X-Git-Url: https://git.proxmox.com/?a=blobdiff_plain;f=fpu%2Fsoftfloat.h;h=07c2929613c4e79eb8e520a25e851e300fa8beb5;hb=897fa7cff21a98b260a5b3e73eae39273fa60272;hp=789179a6b2d15fbae08c7293c2efbd36795b56ba;hpb=75b5a697ed5dbfd9bef2eeddf82032ecfeb169f8;p=qemu.git diff --git a/fpu/softfloat.h b/fpu/softfloat.h index 789179a6b..07c292961 100644 --- a/fpu/softfloat.h +++ b/fpu/softfloat.h @@ -1,3 +1,9 @@ +/* + * QEMU float support + * + * Derived from SoftFloat. + */ + /*============================================================================ This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic @@ -37,7 +43,7 @@ these four paragraphs for those parts of this code that are retained. #endif #include -#include "config.h" +#include "config-host.h" /*---------------------------------------------------------------------------- | Each of the following `typedef's defines the most convenient type that holds @@ -59,42 +65,9 @@ typedef signed int int32; typedef uint64_t uint64; typedef int64_t int64; -/*---------------------------------------------------------------------------- -| Each of the following `typedef's defines a type that holds integers -| of _exactly_ the number of bits specified. For instance, for most -| implementation of C, `bits16' and `sbits16' should be `typedef'ed to -| `unsigned short int' and `signed short int' (or `short int'), respectively. -*----------------------------------------------------------------------------*/ -typedef uint8_t bits8; -typedef int8_t sbits8; -typedef uint16_t bits16; -typedef int16_t sbits16; -typedef uint32_t bits32; -typedef int32_t sbits32; -typedef uint64_t bits64; -typedef int64_t sbits64; - #define LIT64( a ) a##LL #define INLINE static inline -/*---------------------------------------------------------------------------- -| The macro `FLOATX80' must be defined to enable the extended double-precision -| floating-point format `floatx80'. If this macro is not defined, the -| `floatx80' type will not be defined, and none of the functions that either -| input or output the `floatx80' type will be defined. The same applies to -| the `FLOAT128' macro and the quadruple-precision format `float128'. -*----------------------------------------------------------------------------*/ -#ifdef CONFIG_SOFTFLOAT -/* bit exact soft float support */ -#define FLOATX80 -#define FLOAT128 -#else -/* native float support */ -#if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD) -#define FLOATX80 -#endif -#endif /* !CONFIG_SOFTFLOAT */ - #define STATUS_PARAM , float_status *status #define STATUS(field) status->field #define STATUS_VAR , status @@ -109,7 +82,6 @@ enum { float_relation_unordered = 2 }; -#ifdef CONFIG_SOFTFLOAT /*---------------------------------------------------------------------------- | Software IEC/IEEE floating-point types. *----------------------------------------------------------------------------*/ @@ -119,32 +91,44 @@ enum { x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */ //#define USE_SOFTFLOAT_STRUCT_TYPES #ifdef USE_SOFTFLOAT_STRUCT_TYPES +typedef struct { + uint16_t v; +} float16; +#define float16_val(x) (((float16)(x)).v) +#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; }) +#define const_float16(x) { x } typedef struct { uint32_t v; } float32; /* The cast ensures an error if the wrong type is passed. */ #define float32_val(x) (((float32)(x)).v) #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; }) +#define const_float32(x) { x } typedef struct { uint64_t v; } float64; #define float64_val(x) (((float64)(x)).v) #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; }) +#define const_float64(x) { x } #else +typedef uint16_t float16; typedef uint32_t float32; typedef uint64_t float64; +#define float16_val(x) (x) #define float32_val(x) (x) #define float64_val(x) (x) +#define make_float16(x) (x) #define make_float32(x) (x) #define make_float64(x) (x) +#define const_float16(x) (x) +#define const_float32(x) (x) +#define const_float64(x) (x) #endif -#ifdef FLOATX80 typedef struct { uint64_t low; uint16_t high; } floatx80; -#endif -#ifdef FLOAT128 +#define make_floatx80(exp, mant) ((floatx80) { mant, exp }) typedef struct { #ifdef HOST_WORDS_BIGENDIAN uint64_t high, low; @@ -152,7 +136,7 @@ typedef struct { uint64_t low, high; #endif } float128; -#endif +#define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ }) /*---------------------------------------------------------------------------- | Software IEC/IEEE floating-point underflow tininess-detection mode. @@ -180,26 +164,37 @@ enum { float_flag_divbyzero = 4, float_flag_overflow = 8, float_flag_underflow = 16, - float_flag_inexact = 32 + float_flag_inexact = 32, + float_flag_input_denormal = 64, + float_flag_output_denormal = 128 }; typedef struct float_status { signed char float_detect_tininess; signed char float_rounding_mode; signed char float_exception_flags; -#ifdef FLOATX80 signed char floatx80_rounding_precision; -#endif + /* should denormalised results go to zero and set the inexact flag? */ flag flush_to_zero; + /* should denormalised inputs go to zero and set the input_denormal flag? */ + flag flush_inputs_to_zero; flag default_nan_mode; } float_status; void set_float_rounding_mode(int val STATUS_PARAM); void set_float_exception_flags(int val STATUS_PARAM); +INLINE void set_float_detect_tininess(int val STATUS_PARAM) +{ + STATUS(float_detect_tininess) = val; +} INLINE void set_flush_to_zero(flag val STATUS_PARAM) { STATUS(flush_to_zero) = val; } +INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM) +{ + STATUS(flush_inputs_to_zero) = val; +} INLINE void set_default_nan_mode(flag val STATUS_PARAM) { STATUS(default_nan_mode) = val; @@ -208,9 +203,7 @@ INLINE int get_float_exception_flags(float_status *status) { return STATUS(float_exception_flags); } -#ifdef FLOATX80 void set_floatx80_rounding_precision(int val STATUS_PARAM); -#endif /*---------------------------------------------------------------------------- | Routine to raise any or all of the software IEC/IEEE floating-point @@ -218,46 +211,66 @@ void set_floatx80_rounding_precision(int val STATUS_PARAM); *----------------------------------------------------------------------------*/ void float_raise( int8 flags STATUS_PARAM); +/*---------------------------------------------------------------------------- +| Options to indicate which negations to perform in float*_muladd() +| Using these differs from negating an input or output before calling +| the muladd function in that this means that a NaN doesn't have its +| sign bit inverted before it is propagated. +*----------------------------------------------------------------------------*/ +enum { + float_muladd_negate_c = 1, + float_muladd_negate_product = 2, + float_muladd_negate_result = 3, +}; + /*---------------------------------------------------------------------------- | Software IEC/IEEE integer-to-floating-point conversion routines. *----------------------------------------------------------------------------*/ -float32 int32_to_float32( int STATUS_PARAM ); -float64 int32_to_float64( int STATUS_PARAM ); -float32 uint32_to_float32( unsigned int STATUS_PARAM ); -float64 uint32_to_float64( unsigned int STATUS_PARAM ); -#ifdef FLOATX80 -floatx80 int32_to_floatx80( int STATUS_PARAM ); -#endif -#ifdef FLOAT128 -float128 int32_to_float128( int STATUS_PARAM ); -#endif -float32 int64_to_float32( int64_t STATUS_PARAM ); -float32 uint64_to_float32( uint64_t STATUS_PARAM ); -float64 int64_to_float64( int64_t STATUS_PARAM ); -float64 uint64_to_float64( uint64_t STATUS_PARAM ); -#ifdef FLOATX80 -floatx80 int64_to_floatx80( int64_t STATUS_PARAM ); -#endif -#ifdef FLOAT128 -float128 int64_to_float128( int64_t STATUS_PARAM ); -#endif +float32 int32_to_float32( int32 STATUS_PARAM ); +float64 int32_to_float64( int32 STATUS_PARAM ); +float32 uint32_to_float32( uint32 STATUS_PARAM ); +float64 uint32_to_float64( uint32 STATUS_PARAM ); +floatx80 int32_to_floatx80( int32 STATUS_PARAM ); +float128 int32_to_float128( int32 STATUS_PARAM ); +float32 int64_to_float32( int64 STATUS_PARAM ); +float32 uint64_to_float32( uint64 STATUS_PARAM ); +float64 int64_to_float64( int64 STATUS_PARAM ); +float64 uint64_to_float64( uint64 STATUS_PARAM ); +floatx80 int64_to_floatx80( int64 STATUS_PARAM ); +float128 int64_to_float128( int64 STATUS_PARAM ); + +/*---------------------------------------------------------------------------- +| Software half-precision conversion routines. +*----------------------------------------------------------------------------*/ +float16 float32_to_float16( float32, flag STATUS_PARAM ); +float32 float16_to_float32( float16, flag STATUS_PARAM ); + +/*---------------------------------------------------------------------------- +| Software half-precision operations. +*----------------------------------------------------------------------------*/ +int float16_is_quiet_nan( float16 ); +int float16_is_signaling_nan( float16 ); +float16 float16_maybe_silence_nan( float16 ); + +/*---------------------------------------------------------------------------- +| The pattern for a default generated half-precision NaN. +*----------------------------------------------------------------------------*/ +extern const float16 float16_default_nan; /*---------------------------------------------------------------------------- | Software IEC/IEEE single-precision conversion routines. *----------------------------------------------------------------------------*/ -int float32_to_int32( float32 STATUS_PARAM ); -int float32_to_int32_round_to_zero( float32 STATUS_PARAM ); -unsigned int float32_to_uint32( float32 STATUS_PARAM ); -unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM ); -int64_t float32_to_int64( float32 STATUS_PARAM ); -int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM ); +int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM ); +uint16 float32_to_uint16_round_to_zero( float32 STATUS_PARAM ); +int32 float32_to_int32( float32 STATUS_PARAM ); +int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM ); +uint32 float32_to_uint32( float32 STATUS_PARAM ); +uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM ); +int64 float32_to_int64( float32 STATUS_PARAM ); +int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM ); float64 float32_to_float64( float32 STATUS_PARAM ); -#ifdef FLOATX80 floatx80 float32_to_floatx80( float32 STATUS_PARAM ); -#endif -#ifdef FLOAT128 float128 float32_to_float128( float32 STATUS_PARAM ); -#endif /*---------------------------------------------------------------------------- | Software IEC/IEEE single-precision operations. @@ -268,27 +281,40 @@ float32 float32_sub( float32, float32 STATUS_PARAM ); float32 float32_mul( float32, float32 STATUS_PARAM ); float32 float32_div( float32, float32 STATUS_PARAM ); float32 float32_rem( float32, float32 STATUS_PARAM ); +float32 float32_muladd(float32, float32, float32, int STATUS_PARAM); float32 float32_sqrt( float32 STATUS_PARAM ); +float32 float32_exp2( float32 STATUS_PARAM ); float32 float32_log2( float32 STATUS_PARAM ); int float32_eq( float32, float32 STATUS_PARAM ); int float32_le( float32, float32 STATUS_PARAM ); int float32_lt( float32, float32 STATUS_PARAM ); -int float32_eq_signaling( float32, float32 STATUS_PARAM ); +int float32_unordered( float32, float32 STATUS_PARAM ); +int float32_eq_quiet( float32, float32 STATUS_PARAM ); int float32_le_quiet( float32, float32 STATUS_PARAM ); int float32_lt_quiet( float32, float32 STATUS_PARAM ); +int float32_unordered_quiet( float32, float32 STATUS_PARAM ); int float32_compare( float32, float32 STATUS_PARAM ); int float32_compare_quiet( float32, float32 STATUS_PARAM ); -int float32_is_nan( float32 ); +float32 float32_min(float32, float32 STATUS_PARAM); +float32 float32_max(float32, float32 STATUS_PARAM); +int float32_is_quiet_nan( float32 ); int float32_is_signaling_nan( float32 ); +float32 float32_maybe_silence_nan( float32 ); float32 float32_scalbn( float32, int STATUS_PARAM ); INLINE float32 float32_abs(float32 a) { + /* Note that abs does *not* handle NaN specially, nor does + * it flush denormal inputs to zero. + */ return make_float32(float32_val(a) & 0x7fffffff); } INLINE float32 float32_chs(float32 a) { + /* Note that chs does *not* handle NaN specially, nor does + * it flush denormal inputs to zero. + */ return make_float32(float32_val(a) ^ 0x80000000); } @@ -307,27 +333,50 @@ INLINE int float32_is_zero(float32 a) return (float32_val(a) & 0x7fffffff) == 0; } +INLINE int float32_is_any_nan(float32 a) +{ + return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL); +} + +INLINE int float32_is_zero_or_denormal(float32 a) +{ + return (float32_val(a) & 0x7f800000) == 0; +} + +INLINE float32 float32_set_sign(float32 a, int sign) +{ + return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31)); +} + #define float32_zero make_float32(0) #define float32_one make_float32(0x3f800000) +#define float32_ln2 make_float32(0x3f317218) +#define float32_pi make_float32(0x40490fdb) +#define float32_half make_float32(0x3f000000) +#define float32_infinity make_float32(0x7f800000) + + +/*---------------------------------------------------------------------------- +| The pattern for a default generated single-precision NaN. +*----------------------------------------------------------------------------*/ +extern const float32 float32_default_nan; /*---------------------------------------------------------------------------- | Software IEC/IEEE double-precision conversion routines. *----------------------------------------------------------------------------*/ -int float64_to_int32( float64 STATUS_PARAM ); -int float64_to_int32_round_to_zero( float64 STATUS_PARAM ); -unsigned int float64_to_uint32( float64 STATUS_PARAM ); -unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM ); -int64_t float64_to_int64( float64 STATUS_PARAM ); -int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM ); -uint64_t float64_to_uint64 (float64 a STATUS_PARAM); -uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM); +int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM ); +uint16 float64_to_uint16_round_to_zero( float64 STATUS_PARAM ); +int32 float64_to_int32( float64 STATUS_PARAM ); +int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM ); +uint32 float64_to_uint32( float64 STATUS_PARAM ); +uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM ); +int64 float64_to_int64( float64 STATUS_PARAM ); +int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM ); +uint64 float64_to_uint64 (float64 a STATUS_PARAM); +uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM); float32 float64_to_float32( float64 STATUS_PARAM ); -#ifdef FLOATX80 floatx80 float64_to_floatx80( float64 STATUS_PARAM ); -#endif -#ifdef FLOAT128 float128 float64_to_float128( float64 STATUS_PARAM ); -#endif /*---------------------------------------------------------------------------- | Software IEC/IEEE double-precision operations. @@ -339,27 +388,39 @@ float64 float64_sub( float64, float64 STATUS_PARAM ); float64 float64_mul( float64, float64 STATUS_PARAM ); float64 float64_div( float64, float64 STATUS_PARAM ); float64 float64_rem( float64, float64 STATUS_PARAM ); +float64 float64_muladd(float64, float64, float64, int STATUS_PARAM); float64 float64_sqrt( float64 STATUS_PARAM ); float64 float64_log2( float64 STATUS_PARAM ); int float64_eq( float64, float64 STATUS_PARAM ); int float64_le( float64, float64 STATUS_PARAM ); int float64_lt( float64, float64 STATUS_PARAM ); -int float64_eq_signaling( float64, float64 STATUS_PARAM ); +int float64_unordered( float64, float64 STATUS_PARAM ); +int float64_eq_quiet( float64, float64 STATUS_PARAM ); int float64_le_quiet( float64, float64 STATUS_PARAM ); int float64_lt_quiet( float64, float64 STATUS_PARAM ); +int float64_unordered_quiet( float64, float64 STATUS_PARAM ); int float64_compare( float64, float64 STATUS_PARAM ); int float64_compare_quiet( float64, float64 STATUS_PARAM ); -int float64_is_nan( float64 a ); +float64 float64_min(float64, float64 STATUS_PARAM); +float64 float64_max(float64, float64 STATUS_PARAM); +int float64_is_quiet_nan( float64 a ); int float64_is_signaling_nan( float64 ); +float64 float64_maybe_silence_nan( float64 ); float64 float64_scalbn( float64, int STATUS_PARAM ); INLINE float64 float64_abs(float64 a) { + /* Note that abs does *not* handle NaN specially, nor does + * it flush denormal inputs to zero. + */ return make_float64(float64_val(a) & 0x7fffffffffffffffLL); } INLINE float64 float64_chs(float64 a) { + /* Note that chs does *not* handle NaN specially, nor does + * it flush denormal inputs to zero. + */ return make_float64(float64_val(a) ^ 0x8000000000000000LL); } @@ -378,23 +439,44 @@ INLINE int float64_is_zero(float64 a) return (float64_val(a) & 0x7fffffffffffffffLL) == 0; } +INLINE int float64_is_any_nan(float64 a) +{ + return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL); +} + +INLINE int float64_is_zero_or_denormal(float64 a) +{ + return (float64_val(a) & 0x7ff0000000000000LL) == 0; +} + +INLINE float64 float64_set_sign(float64 a, int sign) +{ + return make_float64((float64_val(a) & 0x7fffffffffffffffULL) + | ((int64_t)sign << 63)); +} + #define float64_zero make_float64(0) #define float64_one make_float64(0x3ff0000000000000LL) +#define float64_ln2 make_float64(0x3fe62e42fefa39efLL) +#define float64_pi make_float64(0x400921fb54442d18LL) +#define float64_half make_float64(0x3fe0000000000000LL) +#define float64_infinity make_float64(0x7ff0000000000000LL) -#ifdef FLOATX80 +/*---------------------------------------------------------------------------- +| The pattern for a default generated double-precision NaN. +*----------------------------------------------------------------------------*/ +extern const float64 float64_default_nan; /*---------------------------------------------------------------------------- | Software IEC/IEEE extended double-precision conversion routines. *----------------------------------------------------------------------------*/ -int floatx80_to_int32( floatx80 STATUS_PARAM ); -int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM ); -int64_t floatx80_to_int64( floatx80 STATUS_PARAM ); -int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM ); +int32 floatx80_to_int32( floatx80 STATUS_PARAM ); +int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM ); +int64 floatx80_to_int64( floatx80 STATUS_PARAM ); +int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM ); float32 floatx80_to_float32( floatx80 STATUS_PARAM ); float64 floatx80_to_float64( floatx80 STATUS_PARAM ); -#ifdef FLOAT128 float128 floatx80_to_float128( floatx80 STATUS_PARAM ); -#endif /*---------------------------------------------------------------------------- | Software IEC/IEEE extended double-precision operations. @@ -409,11 +491,16 @@ floatx80 floatx80_sqrt( floatx80 STATUS_PARAM ); int floatx80_eq( floatx80, floatx80 STATUS_PARAM ); int floatx80_le( floatx80, floatx80 STATUS_PARAM ); int floatx80_lt( floatx80, floatx80 STATUS_PARAM ); -int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM ); +int floatx80_unordered( floatx80, floatx80 STATUS_PARAM ); +int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM ); int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM ); int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM ); -int floatx80_is_nan( floatx80 ); +int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM ); +int floatx80_compare( floatx80, floatx80 STATUS_PARAM ); +int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM ); +int floatx80_is_quiet_nan( floatx80 ); int floatx80_is_signaling_nan( floatx80 ); +floatx80 floatx80_maybe_silence_nan( floatx80 ); floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM ); INLINE floatx80 floatx80_abs(floatx80 a) @@ -430,7 +517,7 @@ INLINE floatx80 floatx80_chs(floatx80 a) INLINE int floatx80_is_infinity(floatx80 a) { - return (a.high & 0x7fff) == 0x7fff && a.low == 0; + return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL; } INLINE int floatx80_is_neg(floatx80 a) @@ -443,22 +530,38 @@ INLINE int floatx80_is_zero(floatx80 a) return (a.high & 0x7fff) == 0 && a.low == 0; } -#endif +INLINE int floatx80_is_zero_or_denormal(floatx80 a) +{ + return (a.high & 0x7fff) == 0; +} -#ifdef FLOAT128 +INLINE int floatx80_is_any_nan(floatx80 a) +{ + return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1); +} + +#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL) +#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL) +#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL) +#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL) +#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL) +#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL) + +/*---------------------------------------------------------------------------- +| The pattern for a default generated extended double-precision NaN. +*----------------------------------------------------------------------------*/ +extern const floatx80 floatx80_default_nan; /*---------------------------------------------------------------------------- | Software IEC/IEEE quadruple-precision conversion routines. *----------------------------------------------------------------------------*/ -int float128_to_int32( float128 STATUS_PARAM ); -int float128_to_int32_round_to_zero( float128 STATUS_PARAM ); -int64_t float128_to_int64( float128 STATUS_PARAM ); -int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM ); +int32 float128_to_int32( float128 STATUS_PARAM ); +int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM ); +int64 float128_to_int64( float128 STATUS_PARAM ); +int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM ); float32 float128_to_float32( float128 STATUS_PARAM ); float64 float128_to_float64( float128 STATUS_PARAM ); -#ifdef FLOATX80 floatx80 float128_to_floatx80( float128 STATUS_PARAM ); -#endif /*---------------------------------------------------------------------------- | Software IEC/IEEE quadruple-precision operations. @@ -473,13 +576,16 @@ float128 float128_sqrt( float128 STATUS_PARAM ); int float128_eq( float128, float128 STATUS_PARAM ); int float128_le( float128, float128 STATUS_PARAM ); int float128_lt( float128, float128 STATUS_PARAM ); -int float128_eq_signaling( float128, float128 STATUS_PARAM ); +int float128_unordered( float128, float128 STATUS_PARAM ); +int float128_eq_quiet( float128, float128 STATUS_PARAM ); int float128_le_quiet( float128, float128 STATUS_PARAM ); int float128_lt_quiet( float128, float128 STATUS_PARAM ); +int float128_unordered_quiet( float128, float128 STATUS_PARAM ); int float128_compare( float128, float128 STATUS_PARAM ); int float128_compare_quiet( float128, float128 STATUS_PARAM ); -int float128_is_nan( float128 ); +int float128_is_quiet_nan( float128 ); int float128_is_signaling_nan( float128 ); +float128 float128_maybe_silence_nan( float128 ); float128 float128_scalbn( float128, int STATUS_PARAM ); INLINE float128 float128_abs(float128 a) @@ -509,12 +615,20 @@ INLINE int float128_is_zero(float128 a) return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0; } -#endif - -#else /* CONFIG_SOFTFLOAT */ +INLINE int float128_is_zero_or_denormal(float128 a) +{ + return (a.high & 0x7fff000000000000LL) == 0; +} -#include "softfloat-native.h" +INLINE int float128_is_any_nan(float128 a) +{ + return ((a.high >> 48) & 0x7fff) == 0x7fff && + ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0)); +} -#endif /* !CONFIG_SOFTFLOAT */ +/*---------------------------------------------------------------------------- +| The pattern for a default generated quadruple-precision NaN. +*----------------------------------------------------------------------------*/ +extern const float128 float128_default_nan; #endif /* !SOFTFLOAT_H */