X-Git-Url: https://git.proxmox.com/?a=blobdiff_plain;f=exec.c;h=50ea9c5aaa8f2ad732793b91625194f781e8e24f;hb=HEAD;hp=893636176e2651114d5a7180137cbc4e4d09635c;hpb=8796c64ecdfd34be394ea277aaaaa53df0c76996;p=mirror_qemu.git diff --git a/exec.c b/exec.c deleted file mode 100644 index 893636176e..0000000000 --- a/exec.c +++ /dev/null @@ -1,4170 +0,0 @@ -/* - * Virtual page mapping - * - * Copyright (c) 2003 Fabrice Bellard - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, see . - */ - -#include "qemu/osdep.h" -#include "qemu-common.h" -#include "qapi/error.h" - -#include "qemu/cutils.h" -#include "cpu.h" -#include "exec/exec-all.h" -#include "exec/target_page.h" -#include "tcg/tcg.h" -#include "hw/qdev-core.h" -#include "hw/qdev-properties.h" -#if !defined(CONFIG_USER_ONLY) -#include "hw/boards.h" -#include "hw/xen/xen.h" -#endif -#include "sysemu/kvm.h" -#include "sysemu/sysemu.h" -#include "sysemu/tcg.h" -#include "sysemu/qtest.h" -#include "qemu/timer.h" -#include "qemu/config-file.h" -#include "qemu/error-report.h" -#include "qemu/qemu-print.h" -#if defined(CONFIG_USER_ONLY) -#include "qemu.h" -#else /* !CONFIG_USER_ONLY */ -#include "exec/memory.h" -#include "exec/ioport.h" -#include "sysemu/dma.h" -#include "sysemu/hostmem.h" -#include "sysemu/hw_accel.h" -#include "exec/address-spaces.h" -#include "sysemu/xen-mapcache.h" -#include "trace-root.h" - -#ifdef CONFIG_FALLOCATE_PUNCH_HOLE -#include -#endif - -#endif -#include "qemu/rcu_queue.h" -#include "qemu/main-loop.h" -#include "translate-all.h" -#include "sysemu/replay.h" - -#include "exec/memory-internal.h" -#include "exec/ram_addr.h" -#include "exec/log.h" - -#include "qemu/pmem.h" - -#include "migration/vmstate.h" - -#include "qemu/range.h" -#ifndef _WIN32 -#include "qemu/mmap-alloc.h" -#endif - -#include "monitor/monitor.h" - -#ifdef CONFIG_LIBDAXCTL -#include -#endif - -//#define DEBUG_SUBPAGE - -#if !defined(CONFIG_USER_ONLY) -/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes - * are protected by the ramlist lock. - */ -RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; - -static MemoryRegion *system_memory; -static MemoryRegion *system_io; - -AddressSpace address_space_io; -AddressSpace address_space_memory; - -static MemoryRegion io_mem_unassigned; -#endif - -CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); - -/* current CPU in the current thread. It is only valid inside - cpu_exec() */ -__thread CPUState *current_cpu; - -uintptr_t qemu_host_page_size; -intptr_t qemu_host_page_mask; - -#if !defined(CONFIG_USER_ONLY) -/* 0 = Do not count executed instructions. - 1 = Precise instruction counting. - 2 = Adaptive rate instruction counting. */ -int use_icount; - -typedef struct PhysPageEntry PhysPageEntry; - -struct PhysPageEntry { - /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ - uint32_t skip : 6; - /* index into phys_sections (!skip) or phys_map_nodes (skip) */ - uint32_t ptr : 26; -}; - -#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) - -/* Size of the L2 (and L3, etc) page tables. */ -#define ADDR_SPACE_BITS 64 - -#define P_L2_BITS 9 -#define P_L2_SIZE (1 << P_L2_BITS) - -#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) - -typedef PhysPageEntry Node[P_L2_SIZE]; - -typedef struct PhysPageMap { - struct rcu_head rcu; - - unsigned sections_nb; - unsigned sections_nb_alloc; - unsigned nodes_nb; - unsigned nodes_nb_alloc; - Node *nodes; - MemoryRegionSection *sections; -} PhysPageMap; - -struct AddressSpaceDispatch { - MemoryRegionSection *mru_section; - /* This is a multi-level map on the physical address space. - * The bottom level has pointers to MemoryRegionSections. - */ - PhysPageEntry phys_map; - PhysPageMap map; -}; - -#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) -typedef struct subpage_t { - MemoryRegion iomem; - FlatView *fv; - hwaddr base; - uint16_t sub_section[]; -} subpage_t; - -#define PHYS_SECTION_UNASSIGNED 0 - -static void io_mem_init(void); -static void memory_map_init(void); -static void tcg_log_global_after_sync(MemoryListener *listener); -static void tcg_commit(MemoryListener *listener); - -/** - * CPUAddressSpace: all the information a CPU needs about an AddressSpace - * @cpu: the CPU whose AddressSpace this is - * @as: the AddressSpace itself - * @memory_dispatch: its dispatch pointer (cached, RCU protected) - * @tcg_as_listener: listener for tracking changes to the AddressSpace - */ -struct CPUAddressSpace { - CPUState *cpu; - AddressSpace *as; - struct AddressSpaceDispatch *memory_dispatch; - MemoryListener tcg_as_listener; -}; - -struct DirtyBitmapSnapshot { - ram_addr_t start; - ram_addr_t end; - unsigned long dirty[]; -}; - -#endif - -#if !defined(CONFIG_USER_ONLY) - -static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) -{ - static unsigned alloc_hint = 16; - if (map->nodes_nb + nodes > map->nodes_nb_alloc) { - map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); - map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); - alloc_hint = map->nodes_nb_alloc; - } -} - -static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) -{ - unsigned i; - uint32_t ret; - PhysPageEntry e; - PhysPageEntry *p; - - ret = map->nodes_nb++; - p = map->nodes[ret]; - assert(ret != PHYS_MAP_NODE_NIL); - assert(ret != map->nodes_nb_alloc); - - e.skip = leaf ? 0 : 1; - e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; - for (i = 0; i < P_L2_SIZE; ++i) { - memcpy(&p[i], &e, sizeof(e)); - } - return ret; -} - -static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, - hwaddr *index, uint64_t *nb, uint16_t leaf, - int level) -{ - PhysPageEntry *p; - hwaddr step = (hwaddr)1 << (level * P_L2_BITS); - - if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { - lp->ptr = phys_map_node_alloc(map, level == 0); - } - p = map->nodes[lp->ptr]; - lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; - - while (*nb && lp < &p[P_L2_SIZE]) { - if ((*index & (step - 1)) == 0 && *nb >= step) { - lp->skip = 0; - lp->ptr = leaf; - *index += step; - *nb -= step; - } else { - phys_page_set_level(map, lp, index, nb, leaf, level - 1); - } - ++lp; - } -} - -static void phys_page_set(AddressSpaceDispatch *d, - hwaddr index, uint64_t nb, - uint16_t leaf) -{ - /* Wildly overreserve - it doesn't matter much. */ - phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); - - phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); -} - -/* Compact a non leaf page entry. Simply detect that the entry has a single child, - * and update our entry so we can skip it and go directly to the destination. - */ -static void phys_page_compact(PhysPageEntry *lp, Node *nodes) -{ - unsigned valid_ptr = P_L2_SIZE; - int valid = 0; - PhysPageEntry *p; - int i; - - if (lp->ptr == PHYS_MAP_NODE_NIL) { - return; - } - - p = nodes[lp->ptr]; - for (i = 0; i < P_L2_SIZE; i++) { - if (p[i].ptr == PHYS_MAP_NODE_NIL) { - continue; - } - - valid_ptr = i; - valid++; - if (p[i].skip) { - phys_page_compact(&p[i], nodes); - } - } - - /* We can only compress if there's only one child. */ - if (valid != 1) { - return; - } - - assert(valid_ptr < P_L2_SIZE); - - /* Don't compress if it won't fit in the # of bits we have. */ - if (P_L2_LEVELS >= (1 << 6) && - lp->skip + p[valid_ptr].skip >= (1 << 6)) { - return; - } - - lp->ptr = p[valid_ptr].ptr; - if (!p[valid_ptr].skip) { - /* If our only child is a leaf, make this a leaf. */ - /* By design, we should have made this node a leaf to begin with so we - * should never reach here. - * But since it's so simple to handle this, let's do it just in case we - * change this rule. - */ - lp->skip = 0; - } else { - lp->skip += p[valid_ptr].skip; - } -} - -void address_space_dispatch_compact(AddressSpaceDispatch *d) -{ - if (d->phys_map.skip) { - phys_page_compact(&d->phys_map, d->map.nodes); - } -} - -static inline bool section_covers_addr(const MemoryRegionSection *section, - hwaddr addr) -{ - /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means - * the section must cover the entire address space. - */ - return int128_gethi(section->size) || - range_covers_byte(section->offset_within_address_space, - int128_getlo(section->size), addr); -} - -static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) -{ - PhysPageEntry lp = d->phys_map, *p; - Node *nodes = d->map.nodes; - MemoryRegionSection *sections = d->map.sections; - hwaddr index = addr >> TARGET_PAGE_BITS; - int i; - - for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { - if (lp.ptr == PHYS_MAP_NODE_NIL) { - return §ions[PHYS_SECTION_UNASSIGNED]; - } - p = nodes[lp.ptr]; - lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; - } - - if (section_covers_addr(§ions[lp.ptr], addr)) { - return §ions[lp.ptr]; - } else { - return §ions[PHYS_SECTION_UNASSIGNED]; - } -} - -/* Called from RCU critical section */ -static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, - hwaddr addr, - bool resolve_subpage) -{ - MemoryRegionSection *section = atomic_read(&d->mru_section); - subpage_t *subpage; - - if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || - !section_covers_addr(section, addr)) { - section = phys_page_find(d, addr); - atomic_set(&d->mru_section, section); - } - if (resolve_subpage && section->mr->subpage) { - subpage = container_of(section->mr, subpage_t, iomem); - section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; - } - return section; -} - -/* Called from RCU critical section */ -static MemoryRegionSection * -address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, - hwaddr *plen, bool resolve_subpage) -{ - MemoryRegionSection *section; - MemoryRegion *mr; - Int128 diff; - - section = address_space_lookup_region(d, addr, resolve_subpage); - /* Compute offset within MemoryRegionSection */ - addr -= section->offset_within_address_space; - - /* Compute offset within MemoryRegion */ - *xlat = addr + section->offset_within_region; - - mr = section->mr; - - /* MMIO registers can be expected to perform full-width accesses based only - * on their address, without considering adjacent registers that could - * decode to completely different MemoryRegions. When such registers - * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO - * regions overlap wildly. For this reason we cannot clamp the accesses - * here. - * - * If the length is small (as is the case for address_space_ldl/stl), - * everything works fine. If the incoming length is large, however, - * the caller really has to do the clamping through memory_access_size. - */ - if (memory_region_is_ram(mr)) { - diff = int128_sub(section->size, int128_make64(addr)); - *plen = int128_get64(int128_min(diff, int128_make64(*plen))); - } - return section; -} - -/** - * address_space_translate_iommu - translate an address through an IOMMU - * memory region and then through the target address space. - * - * @iommu_mr: the IOMMU memory region that we start the translation from - * @addr: the address to be translated through the MMU - * @xlat: the translated address offset within the destination memory region. - * It cannot be %NULL. - * @plen_out: valid read/write length of the translated address. It - * cannot be %NULL. - * @page_mask_out: page mask for the translated address. This - * should only be meaningful for IOMMU translated - * addresses, since there may be huge pages that this bit - * would tell. It can be %NULL if we don't care about it. - * @is_write: whether the translation operation is for write - * @is_mmio: whether this can be MMIO, set true if it can - * @target_as: the address space targeted by the IOMMU - * @attrs: transaction attributes - * - * This function is called from RCU critical section. It is the common - * part of flatview_do_translate and address_space_translate_cached. - */ -static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, - hwaddr *xlat, - hwaddr *plen_out, - hwaddr *page_mask_out, - bool is_write, - bool is_mmio, - AddressSpace **target_as, - MemTxAttrs attrs) -{ - MemoryRegionSection *section; - hwaddr page_mask = (hwaddr)-1; - - do { - hwaddr addr = *xlat; - IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); - int iommu_idx = 0; - IOMMUTLBEntry iotlb; - - if (imrc->attrs_to_index) { - iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); - } - - iotlb = imrc->translate(iommu_mr, addr, is_write ? - IOMMU_WO : IOMMU_RO, iommu_idx); - - if (!(iotlb.perm & (1 << is_write))) { - goto unassigned; - } - - addr = ((iotlb.translated_addr & ~iotlb.addr_mask) - | (addr & iotlb.addr_mask)); - page_mask &= iotlb.addr_mask; - *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); - *target_as = iotlb.target_as; - - section = address_space_translate_internal( - address_space_to_dispatch(iotlb.target_as), addr, xlat, - plen_out, is_mmio); - - iommu_mr = memory_region_get_iommu(section->mr); - } while (unlikely(iommu_mr)); - - if (page_mask_out) { - *page_mask_out = page_mask; - } - return *section; - -unassigned: - return (MemoryRegionSection) { .mr = &io_mem_unassigned }; -} - -/** - * flatview_do_translate - translate an address in FlatView - * - * @fv: the flat view that we want to translate on - * @addr: the address to be translated in above address space - * @xlat: the translated address offset within memory region. It - * cannot be @NULL. - * @plen_out: valid read/write length of the translated address. It - * can be @NULL when we don't care about it. - * @page_mask_out: page mask for the translated address. This - * should only be meaningful for IOMMU translated - * addresses, since there may be huge pages that this bit - * would tell. It can be @NULL if we don't care about it. - * @is_write: whether the translation operation is for write - * @is_mmio: whether this can be MMIO, set true if it can - * @target_as: the address space targeted by the IOMMU - * @attrs: memory transaction attributes - * - * This function is called from RCU critical section - */ -static MemoryRegionSection flatview_do_translate(FlatView *fv, - hwaddr addr, - hwaddr *xlat, - hwaddr *plen_out, - hwaddr *page_mask_out, - bool is_write, - bool is_mmio, - AddressSpace **target_as, - MemTxAttrs attrs) -{ - MemoryRegionSection *section; - IOMMUMemoryRegion *iommu_mr; - hwaddr plen = (hwaddr)(-1); - - if (!plen_out) { - plen_out = &plen; - } - - section = address_space_translate_internal( - flatview_to_dispatch(fv), addr, xlat, - plen_out, is_mmio); - - iommu_mr = memory_region_get_iommu(section->mr); - if (unlikely(iommu_mr)) { - return address_space_translate_iommu(iommu_mr, xlat, - plen_out, page_mask_out, - is_write, is_mmio, - target_as, attrs); - } - if (page_mask_out) { - /* Not behind an IOMMU, use default page size. */ - *page_mask_out = ~TARGET_PAGE_MASK; - } - - return *section; -} - -/* Called from RCU critical section */ -IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, - bool is_write, MemTxAttrs attrs) -{ - MemoryRegionSection section; - hwaddr xlat, page_mask; - - /* - * This can never be MMIO, and we don't really care about plen, - * but page mask. - */ - section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, - NULL, &page_mask, is_write, false, &as, - attrs); - - /* Illegal translation */ - if (section.mr == &io_mem_unassigned) { - goto iotlb_fail; - } - - /* Convert memory region offset into address space offset */ - xlat += section.offset_within_address_space - - section.offset_within_region; - - return (IOMMUTLBEntry) { - .target_as = as, - .iova = addr & ~page_mask, - .translated_addr = xlat & ~page_mask, - .addr_mask = page_mask, - /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ - .perm = IOMMU_RW, - }; - -iotlb_fail: - return (IOMMUTLBEntry) {0}; -} - -/* Called from RCU critical section */ -MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, - hwaddr *plen, bool is_write, - MemTxAttrs attrs) -{ - MemoryRegion *mr; - MemoryRegionSection section; - AddressSpace *as = NULL; - - /* This can be MMIO, so setup MMIO bit. */ - section = flatview_do_translate(fv, addr, xlat, plen, NULL, - is_write, true, &as, attrs); - mr = section.mr; - - if (xen_enabled() && memory_access_is_direct(mr, is_write)) { - hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; - *plen = MIN(page, *plen); - } - - return mr; -} - -typedef struct TCGIOMMUNotifier { - IOMMUNotifier n; - MemoryRegion *mr; - CPUState *cpu; - int iommu_idx; - bool active; -} TCGIOMMUNotifier; - -static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) -{ - TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); - - if (!notifier->active) { - return; - } - tlb_flush(notifier->cpu); - notifier->active = false; - /* We leave the notifier struct on the list to avoid reallocating it later. - * Generally the number of IOMMUs a CPU deals with will be small. - * In any case we can't unregister the iommu notifier from a notify - * callback. - */ -} - -static void tcg_register_iommu_notifier(CPUState *cpu, - IOMMUMemoryRegion *iommu_mr, - int iommu_idx) -{ - /* Make sure this CPU has an IOMMU notifier registered for this - * IOMMU/IOMMU index combination, so that we can flush its TLB - * when the IOMMU tells us the mappings we've cached have changed. - */ - MemoryRegion *mr = MEMORY_REGION(iommu_mr); - TCGIOMMUNotifier *notifier; - Error *err = NULL; - int i, ret; - - for (i = 0; i < cpu->iommu_notifiers->len; i++) { - notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); - if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { - break; - } - } - if (i == cpu->iommu_notifiers->len) { - /* Not found, add a new entry at the end of the array */ - cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); - notifier = g_new0(TCGIOMMUNotifier, 1); - g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; - - notifier->mr = mr; - notifier->iommu_idx = iommu_idx; - notifier->cpu = cpu; - /* Rather than trying to register interest in the specific part - * of the iommu's address space that we've accessed and then - * expand it later as subsequent accesses touch more of it, we - * just register interest in the whole thing, on the assumption - * that iommu reconfiguration will be rare. - */ - iommu_notifier_init(¬ifier->n, - tcg_iommu_unmap_notify, - IOMMU_NOTIFIER_UNMAP, - 0, - HWADDR_MAX, - iommu_idx); - ret = memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, - &err); - if (ret) { - error_report_err(err); - exit(1); - } - } - - if (!notifier->active) { - notifier->active = true; - } -} - -static void tcg_iommu_free_notifier_list(CPUState *cpu) -{ - /* Destroy the CPU's notifier list */ - int i; - TCGIOMMUNotifier *notifier; - - for (i = 0; i < cpu->iommu_notifiers->len; i++) { - notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); - memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); - g_free(notifier); - } - g_array_free(cpu->iommu_notifiers, true); -} - -/* Called from RCU critical section */ -MemoryRegionSection * -address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, - hwaddr *xlat, hwaddr *plen, - MemTxAttrs attrs, int *prot) -{ - MemoryRegionSection *section; - IOMMUMemoryRegion *iommu_mr; - IOMMUMemoryRegionClass *imrc; - IOMMUTLBEntry iotlb; - int iommu_idx; - AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); - - for (;;) { - section = address_space_translate_internal(d, addr, &addr, plen, false); - - iommu_mr = memory_region_get_iommu(section->mr); - if (!iommu_mr) { - break; - } - - imrc = memory_region_get_iommu_class_nocheck(iommu_mr); - - iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); - tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); - /* We need all the permissions, so pass IOMMU_NONE so the IOMMU - * doesn't short-cut its translation table walk. - */ - iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); - addr = ((iotlb.translated_addr & ~iotlb.addr_mask) - | (addr & iotlb.addr_mask)); - /* Update the caller's prot bits to remove permissions the IOMMU - * is giving us a failure response for. If we get down to no - * permissions left at all we can give up now. - */ - if (!(iotlb.perm & IOMMU_RO)) { - *prot &= ~(PAGE_READ | PAGE_EXEC); - } - if (!(iotlb.perm & IOMMU_WO)) { - *prot &= ~PAGE_WRITE; - } - - if (!*prot) { - goto translate_fail; - } - - d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); - } - - assert(!memory_region_is_iommu(section->mr)); - *xlat = addr; - return section; - -translate_fail: - return &d->map.sections[PHYS_SECTION_UNASSIGNED]; -} -#endif - -#if !defined(CONFIG_USER_ONLY) - -static int cpu_common_post_load(void *opaque, int version_id) -{ - CPUState *cpu = opaque; - - /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the - version_id is increased. */ - cpu->interrupt_request &= ~0x01; - tlb_flush(cpu); - - /* loadvm has just updated the content of RAM, bypassing the - * usual mechanisms that ensure we flush TBs for writes to - * memory we've translated code from. So we must flush all TBs, - * which will now be stale. - */ - tb_flush(cpu); - - return 0; -} - -static int cpu_common_pre_load(void *opaque) -{ - CPUState *cpu = opaque; - - cpu->exception_index = -1; - - return 0; -} - -static bool cpu_common_exception_index_needed(void *opaque) -{ - CPUState *cpu = opaque; - - return tcg_enabled() && cpu->exception_index != -1; -} - -static const VMStateDescription vmstate_cpu_common_exception_index = { - .name = "cpu_common/exception_index", - .version_id = 1, - .minimum_version_id = 1, - .needed = cpu_common_exception_index_needed, - .fields = (VMStateField[]) { - VMSTATE_INT32(exception_index, CPUState), - VMSTATE_END_OF_LIST() - } -}; - -static bool cpu_common_crash_occurred_needed(void *opaque) -{ - CPUState *cpu = opaque; - - return cpu->crash_occurred; -} - -static const VMStateDescription vmstate_cpu_common_crash_occurred = { - .name = "cpu_common/crash_occurred", - .version_id = 1, - .minimum_version_id = 1, - .needed = cpu_common_crash_occurred_needed, - .fields = (VMStateField[]) { - VMSTATE_BOOL(crash_occurred, CPUState), - VMSTATE_END_OF_LIST() - } -}; - -const VMStateDescription vmstate_cpu_common = { - .name = "cpu_common", - .version_id = 1, - .minimum_version_id = 1, - .pre_load = cpu_common_pre_load, - .post_load = cpu_common_post_load, - .fields = (VMStateField[]) { - VMSTATE_UINT32(halted, CPUState), - VMSTATE_UINT32(interrupt_request, CPUState), - VMSTATE_END_OF_LIST() - }, - .subsections = (const VMStateDescription*[]) { - &vmstate_cpu_common_exception_index, - &vmstate_cpu_common_crash_occurred, - NULL - } -}; - -#endif - -CPUState *qemu_get_cpu(int index) -{ - CPUState *cpu; - - CPU_FOREACH(cpu) { - if (cpu->cpu_index == index) { - return cpu; - } - } - - return NULL; -} - -#if !defined(CONFIG_USER_ONLY) -void cpu_address_space_init(CPUState *cpu, int asidx, - const char *prefix, MemoryRegion *mr) -{ - CPUAddressSpace *newas; - AddressSpace *as = g_new0(AddressSpace, 1); - char *as_name; - - assert(mr); - as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); - address_space_init(as, mr, as_name); - g_free(as_name); - - /* Target code should have set num_ases before calling us */ - assert(asidx < cpu->num_ases); - - if (asidx == 0) { - /* address space 0 gets the convenience alias */ - cpu->as = as; - } - - /* KVM cannot currently support multiple address spaces. */ - assert(asidx == 0 || !kvm_enabled()); - - if (!cpu->cpu_ases) { - cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); - } - - newas = &cpu->cpu_ases[asidx]; - newas->cpu = cpu; - newas->as = as; - if (tcg_enabled()) { - newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; - newas->tcg_as_listener.commit = tcg_commit; - memory_listener_register(&newas->tcg_as_listener, as); - } -} - -AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) -{ - /* Return the AddressSpace corresponding to the specified index */ - return cpu->cpu_ases[asidx].as; -} -#endif - -void cpu_exec_unrealizefn(CPUState *cpu) -{ - CPUClass *cc = CPU_GET_CLASS(cpu); - - tlb_destroy(cpu); - cpu_list_remove(cpu); - - if (cc->vmsd != NULL) { - vmstate_unregister(NULL, cc->vmsd, cpu); - } - if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { - vmstate_unregister(NULL, &vmstate_cpu_common, cpu); - } -#ifndef CONFIG_USER_ONLY - tcg_iommu_free_notifier_list(cpu); -#endif -} - -Property cpu_common_props[] = { -#ifndef CONFIG_USER_ONLY - /* Create a memory property for softmmu CPU object, - * so users can wire up its memory. (This can't go in hw/core/cpu.c - * because that file is compiled only once for both user-mode - * and system builds.) The default if no link is set up is to use - * the system address space. - */ - DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION, - MemoryRegion *), -#endif - DEFINE_PROP_END_OF_LIST(), -}; - -void cpu_exec_initfn(CPUState *cpu) -{ - cpu->as = NULL; - cpu->num_ases = 0; - -#ifndef CONFIG_USER_ONLY - cpu->thread_id = qemu_get_thread_id(); - cpu->memory = system_memory; - object_ref(OBJECT(cpu->memory)); -#endif -} - -void cpu_exec_realizefn(CPUState *cpu, Error **errp) -{ - CPUClass *cc = CPU_GET_CLASS(cpu); - static bool tcg_target_initialized; - - cpu_list_add(cpu); - - if (tcg_enabled() && !tcg_target_initialized) { - tcg_target_initialized = true; - cc->tcg_initialize(); - } - tlb_init(cpu); - - qemu_plugin_vcpu_init_hook(cpu); - -#ifdef CONFIG_USER_ONLY - assert(cc->vmsd == NULL); -#else /* !CONFIG_USER_ONLY */ - if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { - vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); - } - if (cc->vmsd != NULL) { - vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); - } - - cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); -#endif -} - -const char *parse_cpu_option(const char *cpu_option) -{ - ObjectClass *oc; - CPUClass *cc; - gchar **model_pieces; - const char *cpu_type; - - model_pieces = g_strsplit(cpu_option, ",", 2); - if (!model_pieces[0]) { - error_report("-cpu option cannot be empty"); - exit(1); - } - - oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]); - if (oc == NULL) { - error_report("unable to find CPU model '%s'", model_pieces[0]); - g_strfreev(model_pieces); - exit(EXIT_FAILURE); - } - - cpu_type = object_class_get_name(oc); - cc = CPU_CLASS(oc); - cc->parse_features(cpu_type, model_pieces[1], &error_fatal); - g_strfreev(model_pieces); - return cpu_type; -} - -#if defined(CONFIG_USER_ONLY) -void tb_invalidate_phys_addr(target_ulong addr) -{ - mmap_lock(); - tb_invalidate_phys_page_range(addr, addr + 1); - mmap_unlock(); -} - -static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) -{ - tb_invalidate_phys_addr(pc); -} -#else -void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs) -{ - ram_addr_t ram_addr; - MemoryRegion *mr; - hwaddr l = 1; - - if (!tcg_enabled()) { - return; - } - - RCU_READ_LOCK_GUARD(); - mr = address_space_translate(as, addr, &addr, &l, false, attrs); - if (!(memory_region_is_ram(mr) - || memory_region_is_romd(mr))) { - return; - } - ram_addr = memory_region_get_ram_addr(mr) + addr; - tb_invalidate_phys_page_range(ram_addr, ram_addr + 1); -} - -static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) -{ - /* - * There may not be a virtual to physical translation for the pc - * right now, but there may exist cached TB for this pc. - * Flush the whole TB cache to force re-translation of such TBs. - * This is heavyweight, but we're debugging anyway. - */ - tb_flush(cpu); -} -#endif - -#ifndef CONFIG_USER_ONLY -/* Add a watchpoint. */ -int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, - int flags, CPUWatchpoint **watchpoint) -{ - CPUWatchpoint *wp; - vaddr in_page; - - /* forbid ranges which are empty or run off the end of the address space */ - if (len == 0 || (addr + len - 1) < addr) { - error_report("tried to set invalid watchpoint at %" - VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); - return -EINVAL; - } - wp = g_malloc(sizeof(*wp)); - - wp->vaddr = addr; - wp->len = len; - wp->flags = flags; - - /* keep all GDB-injected watchpoints in front */ - if (flags & BP_GDB) { - QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); - } else { - QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); - } - - in_page = -(addr | TARGET_PAGE_MASK); - if (len <= in_page) { - tlb_flush_page(cpu, addr); - } else { - tlb_flush(cpu); - } - - if (watchpoint) - *watchpoint = wp; - return 0; -} - -/* Remove a specific watchpoint. */ -int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, - int flags) -{ - CPUWatchpoint *wp; - - QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { - if (addr == wp->vaddr && len == wp->len - && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { - cpu_watchpoint_remove_by_ref(cpu, wp); - return 0; - } - } - return -ENOENT; -} - -/* Remove a specific watchpoint by reference. */ -void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) -{ - QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); - - tlb_flush_page(cpu, watchpoint->vaddr); - - g_free(watchpoint); -} - -/* Remove all matching watchpoints. */ -void cpu_watchpoint_remove_all(CPUState *cpu, int mask) -{ - CPUWatchpoint *wp, *next; - - QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { - if (wp->flags & mask) { - cpu_watchpoint_remove_by_ref(cpu, wp); - } - } -} - -/* Return true if this watchpoint address matches the specified - * access (ie the address range covered by the watchpoint overlaps - * partially or completely with the address range covered by the - * access). - */ -static inline bool watchpoint_address_matches(CPUWatchpoint *wp, - vaddr addr, vaddr len) -{ - /* We know the lengths are non-zero, but a little caution is - * required to avoid errors in the case where the range ends - * exactly at the top of the address space and so addr + len - * wraps round to zero. - */ - vaddr wpend = wp->vaddr + wp->len - 1; - vaddr addrend = addr + len - 1; - - return !(addr > wpend || wp->vaddr > addrend); -} - -/* Return flags for watchpoints that match addr + prot. */ -int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len) -{ - CPUWatchpoint *wp; - int ret = 0; - - QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { - if (watchpoint_address_matches(wp, addr, len)) { - ret |= wp->flags; - } - } - return ret; -} -#endif /* !CONFIG_USER_ONLY */ - -/* Add a breakpoint. */ -int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, - CPUBreakpoint **breakpoint) -{ - CPUBreakpoint *bp; - - bp = g_malloc(sizeof(*bp)); - - bp->pc = pc; - bp->flags = flags; - - /* keep all GDB-injected breakpoints in front */ - if (flags & BP_GDB) { - QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); - } else { - QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); - } - - breakpoint_invalidate(cpu, pc); - - if (breakpoint) { - *breakpoint = bp; - } - return 0; -} - -/* Remove a specific breakpoint. */ -int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) -{ - CPUBreakpoint *bp; - - QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { - if (bp->pc == pc && bp->flags == flags) { - cpu_breakpoint_remove_by_ref(cpu, bp); - return 0; - } - } - return -ENOENT; -} - -/* Remove a specific breakpoint by reference. */ -void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) -{ - QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); - - breakpoint_invalidate(cpu, breakpoint->pc); - - g_free(breakpoint); -} - -/* Remove all matching breakpoints. */ -void cpu_breakpoint_remove_all(CPUState *cpu, int mask) -{ - CPUBreakpoint *bp, *next; - - QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { - if (bp->flags & mask) { - cpu_breakpoint_remove_by_ref(cpu, bp); - } - } -} - -/* enable or disable single step mode. EXCP_DEBUG is returned by the - CPU loop after each instruction */ -void cpu_single_step(CPUState *cpu, int enabled) -{ - if (cpu->singlestep_enabled != enabled) { - cpu->singlestep_enabled = enabled; - if (kvm_enabled()) { - kvm_update_guest_debug(cpu, 0); - } else { - /* must flush all the translated code to avoid inconsistencies */ - /* XXX: only flush what is necessary */ - tb_flush(cpu); - } - } -} - -void cpu_abort(CPUState *cpu, const char *fmt, ...) -{ - va_list ap; - va_list ap2; - - va_start(ap, fmt); - va_copy(ap2, ap); - fprintf(stderr, "qemu: fatal: "); - vfprintf(stderr, fmt, ap); - fprintf(stderr, "\n"); - cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP); - if (qemu_log_separate()) { - FILE *logfile = qemu_log_lock(); - qemu_log("qemu: fatal: "); - qemu_log_vprintf(fmt, ap2); - qemu_log("\n"); - log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); - qemu_log_flush(); - qemu_log_unlock(logfile); - qemu_log_close(); - } - va_end(ap2); - va_end(ap); - replay_finish(); -#if defined(CONFIG_USER_ONLY) - { - struct sigaction act; - sigfillset(&act.sa_mask); - act.sa_handler = SIG_DFL; - act.sa_flags = 0; - sigaction(SIGABRT, &act, NULL); - } -#endif - abort(); -} - -#if !defined(CONFIG_USER_ONLY) -/* Called from RCU critical section */ -static RAMBlock *qemu_get_ram_block(ram_addr_t addr) -{ - RAMBlock *block; - - block = atomic_rcu_read(&ram_list.mru_block); - if (block && addr - block->offset < block->max_length) { - return block; - } - RAMBLOCK_FOREACH(block) { - if (addr - block->offset < block->max_length) { - goto found; - } - } - - fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); - abort(); - -found: - /* It is safe to write mru_block outside the iothread lock. This - * is what happens: - * - * mru_block = xxx - * rcu_read_unlock() - * xxx removed from list - * rcu_read_lock() - * read mru_block - * mru_block = NULL; - * call_rcu(reclaim_ramblock, xxx); - * rcu_read_unlock() - * - * atomic_rcu_set is not needed here. The block was already published - * when it was placed into the list. Here we're just making an extra - * copy of the pointer. - */ - ram_list.mru_block = block; - return block; -} - -static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) -{ - CPUState *cpu; - ram_addr_t start1; - RAMBlock *block; - ram_addr_t end; - - assert(tcg_enabled()); - end = TARGET_PAGE_ALIGN(start + length); - start &= TARGET_PAGE_MASK; - - RCU_READ_LOCK_GUARD(); - block = qemu_get_ram_block(start); - assert(block == qemu_get_ram_block(end - 1)); - start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); - CPU_FOREACH(cpu) { - tlb_reset_dirty(cpu, start1, length); - } -} - -/* Note: start and end must be within the same ram block. */ -bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, - ram_addr_t length, - unsigned client) -{ - DirtyMemoryBlocks *blocks; - unsigned long end, page, start_page; - bool dirty = false; - RAMBlock *ramblock; - uint64_t mr_offset, mr_size; - - if (length == 0) { - return false; - } - - end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; - start_page = start >> TARGET_PAGE_BITS; - page = start_page; - - WITH_RCU_READ_LOCK_GUARD() { - blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); - ramblock = qemu_get_ram_block(start); - /* Range sanity check on the ramblock */ - assert(start >= ramblock->offset && - start + length <= ramblock->offset + ramblock->used_length); - - while (page < end) { - unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; - unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; - unsigned long num = MIN(end - page, - DIRTY_MEMORY_BLOCK_SIZE - offset); - - dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], - offset, num); - page += num; - } - - mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; - mr_size = (end - start_page) << TARGET_PAGE_BITS; - memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); - } - - if (dirty && tcg_enabled()) { - tlb_reset_dirty_range_all(start, length); - } - - return dirty; -} - -DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty - (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) -{ - DirtyMemoryBlocks *blocks; - ram_addr_t start = memory_region_get_ram_addr(mr) + offset; - unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); - ram_addr_t first = QEMU_ALIGN_DOWN(start, align); - ram_addr_t last = QEMU_ALIGN_UP(start + length, align); - DirtyBitmapSnapshot *snap; - unsigned long page, end, dest; - - snap = g_malloc0(sizeof(*snap) + - ((last - first) >> (TARGET_PAGE_BITS + 3))); - snap->start = first; - snap->end = last; - - page = first >> TARGET_PAGE_BITS; - end = last >> TARGET_PAGE_BITS; - dest = 0; - - WITH_RCU_READ_LOCK_GUARD() { - blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); - - while (page < end) { - unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; - unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; - unsigned long num = MIN(end - page, - DIRTY_MEMORY_BLOCK_SIZE - offset); - - assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); - assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); - offset >>= BITS_PER_LEVEL; - - bitmap_copy_and_clear_atomic(snap->dirty + dest, - blocks->blocks[idx] + offset, - num); - page += num; - dest += num >> BITS_PER_LEVEL; - } - } - - if (tcg_enabled()) { - tlb_reset_dirty_range_all(start, length); - } - - memory_region_clear_dirty_bitmap(mr, offset, length); - - return snap; -} - -bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, - ram_addr_t start, - ram_addr_t length) -{ - unsigned long page, end; - - assert(start >= snap->start); - assert(start + length <= snap->end); - - end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; - page = (start - snap->start) >> TARGET_PAGE_BITS; - - while (page < end) { - if (test_bit(page, snap->dirty)) { - return true; - } - page++; - } - return false; -} - -/* Called from RCU critical section */ -hwaddr memory_region_section_get_iotlb(CPUState *cpu, - MemoryRegionSection *section) -{ - AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); - return section - d->map.sections; -} -#endif /* defined(CONFIG_USER_ONLY) */ - -#if !defined(CONFIG_USER_ONLY) - -static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, - uint16_t section); -static subpage_t *subpage_init(FlatView *fv, hwaddr base); - -static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) = - qemu_anon_ram_alloc; - -/* - * Set a custom physical guest memory alloator. - * Accelerators with unusual needs may need this. Hopefully, we can - * get rid of it eventually. - */ -void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared)) -{ - phys_mem_alloc = alloc; -} - -static uint16_t phys_section_add(PhysPageMap *map, - MemoryRegionSection *section) -{ - /* The physical section number is ORed with a page-aligned - * pointer to produce the iotlb entries. Thus it should - * never overflow into the page-aligned value. - */ - assert(map->sections_nb < TARGET_PAGE_SIZE); - - if (map->sections_nb == map->sections_nb_alloc) { - map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); - map->sections = g_renew(MemoryRegionSection, map->sections, - map->sections_nb_alloc); - } - map->sections[map->sections_nb] = *section; - memory_region_ref(section->mr); - return map->sections_nb++; -} - -static void phys_section_destroy(MemoryRegion *mr) -{ - bool have_sub_page = mr->subpage; - - memory_region_unref(mr); - - if (have_sub_page) { - subpage_t *subpage = container_of(mr, subpage_t, iomem); - object_unref(OBJECT(&subpage->iomem)); - g_free(subpage); - } -} - -static void phys_sections_free(PhysPageMap *map) -{ - while (map->sections_nb > 0) { - MemoryRegionSection *section = &map->sections[--map->sections_nb]; - phys_section_destroy(section->mr); - } - g_free(map->sections); - g_free(map->nodes); -} - -static void register_subpage(FlatView *fv, MemoryRegionSection *section) -{ - AddressSpaceDispatch *d = flatview_to_dispatch(fv); - subpage_t *subpage; - hwaddr base = section->offset_within_address_space - & TARGET_PAGE_MASK; - MemoryRegionSection *existing = phys_page_find(d, base); - MemoryRegionSection subsection = { - .offset_within_address_space = base, - .size = int128_make64(TARGET_PAGE_SIZE), - }; - hwaddr start, end; - - assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); - - if (!(existing->mr->subpage)) { - subpage = subpage_init(fv, base); - subsection.fv = fv; - subsection.mr = &subpage->iomem; - phys_page_set(d, base >> TARGET_PAGE_BITS, 1, - phys_section_add(&d->map, &subsection)); - } else { - subpage = container_of(existing->mr, subpage_t, iomem); - } - start = section->offset_within_address_space & ~TARGET_PAGE_MASK; - end = start + int128_get64(section->size) - 1; - subpage_register(subpage, start, end, - phys_section_add(&d->map, section)); -} - - -static void register_multipage(FlatView *fv, - MemoryRegionSection *section) -{ - AddressSpaceDispatch *d = flatview_to_dispatch(fv); - hwaddr start_addr = section->offset_within_address_space; - uint16_t section_index = phys_section_add(&d->map, section); - uint64_t num_pages = int128_get64(int128_rshift(section->size, - TARGET_PAGE_BITS)); - - assert(num_pages); - phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); -} - -/* - * The range in *section* may look like this: - * - * |s|PPPPPPP|s| - * - * where s stands for subpage and P for page. - */ -void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) -{ - MemoryRegionSection remain = *section; - Int128 page_size = int128_make64(TARGET_PAGE_SIZE); - - /* register first subpage */ - if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { - uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) - - remain.offset_within_address_space; - - MemoryRegionSection now = remain; - now.size = int128_min(int128_make64(left), now.size); - register_subpage(fv, &now); - if (int128_eq(remain.size, now.size)) { - return; - } - remain.size = int128_sub(remain.size, now.size); - remain.offset_within_address_space += int128_get64(now.size); - remain.offset_within_region += int128_get64(now.size); - } - - /* register whole pages */ - if (int128_ge(remain.size, page_size)) { - MemoryRegionSection now = remain; - now.size = int128_and(now.size, int128_neg(page_size)); - register_multipage(fv, &now); - if (int128_eq(remain.size, now.size)) { - return; - } - remain.size = int128_sub(remain.size, now.size); - remain.offset_within_address_space += int128_get64(now.size); - remain.offset_within_region += int128_get64(now.size); - } - - /* register last subpage */ - register_subpage(fv, &remain); -} - -void qemu_flush_coalesced_mmio_buffer(void) -{ - if (kvm_enabled()) - kvm_flush_coalesced_mmio_buffer(); -} - -void qemu_mutex_lock_ramlist(void) -{ - qemu_mutex_lock(&ram_list.mutex); -} - -void qemu_mutex_unlock_ramlist(void) -{ - qemu_mutex_unlock(&ram_list.mutex); -} - -void ram_block_dump(Monitor *mon) -{ - RAMBlock *block; - char *psize; - - RCU_READ_LOCK_GUARD(); - monitor_printf(mon, "%24s %8s %18s %18s %18s\n", - "Block Name", "PSize", "Offset", "Used", "Total"); - RAMBLOCK_FOREACH(block) { - psize = size_to_str(block->page_size); - monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 - " 0x%016" PRIx64 "\n", block->idstr, psize, - (uint64_t)block->offset, - (uint64_t)block->used_length, - (uint64_t)block->max_length); - g_free(psize); - } -} - -#ifdef __linux__ -/* - * FIXME TOCTTOU: this iterates over memory backends' mem-path, which - * may or may not name the same files / on the same filesystem now as - * when we actually open and map them. Iterate over the file - * descriptors instead, and use qemu_fd_getpagesize(). - */ -static int find_min_backend_pagesize(Object *obj, void *opaque) -{ - long *hpsize_min = opaque; - - if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { - HostMemoryBackend *backend = MEMORY_BACKEND(obj); - long hpsize = host_memory_backend_pagesize(backend); - - if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { - *hpsize_min = hpsize; - } - } - - return 0; -} - -static int find_max_backend_pagesize(Object *obj, void *opaque) -{ - long *hpsize_max = opaque; - - if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { - HostMemoryBackend *backend = MEMORY_BACKEND(obj); - long hpsize = host_memory_backend_pagesize(backend); - - if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { - *hpsize_max = hpsize; - } - } - - return 0; -} - -/* - * TODO: We assume right now that all mapped host memory backends are - * used as RAM, however some might be used for different purposes. - */ -long qemu_minrampagesize(void) -{ - long hpsize = LONG_MAX; - Object *memdev_root = object_resolve_path("/objects", NULL); - - object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); - return hpsize; -} - -long qemu_maxrampagesize(void) -{ - long pagesize = 0; - Object *memdev_root = object_resolve_path("/objects", NULL); - - object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); - return pagesize; -} -#else -long qemu_minrampagesize(void) -{ - return qemu_real_host_page_size; -} -long qemu_maxrampagesize(void) -{ - return qemu_real_host_page_size; -} -#endif - -#ifdef CONFIG_POSIX -static int64_t get_file_size(int fd) -{ - int64_t size; -#if defined(__linux__) - struct stat st; - - if (fstat(fd, &st) < 0) { - return -errno; - } - - /* Special handling for devdax character devices */ - if (S_ISCHR(st.st_mode)) { - g_autofree char *subsystem_path = NULL; - g_autofree char *subsystem = NULL; - - subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", - major(st.st_rdev), minor(st.st_rdev)); - subsystem = g_file_read_link(subsystem_path, NULL); - - if (subsystem && g_str_has_suffix(subsystem, "/dax")) { - g_autofree char *size_path = NULL; - g_autofree char *size_str = NULL; - - size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", - major(st.st_rdev), minor(st.st_rdev)); - - if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { - return g_ascii_strtoll(size_str, NULL, 0); - } - } - } -#endif /* defined(__linux__) */ - - /* st.st_size may be zero for special files yet lseek(2) works */ - size = lseek(fd, 0, SEEK_END); - if (size < 0) { - return -errno; - } - return size; -} - -static int64_t get_file_align(int fd) -{ - int64_t align = -1; -#if defined(__linux__) && defined(CONFIG_LIBDAXCTL) - struct stat st; - - if (fstat(fd, &st) < 0) { - return -errno; - } - - /* Special handling for devdax character devices */ - if (S_ISCHR(st.st_mode)) { - g_autofree char *path = NULL; - g_autofree char *rpath = NULL; - struct daxctl_ctx *ctx; - struct daxctl_region *region; - int rc = 0; - - path = g_strdup_printf("/sys/dev/char/%d:%d", - major(st.st_rdev), minor(st.st_rdev)); - rpath = realpath(path, NULL); - - rc = daxctl_new(&ctx); - if (rc) { - return -1; - } - - daxctl_region_foreach(ctx, region) { - if (strstr(rpath, daxctl_region_get_path(region))) { - align = daxctl_region_get_align(region); - break; - } - } - daxctl_unref(ctx); - } -#endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ - - return align; -} - -static int file_ram_open(const char *path, - const char *region_name, - bool *created, - Error **errp) -{ - char *filename; - char *sanitized_name; - char *c; - int fd = -1; - - *created = false; - for (;;) { - fd = open(path, O_RDWR); - if (fd >= 0) { - /* @path names an existing file, use it */ - break; - } - if (errno == ENOENT) { - /* @path names a file that doesn't exist, create it */ - fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); - if (fd >= 0) { - *created = true; - break; - } - } else if (errno == EISDIR) { - /* @path names a directory, create a file there */ - /* Make name safe to use with mkstemp by replacing '/' with '_'. */ - sanitized_name = g_strdup(region_name); - for (c = sanitized_name; *c != '\0'; c++) { - if (*c == '/') { - *c = '_'; - } - } - - filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, - sanitized_name); - g_free(sanitized_name); - - fd = mkstemp(filename); - if (fd >= 0) { - unlink(filename); - g_free(filename); - break; - } - g_free(filename); - } - if (errno != EEXIST && errno != EINTR) { - error_setg_errno(errp, errno, - "can't open backing store %s for guest RAM", - path); - return -1; - } - /* - * Try again on EINTR and EEXIST. The latter happens when - * something else creates the file between our two open(). - */ - } - - return fd; -} - -static void *file_ram_alloc(RAMBlock *block, - ram_addr_t memory, - int fd, - bool truncate, - Error **errp) -{ - void *area; - - block->page_size = qemu_fd_getpagesize(fd); - if (block->mr->align % block->page_size) { - error_setg(errp, "alignment 0x%" PRIx64 - " must be multiples of page size 0x%zx", - block->mr->align, block->page_size); - return NULL; - } else if (block->mr->align && !is_power_of_2(block->mr->align)) { - error_setg(errp, "alignment 0x%" PRIx64 - " must be a power of two", block->mr->align); - return NULL; - } - block->mr->align = MAX(block->page_size, block->mr->align); -#if defined(__s390x__) - if (kvm_enabled()) { - block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); - } -#endif - - if (memory < block->page_size) { - error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " - "or larger than page size 0x%zx", - memory, block->page_size); - return NULL; - } - - memory = ROUND_UP(memory, block->page_size); - - /* - * ftruncate is not supported by hugetlbfs in older - * hosts, so don't bother bailing out on errors. - * If anything goes wrong with it under other filesystems, - * mmap will fail. - * - * Do not truncate the non-empty backend file to avoid corrupting - * the existing data in the file. Disabling shrinking is not - * enough. For example, the current vNVDIMM implementation stores - * the guest NVDIMM labels at the end of the backend file. If the - * backend file is later extended, QEMU will not be able to find - * those labels. Therefore, extending the non-empty backend file - * is disabled as well. - */ - if (truncate && ftruncate(fd, memory)) { - perror("ftruncate"); - } - - area = qemu_ram_mmap(fd, memory, block->mr->align, - block->flags & RAM_SHARED, block->flags & RAM_PMEM); - if (area == MAP_FAILED) { - error_setg_errno(errp, errno, - "unable to map backing store for guest RAM"); - return NULL; - } - - block->fd = fd; - return area; -} -#endif - -/* Allocate space within the ram_addr_t space that governs the - * dirty bitmaps. - * Called with the ramlist lock held. - */ -static ram_addr_t find_ram_offset(ram_addr_t size) -{ - RAMBlock *block, *next_block; - ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; - - assert(size != 0); /* it would hand out same offset multiple times */ - - if (QLIST_EMPTY_RCU(&ram_list.blocks)) { - return 0; - } - - RAMBLOCK_FOREACH(block) { - ram_addr_t candidate, next = RAM_ADDR_MAX; - - /* Align blocks to start on a 'long' in the bitmap - * which makes the bitmap sync'ing take the fast path. - */ - candidate = block->offset + block->max_length; - candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); - - /* Search for the closest following block - * and find the gap. - */ - RAMBLOCK_FOREACH(next_block) { - if (next_block->offset >= candidate) { - next = MIN(next, next_block->offset); - } - } - - /* If it fits remember our place and remember the size - * of gap, but keep going so that we might find a smaller - * gap to fill so avoiding fragmentation. - */ - if (next - candidate >= size && next - candidate < mingap) { - offset = candidate; - mingap = next - candidate; - } - - trace_find_ram_offset_loop(size, candidate, offset, next, mingap); - } - - if (offset == RAM_ADDR_MAX) { - fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", - (uint64_t)size); - abort(); - } - - trace_find_ram_offset(size, offset); - - return offset; -} - -static unsigned long last_ram_page(void) -{ - RAMBlock *block; - ram_addr_t last = 0; - - RCU_READ_LOCK_GUARD(); - RAMBLOCK_FOREACH(block) { - last = MAX(last, block->offset + block->max_length); - } - return last >> TARGET_PAGE_BITS; -} - -static void qemu_ram_setup_dump(void *addr, ram_addr_t size) -{ - int ret; - - /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ - if (!machine_dump_guest_core(current_machine)) { - ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); - if (ret) { - perror("qemu_madvise"); - fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " - "but dump_guest_core=off specified\n"); - } - } -} - -const char *qemu_ram_get_idstr(RAMBlock *rb) -{ - return rb->idstr; -} - -void *qemu_ram_get_host_addr(RAMBlock *rb) -{ - return rb->host; -} - -ram_addr_t qemu_ram_get_offset(RAMBlock *rb) -{ - return rb->offset; -} - -ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) -{ - return rb->used_length; -} - -bool qemu_ram_is_shared(RAMBlock *rb) -{ - return rb->flags & RAM_SHARED; -} - -/* Note: Only set at the start of postcopy */ -bool qemu_ram_is_uf_zeroable(RAMBlock *rb) -{ - return rb->flags & RAM_UF_ZEROPAGE; -} - -void qemu_ram_set_uf_zeroable(RAMBlock *rb) -{ - rb->flags |= RAM_UF_ZEROPAGE; -} - -bool qemu_ram_is_migratable(RAMBlock *rb) -{ - return rb->flags & RAM_MIGRATABLE; -} - -void qemu_ram_set_migratable(RAMBlock *rb) -{ - rb->flags |= RAM_MIGRATABLE; -} - -void qemu_ram_unset_migratable(RAMBlock *rb) -{ - rb->flags &= ~RAM_MIGRATABLE; -} - -/* Called with iothread lock held. */ -void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) -{ - RAMBlock *block; - - assert(new_block); - assert(!new_block->idstr[0]); - - if (dev) { - char *id = qdev_get_dev_path(dev); - if (id) { - snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); - g_free(id); - } - } - pstrcat(new_block->idstr, sizeof(new_block->idstr), name); - - RCU_READ_LOCK_GUARD(); - RAMBLOCK_FOREACH(block) { - if (block != new_block && - !strcmp(block->idstr, new_block->idstr)) { - fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", - new_block->idstr); - abort(); - } - } -} - -/* Called with iothread lock held. */ -void qemu_ram_unset_idstr(RAMBlock *block) -{ - /* FIXME: arch_init.c assumes that this is not called throughout - * migration. Ignore the problem since hot-unplug during migration - * does not work anyway. - */ - if (block) { - memset(block->idstr, 0, sizeof(block->idstr)); - } -} - -size_t qemu_ram_pagesize(RAMBlock *rb) -{ - return rb->page_size; -} - -/* Returns the largest size of page in use */ -size_t qemu_ram_pagesize_largest(void) -{ - RAMBlock *block; - size_t largest = 0; - - RAMBLOCK_FOREACH(block) { - largest = MAX(largest, qemu_ram_pagesize(block)); - } - - return largest; -} - -static int memory_try_enable_merging(void *addr, size_t len) -{ - if (!machine_mem_merge(current_machine)) { - /* disabled by the user */ - return 0; - } - - return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); -} - -/* Only legal before guest might have detected the memory size: e.g. on - * incoming migration, or right after reset. - * - * As memory core doesn't know how is memory accessed, it is up to - * resize callback to update device state and/or add assertions to detect - * misuse, if necessary. - */ -int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) -{ - const ram_addr_t unaligned_size = newsize; - - assert(block); - - newsize = HOST_PAGE_ALIGN(newsize); - - if (block->used_length == newsize) { - /* - * We don't have to resize the ram block (which only knows aligned - * sizes), however, we have to notify if the unaligned size changed. - */ - if (unaligned_size != memory_region_size(block->mr)) { - memory_region_set_size(block->mr, unaligned_size); - if (block->resized) { - block->resized(block->idstr, unaligned_size, block->host); - } - } - return 0; - } - - if (!(block->flags & RAM_RESIZEABLE)) { - error_setg_errno(errp, EINVAL, - "Length mismatch: %s: 0x" RAM_ADDR_FMT - " in != 0x" RAM_ADDR_FMT, block->idstr, - newsize, block->used_length); - return -EINVAL; - } - - if (block->max_length < newsize) { - error_setg_errno(errp, EINVAL, - "Length too large: %s: 0x" RAM_ADDR_FMT - " > 0x" RAM_ADDR_FMT, block->idstr, - newsize, block->max_length); - return -EINVAL; - } - - cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); - block->used_length = newsize; - cpu_physical_memory_set_dirty_range(block->offset, block->used_length, - DIRTY_CLIENTS_ALL); - memory_region_set_size(block->mr, unaligned_size); - if (block->resized) { - block->resized(block->idstr, unaligned_size, block->host); - } - return 0; -} - -/* - * Trigger sync on the given ram block for range [start, start + length] - * with the backing store if one is available. - * Otherwise no-op. - * @Note: this is supposed to be a synchronous op. - */ -void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) -{ - /* The requested range should fit in within the block range */ - g_assert((start + length) <= block->used_length); - -#ifdef CONFIG_LIBPMEM - /* The lack of support for pmem should not block the sync */ - if (ramblock_is_pmem(block)) { - void *addr = ramblock_ptr(block, start); - pmem_persist(addr, length); - return; - } -#endif - if (block->fd >= 0) { - /** - * Case there is no support for PMEM or the memory has not been - * specified as persistent (or is not one) - use the msync. - * Less optimal but still achieves the same goal - */ - void *addr = ramblock_ptr(block, start); - if (qemu_msync(addr, length, block->fd)) { - warn_report("%s: failed to sync memory range: start: " - RAM_ADDR_FMT " length: " RAM_ADDR_FMT, - __func__, start, length); - } - } -} - -/* Called with ram_list.mutex held */ -static void dirty_memory_extend(ram_addr_t old_ram_size, - ram_addr_t new_ram_size) -{ - ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, - DIRTY_MEMORY_BLOCK_SIZE); - ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, - DIRTY_MEMORY_BLOCK_SIZE); - int i; - - /* Only need to extend if block count increased */ - if (new_num_blocks <= old_num_blocks) { - return; - } - - for (i = 0; i < DIRTY_MEMORY_NUM; i++) { - DirtyMemoryBlocks *old_blocks; - DirtyMemoryBlocks *new_blocks; - int j; - - old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); - new_blocks = g_malloc(sizeof(*new_blocks) + - sizeof(new_blocks->blocks[0]) * new_num_blocks); - - if (old_num_blocks) { - memcpy(new_blocks->blocks, old_blocks->blocks, - old_num_blocks * sizeof(old_blocks->blocks[0])); - } - - for (j = old_num_blocks; j < new_num_blocks; j++) { - new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); - } - - atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); - - if (old_blocks) { - g_free_rcu(old_blocks, rcu); - } - } -} - -static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared) -{ - RAMBlock *block; - RAMBlock *last_block = NULL; - ram_addr_t old_ram_size, new_ram_size; - Error *err = NULL; - - old_ram_size = last_ram_page(); - - qemu_mutex_lock_ramlist(); - new_block->offset = find_ram_offset(new_block->max_length); - - if (!new_block->host) { - if (xen_enabled()) { - xen_ram_alloc(new_block->offset, new_block->max_length, - new_block->mr, &err); - if (err) { - error_propagate(errp, err); - qemu_mutex_unlock_ramlist(); - return; - } - } else { - new_block->host = phys_mem_alloc(new_block->max_length, - &new_block->mr->align, shared); - if (!new_block->host) { - error_setg_errno(errp, errno, - "cannot set up guest memory '%s'", - memory_region_name(new_block->mr)); - qemu_mutex_unlock_ramlist(); - return; - } - memory_try_enable_merging(new_block->host, new_block->max_length); - } - } - - new_ram_size = MAX(old_ram_size, - (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); - if (new_ram_size > old_ram_size) { - dirty_memory_extend(old_ram_size, new_ram_size); - } - /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, - * QLIST (which has an RCU-friendly variant) does not have insertion at - * tail, so save the last element in last_block. - */ - RAMBLOCK_FOREACH(block) { - last_block = block; - if (block->max_length < new_block->max_length) { - break; - } - } - if (block) { - QLIST_INSERT_BEFORE_RCU(block, new_block, next); - } else if (last_block) { - QLIST_INSERT_AFTER_RCU(last_block, new_block, next); - } else { /* list is empty */ - QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); - } - ram_list.mru_block = NULL; - - /* Write list before version */ - smp_wmb(); - ram_list.version++; - qemu_mutex_unlock_ramlist(); - - cpu_physical_memory_set_dirty_range(new_block->offset, - new_block->used_length, - DIRTY_CLIENTS_ALL); - - if (new_block->host) { - qemu_ram_setup_dump(new_block->host, new_block->max_length); - qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); - /* - * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU - * Configure it unless the machine is a qtest server, in which case - * KVM is not used and it may be forked (eg for fuzzing purposes). - */ - if (!qtest_enabled()) { - qemu_madvise(new_block->host, new_block->max_length, - QEMU_MADV_DONTFORK); - } - ram_block_notify_add(new_block->host, new_block->max_length); - } -} - -#ifdef CONFIG_POSIX -RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, - uint32_t ram_flags, int fd, - Error **errp) -{ - RAMBlock *new_block; - Error *local_err = NULL; - int64_t file_size, file_align; - - /* Just support these ram flags by now. */ - assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0); - - if (xen_enabled()) { - error_setg(errp, "-mem-path not supported with Xen"); - return NULL; - } - - if (kvm_enabled() && !kvm_has_sync_mmu()) { - error_setg(errp, - "host lacks kvm mmu notifiers, -mem-path unsupported"); - return NULL; - } - - if (phys_mem_alloc != qemu_anon_ram_alloc) { - /* - * file_ram_alloc() needs to allocate just like - * phys_mem_alloc, but we haven't bothered to provide - * a hook there. - */ - error_setg(errp, - "-mem-path not supported with this accelerator"); - return NULL; - } - - size = HOST_PAGE_ALIGN(size); - file_size = get_file_size(fd); - if (file_size > 0 && file_size < size) { - error_setg(errp, "backing store size 0x%" PRIx64 - " does not match 'size' option 0x" RAM_ADDR_FMT, - file_size, size); - return NULL; - } - - file_align = get_file_align(fd); - if (file_align > 0 && mr && file_align > mr->align) { - error_setg(errp, "backing store align 0x%" PRIx64 - " is larger than 'align' option 0x%" PRIx64, - file_align, mr->align); - return NULL; - } - - new_block = g_malloc0(sizeof(*new_block)); - new_block->mr = mr; - new_block->used_length = size; - new_block->max_length = size; - new_block->flags = ram_flags; - new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp); - if (!new_block->host) { - g_free(new_block); - return NULL; - } - - ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED); - if (local_err) { - g_free(new_block); - error_propagate(errp, local_err); - return NULL; - } - return new_block; - -} - - -RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, - uint32_t ram_flags, const char *mem_path, - Error **errp) -{ - int fd; - bool created; - RAMBlock *block; - - fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp); - if (fd < 0) { - return NULL; - } - - block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp); - if (!block) { - if (created) { - unlink(mem_path); - } - close(fd); - return NULL; - } - - return block; -} -#endif - -static -RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, - void (*resized)(const char*, - uint64_t length, - void *host), - void *host, bool resizeable, bool share, - MemoryRegion *mr, Error **errp) -{ - RAMBlock *new_block; - Error *local_err = NULL; - - size = HOST_PAGE_ALIGN(size); - max_size = HOST_PAGE_ALIGN(max_size); - new_block = g_malloc0(sizeof(*new_block)); - new_block->mr = mr; - new_block->resized = resized; - new_block->used_length = size; - new_block->max_length = max_size; - assert(max_size >= size); - new_block->fd = -1; - new_block->page_size = qemu_real_host_page_size; - new_block->host = host; - if (host) { - new_block->flags |= RAM_PREALLOC; - } - if (resizeable) { - new_block->flags |= RAM_RESIZEABLE; - } - ram_block_add(new_block, &local_err, share); - if (local_err) { - g_free(new_block); - error_propagate(errp, local_err); - return NULL; - } - return new_block; -} - -RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, - MemoryRegion *mr, Error **errp) -{ - return qemu_ram_alloc_internal(size, size, NULL, host, false, - false, mr, errp); -} - -RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share, - MemoryRegion *mr, Error **errp) -{ - return qemu_ram_alloc_internal(size, size, NULL, NULL, false, - share, mr, errp); -} - -RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, - void (*resized)(const char*, - uint64_t length, - void *host), - MemoryRegion *mr, Error **errp) -{ - return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, - false, mr, errp); -} - -static void reclaim_ramblock(RAMBlock *block) -{ - if (block->flags & RAM_PREALLOC) { - ; - } else if (xen_enabled()) { - xen_invalidate_map_cache_entry(block->host); -#ifndef _WIN32 - } else if (block->fd >= 0) { - qemu_ram_munmap(block->fd, block->host, block->max_length); - close(block->fd); -#endif - } else { - qemu_anon_ram_free(block->host, block->max_length); - } - g_free(block); -} - -void qemu_ram_free(RAMBlock *block) -{ - if (!block) { - return; - } - - if (block->host) { - ram_block_notify_remove(block->host, block->max_length); - } - - qemu_mutex_lock_ramlist(); - QLIST_REMOVE_RCU(block, next); - ram_list.mru_block = NULL; - /* Write list before version */ - smp_wmb(); - ram_list.version++; - call_rcu(block, reclaim_ramblock, rcu); - qemu_mutex_unlock_ramlist(); -} - -#ifndef _WIN32 -void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) -{ - RAMBlock *block; - ram_addr_t offset; - int flags; - void *area, *vaddr; - - RAMBLOCK_FOREACH(block) { - offset = addr - block->offset; - if (offset < block->max_length) { - vaddr = ramblock_ptr(block, offset); - if (block->flags & RAM_PREALLOC) { - ; - } else if (xen_enabled()) { - abort(); - } else { - flags = MAP_FIXED; - if (block->fd >= 0) { - flags |= (block->flags & RAM_SHARED ? - MAP_SHARED : MAP_PRIVATE); - area = mmap(vaddr, length, PROT_READ | PROT_WRITE, - flags, block->fd, offset); - } else { - /* - * Remap needs to match alloc. Accelerators that - * set phys_mem_alloc never remap. If they did, - * we'd need a remap hook here. - */ - assert(phys_mem_alloc == qemu_anon_ram_alloc); - - flags |= MAP_PRIVATE | MAP_ANONYMOUS; - area = mmap(vaddr, length, PROT_READ | PROT_WRITE, - flags, -1, 0); - } - if (area != vaddr) { - error_report("Could not remap addr: " - RAM_ADDR_FMT "@" RAM_ADDR_FMT "", - length, addr); - exit(1); - } - memory_try_enable_merging(vaddr, length); - qemu_ram_setup_dump(vaddr, length); - } - } - } -} -#endif /* !_WIN32 */ - -/* Return a host pointer to ram allocated with qemu_ram_alloc. - * This should not be used for general purpose DMA. Use address_space_map - * or address_space_rw instead. For local memory (e.g. video ram) that the - * device owns, use memory_region_get_ram_ptr. - * - * Called within RCU critical section. - */ -void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) -{ - RAMBlock *block = ram_block; - - if (block == NULL) { - block = qemu_get_ram_block(addr); - addr -= block->offset; - } - - if (xen_enabled() && block->host == NULL) { - /* We need to check if the requested address is in the RAM - * because we don't want to map the entire memory in QEMU. - * In that case just map until the end of the page. - */ - if (block->offset == 0) { - return xen_map_cache(addr, 0, 0, false); - } - - block->host = xen_map_cache(block->offset, block->max_length, 1, false); - } - return ramblock_ptr(block, addr); -} - -/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr - * but takes a size argument. - * - * Called within RCU critical section. - */ -static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, - hwaddr *size, bool lock) -{ - RAMBlock *block = ram_block; - if (*size == 0) { - return NULL; - } - - if (block == NULL) { - block = qemu_get_ram_block(addr); - addr -= block->offset; - } - *size = MIN(*size, block->max_length - addr); - - if (xen_enabled() && block->host == NULL) { - /* We need to check if the requested address is in the RAM - * because we don't want to map the entire memory in QEMU. - * In that case just map the requested area. - */ - if (block->offset == 0) { - return xen_map_cache(addr, *size, lock, lock); - } - - block->host = xen_map_cache(block->offset, block->max_length, 1, lock); - } - - return ramblock_ptr(block, addr); -} - -/* Return the offset of a hostpointer within a ramblock */ -ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) -{ - ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; - assert((uintptr_t)host >= (uintptr_t)rb->host); - assert(res < rb->max_length); - - return res; -} - -/* - * Translates a host ptr back to a RAMBlock, a ram_addr and an offset - * in that RAMBlock. - * - * ptr: Host pointer to look up - * round_offset: If true round the result offset down to a page boundary - * *ram_addr: set to result ram_addr - * *offset: set to result offset within the RAMBlock - * - * Returns: RAMBlock (or NULL if not found) - * - * By the time this function returns, the returned pointer is not protected - * by RCU anymore. If the caller is not within an RCU critical section and - * does not hold the iothread lock, it must have other means of protecting the - * pointer, such as a reference to the region that includes the incoming - * ram_addr_t. - */ -RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, - ram_addr_t *offset) -{ - RAMBlock *block; - uint8_t *host = ptr; - - if (xen_enabled()) { - ram_addr_t ram_addr; - RCU_READ_LOCK_GUARD(); - ram_addr = xen_ram_addr_from_mapcache(ptr); - block = qemu_get_ram_block(ram_addr); - if (block) { - *offset = ram_addr - block->offset; - } - return block; - } - - RCU_READ_LOCK_GUARD(); - block = atomic_rcu_read(&ram_list.mru_block); - if (block && block->host && host - block->host < block->max_length) { - goto found; - } - - RAMBLOCK_FOREACH(block) { - /* This case append when the block is not mapped. */ - if (block->host == NULL) { - continue; - } - if (host - block->host < block->max_length) { - goto found; - } - } - - return NULL; - -found: - *offset = (host - block->host); - if (round_offset) { - *offset &= TARGET_PAGE_MASK; - } - return block; -} - -/* - * Finds the named RAMBlock - * - * name: The name of RAMBlock to find - * - * Returns: RAMBlock (or NULL if not found) - */ -RAMBlock *qemu_ram_block_by_name(const char *name) -{ - RAMBlock *block; - - RAMBLOCK_FOREACH(block) { - if (!strcmp(name, block->idstr)) { - return block; - } - } - - return NULL; -} - -/* Some of the softmmu routines need to translate from a host pointer - (typically a TLB entry) back to a ram offset. */ -ram_addr_t qemu_ram_addr_from_host(void *ptr) -{ - RAMBlock *block; - ram_addr_t offset; - - block = qemu_ram_block_from_host(ptr, false, &offset); - if (!block) { - return RAM_ADDR_INVALID; - } - - return block->offset + offset; -} - -/* Generate a debug exception if a watchpoint has been hit. */ -void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, - MemTxAttrs attrs, int flags, uintptr_t ra) -{ - CPUClass *cc = CPU_GET_CLASS(cpu); - CPUWatchpoint *wp; - - assert(tcg_enabled()); - if (cpu->watchpoint_hit) { - /* - * We re-entered the check after replacing the TB. - * Now raise the debug interrupt so that it will - * trigger after the current instruction. - */ - qemu_mutex_lock_iothread(); - cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); - qemu_mutex_unlock_iothread(); - return; - } - - addr = cc->adjust_watchpoint_address(cpu, addr, len); - QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { - if (watchpoint_address_matches(wp, addr, len) - && (wp->flags & flags)) { - if (flags == BP_MEM_READ) { - wp->flags |= BP_WATCHPOINT_HIT_READ; - } else { - wp->flags |= BP_WATCHPOINT_HIT_WRITE; - } - wp->hitaddr = MAX(addr, wp->vaddr); - wp->hitattrs = attrs; - if (!cpu->watchpoint_hit) { - if (wp->flags & BP_CPU && - !cc->debug_check_watchpoint(cpu, wp)) { - wp->flags &= ~BP_WATCHPOINT_HIT; - continue; - } - cpu->watchpoint_hit = wp; - - mmap_lock(); - tb_check_watchpoint(cpu, ra); - if (wp->flags & BP_STOP_BEFORE_ACCESS) { - cpu->exception_index = EXCP_DEBUG; - mmap_unlock(); - cpu_loop_exit_restore(cpu, ra); - } else { - /* Force execution of one insn next time. */ - cpu->cflags_next_tb = 1 | curr_cflags(); - mmap_unlock(); - if (ra) { - cpu_restore_state(cpu, ra, true); - } - cpu_loop_exit_noexc(cpu); - } - } - } else { - wp->flags &= ~BP_WATCHPOINT_HIT; - } - } -} - -static MemTxResult flatview_read(FlatView *fv, hwaddr addr, - MemTxAttrs attrs, void *buf, hwaddr len); -static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, - const void *buf, hwaddr len); -static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, - bool is_write, MemTxAttrs attrs); - -static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, - unsigned len, MemTxAttrs attrs) -{ - subpage_t *subpage = opaque; - uint8_t buf[8]; - MemTxResult res; - -#if defined(DEBUG_SUBPAGE) - printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, - subpage, len, addr); -#endif - res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); - if (res) { - return res; - } - *data = ldn_p(buf, len); - return MEMTX_OK; -} - -static MemTxResult subpage_write(void *opaque, hwaddr addr, - uint64_t value, unsigned len, MemTxAttrs attrs) -{ - subpage_t *subpage = opaque; - uint8_t buf[8]; - -#if defined(DEBUG_SUBPAGE) - printf("%s: subpage %p len %u addr " TARGET_FMT_plx - " value %"PRIx64"\n", - __func__, subpage, len, addr, value); -#endif - stn_p(buf, len, value); - return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); -} - -static bool subpage_accepts(void *opaque, hwaddr addr, - unsigned len, bool is_write, - MemTxAttrs attrs) -{ - subpage_t *subpage = opaque; -#if defined(DEBUG_SUBPAGE) - printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", - __func__, subpage, is_write ? 'w' : 'r', len, addr); -#endif - - return flatview_access_valid(subpage->fv, addr + subpage->base, - len, is_write, attrs); -} - -static const MemoryRegionOps subpage_ops = { - .read_with_attrs = subpage_read, - .write_with_attrs = subpage_write, - .impl.min_access_size = 1, - .impl.max_access_size = 8, - .valid.min_access_size = 1, - .valid.max_access_size = 8, - .valid.accepts = subpage_accepts, - .endianness = DEVICE_NATIVE_ENDIAN, -}; - -static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, - uint16_t section) -{ - int idx, eidx; - - if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) - return -1; - idx = SUBPAGE_IDX(start); - eidx = SUBPAGE_IDX(end); -#if defined(DEBUG_SUBPAGE) - printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", - __func__, mmio, start, end, idx, eidx, section); -#endif - for (; idx <= eidx; idx++) { - mmio->sub_section[idx] = section; - } - - return 0; -} - -static subpage_t *subpage_init(FlatView *fv, hwaddr base) -{ - subpage_t *mmio; - - /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ - mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); - mmio->fv = fv; - mmio->base = base; - memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, - NULL, TARGET_PAGE_SIZE); - mmio->iomem.subpage = true; -#if defined(DEBUG_SUBPAGE) - printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, - mmio, base, TARGET_PAGE_SIZE); -#endif - - return mmio; -} - -static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) -{ - assert(fv); - MemoryRegionSection section = { - .fv = fv, - .mr = mr, - .offset_within_address_space = 0, - .offset_within_region = 0, - .size = int128_2_64(), - }; - - return phys_section_add(map, §ion); -} - -MemoryRegionSection *iotlb_to_section(CPUState *cpu, - hwaddr index, MemTxAttrs attrs) -{ - int asidx = cpu_asidx_from_attrs(cpu, attrs); - CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; - AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); - MemoryRegionSection *sections = d->map.sections; - - return §ions[index & ~TARGET_PAGE_MASK]; -} - -static void io_mem_init(void) -{ - memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, - NULL, UINT64_MAX); -} - -AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) -{ - AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); - uint16_t n; - - n = dummy_section(&d->map, fv, &io_mem_unassigned); - assert(n == PHYS_SECTION_UNASSIGNED); - - d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; - - return d; -} - -void address_space_dispatch_free(AddressSpaceDispatch *d) -{ - phys_sections_free(&d->map); - g_free(d); -} - -static void do_nothing(CPUState *cpu, run_on_cpu_data d) -{ -} - -static void tcg_log_global_after_sync(MemoryListener *listener) -{ - CPUAddressSpace *cpuas; - - /* Wait for the CPU to end the current TB. This avoids the following - * incorrect race: - * - * vCPU migration - * ---------------------- ------------------------- - * TLB check -> slow path - * notdirty_mem_write - * write to RAM - * mark dirty - * clear dirty flag - * TLB check -> fast path - * read memory - * write to RAM - * - * by pushing the migration thread's memory read after the vCPU thread has - * written the memory. - */ - if (replay_mode == REPLAY_MODE_NONE) { - /* - * VGA can make calls to this function while updating the screen. - * In record/replay mode this causes a deadlock, because - * run_on_cpu waits for rr mutex. Therefore no races are possible - * in this case and no need for making run_on_cpu when - * record/replay is not enabled. - */ - cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); - run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); - } -} - -static void tcg_commit(MemoryListener *listener) -{ - CPUAddressSpace *cpuas; - AddressSpaceDispatch *d; - - assert(tcg_enabled()); - /* since each CPU stores ram addresses in its TLB cache, we must - reset the modified entries */ - cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); - cpu_reloading_memory_map(); - /* The CPU and TLB are protected by the iothread lock. - * We reload the dispatch pointer now because cpu_reloading_memory_map() - * may have split the RCU critical section. - */ - d = address_space_to_dispatch(cpuas->as); - atomic_rcu_set(&cpuas->memory_dispatch, d); - tlb_flush(cpuas->cpu); -} - -static void memory_map_init(void) -{ - system_memory = g_malloc(sizeof(*system_memory)); - - memory_region_init(system_memory, NULL, "system", UINT64_MAX); - address_space_init(&address_space_memory, system_memory, "memory"); - - system_io = g_malloc(sizeof(*system_io)); - memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", - 65536); - address_space_init(&address_space_io, system_io, "I/O"); -} - -MemoryRegion *get_system_memory(void) -{ - return system_memory; -} - -MemoryRegion *get_system_io(void) -{ - return system_io; -} - -#endif /* !defined(CONFIG_USER_ONLY) */ - -/* physical memory access (slow version, mainly for debug) */ -#if defined(CONFIG_USER_ONLY) -int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, - void *ptr, target_ulong len, bool is_write) -{ - int flags; - target_ulong l, page; - void * p; - uint8_t *buf = ptr; - - while (len > 0) { - page = addr & TARGET_PAGE_MASK; - l = (page + TARGET_PAGE_SIZE) - addr; - if (l > len) - l = len; - flags = page_get_flags(page); - if (!(flags & PAGE_VALID)) - return -1; - if (is_write) { - if (!(flags & PAGE_WRITE)) - return -1; - /* XXX: this code should not depend on lock_user */ - if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) - return -1; - memcpy(p, buf, l); - unlock_user(p, addr, l); - } else { - if (!(flags & PAGE_READ)) - return -1; - /* XXX: this code should not depend on lock_user */ - if (!(p = lock_user(VERIFY_READ, addr, l, 1))) - return -1; - memcpy(buf, p, l); - unlock_user(p, addr, 0); - } - len -= l; - buf += l; - addr += l; - } - return 0; -} - -#else - -static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, - hwaddr length) -{ - uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); - addr += memory_region_get_ram_addr(mr); - - /* No early return if dirty_log_mask is or becomes 0, because - * cpu_physical_memory_set_dirty_range will still call - * xen_modified_memory. - */ - if (dirty_log_mask) { - dirty_log_mask = - cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); - } - if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { - assert(tcg_enabled()); - tb_invalidate_phys_range(addr, addr + length); - dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); - } - cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); -} - -void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) -{ - /* - * In principle this function would work on other memory region types too, - * but the ROM device use case is the only one where this operation is - * necessary. Other memory regions should use the - * address_space_read/write() APIs. - */ - assert(memory_region_is_romd(mr)); - - invalidate_and_set_dirty(mr, addr, size); -} - -static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) -{ - unsigned access_size_max = mr->ops->valid.max_access_size; - - /* Regions are assumed to support 1-4 byte accesses unless - otherwise specified. */ - if (access_size_max == 0) { - access_size_max = 4; - } - - /* Bound the maximum access by the alignment of the address. */ - if (!mr->ops->impl.unaligned) { - unsigned align_size_max = addr & -addr; - if (align_size_max != 0 && align_size_max < access_size_max) { - access_size_max = align_size_max; - } - } - - /* Don't attempt accesses larger than the maximum. */ - if (l > access_size_max) { - l = access_size_max; - } - l = pow2floor(l); - - return l; -} - -static bool prepare_mmio_access(MemoryRegion *mr) -{ - bool unlocked = !qemu_mutex_iothread_locked(); - bool release_lock = false; - - if (unlocked && mr->global_locking) { - qemu_mutex_lock_iothread(); - unlocked = false; - release_lock = true; - } - if (mr->flush_coalesced_mmio) { - if (unlocked) { - qemu_mutex_lock_iothread(); - } - qemu_flush_coalesced_mmio_buffer(); - if (unlocked) { - qemu_mutex_unlock_iothread(); - } - } - - return release_lock; -} - -/* Called within RCU critical section. */ -static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, - MemTxAttrs attrs, - const void *ptr, - hwaddr len, hwaddr addr1, - hwaddr l, MemoryRegion *mr) -{ - uint8_t *ram_ptr; - uint64_t val; - MemTxResult result = MEMTX_OK; - bool release_lock = false; - const uint8_t *buf = ptr; - - for (;;) { - if (!memory_access_is_direct(mr, true)) { - release_lock |= prepare_mmio_access(mr); - l = memory_access_size(mr, l, addr1); - /* XXX: could force current_cpu to NULL to avoid - potential bugs */ - val = ldn_he_p(buf, l); - result |= memory_region_dispatch_write(mr, addr1, val, - size_memop(l), attrs); - } else { - /* RAM case */ - ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); - memcpy(ram_ptr, buf, l); - invalidate_and_set_dirty(mr, addr1, l); - } - - if (release_lock) { - qemu_mutex_unlock_iothread(); - release_lock = false; - } - - len -= l; - buf += l; - addr += l; - - if (!len) { - break; - } - - l = len; - mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); - } - - return result; -} - -/* Called from RCU critical section. */ -static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, - const void *buf, hwaddr len) -{ - hwaddr l; - hwaddr addr1; - MemoryRegion *mr; - MemTxResult result = MEMTX_OK; - - l = len; - mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); - result = flatview_write_continue(fv, addr, attrs, buf, len, - addr1, l, mr); - - return result; -} - -/* Called within RCU critical section. */ -MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, - MemTxAttrs attrs, void *ptr, - hwaddr len, hwaddr addr1, hwaddr l, - MemoryRegion *mr) -{ - uint8_t *ram_ptr; - uint64_t val; - MemTxResult result = MEMTX_OK; - bool release_lock = false; - uint8_t *buf = ptr; - - for (;;) { - if (!memory_access_is_direct(mr, false)) { - /* I/O case */ - release_lock |= prepare_mmio_access(mr); - l = memory_access_size(mr, l, addr1); - result |= memory_region_dispatch_read(mr, addr1, &val, - size_memop(l), attrs); - stn_he_p(buf, l, val); - } else { - /* RAM case */ - ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); - memcpy(buf, ram_ptr, l); - } - - if (release_lock) { - qemu_mutex_unlock_iothread(); - release_lock = false; - } - - len -= l; - buf += l; - addr += l; - - if (!len) { - break; - } - - l = len; - mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); - } - - return result; -} - -/* Called from RCU critical section. */ -static MemTxResult flatview_read(FlatView *fv, hwaddr addr, - MemTxAttrs attrs, void *buf, hwaddr len) -{ - hwaddr l; - hwaddr addr1; - MemoryRegion *mr; - - l = len; - mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); - return flatview_read_continue(fv, addr, attrs, buf, len, - addr1, l, mr); -} - -MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, - MemTxAttrs attrs, void *buf, hwaddr len) -{ - MemTxResult result = MEMTX_OK; - FlatView *fv; - - if (len > 0) { - RCU_READ_LOCK_GUARD(); - fv = address_space_to_flatview(as); - result = flatview_read(fv, addr, attrs, buf, len); - } - - return result; -} - -MemTxResult address_space_write(AddressSpace *as, hwaddr addr, - MemTxAttrs attrs, - const void *buf, hwaddr len) -{ - MemTxResult result = MEMTX_OK; - FlatView *fv; - - if (len > 0) { - RCU_READ_LOCK_GUARD(); - fv = address_space_to_flatview(as); - result = flatview_write(fv, addr, attrs, buf, len); - } - - return result; -} - -MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, - void *buf, hwaddr len, bool is_write) -{ - if (is_write) { - return address_space_write(as, addr, attrs, buf, len); - } else { - return address_space_read_full(as, addr, attrs, buf, len); - } -} - -void cpu_physical_memory_rw(hwaddr addr, void *buf, - hwaddr len, bool is_write) -{ - address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, - buf, len, is_write); -} - -enum write_rom_type { - WRITE_DATA, - FLUSH_CACHE, -}; - -static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, - hwaddr addr, - MemTxAttrs attrs, - const void *ptr, - hwaddr len, - enum write_rom_type type) -{ - hwaddr l; - uint8_t *ram_ptr; - hwaddr addr1; - MemoryRegion *mr; - const uint8_t *buf = ptr; - - RCU_READ_LOCK_GUARD(); - while (len > 0) { - l = len; - mr = address_space_translate(as, addr, &addr1, &l, true, attrs); - - if (!(memory_region_is_ram(mr) || - memory_region_is_romd(mr))) { - l = memory_access_size(mr, l, addr1); - } else { - /* ROM/RAM case */ - ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); - switch (type) { - case WRITE_DATA: - memcpy(ram_ptr, buf, l); - invalidate_and_set_dirty(mr, addr1, l); - break; - case FLUSH_CACHE: - flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l); - break; - } - } - len -= l; - buf += l; - addr += l; - } - return MEMTX_OK; -} - -/* used for ROM loading : can write in RAM and ROM */ -MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, - MemTxAttrs attrs, - const void *buf, hwaddr len) -{ - return address_space_write_rom_internal(as, addr, attrs, - buf, len, WRITE_DATA); -} - -void cpu_flush_icache_range(hwaddr start, hwaddr len) -{ - /* - * This function should do the same thing as an icache flush that was - * triggered from within the guest. For TCG we are always cache coherent, - * so there is no need to flush anything. For KVM / Xen we need to flush - * the host's instruction cache at least. - */ - if (tcg_enabled()) { - return; - } - - address_space_write_rom_internal(&address_space_memory, - start, MEMTXATTRS_UNSPECIFIED, - NULL, len, FLUSH_CACHE); -} - -typedef struct { - MemoryRegion *mr; - void *buffer; - hwaddr addr; - hwaddr len; - bool in_use; -} BounceBuffer; - -static BounceBuffer bounce; - -typedef struct MapClient { - QEMUBH *bh; - QLIST_ENTRY(MapClient) link; -} MapClient; - -QemuMutex map_client_list_lock; -static QLIST_HEAD(, MapClient) map_client_list - = QLIST_HEAD_INITIALIZER(map_client_list); - -static void cpu_unregister_map_client_do(MapClient *client) -{ - QLIST_REMOVE(client, link); - g_free(client); -} - -static void cpu_notify_map_clients_locked(void) -{ - MapClient *client; - - while (!QLIST_EMPTY(&map_client_list)) { - client = QLIST_FIRST(&map_client_list); - qemu_bh_schedule(client->bh); - cpu_unregister_map_client_do(client); - } -} - -void cpu_register_map_client(QEMUBH *bh) -{ - MapClient *client = g_malloc(sizeof(*client)); - - qemu_mutex_lock(&map_client_list_lock); - client->bh = bh; - QLIST_INSERT_HEAD(&map_client_list, client, link); - if (!atomic_read(&bounce.in_use)) { - cpu_notify_map_clients_locked(); - } - qemu_mutex_unlock(&map_client_list_lock); -} - -void cpu_exec_init_all(void) -{ - qemu_mutex_init(&ram_list.mutex); - /* The data structures we set up here depend on knowing the page size, - * so no more changes can be made after this point. - * In an ideal world, nothing we did before we had finished the - * machine setup would care about the target page size, and we could - * do this much later, rather than requiring board models to state - * up front what their requirements are. - */ - finalize_target_page_bits(); - io_mem_init(); - memory_map_init(); - qemu_mutex_init(&map_client_list_lock); -} - -void cpu_unregister_map_client(QEMUBH *bh) -{ - MapClient *client; - - qemu_mutex_lock(&map_client_list_lock); - QLIST_FOREACH(client, &map_client_list, link) { - if (client->bh == bh) { - cpu_unregister_map_client_do(client); - break; - } - } - qemu_mutex_unlock(&map_client_list_lock); -} - -static void cpu_notify_map_clients(void) -{ - qemu_mutex_lock(&map_client_list_lock); - cpu_notify_map_clients_locked(); - qemu_mutex_unlock(&map_client_list_lock); -} - -static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, - bool is_write, MemTxAttrs attrs) -{ - MemoryRegion *mr; - hwaddr l, xlat; - - while (len > 0) { - l = len; - mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); - if (!memory_access_is_direct(mr, is_write)) { - l = memory_access_size(mr, l, addr); - if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { - return false; - } - } - - len -= l; - addr += l; - } - return true; -} - -bool address_space_access_valid(AddressSpace *as, hwaddr addr, - hwaddr len, bool is_write, - MemTxAttrs attrs) -{ - FlatView *fv; - bool result; - - RCU_READ_LOCK_GUARD(); - fv = address_space_to_flatview(as); - result = flatview_access_valid(fv, addr, len, is_write, attrs); - return result; -} - -static hwaddr -flatview_extend_translation(FlatView *fv, hwaddr addr, - hwaddr target_len, - MemoryRegion *mr, hwaddr base, hwaddr len, - bool is_write, MemTxAttrs attrs) -{ - hwaddr done = 0; - hwaddr xlat; - MemoryRegion *this_mr; - - for (;;) { - target_len -= len; - addr += len; - done += len; - if (target_len == 0) { - return done; - } - - len = target_len; - this_mr = flatview_translate(fv, addr, &xlat, - &len, is_write, attrs); - if (this_mr != mr || xlat != base + done) { - return done; - } - } -} - -/* Map a physical memory region into a host virtual address. - * May map a subset of the requested range, given by and returned in *plen. - * May return NULL if resources needed to perform the mapping are exhausted. - * Use only for reads OR writes - not for read-modify-write operations. - * Use cpu_register_map_client() to know when retrying the map operation is - * likely to succeed. - */ -void *address_space_map(AddressSpace *as, - hwaddr addr, - hwaddr *plen, - bool is_write, - MemTxAttrs attrs) -{ - hwaddr len = *plen; - hwaddr l, xlat; - MemoryRegion *mr; - void *ptr; - FlatView *fv; - - if (len == 0) { - return NULL; - } - - l = len; - RCU_READ_LOCK_GUARD(); - fv = address_space_to_flatview(as); - mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); - - if (!memory_access_is_direct(mr, is_write)) { - if (atomic_xchg(&bounce.in_use, true)) { - *plen = 0; - return NULL; - } - /* Avoid unbounded allocations */ - l = MIN(l, TARGET_PAGE_SIZE); - bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); - bounce.addr = addr; - bounce.len = l; - - memory_region_ref(mr); - bounce.mr = mr; - if (!is_write) { - flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, - bounce.buffer, l); - } - - *plen = l; - return bounce.buffer; - } - - - memory_region_ref(mr); - *plen = flatview_extend_translation(fv, addr, len, mr, xlat, - l, is_write, attrs); - ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); - - return ptr; -} - -/* Unmaps a memory region previously mapped by address_space_map(). - * Will also mark the memory as dirty if is_write is true. access_len gives - * the amount of memory that was actually read or written by the caller. - */ -void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, - bool is_write, hwaddr access_len) -{ - if (buffer != bounce.buffer) { - MemoryRegion *mr; - ram_addr_t addr1; - - mr = memory_region_from_host(buffer, &addr1); - assert(mr != NULL); - if (is_write) { - invalidate_and_set_dirty(mr, addr1, access_len); - } - if (xen_enabled()) { - xen_invalidate_map_cache_entry(buffer); - } - memory_region_unref(mr); - return; - } - if (is_write) { - address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, - bounce.buffer, access_len); - } - qemu_vfree(bounce.buffer); - bounce.buffer = NULL; - memory_region_unref(bounce.mr); - atomic_mb_set(&bounce.in_use, false); - cpu_notify_map_clients(); -} - -void *cpu_physical_memory_map(hwaddr addr, - hwaddr *plen, - bool is_write) -{ - return address_space_map(&address_space_memory, addr, plen, is_write, - MEMTXATTRS_UNSPECIFIED); -} - -void cpu_physical_memory_unmap(void *buffer, hwaddr len, - bool is_write, hwaddr access_len) -{ - return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); -} - -#define ARG1_DECL AddressSpace *as -#define ARG1 as -#define SUFFIX -#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) -#define RCU_READ_LOCK(...) rcu_read_lock() -#define RCU_READ_UNLOCK(...) rcu_read_unlock() -#include "memory_ldst.inc.c" - -int64_t address_space_cache_init(MemoryRegionCache *cache, - AddressSpace *as, - hwaddr addr, - hwaddr len, - bool is_write) -{ - AddressSpaceDispatch *d; - hwaddr l; - MemoryRegion *mr; - - assert(len > 0); - - l = len; - cache->fv = address_space_get_flatview(as); - d = flatview_to_dispatch(cache->fv); - cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); - - mr = cache->mrs.mr; - memory_region_ref(mr); - if (memory_access_is_direct(mr, is_write)) { - /* We don't care about the memory attributes here as we're only - * doing this if we found actual RAM, which behaves the same - * regardless of attributes; so UNSPECIFIED is fine. - */ - l = flatview_extend_translation(cache->fv, addr, len, mr, - cache->xlat, l, is_write, - MEMTXATTRS_UNSPECIFIED); - cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); - } else { - cache->ptr = NULL; - } - - cache->len = l; - cache->is_write = is_write; - return l; -} - -void address_space_cache_invalidate(MemoryRegionCache *cache, - hwaddr addr, - hwaddr access_len) -{ - assert(cache->is_write); - if (likely(cache->ptr)) { - invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); - } -} - -void address_space_cache_destroy(MemoryRegionCache *cache) -{ - if (!cache->mrs.mr) { - return; - } - - if (xen_enabled()) { - xen_invalidate_map_cache_entry(cache->ptr); - } - memory_region_unref(cache->mrs.mr); - flatview_unref(cache->fv); - cache->mrs.mr = NULL; - cache->fv = NULL; -} - -/* Called from RCU critical section. This function has the same - * semantics as address_space_translate, but it only works on a - * predefined range of a MemoryRegion that was mapped with - * address_space_cache_init. - */ -static inline MemoryRegion *address_space_translate_cached( - MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, - hwaddr *plen, bool is_write, MemTxAttrs attrs) -{ - MemoryRegionSection section; - MemoryRegion *mr; - IOMMUMemoryRegion *iommu_mr; - AddressSpace *target_as; - - assert(!cache->ptr); - *xlat = addr + cache->xlat; - - mr = cache->mrs.mr; - iommu_mr = memory_region_get_iommu(mr); - if (!iommu_mr) { - /* MMIO region. */ - return mr; - } - - section = address_space_translate_iommu(iommu_mr, xlat, plen, - NULL, is_write, true, - &target_as, attrs); - return section.mr; -} - -/* Called from RCU critical section. address_space_read_cached uses this - * out of line function when the target is an MMIO or IOMMU region. - */ -MemTxResult -address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, - void *buf, hwaddr len) -{ - hwaddr addr1, l; - MemoryRegion *mr; - - l = len; - mr = address_space_translate_cached(cache, addr, &addr1, &l, false, - MEMTXATTRS_UNSPECIFIED); - return flatview_read_continue(cache->fv, - addr, MEMTXATTRS_UNSPECIFIED, buf, len, - addr1, l, mr); -} - -/* Called from RCU critical section. address_space_write_cached uses this - * out of line function when the target is an MMIO or IOMMU region. - */ -MemTxResult -address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, - const void *buf, hwaddr len) -{ - hwaddr addr1, l; - MemoryRegion *mr; - - l = len; - mr = address_space_translate_cached(cache, addr, &addr1, &l, true, - MEMTXATTRS_UNSPECIFIED); - return flatview_write_continue(cache->fv, - addr, MEMTXATTRS_UNSPECIFIED, buf, len, - addr1, l, mr); -} - -#define ARG1_DECL MemoryRegionCache *cache -#define ARG1 cache -#define SUFFIX _cached_slow -#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) -#define RCU_READ_LOCK() ((void)0) -#define RCU_READ_UNLOCK() ((void)0) -#include "memory_ldst.inc.c" - -/* virtual memory access for debug (includes writing to ROM) */ -int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, - void *ptr, target_ulong len, bool is_write) -{ - hwaddr phys_addr; - target_ulong l, page; - uint8_t *buf = ptr; - - cpu_synchronize_state(cpu); - while (len > 0) { - int asidx; - MemTxAttrs attrs; - MemTxResult res; - - page = addr & TARGET_PAGE_MASK; - phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); - asidx = cpu_asidx_from_attrs(cpu, attrs); - /* if no physical page mapped, return an error */ - if (phys_addr == -1) - return -1; - l = (page + TARGET_PAGE_SIZE) - addr; - if (l > len) - l = len; - phys_addr += (addr & ~TARGET_PAGE_MASK); - if (is_write) { - res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, - attrs, buf, l); - } else { - res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, - attrs, buf, l); - } - if (res != MEMTX_OK) { - return -1; - } - len -= l; - buf += l; - addr += l; - } - return 0; -} - -/* - * Allows code that needs to deal with migration bitmaps etc to still be built - * target independent. - */ -size_t qemu_target_page_size(void) -{ - return TARGET_PAGE_SIZE; -} - -int qemu_target_page_bits(void) -{ - return TARGET_PAGE_BITS; -} - -int qemu_target_page_bits_min(void) -{ - return TARGET_PAGE_BITS_MIN; -} -#endif - -bool target_words_bigendian(void) -{ -#if defined(TARGET_WORDS_BIGENDIAN) - return true; -#else - return false; -#endif -} - -#ifndef CONFIG_USER_ONLY -bool cpu_physical_memory_is_io(hwaddr phys_addr) -{ - MemoryRegion*mr; - hwaddr l = 1; - bool res; - - RCU_READ_LOCK_GUARD(); - mr = address_space_translate(&address_space_memory, - phys_addr, &phys_addr, &l, false, - MEMTXATTRS_UNSPECIFIED); - - res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); - return res; -} - -int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) -{ - RAMBlock *block; - int ret = 0; - - RCU_READ_LOCK_GUARD(); - RAMBLOCK_FOREACH(block) { - ret = func(block, opaque); - if (ret) { - break; - } - } - return ret; -} - -/* - * Unmap pages of memory from start to start+length such that - * they a) read as 0, b) Trigger whatever fault mechanism - * the OS provides for postcopy. - * The pages must be unmapped by the end of the function. - * Returns: 0 on success, none-0 on failure - * - */ -int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) -{ - int ret = -1; - - uint8_t *host_startaddr = rb->host + start; - - if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { - error_report("ram_block_discard_range: Unaligned start address: %p", - host_startaddr); - goto err; - } - - if ((start + length) <= rb->used_length) { - bool need_madvise, need_fallocate; - if (!QEMU_IS_ALIGNED(length, rb->page_size)) { - error_report("ram_block_discard_range: Unaligned length: %zx", - length); - goto err; - } - - errno = ENOTSUP; /* If we are missing MADVISE etc */ - - /* The logic here is messy; - * madvise DONTNEED fails for hugepages - * fallocate works on hugepages and shmem - */ - need_madvise = (rb->page_size == qemu_host_page_size); - need_fallocate = rb->fd != -1; - if (need_fallocate) { - /* For a file, this causes the area of the file to be zero'd - * if read, and for hugetlbfs also causes it to be unmapped - * so a userfault will trigger. - */ -#ifdef CONFIG_FALLOCATE_PUNCH_HOLE - ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, - start, length); - if (ret) { - ret = -errno; - error_report("ram_block_discard_range: Failed to fallocate " - "%s:%" PRIx64 " +%zx (%d)", - rb->idstr, start, length, ret); - goto err; - } -#else - ret = -ENOSYS; - error_report("ram_block_discard_range: fallocate not available/file" - "%s:%" PRIx64 " +%zx (%d)", - rb->idstr, start, length, ret); - goto err; -#endif - } - if (need_madvise) { - /* For normal RAM this causes it to be unmapped, - * for shared memory it causes the local mapping to disappear - * and to fall back on the file contents (which we just - * fallocate'd away). - */ -#if defined(CONFIG_MADVISE) - ret = madvise(host_startaddr, length, MADV_DONTNEED); - if (ret) { - ret = -errno; - error_report("ram_block_discard_range: Failed to discard range " - "%s:%" PRIx64 " +%zx (%d)", - rb->idstr, start, length, ret); - goto err; - } -#else - ret = -ENOSYS; - error_report("ram_block_discard_range: MADVISE not available" - "%s:%" PRIx64 " +%zx (%d)", - rb->idstr, start, length, ret); - goto err; -#endif - } - trace_ram_block_discard_range(rb->idstr, host_startaddr, length, - need_madvise, need_fallocate, ret); - } else { - error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 - "/%zx/" RAM_ADDR_FMT")", - rb->idstr, start, length, rb->used_length); - } - -err: - return ret; -} - -bool ramblock_is_pmem(RAMBlock *rb) -{ - return rb->flags & RAM_PMEM; -} - -#endif - -void page_size_init(void) -{ - /* NOTE: we can always suppose that qemu_host_page_size >= - TARGET_PAGE_SIZE */ - if (qemu_host_page_size == 0) { - qemu_host_page_size = qemu_real_host_page_size; - } - if (qemu_host_page_size < TARGET_PAGE_SIZE) { - qemu_host_page_size = TARGET_PAGE_SIZE; - } - qemu_host_page_mask = -(intptr_t)qemu_host_page_size; -} - -#if !defined(CONFIG_USER_ONLY) - -static void mtree_print_phys_entries(int start, int end, int skip, int ptr) -{ - if (start == end - 1) { - qemu_printf("\t%3d ", start); - } else { - qemu_printf("\t%3d..%-3d ", start, end - 1); - } - qemu_printf(" skip=%d ", skip); - if (ptr == PHYS_MAP_NODE_NIL) { - qemu_printf(" ptr=NIL"); - } else if (!skip) { - qemu_printf(" ptr=#%d", ptr); - } else { - qemu_printf(" ptr=[%d]", ptr); - } - qemu_printf("\n"); -} - -#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ - int128_sub((size), int128_one())) : 0) - -void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) -{ - int i; - - qemu_printf(" Dispatch\n"); - qemu_printf(" Physical sections\n"); - - for (i = 0; i < d->map.sections_nb; ++i) { - MemoryRegionSection *s = d->map.sections + i; - const char *names[] = { " [unassigned]", " [not dirty]", - " [ROM]", " [watch]" }; - - qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx - " %s%s%s%s%s", - i, - s->offset_within_address_space, - s->offset_within_address_space + MR_SIZE(s->mr->size), - s->mr->name ? s->mr->name : "(noname)", - i < ARRAY_SIZE(names) ? names[i] : "", - s->mr == root ? " [ROOT]" : "", - s == d->mru_section ? " [MRU]" : "", - s->mr->is_iommu ? " [iommu]" : ""); - - if (s->mr->alias) { - qemu_printf(" alias=%s", s->mr->alias->name ? - s->mr->alias->name : "noname"); - } - qemu_printf("\n"); - } - - qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", - P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); - for (i = 0; i < d->map.nodes_nb; ++i) { - int j, jprev; - PhysPageEntry prev; - Node *n = d->map.nodes + i; - - qemu_printf(" [%d]\n", i); - - for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { - PhysPageEntry *pe = *n + j; - - if (pe->ptr == prev.ptr && pe->skip == prev.skip) { - continue; - } - - mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); - - jprev = j; - prev = *pe; - } - - if (jprev != ARRAY_SIZE(*n)) { - mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); - } - } -} - -/* - * If positive, discarding RAM is disabled. If negative, discarding RAM is - * required to work and cannot be disabled. - */ -static int ram_block_discard_disabled; - -int ram_block_discard_disable(bool state) -{ - int old; - - if (!state) { - atomic_dec(&ram_block_discard_disabled); - return 0; - } - - do { - old = atomic_read(&ram_block_discard_disabled); - if (old < 0) { - return -EBUSY; - } - } while (atomic_cmpxchg(&ram_block_discard_disabled, old, old + 1) != old); - return 0; -} - -int ram_block_discard_require(bool state) -{ - int old; - - if (!state) { - atomic_inc(&ram_block_discard_disabled); - return 0; - } - - do { - old = atomic_read(&ram_block_discard_disabled); - if (old > 0) { - return -EBUSY; - } - } while (atomic_cmpxchg(&ram_block_discard_disabled, old, old - 1) != old); - return 0; -} - -bool ram_block_discard_is_disabled(void) -{ - return atomic_read(&ram_block_discard_disabled) > 0; -} - -bool ram_block_discard_is_required(void) -{ - return atomic_read(&ram_block_discard_disabled) < 0; -} - -#endif