul(devname, NULL, 0);
4781 addr = strtoul(p + 1, NULL, 0);
4782 if (bus_num != 0)
4783 return -1;
4784
4785 lastp = &used_usb_ports;
4786 port = used_usb_ports;
4787 while (port && port->dev->addr != addr) {
4788 lastp = &port->next;
4789 port = port->next;
4790 }
4791
4792 if (!port)
4793 return -1;
4794
4795 dev = port->dev;
4796 *lastp = port->next;
4797 usb_attach(port, NULL);
4798 dev->handle_destroy(dev);
4799 port->next = free_usb_ports;
4800 free_usb_ports = port;
4801 return 0;
4802 }
4803
4804 void do_usb_add(const char *devname)
4805 {
4806 int ret;
4807 ret = usb_device_add(devname);
4808 if (ret < 0)
4809 term_printf("Could not add USB device '%s'\n", devname);
4810 }
4811
4812 void do_usb_del(const char *devname)
4813 {
4814 int ret;
4815 ret = usb_device_del(devname);
4816 if (ret < 0)
4817 term_printf("Could not remove USB device '%s'\n", devname);
4818 }
4819
4820 void usb_info(void)
4821 {
4822 USBDevice *dev;
4823 USBPort *port;
4824 const char *speed_str;
4825
4826 if (!usb_enabled) {
4827 term_printf("USB support not enabled\n");
4828 return;
4829 }
4830
4831 for (port = used_usb_ports; port; port = port->next) {
4832 dev = port->dev;
4833 if (!dev)
4834 continue;
4835 switch(dev->speed) {
4836 case USB_SPEED_LOW:
4837 speed_str = "1.5";
4838 break;
4839 case USB_SPEED_FULL:
4840 speed_str = "12";
4841 break;
4842 case USB_SPEED_HIGH:
4843 speed_str = "480";
4844 break;
4845 default:
4846 speed_str = "?";
4847 break;
4848 }
4849 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
4850 0, dev->addr, speed_str, dev->devname);
4851 }
4852 }
4853
4854 /***********************************************************/
4855 /* PCMCIA/Cardbus */
4856
4857 static struct pcmcia_socket_entry_s {
4858 struct pcmcia_socket_s *socket;
4859 struct pcmcia_socket_entry_s *next;
4860 } *pcmcia_sockets = 0;
4861
4862 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4863 {
4864 struct pcmcia_socket_entry_s *entry;
4865
4866 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4867 entry->socket = socket;
4868 entry->next = pcmcia_sockets;
4869 pcmcia_sockets = entry;
4870 }
4871
4872 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4873 {
4874 struct pcmcia_socket_entry_s *entry, **ptr;
4875
4876 ptr = &pcmcia_sockets;
4877 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4878 if (entry->socket == socket) {
4879 *ptr = entry->next;
4880 qemu_free(entry);
4881 }
4882 }
4883
4884 void pcmcia_info(void)
4885 {
4886 struct pcmcia_socket_entry_s *iter;
4887 if (!pcmcia_sockets)
4888 term_printf("No PCMCIA sockets\n");
4889
4890 for (iter = pcmcia_sockets; iter; iter = iter->next)
4891 term_printf("%s: %s\n", iter->socket->slot_string,
4892 iter->socket->attached ? iter->socket->card_string :
4893 "Empty");
4894 }
4895
4896 /***********************************************************/
4897 /* dumb display */
4898
4899 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4900 {
4901 }
4902
4903 static void dumb_resize(DisplayState *ds, int w, int h)
4904 {
4905 }
4906
4907 static void dumb_refresh(DisplayState *ds)
4908 {
4909 #if defined(CONFIG_SDL)
4910 vga_hw_update();
4911 #endif
4912 }
4913
4914 static void dumb_display_init(DisplayState *ds)
4915 {
4916 ds->data = NULL;
4917 ds->linesize = 0;
4918 ds->depth = 0;
4919 ds->dpy_update = dumb_update;
4920 ds->dpy_resize = dumb_resize;
4921 ds->dpy_refresh = dumb_refresh;
4922 }
4923
4924 /***********************************************************/
4925 /* I/O handling */
4926
4927 #define MAX_IO_HANDLERS 64
4928
4929 typedef struct IOHandlerRecord {
4930 int fd;
4931 IOCanRWHandler *fd_read_poll;
4932 IOHandler *fd_read;
4933 IOHandler *fd_write;
4934 int deleted;
4935 void *opaque;
4936 /* temporary data */
4937 struct pollfd *ufd;
4938 struct IOHandlerRecord *next;
4939 } IOHandlerRecord;
4940
4941 static IOHandlerRecord *first_io_handler;
4942
4943 /* XXX: fd_read_poll should be suppressed, but an API change is
4944 necessary in the character devices to suppress fd_can_read(). */
4945 int qemu_set_fd_handler2(int fd,
4946 IOCanRWHandler *fd_read_poll,
4947 IOHandler *fd_read,
4948 IOHandler *fd_write,
4949 void *opaque)
4950 {
4951 IOHandlerRecord **pioh, *ioh;
4952
4953 if (!fd_read && !fd_write) {
4954 pioh = &first_io_handler;
4955 for(;;) {
4956 ioh = *pioh;
4957 if (ioh == NULL)
4958 break;
4959 if (ioh->fd == fd) {
4960 ioh->deleted = 1;
4961 break;
4962 }
4963 pioh = &ioh->next;
4964 }
4965 } else {
4966 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4967 if (ioh->fd == fd)
4968 goto found;
4969 }
4970 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4971 if (!ioh)
4972 return -1;
4973 ioh->next = first_io_handler;
4974 first_io_handler = ioh;
4975 found:
4976 ioh->fd = fd;
4977 ioh->fd_read_poll = fd_read_poll;
4978 ioh->fd_read = fd_read;
4979 ioh->fd_write = fd_write;
4980 ioh->opaque = opaque;
4981 ioh->deleted = 0;
4982 }
4983 return 0;
4984 }
4985
4986 int qemu_set_fd_handler(int fd,
4987 IOHandler *fd_read,
4988 IOHandler *fd_write,
4989 void *opaque)
4990 {
4991 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4992 }
4993
4994 /***********************************************************/
4995 /* Polling handling */
4996
4997 typedef struct PollingEntry {
4998 PollingFunc *func;
4999 void *opaque;
5000 struct PollingEntry *next;
5001 } PollingEntry;
5002
5003 static PollingEntry *first_polling_entry;
5004
5005 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5006 {
5007 PollingEntry **ppe, *pe;
5008 pe = qemu_mallocz(sizeof(PollingEntry));
5009 if (!pe)
5010 return -1;
5011 pe->func = func;
5012 pe->opaque = opaque;
5013 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5014 *ppe = pe;
5015 return 0;
5016 }
5017
5018 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5019 {
5020 PollingEntry **ppe, *pe;
5021 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5022 pe = *ppe;
5023 if (pe->func == func && pe->opaque == opaque) {
5024 *ppe = pe->next;
5025 qemu_free(pe);
5026 break;
5027 }
5028 }
5029 }
5030
5031 #ifdef _WIN32
5032 /***********************************************************/
5033 /* Wait objects support */
5034 typedef struct WaitObjects {
5035 int num;
5036 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5037 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5038 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5039 } WaitObjects;
5040
5041 static WaitObjects wait_objects = {0};
5042
5043 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5044 {
5045 WaitObjects *w = &wait_objects;
5046
5047 if (w->num >= MAXIMUM_WAIT_OBJECTS)
5048 return -1;
5049 w->events[w->num] = handle;
5050 w->func[w->num] = func;
5051 w->opaque[w->num] = opaque;
5052 w->num++;
5053 return 0;
5054 }
5055
5056 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5057 {
5058 int i, found;
5059 WaitObjects *w = &wait_objects;
5060
5061 found = 0;
5062 for (i = 0; i < w->num; i++) {
5063 if (w->events[i] == handle)
5064 found = 1;
5065 if (found) {
5066 w->events[i] = w->events[i + 1];
5067 w->func[i] = w->func[i + 1];
5068 w->opaque[i] = w->opaque[i + 1];
5069 }
5070 }
5071 if (found)
5072 w->num--;
5073 }
5074 #endif
5075
5076 /***********************************************************/
5077 /* savevm/loadvm support */
5078
5079 #define IO_BUF_SIZE 32768
5080
5081 struct QEMUFile {
5082 FILE *outfile;
5083 BlockDriverState *bs;
5084 int is_file;
5085 int is_writable;
5086 int64_t base_offset;
5087 int64_t buf_offset; /* start of buffer when writing, end of buffer
5088 when reading */
5089 int buf_index;
5090 int buf_size; /* 0 when writing */
5091 uint8_t buf[IO_BUF_SIZE];
5092 };
5093
5094 QEMUFile *qemu_fopen(const char *filename, const char *mode)
5095 {
5096 QEMUFile *f;
5097
5098 f = qemu_mallocz(sizeof(QEMUFile));
5099 if (!f)
5100 return NULL;
5101 if (!strcmp(mode, "wb")) {
5102 f->is_writable = 1;
5103 } else if (!strcmp(mode, "rb")) {
5104 f->is_writable = 0;
5105 } else {
5106 goto fail;
5107 }
5108 f->outfile = fopen(filename, mode);
5109 if (!f->outfile)
5110 goto fail;
5111 f->is_file = 1;
5112 return f;
5113 fail:
5114 if (f->outfile)
5115 fclose(f->outfile);
5116 qemu_free(f);
5117 return NULL;
5118 }
5119
5120 QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5121 {
5122 QEMUFile *f;
5123
5124 f = qemu_mallocz(sizeof(QEMUFile));
5125 if (!f)
5126 return NULL;
5127 f->is_file = 0;
5128 f->bs = bs;
5129 f->is_writable = is_writable;
5130 f->base_offset = offset;
5131 return f;
5132 }
5133
5134 void qemu_fflush(QEMUFile *f)
5135 {
5136 if (!f->is_writable)
5137 return;
5138 if (f->buf_index > 0) {
5139 if (f->is_file) {
5140 fseek(f->outfile, f->buf_offset, SEEK_SET);
5141 fwrite(f->buf, 1, f->buf_index, f->outfile);
5142 } else {
5143 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5144 f->buf, f->buf_index);
5145 }
5146 f->buf_offset += f->buf_index;
5147 f->buf_index = 0;
5148 }
5149 }
5150
5151 static void qemu_fill_buffer(QEMUFile *f)
5152 {
5153 int len;
5154
5155 if (f->is_writable)
5156 return;
5157 if (f->is_file) {
5158 fseek(f->outfile, f->buf_offset, SEEK_SET);
5159 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5160 if (len < 0)
5161 len = 0;
5162 } else {
5163 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5164 f->buf, IO_BUF_SIZE);
5165 if (len < 0)
5166 len = 0;
5167 }
5168 f->buf_index = 0;
5169 f->buf_size = len;
5170 f->buf_offset += len;
5171 }
5172
5173 void qemu_fclose(QEMUFile *f)
5174 {
5175 if (f->is_writable)
5176 qemu_fflush(f);
5177 if (f->is_file) {
5178 fclose(f->outfile);
5179 }
5180 qemu_free(f);
5181 }
5182
5183 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5184 {
5185 int l;
5186 while (size > 0) {
5187 l = IO_BUF_SIZE - f->buf_index;
5188 if (l > size)
5189 l = size;
5190 memcpy(f->buf + f->buf_index, buf, l);
5191 f->buf_index += l;
5192 buf += l;
5193 size -= l;
5194 if (f->buf_index >= IO_BUF_SIZE)
5195 qemu_fflush(f);
5196 }
5197 }
5198
5199 void qemu_put_byte(QEMUFile *f, int v)
5200 {
5201 f->buf[f->buf_index++] = v;
5202 if (f->buf_index >= IO_BUF_SIZE)
5203 qemu_fflush(f);
5204 }
5205
5206 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5207 {
5208 int size, l;
5209
5210 size = size1;
5211 while (size > 0) {
5212 l = f->buf_size - f->buf_index;
5213 if (l == 0) {
5214 qemu_fill_buffer(f);
5215 l = f->buf_size - f->buf_index;
5216 if (l == 0)
5217 break;
5218 }
5219 if (l > size)
5220 l = size;
5221 memcpy(buf, f->buf + f->buf_index, l);
5222 f->buf_index += l;
5223 buf += l;
5224 size -= l;
5225 }
5226 return size1 - size;
5227 }
5228
5229 int qemu_get_byte(QEMUFile *f)
5230 {
5231 if (f->buf_index >= f->buf_size) {
5232 qemu_fill_buffer(f);
5233 if (f->buf_index >= f->buf_size)
5234 return 0;
5235 }
5236 return f->buf[f->buf_index++];
5237 }
5238
5239 int64_t qemu_ftell(QEMUFile *f)
5240 {
5241 return f->buf_offset - f->buf_size + f->buf_index;
5242 }
5243
5244 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5245 {
5246 if (whence == SEEK_SET) {
5247 /* nothing to do */
5248 } else if (whence == SEEK_CUR) {
5249 pos += qemu_ftell(f);
5250 } else {
5251 /* SEEK_END not supported */
5252 return -1;
5253 }
5254 if (f->is_writable) {
5255 qemu_fflush(f);
5256 f->buf_offset = pos;
5257 } else {
5258 f->buf_offset = pos;
5259 f->buf_index = 0;
5260 f->buf_size = 0;
5261 }
5262 return pos;
5263 }
5264
5265 void qemu_put_be16(QEMUFile *f, unsigned int v)
5266 {
5267 qemu_put_byte(f, v >> 8);
5268 qemu_put_byte(f, v);
5269 }
5270
5271 void qemu_put_be32(QEMUFile *f, unsigned int v)
5272 {
5273 qemu_put_byte(f, v >> 24);
5274 qemu_put_byte(f, v >> 16);
5275 qemu_put_byte(f, v >> 8);
5276 qemu_put_byte(f, v);
5277 }
5278
5279 void qemu_put_be64(QEMUFile *f, uint64_t v)
5280 {
5281 qemu_put_be32(f, v >> 32);
5282 qemu_put_be32(f, v);
5283 }
5284
5285 unsigned int qemu_get_be16(QEMUFile *f)
5286 {
5287 unsigned int v;
5288 v = qemu_get_byte(f) << 8;
5289 v |= qemu_get_byte(f);
5290 return v;
5291 }
5292
5293 unsigned int qemu_get_be32(QEMUFile *f)
5294 {
5295 unsigned int v;
5296 v = qemu_get_byte(f) << 24;
5297 v |= qemu_get_byte(f) << 16;
5298 v |= qemu_get_byte(f) << 8;
5299 v |= qemu_get_byte(f);
5300 return v;
5301 }
5302
5303 uint64_t qemu_get_be64(QEMUFile *f)
5304 {
5305 uint64_t v;
5306 v = (uint64_t)qemu_get_be32(f) << 32;
5307 v |= qemu_get_be32(f);
5308 return v;
5309 }
5310
5311 typedef struct SaveStateEntry {
5312 char idstr[256];
5313 int instance_id;
5314 int version_id;
5315 SaveStateHandler *save_state;
5316 LoadStateHandler *load_state;
5317 void *opaque;
5318 struct SaveStateEntry *next;
5319 } SaveStateEntry;
5320
5321 static SaveStateEntry *first_se;
5322
5323 int register_savevm(const char *idstr,
5324 int instance_id,
5325 int version_id,
5326 SaveStateHandler *save_state,
5327 LoadStateHandler *load_state,
5328 void *opaque)
5329 {
5330 SaveStateEntry *se, **pse;
5331
5332 se = qemu_malloc(sizeof(SaveStateEntry));
5333 if (!se)
5334 return -1;
5335 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5336 se->instance_id = instance_id;
5337 se->version_id = version_id;
5338 se->save_state = save_state;
5339 se->load_state = load_state;
5340 se->opaque = opaque;
5341 se->next = NULL;
5342
5343 /* add at the end of list */
5344 pse = &first_se;
5345 while (*pse != NULL)
5346 pse = &(*pse)->next;
5347 *pse = se;
5348 return 0;
5349 }
5350
5351 #define QEMU_VM_FILE_MAGIC 0x5145564d
5352 #define QEMU_VM_FILE_VERSION 0x00000002
5353
5354 int qemu_savevm_state(QEMUFile *f)
5355 {
5356 SaveStateEntry *se;
5357 int len, ret;
5358 int64_t cur_pos, len_pos, total_len_pos;
5359
5360 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5361 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5362 total_len_pos = qemu_ftell(f);
5363 qemu_put_be64(f, 0); /* total size */
5364
5365 for(se = first_se; se != NULL; se = se->next) {
5366 /* ID string */
5367 len = strlen(se->idstr);
5368 qemu_put_byte(f, len);
5369 qemu_put_buffer(f, se->idstr, len);
5370
5371 qemu_put_be32(f, se->instance_id);
5372 qemu_put_be32(f, se->version_id);
5373
5374 /* record size: filled later */
5375 len_pos = qemu_ftell(f);
5376 qemu_put_be32(f, 0);
5377
5378 se->save_state(f, se->opaque);
5379
5380 /* fill record size */
5381 cur_pos = qemu_ftell(f);
5382 len = cur_pos - len_pos - 4;
5383 qemu_fseek(f, len_pos, SEEK_SET);
5384 qemu_put_be32(f, len);
5385 qemu_fseek(f, cur_pos, SEEK_SET);
5386 }
5387 cur_pos = qemu_ftell(f);
5388 qemu_fseek(f, total_len_pos, SEEK_SET);
5389 qemu_put_be64(f, cur_pos - total_len_pos - 8);
5390 qemu_fseek(f, cur_pos, SEEK_SET);
5391
5392 ret = 0;
5393 return ret;
5394 }
5395
5396 static SaveStateEntry *find_se(const char *idstr, int instance_id)
5397 {
5398 SaveStateEntry *se;
5399
5400 for(se = first_se; se != NULL; se = se->next) {
5401 if (!strcmp(se->idstr, idstr) &&
5402 instance_id == se->instance_id)
5403 return se;
5404 }
5405 return NULL;
5406 }
5407
5408 int qemu_loadvm_state(QEMUFile *f)
5409 {
5410 SaveStateEntry *se;
5411 int len, ret, instance_id, record_len, version_id;
5412 int64_t total_len, end_pos, cur_pos;
5413 unsigned int v;
5414 char idstr[256];
5415
5416 v = qemu_get_be32(f);
5417 if (v != QEMU_VM_FILE_MAGIC)
5418 goto fail;
5419 v = qemu_get_be32(f);
5420 if (v != QEMU_VM_FILE_VERSION) {
5421 fail:
5422 ret = -1;
5423 goto the_end;
5424 }
5425 total_len = qemu_get_be64(f);
5426 end_pos = total_len + qemu_ftell(f);
5427 for(;;) {
5428 if (qemu_ftell(f) >= end_pos)
5429 break;
5430 len = qemu_get_byte(f);
5431 qemu_get_buffer(f, idstr, len);
5432 idstr[len] = '\0';
5433 instance_id = qemu_get_be32(f);
5434 version_id = qemu_get_be32(f);
5435 record_len = qemu_get_be32(f);
5436 #if 0
5437 printf("idstr=%s instance=0x%x version=%d len=%d\n",
5438 idstr, instance_id, version_id, record_len);
5439 #endif
5440 cur_pos = qemu_ftell(f);
5441 se = find_se(idstr, instance_id);
5442 if (!se) {
5443 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5444 instance_id, idstr);
5445 } else {
5446 ret = se->load_state(f, se->opaque, version_id);
5447 if (ret < 0) {
5448 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5449 instance_id, idstr);
5450 }
5451 }
5452 /* always seek to exact end of record */
5453 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5454 }
5455 ret = 0;
5456 the_end:
5457 return ret;
5458 }
5459
5460 /* device can contain snapshots */
5461 static int bdrv_can_snapshot(BlockDriverState *bs)
5462 {
5463 return (bs &&
5464 !bdrv_is_removable(bs) &&
5465 !bdrv_is_read_only(bs));
5466 }
5467
5468 /* device must be snapshots in order to have a reliable snapshot */
5469 static int bdrv_has_snapshot(BlockDriverState *bs)
5470 {
5471 return (bs &&
5472 !bdrv_is_removable(bs) &&
5473 !bdrv_is_read_only(bs));
5474 }
5475
5476 static BlockDriverState *get_bs_snapshots(void)
5477 {
5478 BlockDriverState *bs;
5479 int i;
5480
5481 if (bs_snapshots)
5482 return bs_snapshots;
5483 for(i = 0; i <= MAX_DISKS; i++) {
5484 bs = bs_table[i];
5485 if (bdrv_can_snapshot(bs))
5486 goto ok;
5487 }
5488 return NULL;
5489 ok:
5490 bs_snapshots = bs;
5491 return bs;
5492 }
5493
5494 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5495 const char *name)
5496 {
5497 QEMUSnapshotInfo *sn_tab, *sn;
5498 int nb_sns, i, ret;
5499
5500 ret = -ENOENT;
5501 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5502 if (nb_sns < 0)
5503 return ret;
5504 for(i = 0; i < nb_sns; i++) {
5505 sn = &sn_tab[i];
5506 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5507 *sn_info = *sn;
5508 ret = 0;
5509 break;
5510 }
5511 }
5512 qemu_free(sn_tab);
5513 return ret;
5514 }
5515
5516 void do_savevm(const char *name)
5517 {
5518 BlockDriverState *bs, *bs1;
5519 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5520 int must_delete, ret, i;
5521 BlockDriverInfo bdi1, *bdi = &bdi1;
5522 QEMUFile *f;
5523 int saved_vm_running;
5524 #ifdef _WIN32
5525 struct _timeb tb;
5526 #else
5527 struct timeval tv;
5528 #endif
5529
5530 bs = get_bs_snapshots();
5531 if (!bs) {
5532 term_printf("No block device can accept snapshots\n");
5533 return;
5534 }
5535
5536 /* ??? Should this occur after vm_stop? */
5537 qemu_aio_flush();
5538
5539 saved_vm_running = vm_running;
5540 vm_stop(0);
5541
5542 must_delete = 0;
5543 if (name) {
5544 ret = bdrv_snapshot_find(bs, old_sn, name);
5545 if (ret >= 0) {
5546 must_delete = 1;
5547 }
5548 }
5549 memset(sn, 0, sizeof(*sn));
5550 if (must_delete) {
5551 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5552 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5553 } else {
5554 if (name)
5555 pstrcpy(sn->name, sizeof(sn->name), name);
5556 }
5557
5558 /* fill auxiliary fields */
5559 #ifdef _WIN32
5560 _ftime(&tb);
5561 sn->date_sec = tb.time;
5562 sn->date_nsec = tb.millitm * 1000000;
5563 #else
5564 gettimeofday(&tv, NULL);
5565 sn->date_sec = tv.tv_sec;
5566 sn->date_nsec = tv.tv_usec * 1000;
5567 #endif
5568 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5569
5570 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5571 term_printf("Device %s does not support VM state snapshots\n",
5572 bdrv_get_device_name(bs));
5573 goto the_end;
5574 }
5575
5576 /* save the VM state */
5577 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5578 if (!f) {
5579 term_printf("Could not open VM state file\n");
5580 goto the_end;
5581 }
5582 ret = qemu_savevm_state(f);
5583 sn->vm_state_size = qemu_ftell(f);
5584 qemu_fclose(f);
5585 if (ret < 0) {
5586 term_printf("Error %d while writing VM\n", ret);
5587 goto the_end;
5588 }
5589
5590 /* create the snapshots */
5591
5592 for(i = 0; i < MAX_DISKS; i++) {
5593 bs1 = bs_table[i];
5594 if (bdrv_has_snapshot(bs1)) {
5595 if (must_delete) {
5596 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5597 if (ret < 0) {
5598 term_printf("Error while deleting snapshot on '%s'\n",
5599 bdrv_get_device_name(bs1));
5600 }
5601 }
5602 ret = bdrv_snapshot_create(bs1, sn);
5603 if (ret < 0) {
5604 term_printf("Error while creating snapshot on '%s'\n",
5605 bdrv_get_device_name(bs1));
5606 }
5607 }
5608 }
5609
5610 the_end:
5611 if (saved_vm_running)
5612 vm_start();
5613 }
5614
5615 void do_loadvm(const char *name)
5616 {
5617 BlockDriverState *bs, *bs1;
5618 BlockDriverInfo bdi1, *bdi = &bdi1;
5619 QEMUFile *f;
5620 int i, ret;
5621 int saved_vm_running;
5622
5623 bs = get_bs_snapshots();
5624 if (!bs) {
5625 term_printf("No block device supports snapshots\n");
5626 return;
5627 }
5628
5629 /* Flush all IO requests so they don't interfere with the new state. */
5630 qemu_aio_flush();
5631
5632 saved_vm_running = vm_running;
5633 vm_stop(0);
5634
5635 for(i = 0; i <= MAX_DISKS; i++) {
5636 bs1 = bs_table[i];
5637 if (bdrv_has_snapshot(bs1)) {
5638 ret = bdrv_snapshot_goto(bs1, name);
5639 if (ret < 0) {
5640 if (bs != bs1)
5641 term_printf("Warning: ");
5642 switch(ret) {
5643 case -ENOTSUP:
5644 term_printf("Snapshots not supported on device '%s'\n",
5645 bdrv_get_device_name(bs1));
5646 break;
5647 case -ENOENT:
5648 term_printf("Could not find snapshot '%s' on device '%s'\n",
5649 name, bdrv_get_device_name(bs1));
5650 break;
5651 default:
5652 term_printf("Error %d while activating snapshot on '%s'\n",
5653 ret, bdrv_get_device_name(bs1));
5654 break;
5655 }
5656 /* fatal on snapshot block device */
5657 if (bs == bs1)
5658 goto the_end;
5659 }
5660 }
5661 }
5662
5663 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5664 term_printf("Device %s does not support VM state snapshots\n",
5665 bdrv_get_device_name(bs));
5666 return;
5667 }
5668
5669 /* restore the VM state */
5670 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5671 if (!f) {
5672 term_printf("Could not open VM state file\n");
5673 goto the_end;
5674 }
5675 ret = qemu_loadvm_state(f);
5676 qemu_fclose(f);
5677 if (ret < 0) {
5678 term_printf("Error %d while loading VM state\n", ret);
5679 }
5680 the_end:
5681 if (saved_vm_running)
5682 vm_start();
5683 }
5684
5685 void do_delvm(const char *name)
5686 {
5687 BlockDriverState *bs, *bs1;
5688 int i, ret;
5689
5690 bs = get_bs_snapshots();
5691 if (!bs) {
5692 term_printf("No block device supports snapshots\n");
5693 return;
5694 }
5695
5696 for(i = 0; i <= MAX_DISKS; i++) {
5697 bs1 = bs_table[i];
5698 if (bdrv_has_snapshot(bs1)) {
5699 ret = bdrv_snapshot_delete(bs1, name);
5700 if (ret < 0) {
5701 if (ret == -ENOTSUP)
5702 term_printf("Snapshots not supported on device '%s'\n",
5703 bdrv_get_device_name(bs1));
5704 else
5705 term_printf("Error %d while deleting snapshot on '%s'\n",
5706 ret, bdrv_get_device_name(bs1));
5707 }
5708 }
5709 }
5710 }
5711
5712 void do_info_snapshots(void)
5713 {
5714 BlockDriverState *bs, *bs1;
5715 QEMUSnapshotInfo *sn_tab, *sn;
5716 int nb_sns, i;
5717 char buf[256];
5718
5719 bs = get_bs_snapshots();
5720 if (!bs) {
5721 term_printf("No available block device supports snapshots\n");
5722 return;
5723 }
5724 term_printf("Snapshot devices:");
5725 for(i = 0; i <= MAX_DISKS; i++) {
5726 bs1 = bs_table[i];
5727 if (bdrv_has_snapshot(bs1)) {
5728 if (bs == bs1)
5729 term_printf(" %s", bdrv_get_device_name(bs1));
5730 }
5731 }
5732 term_printf("\n");
5733
5734 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5735 if (nb_sns < 0) {
5736 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5737 return;
5738 }
5739 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5740 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5741 for(i = 0; i < nb_sns; i++) {
5742 sn = &sn_tab[i];
5743 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5744 }
5745 qemu_free(sn_tab);
5746 }
5747
5748 /***********************************************************/
5749 /* cpu save/restore */
5750
5751 #if defined(TARGET_I386)
5752
5753 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5754 {
5755 qemu_put_be32(f, dt->selector);
5756 qemu_put_betl(f, dt->base);
5757 qemu_put_be32(f, dt->limit);
5758 qemu_put_be32(f, dt->flags);
5759 }
5760
5761 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5762 {
5763 dt->selector = qemu_get_be32(f);
5764 dt->base = qemu_get_betl(f);
5765 dt->limit = qemu_get_be32(f);
5766 dt->flags = qemu_get_be32(f);
5767 }
5768
5769 void cpu_save(QEMUFile *f, void *opaque)
5770 {
5771 CPUState *env = opaque;
5772 uint16_t fptag, fpus, fpuc, fpregs_format;
5773 uint32_t hflags;
5774 int i;
5775
5776 for(i = 0; i < CPU_NB_REGS; i++)
5777 qemu_put_betls(f, &env->regs[i]);
5778 qemu_put_betls(f, &env->eip);
5779 qemu_put_betls(f, &env->eflags);
5780 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5781 qemu_put_be32s(f, &hflags);
5782
5783 /* FPU */
5784 fpuc = env->fpuc;
5785 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5786 fptag = 0;
5787 for(i = 0; i < 8; i++) {
5788 fptag |= ((!env->fptags[i]) << i);
5789 }
5790
5791 qemu_put_be16s(f, &fpuc);
5792 qemu_put_be16s(f, &fpus);
5793 qemu_put_be16s(f, &fptag);
5794
5795 #ifdef USE_X86LDOUBLE
5796 fpregs_format = 0;
5797 #else
5798 fpregs_format = 1;
5799 #endif
5800 qemu_put_be16s(f, &fpregs_format);
5801
5802 for(i = 0; i < 8; i++) {
5803 #ifdef USE_X86LDOUBLE
5804 {
5805 uint64_t mant;
5806 uint16_t exp;
5807 /* we save the real CPU data (in case of MMX usage only 'mant'
5808 contains the MMX register */
5809 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5810 qemu_put_be64(f, mant);
5811 qemu_put_be16(f, exp);
5812 }
5813 #else
5814 /* if we use doubles for float emulation, we save the doubles to
5815 avoid losing information in case of MMX usage. It can give
5816 problems if the image is restored on a CPU where long
5817 doubles are used instead. */
5818 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5819 #endif
5820 }
5821
5822 for(i = 0; i < 6; i++)
5823 cpu_put_seg(f, &env->segs[i]);
5824 cpu_put_seg(f, &env->ldt);
5825 cpu_put_seg(f, &env->tr);
5826 cpu_put_seg(f, &env->gdt);
5827 cpu_put_seg(f, &env->idt);
5828
5829 qemu_put_be32s(f, &env->sysenter_cs);
5830 qemu_put_be32s(f, &env->sysenter_esp);
5831 qemu_put_be32s(f, &env->sysenter_eip);
5832
5833 qemu_put_betls(f, &env->cr[0]);
5834 qemu_put_betls(f, &env->cr[2]);
5835 qemu_put_betls(f, &env->cr[3]);
5836 qemu_put_betls(f, &env->cr[4]);
5837
5838 for(i = 0; i < 8; i++)
5839 qemu_put_betls(f, &env->dr[i]);
5840
5841 /* MMU */
5842 qemu_put_be32s(f, &env->a20_mask);
5843
5844 /* XMM */
5845 qemu_put_be32s(f, &env->mxcsr);
5846 for(i = 0; i < CPU_NB_REGS; i++) {
5847 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5848 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5849 }
5850
5851 #ifdef TARGET_X86_64
5852 qemu_put_be64s(f, &env->efer);
5853 qemu_put_be64s(f, &env->star);
5854 qemu_put_be64s(f, &env->lstar);
5855 qemu_put_be64s(f, &env->cstar);
5856 qemu_put_be64s(f, &env->fmask);
5857 qemu_put_be64s(f, &env->kernelgsbase);
5858 #endif
5859 qemu_put_be32s(f, &env->smbase);
5860 }
5861
5862 #ifdef USE_X86LDOUBLE
5863 /* XXX: add that in a FPU generic layer */
5864 union x86_longdouble {
5865 uint64_t mant;
5866 uint16_t exp;
5867 };
5868
5869 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
5870 #define EXPBIAS1 1023
5871 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
5872 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
5873
5874 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5875 {
5876 int e;
5877 /* mantissa */
5878 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5879 /* exponent + sign */
5880 e = EXPD1(temp) - EXPBIAS1 + 16383;
5881 e |= SIGND1(temp) >> 16;
5882 p->exp = e;
5883 }
5884 #endif
5885
5886 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5887 {
5888 CPUState *env = opaque;
5889 int i, guess_mmx;
5890 uint32_t hflags;
5891 uint16_t fpus, fpuc, fptag, fpregs_format;
5892
5893 if (version_id != 3 && version_id != 4)
5894 return -EINVAL;
5895 for(i = 0; i < CPU_NB_REGS; i++)
5896 qemu_get_betls(f, &env->regs[i]);
5897 qemu_get_betls(f, &env->eip);
5898 qemu_get_betls(f, &env->eflags);
5899 qemu_get_be32s(f, &hflags);
5900
5901 qemu_get_be16s(f, &fpuc);
5902 qemu_get_be16s(f, &fpus);
5903 qemu_get_be16s(f, &fptag);
5904 qemu_get_be16s(f, &fpregs_format);
5905
5906 /* NOTE: we cannot always restore the FPU state if the image come
5907 from a host with a different 'USE_X86LDOUBLE' define. We guess
5908 if we are in an MMX state to restore correctly in that case. */
5909 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5910 for(i = 0; i < 8; i++) {
5911 uint64_t mant;
5912 uint16_t exp;
5913
5914 switch(fpregs_format) {
5915 case 0:
5916 mant = qemu_get_be64(f);
5917 exp = qemu_get_be16(f);
5918 #ifdef USE_X86LDOUBLE
5919 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5920 #else
5921 /* difficult case */
5922 if (guess_mmx)
5923 env->fpregs[i].mmx.MMX_Q(0) = mant;
5924 else
5925 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5926 #endif
5927 break;
5928 case 1:
5929 mant = qemu_get_be64(f);
5930 #ifdef USE_X86LDOUBLE
5931 {
5932 union x86_longdouble *p;
5933 /* difficult case */
5934 p = (void *)&env->fpregs[i];
5935 if (guess_mmx) {
5936 p->mant = mant;
5937 p->exp = 0xffff;
5938 } else {
5939 fp64_to_fp80(p, mant);
5940 }
5941 }
5942 #else
5943 env->fpregs[i].mmx.MMX_Q(0) = mant;
5944 #endif
5945 break;
5946 default:
5947 return -EINVAL;
5948 }
5949 }
5950
5951 env->fpuc = fpuc;
5952 /* XXX: restore FPU round state */
5953 env->fpstt = (fpus >> 11) & 7;
5954 env->fpus = fpus & ~0x3800;
5955 fptag ^= 0xff;
5956 for(i = 0; i < 8; i++) {
5957 env->fptags[i] = (fptag >> i) & 1;
5958 }
5959
5960 for(i = 0; i < 6; i++)
5961 cpu_get_seg(f, &env->segs[i]);
5962 cpu_get_seg(f, &env->ldt);
5963 cpu_get_seg(f, &env->tr);
5964 cpu_get_seg(f, &env->gdt);
5965 cpu_get_seg(f, &env->idt);
5966
5967 qemu_get_be32s(f, &env->sysenter_cs);
5968 qemu_get_be32s(f, &env->sysenter_esp);
5969 qemu_get_be32s(f, &env->sysenter_eip);
5970
5971 qemu_get_betls(f, &env->cr[0]);
5972 qemu_get_betls(f, &env->cr[2]);
5973 qemu_get_betls(f, &env->cr[3]);
5974 qemu_get_betls(f, &env->cr[4]);
5975
5976 for(i = 0; i < 8; i++)
5977 qemu_get_betls(f, &env->dr[i]);
5978
5979 /* MMU */
5980 qemu_get_be32s(f, &env->a20_mask);
5981
5982 qemu_get_be32s(f, &env->mxcsr);
5983 for(i = 0; i < CPU_NB_REGS; i++) {
5984 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5985 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5986 }
5987
5988 #ifdef TARGET_X86_64
5989 qemu_get_be64s(f, &env->efer);
5990 qemu_get_be64s(f, &env->star);
5991 qemu_get_be64s(f, &env->lstar);
5992 qemu_get_be64s(f, &env->cstar);
5993 qemu_get_be64s(f, &env->fmask);
5994 qemu_get_be64s(f, &env->kernelgsbase);
5995 #endif
5996 if (version_id >= 4)
5997 qemu_get_be32s(f, &env->smbase);
5998
5999 /* XXX: compute hflags from scratch, except for CPL and IIF */
6000 env->hflags = hflags;
6001 tlb_flush(env, 1);
6002 return 0;
6003 }
6004
6005 #elif defined(TARGET_PPC)
6006 void cpu_save(QEMUFile *f, void *opaque)
6007 {
6008 }
6009
6010 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6011 {
6012 return 0;
6013 }
6014
6015 #elif defined(TARGET_MIPS)
6016 void cpu_save(QEMUFile *f, void *opaque)
6017 {
6018 }
6019
6020 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6021 {
6022 return 0;
6023 }
6024
6025 #elif defined(TARGET_SPARC)
6026 void cpu_save(QEMUFile *f, void *opaque)
6027 {
6028 CPUState *env = opaque;
6029 int i;
6030 uint32_t tmp;
6031
6032 for(i = 0; i < 8; i++)
6033 qemu_put_betls(f, &env->gregs[i]);
6034 for(i = 0; i < NWINDOWS * 16; i++)
6035 qemu_put_betls(f, &env->regbase[i]);
6036
6037 /* FPU */
6038 for(i = 0; i < TARGET_FPREGS; i++) {
6039 union {
6040 float32 f;
6041 uint32_t i;
6042 } u;
6043 u.f = env->fpr[i];
6044 qemu_put_be32(f, u.i);
6045 }
6046
6047 qemu_put_betls(f, &env->pc);
6048 qemu_put_betls(f, &env->npc);
6049 qemu_put_betls(f, &env->y);
6050 tmp = GET_PSR(env);
6051 qemu_put_be32(f, tmp);
6052 qemu_put_betls(f, &env->fsr);
6053 qemu_put_betls(f, &env->tbr);
6054 #ifndef TARGET_SPARC64
6055 qemu_put_be32s(f, &env->wim);
6056 /* MMU */
6057 for(i = 0; i < 16; i++)
6058 qemu_put_be32s(f, &env->mmuregs[i]);
6059 #endif
6060 }
6061
6062 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6063 {
6064 CPUState *env = opaque;
6065 int i;
6066 uint32_t tmp;
6067
6068 for(i = 0; i < 8; i++)
6069 qemu_get_betls(f, &env->gregs[i]);
6070 for(i = 0; i < NWINDOWS * 16; i++)
6071 qemu_get_betls(f, &env->regbase[i]);
6072
6073 /* FPU */
6074 for(i = 0; i < TARGET_FPREGS; i++) {
6075 union {
6076 float32 f;
6077 uint32_t i;
6078 } u;
6079 u.i = qemu_get_be32(f);
6080 env->fpr[i] = u.f;
6081 }
6082
6083 qemu_get_betls(f, &env->pc);
6084 qemu_get_betls(f, &env->npc);
6085 qemu_get_betls(f, &env->y);
6086 tmp = qemu_get_be32(f);
6087 env->cwp = 0; /* needed to ensure that the wrapping registers are
6088 correctly updated */
6089 PUT_PSR(env, tmp);
6090 qemu_get_betls(f, &env->fsr);
6091 qemu_get_betls(f, &env->tbr);
6092 #ifndef TARGET_SPARC64
6093 qemu_get_be32s(f, &env->wim);
6094 /* MMU */
6095 for(i = 0; i < 16; i++)
6096 qemu_get_be32s(f, &env->mmuregs[i]);
6097 #endif
6098 tlb_flush(env, 1);
6099 return 0;
6100 }
6101
6102 #elif defined(TARGET_ARM)
6103
6104 void cpu_save(QEMUFile *f, void *opaque)
6105 {
6106 int i;
6107 CPUARMState *env = (CPUARMState *)opaque;
6108
6109 for (i = 0; i < 16; i++) {
6110 qemu_put_be32(f, env->regs[i]);
6111 }
6112 qemu_put_be32(f, cpsr_read(env));
6113 qemu_put_be32(f, env->spsr);
6114 for (i = 0; i < 6; i++) {
6115 qemu_put_be32(f, env->banked_spsr[i]);
6116 qemu_put_be32(f, env->banked_r13[i]);
6117 qemu_put_be32(f, env->banked_r14[i]);
6118 }
6119 for (i = 0; i < 5; i++) {
6120 qemu_put_be32(f, env->usr_regs[i]);
6121 qemu_put_be32(f, env->fiq_regs[i]);
6122 }
6123 qemu_put_be32(f, env->cp15.c0_cpuid);
6124 qemu_put_be32(f, env->cp15.c0_cachetype);
6125 qemu_put_be32(f, env->cp15.c1_sys);
6126 qemu_put_be32(f, env->cp15.c1_coproc);
6127 qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6128 qemu_put_be32(f, env->cp15.c2_base);
6129 qemu_put_be32(f, env->cp15.c2_data);
6130 qemu_put_be32(f, env->cp15.c2_insn);
6131 qemu_put_be32(f, env->cp15.c3);
6132 qemu_put_be32(f, env->cp15.c5_insn);
6133 qemu_put_be32(f, env->cp15.c5_data);
6134 for (i = 0; i < 8; i++) {
6135 qemu_put_be32(f, env->cp15.c6_region[i]);
6136 }
6137 qemu_put_be32(f, env->cp15.c6_insn);
6138 qemu_put_be32(f, env->cp15.c6_data);
6139 qemu_put_be32(f, env->cp15.c9_insn);
6140 qemu_put_be32(f, env->cp15.c9_data);
6141 qemu_put_be32(f, env->cp15.c13_fcse);
6142 qemu_put_be32(f, env->cp15.c13_context);
6143 qemu_put_be32(f, env->cp15.c15_cpar);
6144
6145 qemu_put_be32(f, env->features);
6146
6147 if (arm_feature(env, ARM_FEATURE_VFP)) {
6148 for (i = 0; i < 16; i++) {
6149 CPU_DoubleU u;
6150 u.d = env->vfp.regs[i];
6151 qemu_put_be32(f, u.l.upper);
6152 qemu_put_be32(f, u.l.lower);
6153 }
6154 for (i = 0; i < 16; i++) {
6155 qemu_put_be32(f, env->vfp.xregs[i]);
6156 }
6157
6158 /* TODO: Should use proper FPSCR access functions. */
6159 qemu_put_be32(f, env->vfp.vec_len);
6160 qemu_put_be32(f, env->vfp.vec_stride);
6161 }
6162
6163 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6164 for (i = 0; i < 16; i++) {
6165 qemu_put_be64(f, env->iwmmxt.regs[i]);
6166 }
6167 for (i = 0; i < 16; i++) {
6168 qemu_put_be32(f, env->iwmmxt.cregs[i]);
6169 }
6170 }
6171 }
6172
6173 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6174 {
6175 CPUARMState *env = (CPUARMState *)opaque;
6176 int i;
6177
6178 if (version_id != 0)
6179 return -EINVAL;
6180
6181 for (i = 0; i < 16; i++) {
6182 env->regs[i] = qemu_get_be32(f);
6183 }
6184 cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6185 env->spsr = qemu_get_be32(f);
6186 for (i = 0; i < 6; i++) {
6187 env->banked_spsr[i] = qemu_get_be32(f);
6188 env->banked_r13[i] = qemu_get_be32(f);
6189 env->banked_r14[i] = qemu_get_be32(f);
6190 }
6191 for (i = 0; i < 5; i++) {
6192 env->usr_regs[i] = qemu_get_be32(f);
6193 env->fiq_regs[i] = qemu_get_be32(f);
6194 }
6195 env->cp15.c0_cpuid = qemu_get_be32(f);
6196 env->cp15.c0_cachetype = qemu_get_be32(f);
6197 env->cp15.c1_sys = qemu_get_be32(f);
6198 env->cp15.c1_coproc = qemu_get_be32(f);
6199 env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6200 env->cp15.c2_base = qemu_get_be32(f);
6201 env->cp15.c2_data = qemu_get_be32(f);
6202 env->cp15.c2_insn = qemu_get_be32(f);
6203 env->cp15.c3 = qemu_get_be32(f);
6204 env->cp15.c5_insn = qemu_get_be32(f);
6205 env->cp15.c5_data = qemu_get_be32(f);
6206 for (i = 0; i < 8; i++) {
6207 env->cp15.c6_region[i] = qemu_get_be32(f);
6208 }
6209 env->cp15.c6_insn = qemu_get_be32(f);
6210 env->cp15.c6_data = qemu_get_be32(f);
6211 env->cp15.c9_insn = qemu_get_be32(f);
6212 env->cp15.c9_data = qemu_get_be32(f);
6213 env->cp15.c13_fcse = qemu_get_be32(f);
6214 env->cp15.c13_context = qemu_get_be32(f);
6215 env->cp15.c15_cpar = qemu_get_be32(f);
6216
6217 env->features = qemu_get_be32(f);
6218
6219 if (arm_feature(env, ARM_FEATURE_VFP)) {
6220 for (i = 0; i < 16; i++) {
6221 CPU_DoubleU u;
6222 u.l.upper = qemu_get_be32(f);
6223 u.l.lower = qemu_get_be32(f);
6224 env->vfp.regs[i] = u.d;
6225 }
6226 for (i = 0; i < 16; i++) {
6227 env->vfp.xregs[i] = qemu_get_be32(f);
6228 }
6229
6230 /* TODO: Should use proper FPSCR access functions. */
6231 env->vfp.vec_len = qemu_get_be32(f);
6232 env->vfp.vec_stride = qemu_get_be32(f);
6233 }
6234
6235 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6236 for (i = 0; i < 16; i++) {
6237 env->iwmmxt.regs[i] = qemu_get_be64(f);
6238 }
6239 for (i = 0; i < 16; i++) {
6240 env->iwmmxt.cregs[i] = qemu_get_be32(f);
6241 }
6242 }
6243
6244 return 0;
6245 }
6246
6247 #else
6248
6249 #warning No CPU save/restore functions
6250
6251 #endif
6252
6253 /***********************************************************/
6254 /* ram save/restore */
6255
6256 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6257 {
6258 int v;
6259
6260 v = qemu_get_byte(f);
6261 switch(v) {
6262 case 0:
6263 if (qemu_get_buffer(f, buf, len) != len)
6264 return -EIO;
6265 break;
6266 case 1:
6267 v = qemu_get_byte(f);
6268 memset(buf, v, len);
6269 break;
6270 default:
6271 return -EINVAL;
6272 }
6273 return 0;
6274 }
6275
6276 static int ram_load_v1(QEMUFile *f, void *opaque)
6277 {
6278 int i, ret;
6279
6280 if (qemu_get_be32(f) != phys_ram_size)
6281 return -EINVAL;
6282 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6283 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6284 if (ret)
6285 return ret;
6286 }
6287 return 0;
6288 }
6289
6290 #define BDRV_HASH_BLOCK_SIZE 1024
6291 #define IOBUF_SIZE 4096
6292 #define RAM_CBLOCK_MAGIC 0xfabe
6293
6294 typedef struct RamCompressState {
6295 z_stream zstream;
6296 QEMUFile *f;
6297 uint8_t buf[IOBUF_SIZE];
6298 } RamCompressState;
6299
6300 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6301 {
6302 int ret;
6303 memset(s, 0, sizeof(*s));
6304 s->f = f;
6305 ret = deflateInit2(&s->zstream, 1,
6306 Z_DEFLATED, 15,
6307 9, Z_DEFAULT_STRATEGY);
6308 if (ret != Z_OK)
6309 return -1;
6310 s->zstream.avail_out = IOBUF_SIZE;
6311 s->zstream.next_out = s->buf;
6312 return 0;
6313 }
6314
6315 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6316 {
6317 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6318 qemu_put_be16(s->f, len);
6319 qemu_put_buffer(s->f, buf, len);
6320 }
6321
6322 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6323 {
6324 int ret;
6325
6326 s->zstream.avail_in = len;
6327 s->zstream.next_in = (uint8_t *)buf;
6328 while (s->zstream.avail_in > 0) {
6329 ret = deflate(&s->zstream, Z_NO_FLUSH);
6330 if (ret != Z_OK)
6331 return -1;
6332 if (s->zstream.avail_out == 0) {
6333 ram_put_cblock(s, s->buf, IOBUF_SIZE);
6334 s->zstream.avail_out = IOBUF_SIZE;
6335 s->zstream.next_out = s->buf;
6336 }
6337 }
6338 return 0;
6339 }
6340
6341 static void ram_compress_close(RamCompressState *s)
6342 {
6343 int len, ret;
6344
6345 /* compress last bytes */
6346 for(;;) {
6347 ret = deflate(&s->zstream, Z_FINISH);
6348 if (ret == Z_OK || ret == Z_STREAM_END) {
6349 len = IOBUF_SIZE - s->zstream.avail_out;
6350 if (len > 0) {
6351 ram_put_cblock(s, s->buf, len);
6352 }
6353 s->zstream.avail_out = IOBUF_SIZE;
6354 s->zstream.next_out = s->buf;
6355 if (ret == Z_STREAM_END)
6356 break;
6357 } else {
6358 goto fail;
6359 }
6360 }
6361 fail:
6362 deflateEnd(&s->zstream);
6363 }
6364
6365 typedef struct RamDecompressState {
6366 z_stream zstream;
6367 QEMUFile *f;
6368 uint8_t buf[IOBUF_SIZE];
6369 } RamDecompressState;
6370
6371 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6372 {
6373 int ret;
6374 memset(s, 0, sizeof(*s));
6375 s->f = f;
6376 ret = inflateInit(&s->zstream);
6377 if (ret != Z_OK)
6378 return -1;
6379 return 0;
6380 }
6381
6382 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6383 {
6384 int ret, clen;
6385
6386 s->zstream.avail_out = len;
6387 s->zstream.next_out = buf;
6388 while (s->zstream.avail_out > 0) {
6389 if (s->zstream.avail_in == 0) {
6390 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6391 return -1;
6392 clen = qemu_get_be16(s->f);
6393 if (clen > IOBUF_SIZE)
6394 return -1;
6395 qemu_get_buffer(s->f, s->buf, clen);
6396 s->zstream.avail_in = clen;
6397 s->zstream.next_in = s->buf;
6398 }
6399 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6400 if (ret != Z_OK && ret != Z_STREAM_END) {
6401 return -1;
6402 }
6403 }
6404 return 0;
6405 }
6406
6407 static void ram_decompress_close(RamDecompressState *s)
6408 {
6409 inflateEnd(&s->zstream);
6410 }
6411
6412 static void ram_save(QEMUFile *f, void *opaque)
6413 {
6414 int i;
6415 RamCompressState s1, *s = &s1;
6416 uint8_t buf[10];
6417
6418 qemu_put_be32(f, phys_ram_size);
6419 if (ram_compress_open(s, f) < 0)
6420 return;
6421 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6422 #if 0
6423 if (tight_savevm_enabled) {
6424 int64_t sector_num;
6425 int j;
6426
6427 /* find if the memory block is available on a virtual
6428 block device */
6429 sector_num = -1;
6430 for(j = 0; j < MAX_DISKS; j++) {
6431 if (bs_table[j]) {
6432 sector_num = bdrv_hash_find(bs_table[j],
6433 phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6434 if (sector_num >= 0)
6435 break;
6436 }
6437 }
6438 if (j == MAX_DISKS)
6439 goto normal_compress;
6440 buf[0] = 1;
6441 buf[1] = j;
6442 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6443 ram_compress_buf(s, buf, 10);
6444 } else
6445 #endif
6446 {
6447 // normal_compress:
6448 buf[0] = 0;
6449 ram_compress_buf(s, buf, 1);
6450 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6451 }
6452 }
6453 ram_compress_close(s);
6454 }
6455
6456 static int ram_load(QEMUFile *f, void *opaque, int version_id)
6457 {
6458 RamDecompressState s1, *s = &s1;
6459 uint8_t buf[10];
6460 int i;
6461
6462 if (version_id == 1)
6463 return ram_load_v1(f, opaque);
6464 if (version_id != 2)
6465 return -EINVAL;
6466 if (qemu_get_be32(f) != phys_ram_size)
6467 return -EINVAL;
6468 if (ram_decompress_open(s, f) < 0)
6469 return -EINVAL;
6470 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6471 if (ram_decompress_buf(s, buf, 1) < 0) {
6472 fprintf(stderr, "Error while reading ram block header\n");
6473 goto error;
6474 }
6475 if (buf[0] == 0) {
6476 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6477 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6478 goto error;
6479 }
6480 } else
6481 #if 0
6482 if (buf[0] == 1) {
6483 int bs_index;
6484 int64_t sector_num;
6485
6486 ram_decompress_buf(s, buf + 1, 9);
6487 bs_index = buf[1];
6488 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6489 if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
6490 fprintf(stderr, "Invalid block device index %d\n", bs_index);
6491 goto error;
6492 }
6493 if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
6494 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6495 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
6496 bs_index, sector_num);
6497 goto error;
6498 }
6499 } else
6500 #endif
6501 {
6502 error:
6503 printf("Error block header\n");
6504 return -EINVAL;
6505 }
6506 }
6507 ram_decompress_close(s);
6508 return 0;
6509 }
6510
6511 /***********************************************************/
6512 /* bottom halves (can be seen as timers which expire ASAP) */
6513
6514 struct QEMUBH {
6515 QEMUBHFunc *cb;
6516 void *opaque;
6517 int scheduled;
6518 QEMUBH *next;
6519 };
6520
6521 static QEMUBH *first_bh = NULL;
6522
6523 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6524 {
6525 QEMUBH *bh;
6526 bh = qemu_mallocz(sizeof(QEMUBH));
6527 if (!bh)
6528 return NULL;
6529 bh->cb = cb;
6530 bh->opaque = opaque;
6531 return bh;
6532 }
6533
6534 int qemu_bh_poll(void)
6535 {
6536 QEMUBH *bh, **pbh;
6537 int ret;
6538
6539 ret = 0;
6540 for(;;) {
6541 pbh = &first_bh;
6542 bh = *pbh;
6543 if (!bh)
6544 break;
6545 ret = 1;
6546 *pbh = bh->next;
6547 bh->scheduled = 0;
6548 bh->cb(bh->opaque);
6549 }
6550 return ret;
6551 }
6552
6553 void qemu_bh_schedule(QEMUBH *bh)
6554 {
6555 CPUState *env = cpu_single_env;
6556 if (bh->scheduled)
6557 return;
6558 bh->scheduled = 1;
6559 bh->next = first_bh;
6560 first_bh = bh;
6561
6562 /* stop the currently executing CPU to execute the BH ASAP */
6563 if (env) {
6564 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6565 }
6566 }
6567
6568 void qemu_bh_cancel(QEMUBH *bh)
6569 {
6570 QEMUBH **pbh;
6571 if (bh->scheduled) {
6572 pbh = &first_bh;
6573 while (*pbh != bh)
6574 pbh = &(*pbh)->next;
6575 *pbh = bh->next;
6576 bh->scheduled = 0;
6577 }
6578 }
6579
6580 void qemu_bh_delete(QEMUBH *bh)
6581 {
6582 qemu_bh_cancel(bh);
6583 qemu_free(bh);
6584 }
6585
6586 /***********************************************************/
6587 /* machine registration */
6588
6589 QEMUMachine *first_machine = NULL;
6590
6591 int qemu_register_machine(QEMUMachine *m)
6592 {
6593 QEMUMachine **pm;
6594 pm = &first_machine;
6595 while (*pm != NULL)
6596 pm = &(*pm)->next;
6597 m->next = NULL;
6598 *pm = m;
6599 return 0;
6600 }
6601
6602 QEMUMachine *find_machine(const char *name)
6603 {
6604 QEMUMachine *m;
6605
6606 for(m = first_machine; m != NULL; m = m->next) {
6607 if (!strcmp(m->name, name))
6608 return m;
6609 }
6610 return NULL;
6611 }
6612
6613 /***********************************************************/
6614 /* main execution loop */
6615
6616 void gui_update(void *opaque)
6617 {
6618 DisplayState *ds = opaque;
6619 ds->dpy_refresh(ds);
6620 qemu_mod_timer(ds->gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6621 }
6622
6623 struct vm_change_state_entry {
6624 VMChangeStateHandler *cb;
6625 void *opaque;
6626 LIST_ENTRY (vm_change_state_entry) entries;
6627 };
6628
6629 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6630
6631 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6632 void *opaque)
6633 {
6634 VMChangeStateEntry *e;
6635
6636 e = qemu_mallocz(sizeof (*e));
6637 if (!e)
6638 return NULL;
6639
6640 e->cb = cb;
6641 e->opaque = opaque;
6642 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6643 return e;
6644 }
6645
6646 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6647 {
6648 LIST_REMOVE (e, entries);
6649 qemu_free (e);
6650 }
6651
6652 static void vm_state_notify(int running)
6653 {
6654 VMChangeStateEntry *e;
6655
6656 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6657 e->cb(e->opaque, running);
6658 }
6659 }
6660
6661 /* XXX: support several handlers */
6662 static VMStopHandler *vm_stop_cb;
6663 static void *vm_stop_opaque;
6664
6665 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6666 {
6667 vm_stop_cb = cb;
6668 vm_stop_opaque = opaque;
6669 return 0;
6670 }
6671
6672 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6673 {
6674 vm_stop_cb = NULL;
6675 }
6676
6677 void vm_start(void)
6678 {
6679 if (!vm_running) {
6680 cpu_enable_ticks();
6681 vm_running = 1;
6682 vm_state_notify(1);
6683 qemu_rearm_alarm_timer(alarm_timer);
6684 }
6685 }
6686
6687 void vm_stop(int reason)
6688 {
6689 if (vm_running) {
6690 cpu_disable_ticks();
6691 vm_running = 0;
6692 if (reason != 0) {
6693 if (vm_stop_cb) {
6694 vm_stop_cb(vm_stop_opaque, reason);
6695 }
6696 }
6697 vm_state_notify(0);
6698 }
6699 }
6700
6701 /* reset/shutdown handler */
6702
6703 typedef struct QEMUResetEntry {
6704 QEMUResetHandler *func;
6705 void *opaque;
6706 struct QEMUResetEntry *next;
6707 } QEMUResetEntry;
6708
6709 static QEMUResetEntry *first_reset_entry;
6710 static int reset_requested;
6711 static int shutdown_requested;
6712 static int powerdown_requested;
6713
6714 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6715 {
6716 QEMUResetEntry **pre, *re;
6717
6718 pre = &first_reset_entry;
6719 while (*pre != NULL)
6720 pre = &(*pre)->next;
6721 re = qemu_mallocz(sizeof(QEMUResetEntry));
6722 re->func = func;
6723 re->opaque = opaque;
6724 re->next = NULL;
6725 *pre = re;
6726 }
6727
6728 static void qemu_system_reset(void)
6729 {
6730 QEMUResetEntry *re;
6731
6732 /* reset all devices */
6733 for(re = first_reset_entry; re != NULL; re = re->next) {
6734 re->func(re->opaque);
6735 }
6736 }
6737
6738 void qemu_system_reset_request(void)
6739 {
6740 if (no_reboot) {
6741 shutdown_requested = 1;
6742 } else {
6743 reset_requested = 1;
6744 }
6745 if (cpu_single_env)
6746 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6747 }
6748
6749 void qemu_system_shutdown_request(void)
6750 {
6751 shutdown_requested = 1;
6752 if (cpu_single_env)
6753 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6754 }
6755
6756 void qemu_system_powerdown_request(void)
6757 {
6758 powerdown_requested = 1;
6759 if (cpu_single_env)
6760 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6761 }
6762
6763 void main_loop_wait(int timeout)
6764 {
6765 IOHandlerRecord *ioh;
6766 fd_set rfds, wfds, xfds;
6767 int ret, nfds;
6768 #ifdef _WIN32
6769 int ret2, i;
6770 #endif
6771 struct timeval tv;
6772 PollingEntry *pe;
6773
6774
6775 /* XXX: need to suppress polling by better using win32 events */
6776 ret = 0;
6777 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6778 ret |= pe->func(pe->opaque);
6779 }
6780 #ifdef _WIN32
6781 if (ret == 0) {
6782 int err;
6783 WaitObjects *w = &wait_objects;
6784
6785 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6786 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6787 if (w->func[ret - WAIT_OBJECT_0])
6788 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6789
6790 /* Check for additional signaled events */
6791 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6792
6793 /* Check if event is signaled */
6794 ret2 = WaitForSingleObject(w->events[i], 0);
6795 if(ret2 == WAIT_OBJECT_0) {
6796 if (w->func[i])
6797 w->func[i](w->opaque[i]);
6798 } else if (ret2 == WAIT_TIMEOUT) {
6799 } else {
6800 err = GetLastError();
6801 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6802 }
6803 }
6804 } else if (ret == WAIT_TIMEOUT) {
6805 } else {
6806 err = GetLastError();
6807 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6808 }
6809 }
6810 #endif
6811 /* poll any events */
6812 /* XXX: separate device handlers from system ones */
6813 nfds = -1;
6814 FD_ZERO(&rfds);
6815 FD_ZERO(&wfds);
6816 FD_ZERO(&xfds);
6817 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6818 if (ioh->deleted)
6819 continue;
6820 if (ioh->fd_read &&
6821 (!ioh->fd_read_poll ||
6822 ioh->fd_read_poll(ioh->opaque) != 0)) {
6823 FD_SET(ioh->fd, &rfds);
6824 if (ioh->fd > nfds)
6825 nfds = ioh->fd;
6826 }
6827 if (ioh->fd_write) {
6828 FD_SET(ioh->fd, &wfds);
6829 if (ioh->fd > nfds)
6830 nfds = ioh->fd;
6831 }
6832 }
6833
6834 tv.tv_sec = 0;
6835 #ifdef _WIN32
6836 tv.tv_usec = 0;
6837 #else
6838 tv.tv_usec = timeout * 1000;
6839 #endif
6840 #if defined(CONFIG_SLIRP)
6841 if (slirp_inited) {
6842 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6843 }
6844 #endif
6845 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6846 if (ret > 0) {
6847 IOHandlerRecord **pioh;
6848
6849 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6850 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
6851 ioh->fd_read(ioh->opaque);
6852 }
6853 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
6854 ioh->fd_write(ioh->opaque);
6855 }
6856 }
6857
6858 /* remove deleted IO handlers */
6859 pioh = &first_io_handler;
6860 while (*pioh) {
6861 ioh = *pioh;
6862 if (ioh->deleted) {
6863 *pioh = ioh->next;
6864 qemu_free(ioh);
6865 } else
6866 pioh = &ioh->next;
6867 }
6868 }
6869 #if defined(CONFIG_SLIRP)
6870 if (slirp_inited) {
6871 if (ret < 0) {
6872 FD_ZERO(&rfds);
6873 FD_ZERO(&wfds);
6874 FD_ZERO(&xfds);
6875 }
6876 slirp_select_poll(&rfds, &wfds, &xfds);
6877 }
6878 #endif
6879 qemu_aio_poll();
6880
6881 if (vm_running) {
6882 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6883 qemu_get_clock(vm_clock));
6884 /* run dma transfers, if any */
6885 DMA_run();
6886 }
6887
6888 /* real time timers */
6889 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6890 qemu_get_clock(rt_clock));
6891
6892 /* Check bottom-halves last in case any of the earlier events triggered
6893 them. */
6894 qemu_bh_poll();
6895
6896 }
6897
6898 static CPUState *cur_cpu;
6899
6900 int main_loop(void)
6901 {
6902 int ret, timeout;
6903 #ifdef CONFIG_PROFILER
6904 int64_t ti;
6905 #endif
6906 CPUState *env;
6907
6908 cur_cpu = first_cpu;
6909 for(;;) {
6910 if (vm_running) {
6911
6912 env = cur_cpu;
6913 for(;;) {
6914 /* get next cpu */
6915 env = env->next_cpu;
6916 if (!env)
6917 env = first_cpu;
6918 #ifdef CONFIG_PROFILER
6919 ti = profile_getclock();
6920 #endif
6921 ret = cpu_exec(env);
6922 #ifdef CONFIG_PROFILER
6923 qemu_time += profile_getclock() - ti;
6924 #endif
6925 if (ret == EXCP_HLT) {
6926 /* Give the next CPU a chance to run. */
6927 cur_cpu = env;
6928 continue;
6929 }
6930 if (ret != EXCP_HALTED)
6931 break;
6932 /* all CPUs are halted ? */
6933 if (env == cur_cpu)
6934 break;
6935 }
6936 cur_cpu = env;
6937
6938 if (shutdown_requested) {
6939 ret = EXCP_INTERRUPT;
6940 break;
6941 }
6942 if (reset_requested) {
6943 reset_requested = 0;
6944 qemu_system_reset();
6945 ret = EXCP_INTERRUPT;
6946 }
6947 if (powerdown_requested) {
6948 powerdown_requested = 0;
6949 qemu_system_powerdown();
6950 ret = EXCP_INTERRUPT;
6951 }
6952 if (ret == EXCP_DEBUG) {
6953 vm_stop(EXCP_DEBUG);
6954 }
6955 /* If all cpus are halted then wait until the next IRQ */
6956 /* XXX: use timeout computed from timers */
6957 if (ret == EXCP_HALTED)
6958 timeout = 10;
6959 else
6960 timeout = 0;
6961 } else {
6962 timeout = 10;
6963 }
6964 #ifdef CONFIG_PROFILER
6965 ti = profile_getclock();
6966 #endif
6967 main_loop_wait(timeout);
6968 #ifdef CONFIG_PROFILER
6969 dev_time += profile_getclock() - ti;
6970 #endif
6971 }
6972 cpu_disable_ticks();
6973 return ret;
6974 }
6975
6976 static void help(int exitcode)
6977 {
6978 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6979 "usage: %s [options] [disk_image]\n"
6980 "\n"
6981 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6982 "\n"
6983 "Standard options:\n"
6984 "-M machine select emulated machine (-M ? for list)\n"
6985 "-cpu cpu select CPU (-cpu ? for list)\n"
6986 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
6987 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
6988 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
6989 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
6990 "-mtdblock file use 'file' as on-board Flash memory image\n"
6991 "-sd file use 'file' as SecureDigital card image\n"
6992 "-pflash file use 'file' as a parallel flash image\n"
6993 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
6994 "-snapshot write to temporary files instead of disk image files\n"
6995 #ifdef CONFIG_SDL
6996 "-no-frame open SDL window without a frame and window decorations\n"
6997 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
6998 "-no-quit disable SDL window close capability\n"
6999 #endif
7000 #ifdef TARGET_I386
7001 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
7002 #endif
7003 "-m megs set virtual RAM size to megs MB [default=%d]\n"
7004 "-smp n set the number of CPUs to 'n' [default=1]\n"
7005 "-nographic disable graphical output and redirect serial I/Os to console\n"
7006 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
7007 #ifndef _WIN32
7008 "-k language use keyboard layout (for example \"fr\" for French)\n"
7009 #endif
7010 #ifdef HAS_AUDIO
7011 "-audio-help print list of audio drivers and their options\n"
7012 "-soundhw c1,... enable audio support\n"
7013 " and only specified sound cards (comma separated list)\n"
7014 " use -soundhw ? to get the list of supported cards\n"
7015 " use -soundhw all to enable all of them\n"
7016 #endif
7017 "-localtime set the real time clock to local time [default=utc]\n"
7018 "-full-screen start in full screen\n"
7019 #ifdef TARGET_I386
7020 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
7021 #endif
7022 "-usb enable the USB driver (will be the default soon)\n"
7023 "-usbdevice name add the host or guest USB device 'name'\n"
7024 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7025 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
7026 #endif
7027 "-name string set the name of the guest\n"
7028 "\n"
7029 "Network options:\n"
7030 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7031 " create a new Network Interface Card and connect it to VLAN 'n'\n"
7032 #ifdef CONFIG_SLIRP
7033 "-net user[,vlan=n][,hostname=host]\n"
7034 " connect the user mode network stack to VLAN 'n' and send\n"
7035 " hostname 'host' to DHCP clients\n"
7036 #endif
7037 #ifdef _WIN32
7038 "-net tap[,vlan=n],ifname=name\n"
7039 " connect the host TAP network interface to VLAN 'n'\n"
7040 #else
7041 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7042 " connect the host TAP network interface to VLAN 'n' and use the\n"
7043 " network scripts 'file' (default=%s)\n"
7044 " and 'dfile' (default=%s);\n"
7045 " use '[down]script=no' to disable script execution;\n"
7046 " use 'fd=h' to connect to an already opened TAP interface\n"
7047 #endif
7048 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7049 " connect the vlan 'n' to another VLAN using a socket connection\n"
7050 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7051 " connect the vlan 'n' to multicast maddr and port\n"
7052 "-net none use it alone to have zero network devices; if no -net option\n"
7053 " is provided, the default is '-net nic -net user'\n"
7054 "\n"
7055 #ifdef CONFIG_SLIRP
7056 "-tftp dir allow tftp access to files in dir [-net user]\n"
7057 "-bootp file advertise file in BOOTP replies\n"
7058 #ifndef _WIN32
7059 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
7060 #endif
7061 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7062 " redirect TCP or UDP connections from host to guest [-net user]\n"
7063 #endif
7064 "\n"
7065 "Linux boot specific:\n"
7066 "-kernel bzImage use 'bzImage' as kernel image\n"
7067 "-append cmdline use 'cmdline' as kernel command line\n"
7068 "-initrd file use 'file' as initial ram disk\n"
7069 "\n"
7070 "Debug/Expert options:\n"
7071 "-monitor dev redirect the monitor to char device 'dev'\n"
7072 "-serial dev redirect the serial port to char device 'dev'\n"
7073 "-parallel dev redirect the parallel port to char device 'dev'\n"
7074 "-pidfile file Write PID to 'file'\n"
7075 "-S freeze CPU at startup (use 'c' to start execution)\n"
7076 "-s wait gdb connection to port\n"
7077 "-p port set gdb connection port [default=%s]\n"
7078 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
7079 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
7080 " translation (t=none or lba) (usually qemu can guess them)\n"
7081 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
7082 #ifdef USE_KQEMU
7083 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
7084 "-no-kqemu disable KQEMU kernel module usage\n"
7085 #endif
7086 #ifdef USE_CODE_COPY
7087 "-no-code-copy disable code copy acceleration\n"
7088 #endif
7089 #ifdef TARGET_I386
7090 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
7091 " (default is CL-GD5446 PCI VGA)\n"
7092 "-no-acpi disable ACPI\n"
7093 #endif
7094 "-no-reboot exit instead of rebooting\n"
7095 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
7096 "-vnc display start a VNC server on display\n"
7097 #ifndef _WIN32
7098 "-daemonize daemonize QEMU after initializing\n"
7099 #endif
7100 "-option-rom rom load a file, rom, into the option ROM space\n"
7101 #ifdef TARGET_SPARC
7102 "-prom-env variable=value set OpenBIOS nvram variables\n"
7103 #endif
7104 "-clock force the use of the given methods for timer alarm.\n"
7105 " To see what timers are available use -clock help\n"
7106 "\n"
7107 "During emulation, the following keys are useful:\n"
7108 "ctrl-alt-f toggle full screen\n"
7109 "ctrl-alt-n switch to virtual console 'n'\n"
7110 "ctrl-alt toggle mouse and keyboard grab\n"
7111 "\n"
7112 "When using -nographic, press 'ctrl-a h' to get some help.\n"
7113 ,
7114 "qemu",
7115 DEFAULT_RAM_SIZE,
7116 #ifndef _WIN32
7117 DEFAULT_NETWORK_SCRIPT,
7118 DEFAULT_NETWORK_DOWN_SCRIPT,
7119 #endif
7120 DEFAULT_GDBSTUB_PORT,
7121 "/tmp/qemu.log");
7122 exit(exitcode);
7123 }
7124
7125 #define HAS_ARG 0x0001
7126
7127 enum {
7128 QEMU_OPTION_h,
7129
7130 QEMU_OPTION_M,
7131 QEMU_OPTION_cpu,
7132 QEMU_OPTION_fda,
7133 QEMU_OPTION_fdb,
7134 QEMU_OPTION_hda,
7135 QEMU_OPTION_hdb,
7136 QEMU_OPTION_hdc,
7137 QEMU_OPTION_hdd,
7138 QEMU_OPTION_cdrom,
7139 QEMU_OPTION_mtdblock,
7140 QEMU_OPTION_sd,
7141 QEMU_OPTION_pflash,
7142 QEMU_OPTION_boot,
7143 QEMU_OPTION_snapshot,
7144 #ifdef TARGET_I386
7145 QEMU_OPTION_no_fd_bootchk,
7146 #endif
7147 QEMU_OPTION_m,
7148 QEMU_OPTION_nographic,
7149 QEMU_OPTION_portrait,
7150 #ifdef HAS_AUDIO
7151 QEMU_OPTION_audio_help,
7152 QEMU_OPTION_soundhw,
7153 #endif
7154
7155 QEMU_OPTION_net,
7156 QEMU_OPTION_tftp,
7157 QEMU_OPTION_bootp,
7158 QEMU_OPTION_smb,
7159 QEMU_OPTION_redir,
7160
7161 QEMU_OPTION_kernel,
7162 QEMU_OPTION_append,
7163 QEMU_OPTION_initrd,
7164
7165 QEMU_OPTION_S,
7166 QEMU_OPTION_s,
7167 QEMU_OPTION_p,
7168 QEMU_OPTION_d,
7169 QEMU_OPTION_hdachs,
7170 QEMU_OPTION_L,
7171 QEMU_OPTION_bios,
7172 QEMU_OPTION_no_code_copy,
7173 QEMU_OPTION_k,
7174 QEMU_OPTION_localtime,
7175 QEMU_OPTION_cirrusvga,
7176 QEMU_OPTION_vmsvga,
7177 QEMU_OPTION_g,
7178 QEMU_OPTION_std_vga,
7179 QEMU_OPTION_echr,
7180 QEMU_OPTION_monitor,
7181 QEMU_OPTION_serial,
7182 QEMU_OPTION_parallel,
7183 QEMU_OPTION_loadvm,
7184 QEMU_OPTION_full_screen,
7185 QEMU_OPTION_no_frame,
7186 QEMU_OPTION_alt_grab,
7187 QEMU_OPTION_no_quit,
7188 QEMU_OPTION_pidfile,
7189 QEMU_OPTION_no_kqemu,
7190 QEMU_OPTION_kernel_kqemu,
7191 QEMU_OPTION_win2k_hack,
7192 QEMU_OPTION_usb,
7193 QEMU_OPTION_usbdevice,
7194 QEMU_OPTION_smp,
7195 QEMU_OPTION_vnc,
7196 QEMU_OPTION_no_acpi,
7197 QEMU_OPTION_no_reboot,
7198 QEMU_OPTION_show_cursor,
7199 QEMU_OPTION_daemonize,
7200 QEMU_OPTION_option_rom,
7201 QEMU_OPTION_semihosting,
7202 QEMU_OPTION_name,
7203 QEMU_OPTION_prom_env,
7204 QEMU_OPTION_old_param,
7205 QEMU_OPTION_clock,
7206 };
7207
7208 typedef struct QEMUOption {
7209 const char *name;
7210 int flags;
7211 int index;
7212 } QEMUOption;
7213
7214 const QEMUOption qemu_options[] = {
7215 { "h", 0, QEMU_OPTION_h },
7216 { "help", 0, QEMU_OPTION_h },
7217
7218 { "M", HAS_ARG, QEMU_OPTION_M },
7219 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7220 { "fda", HAS_ARG, QEMU_OPTION_fda },
7221 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7222 { "hda", HAS_ARG, QEMU_OPTION_hda },
7223 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7224 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7225 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7226 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7227 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7228 { "sd", HAS_ARG, QEMU_OPTION_sd },
7229 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7230 { "boot", HAS_ARG, QEMU_OPTION_boot },
7231 { "snapshot", 0, QEMU_OPTION_snapshot },
7232 #ifdef TARGET_I386
7233 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7234 #endif
7235 { "m", HAS_ARG, QEMU_OPTION_m },
7236 { "nographic", 0, QEMU_OPTION_nographic },
7237 { "portrait", 0, QEMU_OPTION_portrait },
7238 { "k", HAS_ARG, QEMU_OPTION_k },
7239 #ifdef HAS_AUDIO
7240 { "audio-help", 0, QEMU_OPTION_audio_help },
7241 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7242 #endif
7243
7244 { "net", HAS_ARG, QEMU_OPTION_net},
7245 #ifdef CONFIG_SLIRP
7246 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7247 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7248 #ifndef _WIN32
7249 { "smb", HAS_ARG, QEMU_OPTION_smb },
7250 #endif
7251 { "redir", HAS_ARG, QEMU_OPTION_redir },
7252 #endif
7253
7254 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7255 { "append", HAS_ARG, QEMU_OPTION_append },
7256 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7257
7258 { "S", 0, QEMU_OPTION_S },
7259 { "s", 0, QEMU_OPTION_s },
7260 { "p", HAS_ARG, QEMU_OPTION_p },
7261 { "d", HAS_ARG, QEMU_OPTION_d },
7262 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7263 { "L", HAS_ARG, QEMU_OPTION_L },
7264 { "bios", HAS_ARG, QEMU_OPTION_bios },
7265 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7266 #ifdef USE_KQEMU
7267 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7268 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7269 #endif
7270 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7271 { "g", 1, QEMU_OPTION_g },
7272 #endif
7273 { "localtime", 0, QEMU_OPTION_localtime },
7274 { "std-vga", 0, QEMU_OPTION_std_vga },
7275 { "echr", HAS_ARG, QEMU_OPTION_echr },
7276 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7277 { "serial", HAS_ARG, QEMU_OPTION_serial },
7278 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7279 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7280 { "full-screen", 0, QEMU_OPTION_full_screen },
7281 #ifdef CONFIG_SDL
7282 { "no-frame", 0, QEMU_OPTION_no_frame },
7283 { "alt-grab", 0, QEMU_OPTION_alt_grab },
7284 { "no-quit", 0, QEMU_OPTION_no_quit },
7285 #endif
7286 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7287 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7288 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7289 { "smp", HAS_ARG, QEMU_OPTION_smp },
7290 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7291
7292 /* temporary options */
7293 { "usb", 0, QEMU_OPTION_usb },
7294 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7295 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7296 { "no-acpi", 0, QEMU_OPTION_no_acpi },
7297 { "no-reboot", 0, QEMU_OPTION_no_reboot },
7298 { "show-cursor", 0, QEMU_OPTION_show_cursor },
7299 { "daemonize", 0, QEMU_OPTION_daemonize },
7300 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7301 #if defined(TARGET_ARM) || defined(TARGET_M68K)
7302 { "semihosting", 0, QEMU_OPTION_semihosting },
7303 #endif
7304 { "name", HAS_ARG, QEMU_OPTION_name },
7305 #if defined(TARGET_SPARC)
7306 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7307 #endif
7308 #if defined(TARGET_ARM)
7309 { "old-param", 0, QEMU_OPTION_old_param },
7310 #endif
7311 { "clock", HAS_ARG, QEMU_OPTION_clock },
7312 { NULL },
7313 };
7314
7315 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
7316
7317 /* this stack is only used during signal handling */
7318 #define SIGNAL_STACK_SIZE 32768
7319
7320 static uint8_t *signal_stack;
7321
7322 #endif
7323
7324 /* password input */
7325
7326 int qemu_key_check(BlockDriverState *bs, const char *name)
7327 {
7328 char password[256];
7329 int i;
7330
7331 if (!bdrv_is_encrypted(bs))
7332 return 0;
7333
7334 term_printf("%s is encrypted.\n", name);
7335 for(i = 0; i < 3; i++) {
7336 monitor_readline("Password: ", 1, password, sizeof(password));
7337 if (bdrv_set_key(bs, password) == 0)
7338 return 0;
7339 term_printf("invalid password\n");
7340 }
7341 return -EPERM;
7342 }
7343
7344 static BlockDriverState *get_bdrv(int index)
7345 {
7346 BlockDriverState *bs;
7347
7348 if (index < 4) {
7349 bs = bs_table[index];
7350 } else if (index < 6) {
7351 bs = fd_table[index - 4];
7352 } else {
7353 bs = NULL;
7354 }
7355 return bs;
7356 }
7357
7358 static void read_passwords(void)
7359 {
7360 BlockDriverState *bs;
7361 int i;
7362
7363 for(i = 0; i < 6; i++) {
7364 bs = get_bdrv(i);
7365 if (bs)
7366 qemu_key_check(bs, bdrv_get_device_name(bs));
7367 }
7368 }
7369
7370 /* XXX: currently we cannot use simultaneously different CPUs */
7371 void register_machines(void)
7372 {
7373 #if defined(TARGET_I386)
7374 qemu_register_machine(&pc_machine);
7375 qemu_register_machine(&isapc_machine);
7376 #elif defined(TARGET_PPC)
7377 qemu_register_machine(&heathrow_machine);
7378 qemu_register_machine(&core99_machine);
7379 qemu_register_machine(&prep_machine);
7380 qemu_register_machine(&ref405ep_machine);
7381 qemu_register_machine(&taihu_machine);
7382 #elif defined(TARGET_MIPS)
7383 qemu_register_machine(&mips_machine);
7384 qemu_register_machine(&mips_malta_machine);
7385 qemu_register_machine(&mips_pica61_machine);
7386 qemu_register_machine(&mips_mipssim_machine);
7387 #elif defined(TARGET_SPARC)
7388 #ifdef TARGET_SPARC64
7389 qemu_register_machine(&sun4u_machine);
7390 #else
7391 qemu_register_machine(&ss5_machine);
7392 qemu_register_machine(&ss10_machine);
7393 #endif
7394 #elif defined(TARGET_ARM)
7395 qemu_register_machine(&integratorcp_machine);
7396 qemu_register_machine(&versatilepb_machine);
7397 qemu_register_machine(&versatileab_machine);
7398 qemu_register_machine(&realview_machine);
7399 qemu_register_machine(&akitapda_machine);
7400 qemu_register_machine(&spitzpda_machine);
7401 qemu_register_machine(&borzoipda_machine);
7402 qemu_register_machine(&terrierpda_machine);
7403 qemu_register_machine(&palmte_machine);
7404 #elif defined(TARGET_SH4)
7405 qemu_register_machine(&shix_machine);
7406 qemu_register_machine(&r2d_machine);
7407 #elif defined(TARGET_ALPHA)
7408 /* XXX: TODO */
7409 #elif defined(TARGET_M68K)
7410 qemu_register_machine(&mcf5208evb_machine);
7411 qemu_register_machine(&an5206_machine);
7412 #elif defined(TARGET_CRIS)
7413 qemu_register_machine(&bareetraxfs_machine);
7414 #else
7415 #error unsupported CPU
7416 #endif
7417 }
7418
7419 #ifdef HAS_AUDIO
7420 struct soundhw soundhw[] = {
7421 #ifdef HAS_AUDIO_CHOICE
7422 #ifdef TARGET_I386
7423 {
7424 "pcspk",
7425 "PC speaker",
7426 0,
7427 1,
7428 { .init_isa = pcspk_audio_init }
7429 },
7430 #endif
7431 {
7432 "sb16",
7433 "Creative Sound Blaster 16",
7434 0,
7435 1,
7436 { .init_isa = SB16_init }
7437 },
7438
7439 #ifdef CONFIG_ADLIB
7440 {
7441 "adlib",
7442 #ifdef HAS_YMF262
7443 "Yamaha YMF262 (OPL3)",
7444 #else
7445 "Yamaha YM3812 (OPL2)",
7446 #endif
7447 0,
7448 1,
7449 { .init_isa = Adlib_init }
7450 },
7451 #endif
7452
7453 #ifdef CONFIG_GUS
7454 {
7455 "gus",
7456 "Gravis Ultrasound GF1",
7457 0,
7458 1,
7459 { .init_isa = GUS_init }
7460 },
7461 #endif
7462
7463 {
7464 "es1370",
7465 "ENSONIQ AudioPCI ES1370",
7466 0,
7467 0,
7468 { .init_pci = es1370_init }
7469 },
7470 #endif
7471
7472 { NULL, NULL, 0, 0, { NULL } }
7473 };
7474
7475 static void select_soundhw (const char *optarg)
7476 {
7477 struct soundhw *c;
7478
7479 if (*optarg == '?') {
7480 show_valid_cards:
7481
7482 printf ("Valid sound card names (comma separated):\n");
7483 for (c = soundhw; c->name; ++c) {
7484 printf ("%-11s %s\n", c->name, c->descr);
7485 }
7486 printf ("\n-soundhw all will enable all of the above\n");
7487 exit (*optarg != '?');
7488 }
7489 else {
7490 size_t l;
7491 const char *p;
7492 char *e;
7493 int bad_card = 0;
7494
7495 if (!strcmp (optarg, "all")) {
7496 for (c = soundhw; c->name; ++c) {
7497 c->enabled = 1;
7498 }
7499 return;
7500 }
7501
7502 p = optarg;
7503 while (*p) {
7504 e = strchr (p, ',');
7505 l = !e ? strlen (p) : (size_t) (e - p);
7506
7507 for (c = soundhw; c->name; ++c) {
7508 if (!strncmp (c->name, p, l)) {
7509 c->enabled = 1;
7510 break;
7511 }
7512 }
7513
7514 if (!c->name) {
7515 if (l > 80) {
7516 fprintf (stderr,
7517 "Unknown sound card name (too big to show)\n");
7518 }
7519 else {
7520 fprintf (stderr, "Unknown sound card name `%.*s'\n",
7521 (int) l, p);
7522 }
7523 bad_card = 1;
7524 }
7525 p += l + (e != NULL);
7526 }
7527
7528 if (bad_card)
7529 goto show_valid_cards;
7530 }
7531 }
7532 #endif
7533
7534 #ifdef _WIN32
7535 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7536 {
7537 exit(STATUS_CONTROL_C_EXIT);
7538 return TRUE;
7539 }
7540 #endif
7541
7542 #define MAX_NET_CLIENTS 32
7543
7544 int main(int argc, char **argv)
7545 {
7546 #ifdef CONFIG_GDBSTUB
7547 int use_gdbstub;
7548 const char *gdbstub_port;
7549 #endif
7550 int i, cdrom_index, pflash_index;
7551 int snapshot, linux_boot;
7552 const char *initrd_filename;
7553 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
7554 const char *pflash_filename[MAX_PFLASH];
7555 const char *sd_filename;
7556 const char *mtd_filename;
7557 const char *kernel_filename, *kernel_cmdline;
7558 DisplayState *ds = &display_state;
7559 int cyls, heads, secs, translation;
7560 char net_clients[MAX_NET_CLIENTS][256];
7561 int nb_net_clients;
7562 int optind;
7563 const char *r, *optarg;
7564 CharDriverState *monitor_hd;
7565 char monitor_device[128];
7566 char serial_devices[MAX_SERIAL_PORTS][128];
7567 int serial_device_index;
7568 char parallel_devices[MAX_PARALLEL_PORTS][128];
7569 int parallel_device_index;
7570 const char *loadvm = NULL;
7571 QEMUMachine *machine;
7572 const char *cpu_model;
7573 char usb_devices[MAX_USB_CMDLINE][128];
7574 int usb_devices_index;
7575 int fds[2];
7576 const char *pid_file = NULL;
7577 VLANState *vlan;
7578
7579 LIST_INIT (&vm_change_state_head);
7580 #ifndef _WIN32
7581 {
7582 struct sigaction act;
7583 sigfillset(&act.sa_mask);
7584 act.sa_flags = 0;
7585 act.sa_handler = SIG_IGN;
7586 sigaction(SIGPIPE, &act, NULL);
7587 }
7588 #else
7589 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7590 /* Note: cpu_interrupt() is currently not SMP safe, so we force
7591 QEMU to run on a single CPU */
7592 {
7593 HANDLE h;
7594 DWORD mask, smask;
7595 int i;
7596 h = GetCurrentProcess();
7597 if (GetProcessAffinityMask(h, &mask, &smask)) {
7598 for(i = 0; i < 32; i++) {
7599 if (mask & (1 << i))
7600 break;
7601 }
7602 if (i != 32) {
7603 mask = 1 << i;
7604 SetProcessAffinityMask(h, mask);
7605 }
7606 }
7607 }
7608 #endif
7609
7610 register_machines();
7611 machine = first_machine;
7612 cpu_model = NULL;
7613 initrd_filename = NULL;
7614 for(i = 0; i < MAX_FD; i++)
7615 fd_filename[i] = NULL;
7616 for(i = 0; i < MAX_DISKS; i++)
7617 hd_filename[i] = NULL;
7618 for(i = 0; i < MAX_PFLASH; i++)
7619 pflash_filename[i] = NULL;
7620 pflash_index = 0;
7621 sd_filename = NULL;
7622 mtd_filename = NULL;
7623 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7624 vga_ram_size = VGA_RAM_SIZE;
7625 #ifdef CONFIG_GDBSTUB
7626 use_gdbstub = 0;
7627 gdbstub_port = DEFAULT_GDBSTUB_PORT;
7628 #endif
7629 snapshot = 0;
7630 nographic = 0;
7631 kernel_filename = NULL;
7632 kernel_cmdline = "";
7633 #ifdef TARGET_PPC
7634 cdrom_index = 1;
7635 #else
7636 cdrom_index = 2;
7637 #endif
7638 cyls = heads = secs = 0;
7639 translation = BIOS_ATA_TRANSLATION_AUTO;
7640 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7641
7642 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7643 for(i = 1; i < MAX_SERIAL_PORTS; i++)
7644 serial_devices[i][0] = '\0';
7645 serial_device_index = 0;
7646
7647 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7648 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7649 parallel_devices[i][0] = '\0';
7650 parallel_device_index = 0;
7651
7652 usb_devices_index = 0;
7653
7654 nb_net_clients = 0;
7655
7656 nb_nics = 0;
7657 /* default mac address of the first network interface */
7658
7659 optind = 1;
7660 for(;;) {
7661 if (optind >= argc)
7662 break;
7663 r = argv[optind];
7664 if (r[0] != '-') {
7665 hd_filename[0] = argv[optind++];
7666 } else {
7667 const QEMUOption *popt;
7668
7669 optind++;
7670 /* Treat --foo the same as -foo. */
7671 if (r[1] == '-')
7672 r++;
7673 popt = qemu_options;
7674 for(;;) {
7675 if (!popt->name) {
7676 fprintf(stderr, "%s: invalid option -- '%s'\n",
7677 argv[0], r);
7678 exit(1);
7679 }
7680 if (!strcmp(popt->name, r + 1))
7681 break;
7682 popt++;
7683 }
7684 if (popt->flags & HAS_ARG) {
7685 if (optind >= argc) {
7686 fprintf(stderr, "%s: option '%s' requires an argument\n",
7687 argv[0], r);
7688 exit(1);
7689 }
7690 optarg = argv[optind++];
7691 } else {
7692 optarg = NULL;
7693 }
7694
7695 switch(popt->index) {
7696 case QEMU_OPTION_M:
7697 machine = find_machine(optarg);
7698 if (!machine) {
7699 QEMUMachine *m;
7700 printf("Supported machines are:\n");
7701 for(m = first_machine; m != NULL; m = m->next) {
7702 printf("%-10s %s%s\n",
7703 m->name, m->desc,
7704 m == first_machine ? " (default)" : "");
7705 }
7706 exit(*optarg != '?');
7707 }
7708 break;
7709 case QEMU_OPTION_cpu:
7710 /* hw initialization will check this */
7711 if (*optarg == '?') {
7712 /* XXX: implement xxx_cpu_list for targets that still miss it */
7713 #if defined(cpu_list)
7714 cpu_list(stdout, &fprintf);
7715 #endif
7716 exit(0);
7717 } else {
7718 cpu_model = optarg;
7719 }
7720 break;
7721 case QEMU_OPTION_initrd:
7722 initrd_filename = optarg;
7723 break;
7724 case QEMU_OPTION_hda:
7725 case QEMU_OPTION_hdb:
7726 case QEMU_OPTION_hdc:
7727 case QEMU_OPTION_hdd:
7728 {
7729 int hd_index;
7730 hd_index = popt->index - QEMU_OPTION_hda;
7731 hd_filename[hd_index] = optarg;
7732 if (hd_index == cdrom_index)
7733 cdrom_index = -1;
7734 }
7735 break;
7736 case QEMU_OPTION_mtdblock:
7737 mtd_filename = optarg;
7738 break;
7739 case QEMU_OPTION_sd:
7740 sd_filename = optarg;
7741 break;
7742 case QEMU_OPTION_pflash:
7743 if (pflash_index >= MAX_PFLASH) {
7744 fprintf(stderr, "qemu: too many parallel flash images\n");
7745 exit(1);
7746 }
7747 pflash_filename[pflash_index++] = optarg;
7748 break;
7749 case QEMU_OPTION_snapshot:
7750 snapshot = 1;
7751 break;
7752 case QEMU_OPTION_hdachs:
7753 {
7754 const char *p;
7755 p = optarg;
7756 cyls = strtol(p, (char **)&p, 0);
7757 if (cyls < 1 || cyls > 16383)
7758 goto chs_fail;
7759 if (*p != ',')
7760 goto chs_fail;
7761 p++;
7762 heads = strtol(p, (char **)&p, 0);
7763 if (heads < 1 || heads > 16)
7764 goto chs_fail;
7765 if (*p != ',')
7766 goto chs_fail;
7767 p++;
7768 secs = strtol(p, (char **)&p, 0);
7769 if (secs < 1 || secs > 63)
7770 goto chs_fail;
7771 if (*p == ',') {
7772 p++;
7773 if (!strcmp(p, "none"))
7774 translation = BIOS_ATA_TRANSLATION_NONE;
7775 else if (!strcmp(p, "lba"))
7776 translation = BIOS_ATA_TRANSLATION_LBA;
7777 else if (!strcmp(p, "auto"))
7778 translation = BIOS_ATA_TRANSLATION_AUTO;
7779 else
7780 goto chs_fail;
7781 } else if (*p != '\0') {
7782 chs_fail:
7783 fprintf(stderr, "qemu: invalid physical CHS format\n");
7784 exit(1);
7785 }
7786 }
7787 break;
7788 case QEMU_OPTION_nographic:
7789 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7790 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7791 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7792 nographic = 1;
7793 break;
7794 case QEMU_OPTION_portrait:
7795 graphic_rotate = 1;
7796 break;
7797 case QEMU_OPTION_kernel:
7798 kernel_filename = optarg;
7799 break;
7800 case QEMU_OPTION_append:
7801 kernel_cmdline = optarg;
7802 break;
7803 case QEMU_OPTION_cdrom:
7804 if (cdrom_index >= 0) {
7805 hd_filename[cdrom_index] = optarg;
7806 }
7807 break;
7808 case QEMU_OPTION_boot:
7809 boot_device = optarg[0];
7810 if (boot_device != 'a' &&
7811 #if defined(TARGET_SPARC) || defined(TARGET_I386)
7812 // Network boot
7813 boot_device != 'n' &&
7814 #endif
7815 boot_device != 'c' && boot_device != 'd') {
7816 fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
7817 exit(1);
7818 }
7819 break;
7820 case QEMU_OPTION_fda:
7821 fd_filename[0] = optarg;
7822 break;
7823 case QEMU_OPTION_fdb:
7824 fd_filename[1] = optarg;
7825 break;
7826 #ifdef TARGET_I386
7827 case QEMU_OPTION_no_fd_bootchk:
7828 fd_bootchk = 0;
7829 break;
7830 #endif
7831 case QEMU_OPTION_no_code_copy:
7832 code_copy_enabled = 0;
7833 break;
7834 case QEMU_OPTION_net:
7835 if (nb_net_clients >= MAX_NET_CLIENTS) {
7836 fprintf(stderr, "qemu: too many network clients\n");
7837 exit(1);
7838 }
7839 pstrcpy(net_clients[nb_net_clients],
7840 sizeof(net_clients[0]),
7841 optarg);
7842 nb_net_clients++;
7843 break;
7844 #ifdef CONFIG_SLIRP
7845 case QEMU_OPTION_tftp:
7846 tftp_prefix = optarg;
7847 break;
7848 case QEMU_OPTION_bootp:
7849 bootp_filename = optarg;
7850 break;
7851 #ifndef _WIN32
7852 case QEMU_OPTION_smb:
7853 net_slirp_smb(optarg);
7854 break;
7855 #endif
7856 case QEMU_OPTION_redir:
7857 net_slirp_redir(optarg);
7858 break;
7859 #endif
7860 #ifdef HAS_AUDIO
7861 case QEMU_OPTION_audio_help:
7862 AUD_help ();
7863 exit (0);
7864 break;
7865 case QEMU_OPTION_soundhw:
7866 select_soundhw (optarg);
7867 break;
7868 #endif
7869 case QEMU_OPTION_h:
7870 help(0);
7871 break;
7872 case QEMU_OPTION_m:
7873 ram_size = atoi(optarg) * 1024 * 1024;
7874 if (ram_size <= 0)
7875 help(1);
7876 if (ram_size > PHYS_RAM_MAX_SIZE) {
7877 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7878 PHYS_RAM_MAX_SIZE / (1024 * 1024));
7879 exit(1);
7880 }
7881 break;
7882 case QEMU_OPTION_d:
7883 {
7884 int mask;
7885 CPULogItem *item;
7886
7887 mask = cpu_str_to_log_mask(optarg);
7888 if (!mask) {
7889 printf("Log items (comma separated):\n");
7890 for(item = cpu_log_items; item->mask != 0; item++) {
7891 printf("%-10s %s\n", item->name, item->help);
7892 }
7893 exit(1);
7894 }
7895 cpu_set_log(mask);
7896 }
7897 break;
7898 #ifdef CONFIG_GDBSTUB
7899 case QEMU_OPTION_s:
7900 use_gdbstub = 1;
7901 break;
7902 case QEMU_OPTION_p:
7903 gdbstub_port = optarg;
7904 break;
7905 #endif
7906 case QEMU_OPTION_L:
7907 bios_dir = optarg;
7908 break;
7909 case QEMU_OPTION_bios:
7910 bios_name = optarg;
7911 break;
7912 case QEMU_OPTION_S:
7913 autostart = 0;
7914 break;
7915 case QEMU_OPTION_k:
7916 keyboard_layout = optarg;
7917 break;
7918 case QEMU_OPTION_localtime:
7919 rtc_utc = 0;
7920 break;
7921 case QEMU_OPTION_cirrusvga:
7922 cirrus_vga_enabled = 1;
7923 vmsvga_enabled = 0;
7924 break;
7925 case QEMU_OPTION_vmsvga:
7926 cirrus_vga_enabled = 0;
7927 vmsvga_enabled = 1;
7928 break;
7929 case QEMU_OPTION_std_vga:
7930 cirrus_vga_enabled = 0;
7931 vmsvga_enabled = 0;
7932 break;
7933 case QEMU_OPTION_g:
7934 {
7935 const char *p;
7936 int w, h, depth;
7937 p = optarg;
7938 w = strtol(p, (char **)&p, 10);
7939 if (w <= 0) {
7940 graphic_error:
7941 fprintf(stderr, "qemu: invalid resolution or depth\n");
7942 exit(1);
7943 }
7944 if (*p != 'x')
7945 goto graphic_error;
7946 p++;
7947 h = strtol(p, (char **)&p, 10);
7948 if (h <= 0)
7949 goto graphic_error;
7950 if (*p == 'x') {
7951 p++;
7952 depth = strtol(p, (char **)&p, 10);
7953 if (depth != 8 && depth != 15 && depth != 16 &&
7954 depth != 24 && depth != 32)
7955 goto graphic_error;
7956 } else if (*p == '\0') {
7957 depth = graphic_depth;
7958 } else {
7959 goto graphic_error;
7960 }
7961
7962 graphic_width = w;
7963 graphic_height = h;
7964 graphic_depth = depth;
7965 }
7966 break;
7967 case QEMU_OPTION_echr:
7968 {
7969 char *r;
7970 term_escape_char = strtol(optarg, &r, 0);
7971 if (r == optarg)
7972 printf("Bad argument to echr\n");
7973 break;
7974 }
7975 case QEMU_OPTION_monitor:
7976 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7977 break;
7978 case QEMU_OPTION_serial:
7979 if (serial_device_index >= MAX_SERIAL_PORTS) {
7980 fprintf(stderr, "qemu: too many serial ports\n");
7981 exit(1);
7982 }
7983 pstrcpy(serial_devices[serial_device_index],
7984 sizeof(serial_devices[0]), optarg);
7985 serial_device_index++;
7986 break;
7987 case QEMU_OPTION_parallel:
7988 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
7989 fprintf(stderr, "qemu: too many parallel ports\n");
7990 exit(1);
7991 }
7992 pstrcpy(parallel_devices[parallel_device_index],
7993 sizeof(parallel_devices[0]), optarg);
7994 parallel_device_index++;
7995 break;
7996 case QEMU_OPTION_loadvm:
7997 loadvm = optarg;
7998 break;
7999 case QEMU_OPTION_full_screen:
8000 full_screen = 1;
8001 break;
8002 #ifdef CONFIG_SDL
8003 case QEMU_OPTION_no_frame:
8004 no_frame = 1;
8005 break;
8006 case QEMU_OPTION_alt_grab:
8007 alt_grab = 1;
8008 break;
8009 case QEMU_OPTION_no_quit:
8010 no_quit = 1;
8011 break;
8012 #endif
8013 case QEMU_OPTION_pidfile:
8014 pid_file = optarg;
8015 break;
8016 #ifdef TARGET_I386
8017 case QEMU_OPTION_win2k_hack:
8018 win2k_install_hack = 1;
8019 break;
8020 #endif
8021 #ifdef USE_KQEMU
8022 case QEMU_OPTION_no_kqemu:
8023 kqemu_allowed = 0;
8024 break;
8025 case QEMU_OPTION_kernel_kqemu:
8026 kqemu_allowed = 2;
8027 break;
8028 #endif
8029 case QEMU_OPTION_usb:
8030 usb_enabled = 1;
8031 break;
8032 case QEMU_OPTION_usbdevice:
8033 usb_enabled = 1;
8034 if (usb_devices_index >= MAX_USB_CMDLINE) {
8035 fprintf(stderr, "Too many USB devices\n");
8036 exit(1);
8037 }
8038 pstrcpy(usb_devices[usb_devices_index],
8039 sizeof(usb_devices[usb_devices_index]),
8040 optarg);
8041 usb_devices_index++;
8042 break;
8043 case QEMU_OPTION_smp:
8044 smp_cpus = atoi(optarg);
8045 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8046 fprintf(stderr, "Invalid number of CPUs\n");
8047 exit(1);
8048 }
8049 break;
8050 case QEMU_OPTION_vnc:
8051 vnc_display = optarg;
8052 break;
8053 case QEMU_OPTION_no_acpi:
8054 acpi_enabled = 0;
8055 break;
8056 case QEMU_OPTION_no_reboot:
8057 no_reboot = 1;
8058 break;
8059 case QEMU_OPTION_show_cursor:
8060 cursor_hide = 0;
8061 break;
8062 case QEMU_OPTION_daemonize:
8063 daemonize = 1;
8064 break;
8065 case QEMU_OPTION_option_rom:
8066 if (nb_option_roms >= MAX_OPTION_ROMS) {
8067 fprintf(stderr, "Too many option ROMs\n");
8068 exit(1);
8069 }
8070 option_rom[nb_option_roms] = optarg;
8071 nb_option_roms++;
8072 break;
8073 case QEMU_OPTION_semihosting:
8074 semihosting_enabled = 1;
8075 break;
8076 case QEMU_OPTION_name:
8077 qemu_name = optarg;
8078 break;
8079 #ifdef TARGET_SPARC
8080 case QEMU_OPTION_prom_env:
8081 if (nb_prom_envs >= MAX_PROM_ENVS) {
8082 fprintf(stderr, "Too many prom variables\n");
8083 exit(1);
8084 }
8085 prom_envs[nb_prom_envs] = optarg;
8086 nb_prom_envs++;
8087 break;
8088 #endif
8089 #ifdef TARGET_ARM
8090 case QEMU_OPTION_old_param:
8091 old_param = 1;
8092 #endif
8093 case QEMU_OPTION_clock:
8094 configure_alarms(optarg);
8095 break;
8096 }
8097 }
8098 }
8099
8100 #ifndef _WIN32
8101 if (daemonize && !nographic && vnc_display == NULL) {
8102 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8103 daemonize = 0;
8104 }
8105
8106 if (daemonize) {
8107 pid_t pid;
8108
8109 if (pipe(fds) == -1)
8110 exit(1);
8111
8112 pid = fork();
8113 if (pid > 0) {
8114 uint8_t status;
8115 ssize_t len;
8116
8117 close(fds[1]);
8118
8119 again:
8120 len = read(fds[0], &status, 1);
8121 if (len == -1 && (errno == EINTR))
8122 goto again;
8123
8124 if (len != 1)
8125 exit(1);
8126 else if (status == 1) {
8127 fprintf(stderr, "Could not acquire pidfile\n");
8128 exit(1);
8129 } else
8130 exit(0);
8131 } else if (pid < 0)
8132 exit(1);
8133
8134 setsid();
8135
8136 pid = fork();
8137 if (pid > 0)
8138 exit(0);
8139 else if (pid < 0)
8140 exit(1);
8141
8142 umask(027);
8143 chdir("/");
8144
8145 signal(SIGTSTP, SIG_IGN);
8146 signal(SIGTTOU, SIG_IGN);
8147 signal(SIGTTIN, SIG_IGN);
8148 }
8149 #endif
8150
8151 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8152 if (daemonize) {
8153 uint8_t status = 1;
8154 write(fds[1], &status, 1);
8155 } else
8156 fprintf(stderr, "Could not acquire pid file\n");
8157 exit(1);
8158 }
8159
8160 #ifdef USE_KQEMU
8161 if (smp_cpus > 1)
8162 kqemu_allowed = 0;
8163 #endif
8164 linux_boot = (kernel_filename != NULL);
8165
8166 if (!linux_boot &&
8167 boot_device != 'n' &&
8168 hd_filename[0] == '\0' &&
8169 (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
8170 fd_filename[0] == '\0')
8171 help(1);
8172
8173 /* boot to floppy or the default cd if no hard disk defined yet */
8174 if (hd_filename[0] == '\0' && boot_device == 'c') {
8175 if (fd_filename[0] != '\0')
8176 boot_device = 'a';
8177 else
8178 boot_device = 'd';
8179 }
8180
8181 setvbuf(stdout, NULL, _IOLBF, 0);
8182
8183 init_timers();
8184 init_timer_alarm();
8185 qemu_aio_init();
8186
8187 #ifdef _WIN32
8188 socket_init();
8189 #endif
8190
8191 /* init network clients */
8192 if (nb_net_clients == 0) {
8193 /* if no clients, we use a default config */
8194 pstrcpy(net_clients[0], sizeof(net_clients[0]),
8195 "nic");
8196 pstrcpy(net_clients[1], sizeof(net_clients[0]),
8197 "user");
8198 nb_net_clients = 2;
8199 }
8200
8201 for(i = 0;i < nb_net_clients; i++) {
8202 if (net_client_init(net_clients[i]) < 0)
8203 exit(1);
8204 }
8205 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8206 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8207 continue;
8208 if (vlan->nb_guest_devs == 0) {
8209 fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8210 exit(1);
8211 }
8212 if (vlan->nb_host_devs == 0)
8213 fprintf(stderr,
8214 "Warning: vlan %d is not connected to host network\n",
8215 vlan->id);
8216 }
8217
8218 #ifdef TARGET_I386
8219 if (boot_device == 'n') {
8220 for (i = 0; i < nb_nics; i++) {
8221 const char *model = nd_table[i].model;
8222 char buf[1024];
8223 if (model == NULL)
8224 model = "ne2k_pci";
8225 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8226 if (get_image_size(buf) > 0) {
8227 option_rom[nb_option_roms] = strdup(buf);
8228 nb_option_roms++;
8229 break;
8230 }
8231 }
8232 if (i == nb_nics) {
8233 fprintf(stderr, "No valid PXE rom found for network device\n");
8234 exit(1);
8235 }
8236 }
8237 #endif
8238
8239 /* init the memory */
8240 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8241
8242 phys_ram_base = qemu_vmalloc(phys_ram_size);
8243 if (!phys_ram_base) {
8244 fprintf(stderr, "Could not allocate physical memory\n");
8245 exit(1);
8246 }
8247
8248 /* we always create the cdrom drive, even if no disk is there */
8249 bdrv_init();
8250 if (cdrom_index >= 0) {
8251 bs_table[cdrom_index] = bdrv_new("cdrom");
8252 bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
8253 }
8254
8255 /* open the virtual block devices */
8256 for(i = 0; i < MAX_DISKS; i++) {
8257 if (hd_filename[i]) {
8258 if (!bs_table[i]) {
8259 char buf[64];
8260 snprintf(buf, sizeof(buf), "hd%c", i + 'a');
8261 bs_table[i] = bdrv_new(buf);
8262 }
8263 if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8264 fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
8265 hd_filename[i]);
8266 exit(1);
8267 }
8268 if (i == 0 && cyls != 0) {
8269 bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
8270 bdrv_set_translation_hint(bs_table[i], translation);
8271 }
8272 }
8273 }
8274
8275 /* we always create at least one floppy disk */
8276 fd_table[0] = bdrv_new("fda");
8277 bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
8278
8279 for(i = 0; i < MAX_FD; i++) {
8280 if (fd_filename[i]) {
8281 if (!fd_table[i]) {
8282 char buf[64];
8283 snprintf(buf, sizeof(buf), "fd%c", i + 'a');
8284 fd_table[i] = bdrv_new(buf);
8285 bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
8286 }
8287 if (fd_filename[i][0] != '\0') {
8288 if (bdrv_open(fd_table[i], fd_filename[i],
8289 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8290 fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
8291 fd_filename[i]);
8292 exit(1);
8293 }
8294 }
8295 }
8296 }
8297
8298 /* Open the virtual parallel flash block devices */
8299 for(i = 0; i < MAX_PFLASH; i++) {
8300 if (pflash_filename[i]) {
8301 if (!pflash_table[i]) {
8302 char buf[64];
8303 snprintf(buf, sizeof(buf), "fl%c", i + 'a');
8304 pflash_table[i] = bdrv_new(buf);
8305 }
8306 if (bdrv_open(pflash_table[i], pflash_filename[i],
8307 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8308 fprintf(stderr, "qemu: could not open flash image '%s'\n",
8309 pflash_filename[i]);
8310 exit(1);
8311 }
8312 }
8313 }
8314
8315 sd_bdrv = bdrv_new ("sd");
8316 /* FIXME: This isn't really a floppy, but it's a reasonable
8317 approximation. */
8318 bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
8319 if (sd_filename) {
8320 if (bdrv_open(sd_bdrv, sd_filename,
8321 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8322 fprintf(stderr, "qemu: could not open SD card image %s\n",
8323 sd_filename);
8324 } else
8325 qemu_key_check(sd_bdrv, sd_filename);
8326 }
8327
8328 if (mtd_filename) {
8329 mtd_bdrv = bdrv_new ("mtd");
8330 if (bdrv_open(mtd_bdrv, mtd_filename,
8331 snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
8332 qemu_key_check(mtd_bdrv, mtd_filename)) {
8333 fprintf(stderr, "qemu: could not open Flash image %s\n",
8334 mtd_filename);
8335 bdrv_delete(mtd_bdrv);
8336 mtd_bdrv = 0;
8337 }
8338 }
8339
8340 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8341 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8342
8343 init_ioports();
8344
8345 /* terminal init */
8346 memset(&display_state, 0, sizeof(display_state));
8347 if (nographic) {
8348 /* nearly nothing to do */
8349 dumb_display_init(ds);
8350 } else if (vnc_display != NULL) {
8351 vnc_display_init(ds);
8352 if (vnc_display_open(ds, vnc_display) < 0)
8353 exit(1);
8354 } else {
8355 #if defined(CONFIG_SDL)
8356 sdl_display_init(ds, full_screen, no_frame);
8357 #elif defined(CONFIG_COCOA)
8358 cocoa_display_init(ds, full_screen);
8359 #endif
8360 }
8361
8362 /* Maintain compatibility with multiple stdio monitors */
8363 if (!strcmp(monitor_device,"stdio")) {
8364 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
8365 if (!strcmp(serial_devices[i],"mon:stdio")) {
8366 monitor_device[0] = '\0';
8367 break;
8368 } else if (!strcmp(serial_devices[i],"stdio")) {
8369 monitor_device[0] = '\0';
8370 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
8371 break;
8372 }
8373 }
8374 }
8375 if (monitor_device[0] != '\0') {
8376 monitor_hd = qemu_chr_open(monitor_device);
8377 if (!monitor_hd) {
8378 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
8379 exit(1);
8380 }
8381 monitor_init(monitor_hd, !nographic);
8382 }
8383
8384 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
8385 const char *devname = serial_devices[i];
8386 if (devname[0] != '\0' && strcmp(devname, "none")) {
8387 serial_hds[i] = qemu_chr_open(devname);
8388 if (!serial_hds[i]) {
8389 fprintf(stderr, "qemu: could not open serial device '%s'\n",
8390 devname);
8391 exit(1);
8392 }
8393 if (strstart(devname, "vc", 0))
8394 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
8395 }
8396 }
8397
8398 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
8399 const char *devname = parallel_devices[i];
8400 if (devname[0] != '\0' && strcmp(devname, "none")) {
8401 parallel_hds[i] = qemu_chr_open(devname);
8402 if (!parallel_hds[i]) {
8403 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
8404 devname);
8405 exit(1);
8406 }
8407 if (strstart(devname, "vc", 0))
8408 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
8409 }
8410 }
8411
8412 machine->init(ram_size, vga_ram_size, boot_device,
8413 ds, fd_filename, snapshot,
8414 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
8415
8416 /* init USB devices */
8417 if (usb_enabled) {
8418 for(i = 0; i < usb_devices_index; i++) {
8419 if (usb_device_add(usb_devices[i]) < 0) {
8420 fprintf(stderr, "Warning: could not add USB device %s\n",
8421 usb_devices[i]);
8422 }
8423 }
8424 }
8425
8426 if (display_state.dpy_refresh) {
8427 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
8428 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
8429 }
8430
8431 #ifdef CONFIG_GDBSTUB
8432 if (use_gdbstub) {
8433 /* XXX: use standard host:port notation and modify options
8434 accordingly. */
8435 if (gdbserver_start(gdbstub_port) < 0) {
8436 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
8437 gdbstub_port);
8438 exit(1);
8439 }
8440 }
8441 #endif
8442
8443 if (loadvm)
8444 do_loadvm(loadvm);
8445
8446 {
8447 /* XXX: simplify init */
8448 read_passwords();
8449 if (autostart) {
8450 vm_start();
8451 }
8452 }
8453
8454 if (daemonize) {
8455 uint8_t status = 0;
8456 ssize_t len;
8457 int fd;
8458
8459 again1:
8460 len = write(fds[1], &status, 1);
8461 if (len == -1 && (errno == EINTR))
8462 goto again1;
8463
8464 if (len != 1)
8465 exit(1);
8466
8467 TFR(fd = open("/dev/null", O_RDWR));
8468 if (fd == -1)
8469 exit(1);
8470
8471 dup2(fd, 0);
8472 dup2(fd, 1);
8473 dup2(fd, 2);
8474
8475 close(fd);
8476 }
8477
8478 main_loop();
8479 quit_timers();
8480
8481 #if !defined(_WIN32)
8482 /* close network clients */
8483 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8484 VLANClientState *vc;
8485
8486 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
8487 if (vc->fd_read == tap_receive) {
8488 char ifname[64];
8489 TAPState *s = vc->opaque;
8490
8491 if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
8492 s->down_script[0])
8493 launch_script(s->down_script, ifname, s->fd);
8494 }
8495 }
8496 }
8497 #endif
8498 return 0;
8499 }