/* Set default lock nesting level */
atomic_set(&chan->nesting, L2CAP_NESTING_NORMAL);
+ /* Available receive buffer space is initially unknown */
+ chan->rx_avail = -1;
+
write_lock(&chan_list_lock);
list_add(&chan->global_l, &chan_list);
write_unlock(&chan_list_lock);
}
EXPORT_SYMBOL_GPL(l2cap_chan_set_defaults);
+static __u16 l2cap_le_rx_credits(struct l2cap_chan *chan)
+{
+ size_t sdu_len = chan->sdu ? chan->sdu->len : 0;
+
+ if (chan->mps == 0)
+ return 0;
+
+ /* If we don't know the available space in the receiver buffer, give
+ * enough credits for a full packet.
+ */
+ if (chan->rx_avail == -1)
+ return (chan->imtu / chan->mps) + 1;
+
+ /* If we know how much space is available in the receive buffer, give
+ * out as many credits as would fill the buffer.
+ */
+ if (chan->rx_avail <= sdu_len)
+ return 0;
+
+ return DIV_ROUND_UP(chan->rx_avail - sdu_len, chan->mps);
+}
+
static void l2cap_le_flowctl_init(struct l2cap_chan *chan, u16 tx_credits)
{
chan->sdu = NULL;
chan->tx_credits = tx_credits;
/* Derive MPS from connection MTU to stop HCI fragmentation */
chan->mps = min_t(u16, chan->imtu, chan->conn->mtu - L2CAP_HDR_SIZE);
- /* Give enough credits for a full packet */
- chan->rx_credits = (chan->imtu / chan->mps) + 1;
+ chan->rx_credits = l2cap_le_rx_credits(chan);
skb_queue_head_init(&chan->tx_q);
}
/* L2CAP implementations shall support a minimum MPS of 64 octets */
if (chan->mps < L2CAP_ECRED_MIN_MPS) {
chan->mps = L2CAP_ECRED_MIN_MPS;
- chan->rx_credits = (chan->imtu / chan->mps) + 1;
+ chan->rx_credits = l2cap_le_rx_credits(chan);
}
}
{
struct l2cap_conn *conn = chan->conn;
struct l2cap_le_credits pkt;
- u16 return_credits;
-
- return_credits = (chan->imtu / chan->mps) + 1;
+ u16 return_credits = l2cap_le_rx_credits(chan);
if (chan->rx_credits >= return_credits)
return;
l2cap_send_cmd(conn, chan->ident, L2CAP_LE_CREDITS, sizeof(pkt), &pkt);
}
+void l2cap_chan_rx_avail(struct l2cap_chan *chan, ssize_t rx_avail)
+{
+ if (chan->rx_avail == rx_avail)
+ return;
+
+ BT_DBG("chan %p has %zd bytes avail for rx", chan, rx_avail);
+
+ chan->rx_avail = rx_avail;
+
+ if (chan->state == BT_CONNECTED)
+ l2cap_chan_le_send_credits(chan);
+}
+
static int l2cap_ecred_recv(struct l2cap_chan *chan, struct sk_buff *skb)
{
int err;
/* Wait recv to confirm reception before updating the credits */
err = chan->ops->recv(chan, skb);
+ if (err < 0 && chan->rx_avail != -1) {
+ BT_ERR("Queueing received LE L2CAP data failed");
+ l2cap_send_disconn_req(chan, ECONNRESET);
+ return err;
+ }
+
/* Update credits whenever an SDU is received */
l2cap_chan_le_send_credits(chan);
}
chan->rx_credits--;
- BT_DBG("rx_credits %u -> %u", chan->rx_credits + 1, chan->rx_credits);
+ BT_DBG("chan %p: rx_credits %u -> %u",
+ chan, chan->rx_credits + 1, chan->rx_credits);
/* Update if remote had run out of credits, this should only happens
* if the remote is not using the entire MPS.
return err;
}
+static void l2cap_publish_rx_avail(struct l2cap_chan *chan)
+{
+ struct sock *sk = chan->data;
+ ssize_t avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc);
+ int expected_skbs, skb_overhead;
+
+ if (avail <= 0) {
+ l2cap_chan_rx_avail(chan, 0);
+ return;
+ }
+
+ if (!chan->mps) {
+ l2cap_chan_rx_avail(chan, -1);
+ return;
+ }
+
+ /* Correct available memory by estimated sk_buff overhead.
+ * This is significant due to small transfer sizes. However, accept
+ * at least one full packet if receive space is non-zero.
+ */
+ expected_skbs = DIV_ROUND_UP(avail, chan->mps);
+ skb_overhead = expected_skbs * sizeof(struct sk_buff);
+ if (skb_overhead < avail)
+ l2cap_chan_rx_avail(chan, avail - skb_overhead);
+ else
+ l2cap_chan_rx_avail(chan, -1);
+}
+
static int l2cap_sock_recvmsg(struct socket *sock, struct msghdr *msg,
size_t len, int flags)
{
else
err = bt_sock_recvmsg(sock, msg, len, flags);
- if (pi->chan->mode != L2CAP_MODE_ERTM)
+ if (pi->chan->mode != L2CAP_MODE_ERTM &&
+ pi->chan->mode != L2CAP_MODE_LE_FLOWCTL &&
+ pi->chan->mode != L2CAP_MODE_EXT_FLOWCTL)
return err;
- /* Attempt to put pending rx data in the socket buffer */
-
lock_sock(sk);
- if (!test_bit(CONN_LOCAL_BUSY, &pi->chan->conn_state))
- goto done;
+ l2cap_publish_rx_avail(pi->chan);
- if (pi->rx_busy_skb) {
- if (!__sock_queue_rcv_skb(sk, pi->rx_busy_skb))
- pi->rx_busy_skb = NULL;
- else
+ /* Attempt to put pending rx data in the socket buffer */
+ while (!list_empty(&pi->rx_busy)) {
+ struct l2cap_rx_busy *rx_busy =
+ list_first_entry(&pi->rx_busy,
+ struct l2cap_rx_busy,
+ list);
+ if (__sock_queue_rcv_skb(sk, rx_busy->skb) < 0)
goto done;
+ list_del(&rx_busy->list);
+ kfree(rx_busy);
}
/* Restore data flow when half of the receive buffer is
* available. This avoids resending large numbers of
* frames.
*/
- if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf >> 1)
+ if (test_bit(CONN_LOCAL_BUSY, &pi->chan->conn_state) &&
+ atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf >> 1)
l2cap_chan_busy(pi->chan, 0);
done:
static int l2cap_sock_recv_cb(struct l2cap_chan *chan, struct sk_buff *skb)
{
struct sock *sk = chan->data;
+ struct l2cap_pinfo *pi = l2cap_pi(sk);
int err;
lock_sock(sk);
- if (l2cap_pi(sk)->rx_busy_skb) {
+ if (chan->mode == L2CAP_MODE_ERTM && !list_empty(&pi->rx_busy)) {
err = -ENOMEM;
goto done;
}
if (chan->mode != L2CAP_MODE_ERTM &&
- chan->mode != L2CAP_MODE_STREAMING) {
+ chan->mode != L2CAP_MODE_STREAMING &&
+ chan->mode != L2CAP_MODE_LE_FLOWCTL &&
+ chan->mode != L2CAP_MODE_EXT_FLOWCTL) {
/* Even if no filter is attached, we could potentially
* get errors from security modules, etc.
*/
err = __sock_queue_rcv_skb(sk, skb);
- /* For ERTM, handle one skb that doesn't fit into the recv
+ l2cap_publish_rx_avail(chan);
+
+ /* For ERTM and LE, handle a skb that doesn't fit into the recv
* buffer. This is important to do because the data frames
* have already been acked, so the skb cannot be discarded.
*
* acked and reassembled until there is buffer space
* available.
*/
- if (err < 0 && chan->mode == L2CAP_MODE_ERTM) {
- l2cap_pi(sk)->rx_busy_skb = skb;
+ if (err < 0 &&
+ (chan->mode == L2CAP_MODE_ERTM ||
+ chan->mode == L2CAP_MODE_LE_FLOWCTL ||
+ chan->mode == L2CAP_MODE_EXT_FLOWCTL)) {
+ struct l2cap_rx_busy *rx_busy =
+ kmalloc(sizeof(*rx_busy), GFP_KERNEL);
+ if (!rx_busy) {
+ err = -ENOMEM;
+ goto done;
+ }
+ rx_busy->skb = skb;
+ list_add_tail(&rx_busy->list, &pi->rx_busy);
l2cap_chan_busy(chan, 1);
err = 0;
}
static void l2cap_sock_destruct(struct sock *sk)
{
+ struct l2cap_rx_busy *rx_busy, *next;
+
BT_DBG("sk %p", sk);
if (l2cap_pi(sk)->chan) {
l2cap_chan_put(l2cap_pi(sk)->chan);
}
- if (l2cap_pi(sk)->rx_busy_skb) {
- kfree_skb(l2cap_pi(sk)->rx_busy_skb);
- l2cap_pi(sk)->rx_busy_skb = NULL;
+ list_for_each_entry_safe(rx_busy, next, &l2cap_pi(sk)->rx_busy, list) {
+ kfree_skb(rx_busy->skb);
+ list_del(&rx_busy->list);
+ kfree(rx_busy);
}
skb_queue_purge(&sk->sk_receive_queue);
chan->data = sk;
chan->ops = &l2cap_chan_ops;
+
+ l2cap_publish_rx_avail(chan);
}
static struct proto l2cap_proto = {
sk->sk_destruct = l2cap_sock_destruct;
sk->sk_sndtimeo = L2CAP_CONN_TIMEOUT;
+ INIT_LIST_HEAD(&l2cap_pi(sk)->rx_busy);
+
chan = l2cap_chan_create();
if (!chan) {
sk_free(sk);