]> git.proxmox.com Git - mirror_qemu.git/blobdiff - target/arm/kvm.c
target/arm/kvm: Unexport kvm_arm_vcpu_init
[mirror_qemu.git] / target / arm / kvm.c
index 05e06f1008b4fb87cba6e35a588ab2d181691312..d1edb9bd67c09155748f9a415cf48140e21f4008 100644 (file)
@@ -2,6 +2,8 @@
  * ARM implementation of KVM hooks
  *
  * Copyright Christoffer Dall 2009-2010
+ * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
+ * Copyright Alex BennĂ©e 2014, Linaro
  *
  * This work is licensed under the terms of the GNU GPL, version 2 or later.
  * See the COPYING file in the top-level directory.
@@ -19,6 +21,7 @@
 #include "qom/object.h"
 #include "qapi/error.h"
 #include "sysemu/sysemu.h"
+#include "sysemu/runstate.h"
 #include "sysemu/kvm.h"
 #include "sysemu/kvm_int.h"
 #include "kvm_arm.h"
 #include "hw/pci/pci.h"
 #include "exec/memattrs.h"
 #include "exec/address-spaces.h"
+#include "exec/gdbstub.h"
 #include "hw/boards.h"
 #include "hw/irq.h"
 #include "qapi/visitor.h"
 #include "qemu/log.h"
+#include "hw/acpi/acpi.h"
+#include "hw/acpi/ghes.h"
 
 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
     KVM_CAP_LAST_INFO
@@ -54,7 +60,17 @@ typedef struct ARMHostCPUFeatures {
 
 static ARMHostCPUFeatures arm_host_cpu_features;
 
-int kvm_arm_vcpu_init(CPUState *cs)
+/**
+ * kvm_arm_vcpu_init:
+ * @cs: CPUState
+ *
+ * Initialize (or reinitialize) the VCPU by invoking the
+ * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
+ * bitmask specified in the CPUState.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_arm_vcpu_init(CPUState *cs)
 {
     ARMCPU *cpu = ARM_CPU(cs);
     struct kvm_vcpu_init init;
@@ -1610,3 +1626,788 @@ void kvm_arch_accel_class_init(ObjectClass *oc)
     object_class_property_set_description(oc, "eager-split-size",
         "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
 }
+
+int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
+{
+    switch (type) {
+    case GDB_BREAKPOINT_HW:
+        return insert_hw_breakpoint(addr);
+        break;
+    case GDB_WATCHPOINT_READ:
+    case GDB_WATCHPOINT_WRITE:
+    case GDB_WATCHPOINT_ACCESS:
+        return insert_hw_watchpoint(addr, len, type);
+    default:
+        return -ENOSYS;
+    }
+}
+
+int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
+{
+    switch (type) {
+    case GDB_BREAKPOINT_HW:
+        return delete_hw_breakpoint(addr);
+    case GDB_WATCHPOINT_READ:
+    case GDB_WATCHPOINT_WRITE:
+    case GDB_WATCHPOINT_ACCESS:
+        return delete_hw_watchpoint(addr, len, type);
+    default:
+        return -ENOSYS;
+    }
+}
+
+void kvm_arch_remove_all_hw_breakpoints(void)
+{
+    if (cur_hw_wps > 0) {
+        g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
+    }
+    if (cur_hw_bps > 0) {
+        g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
+    }
+}
+
+static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr,
+                                    const char *name)
+{
+    int err;
+
+    err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
+    if (err != 0) {
+        error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
+        return false;
+    }
+
+    err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
+    if (err != 0) {
+        error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
+        return false;
+    }
+
+    return true;
+}
+
+void kvm_arm_pmu_init(CPUState *cs)
+{
+    struct kvm_device_attr attr = {
+        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
+        .attr = KVM_ARM_VCPU_PMU_V3_INIT,
+    };
+
+    if (!ARM_CPU(cs)->has_pmu) {
+        return;
+    }
+    if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
+        error_report("failed to init PMU");
+        abort();
+    }
+}
+
+void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
+{
+    struct kvm_device_attr attr = {
+        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
+        .addr = (intptr_t)&irq,
+        .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
+    };
+
+    if (!ARM_CPU(cs)->has_pmu) {
+        return;
+    }
+    if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
+        error_report("failed to set irq for PMU");
+        abort();
+    }
+}
+
+void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
+{
+    struct kvm_device_attr attr = {
+        .group = KVM_ARM_VCPU_PVTIME_CTRL,
+        .attr = KVM_ARM_VCPU_PVTIME_IPA,
+        .addr = (uint64_t)&ipa,
+    };
+
+    if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) {
+        return;
+    }
+    if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) {
+        error_report("failed to init PVTIME IPA");
+        abort();
+    }
+}
+
+void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
+{
+    bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
+
+    if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
+        if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+            cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
+        } else {
+            cpu->kvm_steal_time = ON_OFF_AUTO_ON;
+        }
+    } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
+        if (!has_steal_time) {
+            error_setg(errp, "'kvm-steal-time' cannot be enabled "
+                             "on this host");
+            return;
+        } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+            /*
+             * DEN0057A chapter 2 says "This specification only covers
+             * systems in which the Execution state of the hypervisor
+             * as well as EL1 of virtual machines is AArch64.". And,
+             * to ensure that, the smc/hvc calls are only specified as
+             * smc64/hvc64.
+             */
+            error_setg(errp, "'kvm-steal-time' cannot be enabled "
+                             "for AArch32 guests");
+            return;
+        }
+    }
+}
+
+bool kvm_arm_aarch32_supported(void)
+{
+    return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
+}
+
+bool kvm_arm_sve_supported(void)
+{
+    return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
+}
+
+QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
+
+uint32_t kvm_arm_sve_get_vls(CPUState *cs)
+{
+    /* Only call this function if kvm_arm_sve_supported() returns true. */
+    static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
+    static bool probed;
+    uint32_t vq = 0;
+    int i;
+
+    /*
+     * KVM ensures all host CPUs support the same set of vector lengths.
+     * So we only need to create the scratch VCPUs once and then cache
+     * the results.
+     */
+    if (!probed) {
+        struct kvm_vcpu_init init = {
+            .target = -1,
+            .features[0] = (1 << KVM_ARM_VCPU_SVE),
+        };
+        struct kvm_one_reg reg = {
+            .id = KVM_REG_ARM64_SVE_VLS,
+            .addr = (uint64_t)&vls[0],
+        };
+        int fdarray[3], ret;
+
+        probed = true;
+
+        if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
+            error_report("failed to create scratch VCPU with SVE enabled");
+            abort();
+        }
+        ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
+        kvm_arm_destroy_scratch_host_vcpu(fdarray);
+        if (ret) {
+            error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
+                         strerror(errno));
+            abort();
+        }
+
+        for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
+            if (vls[i]) {
+                vq = 64 - clz64(vls[i]) + i * 64;
+                break;
+            }
+        }
+        if (vq > ARM_MAX_VQ) {
+            warn_report("KVM supports vector lengths larger than "
+                        "QEMU can enable");
+            vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
+        }
+    }
+
+    return vls[0];
+}
+
+static int kvm_arm_sve_set_vls(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
+
+    assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
+
+    return kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_VLS, &vls[0]);
+}
+
+#define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
+
+int kvm_arch_init_vcpu(CPUState *cs)
+{
+    int ret;
+    uint64_t mpidr;
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint64_t psciver;
+
+    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
+        !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
+        error_report("KVM is not supported for this guest CPU type");
+        return -EINVAL;
+    }
+
+    qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
+
+    /* Determine init features for this CPU */
+    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
+    if (cs->start_powered_off) {
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
+    }
+    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
+        cpu->psci_version = QEMU_PSCI_VERSION_0_2;
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
+    }
+    if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
+    }
+    if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
+        cpu->has_pmu = false;
+    }
+    if (cpu->has_pmu) {
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
+    } else {
+        env->features &= ~(1ULL << ARM_FEATURE_PMU);
+    }
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        assert(kvm_arm_sve_supported());
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
+    }
+    if (cpu_isar_feature(aa64_pauth, cpu)) {
+        cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
+                                      1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
+    }
+
+    /* Do KVM_ARM_VCPU_INIT ioctl */
+    ret = kvm_arm_vcpu_init(cs);
+    if (ret) {
+        return ret;
+    }
+
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arm_sve_set_vls(cs);
+        if (ret) {
+            return ret;
+        }
+        ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    /*
+     * KVM reports the exact PSCI version it is implementing via a
+     * special sysreg. If it is present, use its contents to determine
+     * what to report to the guest in the dtb (it is the PSCI version,
+     * in the same 15-bits major 16-bits minor format that PSCI_VERSION
+     * returns).
+     */
+    if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
+        cpu->psci_version = psciver;
+    }
+
+    /*
+     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
+     * Currently KVM has its own idea about MPIDR assignment, so we
+     * override our defaults with what we get from KVM.
+     */
+    ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
+    if (ret) {
+        return ret;
+    }
+    cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
+
+    /* Check whether user space can specify guest syndrome value */
+    kvm_arm_init_serror_injection(cs);
+
+    return kvm_arm_init_cpreg_list(cpu);
+}
+
+int kvm_arch_destroy_vcpu(CPUState *cs)
+{
+    return 0;
+}
+
+/* Callers must hold the iothread mutex lock */
+static void kvm_inject_arm_sea(CPUState *c)
+{
+    ARMCPU *cpu = ARM_CPU(c);
+    CPUARMState *env = &cpu->env;
+    uint32_t esr;
+    bool same_el;
+
+    c->exception_index = EXCP_DATA_ABORT;
+    env->exception.target_el = 1;
+
+    /*
+     * Set the DFSC to synchronous external abort and set FnV to not valid,
+     * this will tell guest the FAR_ELx is UNKNOWN for this abort.
+     */
+    same_el = arm_current_el(env) == env->exception.target_el;
+    esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
+
+    env->exception.syndrome = esr;
+
+    arm_cpu_do_interrupt(c);
+}
+
+#define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
+                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+#define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
+                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+#define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
+                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+static int kvm_arch_put_fpsimd(CPUState *cs)
+{
+    CPUARMState *env = &ARM_CPU(cs)->env;
+    int i, ret;
+
+    for (i = 0; i < 32; i++) {
+        uint64_t *q = aa64_vfp_qreg(env, i);
+#if HOST_BIG_ENDIAN
+        uint64_t fp_val[2] = { q[1], q[0] };
+        ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
+                                                        fp_val);
+#else
+        ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
+#endif
+        if (ret) {
+            return ret;
+        }
+    }
+
+    return 0;
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_put_sve(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint64_t tmp[ARM_MAX_VQ * 2];
+    uint64_t *r;
+    int n, ret;
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+        r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
+        ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+        r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
+                        DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+        ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
+                    DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+    ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
+    if (ret) {
+        return ret;
+    }
+
+    return 0;
+}
+
+int kvm_arch_put_registers(CPUState *cs, int level)
+{
+    uint64_t val;
+    uint32_t fpr;
+    int i, ret;
+    unsigned int el;
+
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+
+    /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
+     * AArch64 registers before pushing them out to 64-bit KVM.
+     */
+    if (!is_a64(env)) {
+        aarch64_sync_32_to_64(env);
+    }
+
+    for (i = 0; i < 31; i++) {
+        ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
+                              &env->xregs[i]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
+     * QEMU side we keep the current SP in xregs[31] as well.
+     */
+    aarch64_save_sp(env, 1);
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
+    if (is_a64(env)) {
+        val = pstate_read(env);
+    } else {
+        val = cpsr_read(env);
+    }
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    /* Saved Program State Registers
+     *
+     * Before we restore from the banked_spsr[] array we need to
+     * ensure that any modifications to env->spsr are correctly
+     * reflected in the banks.
+     */
+    el = arm_current_el(env);
+    if (el > 0 && !is_a64(env)) {
+        i = bank_number(env->uncached_cpsr & CPSR_M);
+        env->banked_spsr[i] = env->spsr;
+    }
+
+    /* KVM 0-4 map to QEMU banks 1-5 */
+    for (i = 0; i < KVM_NR_SPSR; i++) {
+        ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
+                              &env->banked_spsr[i + 1]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arch_put_sve(cs);
+    } else {
+        ret = kvm_arch_put_fpsimd(cs);
+    }
+    if (ret) {
+        return ret;
+    }
+
+    fpr = vfp_get_fpsr(env);
+    ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
+    if (ret) {
+        return ret;
+    }
+
+    fpr = vfp_get_fpcr(env);
+    ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
+    if (ret) {
+        return ret;
+    }
+
+    write_cpustate_to_list(cpu, true);
+
+    if (!write_list_to_kvmstate(cpu, level)) {
+        return -EINVAL;
+    }
+
+   /*
+    * Setting VCPU events should be triggered after syncing the registers
+    * to avoid overwriting potential changes made by KVM upon calling
+    * KVM_SET_VCPU_EVENTS ioctl
+    */
+    ret = kvm_put_vcpu_events(cpu);
+    if (ret) {
+        return ret;
+    }
+
+    kvm_arm_sync_mpstate_to_kvm(cpu);
+
+    return ret;
+}
+
+static int kvm_arch_get_fpsimd(CPUState *cs)
+{
+    CPUARMState *env = &ARM_CPU(cs)->env;
+    int i, ret;
+
+    for (i = 0; i < 32; i++) {
+        uint64_t *q = aa64_vfp_qreg(env, i);
+        ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
+        if (ret) {
+            return ret;
+        } else {
+#if HOST_BIG_ENDIAN
+            uint64_t t;
+            t = q[0], q[0] = q[1], q[1] = t;
+#endif
+        }
+    }
+
+    return 0;
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_get_sve(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint64_t *r;
+    int n, ret;
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+        r = &env->vfp.zregs[n].d[0];
+        ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+        sve_bswap64(r, r, cpu->sve_max_vq * 2);
+    }
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+        r = &env->vfp.pregs[n].p[0];
+        ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+        sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+    }
+
+    r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
+    ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
+    if (ret) {
+        return ret;
+    }
+    sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+
+    return 0;
+}
+
+int kvm_arch_get_registers(CPUState *cs)
+{
+    uint64_t val;
+    unsigned int el;
+    uint32_t fpr;
+    int i, ret;
+
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+
+    for (i = 0; i < 31; i++) {
+        ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
+                              &env->xregs[i]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
+    if (ret) {
+        return ret;
+    }
+
+    env->aarch64 = ((val & PSTATE_nRW) == 0);
+    if (is_a64(env)) {
+        pstate_write(env, val);
+    } else {
+        cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
+    }
+
+    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
+     * QEMU side we keep the current SP in xregs[31] as well.
+     */
+    aarch64_restore_sp(env, 1);
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
+    if (ret) {
+        return ret;
+    }
+
+    /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
+     * incoming AArch64 regs received from 64-bit KVM.
+     * We must perform this after all of the registers have been acquired from
+     * the kernel.
+     */
+    if (!is_a64(env)) {
+        aarch64_sync_64_to_32(env);
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    /* Fetch the SPSR registers
+     *
+     * KVM SPSRs 0-4 map to QEMU banks 1-5
+     */
+    for (i = 0; i < KVM_NR_SPSR; i++) {
+        ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
+                              &env->banked_spsr[i + 1]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    el = arm_current_el(env);
+    if (el > 0 && !is_a64(env)) {
+        i = bank_number(env->uncached_cpsr & CPSR_M);
+        env->spsr = env->banked_spsr[i];
+    }
+
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arch_get_sve(cs);
+    } else {
+        ret = kvm_arch_get_fpsimd(cs);
+    }
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
+    if (ret) {
+        return ret;
+    }
+    vfp_set_fpsr(env, fpr);
+
+    ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
+    if (ret) {
+        return ret;
+    }
+    vfp_set_fpcr(env, fpr);
+
+    ret = kvm_get_vcpu_events(cpu);
+    if (ret) {
+        return ret;
+    }
+
+    if (!write_kvmstate_to_list(cpu)) {
+        return -EINVAL;
+    }
+    /* Note that it's OK to have registers which aren't in CPUState,
+     * so we can ignore a failure return here.
+     */
+    write_list_to_cpustate(cpu);
+
+    kvm_arm_sync_mpstate_to_qemu(cpu);
+
+    /* TODO: other registers */
+    return ret;
+}
+
+void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
+{
+    ram_addr_t ram_addr;
+    hwaddr paddr;
+
+    assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
+
+    if (acpi_ghes_present() && addr) {
+        ram_addr = qemu_ram_addr_from_host(addr);
+        if (ram_addr != RAM_ADDR_INVALID &&
+            kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
+            kvm_hwpoison_page_add(ram_addr);
+            /*
+             * If this is a BUS_MCEERR_AR, we know we have been called
+             * synchronously from the vCPU thread, so we can easily
+             * synchronize the state and inject an error.
+             *
+             * TODO: we currently don't tell the guest at all about
+             * BUS_MCEERR_AO. In that case we might either be being
+             * called synchronously from the vCPU thread, or a bit
+             * later from the main thread, so doing the injection of
+             * the error would be more complicated.
+             */
+            if (code == BUS_MCEERR_AR) {
+                kvm_cpu_synchronize_state(c);
+                if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
+                    kvm_inject_arm_sea(c);
+                } else {
+                    error_report("failed to record the error");
+                    abort();
+                }
+            }
+            return;
+        }
+        if (code == BUS_MCEERR_AO) {
+            error_report("Hardware memory error at addr %p for memory used by "
+                "QEMU itself instead of guest system!", addr);
+        }
+    }
+
+    if (code == BUS_MCEERR_AR) {
+        error_report("Hardware memory error!");
+        exit(1);
+    }
+}
+
+/* C6.6.29 BRK instruction */
+static const uint32_t brk_insn = 0xd4200000;
+
+int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
+        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
+        return -EINVAL;
+    }
+    return 0;
+}
+
+int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+    static uint32_t brk;
+
+    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
+        brk != brk_insn ||
+        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
+        return -EINVAL;
+    }
+    return 0;
+}