X-Git-Url: https://git.proxmox.com/?a=blobdiff_plain;f=qemu-doc.texi;h=794ab4a080ef02ef616078661cbcdc68f025d58e;hb=8cfef89271e27e4a7cd047835dc8161fad50bc5a;hp=c9b7069637ca747ba32fc2fa9bac7fccd4f57a94;hpb=50d34c4e357c41231b1106fc3f46cfd479a31e41;p=mirror_qemu.git diff --git a/qemu-doc.texi b/qemu-doc.texi index c9b7069637..794ab4a080 100644 --- a/qemu-doc.texi +++ b/qemu-doc.texi @@ -32,11 +32,10 @@ @menu * Introduction:: -* Installation:: * QEMU PC System emulator:: * QEMU System emulator for non PC targets:: * QEMU User space emulator:: -* compilation:: Compilation from the sources +* Implementation notes:: * License:: * Index:: @end menu @@ -57,98 +56,69 @@ QEMU is a FAST! processor emulator using dynamic translation to achieve good emulation speed. +@cindex operating modes QEMU has two operating modes: @itemize -@cindex operating modes - -@item @cindex system emulation -Full system emulation. In this mode, QEMU emulates a full system (for +@item Full system emulation. In this mode, QEMU emulates a full system (for example a PC), including one or several processors and various peripherals. It can be used to launch different Operating Systems without rebooting the PC or to debug system code. -@item @cindex user mode emulation -User mode emulation. In this mode, QEMU can launch +@item User mode emulation. In this mode, QEMU can launch processes compiled for one CPU on another CPU. It can be used to launch the Wine Windows API emulator (@url{http://www.winehq.org}) or to ease cross-compilation and cross-debugging. @end itemize -QEMU can run without a host kernel driver and yet gives acceptable -performance. +QEMU has the following features: -For system emulation, the following hardware targets are supported: @itemize -@cindex emulated target systems -@cindex supported target systems -@item PC (x86 or x86_64 processor) -@item ISA PC (old style PC without PCI bus) -@item PREP (PowerPC processor) -@item G3 Beige PowerMac (PowerPC processor) -@item Mac99 PowerMac (PowerPC processor, in progress) -@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor) -@item Sun4u/Sun4v (64-bit Sparc processor, in progress) -@item Malta board (32-bit and 64-bit MIPS processors) -@item MIPS Magnum (64-bit MIPS processor) -@item ARM Integrator/CP (ARM) -@item ARM Versatile baseboard (ARM) -@item ARM RealView Emulation/Platform baseboard (ARM) -@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor) -@item Luminary Micro LM3S811EVB (ARM Cortex-M3) -@item Luminary Micro LM3S6965EVB (ARM Cortex-M3) -@item Freescale MCF5208EVB (ColdFire V2). -@item Arnewsh MCF5206 evaluation board (ColdFire V2). -@item Palm Tungsten|E PDA (OMAP310 processor) -@item N800 and N810 tablets (OMAP2420 processor) -@item MusicPal (MV88W8618 ARM processor) -@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270). -@item Siemens SX1 smartphone (OMAP310 processor) -@item AXIS-Devboard88 (CRISv32 ETRAX-FS). -@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze). -@item Avnet LX60/LX110/LX200 boards (Xtensa) -@end itemize +@item QEMU can run without a host kernel driver and yet gives acceptable +performance. It uses dynamic translation to native code for reasonable speed, +with support for self-modifying code and precise exceptions. -@cindex supported user mode targets -For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit), -ARM, MIPS (32 bit only), Sparc (32 and 64 bit), -Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported. +@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X, +Windows) and architectures. -@node Installation -@chapter Installation +@item It performs accurate software emulation of the FPU. +@end itemize -If you want to compile QEMU yourself, see @ref{compilation}. +QEMU user mode emulation has the following features: +@itemize +@item Generic Linux system call converter, including most ioctls. -@menu -* install_linux:: Linux -* install_windows:: Windows -* install_mac:: Macintosh -@end menu +@item clone() emulation using native CPU clone() to use Linux scheduler for threads. -@node install_linux -@section Linux -@cindex installation (Linux) +@item Accurate signal handling by remapping host signals to target signals. +@end itemize -If a precompiled package is available for your distribution - you just -have to install it. Otherwise, see @ref{compilation}. +QEMU full system emulation has the following features: +@itemize +@item +QEMU uses a full software MMU for maximum portability. -@node install_windows -@section Windows -@cindex installation (Windows) +@item +QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators +execute most of the guest code natively, while +continuing to emulate the rest of the machine. -Download the experimental binary installer at -@url{http://www.free.oszoo.org/@/download.html}. -TODO (no longer available) +@item +Various hardware devices can be emulated and in some cases, host +devices (e.g. serial and parallel ports, USB, drives) can be used +transparently by the guest Operating System. Host device passthrough +can be used for talking to external physical peripherals (e.g. a +webcam, modem or tape drive). -@node install_mac -@section Mac OS X +@item +Symmetric multiprocessing (SMP) support. Currently, an in-kernel +accelerator is required to use more than one host CPU for emulation. + +@end itemize -Download the experimental binary installer at -@url{http://www.free.oszoo.org/@/download.html}. -TODO (no longer available) @node QEMU PC System emulator @chapter QEMU PC System emulator @@ -158,7 +128,8 @@ TODO (no longer available) * pcsys_introduction:: Introduction * pcsys_quickstart:: Quick Start * sec_invocation:: Invocation -* pcsys_keys:: Keys +* pcsys_keys:: Keys in the graphical frontends +* mux_keys:: Keys in the character backend multiplexer * pcsys_monitor:: QEMU Monitor * disk_images:: Disk Images * pcsys_network:: Network emulation @@ -195,6 +166,8 @@ PCI and ISA network adapters @item Serial ports @item +IPMI BMC, either and internal or external one +@item Creative SoundBlaster 16 sound card @item ENSONIQ AudioPCI ES1370 sound card @@ -257,7 +230,7 @@ Linux should boot and give you a prompt. @example @c man begin SYNOPSIS -usage: qemu-system-i386 [options] [@var{disk_image}] +@command{qemu-system-i386} [@var{options}] [@var{disk_image}] @c man end @end example @@ -270,7 +243,7 @@ targets do not need a disk image. @c man end @node pcsys_keys -@section Keys +@section Keys in the graphical frontends @c man begin OPTIONS @@ -320,15 +293,23 @@ Toggle mouse and keyboard grab. In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down}, @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log. -@kindex Ctrl-a h -During emulation, if you are using the @option{-nographic} option, use -@key{Ctrl-a h} to get terminal commands: +@c man end + +@node mux_keys +@section Keys in the character backend multiplexer + +@c man begin OPTIONS + +During emulation, if you are using a character backend multiplexer +(which is the default if you are using @option{-nographic}) then +several commands are available via an escape sequence. These +key sequences all start with an escape character, which is @key{Ctrl-a} +by default, but can be changed with @option{-echr}. The list below assumes +you're using the default. @table @key @item Ctrl-a h @kindex Ctrl-a h -@item Ctrl-a ? -@kindex Ctrl-a ? Print this help @item Ctrl-a x @kindex Ctrl-a x @@ -344,10 +325,11 @@ Toggle console timestamps Send break (magic sysrq in Linux) @item Ctrl-a c @kindex Ctrl-a c -Switch between console and monitor +Rotate between the frontends connected to the multiplexer (usually +this switches between the monitor and the console) @item Ctrl-a Ctrl-a -@kindex Ctrl-a a -Send Ctrl-a +@kindex Ctrl-a Ctrl-a +Send the escape character to the frontend @end table @c man end @@ -681,6 +663,9 @@ Supported options: File name of a base image (see @option{create} subcommand). @item compat6 Create a VMDK version 6 image (instead of version 4) +@item hwversion +Specify vmdk virtual hardware version. Compat6 flag cannot be enabled +if hwversion is specified. @item subformat Specifies which VMDK subformat to use. Valid options are @code{monolithicSparse} (default), @@ -1052,39 +1037,59 @@ qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \ @node disk_images_gluster @subsection GlusterFS disk images -GlusterFS is an user space distributed file system. +GlusterFS is a user space distributed file system. You can boot from the GlusterFS disk image with the command: @example -qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...] +URI: +qemu-system-x86_64 -drive file=gluster[+@var{type}]://[@var{host}[:@var{port}]]/@var{volume}/@var{path} + [?socket=...][,file.debug=9][,file.logfile=...] + +JSON: +qemu-system-x86_64 'json:@{"driver":"qcow2", + "file":@{"driver":"gluster", + "volume":"testvol","path":"a.img","debug":9,"logfile":"...", + "server":[@{"type":"tcp","host":"...","port":"..."@}, + @{"type":"unix","socket":"..."@}]@}@}' @end example @var{gluster} is the protocol. -@var{transport} specifies the transport type used to connect to gluster +@var{type} specifies the transport type used to connect to gluster management daemon (glusterd). Valid transport types are -tcp, unix and rdma. If a transport type isn't specified, then tcp -type is assumed. +tcp and unix. In the URI form, if a transport type isn't specified, +then tcp type is assumed. -@var{server} specifies the server where the volume file specification for -the given volume resides. This can be either hostname, ipv4 address -or ipv6 address. ipv6 address needs to be within square brackets [ ]. -If transport type is unix, then @var{server} field should not be specified. +@var{host} specifies the server where the volume file specification for +the given volume resides. This can be either a hostname or an ipv4 address. +If transport type is unix, then @var{host} field should not be specified. Instead @var{socket} field needs to be populated with the path to unix domain socket. @var{port} is the port number on which glusterd is listening. This is optional -and if not specified, QEMU will send 0 which will make gluster to use the -default port. If the transport type is unix, then @var{port} should not be -specified. +and if not specified, it defaults to port 24007. If the transport type is unix, +then @var{port} should not be specified. + +@var{volume} is the name of the gluster volume which contains the disk image. + +@var{path} is the path to the actual disk image that resides on gluster volume. + +@var{debug} is the logging level of the gluster protocol driver. Debug levels +are 0-9, with 9 being the most verbose, and 0 representing no debugging output. +The default level is 4. The current logging levels defined in the gluster source +are 0 - None, 1 - Emergency, 2 - Alert, 3 - Critical, 4 - Error, 5 - Warning, +6 - Notice, 7 - Info, 8 - Debug, 9 - Trace + +@var{logfile} is a commandline option to mention log file path which helps in +logging to the specified file and also help in persisting the gfapi logs. The +default is stderr. + -@var{volname} is the name of the gluster volume which contains the disk image. -@var{image} is the path to the actual disk image that resides on gluster volume. You can create a GlusterFS disk image with the command: @example -qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size} +qemu-img create gluster://@var{host}/@var{volume}/@var{path} @var{size} @end example Examples @@ -1097,6 +1102,17 @@ qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img +qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log +qemu-system-x86_64 'json:@{"driver":"qcow2", + "file":@{"driver":"gluster", + "volume":"testvol","path":"a.img", + "debug":9,"logfile":"/var/log/qemu-gluster.log", + "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@}, + @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}' +qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img, + file.debug=9,file.logfile=/var/log/qemu-gluster.log, + file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007, + file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket @end example @node disk_images_ssh @@ -1235,9 +1251,9 @@ echo 100 100 > /proc/sys/net/ipv4/ping_group_range When using the built-in TFTP server, the router is also the TFTP server. -When using the @option{-redir} option, TCP or UDP connections can be -redirected from the host to the guest. It allows for example to -redirect X11, telnet or SSH connections. +When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP +connections can be redirected from the host to the guest. It allows for +example to redirect X11, telnet or SSH connections. @subsection Connecting VLANs between QEMU instances @@ -1250,13 +1266,18 @@ basic example. @subsection Inter-VM Shared Memory device -With KVM enabled on a Linux host, a shared memory device is available. Guests -map a POSIX shared memory region into the guest as a PCI device that enables -zero-copy communication to the application level of the guests. The basic -syntax is: +On Linux hosts, a shared memory device is available. The basic syntax +is: @example -qemu-system-i386 -device ivshmem,size=@var{size}[,shm=@var{shm-name}] +qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem} +@end example + +where @var{hostmem} names a host memory backend. For a POSIX shared +memory backend, use something like + +@example +-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem} @end example If desired, interrupts can be sent between guest VMs accessing the same shared @@ -1270,28 +1291,24 @@ memory server is: ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors} # Then start your qemu instances with matching arguments -qemu-system-i386 -device ivshmem,size=@var{shm-size},vectors=@var{vectors},chardev=@var{id} - [,msi=on][,ioeventfd=on][,role=peer|master] +qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id} -chardev socket,path=@var{path},id=@var{id} @end example When using the server, the guest will be assigned a VM ID (>=0) that allows guests using the same server to communicate via interrupts. Guests can read their -VM ID from a device register (see example code). Since receiving the shared -memory region from the server is asynchronous, there is a (small) chance the -guest may boot before the shared memory is attached. To allow an application -to ensure shared memory is attached, the VM ID register will return -1 (an -invalid VM ID) until the memory is attached. Once the shared memory is -attached, the VM ID will return the guest's valid VM ID. With these semantics, -the guest application can check to ensure the shared memory is attached to the -guest before proceeding. - -The @option{role} argument can be set to either master or peer and will affect -how the shared memory is migrated. With @option{role=master}, the guest will -copy the shared memory on migration to the destination host. With -@option{role=peer}, the guest will not be able to migrate with the device attached. -With the @option{peer} case, the device should be detached and then reattached -after migration using the PCI hotplug support. +VM ID from a device register (see ivshmem-spec.txt). + +@subsubsection Migration with ivshmem + +With device property @option{master=on}, the guest will copy the shared +memory on migration to the destination host. With @option{master=off}, +the guest will not be able to migrate with the device attached. In the +latter case, the device should be detached and then reattached after +migration using the PCI hotplug support. + +At most one of the devices sharing the same memory can be master. The +master must complete migration before you plug back the other devices. @subsubsection ivshmem and hugepages @@ -1299,8 +1316,8 @@ Instead of specifying the using POSIX shm, you may specify a memory backend that has hugepage support: @example -qemu-system-i386 -object memory-backend-file,size=1G,mem-path=/mnt/hugepages/my-shmem-file,id=mb1 - -device ivshmem,memdev=mb1 +qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1 + -device ivshmem-plain,memdev=mb1 @end example ivshmem-server also supports hugepages mount points with the @@ -1404,7 +1421,7 @@ no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}. This USB device implements the USB Transport Layer of HCI. Example usage: @example -qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3 +@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3 @end example @end table @@ -1887,7 +1904,8 @@ correctly instructs QEMU to shutdown at the appropriate moment. @subsubsection Share a directory between Unix and Windows -See @ref{sec_invocation} about the help of the option @option{-smb}. +See @ref{sec_invocation} about the help of the option +@option{'-netdev user,smb=...'}. @subsubsection Windows XP security problem @@ -2120,7 +2138,17 @@ Use the executable @file{qemu-system-sparc64} to simulate a Sun4u (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic Niagara (T1) machine. The Sun4u emulator is mostly complete, being able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The -Sun4v and Niagara emulators are still a work in progress. +Sun4v emulator is still a work in progress. + +The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory +of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2} +and is able to boot the disk.s10hw2 Solaris image. +@example +qemu-system-sparc64 -M niagara -L /path-to/S10image/ \ + -nographic -m 256 \ + -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2 +@end example + QEMU emulates the following peripherals: @@ -2155,7 +2183,7 @@ Set OpenBIOS variables in NVRAM, for example: qemu-system-sparc64 -prom-env 'auto-boot?=false' @end example -@item -M [sun4u|sun4v|Niagara] +@item -M [sun4u|sun4v|niagara] Set the emulated machine type. The default is sun4u. @@ -2643,6 +2671,7 @@ so should only be used with trusted guest OS. @menu * Supported Operating Systems :: +* Features:: * Linux User space emulator:: * BSD User space emulator :: @end menu @@ -2659,6 +2688,39 @@ Linux (referred as qemu-linux-user) BSD (referred as qemu-bsd-user) @end itemize +@node Features +@section Features + +QEMU user space emulation has the following notable features: + +@table @strong +@item System call translation: +QEMU includes a generic system call translator. This means that +the parameters of the system calls can be converted to fix +endianness and 32/64-bit mismatches between hosts and targets. +IOCTLs can be converted too. + +@item POSIX signal handling: +QEMU can redirect to the running program all signals coming from +the host (such as @code{SIGALRM}), as well as synthesize signals from +virtual CPU exceptions (for example @code{SIGFPE} when the program +executes a division by zero). + +QEMU relies on the host kernel to emulate most signal system +calls, for example to emulate the signal mask. On Linux, QEMU +supports both normal and real-time signals. + +@item Threading: +On Linux, QEMU can emulate the @code{clone} syscall and create a real +host thread (with a separate virtual CPU) for each emulated thread. +Note that not all targets currently emulate atomic operations correctly. +x86 and ARM use a global lock in order to preserve their semantics. +@end table + +QEMU was conceived so that ultimately it can emulate itself. Although +it is not very useful, it is an important test to show the power of the +emulator. + @node Linux User space emulator @section Linux User space emulator @@ -2753,7 +2815,7 @@ qemu-i386 /usr/local/qemu-i386/wine/bin/wine \ @subsection Command line options @example -usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...] +@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...] @end example @table @option @@ -2839,6 +2901,9 @@ The binary format is detected automatically. @command{qemu-mips} TODO. @command{qemu-mipsel} TODO. +@cindex user mode (NiosII) +@command{qemu-nios2} TODO. + @cindex user mode (PowerPC) @command{qemu-ppc64abi32} TODO. @command{qemu-ppc64} TODO. @@ -2895,7 +2960,7 @@ qemu-sparc64 /bin/ls @subsection Command line options @example -usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...] +@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...] @end example @table @option @@ -2928,221 +2993,8 @@ Act as if the host page size was 'pagesize' bytes Run the emulation in single step mode. @end table -@node compilation -@chapter Compilation from the sources - -@menu -* Linux/Unix:: -* Windows:: -* Cross compilation for Windows with Linux:: -* Mac OS X:: -* Make targets:: -@end menu - -@node Linux/Unix -@section Linux/Unix - -@subsection Compilation - -First you must decompress the sources: -@example -cd /tmp -tar zxvf qemu-x.y.z.tar.gz -cd qemu-x.y.z -@end example - -Then you configure QEMU and build it (usually no options are needed): -@example -./configure -make -@end example - -Then type as root user: -@example -make install -@end example -to install QEMU in @file{/usr/local}. - -@node Windows -@section Windows - -@itemize -@item Install the current versions of MSYS and MinGW from -@url{http://www.mingw.org/}. You can find detailed installation -instructions in the download section and the FAQ. -@item Download -the MinGW development library of SDL 1.2.x -(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from -@url{http://www.libsdl.org}. Unpack it in a temporary place and -edit the @file{sdl-config} script so that it gives the -correct SDL directory when invoked. - -@item Install the MinGW version of zlib and make sure -@file{zlib.h} and @file{libz.dll.a} are in -MinGW's default header and linker search paths. - -@item Extract the current version of QEMU. - -@item Start the MSYS shell (file @file{msys.bat}). - -@item Change to the QEMU directory. Launch @file{./configure} and -@file{make}. If you have problems using SDL, verify that -@file{sdl-config} can be launched from the MSYS command line. - -@item You can install QEMU in @file{Program Files/QEMU} by typing -@file{make install}. Don't forget to copy @file{SDL.dll} in -@file{Program Files/QEMU}. - -@end itemize - -@node Cross compilation for Windows with Linux -@section Cross compilation for Windows with Linux - -@itemize -@item -Install the MinGW cross compilation tools available at -@url{http://www.mingw.org/}. - -@item Download -the MinGW development library of SDL 1.2.x -(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from -@url{http://www.libsdl.org}. Unpack it in a temporary place and -edit the @file{sdl-config} script so that it gives the -correct SDL directory when invoked. Set up the @code{PATH} environment -variable so that @file{sdl-config} can be launched by -the QEMU configuration script. - -@item Install the MinGW version of zlib and make sure -@file{zlib.h} and @file{libz.dll.a} are in -MinGW's default header and linker search paths. - -@item -Configure QEMU for Windows cross compilation: -@example -PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-' -@end example -The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and -MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}. -We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and -use --cross-prefix to specify the name of the cross compiler. -You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}. - -Under Fedora Linux, you can run: -@example -yum -y install mingw32-gcc mingw32-SDL mingw32-zlib -@end example -to get a suitable cross compilation environment. - -@item You can install QEMU in the installation directory by typing -@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the -installation directory. - -@end itemize - -Wine can be used to launch the resulting qemu-system-i386.exe -and all other qemu-system-@var{target}.exe compiled for Win32. - -@node Mac OS X -@section Mac OS X - -System Requirements: -@itemize -@item Mac OS 10.5 or higher -@item The clang compiler shipped with Xcode 4.2 or higher, -or GCC 4.3 or higher -@end itemize - -Additional Requirements (install in order): -@enumerate -@item libffi: @uref{https://sourceware.org/libffi/} -@item gettext: @uref{http://www.gnu.org/software/gettext/} -@item glib: @uref{http://ftp.gnome.org/pub/GNOME/sources/glib/} -@item pkg-config: @uref{http://www.freedesktop.org/wiki/Software/pkg-config/} -@item autoconf: @uref{http://www.gnu.org/software/autoconf/autoconf.html} -@item automake: @uref{http://www.gnu.org/software/automake/} -@item libtool: @uref{http://www.gnu.org/software/libtool/} -@item pixman: @uref{http://www.pixman.org/} -@end enumerate - -* You may find it easiest to get these from a third-party packager -such as Homebrew, Macports, or Fink. - -After downloading the QEMU source code, double-click it to expand it. - -Then configure and make QEMU: -@example -./configure -make -@end example - -If you have a recent version of Mac OS X (OSX 10.7 or better -with Xcode 4.2 or better) we recommend building QEMU with the -default compiler provided by Apple, for your version of Mac OS X -(which will be 'clang'). The configure script will -automatically pick this. - -Note: If after the configure step you see a message like this: -@example -ERROR: Your compiler does not support the __thread specifier for - Thread-Local Storage (TLS). Please upgrade to a version that does. -@end example -you may have to build your own version of gcc from source. Expect that to take -several hours. More information can be found here: -@uref{https://gcc.gnu.org/install/} @* - -These are some of the third party binaries of gcc available for download: -@itemize -@item Homebrew: @uref{http://brew.sh/} -@item @uref{https://www.litebeam.net/gcc/gcc_472.pkg} -@item @uref{http://www.macports.org/ports.php?by=name&substr=gcc} -@end itemize - -You can have several versions of GCC on your system. To specify a certain version, -use the --cc and --cxx options. -@example -./configure --cxx= --cc= -@end example - -@node Make targets -@section Make targets - -@table @code - -@item make -@item make all -Make everything which is typically needed. - -@item install -TODO - -@item install-doc -TODO - -@item make clean -Remove most files which were built during make. - -@item make distclean -Remove everything which was built during make. - -@item make dvi -@item make html -@item make info -@item make pdf -Create documentation in dvi, html, info or pdf format. - -@item make cscope -TODO - -@item make defconfig -(Re-)create some build configuration files. -User made changes will be overwritten. - -@item tar -@item tarbin -TODO - -@end table +@include qemu-tech.texi @node License @appendix License