/* * QEMU float support * * The code in this source file is derived from release 2a of the SoftFloat * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and * some later contributions) are provided under that license, as detailed below. * It has subsequently been modified by contributors to the QEMU Project, * so some portions are provided under: * the SoftFloat-2a license * the BSD license * GPL-v2-or-later * * Any future contributions to this file after December 1st 2014 will be * taken to be licensed under the Softfloat-2a license unless specifically * indicated otherwise. */ static void partsN(return_nan)(FloatPartsN *a, float_status *s) { switch (a->cls) { case float_class_snan: float_raise(float_flag_invalid, s); if (s->default_nan_mode) { parts_default_nan(a, s); } else { parts_silence_nan(a, s); } break; case float_class_qnan: if (s->default_nan_mode) { parts_default_nan(a, s); } break; default: g_assert_not_reached(); } } static FloatPartsN *partsN(pick_nan)(FloatPartsN *a, FloatPartsN *b, float_status *s) { if (is_snan(a->cls) || is_snan(b->cls)) { float_raise(float_flag_invalid, s); } if (s->default_nan_mode) { parts_default_nan(a, s); } else { int cmp = frac_cmp(a, b); if (cmp == 0) { cmp = a->sign < b->sign; } if (pickNaN(a->cls, b->cls, cmp > 0, s)) { a = b; } if (is_snan(a->cls)) { parts_silence_nan(a, s); } } return a; } static FloatPartsN *partsN(pick_nan_muladd)(FloatPartsN *a, FloatPartsN *b, FloatPartsN *c, float_status *s, int ab_mask, int abc_mask) { int which; if (unlikely(abc_mask & float_cmask_snan)) { float_raise(float_flag_invalid, s); } which = pickNaNMulAdd(a->cls, b->cls, c->cls, ab_mask == float_cmask_infzero, s); if (s->default_nan_mode || which == 3) { /* * Note that this check is after pickNaNMulAdd so that function * has an opportunity to set the Invalid flag for infzero. */ parts_default_nan(a, s); return a; } switch (which) { case 0: break; case 1: a = b; break; case 2: a = c; break; default: g_assert_not_reached(); } if (is_snan(a->cls)) { parts_silence_nan(a, s); } return a; } /* * Canonicalize the FloatParts structure. Determine the class, * unbias the exponent, and normalize the fraction. */ static void partsN(canonicalize)(FloatPartsN *p, float_status *status, const FloatFmt *fmt) { if (unlikely(p->exp == 0)) { if (likely(frac_eqz(p))) { p->cls = float_class_zero; } else if (status->flush_inputs_to_zero) { float_raise(float_flag_input_denormal, status); p->cls = float_class_zero; frac_clear(p); } else { int shift = frac_normalize(p); p->cls = float_class_normal; p->exp = fmt->frac_shift - fmt->exp_bias - shift + 1; } } else if (likely(p->exp < fmt->exp_max) || fmt->arm_althp) { p->cls = float_class_normal; p->exp -= fmt->exp_bias; frac_shl(p, fmt->frac_shift); p->frac_hi |= DECOMPOSED_IMPLICIT_BIT; } else if (likely(frac_eqz(p))) { p->cls = float_class_inf; } else { frac_shl(p, fmt->frac_shift); p->cls = (parts_is_snan_frac(p->frac_hi, status) ? float_class_snan : float_class_qnan); } } /* * Round and uncanonicalize a floating-point number by parts. There * are FRAC_SHIFT bits that may require rounding at the bottom of the * fraction; these bits will be removed. The exponent will be biased * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0]. */ static void partsN(uncanon)(FloatPartsN *p, float_status *s, const FloatFmt *fmt) { const int exp_max = fmt->exp_max; const int frac_shift = fmt->frac_shift; const uint64_t frac_lsb = fmt->frac_lsb; const uint64_t frac_lsbm1 = fmt->frac_lsbm1; const uint64_t round_mask = fmt->round_mask; const uint64_t roundeven_mask = fmt->roundeven_mask; uint64_t inc; bool overflow_norm; int exp, flags = 0; if (unlikely(p->cls != float_class_normal)) { switch (p->cls) { case float_class_zero: p->exp = 0; frac_clear(p); return; case float_class_inf: g_assert(!fmt->arm_althp); p->exp = fmt->exp_max; frac_clear(p); return; case float_class_qnan: case float_class_snan: g_assert(!fmt->arm_althp); p->exp = fmt->exp_max; frac_shr(p, fmt->frac_shift); return; default: break; } g_assert_not_reached(); } switch (s->float_rounding_mode) { case float_round_nearest_even: overflow_norm = false; inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0); break; case float_round_ties_away: overflow_norm = false; inc = frac_lsbm1; break; case float_round_to_zero: overflow_norm = true; inc = 0; break; case float_round_up: inc = p->sign ? 0 : round_mask; overflow_norm = p->sign; break; case float_round_down: inc = p->sign ? round_mask : 0; overflow_norm = !p->sign; break; case float_round_to_odd: overflow_norm = true; inc = p->frac_lo & frac_lsb ? 0 : round_mask; break; default: g_assert_not_reached(); } exp = p->exp + fmt->exp_bias; if (likely(exp > 0)) { if (p->frac_lo & round_mask) { flags |= float_flag_inexact; if (frac_addi(p, p, inc)) { frac_shr(p, 1); p->frac_hi |= DECOMPOSED_IMPLICIT_BIT; exp++; } } frac_shr(p, frac_shift); if (fmt->arm_althp) { /* ARM Alt HP eschews Inf and NaN for a wider exponent. */ if (unlikely(exp > exp_max)) { /* Overflow. Return the maximum normal. */ flags = float_flag_invalid; exp = exp_max; frac_allones(p); } } else if (unlikely(exp >= exp_max)) { flags |= float_flag_overflow | float_flag_inexact; if (overflow_norm) { exp = exp_max - 1; frac_allones(p); } else { p->cls = float_class_inf; exp = exp_max; frac_clear(p); } } } else if (s->flush_to_zero) { flags |= float_flag_output_denormal; p->cls = float_class_zero; exp = 0; frac_clear(p); } else { bool is_tiny = s->tininess_before_rounding || exp < 0; if (!is_tiny) { FloatPartsN discard; is_tiny = !frac_addi(&discard, p, inc); } frac_shrjam(p, 1 - exp); if (p->frac_lo & round_mask) { /* Need to recompute round-to-even/round-to-odd. */ switch (s->float_rounding_mode) { case float_round_nearest_even: inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0); break; case float_round_to_odd: inc = p->frac_lo & frac_lsb ? 0 : round_mask; break; default: break; } flags |= float_flag_inexact; frac_addi(p, p, inc); } exp = (p->frac_hi & DECOMPOSED_IMPLICIT_BIT) != 0; frac_shr(p, frac_shift); if (is_tiny && (flags & float_flag_inexact)) { flags |= float_flag_underflow; } if (exp == 0 && frac_eqz(p)) { p->cls = float_class_zero; } } p->exp = exp; float_raise(flags, s); } /* * Returns the result of adding or subtracting the values of the * floating-point values `a' and `b'. The operation is performed * according to the IEC/IEEE Standard for Binary Floating-Point * Arithmetic. */ static FloatPartsN *partsN(addsub)(FloatPartsN *a, FloatPartsN *b, float_status *s, bool subtract) { bool b_sign = b->sign ^ subtract; int ab_mask = float_cmask(a->cls) | float_cmask(b->cls); if (a->sign != b_sign) { /* Subtraction */ if (likely(ab_mask == float_cmask_normal)) { if (parts_sub_normal(a, b)) { return a; } /* Subtract was exact, fall through to set sign. */ ab_mask = float_cmask_zero; } if (ab_mask == float_cmask_zero) { a->sign = s->float_rounding_mode == float_round_down; return a; } if (unlikely(ab_mask & float_cmask_anynan)) { goto p_nan; } if (ab_mask & float_cmask_inf) { if (a->cls != float_class_inf) { /* N - Inf */ goto return_b; } if (b->cls != float_class_inf) { /* Inf - N */ return a; } /* Inf - Inf */ float_raise(float_flag_invalid, s); parts_default_nan(a, s); return a; } } else { /* Addition */ if (likely(ab_mask == float_cmask_normal)) { parts_add_normal(a, b); return a; } if (ab_mask == float_cmask_zero) { return a; } if (unlikely(ab_mask & float_cmask_anynan)) { goto p_nan; } if (ab_mask & float_cmask_inf) { a->cls = float_class_inf; return a; } } if (b->cls == float_class_zero) { g_assert(a->cls == float_class_normal); return a; } g_assert(a->cls == float_class_zero); g_assert(b->cls == float_class_normal); return_b: b->sign = b_sign; return b; p_nan: return parts_pick_nan(a, b, s); }