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About the Math Toolkit
This library is divided into three interconnected parts:

Statistical Distributions

Provides a reasonably comprehensive set of statistical distributions, upon which higher level statistical tests can be built.

The initial focus is on the central univariate distributions. Both continuous (like normal & Fisher) and discrete (like binomial &
Poisson) distributions are provided.

A comprehensive tutorial is provided, along with a series of worked examples illustrating how the library is used to conduct statist-
ical tests.

Mathematical Special Functions

Provides a small number of high quality special functions, initially these were concentrated on functions used in statistical applications
along with those in the Technical Report on C++ Library Extensions.

The function families currently implemented are the gamma, beta & erf functions along with the incomplete gamma and beta functions
(four variants of each) and all the possible inverses of these, plus digamma, various factorial functions, Bessel functions, elliptic in-
tegrals, sinus cardinals (along with their hyperbolic variants), inverse hyperbolic functions, Legrendre/Laguerre/Hermite polynomials
and various special power and logarithmic functions.

All the implementations are fully generic and support the use of arbitrary "real-number" types, including Boost.Multiprecision, although
they are optimised for use with types with known-about significand (or mantissa) sizes: typically float, double or long double.

Implementation Toolkit

The section Internal tools provides many of the tools required to implement mathematical special functions: hopefully the presence
of these will encourage other authors to contribute more special function implementations in the future.

Some tools are now considered well-tried and their signatures stable and unlikely to change.

There is a fairly comprehensive set of root finding both root-finding without derivatives and root-finding with derivatives with de-
rivative support, and function minimization using Brent's method.

Other Internal tools are currently still considered experimental: they are "exposed implementation details" whose interfaces and/or
implementations may change without notice.

There are helpers for the evaluation of infinite series, continued fractions and rational approximations. A Remez algorithm imple-
mentation allows for the locating of minimax rational approximations.

There are also (experimental) classes for the manipulation of polynomials, for testing a special function against tabulated test data,
and for the rapid generation of test data and/or data for output to an external graphing application.
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Navigation
Boost.Math documentation is provided in both HTML and PDF formats.

• Tutorials are listed in the Table of Contents and include many examples that should help you get started quickly.

• Source code of the many Examples will often be your quickest starting point.

• Index (general) includes all entries.

• Specific Indexes list only functions, class signatures, macros and typedefs.

Using the Indexes

The main index will usually help, especially if you know a word describing what it does, without needing to know the exact name
chosen for the function.

Tip

When using the index, keep in mind that clicking on an index term only takes you to the section containing the index
entry. This section may be several pages long, so you may need to use the find facility of your browser or PDF
reader to get to the index term itself.

Tip

A PDF reader usually allows a global find; this can be really useful if the term you expect to be indexed is not the
one chosen by the authors. You might find searching the PDF version and viewing the HTML version will locate
an elusive item.
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Document Conventions
This documentation aims to use of the following naming and formatting conventions.

• C++ Code is in fixed width font and is syntax-highlighted in color, for example double.

• Other code is in block teletype fixed-width font.

• Replaceable text that you will need to supply is in italics.

• If a name refers to a free function, it is specified like this: free_function(); that is, it is in code font and its name is followed
by () to indicate that it is a free function.

• If a name refers to a class template, it is specified like this: class_template<>; that is, it is in code font and its name is followed
by <> to indicate that it is a class template.

• If a name refers to a function-like macro, it is specified like this: MACRO(); that is, it is uppercase in code font and its name is
followed by () to indicate that it is a function-like macro. Object-like macros appear without the trailing ().

• Names that refer to concepts in the generic programming sense (like template parameter names) are specified in CamelCase.
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Other Hints and tips
• If you have a feature request, or if it appears that the implementation is in error, please search first in the Boost Trac.

• Trac entries may indicate that updates or corrections that solve your problem are in Boost-trunk where changes are being assembled
and tested ready for the next release. You may, at your own risk, download new versions from there.

• If you do not understand why things work the way they do, see the rationale section.

• If you do not find your idea/feature/complaint, please reach the author preferably through the Boost development list, or email
the author(s) direct.

Admonishments

Note

In addition, notes such as this one specify non-essential information that provides additional background or rationale.

Tip

These blocks contain information that you may find helpful while coding.

Important

These contain information that is imperative to understanding a concept. Failure to follow suggestions in these
blocks will probably result in undesired behavior. Read all of these you find.

Warning

Failure to heed this will lead to incorrect, and very likely undesired, results.
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Directory and File Structure
boost/math

/concepts/ Prototype defining the essential features of a RealType class (see real_concept.hpp). Most applications
will use double as the RealType (and short typedef names of distributions are reserved for this
type where possible), a few will use float or long double, but it is also possible to use higher
precision types like NTL::RR, GNU Multiple Precision Arithmetic Library, GNU MPFR library that
conform to the requirements specified by real_concept.

/constants/ Templated definition of some highly accurate math constants (in constants.hpp).

/distributions/ Distributions used in mathematics and, especially, statistics: Gaussian, Students-t, Fisher, Binomial
etc

/policies/ Policy framework, for handling user requested behaviour modifications.

/special_functions/ Math functions generally regarded as 'special', like beta, cbrt, erf, gamma, lgamma, tgamma ... (Some
of these are specified in C++, and C99/TR1, and perhaps TR2).

/tools/ Tools used by functions, like evaluating polynomials, continued fractions, root finding, precision and
limits, and by tests. Some will find application outside this package.

boost/libs

/doc/ Documentation source files in Quickbook format processed into html and pdf formats.

/examples/ Examples and demos of using math functions and distributions.

/performance/ Performance testing and tuning program.

/test/ Test files, in many .cpp files, most using Boost.Test (some with test data as .ipp files, usually generated using
NTL RR type with ample precision for the type, often for precisions suitable for up to 256-bit significand real
types).

/tools/ Programs used to generate test data. Also changes to the NTL released package to provide a few additional
(and vital) extra features.
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Namespaces
All math functions and distributions are in namespace boost::math

So, for example, the Students-t distribution template in namespace boost::math is

template <class RealType> class students_t_distribution

and can be instantiated with the help of the reserved name students_t(for RealType double)

typedef students_t_distribution<double> students_t;

student_t mydist(10);

Warning

Some distribution names are also used in std random library, so to avoid the risk of ambiguity it is better to make
explicit using declarations, for example: using boost::math::students_t_distribution

Functions not intended for use by applications are in boost::math::detail.

Functions that may have more general use, like digits (significand), max_value, min_value and epsilon are in
boost::math::tools.

Policy and configuration information is in namespace boost::math::policies.

Tip

Many code snippets assume implicit namespace(s), for example, std:: or boost::math.
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Calculation of the Type of the Result
The functions in this library are all overloaded to accept mixed floating point (or mixed integer and floating point type) arguments.
So for example:

foo(1.0, 2.0);
foo(1.0f, 2);
foo(1.0, 2L);

etc, are all valid calls, as long as "foo" is a function taking two floating-point arguments. But that leaves the question:

"Given a special function with N arguments of types T1, T2, T3 ... TN, then what type is the result?"

If all the arguments are of the same (floating point) type then the result is the same type as the arguments.

Otherwise, the type of the result is computed using the following logic:

1. Any arguments that are not template arguments are disregarded from further analysis.

2. For each type in the argument list, if that type is an integer type then it is treated as if it were of type double for the purposes of
further analysis.

3. If any of the arguments is a user-defined class type, then the result type is the first such class type that is constructible from all
of the other argument types.

4. If any of the arguments is of type long double, then the result is of type long double.

5. If any of the arguments is of type double, then the result is of type double.

6. Otherwise the result is of type float.

For example:

cyl_bessel(2, 3.0);

Returns a double result, as does:

cyl_bessel(2, 3.0f);

as in this case the integer first argument is treated as a double and takes precedence over the float second argument. To get a
float result we would need all the arguments to be of type float:

cyl_bessel_j(2.0f, 3.0f);

When one or more of the arguments is not a template argument then it doesn't effect the return type at all, for example:

sph_bessel(2, 3.0f);

returns a float, since the first argument is not a template argument and so doesn't effect the result: without this rule functions that
take explicitly integer arguments could never return float.

And for user-defined types, all of the following return an NTL::RR result:
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cyl_bessel_j(0, NTL::RR(2));

cyl_bessel_j(NTL::RR(2), 3);

cyl_bessel_j(NTL::quad_float(2), NTL::RR(3));

In the last case, quad_float is convertible to RR, but not vice-versa, so the result will be an NTL::RR. Note that this assumes that
you are using a patched NTL library.

These rules are chosen to be compatible with the behaviour of ISO/IEC 9899:1999 Programming languages - C and with the Draft
Technical Report on C++ Library Extensions, 2005-06-24, section 5.2.1, paragraph 5.
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Error Handling
Quick Reference

Handling of errors by this library is split into two orthogonal parts:

• What kind of error has been raised?

• What should be done when the error is raised?

Warning

The default error actions are to throw an exception with an informative error message. If you do not try to catch the
exception, you will not see the message!

The kinds of errors that can be raised are:

Domain Error Occurs when one or more arguments to a function are out of range.

Pole Error Occurs when the particular arguments cause the function to be evaluated at a pole with no
well defined residual value. For example if tgamma is evaluated at exactly -2, the function
approaches different limiting values depending upon whether you approach from just above
or just below -2. Hence the function has no well defined value at this point and a Pole Error
will be raised.

Overflow Error Occurs when the result is either infinite, or too large to represent in the numeric type being
returned by the function.

Underflow Error Occurs when the result is not zero, but is too small to be represented by any other value in the
type being returned by the function.

Denormalisation Error Occurs when the returned result would be a denormalised value.

Rounding Error Occurs when the argument to one of the rounding functions trunc, round and modf can not
be represented as an integer type, is outside the range of the result type.

Evaluation Error Occurs if no method of evaluation is known, or when an internal error occurred that prevented
the result from being evaluated: this should never occur, but if it does, then it's likely to be
due to an iterative method not converging fast enough.

Indeterminate Result Error Occurs when the result of a function is not defined for the values that were passed to it.

The action undertaken by each error condition is determined by the current Policy in effect. This can be changed program-wide by
setting some configuration macros, or at namespace scope, or at the call site (by specifying a specific policy in the function call).

The available actions are:

throw_on_error Throws the exception most appropriate to the error condition.

errno_on_error Sets ::errno to an appropriate value, and then returns the most appropriate result

ignore_error Ignores the error and simply the returns the most appropriate result.

user_error Calls a user-supplied error handler.

The following tables show all the permutations of errors and actions, with the default action for each error shown in bold:
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Table 1. Possible Actions for Domain Errors

BehaviourAction

Throws std::domain_errorthrow_on_error

Sets ::errno to EDOM and returns std::numeric_lim-
its<T>::quiet_NaN()

errno_on_error

Returns std::numeric_limits<T>::quiet_NaN()ignore_error

Returns the result of boost::math::policies::user_do-
main_error: this function must be defined by the user.

user_error

Table 2. Possible Actions for Pole Errors

BehaviourAction

Throws std::domain_errorthrow_on_error

Sets ::errno to EDOM and returns std::numeric_lim-
its<T>::quiet_NaN()

errno_on_error

Returns std::numeric_limits<T>::quiet_NaN()ignore_error

R e t u r n s  t h e  r e s u l t  o f
boost::math::policies::user_pole_error: this function
must be defined by the user.

user_error

Table 3. Possible Actions for Overflow Errors

BehaviourAction

Throws std::overflow_errorthrow_on_error

Sets ::errno to ERANGE and returns std::numeric_lim-
its<T>::infinity()

errno_on_error

Returns std::numeric_limits<T>::infinity()ignore_error

R e t u r n s  t h e  r e s u l t  o f
boost::math::policies::user_overflow_error: this
function must be defined by the user.

user_error
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Table 4. Possible Actions for Underflow Errors

BehaviourAction

Throws std::underflow_errorthrow_on_error

Sets ::errno to ERANGE and returns 0.errno_on_error

Returns 0ignore_error

Returns the result of boost::math::policies::user_un-
derflow_error: this function must be defined by the user.

user_error

Table 5. Possible Actions for Denorm Errors

BehaviourAction

Throws std::underflow_errorthrow_on_error

Sets ::errno to ERANGE and returns the denormalised value.errno_on_error

Returns the denormalised value.ignore_error

Returns the result of boost::math::policies::user_de-
norm_error: this function must be defined by the user.

user_error

Table 6. Possible Actions for Rounding Errors

BehaviourAction

Throws boost::math::rounding_errorthrow_on_error

Sets ::errno to ERANGE and returns the largest representable
value of the target integer type (or the most negative value if
the argument to the function was less than zero).

errno_on_error

Returns the largest representable value of the target integer
type (or the most negative value if the argument to the
function was less than zero).

ignore_error

R e t u r n s  t h e  r e s u l t  o f
boost::math::policies::user_rounding_error: this
function must be defined by the user.

user_error
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Table 7. Possible Actions for Internal Evaluation Errors

BehaviourAction

Throws boost::math::evaluation_errorthrow_on_error

Sets ::errno to EDOM and returns the closest approximation
found.

errno_on_error

Returns the closest approximation found.ignore_error

R e t u r n s  t h e  r e s u l t  o f
boost::math::policies::user_evaluation_error: this
function must be defined by the user.

user_error

Table 8. Possible Actions for Indeterminate Result Errors

BehaviourAction

Throws std::domain_errorthrow_on_error

Sets ::errno to EDOM and returns the same value as ignore_er-
ror.

errno_on_error

Returns a default result that depends on the function where
the error occurred.

ignore_error

Returns the result of boost::math::policies::user_in-
determinate_result_error: this function must be defined
by the user.

user_error

All these error conditions are in namespace boost::math::policies, made available, for example, a by namespace declaration using
namespace boost::math::policies; or individual using declarations using boost::math::policies::overflow_error;.

Rationale

The flexibility of the current implementation should be reasonably obvious: the default behaviours were chosen based on feedback
during the formal review of this library. It was felt that:

• Genuine errors should be flagged with exceptions rather than following C-compatible behaviour and setting ::errno.

• Numeric underflow and denormalised results were not considered to be fatal errors in most cases, so it was felt that these should
be ignored.

• If there is more than one error, only the first detected will be reported in the throw message.

Finding More Information

There are some pre-processor macro defines that can be used to change the policy defaults. See also the policy section.

An example is at the Policy tutorial in Changing the Policy Defaults.

Full source code of this typical example of passing a 'bad' argument (negative degrees of freedom) to Student's t distribution is in
the error handling example.

The various kind of errors are described in more detail below.
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Domain Errors

When a special function is passed an argument that is outside the range of values for which that function is defined, then the function
returns the result of:

boost::math::policies::raise_domain_error<T>(FunctionName, Message, Val, Policy);

Where T is the floating-point type passed to the function, FunctionName is the name of the function, Message is an error message
describing the problem, Val is the value that was out of range, and Policy is the current policy in use for the function that was called.

The default policy behaviour of this function is to throw a std::domain_error C++ exception. But if the Policy is to ignore the error,
or set global ::errno, then a NaN will be returned.

This behaviour is chosen to assist compatibility with the behaviour of ISO/IEC 9899:1999 Programming languages - C and with
the Draft Technical Report on C++ Library Extensions, 2005-06-24, section 5.2.1, paragraph 6:

"Each of the functions declared above shall return a NaN (Not a Number) if any argument value is a NaN, but it
shall not report a domain error. Otherwise, each of the functions declared above shall report a domain error for
just those argument values for which:

"the function description's Returns clause explicitly specifies a domain, and those arguments fall outside the specified
domain; or

"the corresponding mathematical function value has a non-zero imaginary component; or

"the corresponding mathematical function is not mathematically defined.

"Note 2: A mathematical function is mathematically defined for a given set of argument values if it is explicitly
defined for that set of argument values or if its limiting value exists and does not depend on the direction of ap-
proach."

Note that in order to support information-rich error messages when throwing exceptions, Message must contain a Boost.Format
recognised format specifier: the argument Val is inserted into the error message according to the specifier used.

For example if Message contains a "%1%" then it is replaced by the value of Val to the full precision of T, where as "%.3g" would
contain the value of Val to 3 digits. See the Boost.Format documentation for more details.

Evaluation at a pole

When a special function is passed an argument that is at a pole without a well defined residual value, then the function returns the
result of:

boost::math::policies::raise_pole_error<T>(FunctionName, Message, Val, Policy);

Where T is the floating point type passed to the function, FunctionName is the name of the function, Message is an error message
describing the problem, Val is the value of the argument that is at a pole, and Policy is the current policy in use for the function that
was called.

The default behaviour of this function is to throw a std::domain_error exception. But error handling policies can be used to change
this, for example to ignore_error and return NaN.

Note that in order to support information-rich error messages when throwing exceptions, Message must contain a Boost.Format
recognised format specifier: the argument val is inserted into the error message according to the specifier used.

For example if Message contains a "%1%" then it is replaced by the value of val to the full precision of T, where as "%.3g" would
contain the value of val to 3 digits. See the Boost.Format documentation for more details.
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Numeric Overflow

When the result of a special function is too large to fit in the argument floating-point type, then the function returns the result of:

boost::math::policies::raise_overflow_error<T>(FunctionName, Message, Policy);

Where T is the floating-point type passed to the function, FunctionName is the name of the function, Message is an error message
describing the problem, and Policy is the current policy in use for the function that was called.

The default policy for this function is that std::overflow_error C++ exception is thrown. But if, for example, an ignore_error
policy is used, then returns std::numeric_limits<T>::infinity(). In this situation if the type T doesn't support infinities,
the maximum value for the type is returned.

Numeric Underflow

If the result of a special function is known to be non-zero, but the calculated result underflows to zero, then the function returns the
result of:

boost::math::policies::raise_underflow_error<T>(FunctionName, Message, Policy);

Where T is the floating point type passed to the function, FunctionName is the name of the function, Message is an error message
describing the problem, and Policy is the current policy in use for the called function.

The default version of this function returns zero. But with another policy, like throw_on_error, throws an std::underflow_error
C++ exception.

Denormalisation Errors

If the result of a special function is a denormalised value z then the function returns the result of:

boost::math::policies::raise_denorm_error<T>(z, FunctionName, Message, Policy);

Where T is the floating point type passed to the function, FunctionName is the name of the function, Message is an error message
describing the problem, and Policy is the current policy in use for the called function.

The default version of this function returns z. But with another policy, like throw_on_error throws an std::underflow_error
C++ exception.

Evaluation Errors

When a special function calculates a result that is known to be erroneous, or where the result is incalculable then it calls:

boost::math::policies::raise_evaluation_error<T>(FunctionName, Message, Val, Policy);

Where T is the floating point type passed to the function, FunctionName is the name of the function, Message is an error message
describing the problem, Val is the erroneous value, and Policy is the current policy in use for the called function.

The default behaviour of this function is to throw a boost::math::evaluation_error.

Note that in order to support information rich error messages when throwing exceptions, Message must contain a Boost.Format re-
cognised format specifier: the argument val is inserted into the error message according to the specifier used.

For example if Message contains a "%1%" then it is replaced by the value of val to the full precision of T, where as "%.3g" would
contain the value of val to 3 digits. See the Boost.Format documentation for more details.
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Indeterminate Result Errors

When the result of a special function is indeterminate for the value that was passed to it, then the function returns the result of:

boost::math::policies::raise_overflow_error<T>(FunctionName, Message, Val, Default, Policy);

Where T is the floating-point type passed to the function, FunctionName is the name of the function, Message is an error message
describing the problem, Val is the value for which the result is indeterminate, Default is an alternative default result that must be
returned for ignore_error and errno_on_erro policies, and Policy is the current policy in use for the function that was called.

The default policy for this function is ignore_error: note that this error type is reserved for situations where the result is mathem-
atically undefined or indeterminate, but there is none the less a convention for what the result should be: for example the C99
standard specifies that the result of 00 is 1, even though the result is actually mathematically indeterminate.

Rounding Errors

When one of the rounding functions round, trunc or modf is called with an argument that has no integer representation, or is too
large to be represented in the result type then the value returned is the result of a call to:

boost::math::policies::raise_rounding_error<T>(FunctionName, Message, Val, Policy);

Where T is the floating point type passed to the function, FunctionName is the name of the function, Message is an error message
describing the problem, Val is the erroneous argument, and Policy is the current policy in use for the called function.

The default behaviour of this function is to throw a boost::math::rounding_error.

Note that in order to support information rich error messages when throwing exceptions, Message must contain a Boost.Format re-
cognised format specifier: the argument val is inserted into the error message according to the specifier used.

For example if Message contains a "%1%" then it is replaced by the value of val to the full precision of T, where as "%.3g" would
contain the value of val to 3 digits. See the Boost.Format documentation for more details.

Errors from typecasts

Many special functions evaluate their results at a higher precision than their arguments in order to ensure full machine precision in
the result: for example, a function passed a float argument may evaluate its result using double precision internally. Many of the errors
listed above may therefore occur not during evaluation, but when converting the result to the narrower result type. The function:

template <class T, class Policy, class U>
T checked_narrowing_cast(U const& val, const char* function);

Is used to perform these conversions, and will call the error handlers listed above on overflow, underflow or denormalisation.
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Compilers
This section contains some information about how various compilers work with this library. It is not comprehensive and updated
experiences are always welcome. Some effort has been made to suppress unhelpful warnings but it is difficult to achieve this on all
systems.
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Table 9. Supported/Tested Compilers

NotesHas long double supportCompilerPlatform

All tests OK.YesMSVC 7.1 and laterWindows

We aim to keep our headers
warning free at level 4 with
this compiler.

All tests OK.YesIntel 8.1 and laterWindows

We aim to keep our headers
warning free at level 4 with
this compiler. However, The
tests cases tend to generate a
lot of warnings relating to nu-
meric underflow of the test
data: these are harmless.

All tests OK.YesGNU Mingw32 C++Windows

We aim to keep our headers
warning free with -Wall with
this compiler.

All tests OK.NoGNU Cygwin C++Windows

We aim to keep our headers
warning free with -Wall with
this compiler.

Long double support has been
disabled because there are no
native long double C std lib-
rary functions available.

We have only partial compat-
ability with this compiler:

NoBorland C++ 5.8.2 (Developer
studio 2006)

Windows

Long double support has been
disabled because the native
long double C standard library
functions really only forward
to the double versions. This
can result in unpredictable be-
haviour when using the long
double overloads: for example
sqrtl applied to a finite
value, can result in an infinite
result.

Some functions still fail to
compile, there are no known
workarounds at present.

Spot examples OK. Expect all
tests to compile and run OK.

YesClang 3.1Windows 7/Netbeans 7.2
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NotesHas long double supportCompilerPlatform

All tests OK.

We aim to keep our headers
warning free with -Wall with
this compiler.

YesGNU C++ 3.4 and laterLinux

All tests OK.YesClang 3.2Linux

All tests OK.

We aim to keep our headers
warning free with -Wall with
this compiler. However, The
tests cases tend to generate a
lot of warnings relating to nu-
meric underflow of the test
data: these are harmless.

YesIntel C++ 10.0 and laterLinux

All tests OK.

Long double support has been
disabled with these compiler
releases because calling the
standard library long double
math functions can result in a
segfault. The issue is Linux
distribution and glibc version
specific and is Intel bug report
#409291. Fully up to date re-
leases of Intel 9.1 (post version
l_cc_c_9.1.046) shouldn't have
this problem. If you need long
double support with this com-
piler, then comment out the
d e fi n e  o f
BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNC-
TIONS at line 55 of
boost/math/tools/config.hpp.

We aim to keep our headers
warning free with -Wall with
this compiler. However, The
tests cases tend to generate a
lot of warnings relating to nu-
meric underflow of the test
data: these are harmless.

NoIntel C++ 8.1 and 9.1Linux

Some tests involving conceptu-
al checks fail to build, other-
wise there appear to be no is-
sues.

YesQLogic PathScale 3.0Linux

Some tests involving function
overload resolution fail to
build, these issues should be
rairly encountered in practice.

YesSun Studio 12Linux
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NotesHas long double supportCompilerPlatform

Some tests involving function
overload resolution fail to
build, these issues should be
rairly encountered in practice.

YesSun Studio 12Solaris

All tests OK.

We aim to keep our headers
warning free with -Wall with
this compiler.

YesGNU C++ 4.xSolaris

All tests OK.YesCompaq C++ 7.1HP Tru64

All tests OK.

Unfortunately this compiler
emits quite a few warnings
from libraries upon which we
depend (TR1, Array etc).

YesHP aCC 6.xHP-UX Itanium

All tests OK.NoGNU C++ 3.4HP-UX PA-RISC

All tests OK.YesDarwin/GNU C++ 4.xApple Mac OS X, Intel

All tests OK.

Long double support has been
disabled on this platform due
to the rather strange nature of
Darwin's 106-bit long double
implementation. It should be
possible to make this work if
someone is prepared to offer
assistance.

NoDarwin/GNU C++ 4.xApple Mac OS X, PowerPC

All tests expected to be OK.YesClang 3.2Apple Mac OS X,

All tests pass except for our
fpclassify tests which fail due
to a bug in std::numer-
ic_limits, the bug effects
the test code, not fpclassify it-
self. The IBM compiler group
are aware of the problem.

YesIBM xlc 5.3IBM AIX

Table 10. Unsupported Compilers

CompilerPlatform

Borland C++ 5.9.2 (Borland Developer Studio 2007)Windows

MSVC 6 and 7Windows

If your compiler or platform is not listed above, please try running the regression tests: cd into boost-root/libs/math/test and do a:
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bjam mytoolset

where "mytoolset" is the name of the Boost.Build toolset used for your compiler. The chances are that many of the accuracy tests
will fail at this stage - don't panic - the default acceptable error tolerances are quite tight, especially for long double types with an
extended exponent range (these cause more extreme test cases to be executed for some functions). You will need to cast an eye over
the output from the failing tests and make a judgement as to whether the error rates are acceptable or not.
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Configuration Macros
Almost all configuration details are set up automatically by <boost\math\tools\config.hpp>.

In normal use, only policy configuration macros are likely to be used. See policy reference.

For reference, information on Boost.Math macros used internally are described briefly below.
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Table 11. Boost.Math Macros

NotesMACRO

Do not produce or use long double functions: this macro gets
set when the platform's long double or standard library long
double support is absent or buggy.

BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS

When set the numeric constants support the __float128 data
type with constants having the Q suffix.

BOOST_MATH_USE_FLOAT128

When set the numeric constants do not use the __float128
data type even if the compiler appears to support it.

BOOST_MATH_DISABLE_FLOAT128

Do not try to use real concept tests (hardware or software does
not support real_concept type).

BOOST_MATH_NO_REAL_CONCEPT_TESTS

Controls FP hardware exceptions - our tests don't support hard-
ware exceptions on MSVC. May get set to something like:
_control87(MCW_EM,MCW_EM).

BOOST_MATH_CONTROL_FP

This macro is used by our test cases, it is set when an assignment
of a function template to a function pointer requires explicit
template arguments to be provided on the function name.

BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS

Use C99 math functions.BOOST_MATH_USE_C99

define if no native (or buggy) fpclassify(long double)

even though the other C99 functions are present.
BOOST_NO_NATIVE_LONG_DOUBLE_FP_CLASSIFY

Helper macro used in our test cases to set underflowing constants
set to zero if this would cause compiler issues.

BOOST_MATH_SMALL_CONSTANT(x)

Set if constants too large for a float, will cause "bad" values to
be stored in the data, rather than infinity or a suitably large value.

BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS

Provides using statements for many std:: (abs to sqrt) and
boost::math (rounds, modf) functions. This allows these func-

BOOST_MATH_STD_USING

tions to be called unqualified so that if argument-dependent
Argument Dependent Lookup fails to find a suitable overload,
then the std:: versions will also be considered.

Used at the entrypoint to each special function to reset all FPU
exception flags prior to internal calculations, and then merge

BOOST_FPU_EXCEPTION_GUARD

the old and new exception flags on function exit. Used as a
workaround on platforms or hardware that behave strangely if
any FPU exception flags are set when calling standard library
functions.

Define to output diagnostics for math functions. This is rather
'global' to Boost.Math and so coarse-grained that it will probably

BOOST_MATH_INSTRUMENT

produce copious output! (Especially because full precision values
are output). Designed primarily for internal use and development.

Output selected named variable, for example
BOOST_MATH_INSTRUMENT_CODE("guess = " << guess);
Used by BOOST_MATH_INSTRUMENT

BOOST_MATH_INSTRUMENT_CODE(x)
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NotesMACRO

Output selected variable, for example BOOST_MATH_INSTRU-
MENT_VARIABLE(result); Used by BOOST_MATH_INSTRU-
MENT

BOOST_MATH_INSTRUMENT_VARIABLE(name)

Output the state of the FPU's control flags.BOOST_MATH_INSTRUMENT_FPU

Table 12. Boost.Math Tuning

NotesMacros for Tuning performance options for specific com-
pilers

See the performance tuning section.BOOST_MATH_POLY_METHOD

See the performance tuning section.BOOST_MATH_RATIONAL_METHOD

See the performance tuning section.BOOST_MATH_MAX_POLY_ORDER

See the performance tuning section.BOOST_MATH_INT_TABLE_TYPE

Helper macro for appending the correct suffix to integer con-
stants which may actually be stored as reals depending on the
value of BOOST_MATH_INT_TABLE_TYPE.

BOOST_MATH_INT_VALUE_SUFFIX
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Policies
Policies are a powerful fine-grain mechanism that allow you to customise the behaviour of this library according to your needs.
There is more information available in the policy tutorial and the policy reference.

Generally speaking, unless you find that the default policy behaviour when encountering 'bad' argument values does not meet your
needs, you should not need to worry about policies.

Policies are a compile-time mechanism that allow you to change error-handling or calculation precision either program wide, or at
the call site.

Although the policy mechanism itself is rather complicated, in practice it is easy to use, and very flexible.

Using policies you can control:

• How results from 'bad' arguments are handled, including those that cannot be fully evaluated.

• How accuracy is controlled by internal promotion to use more precise types.

• What working precision should be used to calculate results.

• What to do when a mathematically undefined function is used: Should this raise a run-time or compile-time error?

• Whether discrete functions, like the binomial, should return real or only integral values, and how they are rounded.

• How many iterations a special function is permitted to perform in a series evaluation or root finding algorithm before it gives up
and raises an evaluation_error.

You can control policies:

• Using macros to change any default policy: the is the prefered method for installation wide policies.

• At your chosen namespace scope for distributions and/or functions: this is the prefered method for project, namespace, or translation
unit scope policies.

• In an ad-hoc manner by passing a specific policy to a special function, or to a statistical distribution.
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Thread Safety
The library is fully thread safe and re-entrant for all functions regards of the data type they are instantiated on. Thread safety limitations
relating to user defined types present in previous releases (prior to 1.50.0) have been removed.
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Performance
By and large the performance of this library should be acceptable for most needs. However, you should note that this library's primary
emphasis is on accuracy and numerical stability, and not speed.

In terms of the algorithms used, this library aims to use the same "best of breed" algorithms as many other libraries: the principle
difference is that this library is implemented in C++ - taking advantage of all the abstraction mechanisms that C++ offers - where
as most traditional numeric libraries are implemented in C or FORTRAN. Traditionally languages such as C or FORTRAN are
perceived as easier to optimise than more complex languages like C++, so in a sense this library provides a good test of current
compiler technology, and the "abstraction penalty" - if any - of C++ compared to other languages.

The two most important things you can do to ensure the best performance from this library are:

1. Turn on your compilers optimisations: the difference between "release" and "debug" builds can easily be a factor of 20.

2. Pick your compiler carefully: performance differences of up to 8 fold have been found between some Windows compilers for
example.

The performance section contains more information on the performance of this library, what you can do to fine tune it, and how this
library compares to some other open source alternatives.
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If and How to Build a Boost.Math Library, and its Ex-
amples and Tests
Building a Library (shared, dynamic .dll or static .lib)

The first thing you need to ask yourself is "Do I need to build anything at all?" as the bulk of this library is header only: meaning
you can use it just by #including the necessary header(s).

For most simple uses, including a header (or few) is best for compile time and program size.

Refer to C99 and C++ TR1 C-style Functions for pros and cons of using the TR1 components as opposed to the header only ones.

The only time you need to build the library is if you want to use the extern "C" functions declared in <boost/math/tr1.hpp>.
To build this using Boost.Build, from a commandline boost-root directory issue a command like:

bjam toolset=gcc --with-math install

that will do the job on Linux, while:

bjam toolset=msvc --with-math --build-type=complete stage

will work better on Windows (leaving libraries built in sub-folder /stage below your Boost root directory). Either way you should
consult the getting started guide for more information.

You can also build the libraries from your favourite IDE or command line tool: each extern "C" function declared in
<boost/math/tr1.hpp> has its own source file with the same name in libs/math/src/tr1. Just select the sources corresponding
to the functions you are using and build them into a library, or else add them directly to your project. Note that the directory
libs/math/src/tr1 will need to be in your compiler's #include path as well as the boost-root directory (MSVC Tools, Options,
Projects and Solutions, VC++ Directories, Include files).

Note

If you are using a Windows compiler that supports auto-linking and you have built the sources yourself (or added
them directly to your project) then you will need to prevent <boost/math/tr1.hpp> from trying to auto-link to
the binaries that Boost.Build generates. You can do this by defining either BOOST_MATH_NO_LIB or
BOOST_ALL_NO_LIB at project level (so the defines get passed to each compiler invocation).

Optionally the sources in libs/math/src/tr1 have support for using libs/math/src/tr1/pch.hpp as a precompiled header
if your compiler supports precompiled headers. Note that normally this header is a do-nothing include: to activate the header so that
it #includes everything required by all the sources you will need to define BOOST_BUILD_PCH_ENABLED on the command line,
both when building the pre-compiled header and when building the sources. Boost.Build will do this automatically when appropriate.

Building the Examples

The examples are all located in libs/math/example, they can all be built without reference to any external libraries, either with
Boost.Build using the supplied Jamfile, or from your compiler's command line. The only requirement is that the Boost headers are
in your compilers #include search path.

Building the Tests

The tests are located in libs/math/test and are best built using Boost.Build and the supplied Jamfile. If you plan to build them
separately from your favourite IDE then you will need to add libs/math/test to the list of your compiler's search paths.

You will also need to build and link to the Boost.Regex library for many of the tests: this can built from the command line by following
the getting started guide, using a command such as:
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bjam toolset=gcc --with-regex install

or

bjam toolset=msvc --with-regex --build-type=complete stage

depending on whether you are on Linux or Windows.

Many of the tests have optional precompiled header support using the header libs/math/test/pch.hpp. Note that normally this
header is a do-nothing include: to activate the header so that it #includes everything required by all the sources you will need to
define BOOST_BUILD_PCH_ENABLED on the command line, both when building the pre-compiled header and when building
the sources. Boost.Build will do this automatically when appropriate.
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History and What's New
Currently open bug reports can be viewed here.

All bug reports including closed ones can be viewed here.

Math-2.2.1

Patch release for Boost-1.58:

• Minor patch for Haiku support.

• Fix the decimal digit count for 128-bit floating point types.

• Fix a few documentation typos.

Math-2.2.0 (boost-1.58.0)

• Added two new special functions - trigamma and polygamma.

• Fixed namespace scope constants so they are constexpr on conforming compilers, see https://svn.boost.org/trac/boost/ticket/10901.

• Fixed various cases of spurious under/overflow in the incomplete beta and gamma functions, plus the elliptic integrals, with thanks
to Rocco Romeo.

• Fix 3-arg legendre_p and legendre_q functions to not call the policy based overload if the final argument is not actually a policy.

• Cleaned up some dead code in the incomplete beta function, see #10985.

• Fixed extreme-value pdf for large valued inputs, see #10938.

• Large update to the Elliptic integral code to use Carlson's latest algorithms - these should be more stable, more accurate and slightly
faster than before. Also added support for Carlson's RG integral.

• Added ellint_d, jacobi_zeta and heuman_lambda elliptic integrals.

• Switched documentation to use SVG rather than PNG graphs and equations - browsers seem to have finally caught up!

Math-2.1.0 (boost-1.57.0)

• Added Hyperexponential Distribution.

• Fix some spurious overflows in the incomplete gamma functions (with thanks to Rocco Romeo).

• Fix bug in derivative of incomplete beta when a = b = 0.5 - this also effects several non-central distributions, see 10480.

• Fixed some corner cases in round.

• Don't support 80-bit floats in cstdfloat.hpp if standard library support is broken.

Math-2.0.0 (Boost-1.56.0)

• Breaking change: moved a number of non-core headers that are predominantly used for internal maintenance into
libs/math/include_private. The headers effected are boost/math/tools/test_data.hpp, boost/math/tools/re-
mez.hpp, boost/math/constants/generate.hpp, boost/math/tools/solve.hpp, boost/math/tools/test.hpp.
You can continue to use these headers by adding libs/math/include_private to your compiler's include path.

• Breaking change: A number of distributions and special functions were returning the maximum finite value rather than raising
an overflow_error, this has now been fixed, which means these functions now behave as documented. However, since the default
behavior on raising an overflow_error is to throw a std::overflow_error exception, applications which have come to reply
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rely on these functions not throwing may experience exceptions where they did not before. The special functions involved are
gamma_p_inva, gamma_q_inva, ibeta_inva, ibetac_inva, ibeta_invb, ibetac_invb, gamma_p_inv, gamma_q_inv. The distributions
involved are Pareto Distribution, Beta Distribution, Geometric Distribution, Negative Binomial Distribution, Binomial Distribution,
Chi Squared Distribution, Gamma Distribution, Inverse chi squared Distribution, Inverse Gamma Distribution. See #10111.

• Fix round and trunc functions so they can be used with integer arguments, see #10066.

• Fix Halley iteration to handle zero derivative (with non-zero second derivative), see #10046.

Math-1.9.1

• Fix Geometric distribution use of Policies, see #9833.

• Fix corner cases in the negative binomial distribution, see #9834.

• Fix compilation failures on Mac OS.

Math-1.9.0

• Changed version number to new Boost.Math specific version now that we're in the modular Boost world.

• Added Bernoulli numbers, changed arbitrary precision tgamma/lgamma to use Sterling's approximation (from Nikhar Agrawal).

• Added first derivatives of the Bessel functions: cyl_bessel_j_prime, cyl_neumann_prime, cyl_bessel_i_prime, cyl_bessel_k_prime,
sph_bessel_prime and sph_neumann_prime (from Anton Bikineev).

• Fixed buggy Student's t example code, along with docs for testing sample means for equivalence.

• Documented max_iter parameter in root finding code better, see #9225.

• Add option to explicitly enable/disable use of __float128 in constants code, see #9240.

• Cleaned up handling of negative values in Bessel I0 and I1 code (removed dead code), see #9512.

• Fixed handling of very small values passed to tgamma and lgamma so they don't generate spurious overflows (thanks to Rocco
Romeo).

• #9672 PDF and CDF of a Laplace distribution throwing domain_error Random variate can now be infinite.

• Fixed several corner cases in rising_factorial, falling_factorial and tgamma_delta_ratio with thanks to Rocco Romeo.

• Fixed several corner cases in rising_factorial, falling_factorial and tgamma_delta_ratio (thanks to Rocco Romeo).

• Removed constant pow23_four_minus_pi  whose value did not match the name (and was unused by Boost.Math), see #9712.

Boost-1.55

• Suppress numerous warnings (mostly from GCC-4.8 and MSVC) #8384, #8855, #9107, #9109..

• Fixed PGI compilation issue #8333.

• Fixed PGI constant value initialization issue that caused erf to generate incorrect results #8621.

• Prevent macro expansion of some C99 macros that are also C++ functions #8732 and #8733..

• Fixed Student's T distribution to behave correctly with huge degrees of freedom (larger than the largest representable integer)
#8837.

• Make some core functions usable with long double even when the platform has no standard library long double support
#8940.
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• Fix error handling of distributions to catch invalid scale and location parameters when the random variable is infinite #9042 and
#9126.

• Add workaround for broken <tuple> in Intel C++ 14 #9087.

• Improve consistency of argument reduction in the elliptic integrals #9104.

• Fix bug in inverse incomplete beta that results in cancellation errors when the beta function is really an arcsine or Student's T
distribution.

• Fix issue in Bessel I and K function continued fractions that causes spurious over/underflow.

• Add improvement to non-central chi squared distribution quantile due to Thomas Luu.

Boost-1.54

• Major reorganization to incorporate other Boost.Math like Integer Utilities Integer Utilities (Greatest Common Divisor and Least
Common Multiple), quaternions and octonions. Making new chapter headings.

• Added many references to Boost.Multiprecision and cpp_dec_float_50 as an example of a User-defined Type (UDT).

• Added Clang to list of supported compilers.

• Fixed constants to use a thread-safe cache of computed values when used at arbitrary precision.

• Added finding zeros of Bessel functions cyl_bessel_j_zero, cyl_neumann_zero, airy_ai_zero and airy_bi_zero(by
Christopher Kormanyos).

• More accuracy improvements to the Bessel J and Y functions from Rocco Romeo.

• Fixed nasty cyclic dependency bug that caused some headers to not compile #7999.

• Fixed bug in tgamma that caused spurious overflow for arguments between 142.5 and 143.

• Fixed bug in raise_rounding_error that caused it to return an incorrect result when throwing an exception is turned off #7905.

• Added minimal __float128 support.

• Fixed bug in edge-cases of poisson quantile #8308.

• Adjusted heuristics used in Halley iteration to cope with inverting the incomplete beta in tricky regions where the derivative is
flatlining. Example is computing the quantile of the Fisher F distribution for probabilities smaller than machine epsilon. See
ticket #8314.

Boost-1.53

• Fixed issues #7325, #7415 and #7416, #7183, #7649, #7694, #4445, #7492, #7891, #7429.

• Fixed mistake in calculating pooled standard deviation in two-sample students t example #7402.

• Improve complex acos/asin/atan, see #7290, #7291.

• Improve accuracy in some corner cases of cyl_bessel_j and gamma_p/gamma_q thanks to suggestions from Rocco Romeo.

• Improve accuracy of Bessel J and Y for integer orders thanks to suggestions from Rocco Romeo.

Boost-1.52

• Corrected moments for small degrees of freedom #7177 (reported by Thomas Mang).

• Added Airy functions and Jacobi Elliptic functions.
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• Corrected failure to detect bad parameters in many distributions #6934 (reported by Florian Schoppmann) by adding a function
check_out_of_range to test many possible bad parameters. This test revealed several distributions where the checks for bad para-
meters were ineffective, and these have been rectified.

• Fixed issue in Hankel functions that causes incorrect values to be returned for x < 0 and ν odd, see #7135.

• Fixed issues #6517, #6362, #7053, #2693, #6937, #7099.

• Permitted infinite degrees of freedom #7259 implemented using the normal distribution (requested by Thomas Mang).

• Much enhanced accuracy for large degrees of freedom ν and/or large non-centrality δ by switching to use the Students t distribution
(or Normal distribution for infinite degrees of freedom) centered at delta, when δ / (4 * ν) < epsilon for the floating-point type in
use. #7259. It was found that the incomplete beta was suffering from serious cancellation errors when degrees of freedom was
very large. (That has now been fixed in our code, but any code based on Didonato and Morris's original papers (probably every
implementation out there actually) will have the same issue).

Boost-1.51

See Boost-1.52 - some items were added but not listed in time for the release.

Boost-1.50

• Promoted math constants to be 1st class citizens, including convenient access to the most widely used built-in float, double, long
double via three namespaces.

• Added the Owen's T function and Skew Normal distribution written by Benjamin Sobotta: see Owens T and skew_normal_distrib.

• Added Hankel functions cyl_hankel_1, cyl_hankel_2, sph_hankel_1 and sph_hankel_2.

• Corrected issue #6627 nonfinite_num_put formatting of 0.0 is incorrect based on a patch submitted by K R Walker.

• Changed constant initialization mechanism so that it is thread safe even for user-defined types, also so that user defined types get
the full precision of the constant, even when long double does not. So for example 128-bit rational approximations will work
with UDT's and do the right thing, even though long double may be only 64 or 80 bits.

• Fixed issue in bessel_jy which causes Y8.5(4π) to yield a NaN.

Boost-1.49

• Deprecated wrongly named twothirds math constant in favour of two_thirds (with underscore separator). (issue #6199).

• Refactored test data and some special function code to improve support for arbitary precision and/or expression-template-enabled
types.

• Added new faster zeta function evaluation method.

Fixed issues:

• Corrected CDF complement for Laplace distribution (issue #6151).

• Corrected branch cuts on the complex inverse trig functions, to handle signed zeros (issue #6171).

• Fixed bug in bessel_yn which caused incorrect overflow errors to be raised for negative n (issue #6367).

• Also fixed minor/cosmetic/configuration issues #6120, #6191, #5982, #6130, #6234, #6307, #6192.

Boost-1.48

• Added new series evaluation methods to the cyclic Bessel I, J, K and Y functions. Also taken great care to avoid spurious over
and underflow of these functions. Fixes issue #5560
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• Added an example of using Inverse Chi-Squared distribution for Bayesian statistics, provided by Thomas Mang.

• Added tests to use improved version of lexical_cast which handles C99 nonfinites without using globale facets.

• Corrected wrong out-of-bound uniform distribution CDF complement values #5733.

• Enabled long double support on OpenBSD (issue #6014).

• Changed nextafter and related functions to behave in the same way as other implementations - so that nextafter(+INF, 0) is a finite
value (issue #5832).

• Changed tuple include configuration to fix issue when using in conjunction with Boost.Tr1 (issue #5934).

• Changed class eps_tolerance to behave correctly when both ends of the range are zero (issue #6001).

• Fixed missing include guards on prime.hpp (issue #5927).

• Removed unused/undocumented constants from constants.hpp (issue #5982).

• Fixed missing std:: prefix in nonfinite_num_facets.hpp (issue #5914).

• Minor patches for Cray compiler compatibility.

Boost-1.47

• Added changesign function to sign.hpp to facilitate addition of nonfinite facets.

• Addition of nonfinite facets from Johan Rade, with tests, examples of use for C99 format infinity and NaN, and documentation.

• Added tests and documentation of changesign from Johan Rade.

Boost-1.46.1

• Fixed issues #5095, #5113.

Boost-1.46.0

• Added Wald, Inverse Gaussian and geometric distributions.

• Added information about configuration macros.

• Added support for mpreal as a real-numbered type.

Boost-1.45.0

• Added warnings about potential ambiguity with std random library in distribution and function names.

• Added inverse gamma distribution and inverse chi_square and scaled inverse chi_square.

• Editorial revision of documentation, and added FAQ.

Boost-1.44.0

• Fixed incorrect range and support for Rayleigh distribution.

• Fixed numerical error in the quantile of the Student's T distribution: the function was returning garbage values for non-integer
degrees of freedom between 2 and 3.

Boost-1.41.0

• Significantly improved performance for the incomplete gamma function and its inverse.
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Boost-1.40.0

• Added support for MPFR as a bignum type.

• Added some full specializations of the policy classes to reduce compile times.

• Added logistic and hypergeometric distributions, from Gautam Sewani's Google Summer of Code project.

• Added Laplace distribution submitted by Thijs van den Berg.

• Updated performance test code to include new distributions, and improved the performance of the non-central distributions.

• Added SSE2 optimised Lanczos approximation code, from Gautam Sewani's Google Summer of Code project.

• Fixed bug in cyl_bessel_i that used an incorrect approximation for ν = 0.5, also effects the non-central Chi Square Distribution
when ν = 3, see bug report #2877.

• Fixed minor bugs #2873.

Boost-1.38.0

• Added Johan Råde's optimised floating point classification routines.

• Fixed code so that it compiles in GCC's -pedantic mode (bug report #1451).

Boost-1.37.0

• Improved accuracy and testing of the inverse hypergeometric functions.

Boost-1.36.0

• Added Noncentral Chi Squared Distribution.

• Added Noncentral Beta Distribution.

• Added Noncentral F Distribution.

• Added Noncentral T Distribution.

• Added Exponential Integral Functions.

• Added Zeta Function.

• Added Rounding and Truncation functions.

• Added Compile time powers of runtime bases.

• Added SSE2 optimizations for Lanczos evaluation.

Boost-1.35.0: Post Review First Official Release

• Added Policy based framework that allows fine grained control over function behaviour.

• Breaking change: Changed default behaviour for domain, pole and overflow errors to throw an exception (based on review
feedback), this behaviour can be customised using Policy's.

• Breaking change: Changed exception thrown when an internal evaluation error occurs to boost::math::evaluation_error.

• Breaking change: Changed discrete quantiles to return an integer result: this is anything up to 20 times faster than finding the
true root, this behaviour can be customised using Policy's.
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• Polynomial/rational function evaluation is now customisable and hopefully faster than before.

• Added performance test program.

Milestone 4: Second Review Candidate (1st March 2007)

• Moved Xiaogang Zhang's Bessel Functions code into the library, and brought them into line with the rest of the code.

• Added C# "Distribution Explorer" demo application.

Milestone 3: First Review Candidate (31st Dec 2006)

• Implemented the main probability distribution and density functions.

• Implemented digamma.

• Added more factorial functions.

• Implemented the Hermite, Legendre and Laguerre polynomials plus the spherical harmonic functions from TR1.

• Moved Xiaogang Zhang's elliptic integral code into the library, and brought them into line with the rest of the code.

• Moved Hubert Holin's existing Boost.Math special functions into this library and brought them into line with the rest of the code.

Milestone 2: Released September 10th 2006

• Implement preview release of the statistical distributions.

• Added statistical distributions tutorial.

• Implemented root finding algorithms.

• Implemented the inverses of the incomplete gamma and beta functions.

• Rewrite erf/erfc as rational approximations (valid to 128-bit precision).

• Integrated the statistical results generated from the test data with Boost.Test: uses a database of expected results, indexed by test,
floating point type, platform, and compiler.

• Improved lgamma near 1 and 2 (rational approximations).

• Improved erf/erfc inverses (rational approximations).

• Implemented Rational function generation (the Remez method).

Milestone 1: Released March 31st 2006

• Implement gamma/beta/erf functions along with their incomplete counterparts.

• Generate high quality test data, against which future improvements can be judged.

• Provide tools for the evaluation of infinite series, continued fractions, and rational functions.

• Provide tools for testing against tabulated test data, and collecting statistics on error rates.

• Provide sufficient docs for people to be able to find their way around the library.

SVN Revisions:

Sandbox and trunk last synchonised at revision: .
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C99 and C++ TR1 C-style Functions
Many of the special functions included in this library are also a part of the either the C99 Standard ISO/IEC 9899:1999 or the
Technical Report on C++ Library Extensions. Therefore this library includes a thin wrapper header boost/math/tr1.hpp that
provides compatibility with these two standards.

There are various pros and cons to using the library in this way:

Pros:

• The header to include is lightweight (i.e. fast to compile).

• The functions have extern "C" linkage, and so are usable from other languages (not just C and C++).

• C99 and C++ TR1 Standard compatibility.

Cons:

• You will need to compile and link to the external Boost.Math libraries.

• Limited to support for the types, float, double and long double.

• Error handling is handled via setting ::errno and returning NaN's and infinities: this may be less flexible than an C++ exception
based approach.

Note

The separate libraries are required only if you choose to use boost/math/tr1.hpp rather than some other Boost.Math
header, the rest of Boost.Math remains header-only.

The separate libraries required in order to use tr1.hpp can be compiled using bjam from within the libs/math/build directory, or from
the Boost root directory using the usual Boost-wide install procedure. Alternatively the source files are located in libs/math/src and
each have the same name as the function they implement. The various libraries are named as follows:

FunctionsTypeName

C99 Functionsfloatboost_math_c99f-<suffix>

C99 Functionsdoubleboost_math_c99-<suffix>

C99 Functionslong doubleboost_math_c99l-<suffix>

TR1 Functionsfloatboost_math_tr1f-<suffix>

TR1 Functionsdoubleboost_math_tr1-<suffix>

TR1 Functionslong doubleboost_math_tr1l-<suffix>

Where <suffix> encodes the compiler and build options used to build the libraries: for example "libboost_math_tr1-vc80-mt-gd.lib"
would be the statically linked TR1 library to use with Visual C++ 8.0, in multithreading debug mode, with the DLL VC++ runtime,
where as "boost_math_tr1-vc80-mt.lib" would be import library for the TR1 DLL to be used with Visual C++ 8.0 with the release
multithreaded DLL VC++ runtime. Refer to the getting started guide for a full explanation of the <suffix> meanings.
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Note

Visual C++ users will typically have the correct library variant to link against selected for them by boost/math/tr1.hpp
based on your compiler settings.

Users will need to define BOOST_MATH_TR1_DYN_LINK when building their code if they want to link against
the DLL versions of these libraries rather than the static versions.

Users can disable auto-linking by defining BOOST_MATH_TR1_NO_LIB when building: this is typically only
used when linking against a customised build of the libraries.

Note

Linux and Unix users will generally only have one variant of these libraries installed, and can generally just link
against -lboost_math_tr1 etc.

Usage Recomendations

This library now presents the user with a choice:

• To include the header only versions of the functions and have an easier time linking, but a longer compile time.

• To include the TR1 headers and link against an external library.

Which option you choose depends largely on how you prefer to work and how your system is set up.

For example a casual user who just needs the acosh function, would probably be better off including <boost/math/special_func-
tions/acosh.hpp> and using boost::math::acosh(x) in their code.

However, for large scale software development where compile times are significant, and where the Boost libraries are already built
and installed on the system, then including <boost/math/tr1.hpp> and using boost::math::tr1::acosh(x) will speed up
compile times, reduce object files sizes (since there are no templates being instantiated any more), and also speed up debugging
runtimes - since the externally compiled libraries can be compiler optimised, rather than built using full settings - the difference in
performance between release and debug builds can be as much as 20 times, so for complex applications this can be a big win.

Supported C99 Functions

See also the quick reference guide for these functions.
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namespace boost{ namespace math{ namespace tr1{ extern "C"{

typedef unspecified float_t;
typedef unspecified double_t;

double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

double erf(double x);
float erff(float x);
long double erfl(long double x);

double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);

double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);

double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);

double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);

double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);

long lround(double x);
long lroundf(float x);
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long lroundl(long double x);

double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

double round(double x);
float roundf(float x);
long double roundl(long double x);

double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

double trunc(double x);
float truncf(float x);
long double truncl(long double x);

}}}} // namespaces

Supported TR1 Functions

See also the quick reference guide for these functions.
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namespace boost{ namespace math{ namespace tr1{ extern "C"{

// [5.2.1.1] associated Laguerre polynomials:
double assoc_laguerre(unsigned n, unsigned m, double x);
float assoc_laguerref(unsigned n, unsigned m, float x);
long double assoc_laguerrel(unsigned n, unsigned m, long double x);

// [5.2.1.2] associated Legendre functions:
double assoc_legendre(unsigned l, unsigned m, double x);
float assoc_legendref(unsigned l, unsigned m, float x);
long double assoc_legendrel(unsigned l, unsigned m, long double x);

// [5.2.1.3] beta function:
double beta(double x, double y);
float betaf(float x, float y);
long double betal(long double x, long double y);

// [5.2.1.4] (complete) elliptic integral of the first kind:
double comp_ellint_1(double k);
float comp_ellint_1f(float k);
long double comp_ellint_1l(long double k);

// [5.2.1.5] (complete) elliptic integral of the second kind:
double comp_ellint_2(double k);
float comp_ellint_2f(float k);
long double comp_ellint_2l(long double k);

// [5.2.1.6] (complete) elliptic integral of the third kind:
double comp_ellint_3(double k, double nu);
float comp_ellint_3f(float k, float nu);
long double comp_ellint_3l(long double k, long double nu);

// [5.2.1.8] regular modified cylindrical Bessel functions:
double cyl_bessel_i(double nu, double x);
float cyl_bessel_if(float nu, float x);
long double cyl_bessel_il(long double nu, long double x);

// [5.2.1.9] cylindrical Bessel functions (of the first kind):
double cyl_bessel_j(double nu, double x);
float cyl_bessel_jf(float nu, float x);
long double cyl_bessel_jl(long double nu, long double x);

// [5.2.1.10] irregular modified cylindrical Bessel functions:
double cyl_bessel_k(double nu, double x);
float cyl_bessel_kf(float nu, float x);
long double cyl_bessel_kl(long double nu, long double x);

// [5.2.1.11] cylindrical Neumann functions;
// cylindrical Bessel functions (of the second kind):
double cyl_neumann(double nu, double x);
float cyl_neumannf(float nu, float x);
long double cyl_neumannl(long double nu, long double x);

// [5.2.1.12] (incomplete) elliptic integral of the first kind:
double ellint_1(double k, double phi);
float ellint_1f(float k, float phi);
long double ellint_1l(long double k, long double phi);

// [5.2.1.13] (incomplete) elliptic integral of the second kind:
double ellint_2(double k, double phi);
float ellint_2f(float k, float phi);
long double ellint_2l(long double k, long double phi);
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// [5.2.1.14] (incomplete) elliptic integral of the third kind:
double ellint_3(double k, double nu, double phi);
float ellint_3f(float k, float nu, float phi);
long double ellint_3l(long double k, long double nu, long double phi);

// [5.2.1.15] exponential integral:
double expint(double x);
float expintf(float x);
long double expintl(long double x);

// [5.2.1.16] Hermite polynomials:
double hermite(unsigned n, double x);
float hermitef(unsigned n, float x);
long double hermitel(unsigned n, long double x);

// [5.2.1.18] Laguerre polynomials:
double laguerre(unsigned n, double x);
float laguerref(unsigned n, float x);
long double laguerrel(unsigned n, long double x);

// [5.2.1.19] Legendre polynomials:
double legendre(unsigned l, double x);
float legendref(unsigned l, float x);
long double legendrel(unsigned l, long double x);

// [5.2.1.20] Riemann zeta function:
double riemann_zeta(double);
float riemann_zetaf(float);
long double riemann_zetal(long double);

// [5.2.1.21] spherical Bessel functions (of the first kind):
double sph_bessel(unsigned n, double x);
float sph_besself(unsigned n, float x);
long double sph_bessell(unsigned n, long double x);

// [5.2.1.22] spherical associated Legendre functions:
double sph_legendre(unsigned l, unsigned m, double theta);
float sph_legendref(unsigned l, unsigned m, float theta);
long double sph_legendrel(unsigned l, unsigned m, long double theta);

// [5.2.1.23] spherical Neumann functions;
// spherical Bessel functions (of the second kind):
double sph_neumann(unsigned n, double x);
float sph_neumannf(unsigned n, float x);
long double sph_neumannl(unsigned n, long double x);

}}}} // namespaces

In addition sufficient additional overloads of the double versions of the above functions are provided, so that calling the function
with any mixture of float, double, long double, or integer arguments is supported, with the return type determined by the result
type calculation rules.
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Currently Unsupported C99 Functions

double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);

double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);

int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);

long long llrint(double x);
long long llrintf(float x);
long long llrintl(long double x);

double log2(double x);
float log2f(float x);
long double log2l(long double x);

double logb(double x);
float logbf(float x);
long double logbl(long double x);

long lrint(double x);
long lrintf(float x);
long lrintl(long double x);

double nan(const char *str);
float nanf(const char *str);
long double nanl(const char *str);

double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);

double remquo(double x, double y, int *pquo);
float remquof(float x, float y, int *pquo);
long double remquol(long double x, long double y, int *pquo);

double rint(double x);
float rintf(float x);
long double rintl(long double x);

double scalbln(double x, long ex);
float scalblnf(float x, long ex);
long double scalblnl(long double x, long ex);

double scalbn(double x, int ex);
float scalbnf(float x, int ex);
long double scalbnl(long double x, int ex);
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Currently Unsupported TR1 Functions

// [5.2.1.7] confluent hypergeometric functions:
double conf_hyperg(double a, double c, double x);
float conf_hypergf(float a, float c, float x);
long double conf_hypergl(long double a, long double c, long double x);

// [5.2.1.17] hypergeometric functions:
double hyperg(double a, double b, double c, double x);
float hypergf(float a, float b, float c, float x);
long double hypergl(long double a, long double b, long double c,
long double x);
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Frequently Asked Questions FAQ
1. I'm a FORTRAN/NAG/SPSS/SAS/Cephes/MathCad/R user and I don't see where the functions like dnorm(mean, sd) are in

Boost.Math?
Nearly all are provided, and many more like mean, skewness, quantiles, complements ... but Boost.Math makes full use of C++,
and it looks a bit different. But do not panic! See section on construction and the many examples. Briefly, the distribution is
constructed with the parameters (like location and scale) (things after the | in representation like P(X=k|n, p) or ; in a common
represention of pdf f(x; μσ2). Functions like pdf, cdf are called with the name of that distribution and the random variate often
called x or k. For example, normal my_norm(0, 1); pdf(my_norm, 2.0);

2. I'm a user of New SAS Functions for Computing Probabilities.
You will find the interface more familar, but to be able to select a distribution (perhaps using a string) see the Extras/Future Dir-
ections section, and /boost/libs/math/dot_net_example/boost_math.cpp for an example that is used to create a C# (C sharp) utility
(that you might also find useful): see Statistical Distribution Explorer.

3. I'm allegic to reading manuals and prefer to learn from examples.
Fear not - you are not alone! Many examples are available for functions and distributions. Some are referenced directly from the
text. Others can be found at \boost_latest_release\libs\math\example. If you are a Visual Studio user, you should be able to create
projects from each of these, making sure that the Boost library is in the include directories list.

4. How do I make sure that the Boost library is in the Visual Studio include directories list?
You can add an include path, for example, your Boost place /boost-latest_release, for example X:/boost_1_45_0/ if you have
a separate partition X for Boost releases. Or you can use an environment variable BOOST_ROOT set to your Boost place, and
include that. Visual Studio before 2010 provided Tools, Options, VC++ Directories to control directories: Visual Studio 2010
instead provides property sheets to assist. You may find it convenient to create a new one adding \boost-latest_release; to the ex-
isting include items in $(IncludePath).

5. I'm a FORTRAN/NAG/SPSS/SAS/Cephes/MathCad/R user and I don't see where the properties like mean, median, mode, variance,
skewness of distributions are in Boost.Math?
They are all available (if defined for the parameters with which you constructed the distribution) via Cumulative Distribution
Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance,
standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

6. I am a C programmer. Can I user Boost.Math with C?
Yes you can, including all the special functions, and TR1 functions like isnan. They appear as C functions, by being declared as
"extern C".

7. I am a C# (Basic? F# FORTRAN? Other CLI?) programmer. Can I use Boost.Math with C#? (or ...)?
Yes you can, including all the special functions, and TR1 functions like isnan. But you must build the Boost.Math as a dynamic
library (.dll) and compile with the /CLI option. See the boost/math/dot_net_example folder which contains an example that
builds a simple statistical distribution app with a GUI. See Statistical Distribution Explorer

8. What these "policies" things for?
Policies are a powerful (if necessarily complex) fine-grain mechanism that allow you to customise the behaviour of the Boost.Math
library according to your precise needs. See Policies. But if, very probably, the default behaviour suits you, you don't need to
know more.

9. I am a C user and expect to see global C-style::errno set for overflow/errors etc?
You can achieve what you want - see error handling policies and user error handling and many examples.

10. I am a C user and expect to silently return a max value for overflow?
You (and C++ users too) can return whatever you want on overflow - see overflow_error and error handling policies and several
examples.

11. I don't want any error message for overflow etc?
You can control exactly what happens for all the abnormal conditions, including the values returned. See domain_error, over-
flow_error error handling policies user error handling etc and examples.

12. My environment doesn't allow and/or I don't want exceptions. Can I still user Boost.Math?
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Yes but you must customise the error handling: see user error handling and changing policies defaults .

13. The docs are several hundreds of pages long! Can I read the docs off-line or on paper?
Yes - you can download the Boost current release of most documentation as a zip of pdfs (including Boost.Math) from Sourceforge,
for example https://sourceforge.net/projects/boost/files/boost-docs/1.45.0/boost_pdf_1_45_0.tar.gz/download. And you can print
any pages you need (or even print all pages - but be warned that there are several hundred!). Both html and pdf versions are highly
hyperlinked. The entire Boost.Math pdf can be searched with Adobe Reader, Edit, Find ... This can often find what you seek, a
partial substitute for a full index.

14. I want a compact version for an embedded application. Can I use float precision?
Yes - by selecting RealType template parameter as float: for example normal_distribution<float> your_normal(mean, sd); (But
double may still be used internally, so space saving may be less that you hope for). You can also change the promotion policy,
but accuracy might be much reduced.

15. I seem to get somewhat different results compared to other programs. Why? We hope Boost.Math to be more accurate: our priority
is accuracy (over speed). See the section on accuracy. But for evaluations that require iterations there are parameters which can
change the required accuracy (see Policies). You might be able to squeeze a little more (or less) accuracy at the cost of runtime.

16. Will my program run more slowly compared to other math functions and statistical libraries? Probably, thought not always, and
not by too much: our priority is accuracy. For most functions, making sure you have the latest compiler version with all optimisations
switched on is the key to speed. For evaluations that require iteration, you may be able to gain a little more speed at the expense
of accuracy. See detailed suggestions and results on performance.

17. How do I handle infinity and NaNs portably?
See nonfinite fp_facets for Facets for Floating-Point Infinities and NaNs.

18. Where are the pre-built libraries?
Good news - you probably don't need any! - just #include <boost/math/distribution_you_want>. But in the unlikely event
that you do, see building libraries.

19. I don't see the function or distribution that I want.
You could try an email to ask the authors - but no promises!

20. I need more decimal digits for values/computations.
You can use Boost.Math with Boost.Multiprecision: typically cpp_dec_float is a useful user-defined type to provide a fixed
number of decimal digits, usually 50 or 100.

21. Why can't I write something really simple like cpp_int one(1); cpp_dec_float_50 two(2); one * two; Because
cpp_int might be bigger than cpp_dec_float can hold, so you must make an explicit conversion. See mixed multiprecision
arithmetic and conversion.
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Contact Info and Support
The main support for this library is via the Boost mailing lists:

• Use the boost-user list for general support questions.

• Use the boost-developer list for discussion about implementation and or submission of extensions.

You can also find JM at john - at - johnmaddock.co.uk and PAB at pbristow - at - hetp.u-net.com.
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Floating Point Utilities
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Rounding Truncation and Integer Conversion

Rounding Functions

#include <boost/math/special_functions/round.hpp>

template <class T>
T round(const T& v);

template <class T, class Policy>
T round(const T& v, const Policy&);

template <class T>
int iround(const T& v);

template <class T, class Policy>
int iround(const T& v, const Policy&);

template <class T>
long lround(const T& v);

template <class T, class Policy>
long lround(const T& v, const Policy&);

template <class T>
long long llround(const T& v);

template <class T, class Policy>
long long llround(const T& v, const Policy&);

These functions return the closest integer to the argument v.

Halfway cases are rounded away from zero, regardless of the current rounding direction.

If the argument v is either non-finite or else outside the range of the result type, then returns the result of rounding_error: by default
this throws an instance of boost::math::rounding_error.

Truncation Functions

#include <boost/math/special_functions/trunc.hpp>
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template <class T>
T trunc(const T& v);

template <class T, class Policy>
T trunc(const T& v, const Policy&);

template <class T>
int itrunc(const T& v);

template <class T, class Policy>
int itrunc(const T& v, const Policy&);

template <class T>
long ltrunc(const T& v);

template <class T, class Policy>
long ltrunc(const T& v, const Policy&);

template <class T>
long long lltrunc(const T& v);

template <class T, class Policy>
long long lltrunc(const T& v, const Policy&);

The trunc functions round their argument to the integer value, nearest to but no larger in magnitude than the argument.

For example itrunc(3.7) would return 3 and ltrunc(-4.6) would return -4.

If the argument v is either non-finite or else outside the range of the result type, then returns the result of rounding_error: by default
this throws an instance of boost::math::rounding_error.

Integer and Fractional Part Splitting (modf)

#include <boost/math/special_functions/modf.hpp>

template <class T>
T modf(const T& v, T* ipart);

template <class T, class Policy>
T modf(const T& v, T* ipart, const Policy&);

template <class T>
T modf(const T& v, int* ipart);

template <class T, class Policy>
T modf(const T& v, int* ipart, const Policy&);

template <class T>
T modf(const T& v, long* ipart);

template <class T, class Policy>
T modf(const T& v, long* ipart, const Policy&);

template <class T>
T modf(const T& v, long long* ipart);

template <class T, class Policy>
T modf(const T& v, long long* ipart, const Policy&);
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The modf functions store the integer part of v in *ipart and return the fractional part of v. The sign of the integer and fractional
parts are the same as the sign of v.

If the argument v is either non-finite or else outside the range of the result type, then returns the result of rounding_error: by default
this throws an instance of boost::math::rounding_error.
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Floating-Point Classification: Infinities and NaNs
Synopsis

#define FP_ZERO /* implementation specific value */
#define FP_NORMAL /* implementation specific value */
#define FP_INFINITE /* implementation specific value */
#define FP_NAN /* implementation specific value */
#define FP_SUBNORMAL /* implementation specific value */

template <class T>
int fpclassify(T t);

template <class T>
bool isfinite(T z); // Neither infinity nor NaN.

template <class T>
bool isinf(T t); // Infinity (+ or -).

template <class T>
bool isnan(T t); // NaN.

template <class T>
bool isnormal(T t); // isfinite and not denormalised.

#include <boost\math\special_functions\fpclassify.hpp>

to use these functions.

Description

These functions provide the same functionality as the macros with the same name in C99, indeed if the C99 macros are available,
then these functions are implemented in terms of them, otherwise they rely on std::numeric_limits<> to function.

Note that the definition of these functions does not suppress the definition of these names as macros by math.h on those platforms
that already provide these as macros. That mean that the following have differing meanings:
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using namespace boost::math;

// This might call a global macro if defined,
// but might not work if the type of z is unsupported 
// by the std lib macro:
isnan(z);
//
// This calls the Boost version
// (found via the "using namespace boost::math" declaration)
// it works for any type that has numeric_limits support for type z:
(isnan)(z);
//
// As above but with explicit namespace qualification.
(boost::math::isnan)(z);
//
// This will cause a compiler error if isnan is a native macro:
boost::math::isnan(z);
// So always use instead:
(boost::math::isnan)(z);
//
// You can also add a using statement,
// globally to a .cpp file, or to a local function in a .hpp file.
using boost::math::isnan;
// so you can write the shorter and less cluttered
(isnan)(z)
// But, as above, if isnan is a native macro, this causes a compiler error,
// because the macro always 'gets' the name first, unless enclosed in () brackets.

Detailed descriptions for each of these functions follows:

template <class T>
int fpclassify(T t);

Returns an integer value that classifies the value t:

class of t.fpclassify value

If t is zero.FP_ZERO

If t is a non-zero, non-denormalised finite value.FP_NORMAL

If t is plus or minus infinity.FP_INFINITE

If t is a NaN.FP_NAN

If t is a denormalised number.FP_SUBNORMAL

template <class T>
bool isfinite(T z);

Returns true only if z is not an infinity or a NaN.

template <class T>
bool isinf(T t);

Returns true only if z is plus or minus infinity.
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template <class T>
bool isnan(T t);

Returns true only if z is a NaN.

template <class T>
bool isnormal(T t);

Returns true only if z is a normal number (not zero, infinite, NaN, or denormalised).

Floating-point format

If you wish to find details of the floating-point format for any particular processor, there is a program

inspect_fp.cpp

by Johan Rade which can be used to print out the processor type, endianness, and detailed bit layout of a selection of floating-point
values, including infinity and NaNs.
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Sign Manipulation Functions
Synopsis

#include <boost/math/special_functions/sign.hpp>

namespace boost{ namespace math{

template<class T>
int signbit(T x);

template <class T>
int sign (const T& z);

template <class T, class U>
T copysign (const T& x, const U& y);

template <class T>
calculated-result-type changesign (const T& z);

}} // namespaces

Description

template<class T>
int signbit(T x);

Returns a non-zero value if the sign bit is set in variable x, otherwise 0.

Important

The return value from this function is zero or not-zero and not zero or one.

template <class T>
int sign (const T& z);

Returns 1 if x > 0, -1 if x < 0, and 0 if x is zero.

template <class T, class U>
calculated-result-type copysign (const T& x, const U& y);

Sets the sign of x to be the same as the sign of y.

See C99 7.12.11.1 The copysign functions for more detail.

template <class T>
T changesign (const T& z);

Returns a floating point number with a binary representation where the signbit is the opposite of the sign bit in x, and where the
other bits are the same as in x.

This function is widely available, but not specified in any standards.

Rationale: Not specified by TR1, but changesign(x) is both easier to read and more efficient than
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copysign(x, signbit(x) ? 1.0 : -1.0);

For finite values, this function has the same effect as simple negation, the assignment z = -z, but for nonfinite values, infinities and
NaNs, the changesign(x) function may be the only portable way to ensure that the sign bit is changed.

Sign bits

One of the bits in the binary representation of a floating-point number gives the sign, and the remaining bits give the absolute value.
That bit is known as the sign bit. The sign bit is set = 1 for negative numbers, and is not set = 0 for positive numbers. (This is true
for all binary representations of floating point numbers that are used by modern microprocessors.)

C++ TR1 specifies copysign functions and function templates for accessing the sign bit.

For user-defined types (UDT), the sign may be stored in some other way. They may also not provide infinity or NaNs. To use these
functions with a UDT, it may be necessary to explicitly specialize then for UDT type T.

Examples

signbit(3.5) is zero (or false)
signbit(-7.1) is 1 (or true)
copysign(4.2, 7.9) is 4.2
copysign(3.5 -1.4) is -3.5
copysign(-4.2, 1.0) is 4.2
copysign(-8.6, -3.3) is -8.6
changesign(6.9) is -6.9
changesign(-1.8) is 1.8

Portability

The library supports the following binary floating-point formats:

• IEEE 754 single precision

• IEEE 754 double precision

• IEEE 754 extended double precision with 15 exponent bits

• Intel extended double precision

• PowerPC extended double precision

• Motorola 68K extended double precision

The library does not support the VAX floating-point formats. (These are available on VMS, but the default on VMS is the IEEE 754
floating-point format.)

The main portability issues are:

• Unsupported floating point formats

• The library depends on the header boost/detail/endian.hpp

• Code such as #if defined(__ia64) || defined(__ia64__) || defined(_M_IA64) is used to determine the processor
type.

The library has passed all tests on the following platforms:

• Win32 / MSVC 7.1 / 10.0 / x86

• Win32 / Intel C++ 7.1, 8.1, 9.1 / x86
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• Mac OS X / GCC 3.3, 4.0 / ppc

• Linux / Intel C++ 9.1 / x86, ia64

• Linux / GCC 3.3 / x86, x64, ia64, ppc, hppa, mips, m68k

• Linux / GCC 3.4 / x64

• HP-UX / aCC, GCC 4.1 / ia64

• HP-UX / aCC / hppa

• Tru64 / Compaq C++ 7.1 / alpha

• VMS / HP C++ 7.1 / alpha (in IEEE floating point mode)

• VMS / HP C++ 7.2 / ia64 (in IEEE floating point mode)
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Facets for Floating-Point Infinities and NaNs
Synopsis

namespace boost{ namespace math
{
// Values for flags. 
const int legacy;
const int signed_zero;
const int trap_infinity;
const int trap_nan;

template<
class CharType,
class OutputIterator = std::ostreambuf_iterator<CharType>

>
class nonfinite_num_put : public std::num_put<CharType, OutputIterator>
{
public:

explicit nonfinite_num_put(int flags = 0);
};

template<
class CharType,
class InputIterator = std::istreambuf_iterator<CharType>

>
class nonfinite_num_get : public std::num_get<CharType, InputIterator>
{
public:

explicit nonfinite_num_get(int flags = 0); // legacy, sign_zero ...
};

}} // namespace boost namespace math

To use these facets

#include <boost\math\special_functions\nonfinite_num_facets.hpp>

Introduction
The Problem

The C++98 standard does not specify how infinity and NaN are represented in text streams. As a result, different platforms use dif-
ferent string representations. This can cause undefined behavior when text files are moved between different platforms. Some platforms
cannot even input parse their own output! So 'route-tripping' or loopback of output to input is not possible. For instance, the following
test fails with MSVC:

stringstream ss;
double inf = numeric_limits<double>::infinity();
double r;
ss << inf; // Write out.
ss >> r; // Read back in.

cout << "infinity output was " << inf << endl; // 1.#INF
cout << "infinity input was " << r << endl; // 1

assert(inf == y); // Fails!
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The Solution

The facets nonfinite_num_put and nonfinite_num_get format and parse all floating-point numbers, including infinity and
NaN, in a consistent and portable manner.

The following test succeeds with MSVC.

locale old_locale;
locale tmp_locale(old_locale, new nonfinite_num_put<char>);
locale new_locale(tmp_locale, new nonfinite_num_get<char>);

Tip

To add two facets, nonfinite_num_put and nonfinite_num_get, you may have to add one at a time, using a
temporary locale.

Or you can create a new locale in one step

std::locale new_locale(std::locale(std::locale(std::locale(), new boost::math::nonfin-

ite_num_put<char>), new boost::math::nonfinite_num_get<char>));

and, for example, use it to imbue an input and output stringstream.

Tip

To just change an input or output stream, you can concisely write cout.imbue (std::locale(std::locale(),

new boost::math::nonfinite_num_put<char>)); or cin.imbue (std::locale(std::locale(),

new boost::math::nonfinite_num_get<char>));

stringstream ss;
ss.imbue(new_locale);
double inf = numeric_limits<double>::infinity();
ss << inf; // Write out.
assert(ss.str() == "inf");
double r;
ss >> r; // Read back in.
assert(inf == r); // Confirms that the double values really are identical.

cout << "infinity output was " << ss.str() << endl;
cout << "infinity input was " << r << endl;
// But the string representation of r displayed will be the native type
// because, when it was constructed, cout had NOT been imbued
// with the new locale containing the nonfinite_numput facet.
// So the cout output will be "1.#INF on MS platforms
// and may be "inf" or other string representation on other platforms.

C++0X standard for output of infinity and NaN

C++0X (final) draft standard does not explicitly specify the representation (and input) of nonfinite values, leaving it implementation-
defined. So without some specific action, input and output of nonfinite values is not portable.

C99 standard for output of infinity and NaN

The C99 standard does specify how infinity and NaN are formatted by printf and similar output functions, and parsed by scanf and
similar input functions.

The following string representations are used:
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Table 13. C99 Representation of Infinity and NaN

stringnumber

"inf" or "infinity"Positive infinity

"nan" or "nan(...)"Positive NaN

"-inf" or "-infinity"Negative infinity

"-nan" or "-nan(...)"Negative NaN

So following C99 provides a sensible 'standard' way of handling input and output of nonfinites in C++, and this implementation
follows most of these formats.

Signaling NaNs

A particular type of NaN is the signaling NaN. The usual mechanism of signaling is by raising a floating-point exception. Signaling
NaNs are defined by IEEE 754-2008.

Floating-point values with layout s111 1111 1axx xxxx xxxx xxxx xxxx xxxx where s is the sign, x is the payload, and bit a determines
the type of NaN.

If bit a = 1, it is a quiet NaN.

If bit a is zero and the payload x is nonzero, then it is a signaling NaN.

Although there has been theoretical interest in the ability of a signaling NaN to raise an exception, for example to prevent use of an
uninitialised variable, in practice there appears to be no useful application of signaling NaNs for most current processors. C++0X
18.3.2.2 still specifies a (implementation-defined) representation for signaling NaN, and static constexpr bool has_signal-

ing_NaN a method of checking if a floating-point type has a representation for signaling NaN.

But in practice, most platforms treat signaling NaNs in the same as quiet NaNs. So, for example, they are represented by "nan" on
output in C99 format, and output as 1.#QNAN by Microsoft compilers.

Note

The C99 standard does not distinguish between the quiet NaN and signaling NaN values. A quiet NaN propagates
through almost every arithmetic operation without raising a floating-point exception; a signaling NaN generally
raises a floating-point exception when occurring as an arithmetic operand.

C99 specification does not define the behavior of signaling NaNs. NaNs created by IEC 60559 operations are always
quiet. Therefore this implementation follows C99, and treats the signaling NaN bit as just a part of the NaN payload
field. So this implementation does not distinguish between the two classes of NaN.

Note

An implementation may give zero and non-numeric values (such as infinities and NaNs) a sign or may leave them
unsigned. Wherever such values are unsigned, any requirement in the C99 Standard to retrieve the sign shall produce
an unspecified sign, and any requirement to set the sign shall be ignored.

This might apply to user-defined types, but in practice built-in floating-point types float, double and long
double have well-behaved signs.

The numbers can be of type float, double and long double. An optional + sign can be used with positive numbers (controlled
by ios manipulator showpos). The function printf and similar C++ functions use standard formatting flags to put all lower or all
upper case (controlled by std::ios manipulator uppercase and lowercase).
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The function scanf and similar input functions are case-insensitive.

The dots in nan(...) stand for an arbitrary string. The meaning of that string is implementation dependent. It can be used to convey
extra information about the NaN, from the 'payload'. A particular value of the payload might be used to indicate a missing value, for
example.

This library uses the string representations specified by the C99 standard.

An example of an implementation that optionally includes the NaN payload information is at AIX NaN fprintf. That implementation
specifies for Binary Floating Point NANs:

• A NaN ordinal sequence is a left-parenthesis character '(', followed by a digit sequence representing an integer n, where 1 <= n
<= INT_MAX-1, followed by a right-parenthesis character ')'.

• The integer value, n, is determined by the fraction bits of the NaN argument value as follows:

• For a signalling NaN value, NaN fraction bits are reversed (left to right) to produce bits (right to left) of an even integer value,
2*n. Then formatted output functions produce a (signalling) NaN ordinal sequence corresponding to the integer value n.

• For a quiet NaN value, NaN fraction bits are reversed (left to right) to produce bits (right to left) of an odd integer value, 2*n-1.
Then formatted output functions produce a (quiet) NaN ordinal sequence corresponding to the integer value n.

Warning

This implementation does not (yet) provide output of, or access to, the NaN payload.

Reference
The Facet nonfinite_num_put

template<
class CharType, class OutputIterator = std::ostreambuf_iterator<CharType>

>
class nonfinite_num_put;

The class nonfinite_num_put<CharType, OutputIterator> is derived from std::num_put<CharType, OutputIter-

ator>. Thus it is a facet that formats numbers. The first template argument is the character type of the formatted strings, usually
char or wchar_t. The second template argument is the type of iterator used to write the strings. It is required to be an output iterator.
Usually the default std::ostreambuf_iterator is used. The public interface of the class consists of a single constructor only:

nonfinite_num_put(int flags = 0);

The flags argument (effectively optional because a default of no_flags is provided) is discussed below. The class template non-
finite_num_put is defined in the header boost/math/nonfinite_num_facets.hpp and lives in the namespace boost::math.

Unlike the C++ Standard facet std::num_put, the facet nonfinite_num_put formats infinity and NaN in a consistent and
portable manner. It uses the following string representations:
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StringNumber

infPositive infinity

nanPositive NaN

-infNegative infinity

-nanNegative NaN

The numbers can be of type float, double and long double. The strings can be in all lower case or all upper case. An optional
+ sign can be used with positive numbers. This can be controlled with the uppercase, lowercase, showpos and noshowpos
manipulators. Formatting of integers, boolean values and finite floating-point numbers is simply delegated to the normal
std::num_put.

Facet nonfinite_num_get

template<class CharType, class InputIterator = std::istreambuf_iterator<CharType> > class nonfin↵
ite_num_get;

The class nonfinite_num_get<CharType, InputIterator> is derived from std::num_get<CharType, IntputIterator>.
Thus it is a facet that parses strings that represent numbers. The first template argument is the character type of the strings, usually
char or wchar_t. The second template argument is the type of iterator used to read the strings. It is required to be an input iterator.
Usually the default is used. The public interface of the class consists of a single constructor only:

nonfinite_num_get(int flags = 0);

The flags argument is discussed below. The class template nonfinite_num_get is defined in the header
boost/math/nonfinite_num_facets.hpp and lives in the namespace boost::math.

Unlike the facet std::num_get, the facet nonfinite_num_get parses strings that represent infinity and NaN in a consistent
and portable manner. It recognizes precisely the string representations specified by the C99 standard:

StringNumber

inf, infinityPositive infinity

nan, nan(...)Positive NaN

-inf, -infinityNegative infinity

-nan, -nan(...)Negative NaN

The numbers can be of type float, double and long double. The facet is case-insensitive. An optional + sign can be used with
positive numbers. The dots in nan(...) stand for an arbitrary string usually containing the NaN payload. Parsing of strings that represent
integers, boolean values and finite floating-point numbers is delegated to std::num_get.

When the facet parses a string that represents infinity on a platform that lacks infinity, then the fail bit of the stream is set.

When the facet parses a string that represents NaN on a platform that lacks NaN, then the fail bit of the stream is set.

Flags

The constructors for nonfinite_num_put and nonfinite_num_get take an optional bit flags argument. There are four different
bit flags:
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• legacy

• signed_zero

• trap_infinity

• trap_nan

The flags can be combined with the OR operator|.

The flags are defined in the header boost/math/nonfinite_num_facets.hpp and live in the namespace boost::math.

legacy

The legacy flag has no effect with the output facet nonfinite_num_put.

If the legacy flag is used with the nonfinite_num_get input facet, then the facet will recognize all the following string represent-
ations of infinity and NaN:

StringNumber

inf, infinity, one#infPositive infinity

nan, nan(...), nanq, nans, qnan, snan, one#ind, one#qnan,
one#snan

Positive NaN

-inf, -infinity, -one#infNegative infinity

-nan, -nan(...), -nanq, -nans, -qnan, -snan, -one#ind, - one#qnan,
-one#snan

Negative NaN

• The numbers can be of type float, double and long double.

• The facet is case-insensitive.

• An optional + sign can be used with the positive values.

• The dots in nan(...) stand for an arbitrary string.

• one stands for any string that std::num_get parses as the number 1, typically "1.#INF", "1.QNAN" but also "000001.#INF"...

The list includes a number of non-standard string representations of infinity and NaN that are used by various existing implementations
of the C++ standard library, and also string representations used by other programming languages.

signed_zero

If the signed_zero flag is used with nonfinite_num_put, then the facet will always distinguish between positive and negative
zero. It will format positive zero as "0" or "+0" and negative zero as "-0". The string representation of positive zero can be controlled
with the showpos and noshowpos manipulators.

The signed_zero flag has no effect with the input facet nonfinite_num_get. The input facet nonfinite_num_get always
parses "0" and "+0" as positive zero and "-0" as negative zero, as do most implementations of std::num_get.

Note

If the signed_zero flag is not set (the default), then a negative zero value will be displayed on output in whatever
way the platform normally handles it. For most platforms, this it will format positive zero as "0" or "+0" and negative
zero as "-0". But setting the signed_zero flag may be more portable.
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Tip

A negative zero value can be portably produced using the changesign function (changesign)(static_cast<Val-
Type>(0)) where ValType is float, double or long double, or a User-Defined floating-point type (UDT)
provided that this UDT has a sign and that the changesign function is implemented.

trap_infinity

If the trap_infinity flag is used with nonfinite_num_put, then the facet will throw an exception of type
std::ios_base::failure when an attempt is made to format positive or negative infinity. If the facet is called from a stream
insertion operator, then the stream will catch that exception and set either its fail bit or its bad bit. Which bit is set is platform
dependent.

If the trap_infinity flag is used with nonfinite_num_get, then the facet will set the fail bit of the stream when an attempt
is made to parse a string that represents positive or negative infinity.

(See Design Rationale below for a discussion of this inconsistency.)

trap_nan

Same as trap_infinity, but positive and negative NaN are trapped instead.

Examples
Simple example with std::stringstreams

locale old_locale;
locale tmp_locale(old_locale, new nonfinite_num_put<char>);
locale new_locale(tmp_locale, new nonfinite_num_get<char>);

stringstream ss;
ss.imbue(new_locale);
double inf = numeric_limits<double>::infinity();
ss << inf; // Write out.
assert(ss.str() == "inf");
double r;
ss >> r; // Read back in.
assert(inf == r); // Confirms that the double values really are identical.

cout << "infinity output was " << ss.str() << endl;
cout << "infinity input was " << r << endl;
// But the string representation of r displayed will be the native type
// because, when it was constructed, cout had NOT been imbued
// with the new locale containing the nonfinite_numput facet.
// So the cout output will be "1.#INF on MS platforms
// and may be "inf" or other string representation on other platforms.

Use with lexical_cast

Note

From Boost 1.48, lexical_cast no longer uses stringstreams internally, and is now able to handle infinities and NaNs
natively on most platforms.

Without using a new locale that contains the nonfinite facets, previous versions of lexical_cast using stringstream were not
portable (and often failed) if nonfinite values are found.
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locale old_locale;
locale tmp_locale(old_locale, new nonfinite_num_put<char>);
locale new_locale(tmp_locale, new nonfinite_num_get<char>);

Although other examples imbue individual streams with the new locale, for the streams constructed inside lexical_cast, it was necesary
to assign to a global locale.

locale::global(new_locale);

lexical_cast then works as expected, even with infinity and NaNs.

double x = boost::lexical_cast<double>("inf");
assert(x == std::numeric:limits<double>::infinity());

string s = boost::lexical_cast<string>(numeric_limits<double>::infinity());
assert(s == "inf");

Warning

If you use stringstream inside your functions, you may still need to use a global locale to handle nonfinites correctly.
Or you need to imbue your stringstream with suitable get and put facets.

Warning

You should be aware that the C++ specification does not explicitly require that input from decimal digits strings
converts with rounding to the nearest representable floating-point binary value. (In contrast, decimal digits read by
the compiler, for example by an assignment like double d = 1.234567890123456789, are guaranteed to assign
the nearest representable value to double d). This implies that, no matter how many decimal digits you provide,
there is a potential uncertainty of 1 least significant bit in the resulting binary value.

See for more information on nearest representable and rounding.

Most iostream libraries do in fact achieve the desirable nearest representable floating-point binary value for all values of input.
However one popular STL library does not quite achieve this for 64-bit doubles. See Decimal digit string input to double may be 1
bit wrong for the bizarre full details.

If you are expecting to 'round-trip' lexical_cast or serialization, for example archiving and loading, and want to be absolutely
certain that you will always get an exactly identical double value binary pattern, you should use the suggested 'workaround'
below that is believed to work on all platforms.

You should output using all potentially significant decimal digits, by setting stream precision to std::numeric_lim-
its<double>::max_digits10, (or for the appropriate floating-point type, if not double) and crucially, require scientific

format, not fixed or automatic (default), for example:

double output_value = any value;
std::stringstream s;
s << setprecison(std::numeric_limits<double>::max_digits10) << scientific << output_value;
s >> input_value;

Use with serialization archives

It is vital that the same locale is used when an archive is saved and when it is loaded. Otherwise, loading the archive may fail. By
default, archives are saved and loaded with a classic C locale with a boost::archive::codecvt_null facet added. Normally
you do not have to worry about that.
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The constructors for the archive classes, as a side-effect, imbue the stream with such a locale. However, if you want to use the facets
nonfinite_num_put and nonfinite_num_get with archives, then you have to manage the locale manually. That is done by
calling the archive constructor with the flag boost::archive::no_codecvt, thereby ensuring that the archive constructor will
not imbue the stream with a new locale.

The following code shows how to use nonfinite_num_put with a text_oarchive.

locale default_locale(locale::classic(), new boost::archive::codecvt_null<char>);
locale my_locale(default_locale, new nonfinite_num_put<char>);

ofstream ofs("test.txt");
ofs.imbue(my_locale);

boost::archive::text_oarchive oa(ofs, no_codecvt);

double x = numeric_limits<double>::infinity();
oa & x;

The same method works with nonfinite_num_get and text_iarchive.

If you use the nonfinite_num_put with trap_infinity and/or trap_nan flag with a serialization archive, then you must set
the exception mask of the stream. Serialization archives do not check the stream state.

Other examples

nonfinite_facet_simple.cpp give some more simple demonstrations of the difference between using classic C locale and constructing
a C99 infinty and NaN compliant locale for input and output.

See nonfinite_facet_sstream.cpp for this example of use with std::stringstreams.

For an example of how to enforce the MSVC 'legacy' "1.#INF" and "1.#QNAN" representations of infinity and NaNs, for input and
output, see nonfinite_legacy.cpp.

Treatment of signaling NaN is demonstrated at ../../example/nonfinite_signaling_NaN.cpp

Example ../../example/nonfinite_loopback_ok.cpp shows loopback works OK.

Example ../../example/nonfinite_num_facet.cpp shows output and re-input of various finite and nonfinite values.

A simple example of trapping nonfinite output is at nonfinite_num_facet_trap.cpp.

A very basic example of using Boost.Archive is at ../../example/nonfinite_serialization_archives.cpp.

A full demonstration of serialization by Francois Mauger is at ../../example/nonfinite_num_facet_serialization.cpp

Portability
This library uses the floating-point number classification and sign-bit from Boost.Math library, and should work on all platforms
where that library works. See the portability information for that library.

Design Rationale
• The flags are implemented as a const data member of the facet. Facets are reference counted, and locales can share facets. Therefore

changing the flags of a facet would have effects that are hard to predict. An alternative design would be to implement the flags
using std::ios_base::xalloc and std::ios_base::iword. Then one could safely modify the flags, and one could define
manipulators that do so. However, for that to work with dynamically linked libraries, a .cpp file would have to be added to the
library. It was judged be more desirable to have a headers only library, than to have mutable flags and manipulators.
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• The facet nonfinite_num_put throws an exception when the trap_infinity or trap_nan flag is set and an attempt is made
to format infinity or NaN. It would be better if the facet set the fail bit of the stream. However, facets derived from std::num_put
do not have access to the stream state.
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Floating-Point Representation Distance (ULP), and
Finding Adjacent Floating-Point Values
Unit of Least Precision or Unit in the Last Place is the gap between two different, but as close as possible, floating-point numbers.

Most decimal values, for example 0.1, cannot be exactly represented as floating-point values, but will be stored as the closest repres-
entable floating-point.

Functions are provided for finding adjacent greater and lesser floating-point values, and estimating the number of gaps between any
two floating-point values.

The floating-point type FPT must have has a fixed number of bits in the representation. The number of bits may set at runtime, but
must be the same for all numbers. For example, NTL::quad_float type (fixed 128-bit representation) or NTL::RR type (arbitrary but
fixed decimal digits, default 150) but not a type that extends the representation to provide an exact representation for any number,
for example XRC eXact Real in C.

Finding the Next Representable Value in a Specific Direction
(nextafter)

Synopsis

#include <boost/math/special_functions/next.hpp>

namespace boost{ namespace math{

template <class FPT>
FPT nextafter(FPT val, FPT direction);

}} // namespaces

Description - nextafter

This is an implementation of the nextafter function included in the C99 standard. (It is also effectively an implementation of the
C99 'nexttoward' legacy function which differs only having a long double direction, and can generally serve in its place if required).

Note

The C99 functions must use suffixes f and l to distinguish float and long double versions. C++ uses the template
mechanism instead.

Returns the next representable value after x in the direction of y. If x == y then returns x. If x is non-finite then returns the result
of a domain_error. If there is no such value in the direction of y then returns an overflow_error.

Warning

The template parameter FTP must be a floating-point type. An integer type, for example, will produce an unhelpful
error message.
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Tip

Nearly always, you just want the next or prior representable value, so instead use float_next or float_prior
below.

Examples - nextafter

The two representations using a 32-bit float either side of unity are:

The nearest (exact) representation of 1.F is 1.00000000
nextafter(1.F, 999) is 1.00000012
nextafter(1/f, -999) is 0.99999994

The nearest (not exact) representation of 0.1F is 0.100000001
nextafter(0.1F, 10) is 0.100000009
nextafter(0.1F, 10) is 0.099999994

Finding the Next Greater Representable Value (float_next)

Synopsis

#include <boost/math/special_functions/next.hpp>

namespace boost{ namespace math{

template <class FPT>
FPT float_next(FPT val);

}} // namespaces

Description - float_next

Returns the next representable value which is greater than x. If x is non-finite then returns the result of a domain_error. If there is no
such value greater than x then returns an overflow_error.

Has the same effect as

nextafter(val, (std::numeric_limits<FPT>::max)());

Finding the Next Smaller Representable Value (float_prior)

Synopsis

#include <boost/math/special_functions/next.hpp>

namespace boost{ namespace math{

template <class FPT>
FPT float_prior(FPT val);

}} // namespaces
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Description - float_prior

Returns the next representable value which is less than x. If x is non-finite then returns the result of a domain_error. If there is no
such value less than x then returns an overflow_error.

Has the same effect as

nextafter(val, -(std::numeric_limits<FPT>::max)()); // Note most negative value -max.

Calculating the Representation Distance Between Two Floating
Point Values (ULP) float_distance
Function float_distance finds the number of gaps/bits/ULP between any two floating-point values. If the significands of floating-
point numbers are viewed as integers, then their difference is the number of ULP/gaps/bits different.

Synopsis

#include <boost/math/special_functions/next.hpp>

namespace boost{ namespace math{

template <class FPT>
FPT float_distance(FPT a, FPT b);

}} // namespaces

Description - float_distance

Returns the distance between a and b: the result is always a signed integer value (stored in floating-point type FPT) representing the
number of distinct representations between a and b.

Note that

• float_distance(a, a) always returns 0.

• float_distance(float_next(a), a) always returns -1.

• float_distance(float_prior(a), a) always returns 1.

The function float_distance is equivalent to calculating the number of ULP (Units in the Last Place) between a and b except
that it returns a signed value indicating whether a > b or not.

If the distance is too great then it may not be able to be represented as an exact integer by type FPT, but in practice this is unlikely
to be a issue.

Advancing a Floating Point Value by a Specific Representation
Distance (ULP) float_advance
Function float_advance advances a floating point number by a specified number of ULP.

Synopsis

#include <boost/math/special_functions/next.hpp>
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namespace boost{ namespace math{

template <class FPT>
FPT float_advance(FPT val, int distance);

}} // namespaces

Description - float_advance

Returns a floating point number r such that float_distance(val, r) == distance.
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Floating-point Comparison
Comparison of floating-point values has always been a source of endless difficulty and confusion.

Unlike integral values that are exact, although the bit-pattern binary-representation is exact (at least within a platform), usually the
representation of a decimal digit string cannot be exactly represented as a binary floating-point. So assignment usually involves
rounding.

Floating-point computations also involve rounding so that some 'computational noise' is added, and hence results are also not exact
(although repeatable, at least under identical platforms and compile options).

Sadly, this conflicts with the expectation of most users, as many articles and innumerable cries for help show all too well.

Fortunately, some convenient tools for comparing inexact floating-point values are available from Boost.

Boost.Test floating-point comparison and Boost.Math floating-point utilities floating-point comparison allow

• Relative comparison between two floating-point values.

• Absolute comparison of one value with zero.

Tip

Relative comparison with values close to zero is usually misleading; it is better to compare each value with zero. If
both are 'near enough zero' then they are 'equal enough'.

The comparisons are only for floating-point values and are 'fuzzy', with a tolerance provided by the user.

Some background reading is:

• Knuth D.E. The art of computer programming, vol II, section 4.2, especially Floating-Point Comparison 4.2.2, pages 198-220.

• Alberto Squassabia, Comparing floats listing

• Alberto Squassabia, Comparing floats, part 1

• Alberto Squassabia, Comparing floats, part 2

• Google Floating-Point_Comparison guide

• Boost.Test Floating-Point_Comparison

Relative Comparison of Floating-point Values

Synopsis

#include <boost/test/floating_point_comparison.hpp>
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namespace boost { namespace math {
namespace fpc { // Note floating-point comparison namespace.

template<typename FPT1, typename FPT2, typename ToleranceType>
bool is_close_to( FPT1 left, FPT2 right, ToleranceType tolerance );
// Test if two values are close enough,
// (using the default FPC_STRONG or 'essentially equal' criterion).

enum strength
{
FPC_STRONG, // "Very close" "essentially equal" - Knuth equation 1' in docs (default).
FPC_WEAK // "Close enough" "approximately equal" - equation 2' in docs.

};

template<typename ToleranceType>
explicit close_at_tolerance(ToleranceType tolerance, fpc::strength fpc_strength = FPC_STRONG );

Comparisons are most simply made using the function is_close_to.

There is also a templated class close_at_tolerance that can be convenient for multiple tests with the same tolerance and strength.

(These are used by the popular MACRO versions in Boost.Test like BOOST_CHECK_CLOSE).

For most applications, the default strength parameter can be left at the default 'strong'.

The Tolerance_type is the same as floating-point type FPT, often a built-in type like float, double or long double, but also
Boost.Multiprecision types like cpp_bin_float or cpp_dec_float.

The constructor sets the fractional tolerance and the equality strength.

Two member functions allow access to the chosen tolerance and strength.

FPT fraction_tolerance() const;
strength strength() const; // weak or strong.

the operator() functor carries out the comparison, and returns true if essentially equal else false.

bool operator()(FPT left, FPT right) const; // true if close or 'equal'.

Comparison tolerances can be very small, near the machine epsilon or Unit in Last Place (ULP), typically for measuring 'computa-
tional' noise from multiple rounding or iteration, or can be a much bigger value like 0.01 (equivalent to a 1% tolerance), typically
from measurement uncertainty.

After (but not before) a comparison of values u and v has been made by a call of the functor operator(), the access function

FPT failed_fraction() const;

returns the fraction

abs(u-v) / abs(v) or abs(u-v) / abs(u)

that failed the test.

Some using statements will ensure that the classes, functions and enums are accessible.

using namespace boost::math::fpc;
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or

using boost::math::fpc::close_at_tolerance;
using boost::math::fpc::small_with_tolerance;
using boost::math::fpc::is_close_to;
using boost::math::fpc::is_small;
using boost::math::fpc::FPC_STRONG;
using boost::math::fpc::FPC_WEAK;

The following examples display values with all possibly significant digits. Newer compilers should provide std::numeric_lim-
itsFPT>::max_digits10 for this purpose, and here we use float precision where max_digits10 = 9 to avoid displaying a
distracting number of decimal digits.

Note

Older compilers can use this formula to calculate max_digits10 from std::numeric_limits<FPT>::digits10:
int max_digits10 = 2 + std::numeric_limits<FPT>::digits10 * 3010/10000;

One can set the display including all trailing zeros (helpful for this example to show all potentially significant digits), and also to
display bool values as words rather than integers:

std::cout.precision(std::numeric_limits<float>::max_digits10);
std::cout << std::boolalpha << std::showpoint << std::endl;

When comparing values that are quite close or approximately equal, it is convenient to use the appropriate epsilon for the floating-
point type FPT, here, for example, float:

float epsilon = std::numeric_limits<float>::epsilon();
std::cout << "float epsilon = " << epsilon << std::endl; // +1.1920929e-007

The simplest use is to compare two values with a tolerance thus:

bool is_close = is_close_to(1.F, 1.F + epsilon, epsilon); // One epsilon apart is close enough.
std::cout << "is_close_to(1.F, 1.F + epsilon, epsilon); is " << is_close << std::endl; // true

is_close = is_close_to(1.F, 1.F + 2 * epsilon, epsilon); // Two epsilon apart isn't close enough.
std::cout << "is_close_to(1.F, 1.F + epsilon, epsilon); is " << is_close << std::endl; // false

Note

The type FPT of the tolerance and the type of the values must match.

So is_close(0.1F, 1., 1.) will fail to compile because "template parameter 'FPT' is ambiguous". Always
provide the same type, using static_cast<FPT> if necessary.

An instance of class close_at_tolerance is more convenient when multiple tests with the same conditions are planned. A class
that stores a tolerance of three epsilon (and the default strong test) is:

close_at_tolerance<float> three_rounds(3 * epsilon); // 'strong' by default.

and we can confirm these settings:
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std::cout << "fraction_tolerance = "
<< three_rounds.fraction_tolerance()
<< std::endl; // +3.57627869e-007

std::cout << "strength = "
<< (three_rounds.strength() == FPC_STRONG ? "strong" : "weak")
<< std::endl; // strong

To start, let us use two values that are truly equal (having identical bit patterns)

float a = 1.23456789F;
float b = 1.23456789F;

and make a comparison using our 3*epsilon three_rounds functor:

bool close = three_rounds(a, b);
std::cout << "three_rounds(a, b) = " << close << std::endl; // true

Unsurprisingly, the result is true, and the failed fraction is zero.

std::cout << "failed_fraction = " << three_rounds.failed_fraction() << std::endl;

To get some nearby values, it is convenient to use the Boost.Math Adjacent Floating-Point Values functions, for which we need an
include

#include <boost/math/special_functions/next.hpp>

and some using declarations:

using boost::math::float_next;
using boost::math::float_prior;
using boost::math::nextafter;
using boost::math::float_distance;

To add a few Unit in the last place (ULP) to one value:

b = float_next(a); // Add just one ULP to a.
b = float_next(b); // Add another one ULP.
b = float_next(b); // Add another one ULP.
// 3 epsilon would pass.
b = float_next(b); // Add another one ULP.

and repeat our comparison:

close = three_rounds(a, b);
std::cout << "three_rounds(a, b) = " << close << std::endl; // false
std::cout << "failed_fraction = " << three_rounds.failed_fraction()
<< std::endl; // abs(u-v) / abs(v) = 3.86237957e-007

We can also 'measure' the number of bits different using the float_distance function:

std::cout << "float_distance = " << float_distance(a, b) << std::endl; // 4

Now consider two values that are much further apart than one might expect from computational noise, perhaps the result of two
measurements of some physical property like length where an uncertainty of a percent or so might be expected.
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float fp1 = 0.01000F;
float fp2 = 0.01001F; // Slightly different.

float tolerance = 0.0001F;

close_at_tolerance<float> strong(epsilon); // Default is strong.
bool rs = strong(fp1, fp2);
std::cout << "strong(fp1, fp2) is " << rs << std::endl;

Or we could contrast using the weak criterion:

close_at_tolerance<float> weak(epsilon, FPC_WEAK); // Explicitly weak.
bool rw = weak(fp1, fp2); //
std::cout << "weak(fp1, fp2) is " << rw << std::endl;

We can also construct, setting tolerance and strength, and compare in one statement:

std::cout << a << " #= " << b << " is "
<< close_at_tolerance<float>(epsilon, FPC_STRONG)(a, b) << std::endl;

std::cout << a << " ~= " << b << " is "
<< close_at_tolerance<float>(epsilon, FPC_WEAK)(a, b) << std::endl;

but this has little advantage over using function is_close_to directly.

Comparing small values near zero

When the floating-point values become very small and near or at zero, using a relative test becomes unhelpful because one is dividing
by a tiny value, or worse, by zero. Instead, an absolute test is needed, comparing one (or usually both) values with zero, using a
tolerance. If both are near zero, then they can be considered 'equal enough'.

Absolute comparisons are conveniently made with the small_with_tolerance class and is_small function.

Synopsis

namespace boost {
namespace math {
namespace fpc {

template<typename FPT>
class small_with_tolerance
{
public:
// Public typedefs.
typedef bool result_type;

// Constructor.
explicit small_with_tolerance(FPT tolerance); // tolerance >= 0

// Functor
bool operator()(FPT value) const; // return true if <= absolute tolerance (near zero).
};

template<typename FPT>
bool
is_small(FPT value, FPT tolerance); // return true if value <= absolute tolerance (near zero).

}}} // namespace fpc, namespace math, namepace boost.
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Note

The type FPT of the tolerance and the type of the value must match.

So is_small(0.1F, 0.000001) will fail to compile because "template parameter 'FPT' is ambiguous". Always
provide the same type, using static_cast<FPT>(value) if necessary.

A few values near zero are tested with varying tolerance below.

float c = 0;
std::cout << "0 is_small " << is_small(c, epsilon) << std::endl; // true

c = std::numeric_limits<float>::denorm_min(); // 1.40129846e-045
std::cout << "denorm_ min =" << c << ", is_small is " << is_small(c, epsilon) << std::endl; // true

c = std::numeric_limits<float>::min(); // 1.17549435e-038
std::cout << "min = " << c << ", is_small is " << is_small(c, epsilon) << std::endl; // true

c = 1 * epsilon; // 1.19209290e-007
std::cout << "epsilon = " << c << ", is_small is " << is_small(c, epsilon) << std::endl; // false

c = 1 * epsilon; // 1.19209290e-007
std::cout << "2 epsilon = " << c << ", is_small is " << is_small(c, 2 * epsilon) << std::endl; // ↵
true

c = 2 * epsilon; //2.38418579e-007
std::cout << "4 epsilon = " << c << ", is_small is " << is_small(c, 2 * epsilon) << std::endl; // ↵
false

c = 0.00001F;
std::cout << "0.00001 = " << c << ", is_small is " << is_small(c, 0.0001F) << std::endl; // true

c = -0.00001F;
std::cout << "0.00001 = " << c << ", is_small is " << is_small(c, 0.0001F) << std::endl; // true

Using the class small_with_tolerance allows storage of the tolerance, convenient if you make repeated tests with the same tol-
erance.

small_with_tolerance<float>my_test(0.01F);

std::cout << "my_test(0.001F) is " << my_test(0.001F) << std::endl; // true
std::cout << "my_test(0.001F) is " << my_test(0.01F) << std::endl; // false

A sample output from the whole example is:
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Compare floats using Boost.Test functions/classes

float epsilon = 1.19209290e-007
is_close_to(1.F, 1.F + epsilon, epsilon); is true
is_close_to(1.F, 1.F + epsilon, epsilon); is false
fraction_tolerance = 3.57627869e-007
strength = strong
three_rounds(a, b) = true
failed_fraction = 0.000000000
three_rounds(a, b) = false
failed_fraction = 3.86237957e-007
float_distance = 4.00000000
strong(fp1, fp2) is false
weak(fp1, fp2) is false
1.23456788 #= 1.23456836 is false
1.23456788 ~= 1.23456836 is false
0 is_small true
denorm_ min =1.40129846e-045, is_small is true
min = 1.17549435e-038, is_small is true
epsilon = 1.19209290e-007, is_small is false
2 epsilon = 1.19209290e-007, is_small is true
4 epsilon = 2.38418579e-007, is_small is false
0.00001 = 9.99999975e-006, is_small is true
0.00001 = -9.99999975e-006, is_small is true
my_test(0.001F) is true

my_test(0.001F) is false

See float_comparison_example.cpp for full example code.
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Specified-width floating-point typedefs
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Overview
The header <boost/cstdfloat.hpp> provides optional standardized floating-point typedefs having specified widths. These
are useful for writing portable code because they should behave identically on all platforms. These typedefs are the floating-point
analog of specified-width integers in <cstdint> and stdint.h.

The typedefs are based on N3626 proposed for a new C++14 standard header <cstdfloat> and N1703 proposed for a new C
language standard header <stdfloat.h>.

All typedefs are in namespace boost (would be in namespace std if eventually standardized).

The typedefs include float16_t, float32_t, float64_t, float80_t, float128_t, their corresponding least and fast
types, and the corresponding maximum-width type. The typedefs are based on underlying built-in types such as float, double,
or long double, or based on other compiler-specific non-standardized types such as __float128. The underlying types of these
typedefs must conform with the corresponding specifications of binary16, binary32, binary64, and binary128 in IEEE_floating_point
floating-point format.

The 128-bit floating-point type (of great interest in scientific and numeric programming) is not required in the Boost header, and
may not be supplied for all platforms/compilers, because compiler support for a 128-bit floating-point type is not mandated by either
the C standard or the C++ standard.

See Jahnke-Emden-Lambda function example for an example using both a CMath function and a Boost.Math function to evaluate
a moderately interesting function, the Jahnke-Emden-Lambda function and normal distribution an example of a statistical distribution
from Boost.Math
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Rationale
The implementation of <boost/cstdfloat.hpp> is designed to utilize <float.h>, defined in the 1989 C standard. The preprocessor
is used to query certain preprocessor definitions in <float.h> such as FLT_MAX, DBL_MAX, etc. Based on the results of these
queries, an attempt is made to automatically detect the presence of built-in floating-point types having specified widths. An unequi-
vocal test regarding conformance with IEEE_floating_point (IEC599) based on std::numeric_limits<>::is_iec559 is performed
with BOOST_STATIC_ASSERT.

In addition, this Boost implementation <boost/cstdfloat.hpp> supports an 80-bit floating-point typedef if it can be detected,
and a 128-bit floating-point typedef if it can be detected, provided that the underlying types conform with IEEE-754 precision
extension (ifstd::numeric_limits<>::is_iec559 is true for this type).

The header <boost/cstdfloat.hpp> makes the standardized floating-point typedefs safely available in namespace boost

without placing any names in namespace std. The intention is to complement rather than compete with a potential future C/C++
Standard Library that may contain these typedefs. Should some future C/C++ standard include <stdfloat.h> and <cstdfloat>,
then <boost/cstdfloat.hpp> will continue to function, but will become redundant and may be safely deprecated.

Because <boost/cstdfloat.hpp> is a Boost header, its name conforms to the boost header naming conventions, not the C++
Standard Library header naming conventions.

Note

<boost/cstdfloat.hpp> cannot synthesize or create a typedef if the underlying type is not provided by
the compiler. For example, if a compiler does not have an underlying floating-point type with 128 bits (highly
sought-after in scientific and numeric programming), then float128_t and its corresponding least and fast types
are not provided by <boost/cstdfloat.hpp>.

Warning

If <boost/cstdfloat.hpp> uses a compiler-specific non-standardized type (not derived from float, double,

or long double) for one or more of its floating-point typedefs, then there is no guarantee that specializations of
numeric_limits<> will be available for these types. Typically, specializations of numeric_limits<> will only
be available for these types if the compiler itself supports corresponding specializations for the underlying type(s),
exceptions are GCC's __float128 type and Intel's _Quad type which are explicitly supported via our own code.

Warning

As an implementation artifact, certain C macro names from <float.h> may possibly be visible to users of
<boost/cstdfloat.hpp>. Don't rely on using these macros; they are not part of any Boost-specified interface.
Use std::numeric_limits<> for floating-point ranges, etc. instead.

Tip

For best results, <boost/cstdfloat.hpp> should be #included before other headers that define generic code
making use of standard library functions defined in <cmath>.

This is because <boost/cstdfloat.hpp> may define overloads of standard library functions where a non-
standard type (i.e. other than float, double, or long double) is used for one of the specified width types. If
generic code (for example in another Boost.Math header) calls a standard library function, then the correct overload
will only be found if these overloads are defined prior to the point of use. See implementation for more details.

For this reason, making #include <boost/cstdfloat.hpp> the first include is usually best.
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Exact-Width Floating-Point typedefs
The typedef float#_t, with # replaced by the width, designates a floating-point type of exactly # bits. For example float32_t
denotes a single-precision floating-point type with approximately 7 decimal digits of precision (equivalent to binary32 in
IEEE_floating_point).

Floating-point types in C and C++ are specified to be allowed to have (optionally) implementation-specific widths and formats.
However, if a platform supports underlying floating-point types (conformant with IEEE_floating_point) with widths of 16, 32, 64,
80, 128 bits, or any combination thereof, then <boost/cstdfloat.hpp> does provide the corresponding typedefs float16_t,
float32_t, float64_t, float80_t, float128_t, their corresponding least and fast types, and the corresponding maximum-
width type.

How to tell which widths are supported

The definition (or not) of a floating-point constant macro is the way to test if a specific width is available on a platform.

#if defined(BOOST_FLOAT16_C)
// Can use boost::float16_t.
#endif

#if defined(BOOST_FLOAT32_C)
// Can use boost::float32_t.
#endif

#if defined(BOOST_FLOAT64_C)
// Can use boost::float64_t.
#endif

#if defined(BOOST_FLOAT80_C)
// Can use boost::float80_t.
#endif

#if defined(BOOST_FLOAT128_C)
// Can use boost::float128_t.
#endif

This can be used to write code which will compile and run (albeit differently) on several platforms. Without these tests, if a width,
say float128_t is not supported, then compilation would fail. (It is of course, rare for float64_t or float32_t not to be sup-
ported).

The number of bits in just the significand can be determined using:

std::numeric_limits<boost::floatmax_t>::digits

and from this one can safely infer the total number of bits because the type must be IEEE754 format, so, for example, if std::nu-
meric_limits<boost::floatmax_t>::digits == 113, then floatmax_t must be float128_t.

The total number of bits using floatmax_t can be found thus:

const int fpbits =
(std::numeric_limits<boost::floatmax_t>::digits == 113) ? 128 :
(std::numeric_limits<boost::floatmax_t>::digits == 64) ? 80 :
(std::numeric_limits<boost::floatmax_t>::digits == 53) ? 64 :
(std::numeric_limits<boost::floatmax_t>::digits == 24) ? 32 :
(std::numeric_limits<boost::floatmax_t>::digits == 11) ? 16 :
0; // Unknown - not IEEE754 format.

std::cout << fpbits << " bits." << std::endl;
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and the number of 'guaranteed' decimal digits using

std::numeric_limits<boost::floatmax_t>::digits10

and the maximum number of possibly significant decimal digits using

std::numeric_limits<boost::floatmax_t>::max_digits10

Tip

max_digits10 is not always supported, but can be calculated at compile-time using the Kahan formula.

Note

One could test

std::is_same<boost::floatmax_t, boost::float128_t>::value == true

but this would fail to compile on a platform where boost::float128_t is not defined. So use the MACROs
BOOST_FLOATnnn_C.
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Minimum-width floating-point typedefs
The typedef float_least#_t, with # replaced by the width, designates a floating-point type with a width of at least # bits,
such that no floating-point type with lesser size has at least the specified width. Thus, float_least32_t denotes the smallest
floating-point type with a width of at least 32 bits.

Minimum-width floating-point types are provided for all existing exact-width floating-point types on a given platform.

For example, if a platform supports float32_t and float64_t, then float_least32_t and float_least64_t will also be
supported, etc.
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Fastest floating-point typedefs
The typedef float_fast#_t, with # replaced by the width, designates the fastest floating-point type with a width of at least #
bits.

There is no absolute guarantee that these types are the fastest for all purposes. In any case, however, they satisfy the precision and
width requirements.

Fastest minimum-width floating-point types are provided for all existing exact-width floating-point types on a given platform.

For example, if a platform supports float32_t and float64_t, then float_fast32_t and float_fast64_t will also be sup-
ported, etc.
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Greatest-width floating-point typedef
The typedef floatmax_t designates a floating-point type capable of representing any value of any floating-point type in a given
platform most precisely.

The greatest-width typedef is provided for all platforms, but, of course, the size may vary.

To provide floating-point constants most precisely for a floatmax_t type, use the macro BOOST_FLOATMAX_C.

For example, replace a constant 123.4567890123456789012345678901234567890 with

BOOST_FLOATMAX_C(123.4567890123456789012345678901234567890)

If, for example, floatmax_t is float64_t then the result will be equivalent to a long double suffixed with L, but if floatmax_t
is float128_t then the result will be equivalent to a quad type suffixed with Q (assuming, of course, that float128 is supported).

If we display with max_digits10, the maximum possibly significant decimal digits:

#ifdef BOOST_FLOAT32_C
std::cout.precision(boost::max_digits10<boost::float32_t>()); // Show all significant decimal ↵

digits,
std::cout.setf(std::ios::showpoint); // including all significant trailing zeros.
std::cout << "BOOST_FLOAT32_C(123.4567890123456789012345678901234567890) = "
<< BOOST_FLOAT32_C(123.4567890123456789012345678901234567890) << std::endl;

//   BOOST_FLOAT32_C(123.4567890123456789012345678901234567890) = 123.456787
#endif

then on a 128-bit platform (GCC 4.8.1. with quadmath):

BOOST_FLOAT32_C(123.4567890123456789012345678901234567890) = 123.456787
BOOST_FLOAT64_C(123.4567890123456789012345678901234567890) = 123.45678901234568
BOOST_FLOAT80_C(123.4567890123456789012345678901234567890) = 123.456789012345678903
BOOST_FLOAT128_C(123.4567890123456789012345678901234567890) = 123.456789012345678901234567890123453
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Floating-Point Constant Macros
All macros of the type BOOST_FLOAT16_C, BOOST_FLOAT32_C, BOOST_FLOAT64_C, BOOST_FLOAT80_C,

BOOST_FLOAT128_C,  and BOOST_FLOATMAX_C are always defined after inclusion of <boost/cstdfloat.hpp>.

These allow floating-point constants of at least the specified width to be declared:

// Declare Archimedes' constant using float32_t with approximately 7 decimal digits of precision.
static const boost::float32_t pi = BOOST_FLOAT32_C(3.1415926536);

// Declare the Euler-gamma constant with approximately 15 decimal digits of precision.
static const boost::float64_t euler =

BOOST_FLOAT64_C(0.57721566490153286060651209008240243104216);

// Declare the Golden Ratio constant with the maximum decimal digits of precision that the plat↵
form supports.
static const boost::floatmax_t golden_ratio =

BOOST_FLOATMAX_C(1.61803398874989484820458683436563811772);

Tip

Boost.Math provides many constants 'built-in', so always use Boost.Math constants if available, for example:

// Display the constant pi to the maximum available precision.
boost::floatmax_t pi_max = boost::math::constants::pi<boost::floatmax_t>();
std::cout.precision(std::numeric_limits<boost::floatmax_t>::digits10);
std::cout << "Most precise pi = " << pi_max << std::endl;

// If floatmax_t is float_128_t, then 
// Most precise pi = 3.141592653589793238462643383279503

from cstdfloat_example.cpp.
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Examples
Jahnke-Emden-Lambda function

The following code uses <boost/cstdfloat.hpp> in combination with <boost/math/special_functions.hpp> to compute
a simplified version of the Jahnke-Emden-Lambda function. Here, we specify a floating-point type with exactly 64 bits (i.e.,
float64_t). If we were to use, for instance, built-in double, then there would be no guarantee that the code would behave
identically on all platforms. With float64_t from <boost/cstdfloat.hpp>, however, it is very likely to be identical.

Using float64_t, we know that this code is as portable as possible and uses a floating-point type with approximately 15 decimal
digits of precision, regardless of the compiler or version or operating system.

#include <boost/cstdfloat.hpp> // For float_64_t. Must be first include!
#include <cmath> // for pow function. 
#include <boost/math/special_functions.hpp> // For gamma function.

boost::float64_t jahnke_emden_lambda(boost::float64_t v, boost::float64_t x)
{
const boost::float64_t gamma_v_plus_one = boost::math::tgamma(v + 1);
const boost::float64_t x_half_pow_v = std::pow(x /2, v);

return gamma_v_plus_one * boost::math::cyl_bessel_j(x, v) / x_half_pow_v;
}

Ensure that all possibly significant digits (17) including trailing zeros are shown.

std::cout.precision(std::numeric_limits<boost::float64_t>::max_digits10);
std::cout.setf(std::ios::showpoint); // Show trailing zeros.

try
{ // Always use try'n'catch blocks to ensure any error messages are displayed.

// Evaluate and display an evaluation of the Jahnke-Emden lambda function:
boost::float64_t v = 1.;
boost::float64_t x = 1.;
std::cout << jahnke_emden_lambda(v, x) << std::endl; // 0.88010117148986700

For details, see cstdfloat_example.cpp - a extensive example program.

Normal distribution table

This example shows printing tables of a normal distribution's PDF and CDF, using boost::math implmentation of normal.

A function templated on floating-point type prints a table for a range of z values.

The example shows use of the specified-width typedefs to either use a specific width, or to use the maximum available on the platform,
perhaps a high as 128-bit.

The number of digits displayed is controlled by the precision of the type, so there are no spurious insignificant decimal digits:

float_32_t 0 0.39894228
float_128_t 0 0.398942280401432702863218082711682655

Some sample output for two different platforms is appended to the code at normal_tables.cpp.
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#ifdef BOOST_FLOAT32_C
normal_table<boost::float32_t>();

#endif
normal_table<boost::float64_t>(); // Assume that float64_t is always available.

#ifdef BOOST_FLOAT80_C
normal_table<boost::float80_t>();

#endif
#ifdef BOOST_FLOAT128_C

normal_table<boost::float128_t>();
#endif

normal_table<boost::floatmax_t>();
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Implementation of Float128 type
Since few compilers implement a true 128-bit floating-point, and language features like the suffix Q, and C++ Standard library
functions are as-yet missing or incomplete in C++11, this Boost.Math implementation wraps __float128 provided by the GCC
compiler or the _Quad type provided by the Intel compiler.

This is provided to in order to demonstrate, and users to evaluate, the feasibility and benefits of higher-precision floating-point, es-
pecially to allow use of the full Boost.Math library of functions and distributions at high precision.

(It is also possible to use Boost.Math with Boost.Multiprecision decimal and binary, but since these are entirely software solutions,
allowing much higher precision or arbitrary precision, they are likely to be slower).

We also provide (we believe full) support for <limits>, <cmath>, I/O stream operations in <iostream>, and <complex>.

As a prototype for a future C++ standard, we place all these in namespace std. This contravenes the existing C++ standard of
course, so selecting any compiler that promises to check conformance will fail.

Tip

For GCC, compile with -std=gnu++11 or -std=gnu++03 and do not use -std=stdc++11or any 'strict' options
as these turn off full support for __float128. These requirements also apply to the Intel compiler on Linux, for
Intel on Windows you need to compile with -Qoption,cpp,--extended_float_type

-DBOOST_MATH_USE_FLOAT128 in order to activate 128-bit floating point support.

The __float128 type is provided by the libquadmath library on GCC or by Intel's FORTRAN library with Intel C++.

A typical invocation of the compiler is

g++ -O3 -std=gnu++11 test.cpp -I/c/modular-boost -lquadmath -o test.exe

Tip

If you are trying to use the develop branch of Boost.Math, then make -I/c/modular-boost/libs/math/include
the first include directory.

g++ -O3 -std=gnu++11 test.cpp -I/c/modular-boost/libs/math/include -I/c/modular-boost -lquad↵
math -o test.exe

Note

So far, the only missing detail that we have noted is in trying to use <typeinfo>, for example for std::cout <<

typeid<__float_128>.name();. Link fails: undefined reference to typeinfo for __float128. See GCC
Bug 43622 - no C++ typeinfo for __float128.

Overloading template functions with float128_t
An artifact of providing C++ standard library support for quadmath may mandate the inclusion of <boost/cstdfloat.hpp> before
the inclusion of other headers.

Consider a function that calls fabs(x) and has previously injected std::fabs() into local scope via a using directive:
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template <class T>
bool unsigned_compare(T a, T b)
{

using std::fabs;
return fabs(a) == fabs(b);

}

In this function, the correct overload of fabs may be found via argument-dependent-lookup (ADL) or by calling one of the std::fabs
overloads. There is a key difference between them however: an overload in the same namespace as T and found via ADL need not
be defined at the time the function is declared. However, all the types declared in <boost/cstdfloat.hpp> are fundamental
types, so for these types we are relying on finding an overload declared in namespace std. In that case however, all such overloads
must be declared prior to the definition of function unsigned_compare otherwise they are not considered.

In the event that <boost/cstdfloat.hpp> has been included after the definition of the above function, the correct overload of
fabs, while present, is simply not considered as part of the overload set. So the compiler tries to downcast the float128_t argument
first to long double, then to double, then to float; the compilation fails because the result is ambiguous. However the compiler
error message will appear cruelly inscrutable, at an apparently irelevant line number and making no mention of float128: the word
ambiguous is the clue to what is wrong.

Provided you #include <boost/cstdfloat.hpp> before the inclusion of the any header containing generic floating point code
(such as other Boost.Math headers, then the compiler will know about and use the std::fabs(std::float128_t) that we provide
in #include <boost/cstdfloat.hpp>.

Exponential function
There is a bug whe using any quadmath expq function on GCC:

GCC bug #60349

mingw-64 bug #368

To work round this defect, an alternative implementation of 128-bit exp is temporarily provided by boost/cstdfloat.hpp.

typeinfo

It is not yet possible to use typeinfo for float_128 on GCC: see GCC 43622

so this fails to link undefined reference to typeinfo for __float128

std::cout << typeid(boost::float128_t).name() << std::endl;

This prevent using the existing tests for Boost.Math distributions, (unless a few lines are commented out) and if a MACRO
BOOST_MATH_INSTRUMENT controlling them is defined then some diagnostic displays in Boost.Math will not work.

However this is only used for display purposes and can be commented out until this is fixed.
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Mathematical Constants
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Introduction
Boost.Math provides a collection of mathematical constants.

Why use Boost.Math mathematical constants?

• Readable. For the very many jobs just using built-in like double, you can just write expressions like

double area = pi * r * r;

(If that's all you want, jump direct to use in non-template code!)

• Effortless - avoiding a search of reference sources.

• Usable with both builtin floating point types, and user-defined, possibly extended precision, types such as NTL, MPFR/GMP,
mp_float: in the latter case the constants are computed to the necessary precision and then cached.

• Accurate - ensuring that the values are as accurate as possible for the chosen floating-point type

• No loss of accuracy from repeated rounding of intermediate computations.

• Result is computed with higher precision and only rounded once.

• Less risk of inaccurate result from functions pow, trig and log at corner cases.

• Less risk of cancellation error.

• Portable - as possible between different systems using different floating-point precisions: see use in template code.

• Tested - by comparison with other published sources, or separately computed at long double precision.

• Faster - can avoid (re-)calculation at runtime.

• If the value returned is a builtin type then it's returned by value as a constexpr (C++11 feature, if available).

• If the value is computed and cached (or constructed from a string representation and cached), then it's returned by constant
reference.
This can be significant if:

• Functions pow, trig or log are used.

• Inside an inner loop.

• Using a high-precision UDT like Boost.Multiprecision.

• Compiler optimizations possible with built-in types, especially double, are not available.
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Tutorial

Use in non-template code
When using the math constants at your chosen fixed precision in non-template code, you can simply add a using namespace de-
claration, for example, using namespace boost::math::double_constants, to make the constants of the correct precision
for your code visible in the current scope, and then use each constant as a simple variable - sans brackets:

#include <boost/math/constants/constants.hpp>

double area(double r)
{

using namespace boost::math::double_constants;
return pi * r * r;

}

Had our function been written as taking a float rather than a double, we could have written instead:

#include <boost/math/constants/constants.hpp>

float area(float r)
{

using namespace boost::math::float_constants;
return pi * r * r;

}

Likewise, constants that are suitable for use at long double precision are available in the namespace
boost::math::long_double_constants.

You can see the full list of available constants at math_toolkit.constants.

Some examples of using constants are at constants_eg1.

Use in template code
When using the constants inside a function template, we need to ensure that we use a constant of the correct precision for our template
parameters. We can do this by calling the function-template versions, pi<FPType>(), of the constants like this:

#include <boost/math/constants/constants.hpp>

template <class Real>
Real area(Real r)
{

using namespace boost::math::constants;
return pi<Real>() * r * r;

}

Although this syntax is a little less "cute" than the non-template version, the code is no less efficient (at least for the built-in types
float, double and long double) : the function template versions of the constants are simple inline functions that return a constant
of the correct precision for the type used. In addition, these functions are declared constexp for those compilers that support this,
allowing the result to be used in constant-expressions provided the template argument is a literal type.
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Tip

Keep in mind the difference between the variable version, just pi, and the template-function version: the template-
function requires both a <floating-point-type> and function call () brackets, for example: pi<double>().
You cannot write double p = pi<>(), nor double p = pi().

Note

You can always use both variable and template-function versions provided calls are fully qualified, for example:

double my_pi1 = boost::math::constants::pi<double>();
double my_pi2 = boost::math::double_constants::pi;

Warning

It may be tempting to simply define

using namespace boost::math::double_constants;
using namespace boost::math::constants;

but if you do define two namespaces, this will, of course, create ambiguity!

double my_pi = pi(); // error C2872: 'pi' : ambiguous symbol
double my_pi2 = pi; // Context does not allow for disambiguation of overloaded func↵
tion

Although the mistake above is fairly obvious, it is also not too difficult to do this accidentally, or worse, create it
in someone elses code.

Therefore is it prudent to avoid this risk by localising the scope of such definitions, as shown above.

Tip

Be very careful with the type provided as parameter. For example, providing an integer instead of a floating-point
type can be disastrous (a C++ feature).

cout << "Area = " << area(2) << endl; // Area = 12!!!

You should get a compiler warning

warning : 'return' : conversion from 'double' to 'int', possible loss of data

Failure to heed this warning can lead to very wrong answers!

You can also avoid this by being explicit about the type of Area.

cout << "Area = " << area<double>(2) << endl; // Area = 12.566371
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Use With User-Defined Types
The most common example of a high-precision user-defined type will probably be Boost.Multiprecision.

The syntax for using the function-call constants with user-defined types is the same as it is in the template class, which is to say we
use:

#include <boost/math/constants/constants.hpp>

boost::math::constants::pi<UserDefinedType>();

For example:

boost::math::constants::pi<boost::multiprecision::cpp_dec_float_50>();

giving π with a precision of 50 decimal digits.

However, since the precision of the user-defined type may be much greater than that of the built-in floating point types, how the
value returned is created is as follows:

• If the precision of the type is known at compile time:

• If the precision is less than or equal to that of a float and the type is constructable from a float then our code returns a float
literal. If the user-defined type is a literal type then the function call that returns the constant will be a constexp.

• If the precision is less than or equal to that of a double and the type is constructable from a double then our code returns a
double literal. If the user-defined type is a literal type then the function call that returns the constant will be a constexp.

• If the precision is less than or equal to that of a long double and the type is constructable from a long double then our
code returns a long double literal. If the user-defined type is a literal type then the function call that returns the constant will
be a constexp.

• If the precision is less than or equal to that of a __float128 (and the compiler supports such a type) and the type is constructable
from a __float128 then our code returns a __float128 literal. If the user-defined type is a literal type then the function call
that returns the constant will be a constexp.

• If the precision is less than 100 decimal digits, then the constant will be constructed (just the once, then cached in a thread-safe
manner) from a string representation of the constant. In this case the value is returned as a const reference to the cached value.

• Otherwise the value is computed (just once, then cached in a thread-safe manner). In this case the value is returned as a const
reference to the cached value.

• If the precision is unknown at compile time then:

• If the runtime precision (obtained from a call to boost::math::tools::digits<T>()) is less than 100 decimal digits, then
the constant is constructed "on the fly" from the string representation of the constant.

• Otherwise the value is constructed "on the fly" by calculating then value of the constant using the current default precision of
the type. Note that this can make use of the constants rather expensive.

In addition, it is possible to pass a Policy type as a second template argument, and use this to control the precision:

#include <boost/math/constants/constants.hpp>

typedef boost::math::policies::policy<boost::math::policies::digits2<80> > my_policy_type;
boost::math::constants::pi<MyType, my_policy_type>();
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Note

Boost.Math doesn't know how to control the internal precision of MyType, the policy just controls how the selection
process above is carried out, and the calculation precision if the result is computed.

It is also possible to control which method is used to construct the constant by specialising the traits class construction_traits:

namespace boost{ namespace math{ namespace constant{

template <class T, class Policy>
struct construction_traits
{

typedef mpl::int_<N> type;
};

}}} // namespaces

Where N takes one of the following values:

MeaningN

The precision is unavailable at compile time; either construct
from a decimal digit string or calculate on the fly depending
upon the runtime precision.

0

Return a float precision constant.1

Return a double precision constant.2

Return a long double precision constant.3

Construct the result from the string representation, and cache
the result.

4

Sets the compile time precision to N bits.Any other value N

Custom Specializing a constant

In addition, for user-defined types that need special handling, it's possible to partially-specialize the internal structure used by each
constant. For example, suppose we're using the C++ wrapper around MPFR mpfr_class: this has its own representation of Pi which
we may well wish to use in place of the above mechanism. We can achieve this by specialising the class template
boost::math::constants::detail::constant_pi:

97

Mathematical Constants

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


namespace boost{ namespace math{ namespace constants{ namespace detail{

template<>
struct constant_pi<mpfr_class>
{

template<int N>
static mpfr_class get(const mpl::int_<N>&)
{

// The template param N is one of the values in the table above,
// we can either handle all cases in one as is the case here,
// or overload "get" for the different options.
mpfr_class result;
mpfr_const_pi(result.get_mpfr_t(), GMP_RNDN);
return result;

}
};

}}}} // namespaces

Diagnosing what meta-programmed code is doing

Finally, since it can be tricky to diagnose what meta-programmed code is doing, there is a diagnostic routine that prints information
about how this library will handle a specific type, it can be used like this:

#include <boost/math/constants/info.hpp>

int main()
{

boost::math::constants::print_info_on_type<MyType>();
}

If you wish, you can also pass an optional std::ostream argument to the print_info_on_type function. Typical output for a user-
defined type looks like this:

Information on the Implementation and Handling of
Mathematical Constants for Type class boost::math::concepts::real_concept

Checking for std::numeric_limits<class boost::math::concepts::real_concept> specialisation: no
boost::math::policies::precision<class boost::math::concepts::real_concept, Policy>
reports that there is no compile type precision available.
boost::math::tools::digits<class boost::math::concepts::real_concept>()
reports that the current runtime precision is
53 binary digits.
No compile time precision is available, the construction method
will be decided at runtime and results will not be cached
- this may lead to poor runtime performance.
Current runtime precision indicates that
the constant will be constructed from a string on each call.
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The Mathematical Constants
This section lists the mathematical constants, their use(s) (and sometimes rationale for their inclusion).

99

Mathematical Constants

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Table 14. Mathematical Constants

Uses and RationaleValue (6 decimals)formulaname

Rational fractions

0.51/2half

0.3333331/3third

0.666672/3two_thirds

0.753/4three_quarters

two and related

1.41421√2root_two

1.73205√3root_three

0.707106√2 /2half_root_two

0.693147ln(2)ln_two

2.30258ln(10)ln_ten

Gumbel distribution median-0.366512ln(ln(2))ln_ln_two

1.177410√ln(4)root_ln_four

0.7071061/√2one_div_root_two

π and related

Ubiquitous. Archimedes con-
stant π

3.14159pipi

1.570796π/2half_pi

1.04719π/3third_pi

0.523598π/6sixth_pi

Many uses, most simply, cir-
cumference of a circle

6.283182πtwo_pi

volume of a hemi-sphere = 4/3
π r³

2.094392/3 πtwo_thirds_pi

= 3/4 π2.356193/4 πthree_quarters_pi

volume of a sphere = 4/3 π r³4.188794/3 πfour_thirds_pi

Widely used1.591551/(2π)one_div_two_pi

Widely used1.77245√πroot_pi

Widely used1.25331√ π/2root_half_pi
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Uses and RationaleValue (6 decimals)formulaname

Widely used2.50662√ π*2root_two_pi

0.5641891/√πone_div_root_pi

0.3989421/√(2π)one_div_root_two_pi

0.564189√(1/πroot_one_div_pi

0.141593π-3pi_minus_three

0.8584074 -πfour_minus_pi

22.4591πepi_pow_e

9.86960π2pi_sqr

1.64493π2/6pi_sqr_div_six

31.00627π3pi_cubed

1.46459√3 πcbrt_pi

0.6827841/√3 πone_div_cbrt_pi

Euler's e and related

Euler's constant e2.71828ee

0.606530e -1/2exp_minus_half

23.14069e πe_pow_pi

1.64872√ eroot_e

0.434294log10(e)log10_e

2.302581/log10(e)one_div_log10_e

Trigonometric

0.017453radians = π / 180degree

57.2957degrees = 180 / πradian

0.841470sin(1)sin_one

0.54030cos(1)cos_one

1.17520sinh(1)sinh_one

1.54308cosh(1)cosh_one

Phidias golden ratioPhidias golden ratioPhi

finance1.61803(1 + √5) /2phi
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Uses and RationaleValue (6 decimals)formulaname

0.48121ln(φ)ln_phi

2.078081/ln(φ)one_div_ln_phi

Euler's Gamma

Euler-Mascheroni gamma
constant

0.577215eulereuler

1.732451/eulerone_div_euler

0.333177euler2euler_sqr

Misc

Riemann zeta function1.64493ζ(2)zeta_two

Riemann zeta function1.20205ζ(3)zeta_three

Catalan (or Glaisher) combin-
atorial constant

0.915965Kcatalan

Decimal expansion of Glaish-
er-Kinkelin constant

1.28242Aglaisher

Decimal expansion of
Khinchin constant

2.685452kkhinchin

Extreme value distribution1.13954712√6 ζ(3)/ π3extreme_value_skewness

Rayleigh distribution skewness0.6311102√π(π-3)/(4 - π)3/2rayleigh_skewness

Rayleigh distribution kurtosis
excess

0.245089-(6π2-24π+16)/(4-π)2rayleigh_kurtosis_excess

Rayleigh distribution kurtosis3.2450893+(6π2-24π+16)/(4-π)2rayleigh_kurtosis

Note

Integer values are not included in this list of math constants, however interesting, because they can be so easily
and exactly constructed, even for UDT, for example: static_cast<cpp_float>(42).

Tip

If you know the approximate value of the constant, you can search for the value to find Boost.Math chosen name
in this table.

Tip

Bernoulli numbers are available at Bernoulli numbers.
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Tip

Factorials are available at factorial.
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Defining New Constants
The library provides some helper code to assist in defining new constants; the process for defining a constant called my_constant
goes like this:

1. Define a function that calculates the value of the constant. This should be a template function, and be placed in
boost/math/constants/calculate_constants.hpp if the constant is to be added to this library, or else defined at the top of
your source file if not.

The function should look like this:

namespace boost{ namespace math{ namespace constants{ namespace detail{

template <class Real>
template <int N>
Real constant_my_constant<Real>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
{
int required_precision = N ? N : tools::digits<Real>();
Real result = /* value computed to required_precision bits */ ;
return result;

}

}}}} // namespaces

Then define a placeholder for the constant itself:

namespace boost{ namespace math{ namespace constants{

BOOST_DEFINE_MATH_CONSTANT(my_constant, 0.0, "0");

}}}

For example, to calculate π/2, add to boost/math/constants/calculate_constants.hpp

template <class T>
template<int N>
inline T constant_half_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
{

BOOST_MATH_STD_USING
return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(2);

}

Then to boost/math/constants/constants.hpp add:

BOOST_DEFINE_MATH_CONSTANT(half_pi, 0.0, "0"); // Actual values are temporary, we'll replace ↵
them later.

Note

Previously defined constants like pi and e can be used, but by not simply calling pi<T>(); specifying the precision
via the policy pi<T, policies::policy<policies::digits2<N> > >() is essential to ensure full accuracy.
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Warning

Newly defined constants can only be used once they are included in boost/math/constants/constants.hpp.
So if you add template <class T, class N> T constant_my_constant{...}, then you cannot define
constant_my_constant until you add the temporary BOOST_DEFINE_MATH_CONSTANT(my_constant, 0.0,

"0"). Failing to do this will result in surprising compile errors:

error C2143: syntax error : missing ';' before '<'
error C2433: 'constant_root_two_div_pi' : 'inline' not permitted on data declarations
error C2888: 'T constant_root_two_div_pi' : symbol cannot be defined with↵
in namespace 'detail'
error C2988: unrecognizable template declaration/definition

2. You will need an arbitrary precision type to use to calculate the value. This library currently supports either cpp_float,
NTL::RR or mpfr_class used via the bindings in boost/math/bindings. The default is to use NTL::RR unless you define an
alternate macro, for example, USE_MPFR or USE_CPP_FLOAT at the start of your program.

3. It is necessary to link to the Boost.Regex library, and probably to your chosen arbitrary precision type library.

4. You need to add libs\math\include_private to your compiler's include path as the needed header is not installed in the
usual places by default (this avoids a cyclic dependency between the Math and Multiprecision library's headers).

5. The complete program to generate the constant half_pi using function calculate_half_pi is then:

#define USE_CPP_FLOAT // If required.
#include <boost/math/constants/generate.hpp>

int main()
{

BOOST_CONSTANTS_GENERATE(half_pi);
}

The output from the program is a snippet of C++ code (actually a macro call) that can be cut and pasted into boost/math/con-
stants/constants.hpp or else into your own code, for example:

  BOOST_DEFINE_MATH_CONSTANT(half_pi, 1.570796326794896619231321691639751442e+00, ↵
"1.57079632679489661923132169163975144209858469968755291048747229615390820314310449931401741267105853399107404326e+00");

This macro BOOST_DEFINE_MATH_CONSTANT inserts a C++ struct code snippet that declares the float, double and long
double versions of the constant, plus a decimal digit string representation correct to 100 decimal digits, and all the meta-programming
machinery needed to select between them.

The result of an expanded macro for Pi is shown below.
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// Preprocessed pi constant, annotated.

namespace boost
{
namespace math
{
namespace constants
{
namespace detail
{

template <class T> struct constant_pi
{
private:

// Default implementations from string of decimal digits:
static inline T get_from_string()
{
static const T result

= detail::con↵
vert_from_string<T>("3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651e+00",

boost::is_convertible<const char*, T>());
return result;

}
template <int N> static T compute();

public:
// Default implementations from string of decimal digits:
static inline T get(const mpl::int_<construct_from_string>&)
{

constant_initializer<T, & constant_pi<T>::get_from_string >::do_nothing();
return get_from_string();

}
// Float, double and long double versions:
static inline T get(const mpl::int_<construct_from_float>)
{

return 3.141592653589793238462643383279502884e+00F;
}
static inline T get(const mpl::int_<construct_from_double>&)
{

return 3.141592653589793238462643383279502884e+00;
}
static inline T get(const mpl::int_<construct_from_long_double>&)
{

return 3.141592653589793238462643383279502884e+00L;
}
// For very high precision that is nonetheless can be calculated at compile time:
template <int N> static inline T get(const mpl::int_<N>& n)
{
constant_initializer2<T, N, & constant_pi<T>::template compute<N> >::do_nothing();
return compute<N>();

}
//For true arbitrary precision, which may well vary at runtime.
static inline T get(const mpl::int_<0>&)
{
return tools::digits<T>() > max_string_digits ? compute<0>() : get(mpl::int_<con↵

struct_from_string>());
}

}; // template <class T> struct constant_pi
} //  namespace detail

// The actual forwarding function (including policy to control precision).
template <class T, class Policy> inline T pi( )
{

return detail:: constant_pi<T>::get(typename construction_traits<T, Policy>::type());
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}
// The actual forwarding function (using default policy to control precision).
template <class T> inline T pi()
{

return pi<T, boost::math::policies::policy<> >()
}

} //     namespace constants

// Namespace specific versions, for the three built-in floats:
namespace float_constants
{
static const float pi = 3.141592653589793238462643383279502884e+00F;

}
namespace double_constants
{
static const double pi = 3.141592653589793238462643383279502884e+00;

}
namespace long_double_constants
{
static const long double pi = 3.141592653589793238462643383279502884e+00L;

}
namespace constants{;
} // namespace constants

} // namespace math
} // namespace boost
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FAQs
Why are these Constants Chosen?

It is, of course, impossible to please everyone with a list like this.

Some of the criteria we have used are:

• Used in Boost.Math.

• Commonly used.

• Expensive to compute.

• Requested by users.

• Used in science and mathematics.

• No integer values (because so cheap to construct).
(You can easily define your own if found convenient, for example: FPT one =static_cast<FPT>(42);).

How are constants named?

• Not macros, so no upper case.

• All lower case (following C++ standard names).

• No CamelCase.

• Underscore as _ delimiter between words.

• Numbers spelt as words rather than decimal digits (except following pow).

• Abbreviation conventions:

• root for square root.

• cbrt for cube root.

• pow for pow function using decimal digits like pow23 for n2/3.

• div for divided by or operator /.

• minus for operator -, plus for operator +.

• sqr for squared.

• cubed for cubed n3.

• words for greek, like π, ζ and Γ.

• words like half, third, three_quarters, sixth for fractions. (Digit(s) can get muddled).

• log10 for log10

• ln for loge

How are the constants derived?

The constants have all been calculated using high-precision software working with up to 300-bit precision giving about 100 decimal
digits. (The precision can be arbitrarily chosen and is limited only by compute time).
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How Accurate are the constants?

The minimum accuracy chosen (100 decimal digits) exceeds the accuracy of reasonably-foreseeable floating-point hardware (256-
bit) and should meet most high-precision computations.

How are the constants tested?

1. Comparison using Boost.Test BOOST_CHECK_CLOSE_FRACTION using long double literals, with at least 35 decimal digits,
enough to be accurate for all long double implementations. The tolerance is usually twice long double epsilon.

2. Comparison with calculation at long double precision. This often requires a slightly higher tolerance than two epsilon because of
computational noise from round-off etc, especially when trig and other functions are called.

3. Comparison with independent published values, for example, using The On-Line Encyclopedia of Integer Sequences (OEIS)
again using at least 35 decimal digits strings.

4. Comparison with independely calculated values using arbitrary precision tools like Mathematica, again using at least 35 decimal
digits literal strings.

Warning

We have not yet been able to check that all constants are accurate at the full arbitrary precision, at present 100
decimal digits. But certain key values like e and pi appear to be accurate and internal consistencies suggest that
others are this accurate too.

Why is Portability important?

Code written using math constants is easily portable even when using different floating-point types with differing precision.

It is a mistake to expect that results of computations will be identical, but you can achieve the best accuracy possible for the
floating-point type in use.

This has no extra cost to the user, but reduces irritating, and often confusing and very hard-to-trace effects, caused by the intrinsically
limited precision of floating-point calculations.

A harmless symptom of this limit is a spurious least-significant digit; at worst, slightly inaccurate constants sometimes cause iterating
algorithms to diverge wildly because internal comparisons just fail.

What is the Internal Format of the constants, and why?

See tutorial above for normal use, but this FAQ explains the internal details used for the constants.

Constants are stored as 100 decimal digit values. However, some compilers do not accept decimal digits strings as long as this. So
the constant is split into two parts, with the first containing at least 128-bit long double precision (35 decimal digits), and for consistency
should be in scientific format with a signed exponent.

The second part is the value of the constant expressed as a string literal, accurate to at least 100 decimal digits (in practice that means
at least 102 digits). Again for consistency use scientific format with a signed exponent.

For types with precision greater than a long double, then if T is constructible T is constructible from a const char* then it's directly
constructed from the string, otherwise we fall back on lexical_cast to convert to type T. (Using a string is necessary because you
can't use a numeric constant since even a long double might not have enough digits).

So, for example, a constant like pi is internally defined as

BOOST_DEFINE_MATH_CON↵
STANT(pi,3.141592653589793238462643383279502884e+00,"3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651e+00");
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In this case the significand is 109 decimal digits, ensuring 100 decimal digits are exact, and exponent is zero.

See defining new constants to calculate new constants.

A macro definition like this can be pasted into user code where convenient, or into boost/math/constants.hpp if it is to be added
to the Boost.Math library.

What Floating-point Types could I use?

Apart from the built-in floating-point types float, double, long double, there are several arbitrary precision floating-point
classes available, but most are not licensed for commercial use.

Boost.Multiprecision by Christopher Kormanyos

This work is based on an earlier work called e-float: Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function
Calculations, in ACM TOMS, {VOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011. http://doi.acm.org/10.1145/1916461.1916469
e_float but is now re-factored and available under the Boost license in the Boost-sandbox at multiprecision where it is being refined
and prepared for review.

Boost.cpp_float by John Maddock using Expression Templates

Big Number which is a reworking of e_float by Christopher Kormanyos to use expression templates for faster execution.

NTL class quad_float

NTL by Victor Shoup has fixed and arbitrary high precision fixed and floating-point types. However none of these are licenced for
commercial use.

#include <NTL/quad_float.h> // quad precision 106-bit, about 32 decimal digits.
using NTL::to_quad_float; // Less precise than arbitrary precision NTL::RR.

NTL class quad_float, which gives a form of quadruple precision, 106-bit significand (but without an extended exponent range.)
With an IEC559/IEEE 754 compatible processor, for example Intel X86 family, with 64-bit double, and 53-bit significand, using
the significands of two 64-bit doubles, if std::numeric_limits<double>::digits10 is 16, then we get about twice the precision,
so std::numeric_limits<quad_float>::digits10() should be 32. (the default std::numeric_limits<RR>::digits10()
should be about 40). (which seems to agree with experiments). We output constants (including some noisy bits, an approximation
to std::numeric_limits<RR>::max_digits10()) by adding 2 extra decimal digits, so using quad_float::SetOutputPre-
cision(32 + 2);

Apple Mac/Darwin uses a similar doubledouble 106-bit for its built-in long double type.

Note

The precision of all doubledouble floating-point types is rather odd and values given are only approximate.

New projects should use Boost.Multiprecision.

NTL class RR

Arbitrary precision floating point with NTL class RR, default is 150 bit (about 50 decimal digits) used here with 300 bit to output
100 decimal digits, enough for many practical non-'number-theoretic' C++ applications.

NTL A Library for doing Number Theory is not licenced for commercial use.

This class is used in Boost.Math and is an option when using big_number projects to calculate new math constants.

New projects should use Boost.Multiprecision.
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GMP and MPFR

GMP and MPFR have also been used to compute constants, but are licensed under the Lesser GPL license and are not licensed for
commercial use.

What happened to a previous collection of constants proposed for Boost?

A review concluded that the way in which the constants were presented did not meet many peoples needs. None of the methods
proposed met many users' essential requirement to allow writing simply pi rather than pi(). Many science and engineering equations
look difficult to read when because function call brackets can be confused with the many other brackets often needed. All the
methods then proposed of avoiding the brackets failed to meet all needs, often on grounds of complexity and lack of applicability
to various realistic scenarios.

So the simple namespace method, proposed on its own, but rejected at the first review, has been added to allow users to have con-
venient access to float, double and long double values, but combined with template struct and functions to allow simultaneous use
with other non-built-in floating-point types.

Why do the constants (internally) have a struct rather than a simple function?

A function mechanism was provided by in previous versions of Boost.Math.

The new mechanism is to permit partial specialization. See Custom Specializing a constant above. It should also allow use with
other packages like ttmath Bignum C++ library.

Where can I find other high precision constants?

1. Constants with very high precision and good accuracy (>40 decimal digits) from Simon Plouffe's web based collection
http://pi.lacim.uqam.ca/eng/.

2. The On-Line Encyclopedia of Integer Sequences (OEIS)

3. Checks using printed text optically scanned values and converted from: D. E. Knuth, Art of Computer Programming, Appendix
A, Table 1, Vol 1, ISBN 0 201 89683 4 (1997)

4. M. Abrahamovitz & I. E. Stegun, National Bureau of Standards, Handbook of Mathematical Functions, a reference source for
formulae now superceded by

5. Frank W. Olver, Daniel W. Lozier, Ronald F. Boisvert, Charles W. Clark, NIST Handbook of Mathemetical Functions, Cambridge
University Press, ISBN 978-0-521-14063-8, 2010.

6. John F Hart, Computer Approximations, Kreiger (1978) ISBN 0 88275 642 7.

7. Some values from Cephes Mathematical Library, Stephen L. Moshier and CALC100 100 decimal digit Complex Variable Calcu-
lator Program, a DOS utility.

8. Xavier Gourdon, Pascal Sebah, 50 decimal digits constants at Number, constants and computation.

Where are Physical Constants?

Not here in this Boost.Math collection, because physical constants:

• Are measurements, not truely constants.

• Are not truly constant and keeping changing as mensuration technology improves.

• Have a instrinsic uncertainty.

• Mathematical constants are stored and represented at varying precision, but should never be inaccurate.

Some physical constants may be available in Boost.Units.
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Statistical Distributions Tutorial
This library is centred around statistical distributions, this tutorial will give you an overview of what they are, how they can be used,
and provides a few worked examples of applying the library to statistical tests.

Overview of Distributions

Headers and Namespaces

All the code in this library is inside namespace boost::math.

In order to use a distribution my_distribution you will need to include either the header <boost/math/my_distribution.hpp> or the
"include all the distributions" header: <boost/math/distributions.hpp>.

For example, to use the Students-t distribution include either <boost/math/students_t.hpp> or <boost/math/distributions.hpp>

You also need to bring distribution names into scope, perhaps with a using namespace boost::math; declaration,

or specific using declarations like using boost::math::normal; (recommended).

Caution

Some math function names are also used in namespace std so including <random> could cause ambiguity!

Distributions are Objects

Each kind of distribution in this library is a class type - an object.

Policies provide fine-grained control of the behaviour of these classes, allowing the user to customise behaviour such as how errors
are handled, or how the quantiles of discrete distribtions behave.

Tip

If you are familiar with statistics libraries using functions, and 'Distributions as Objects' seem alien, see the compar-
ison to other statistics libraries.

Making distributions class types does two things:

• It encapsulates the kind of distribution in the C++ type system; so, for example, Students-t distributions are always a different
C++ type from Chi-Squared distributions.

• The distribution objects store any parameters associated with the distribution: for example, the Students-t distribution has a degrees
of freedom parameter that controls the shape of the distribution. This degrees of freedom parameter has to be provided to the Students-
t object when it is constructed.

Although the distribution classes in this library are templates, there are typedefs on type double that mostly take the usual name of
the distribution (except where there is a clash with a function of the same name: beta and gamma, in which case using the default
template arguments - RealType = double - is nearly as convenient). Probably 95% of uses are covered by these typedefs:
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// using namespace boost::math; // Avoid potential ambiguity with names in std <random>
// Safer to declare specific functions with using statement(s):

using boost::math::beta_distribution;
using boost::math::binomial_distribution;
using boost::math::students_t;

// Construct a students_t distribution with 4 degrees of freedom:
students_t d1(4);

// Construct a double-precision beta distribution
// with parameters a = 10, b = 20
beta_distribution<> d2(10, 20); // Note: _distribution<> suffix !

If you need to use the distributions with a type other than double, then you can instantiate the template directly: the names of the
templates are the same as the double typedef but with _distribution appended, for example: Students t Distribution or Binomial
Distribution:

// Construct a students_t distribution, of float type,
// with 4 degrees of freedom:
students_t_distribution<float> d3(4);

// Construct a binomial distribution, of long double type,
// with probability of success 0.3
// and 20 trials in total:
binomial_distribution<long double> d4(20, 0.3);

The parameters passed to the distributions can be accessed via getter member functions:

d1.degrees_of_freedom(); // returns 4.0

This is all well and good, but not very useful so far. What we often want is to be able to calculate the cumulative distribution functions
and quantiles etc for these distributions.

Generic operations common to all distributions are non-member functions

Want to calculate the PDF (Probability Density Function) of a distribution? No problem, just use:

pdf(my_dist, x); // Returns PDF (density) at point x of distribution my_dist.

Or how about the CDF (Cumulative Distribution Function):

cdf(my_dist, x); // Returns CDF (integral from -infinity to point x)
// of distribution my_dist.

And quantiles are just the same:

quantile(my_dist, p); // Returns the value of the random variable x
// such that cdf(my_dist, x) == p.

If you're wondering why these aren't member functions, it's to make the library more easily extensible: if you want to add additional
generic operations - let's say the n'th moment - then all you have to do is add the appropriate non-member functions, overloaded for
each implemented distribution type.
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Tip

Random numbers that approximate Quantiles of Distributions

If you want random numbers that are distributed in a specific way, for example in a uniform, normal or triangular,
see Boost.Random.

Whilst in principal there's nothing to prevent you from using the quantile function to convert a uniformly distributed
random number to another distribution, in practice there are much more efficient algorithms available that are spe-
cific to random number generation.

For example, the binomial distribution has two parameters: n (the number of trials) and p (the probability of success on any one trial).

The binomial_distribution constructor therefore has two parameters:

binomial_distribution(RealType n, RealType p);

For this distribution the random variate is k: the number of successes observed. The probability density/mass function (pdf) is
therefore written as f(k; n, p).

Note

Random Variates and Distribution Parameters

The concept of a random variable is closely linked to the term random variate: a random variate is a particular value
(outcome) of a random variable. and distribution parameters are conventionally distinguished (for example in
Wikipedia and Wolfram MathWorld) by placing a semi-colon or vertical bar) after the random variable (whose
value you 'choose'), to separate the variate from the parameter(s) that defines the shape of the distribution.
For example, the binomial distribution probability distribution function (PDF) is written as f(k| n, p) = Pr(K = k|n,
p) = probability of observing k successes out of n trials. K is the random variable, k is the random variate, the
parameters are n (trials) and p (probability).

Note

By convention, random variate are lower case, usually k is integral, x if real, and random variable are upper case,
K if integral, X if real. But this implementation treats all as floating point values RealType, so if you really want
an integral result, you must round: see note on Discrete Probability Distributions below for details.

As noted above the non-member function pdf has one parameter for the distribution object, and a second for the random variate.
So taking our binomial distribution example, we would write:

pdf(binomial_distribution<RealType>(n, p), k);

The ranges of random variate values that are permitted and are supported can be tested by using two functions range and support.

The distribution (effectively the random variate) is said to be 'supported' over a range that is "the smallest closed set whose complement
has probability zero". MathWorld uses the word 'defined' for this range. Non-mathematicians might say it means the 'interesting'
smallest range of random variate x that has the cdf going from zero to unity. Outside are uninteresting zones where the pdf is zero,
and the cdf zero or unity.

For most distributions, with probability distribution functions one might describe as 'well-behaved', we have decided that it is most
useful for the supported range to exclude random variate values like exact zero if the end point is discontinuous. For example, the
Weibull (scale 1, shape 1) distribution smoothly heads for unity as the random variate x declines towards zero. But at x = zero, the
value of the pdf is suddenly exactly zero, by definition. If you are plotting the PDF, or otherwise calculating, zero is not the most
useful value for the lower limit of supported, as we discovered. So for this, and similar distributions, we have decided it is most nu-
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merically useful to use the closest value to zero, min_value, for the limit of the supported range. (The range remains from zero, so
you will still get pdf(weibull, 0) == 0). (Exponential and gamma distributions have similarly discontinuous functions).

Mathematically, the functions may make sense with an (+ or -) infinite value, but except for a few special cases (in the Normal and
Cauchy distributions) this implementation limits random variates to finite values from the max to min for the RealType. (See
Handling of Floating-Point Infinity for rationale).

Note

Discrete Probability Distributions

Note that the discrete distributions, including the binomial, negative binomial, Poisson & Bernoulli, are all mathem-
atically defined as discrete functions: that is to say the functions cdf and pdf are only defined for integral values
of the random variate.

However, because the method of calculation often uses continuous functions it is convenient to treat them as if they
were continuous functions, and permit non-integral values of their parameters.

Users wanting to enforce a strict mathematical model may use floor or ceil functions on the random variate
prior to calling the distribution function.

The quantile functions for these distributions are hard to specify in a manner that will satisfy everyone all of the
time. The default behaviour is to return an integer result, that has been rounded outwards: that is to say, lower
quantiles - where the probablity is less than 0.5 are rounded down, while upper quantiles - where the probability is
greater than 0.5 - are rounded up. This behaviour ensures that if an X% quantile is requested, then at least the re-
quested coverage will be present in the central region, and no more than the requested coverage will be present in
the tails.

This behaviour can be changed so that the quantile functions are rounded differently, or return a real-valued result
using Policies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete Distributions
before using the quantile function on a discrete distribtion. The reference docs describe how to change the rounding
policy for these distributions.

For similar reasons continuous distributions with parameters like "degrees of freedom" that might appear to be in-
tegral, are treated as real values (and are promoted from integer to floating-point if necessary). In this case however,
there are a small number of situations where non-integral degrees of freedom do have a genuine meaning.

Complements are supported too - and when to use them

Often you don't want the value of the CDF, but its complement, which is to say 1-p rather than p. It is tempting to calculate the CDF
and subtract it from 1, but if p is very close to 1 then cancellation error will cause you to lose accuracy, perhaps totally.

See below "Why and when to use complements?"

In this library, whenever you want to receive a complement, just wrap all the function arguments in a call to complement(...),
for example:

students_t dist(5);
cout << "CDF at t = 1 is " << cdf(dist, 1.0) << endl;
cout << "Complement of CDF at t = 1 is " << cdf(complement(dist, 1.0)) << endl;

But wait, now that we have a complement, we have to be able to use it as well. Any function that accepts a probability as an argument
can also accept a complement by wrapping all of its arguments in a call to complement(...), for example:
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students_t dist(5);

for(double i = 10; i < 1e10; i *= 10)
{

// Calculate the quantile for a 1 in i chance:
double t = quantile(complement(dist, 1/i));
// Print it out:
cout << "Quantile of students-t with 5 degrees of freedom\n"

"for a 1 in " << i << " chance is " << t << endl;
}

Tip

Critical values are just quantiles

Some texts talk about quantiles, or percentiles or fractiles, others about critical values, the basic rule is:

Lower critical values are the same as the quantile.

Upper critical values are the same as the quantile from the complement of the probability.

For example, suppose we have a Bernoulli process, giving rise to a binomial distribution with success ratio 0.1 and
100 trials in total. The lower critical value for a probability of 0.05 is given by:

quantile(binomial(100, 0.1), 0.05)

and the upper critical value is given by:

quantile(complement(binomial(100, 0.1), 0.05))

which return 4.82 and 14.63 respectively.
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Tip

Why bother with complements anyway?

It's very tempting to dispense with complements, and simply subtract the probability from 1 when required. However,
consider what happens when the probability is very close to 1: let's say the probability expressed at float precision
is 0.999999940f, then 1 - 0.999999940f = 5.96046448e-008, but the result is actually accurate to just one
single bit: the only bit that didn't cancel out!

Or to look at this another way: consider that we want the risk of falsely rejecting the null-hypothesis in the Student's
t test to be 1 in 1 billion, for a sample size of 10,000. This gives a probability of 1 - 10-9, which is exactly 1 when
calculated at float precision. In this case calculating the quantile from the complement neatly solves the problem,
so for example:

quantile(complement(students_t(10000), 1e-9))

returns the expected t-statistic 6.00336, where as:

quantile(students_t(10000), 1-1e-9f)

raises an overflow error, since it is the same as:

quantile(students_t(10000), 1)

Which has no finite result.

With all distributions, even for more reasonable probability (unless the value of p can be represented exactly in the
floating-point type) the loss of accuracy quickly becomes significant if you simply calculate probability from 1 - p
(because it will be mostly garbage digits for p ~ 1).

So always avoid, for example, using a probability near to unity like 0.99999

quantile(my_distribution, 0.99999)

and instead use

quantile(complement(my_distribution, 0.00001))

since 1 - 0.99999 is not exactly equal to 0.00001 when using floating-point arithmetic.

This assumes that the 0.00001 value is either a constant, or can be computed by some manner other than subtracting
0.99999 from 1.

Parameters can be calculated

Sometimes it's the parameters that define the distribution that you need to find. Suppose, for example, you have conducted a Students-
t test for equal means and the result is borderline. Maybe your two samples differ from each other, or maybe they don't; based on
the result of the test you can't be sure. A legitimate question to ask then is "How many more measurements would I have to take
before I would get an X% probability that the difference is real?" Parameter finders can answer questions like this, and are necessarily
different for each distribution. They are implemented as static member functions of the distributions, for example:

students_t::find_degrees_of_freedom(
1.3, // difference from true mean to detect
0.05, // maximum risk of falsely rejecting the null-hypothesis.
0.1, // maximum risk of falsely failing to reject the null-hypothesis.
0.13); // sample standard deviation

Returns the number of degrees of freedom required to obtain a 95% probability that the observed differences in means is not down
to chance alone. In the case that a borderline Students-t test result was previously obtained, this can be used to estimate how large
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the sample size would have to become before the observed difference was considered significant. It assumes, of course, that the
sample mean and standard deviation are invariant with sample size.

Summary

• Distributions are objects, which are constructed from whatever parameters the distribution may have.

• Member functions allow you to retrieve the parameters of a distribution.

• Generic non-member functions provide access to the properties that are common to all the distributions (PDF, CDF, quantile etc).

• Complements of probabilities are calculated by wrapping the function's arguments in a call to complement(...).

• Functions that accept a probability can accept a complement of the probability as well, by wrapping the function's arguments in
a call to complement(...).

• Static member functions allow the parameters of a distribution to be found from other information.

Now that you have the basics, the next section looks at some worked examples.

Worked Examples

Distribution Construction Examples

The structure of distributions is rather different from some other statistical libraries, for example, those written in less object-oriented
language like FORTRAN and C: these provide a few arguments to each free function.

Boost.Math library provides each distribution as a template C++ class. A distribution is constructed with a few arguments, and then
member and non-member functions are used to find values of the distribution, often a function of a random variate.

For this demonstration, first we need some includes to access the negative binomial distribution (and the binomial, beta and gamma
distributions too).

To demonstrate the use with a high precision User-defined floating-point type cpp_dec_float we also need an include from
Boost.Multiprecision.

#include <boost/math/distributions/negative_binomial.hpp> // for negative_binomial_distribution
using boost::math::negative_binomial_distribution; // default type is double.
using boost::math::negative_binomial; // typedef provides default type is double.

#include <boost/math/distributions/binomial.hpp> // for binomial_distribution.
#include <boost/math/distributions/beta.hpp> // for beta_distribution.
#include <boost/math/distributions/gamma.hpp> // for gamma_distribution.
#include <boost/math/distributions/normal.hpp> // for normal_distribution.

#include <boost/multiprecision/cpp_dec_float.hpp> // for cpp_dec_float_100

Several examples of constructing distributions follow:

First, a negative binomial distribution with 8 successes and a success fraction 0.25, 25% or 1 in 4, is constructed like this:

boost::math::negative_binomial_distribution<double> mydist0(8., 0.25);

But this is inconveniently long, so we might be tempted to write

using namespace boost::math;

but this might risk ambiguity with names in std random so much better is explicit using boost::math:: statements, for example:
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using boost::math::negative_binomial_distribution;

and we can still reduce typing.

Since the vast majority of applications use will be using double precision, the template argument to the distribution (RealType)
defaults to type double, so we can also write:

negative_binomial_distribution<> mydist9(8., 0.25); // Uses default `RealType = double`.

But the name negative_binomial_distribution is still inconveniently long, so, for most distributions, a convenience typedef
is provided, for example:

typedef negative_binomial_distribution<double> negative_binomial; // Reserved name of type double.

Caution

This convenience typedef is not provided if a clash would occur with the name of a function: currently only beta
and gamma fall into this category.

So, after a using statement,

using boost::math::negative_binomial;

we have a convenient typedef to negative_binomial_distribution<double>:

negative_binomial mydist(8., 0.25);

Some more examples using the convenience typedef:

negative_binomial mydist10(5., 0.4); // Both arguments double.

And automatic conversion takes place, so you can use integers and floats:

negative_binomial mydist11(5, 0.4); // Using provided typedef double, int and double arguments.

This is probably the most common usage.

negative_binomial mydist12(5., 0.4F); // Double and float arguments.
negative_binomial mydist13(5, 1); // Both arguments integer.

Similarly for most other distributions like the binomial.

binomial mybinomial(1, 0.5); // is more concise than
binomial_distribution<> mybinomd1(1, 0.5);

For cases when the typdef distribution name would clash with a math special function (currently only beta and gamma) the typedef
is deliberately not provided, and the longer version of the name must be used. For example do not use:

using boost::math::beta;
beta mybetad0(1, 0.5); // Error beta is a math FUNCTION!
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Which produces the error messages:

error C2146: syntax error : missing ';' before identifier 'mybetad0'
warning C4551: function call missing argument list
error C3861: 'mybetad0': identifier not found

Instead you should use:

using boost::math::beta_distribution;
beta_distribution<> mybetad1(1, 0.5);

or for the gamma distribution:

gamma_distribution<> mygammad1(1, 0.5);

We can, of course, still provide the type explicitly thus:

// Explicit double precision:  both arguments are double:
negative_binomial_distribution<double> mydist1(8., 0.25);

// Explicit float precision, double arguments are truncated to float:
negative_binomial_distribution<float> mydist2(8., 0.25);

// Explicit float precision, integer & double arguments converted to float:
negative_binomial_distribution<float> mydist3(8, 0.25);

// Explicit float precision, float arguments, so no conversion:
negative_binomial_distribution<float> mydist4(8.F, 0.25F);

// Explicit float precision, integer arguments promoted to float.
negative_binomial_distribution<float> mydist5(8, 1);

// Explicit double precision:
negative_binomial_distribution<double> mydist6(8., 0.25);

// Explicit long double precision:
negative_binomial_distribution<long double> mydist7(8., 0.25);

And you can use your own RealType, for example, boost::math::cpp_dec_float_50 (an arbitrary 50 decimal digits precision
type), then we can write:

using namespace boost::multiprecision;

negative_binomial_distribution<cpp_dec_float_50> mydist8(8, 0.25);
// `integer` arguments are promoted to your RealType exactly, but
// `double` argument are converted to RealType,
// possibly losing precision, so don't write:

negative_binomial_distribution<cpp_dec_float_50> mydist20(8, 0.23456789012345678901234567890);
// to avoid truncation of second parameter to `0.2345678901234567`.

negative_binomial_distribution<cpp_dec_float_50> ↵
 mydist21(8, cpp_dec_float_50("0.23456789012345678901234567890") );

// Ensure that all potentially significant digits are shown.
std::cout.precision(std::numeric_limits<cpp_dec_float_50>::digits10);
cpp_dec_float_50 x("1.23456789012345678901234567890");
std::cout << pdf(mydist8, x) << std::endl;
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showing 0.00012630010495970320103876754721976419438231705359935

Warning

When using multiprecision, it is all too easy to get accidental truncation!

For example, if you write

std::cout << pdf(mydist8, 1.23456789012345678901234567890) << std::endl;

showing 0.00012630010495970318465064569310967179576805651692929, which is wrong at about the 17th decimal digit!

This is because the value provided is truncated to a double, effectively double x = 1.23456789012345678901234567890;

Then the now double x is passed to function pdf, and this truncated double value is finally promoted to cpp_dec_float_50.

Another way of quietly getting the wrong answer is to write:

std::cout << pdf(mydist8, cpp_dec_float_50(1.23456789012345678901234567890)) << std::endl;

A correct way from a multi-digit string value is

std::cout << pdf(mydist8, cpp_dec_float_50("1.23456789012345678901234567890")) << std::endl;

Tip

Getting about 17 decimal digits followed by many zeros is often a sign of accidental truncation.

Default arguments to distribution constructors.

Note that default constructor arguments are only provided for some distributions. So if you wrongly assume a default argument, you
will get an error message, for example:

negative_binomial_distribution<> mydist8;

error C2512 no appropriate default constructor available.

No default constructors are provided for the negative binomial distribution, because it is difficult to chose any sensible default
values for this distribution.

For other distributions, like the normal distribution, it is obviously very useful to provide 'standard' defaults for the mean (zero) and
standard deviation (unity) thus:

normal_distribution(RealType mean = 0, RealType sd = 1);

So in this case we can write:
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using boost::math::normal;

normal norm1; // Standard normal distribution.
normal norm2(2); // Mean = 2, std deviation = 1.
normal norm3(2, 3); // Mean = 2, std deviation = 3.

}
catch(std::exception &ex)
{
std::cout << ex.what() << std::endl;

}

return 0;
} // int main()

There is no useful output from this demonstration program, of course.

See distribution_construction.cpp for full source code.

Student's t Distribution Examples

Calculating confidence intervals on the mean with the Students-t distribution

Let's say you have a sample mean, you may wish to know what confidence intervals you can place on that mean. Colloquially: "I
want an interval that I can be P% sure contains the true mean". (On a technical point, note that the interval either contains the true
mean or it does not: the meaning of the confidence level is subtly different from this colloquialism. More background information
can be found on the NIST site).

The formula for the interval can be expressed as:

Y s ± t( α2,N−1)
s
N

Where, Ys is the sample mean, s is the sample standard deviation, N is the sample size, /α/ is the desired significance level and t(α/2,N-

1) is the upper critical value of the Students-t distribution with N-1 degrees of freedom.

Note

The quantity α   is the maximum acceptable risk of falsely rejecting the null-hypothesis. The smaller the value of
α the greater the strength of the test.

The confidence level of the test is defined as 1 - α, and often expressed as a percentage. So for example a significance
level of 0.05, is equivalent to a 95% confidence level. Refer to "What are confidence intervals?" in NIST/SEMATECH
e-Handbook of Statistical Methods. for more information.

Note

The usual assumptions of independent and identically distributed (i.i.d.) variables and normal distribution of course
apply here, as they do in other examples.

From the formula, it should be clear that:

• The width of the confidence interval decreases as the sample size increases.

• The width increases as the standard deviation increases.

• The width increases as the confidence level increases (0.5 towards 0.99999 - stronger).
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• The width increases as the significance level decreases (0.5 towards 0.00000...01 - stronger).

The following example code is taken from the example program students_t_single_sample.cpp.

We'll begin by defining a procedure to calculate intervals for various confidence levels; the procedure will print these out as a table:

// Needed includes:
#include <boost/math/distributions/students_t.hpp>
#include <iostream>
#include <iomanip>
// Bring everything into global namespace for ease of use:
using namespace boost::math;
using namespace std;

void confidence_limits_on_mean(
double Sm, // Sm = Sample Mean.
double Sd, // Sd = Sample Standard Deviation.
unsigned Sn) // Sn = Sample Size.

{
using namespace std;
using namespace boost::math;

// Print out general info:
cout <<

"__________________________________\n"
"2-Sided Confidence Limits For Mean\n"
"__________________________________\n\n";

cout << setprecision(7);
cout << setw(40) << left << "Number of Observations" << "=  " << Sn << "\n";
cout << setw(40) << left << "Mean" << "=  " << Sm << "\n";
cout << setw(40) << left << "Standard Deviation" << "=  " << Sd << "\n";

We'll define a table of significance/risk levels for which we'll compute intervals:

double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

Note that these are the complements of the confidence/probability levels: 0.5, 0.75, 0.9 .. 0.99999).

Next we'll declare the distribution object we'll need, note that the degrees of freedom parameter is the sample size less one:

students_t dist(Sn - 1);

Most of what follows in the program is pretty printing, so let's focus on the calculation of the interval. First we need the t-statistic,
computed using the quantile function and our significance level. Note that since the significance levels are the complement of the
probability, we have to wrap the arguments in a call to complement(...):

double T = quantile(complement(dist, alpha[i] / 2));

Note that alpha was divided by two, since we'll be calculating both the upper and lower bounds: had we been interested in a single
sided interval then we would have omitted this step.

Now to complete the picture, we'll get the (one-sided) width of the interval from the t-statistic by multiplying by the standard deviation,
and dividing by the square root of the sample size:

double w = T * Sd / sqrt(double(Sn));

The two-sided interval is then the sample mean plus and minus this width.
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And apart from some more pretty-printing that completes the procedure.

Let's take a look at some sample output, first using the Heat flow data from the NIST site. The data set was collected by Bob Zarr
of NIST in January, 1990 from a heat flow meter calibration and stability analysis. The corresponding dataplot output for this test
can be found in section 3.5.2 of the NIST/SEMATECH e-Handbook of Statistical Methods..

   __________________________________
   2-Sided Confidence Limits For Mean
   __________________________________

   Number of Observations                  =  195
   Mean                                    =  9.26146
   Standard Deviation                      =  0.02278881

   ___________________________________________________________________
   Confidence       T           Interval          Lower          Upper
    Value (%)     Value          Width            Limit          Limit
   ___________________________________________________________________
       50.000     0.676       1.103e-003        9.26036        9.26256
       75.000     1.154       1.883e-003        9.25958        9.26334
       90.000     1.653       2.697e-003        9.25876        9.26416
       95.000     1.972       3.219e-003        9.25824        9.26468
       99.000     2.601       4.245e-003        9.25721        9.26571
       99.900     3.341       5.453e-003        9.25601        9.26691
       99.990     3.973       6.484e-003        9.25498        9.26794
       99.999     4.537       7.404e-003        9.25406        9.26886

As you can see the large sample size (195) and small standard deviation (0.023) have combined to give very small intervals, indeed
we can be very confident that the true mean is 9.2.

For comparison the next example data output is taken from P.K.Hou, O. W. Lau & M.C. Wong, Analyst (1983) vol. 108, p 64. and
from Statistics for Analytical Chemistry, 3rd ed. (1994), pp 54-55 J. C. Miller and J. N. Miller, Ellis Horwood ISBN 0 13 0309907.
The values result from the determination of mercury by cold-vapour atomic absorption.

   __________________________________
   2-Sided Confidence Limits For Mean
   __________________________________

   Number of Observations                  =  3
   Mean                                    =  37.8000000
   Standard Deviation                      =  0.9643650

   ___________________________________________________________________
   Confidence       T           Interval          Lower          Upper
    Value (%)     Value          Width            Limit          Limit
   ___________________________________________________________________
       50.000     0.816            0.455       37.34539       38.25461
       75.000     1.604            0.893       36.90717       38.69283
       90.000     2.920            1.626       36.17422       39.42578
       95.000     4.303            2.396       35.40438       40.19562
       99.000     9.925            5.526       32.27408       43.32592
       99.900    31.599           17.594       20.20639       55.39361
       99.990    99.992           55.673      -17.87346       93.47346
       99.999   316.225          176.067     -138.26683      213.86683

This time the fact that there are only three measurements leads to much wider intervals, indeed such large intervals that it's hard to
be very confident in the location of the mean.
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Testing a sample mean for difference from a "true" mean

When calibrating or comparing a scientific instrument or measurement method of some kind, we want to be answer the question
"Does an observed sample mean differ from the "true" mean in any significant way?". If it does, then we have evidence of a system-
atic difference. This question can be answered with a Students-t test: more information can be found on the NIST site.

Of course, the assignment of "true" to one mean may be quite arbitrary, often this is simply a "traditional" method of measurement.

The following example code is taken from the example program students_t_single_sample.cpp.

We'll begin by defining a procedure to determine which of the possible hypothesis are rejected or not-rejected at a given significance
level:

Note

Non-statisticians might say 'not-rejected' means 'accepted', (often of the null-hypothesis) implying, wrongly, that
there really IS no difference, but statisticans eschew this to avoid implying that there is positive evidence of 'no
difference'. 'Not-rejected' here means there is no evidence of difference, but there still might well be a difference.
For example, see argument from ignorance and Absence of evidence does not constitute evidence of absence.

// Needed includes:
#include <boost/math/distributions/students_t.hpp>
#include <iostream>
#include <iomanip>
// Bring everything into global namespace for ease of use:
using namespace boost::math;
using namespace std;

void single_sample_t_test(double M, double Sm, double Sd, unsigned Sn, double alpha)
{

//
// M = true mean.
// Sm = Sample Mean.
// Sd = Sample Standard Deviation.
// Sn = Sample Size.
// alpha = Significance Level.

Most of the procedure is pretty-printing, so let's just focus on the calculation, we begin by calculating the t-statistic:

// Difference in means:
double diff = Sm - M;
// Degrees of freedom:
unsigned v = Sn - 1;
// t-statistic:
double t_stat = diff * sqrt(double(Sn)) / Sd;

Finally calculate the probability from the t-statistic. If we're interested in simply whether there is a difference (either less or greater)
or not, we don't care about the sign of the t-statistic, and we take the complement of the probability for comparison to the significance
level:

students_t dist(v);
double q = cdf(complement(dist, fabs(t_stat)));

The procedure then prints out the results of the various tests that can be done, these can be summarised in the following table:
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TestHypothesis

Reject if complement of CDF for |t| < significance level / 2:

cdf(complement(dist, fabs(t))) < alpha / 2

The Null-hypothesis: there is no difference in means

Reject if complement of CDF for |t| > significance level / 2:

cdf(complement(dist, fabs(t))) > alpha / 2

The Alternative-hypothesis: there is difference in means

Reject if CDF of t > 1 - significance level:

cdf(complement(dist, t)) < alpha

The Alternative-hypothesis: the sample mean is less than the
true mean.

Reject if complement of CDF of t < significance level:

cdf(dist, t) < alpha

The Alternative-hypothesis: the sample mean is greater than
the true mean.

Note

Notice that the comparisons are against alpha / 2 for a two-sided test and against alpha for a one-sided test

Now that we have all the parts in place, let's take a look at some sample output, first using the Heat flow data from the NIST site.
The data set was collected by Bob Zarr of NIST in January, 1990 from a heat flow meter calibration and stability analysis. The cor-
responding dataplot output for this test can be found in section 3.5.2 of the NIST/SEMATECH e-Handbook of Statistical Methods..

__________________________________
Student t test for a single sample
__________________________________

Number of Observations                                 =  195
Sample Mean                                            =  9.26146
Sample Standard Deviation                              =  0.02279
Expected True Mean                                     =  5.00000

Sample Mean - Expected Test Mean                       =  4.26146
Degrees of Freedom                                     =  194
T Statistic                                            =  2611.28380
Probability that difference is due to chance           =  0.000e+000

Results for Alternative Hypothesis and alpha           =  0.0500

Alternative Hypothesis     Conclusion
Mean != 5.000            NOT REJECTED
Mean  < 5.000            REJECTED
Mean  > 5.000            NOT REJECTED

You will note the line that says the probability that the difference is due to chance is zero. From a philosophical point of view, of
course, the probability can never reach zero. However, in this case the calculated probability is smaller than the smallest representable
double precision number, hence the appearance of a zero here. Whatever its "true" value is, we know it must be extraordinarily small,
so the alternative hypothesis - that there is a difference in means - is not rejected.

For comparison the next example data output is taken from P.K.Hou, O. W. Lau & M.C. Wong, Analyst (1983) vol. 108, p 64. and
from Statistics for Analytical Chemistry, 3rd ed. (1994), pp 54-55 J. C. Miller and J. N. Miller, Ellis Horwood ISBN 0 13 0309907.
The values result from the determination of mercury by cold-vapour atomic absorption.
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__________________________________
Student t test for a single sample
__________________________________

Number of Observations                                 =  3
Sample Mean                                            =  37.80000
Sample Standard Deviation                              =  0.96437
Expected True Mean                                     =  38.90000

Sample Mean - Expected Test Mean                       =  -1.10000
Degrees of Freedom                                     =  2
T Statistic                                            =  -1.97566
Probability that difference is due to chance           =  1.869e-001

Results for Alternative Hypothesis and alpha           =  0.0500

Alternative Hypothesis     Conclusion
Mean != 38.900            REJECTED
Mean  < 38.900            NOT REJECTED
Mean  > 38.900            NOT REJECTED

As you can see the small number of measurements (3) has led to a large uncertainty in the location of the true mean. So even though
there appears to be a difference between the sample mean and the expected true mean, we conclude that there is no significant dif-
ference, and are unable to reject the null hypothesis. However, if we were to lower the bar for acceptance down to alpha = 0.1 (a
90% confidence level) we see a different output:

__________________________________
Student t test for a single sample
__________________________________

Number of Observations                                 =  3
Sample Mean                                            =  37.80000
Sample Standard Deviation                              =  0.96437
Expected True Mean                                     =  38.90000

Sample Mean - Expected Test Mean                       =  -1.10000
Degrees of Freedom                                     =  2
T Statistic                                            =  -1.97566
Probability that difference is due to chance           =  1.869e-001

Results for Alternative Hypothesis and alpha           =  0.1000

Alternative Hypothesis     Conclusion
Mean != 38.900            REJECTED
Mean  < 38.900            NOT REJECTED
Mean  > 38.900            REJECTED

In this case, we really have a borderline result, and more data (and/or more accurate data), is needed for a more convincing conclusion.

Estimating how large a sample size would have to become in order to give a significant Stu-
dents-t test result with a single sample test

Imagine you have conducted a Students-t test on a single sample in order to check for systematic errors in your measurements.
Imagine that the result is borderline. At this point one might go off and collect more data, but it might be prudent to first ask the
question "How much more?". The parameter estimators of the students_t_distribution class can provide this information.

This section is based on the example code in students_t_single_sample.cpp and we begin by defining a procedure that will print out
a table of estimated sample sizes for various confidence levels:
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// Needed includes:
#include <boost/math/distributions/students_t.hpp>
#include <iostream>
#include <iomanip>
// Bring everything into global namespace for ease of use:
using namespace boost::math;
using namespace std;

void single_sample_find_df(
double M, // M = true mean.
double Sm, // Sm = Sample Mean.
double Sd) // Sd = Sample Standard Deviation.

{

Next we define a table of significance levels:

double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

Printing out the table of sample sizes required for various confidence levels begins with the table header:

cout << "\n\n"
"_______________________________________________________________\n"
"Confidence       Estimated          Estimated\n"
" Value (%)      Sample Size        Sample Size\n"
"              (one sided test)    (two sided test)\n"
"_______________________________________________________________\n";

And now the important part: the sample sizes required. Class students_t_distribution has a static member function
find_degrees_of_freedom that will calculate how large a sample size needs to be in order to give a definitive result.

The first argument is the difference between the means that you wish to be able to detect, here it's the absolute value of the difference
between the sample mean, and the true mean.

Then come two probability values: alpha and beta. Alpha is the maximum acceptable risk of rejecting the null-hypothesis when it
is in fact true. Beta is the maximum acceptable risk of failing to reject the null-hypothesis when in fact it is false. Also note that for
a two-sided test, alpha must be divided by 2.

The final parameter of the function is the standard deviation of the sample.

In this example, we assume that alpha and beta are the same, and call find_degrees_of_freedom twice: once with alpha for a
one-sided test, and once with alpha/2 for a two-sided test.
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for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{

// Confidence value:
cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
// calculate df for single sided test:
double df = students_t::find_degrees_of_freedom(

fabs(M - Sm), alpha[i], alpha[i], Sd);
// convert to sample size:
double size = ceil(df) + 1;
// Print size:
cout << fixed << setprecision(0) << setw(16) << right << size;
// calculate df for two sided test:
df = students_t::find_degrees_of_freedom(

fabs(M - Sm), alpha[i]/2, alpha[i], Sd);
// convert to sample size:
size = ceil(df) + 1;
// Print size:
cout << fixed << setprecision(0) << setw(16) << right << size << endl;

}
cout << endl;

}

Let's now look at some sample output using data taken from P.K.Hou, O. W. Lau & M.C. Wong, Analyst (1983) vol. 108, p 64. and
from Statistics for Analytical Chemistry, 3rd ed. (1994), pp 54-55 J. C. Miller and J. N. Miller, Ellis Horwood ISBN 0 13 0309907.
The values result from the determination of mercury by cold-vapour atomic absorption.

Only three measurements were made, and the Students-t test above gave a borderline result, so this example will show us how many
samples would need to be collected:

_____________________________________________________________
Estimated sample sizes required for various confidence levels
_____________________________________________________________

True Mean                               =  38.90000
Sample Mean                             =  37.80000
Sample Standard Deviation               =  0.96437

_______________________________________________________________
Confidence       Estimated          Estimated
 Value (%)      Sample Size        Sample Size
              (one sided test)    (two sided test)
_______________________________________________________________
    75.000               3               4
    90.000               7               9
    95.000              11              13
    99.000              20              22
    99.900              35              37
    99.990              50              53
    99.999              66              68

So in this case, many more measurements would have had to be made, for example at the 95% level, 14 measurements in total for
a two-sided test.

Comparing the means of two samples with the Students-t test

Imagine that we have two samples, and we wish to determine whether their means are different or not. This situation often arises
when determining whether a new process or treatment is better than an old one.

In this example, we'll be using the Car Mileage sample data from the NIST website. The data compares miles per gallon of US cars
with miles per gallon of Japanese cars.
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The sample code is in students_t_two_samples.cpp.

There are two ways in which this test can be conducted: we can assume that the true standard deviations of the two samples are equal
or not. If the standard deviations are assumed to be equal, then the calculation of the t-statistic is greatly simplified, so we'll examine
that case first. In real life we should verify whether this assumption is valid with a Chi-Squared test for equal variances.

We begin by defining a procedure that will conduct our test assuming equal variances:

// Needed headers:
#include <boost/math/distributions/students_t.hpp>
#include <iostream>
#include <iomanip>
// Simplify usage:
using namespace boost::math;
using namespace std;

void two_samples_t_test_equal_sd(
double Sm1, // Sm1 = Sample 1 Mean.
double Sd1, // Sd1 = Sample 1 Standard Deviation.
unsigned Sn1, // Sn1 = Sample 1 Size.
double Sm2, // Sm2 = Sample 2 Mean.
double Sd2, // Sd2 = Sample 2 Standard Deviation.
unsigned Sn2, // Sn2 = Sample 2 Size.
double alpha) // alpha = Significance Level.

{

Our procedure will begin by calculating the t-statistic, assuming equal variances the needed formulae are:

t =
Sm 1 − Sm2

sp
1

S n1
+ 1
S n2

sp =
(Sn1 − 1)Sd12 + (Sn2 − 1)Sd22

Sn1 + Sn2 − 2

ν = Sn1 + Sn2 − 2

where Sp is the "pooled" standard deviation of the two samples, and v is the number of degrees of freedom of the two combined
samples. We can now write the code to calculate the t-statistic:

// Degrees of freedom:
double v = Sn1 + Sn2 - 2;
cout << setw(55) << left << "Degrees of Freedom" << "=  " << v << "\n";
// Pooled variance:
double sp = sqrt(((Sn1-1) * Sd1 * Sd1 + (Sn2-1) * Sd2 * Sd2) / v);
cout << setw(55) << left << "Pooled Standard Deviation" << "=  " << sp << "\n";
// t-statistic:
double t_stat = (Sm1 - Sm2) / (sp * sqrt(1.0 / Sn1 + 1.0 / Sn2));
cout << setw(55) << left << "T Statistic" << "=  " << t_stat << "\n";

The next step is to define our distribution object, and calculate the complement of the probability:

students_t dist(v);
double q = cdf(complement(dist, fabs(t_stat)));
cout << setw(55) << left << "Probability that difference is due to chance" << "=  "

<< setprecision(3) << scientific << 2 * q << "\n\n";

Here we've used the absolute value of the t-statistic, because we initially want to know simply whether there is a difference or not
(a two-sided test). However, we can also test whether the mean of the second sample is greater or is less (one-sided test) than that
of the first: all the possible tests are summed up in the following table:
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TestHypothesis

Reject if complement of CDF for |t| < significance level / 2:

cdf(complement(dist, fabs(t))) < alpha / 2

The Null-hypothesis: there is no difference in means

Reject if complement of CDF for |t| > significance level / 2:

cdf(complement(dist, fabs(t))) < alpha / 2

The Alternative-hypothesis: there is a difference in means

Reject if CDF of t > significance level:

cdf(dist, t) > alpha

The Alternative-hypothesis: Sample 1 Mean is less than Sample
2 Mean.

Reject if complement of CDF of t > significance level:

cdf(complement(dist, t)) > alpha

The Alternative-hypothesis: Sample 1 Mean is greater than
Sample 2 Mean.

Note

For a two-sided test we must compare against alpha / 2 and not alpha.

Most of the rest of the sample program is pretty-printing, so we'll skip over that, and take a look at the sample output for alpha=0.05
(a 95% probability level). For comparison the dataplot output for the same data is in section 1.3.5.3 of the NIST/SEMATECH e-
Handbook of Statistical Methods..

   ________________________________________________
   Student t test for two samples (equal variances)
   ________________________________________________

   Number of Observations (Sample 1)                      =  249
   Sample 1 Mean                                          =  20.145
   Sample 1 Standard Deviation                            =  6.4147
   Number of Observations (Sample 2)                      =  79
   Sample 2 Mean                                          =  30.481
   Sample 2 Standard Deviation                            =  6.1077
   Degrees of Freedom                                     =  326
   Pooled Standard Deviation                              =  6.3426
   T Statistic                                            =  -12.621
   Probability that difference is due to chance           =  5.273e-030

   Results for Alternative Hypothesis and alpha           =  0.0500

   Alternative Hypothesis              Conclusion
   Sample 1 Mean != Sample 2 Mean       NOT REJECTED
   Sample 1 Mean <  Sample 2 Mean       NOT REJECTED
   Sample 1 Mean >  Sample 2 Mean       REJECTED

So with a probability that the difference is due to chance of just 5.273e-030, we can safely conclude that there is indeed a difference.

The tests on the alternative hypothesis show that we must also reject the hypothesis that Sample 1 Mean is greater than that for
Sample 2: in this case Sample 1 represents the miles per gallon for Japanese cars, and Sample 2 the miles per gallon for US cars, so
we conclude that Japanese cars are on average more fuel efficient.

Now that we have the simple case out of the way, let's look for a moment at the more complex one: that the standard deviations of
the two samples are not equal. In this case the formula for the t-statistic becomes:
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t =
Sm1 − Sm2

Sd1
2

Sn1
+

Sd2
2

Sn2

And for the combined degrees of freedom we use the Welch-Satterthwaite approximation:

ν =
(Sd12Sn1

+
Sd2
2

Sn2)2
(Sd12Sn1)2
(Sn1 − 1) +

(Sd22Sn2)2
(Sn2 − 1)

Note that this is one of the rare situations where the degrees-of-freedom parameter to the Student's t distribution is a real number,
and not an integer value.

Note

Some statistical packages truncate the effective degrees of freedom to an integer value: this may be necessary if
you are relying on lookup tables, but since our code fully supports non-integer degrees of freedom there is no need
to truncate in this case. Also note that when the degrees of freedom is small then the Welch-Satterthwaite approx-
imation may be a significant source of error.

Putting these formulae into code we get:

// Degrees of freedom:
double v = Sd1 * Sd1 / Sn1 + Sd2 * Sd2 / Sn2;
v *= v;
double t1 = Sd1 * Sd1 / Sn1;
t1 *= t1;
t1 /= (Sn1 - 1);
double t2 = Sd2 * Sd2 / Sn2;
t2 *= t2;
t2 /= (Sn2 - 1);
v /= (t1 + t2);
cout << setw(55) << left << "Degrees of Freedom" << "=  " << v << "\n";
// t-statistic:
double t_stat = (Sm1 - Sm2) / sqrt(Sd1 * Sd1 / Sn1 + Sd2 * Sd2 / Sn2);
cout << setw(55) << left << "T Statistic" << "=  " << t_stat << "\n";

Thereafter the code and the tests are performed the same as before. Using are car mileage data again, here's what the output looks
like:
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   __________________________________________________
   Student t test for two samples (unequal variances)
   __________________________________________________

   Number of Observations (Sample 1)                      =  249
   Sample 1 Mean                                          =  20.145
   Sample 1 Standard Deviation                            =  6.4147
   Number of Observations (Sample 2)                      =  79
   Sample 2 Mean                                          =  30.481
   Sample 2 Standard Deviation                            =  6.1077
   Degrees of Freedom                                     =  136.87
   T Statistic                                            =  -12.946
   Probability that difference is due to chance           =  1.571e-025

   Results for Alternative Hypothesis and alpha           =  0.0500

   Alternative Hypothesis              Conclusion
   Sample 1 Mean != Sample 2 Mean       NOT REJECTED
   Sample 1 Mean <  Sample 2 Mean       NOT REJECTED
   Sample 1 Mean >  Sample 2 Mean       REJECTED

This time allowing the variances in the two samples to differ has yielded a higher likelihood that the observed difference is down to
chance alone (1.571e-025 compared to 5.273e-030 when equal variances were assumed). However, the conclusion remains the same:
US cars are less fuel efficient than Japanese models.

Comparing two paired samples with the Student's t distribution

Imagine that we have a before and after reading for each item in the sample: for example we might have measured blood pressure
before and after administration of a new drug. We can't pool the results and compare the means before and after the change, because
each patient will have a different baseline reading. Instead we calculate the difference between before and after measurements in
each patient, and calculate the mean and standard deviation of the differences. To test whether a significant change has taken place,
we can then test the null-hypothesis that the true mean is zero using the same procedure we used in the single sample cases previously
discussed.

That means we can:

• Calculate confidence intervals of the mean. If the endpoints of the interval differ in sign then we are unable to reject the null-hy-
pothesis that there is no change.

• Test whether the true mean is zero. If the result is consistent with a true mean of zero, then we are unable to reject the null-hypo-
thesis that there is no change.

• Calculate how many pairs of readings we would need in order to obtain a significant result.

Chi Squared Distribution Examples

Confidence Intervals on the Standard Deviation

Once you have calculated the standard deviation for your data, a legitimate question to ask is "How reliable is the calculated standard
deviation?". For this situation the Chi Squared distribution can be used to calculate confidence intervals for the standard deviation.

The full example code & sample output is in chi_square_std_dev_test.cpp.

We'll begin by defining the procedure that will calculate and print out the confidence intervals:

void confidence_limits_on_std_deviation(
double Sd, // Sample Standard Deviation
unsigned N) // Sample size

{
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We'll begin by printing out some general information:

cout <<
"________________________________________________\n"
"2-Sided Confidence Limits For Standard Deviation\n"
"________________________________________________\n\n";

cout << setprecision(7);
cout << setw(40) << left << "Number of Observations" << "=  " << N << "\n";
cout << setw(40) << left << "Standard Deviation" << "=  " << Sd << "\n";

and then define a table of significance levels for which we'll calculate intervals:

double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

The distribution we'll need to calculate the confidence intervals is a Chi Squared distribution, with N-1 degrees of freedom:

chi_squared dist(N - 1);

For each value of alpha, the formula for the confidence interval is given by:

(N − 1)s2

χ( α2,N−1)
2 ≤ σ ≤

(N − 1)s2

χ(1− α
2,N−1)

2

Where 
χ( α2,N−1)
2

 is the upper critical value, and 
χ(1− α

2,N−1)
2

 is the lower critical value of the Chi Squared distribution.

In code we begin by printing out a table header:

cout << "\n\n"
"_____________________________________________\n"
"Confidence          Lower          Upper\n"
" Value (%)          Limit          Limit\n"
"_____________________________________________\n";

and then loop over the values of alpha and calculate the intervals for each: remember that the lower critical value is the same as the
quantile, and the upper critical value is the same as the quantile from the complement of the probability:

for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{

// Confidence value:
cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
// Calculate limits:
double lower_limit = sqrt((N - 1) * Sd * Sd / quantile(complement(dist, alpha[i] / 2)));
double upper_limit = sqrt((N - 1) * Sd * Sd / quantile(dist, alpha[i] / 2));
// Print Limits:
cout << fixed << setprecision(5) << setw(15) << right << lower_limit;
cout << fixed << setprecision(5) << setw(15) << right << upper_limit << endl;

}
cout << endl;

To see some example output we'll use the gear data from the NIST/SEMATECH e-Handbook of Statistical Methods.. The data rep-
resents measurements of gear diameter from a manufacturing process.
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________________________________________________
2-Sided Confidence Limits For Standard Deviation
________________________________________________

Number of Observations                  =  100
Standard Deviation                      =  0.006278908

_____________________________________________
Confidence          Lower          Upper
 Value (%)          Limit          Limit
_____________________________________________
    50.000        0.00601        0.00662
    75.000        0.00582        0.00685
    90.000        0.00563        0.00712
    95.000        0.00551        0.00729
    99.000        0.00530        0.00766
    99.900        0.00507        0.00812
    99.990        0.00489        0.00855
    99.999        0.00474        0.00895

So at the 95% confidence level we conclude that the standard deviation is between 0.00551 and 0.00729.

Confidence intervals as a function of the number of observations

Similarly, we can also list the confidence intervals for the standard deviation for the common confidence levels 95%, for increasing
numbers of observations.

The standard deviation used to compute these values is unity, so the limits listed are multipliers for any particular standard deviation.
For example, given a standard deviation of 0.0062789 as in the example above; for 100 observations the multiplier is 0.8780 giving
the lower confidence limit of 0.8780 * 0.006728 = 0.00551.

____________________________________________________
Confidence level (two-sided)            =  0.0500000
Standard Deviation                      =  1.0000000
________________________________________
Observations        Lower          Upper
                    Limit          Limit
________________________________________
         2         0.4461        31.9102
         3         0.5207         6.2847
         4         0.5665         3.7285
         5         0.5991         2.8736
         6         0.6242         2.4526
         7         0.6444         2.2021
         8         0.6612         2.0353
         9         0.6755         1.9158
        10         0.6878         1.8256
        15         0.7321         1.5771
        20         0.7605         1.4606
        30         0.7964         1.3443
        40         0.8192         1.2840
        50         0.8353         1.2461
        60         0.8476         1.2197
       100         0.8780         1.1617
       120         0.8875         1.1454
      1000         0.9580         1.0459
     10000         0.9863         1.0141
     50000         0.9938         1.0062
    100000         0.9956         1.0044
   1000000         0.9986         1.0014
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With just 2 observations the limits are from 0.445 up to to 31.9, so the standard deviation might be about half the observed value
up to 30 times the observed value!

Estimating a standard deviation with just a handful of values leaves a very great uncertainty, especially the upper limit. Note especially
how far the upper limit is skewed from the most likely standard deviation.

Even for 10 observations, normally considered a reasonable number, the range is still from 0.69 to 1.8, about a range of 0.7 to 2, and
is still highly skewed with an upper limit twice the median.

When we have 1000 observations, the estimate of the standard deviation is starting to look convincing, with a range from 0.95 to
1.05 - now near symmetrical, but still about + or - 5%.

Only when we have 10000 or more repeated observations can we start to be reasonably confident (provided we are sure that other
factors like drift are not creeping in).

For 10000 observations, the interval is 0.99 to 1.1 - finally a really convincing + or -1% confidence.

Chi-Square Test for the Standard Deviation

We use this test to determine whether the standard deviation of a sample differs from a specified value. Typically this occurs in
process change situations where we wish to compare the standard deviation of a new process to an established one.

The code for this example is contained in chi_square_std_dev_test.cpp, and we'll begin by defining the procedure that will print out
the test statistics:

void chi_squared_test(
double Sd, // Sample std deviation
double D, // True std deviation
unsigned N, // Sample size
double alpha) // Significance level

{

The procedure begins by printing a summary of the input data:

using namespace std;
using namespace boost::math;

// Print header:
cout <<

"______________________________________________\n"
"Chi Squared test for sample standard deviation\n"
"______________________________________________\n\n";

cout << setprecision(5);
cout << setw(55) << left << "Number of Observations" << "=  " << N << "\n";
cout << setw(55) << left << "Sample Standard Deviation" << "=  " << Sd << "\n";
cout << setw(55) << left << "Expected True Standard Deviation" << "=  " << D << "\n\n";

The test statistic (T) is simply the ratio of the sample and "true" standard deviations squared, multiplied by the number of degrees
of freedom (the sample size less one):

double t_stat = (N - 1) * (Sd / D) * (Sd / D);
cout << setw(55) << left << "Test Statistic" << "=  " << t_stat << "\n";

The distribution we need to use, is a Chi Squared distribution with N-1 degrees of freedom:

chi_squared dist(N - 1);

The various hypothesis that can be tested are summarised in the following table:
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TestHypothesis

Reject if T < χ2
(1-alpha/2; N-1) or T > χ2

(alpha/2; N-1)The null-hypothesis: there is no difference in standard deviation
from the specified value

Reject if χ2
(1-alpha/2; N-1) >= T >= χ2

(alpha/2; N-1)The alternative hypothesis: there is a difference in standard de-
viation from the specified value

Reject if χ2
(1-alpha; N-1) <= TThe alternative hypothesis: the standard deviation is less than

the specified value

Reject if χ2
(alpha; N-1) >= TThe alternative hypothesis: the standard deviation is greater than

the specified value

Where χ2
(alpha; N-1) is the upper critical value of the Chi Squared distribution, and χ2

(1-alpha; N-1) is the lower critical value.

Recall that the lower critical value is the same as the quantile, and the upper critical value is the same as the quantile from the com-
plement of the probability, that gives us the following code to calculate the critical values:

double ucv = quantile(complement(dist, alpha));
double ucv2 = quantile(complement(dist, alpha / 2));
double lcv = quantile(dist, alpha);
double lcv2 = quantile(dist, alpha / 2);
cout << setw(55) << left << "Upper Critical Value at alpha: " << "=  "

<< setprecision(3) << scientific << ucv << "\n";
cout << setw(55) << left << "Upper Critical Value at alpha/2: " << "=  "

<< setprecision(3) << scientific << ucv2 << "\n";
cout << setw(55) << left << "Lower Critical Value at alpha: " << "=  "

<< setprecision(3) << scientific << lcv << "\n";
cout << setw(55) << left << "Lower Critical Value at alpha/2: " << "=  "

<< setprecision(3) << scientific << lcv2 << "\n\n";

Now that we have the critical values, we can compare these to our test statistic, and print out the result of each hypothesis and test:

cout << setw(55) << left <<
"Results for Alternative Hypothesis and alpha" << "=  "
<< setprecision(4) << fixed << alpha << "\n\n";

cout << "Alternative Hypothesis              Conclusion\n";

cout << "Standard Deviation != " << setprecision(3) << fixed << D << "            ";
if((ucv2 < t_stat) || (lcv2 > t_stat))

cout << "ACCEPTED\n";
else

cout << "REJECTED\n";

cout << "Standard Deviation  < " << setprecision(3) << fixed << D << "            ";
if(lcv > t_stat)

cout << "ACCEPTED\n";
else

cout << "REJECTED\n";

cout << "Standard Deviation  > " << setprecision(3) << fixed << D << "            ";
if(ucv < t_stat)

cout << "ACCEPTED\n";
else

cout << "REJECTED\n";
cout << endl << endl;
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To see some example output we'll use the gear data from the NIST/SEMATECH e-Handbook of Statistical Methods.. The data rep-
resents measurements of gear diameter from a manufacturing process. The program output is deliberately designed to mirror the
DATAPLOT output shown in the NIST Handbook Example.

______________________________________________
Chi Squared test for sample standard deviation
______________________________________________

Number of Observations                                 =  100
Sample Standard Deviation                              =  0.00628
Expected True Standard Deviation                       =  0.10000

Test Statistic                                         =  0.39030
CDF of test statistic:                                 =  1.438e-099
Upper Critical Value at alpha:                         =  1.232e+002
Upper Critical Value at alpha/2:                       =  1.284e+002
Lower Critical Value at alpha:                         =  7.705e+001
Lower Critical Value at alpha/2:                       =  7.336e+001

Results for Alternative Hypothesis and alpha           =  0.0500

Alternative Hypothesis              Conclusion
Standard Deviation != 0.100            ACCEPTED
Standard Deviation  < 0.100            ACCEPTED
Standard Deviation  > 0.100            REJECTED

In this case we are testing whether the sample standard deviation is 0.1, and the null-hypothesis is rejected, so we conclude that the
standard deviation is not 0.1.

For an alternative example, consider the silicon wafer data again from the NIST/SEMATECH e-Handbook of Statistical Methods..
In this scenario a supplier of 100 ohm.cm silicon wafers claims that his fabrication process can produce wafers with sufficient con-
sistency so that the standard deviation of resistivity for the lot does not exceed 10 ohm.cm. A sample of N = 10 wafers taken from
the lot has a standard deviation of 13.97 ohm.cm, and the question we ask ourselves is "Is the suppliers claim correct?".

The program output now looks like this:

______________________________________________
Chi Squared test for sample standard deviation
______________________________________________

Number of Observations                                 =  10
Sample Standard Deviation                              =  13.97000
Expected True Standard Deviation                       =  10.00000

Test Statistic                                         =  17.56448
CDF of test statistic:                                 =  9.594e-001
Upper Critical Value at alpha:                         =  1.692e+001
Upper Critical Value at alpha/2:                       =  1.902e+001
Lower Critical Value at alpha:                         =  3.325e+000
Lower Critical Value at alpha/2:                       =  2.700e+000

Results for Alternative Hypothesis and alpha           =  0.0500

Alternative Hypothesis              Conclusion
Standard Deviation != 10.000            REJECTED
Standard Deviation  < 10.000            REJECTED
Standard Deviation  > 10.000            ACCEPTED

In this case, our null-hypothesis is that the standard deviation of the sample is less than 10: this hypothesis is rejected in the analysis
above, and so we reject the manufacturers claim.
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Estimating the Required Sample Sizes for a Chi-Square Test for the Standard Deviation

Suppose we conduct a Chi Squared test for standard deviation and the result is borderline, a legitimate question to ask is "How large
would the sample size have to be in order to produce a definitive result?"

The class template chi_squared_distribution has a static method find_degrees_of_freedom that will calculate this value for
some acceptable risk of type I failure alpha, type II failure beta, and difference from the standard deviation diff. Please note that the
method used works on variance, and not standard deviation as is usual for the Chi Squared Test.

The code for this example is located in chi_square_std_dev_test.cpp.

We begin by defining a procedure to print out the sample sizes required for various risk levels:

void chi_squared_sample_sized(
double diff, // difference from variance to detect
double variance) // true variance

{

The procedure begins by printing out the input data:

using namespace std;
using namespace boost::math;

// Print out general info:
cout <<

"_____________________________________________________________\n"
"Estimated sample sizes required for various confidence levels\n"
"_____________________________________________________________\n\n";

cout << setprecision(5);
cout << setw(40) << left << "True Variance" << "=  " << variance << "\n";
cout << setw(40) << left << "Difference to detect" << "=  " << diff << "\n";

And defines a table of significance levels for which we'll calculate sample sizes:

double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

For each value of alpha we can calculate two sample sizes: one where the sample variance is less than the true value by diff and one
where it is greater than the true value by diff. Thanks to the asymmetric nature of the Chi Squared distribution these two values will
not be the same, the difference in their calculation differs only in the sign of diff that's passed to find_degrees_of_freedom. Finally
in this example we'll simply things, and let risk level beta be the same as alpha:
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cout << "\n\n"
"_______________________________________________________________\n"
"Confidence       Estimated          Estimated\n"
" Value (%)      Sample Size        Sample Size\n"
"                (lower one         (upper one\n"
"                 sided test)        sided test)\n"
"_______________________________________________________________\n";

//
// Now print out the data for the table rows.
//
for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{

// Confidence value:
cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
// calculate df for a lower single sided test:
double df = chi_squared::find_degrees_of_freedom(

-diff, alpha[i], alpha[i], variance);
// convert to sample size:
double size = ceil(df) + 1;
// Print size:
cout << fixed << setprecision(0) << setw(16) << right << size;
// calculate df for an upper single sided test:
df = chi_squared::find_degrees_of_freedom(

diff, alpha[i], alpha[i], variance);
// convert to sample size:
size = ceil(df) + 1;
// Print size:
cout << fixed << setprecision(0) << setw(16) << right << size << endl;

}
cout << endl;

For some example output, consider the silicon wafer data from the NIST/SEMATECH e-Handbook of Statistical Methods.. In this
scenario a supplier of 100 ohm.cm silicon wafers claims that his fabrication process can produce wafers with sufficient consistency
so that the standard deviation of resistivity for the lot does not exceed 10 ohm.cm. A sample of N = 10 wafers taken from the lot has
a standard deviation of 13.97 ohm.cm, and the question we ask ourselves is "How large would our sample have to be to reliably detect
this difference?".

To use our procedure above, we have to convert the standard deviations to variance (square them), after which the program output
looks like this:
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_____________________________________________________________
Estimated sample sizes required for various confidence levels
_____________________________________________________________

True Variance                           =  100.00000
Difference to detect                    =  95.16090

_______________________________________________________________
Confidence       Estimated          Estimated
 Value (%)      Sample Size        Sample Size
                (lower one         (upper one
                 sided test)        sided test)
_______________________________________________________________
    50.000               2               2
    75.000               2              10
    90.000               4              32
    95.000               5              51
    99.000               7              99
    99.900              11             174
    99.990              15             251
    99.999              20             330

In this case we are interested in a upper single sided test. So for example, if the maximum acceptable risk of falsely rejecting the
null-hypothesis is 0.05 (Type I error), and the maximum acceptable risk of failing to reject the null-hypothesis is also 0.05 (Type II
error), we estimate that we would need a sample size of 51.

F Distribution Examples

Imagine that you want to compare the standard deviations of two sample to determine if they differ in any significant way, in this
situation you use the F distribution and perform an F-test. This situation commonly occurs when conducting a process change com-
parison: "is a new process more consistent that the old one?".

In this example we'll be using the data for ceramic strength from http://www.itl.nist.gov/div898/handbook/eda/section4/eda42a1.htm.
The data for this case study were collected by Said Jahanmir of the NIST Ceramics Division in 1996 in connection with a NIST/industry
ceramics consortium for strength optimization of ceramic strength.

The example program is f_test.cpp, program output has been deliberately made as similar as possible to the DATAPLOT output in
the corresponding NIST EngineeringStatistics Handbook example.

We'll begin by defining the procedure to conduct the test:

void f_test(
double sd1, // Sample 1 std deviation
double sd2, // Sample 2 std deviation
double N1, // Sample 1 size
double N2, // Sample 2 size
double alpha) // Significance level

{

The procedure begins by printing out a summary of our input data:
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using namespace std;
using namespace boost::math;

// Print header:
cout <<

"____________________________________\n"
"F test for equal standard deviations\n"
"____________________________________\n\n";

cout << setprecision(5);
cout << "Sample 1:\n";
cout << setw(55) << left << "Number of Observations" << "=  " << N1 << "\n";
cout << setw(55) << left << "Sample Standard Deviation" << "=  " << sd1 << "\n\n";
cout << "Sample 2:\n";
cout << setw(55) << left << "Number of Observations" << "=  " << N2 << "\n";
cout << setw(55) << left << "Sample Standard Deviation" << "=  " << sd2 << "\n\n";

The test statistic for an F-test is simply the ratio of the square of the two standard deviations:

F = s1
2 / s2

2

where s1 is the standard deviation of the first sample and s2 is the standard deviation of the second sample. Or in code:

double F = (sd1 / sd2);
F *= F;
cout << setw(55) << left << "Test Statistic" << "=  " << F << "\n\n";

At this point a word of caution: the F distribution is asymmetric, so we have to be careful how we compute the tests, the following
table summarises the options available:

TestHypothesis

Reject if F <= F(1-alpha/2; N1-1, N2-1) or F >= F(alpha/2; N1-1, N2-1)The null-hypothesis: there is no difference in standard deviations
(two sided test)

Reject if F(1-alpha/2; N1-1, N2-1) <= F <= F(alpha/2; N1-1, N2-1)The alternative hypothesis: there is a difference in means (two
sided test)

Reject if F < F(alpha; N1-1, N2-1)The alternative hypothesis: Standard deviation of sample 1 is
greater than that of sample 2

Reject if F > F(1-alpha; N1-1, N2-1)The alternative hypothesis: Standard deviation of sample 1 is
less than that of sample 2

Where F(1-alpha; N1-1, N2-1) is the lower critical value of the F distribution with degrees of freedom N1-1 and N2-1, and F(alpha; N1-1,

N2-1) is the upper critical value of the F distribution with degrees of freedom N1-1 and N2-1.

The upper and lower critical values can be computed using the quantile function:

F(1-alpha; N1-1, N2-1) = quantile(fisher_f(N1-1, N2-1), alpha)

F(alpha; N1-1, N2-1) = quantile(complement(fisher_f(N1-1, N2-1), alpha))

In our example program we need both upper and lower critical values for alpha and for alpha/2:
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double ucv = quantile(complement(dist, alpha));
double ucv2 = quantile(complement(dist, alpha / 2));
double lcv = quantile(dist, alpha);
double lcv2 = quantile(dist, alpha / 2);
cout << setw(55) << left << "Upper Critical Value at alpha: " << "=  "

<< setprecision(3) << scientific << ucv << "\n";
cout << setw(55) << left << "Upper Critical Value at alpha/2: " << "=  "

<< setprecision(3) << scientific << ucv2 << "\n";
cout << setw(55) << left << "Lower Critical Value at alpha: " << "=  "

<< setprecision(3) << scientific << lcv << "\n";
cout << setw(55) << left << "Lower Critical Value at alpha/2: " << "=  "

<< setprecision(3) << scientific << lcv2 << "\n\n";

The final step is to perform the comparisons given above, and print out whether the hypothesis is rejected or not:

cout << setw(55) << left <<
"Results for Alternative Hypothesis and alpha" << "=  "
<< setprecision(4) << fixed << alpha << "\n\n";

cout << "Alternative Hypothesis                                    Conclusion\n";

cout << "Standard deviations are unequal (two sided test)          ";
if((ucv2 < F) || (lcv2 > F))

cout << "ACCEPTED\n";
else

cout << "REJECTED\n";

cout << "Standard deviation 1 is less than standard deviation 2    ";
if(lcv > F)

cout << "ACCEPTED\n";
else

cout << "REJECTED\n";

cout << "Standard deviation 1 is greater than standard deviation 2 ";
if(ucv < F)

cout << "ACCEPTED\n";
else

cout << "REJECTED\n";
cout << endl << endl;

Using the ceramic strength data as an example we get the following output:
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F test for equal standard deviations
____________________________________

Sample 1:
Number of Observations                                 =  240
Sample Standard Deviation                              =  65.549

Sample 2:
Number of Observations                                 =  240
Sample Standard Deviation                              =  61.854

Test Statistic                                         =  1.123

CDF of test statistic:                                 =  8.148e-001
Upper Critical Value at alpha:                         =  1.238e+000
Upper Critical Value at alpha/2:                       =  1.289e+000
Lower Critical Value at alpha:                         =  8.080e-001
Lower Critical Value at alpha/2:                       =  7.756e-001

Results for Alternative Hypothesis and alpha           =  0.0500

Alternative Hypothesis                                    Conclusion
Standard deviations are unequal (two sided test)          REJECTED
Standard deviation 1 is less than standard deviation 2    REJECTED
Standard deviation 1 is greater than standard deviation 2 REJECTED

In this case we are unable to reject the null-hypothesis, and must instead reject the alternative hypothesis.

By contrast let's see what happens when we use some different sample data:, once again from the NIST Engineering Statistics
Handbook: A new procedure to assemble a device is introduced and tested for possible improvement in time of assembly. The
question being addressed is whether the standard deviation of the new assembly process (sample 2) is better (i.e., smaller) than the
standard deviation for the old assembly process (sample 1).

____________________________________
F test for equal standard deviations
____________________________________

Sample 1:
Number of Observations                                 =  11.00000
Sample Standard Deviation                              =  4.90820

Sample 2:
Number of Observations                                 =  9.00000
Sample Standard Deviation                              =  2.58740

Test Statistic                                         =  3.59847

CDF of test statistic:                                 =  9.589e-001
Upper Critical Value at alpha:                         =  3.347e+000
Upper Critical Value at alpha/2:                       =  4.295e+000
Lower Critical Value at alpha:                         =  3.256e-001
Lower Critical Value at alpha/2:                       =  2.594e-001

Results for Alternative Hypothesis and alpha           =  0.0500

Alternative Hypothesis                                    Conclusion
Standard deviations are unequal (two sided test)          REJECTED
Standard deviation 1 is less than standard deviation 2    REJECTED
Standard deviation 1 is greater than standard deviation 2 ACCEPTED
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In this case we take our null hypothesis as "standard deviation 1 is less than or equal to standard deviation 2", since this represents
the "no change" situation. So we want to compare the upper critical value at alpha (a one sided test) with the test statistic, and since
3.35 < 3.6 this hypothesis must be rejected. We therefore conclude that there is a change for the better in our standard deviation.

Binomial Distribution Examples

See also the reference documentation for the Binomial Distribution.

Binomial Coin-Flipping Example

An example of a Bernoulli process is coin flipping. A variable in such a sequence may be called a Bernoulli variable.

This example shows using the Binomial distribution to predict the probability of heads and tails when throwing a coin.

The number of correct answers (say heads), X, is distributed as a binomial random variable with binomial distribution parameters
number of trials (flips) n = 10 and probability (success_fraction) of getting a head p = 0.5 (a 'fair' coin).

(Our coin is assumed fair, but we could easily change the success_fraction parameter p from 0.5 to some other value to simulate an
unfair coin, say 0.6 for one with chewing gum on the tail, so it is more likely to fall tails down and heads up).

First we need some includes and using statements to be able to use the binomial distribution, some std input and output, and get
started:

#include <boost/math/distributions/binomial.hpp>
using boost::math::binomial;

#include <iostream>
using std::cout; using std::endl; using std::left;

#include <iomanip>
using std::setw;

int main()
{
cout << "Using Binomial distribution to predict how many heads and tails." << endl;
try
{

See note with the catch block about why a try and catch block is always a good idea.

First, construct a binomial distribution with parameters success_fraction 1/2, and how many flips.

const double success_fraction = 0.5; // = 50% = 1/2 for a 'fair' coin.
int flips = 10;
binomial flip(flips, success_fraction);

cout.precision(4);

Then some examples of using Binomial moments (and echoing the parameters).
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cout << "From " << flips << " one can expect to get on average "
<< mean(flip) << " heads (or tails)." << endl;

cout << "Mode is " << mode(flip) << endl;
cout << "Standard deviation is " << standard_deviation(flip) << endl;
cout << "So about 2/3 will lie within 1 standard deviation and get between "
<< ceil(mean(flip) - standard_deviation(flip)) << " and "
<< floor(mean(flip) + standard_deviation(flip)) << " correct." << endl;

cout << "Skewness is " << skewness(flip) << endl;
// Skewness of binomial distributions is only zero (symmetrical)
// if success_fraction is exactly one half,
// for example, when flipping 'fair' coins.
cout << "Skewness if success_fraction is " << flip.success_fraction()
<< " is " << skewness(flip) << endl << endl; // Expect zero for a 'fair' coin.

Now we show a variety of predictions on the probability of heads:

cout << "For " << flip.trials() << " coin flips: " << endl;
cout << "Probability of getting no heads is " << pdf(flip, 0) << endl;
cout << "Probability of getting at least one head is " << 1. - pdf(flip, 0) << endl;

When we want to calculate the probability for a range or values we can sum the PDF's:

cout << "Probability of getting 0 or 1 heads is "
<< pdf(flip, 0) + pdf(flip, 1) << endl; // sum of exactly == probabilities

Or we can use the cdf.

cout << "Probability of getting 0 or 1 (<= 1) heads is " << cdf(flip, 1) << endl;
cout << "Probability of getting 9 or 10 heads is " << pdf(flip, 9) + pdf(flip, 10) << endl;

Note that using

cout << "Probability of getting 9 or 10 heads is " << 1. - cdf(flip, 8) << endl;

is less accurate than using the complement

cout << "Probability of getting 9 or 10 heads is " << cdf(complement(flip, 8)) << endl;

Since the subtraction may involve cancellation error, where as cdf(complement(flip, 8)) does not use such a subtraction in-
ternally, and so does not exhibit the problem.

To get the probability for a range of heads, we can either add the pdfs for each number of heads

cout << "Probability of between 4 and 6 heads (4 or 5 or 6) is "
//  P(X == 4) + P(X == 5) + P(X == 6)
<< pdf(flip, 4) + pdf(flip, 5) + pdf(flip, 6) << endl;

But this is probably less efficient than using the cdf

cout << "Probability of between 4 and 6 heads (4 or 5 or 6) is "
// P(X <= 6) - P(X <= 3) == P(X < 4)
<< cdf(flip, 6) - cdf(flip, 3) << endl;

Certainly for a bigger range like, 3 to 7
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cout << "Probability of between 3 and 7 heads (3, 4, 5, 6 or 7) is "
// P(X <= 7) - P(X <= 2) == P(X < 3)
<< cdf(flip, 7) - cdf(flip, 2) << endl;

cout << endl;

Finally, print two tables of probability for the exactly and at least a number of heads.

// Print a table of probability for the exactly a number of heads.
cout << "Probability of getting exactly (==) heads" << endl;
for (int successes = 0; successes <= flips; successes++)
{ // Say success means getting a head (or equally success means getting a tail).
double probability = pdf(flip, successes);
cout << left << setw(2) << successes << "     " << setw(10)
<< probability << " or 1 in " << 1. / probability
<< ", or " << probability * 100. << "%" << endl;

} // for i
cout << endl;

// Tabulate the probability of getting between zero heads and 0 upto 10 heads.
cout << "Probability of getting upto (<=) heads" << endl;
for (int successes = 0; successes <= flips; successes++)
{ // Say success means getting a head
// (equally success could mean getting a tail).
double probability = cdf(flip, successes); // P(X <= heads)
cout << setw(2) << successes << "        " << setw(10) << left
<< probability << " or 1 in " << 1. / probability << ", or "
<< probability * 100. << "%"<< endl;

} // for i

The last (0 to 10 heads) must, of course, be 100% probability.

}
catch(const std::exception& e)
{
//

It is always essential to include try & catch blocks because default policies are to throw exceptions on arguments that are out of domain
or cause errors like numeric-overflow.

Lacking try & catch blocks, the program will abort, whereas the message below from the thrown exception will give some helpful
clues as to the cause of the problem.

std::cout <<
"\n""Message from thrown exception was:\n   " << e.what() << std::endl;

}

See binomial_coinflip_example.cpp for full source code, the program output looks like this:
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Using Binomial distribution to predict how many heads and tails.
From 10 one can expect to get on average 5 heads (or tails).
Mode is 5
Standard deviation is 1.581
So about 2/3 will lie within 1 standard deviation and get between 4 and 6 correct.
Skewness is 0
Skewness if success_fraction is 0.5 is 0

For 10 coin flips:
Probability of getting no heads is 0.0009766
Probability of getting at least one head is 0.999
Probability of getting 0 or 1 heads is 0.01074
Probability of getting 0 or 1 (<= 1) heads is 0.01074
Probability of getting 9 or 10 heads is 0.01074
Probability of getting 9 or 10 heads is 0.01074
Probability of getting 9 or 10 heads is 0.01074
Probability of between 4 and 6 heads (4 or 5 or 6) is 0.6562
Probability of between 4 and 6 heads (4 or 5 or 6) is 0.6563
Probability of between 3 and 7 heads (3, 4, 5, 6 or 7) is 0.8906

Probability of getting exactly (==) heads
0      0.0009766  or 1 in 1024, or 0.09766%
1      0.009766   or 1 in 102.4, or 0.9766%
2      0.04395    or 1 in 22.76, or 4.395%
3      0.1172     or 1 in 8.533, or 11.72%
4      0.2051     or 1 in 4.876, or 20.51%
5      0.2461     or 1 in 4.063, or 24.61%
6      0.2051     or 1 in 4.876, or 20.51%
7      0.1172     or 1 in 8.533, or 11.72%
8      0.04395    or 1 in 22.76, or 4.395%
9      0.009766   or 1 in 102.4, or 0.9766%
10     0.0009766  or 1 in 1024, or 0.09766%

Probability of getting upto (<=) heads
0         0.0009766  or 1 in 1024, or 0.09766%
1         0.01074    or 1 in 93.09, or 1.074%
2         0.05469    or 1 in 18.29, or 5.469%
3         0.1719     or 1 in 5.818, or 17.19%
4         0.377      or 1 in 2.653, or 37.7%
5         0.623      or 1 in 1.605, or 62.3%
6         0.8281     or 1 in 1.208, or 82.81%
7         0.9453     or 1 in 1.058, or 94.53%
8         0.9893     or 1 in 1.011, or 98.93%
9         0.999      or 1 in 1.001, or 99.9%
10        1          or 1 in 1, or 100%

Binomial Quiz Example

A multiple choice test has four possible answers to each of 16 questions. A student guesses the answer to each question, so the
probability of getting a correct answer on any given question is one in four, a quarter, 1/4, 25% or fraction 0.25. The conditions of
the binomial experiment are assumed to be met: n = 16 questions constitute the trials; each question results in one of two possible
outcomes (correct or incorrect); the probability of being correct is 0.25 and is constant if no knowledge about the subject is assumed;
the questions are answered independently if the student's answer to a question in no way influences his/her answer to another question.

First, we need to be able to use the binomial distribution constructor (and some std input/output, of course).
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#include <boost/math/distributions/binomial.hpp>
using boost::math::binomial;

#include <iostream>
using std::cout; using std::endl;
using std::ios; using std::flush; using std::left; using std::right; using std::fixed;

#include <iomanip>
using std::setw; using std::setprecision;

#include <exception>
using std::exception;

The number of correct answers, X, is distributed as a binomial random variable with binomial distribution parameters: questions n
and success fraction probability p. So we construct a binomial distribution:

int questions = 16; // All the questions in the quiz.
int answers = 4; // Possible answers to each question.
double success_fraction = 1. / answers; // If a random guess, p = 1/4 = 0.25.
binomial quiz(questions, success_fraction);

and display the distribution parameters we used thus:

cout << "In a quiz with " << quiz.trials()
<< " questions and with a probability of guessing right of "
<< quiz.success_fraction() * 100 << " %"
<< " or 1 in " << static_cast<int>(1. / quiz.success_fraction()) << endl;

Show a few probabilities of just guessing:

cout << "Probability of getting none right is " << pdf(quiz, 0) << endl; // 0.010023
cout << "Probability of getting exactly one right is " << pdf(quiz, 1) << endl;
cout << "Probability of getting exactly two right is " << pdf(quiz, 2) << endl;
int pass_score = 11;
cout << "Probability of getting exactly " << pass_score << " answers right by chance is "
<< pdf(quiz, pass_score) << endl;

cout << "Probability of getting all " << questions << " answers right by chance is "
<< pdf(quiz, questions) << endl;

Probability of getting none right is 0.0100226
Probability of getting exactly one right is 0.0534538
Probability of getting exactly two right is 0.133635
Probability of getting exactly 11 right is 0.000247132
Probability of getting exactly all 16 answers right by chance is 2.32831e-010

These don't give any encouragement to guessers!

We can tabulate the 'getting exactly right' ( == ) probabilities thus:

cout << "\n" "Guessed Probability" << right << endl;
for (int successes = 0; successes <= questions; successes++)
{
double probability = pdf(quiz, successes);
cout << setw(2) << successes << "      " << probability << endl;

}
cout << endl;
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Guessed Probability
 0      0.0100226
 1      0.0534538
 2      0.133635
 3      0.207876
 4      0.225199
 5      0.180159
 6      0.110097
 7      0.0524273
 8      0.0196602
 9      0.00582526
10      0.00135923
11      0.000247132
12      3.43239e-005
13      3.5204e-006
14      2.51457e-007
15      1.11759e-008
16      2.32831e-010

Then we can add the probabilities of some 'exactly right' like this:

cout << "Probability of getting none or one right is " << pdf(quiz, 0) + pdf(quiz, 1) << endl;

Probability of getting none or one right is 0.0634764

But if more than a couple of scores are involved, it is more convenient (and may be more accurate) to use the Cumulative Distribution
Function (cdf) instead:

cout << "Probability of getting none or one right is " << cdf(quiz, 1) << endl;

Probability of getting none or one right is 0.0634764

Since the cdf is inclusive, we can get the probability of getting up to 10 right ( <= )

cout << "Probability of getting <= 10 right (to fail) is " << cdf(quiz, 10) << endl;

Probability of getting <= 10 right (to fail) is 0.999715

To get the probability of getting 11 or more right (to pass), it is tempting to use

1 - cdf(quiz, 10)

to get the probability of > 10

cout << "Probability of getting > 10 right (to pass) is " << 1 - cdf(quiz, 10) << endl;

Probability of getting > 10 right (to pass) is 0.000285239

But this should be resisted in favor of using the complements function (see why complements?).

cout << "Probability of getting > 10 right (to pass) is " << cdf(complement(quiz, 10)) << endl;
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Probability of getting > 10 right (to pass) is 0.000285239

And we can check that these two, <= 10 and > 10, add up to unity.

BOOST_ASSERT((cdf(quiz, 10) + cdf(complement(quiz, 10))) == 1.);

If we want a < rather than a <= test, because the CDF is inclusive, we must subtract one from the score.

cout << "Probability of getting less than " << pass_score
<< " (< " << pass_score << ") answers right by guessing is "
<< cdf(quiz, pass_score -1) << endl;

Probability of getting less than 11 (< 11) answers right by guessing is 0.999715

and similarly to get a >= rather than a > test we also need to subtract one from the score (and can again check the sum is unity). This
is because if the cdf is inclusive, then its complement must be exclusive otherwise there would be one possible outcome counted
twice!

cout << "Probability of getting at least " << pass_score
<< "(>= " << pass_score << ") answers right by guessing is "
<< cdf(complement(quiz, pass_score-1))
<< ", only 1 in " << 1/cdf(complement(quiz, pass_score-1)) << endl;

BOOST_ASSERT((cdf(quiz, pass_score -1) + cdf(complement(quiz, pass_score-1))) == 1);

Probability of getting at least 11 (>= 11) answers right by guessing is 0.000285239, only 1 in ↵
3505.83

Finally we can tabulate some probabilities:

cout << "\n" "At most (<=)""\n""Guessed OK   Probability" << right << endl;
for (int score = 0; score <= questions; score++)
{
cout << setw(2) << score << "           " << setprecision(10)
<< cdf(quiz, score) << endl;

}
cout << endl;
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At most (<=)
Guessed OK   Probability
 0           0.01002259576
 1           0.0634764398
 2           0.1971110499
 3           0.4049871101
 4           0.6301861752
 5           0.8103454274
 6           0.9204427481
 7           0.9728700437
 8           0.9925302796
 9           0.9983555346
10           0.9997147608
11           0.9999618928
12           0.9999962167
13           0.9999997371
14           0.9999999886
15           0.9999999998
16           1

cout << "\n" "At least (>)""\n""Guessed OK   Probability" << right << endl;
for (int score = 0; score <= questions; score++)
{
cout << setw(2) << score << "           " << setprecision(10)
<< cdf(complement(quiz, score)) << endl;

}

At least (>)
Guessed OK   Probability
 0           0.9899774042
 1           0.9365235602
 2           0.8028889501
 3           0.5950128899
 4           0.3698138248
 5           0.1896545726
 6           0.07955725188
 7           0.02712995629
 8           0.00746972044
 9           0.001644465374
10           0.0002852391917
11           3.810715862e-005
12           3.783265129e-006
13           2.628657967e-007
14           1.140870154e-008
15           2.328306437e-010
16           0

We now consider the probabilities of ranges of correct guesses.

First, calculate the probability of getting a range of guesses right, by adding the exact probabilities of each from low ... high.
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int low = 3; // Getting at least 3 right.
int high = 5; // Getting as most 5 right.
double sum = 0.;
for (int i = low; i <= high; i++)
{
sum += pdf(quiz, i);

}
cout.precision(4);
cout << "Probability of getting between "
<< low << " and " << high << " answers right by guessing is "
<< sum << endl; // 0.61323

Probability of getting between 3 and 5 answers right by guessing is 0.6132

Or, usually better, we can use the difference of cdfs instead:

cout << "Probability of getting between " << low << " and " << high << " answers right by guess↵
ing is "
<< cdf(quiz, high) - cdf(quiz, low - 1) << endl; // 0.61323

Probability of getting between 3 and 5 answers right by guessing is 0.6132

And we can also try a few more combinations of high and low choices:

low = 1; high = 6;
cout << "Probability of getting between " << low << " and " << high << " answers right by guess↵
ing is "
<< cdf(quiz, high) - cdf(quiz, low - 1) << endl; // 1 and 6 P= 0.91042

low = 1; high = 8;
cout << "Probability of getting between " << low << " and " << high << " answers right by guess↵
ing is "
<< cdf(quiz, high) - cdf(quiz, low - 1) << endl; // 1 <= x 8 P = 0.9825

low = 4; high = 4;
cout << "Probability of getting between " << low << " and " << high << " answers right by guess↵
ing is "
<< cdf(quiz, high) - cdf(quiz, low - 1) << endl; // 4 <= x 4 P = 0.22520

Probability of getting between 1 and 6 answers right by guessing is 0.9104
Probability of getting between 1 and 8 answers right by guessing is 0.9825
Probability of getting between 4 and 4 answers right by guessing is 0.2252

Using Binomial distribution moments

Using moments of the distribution, we can say more about the spread of results from guessing.

cout << "By guessing, on average, one can expect to get " << mean(quiz) << " correct an↵
swers." << endl;
cout << "Standard deviation is " << standard_deviation(quiz) << endl;
cout << "So about 2/3 will lie within 1 standard deviation and get between "
<< ceil(mean(quiz) - standard_deviation(quiz)) << " and "
<< floor(mean(quiz) + standard_deviation(quiz)) << " correct." << endl;

cout << "Mode (the most frequent) is " << mode(quiz) << endl;
cout << "Skewness is " << skewness(quiz) << endl;
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By guessing, on average, one can expect to get 4 correct answers.
Standard deviation is 1.732
So about 2/3 will lie within 1 standard deviation and get between 3 and 5 correct.
Mode (the most frequent) is 4
Skewness is 0.2887

Quantiles

The quantiles (percentiles or percentage points) for a few probability levels:

cout << "Quartiles " << quantile(quiz, 0.25) << " to "
<< quantile(complement(quiz, 0.25)) << endl; // Quartiles

cout << "1 standard deviation " << quantile(quiz, 0.33) << " to "
<< quantile(quiz, 0.67) << endl; // 1 sd

cout << "Deciles " << quantile(quiz, 0.1) << " to "
<< quantile(complement(quiz, 0.1))<< endl; // Deciles

cout << "5 to 95% " << quantile(quiz, 0.05) << " to "
<< quantile(complement(quiz, 0.05))<< endl; // 5 to 95%

cout << "2.5 to 97.5% " << quantile(quiz, 0.025) << " to "
<< quantile(complement(quiz, 0.025)) << endl; // 2.5 to 97.5%

cout << "2 to 98% " << quantile(quiz, 0.02) << " to "
<< quantile(complement(quiz, 0.02)) << endl; //  2 to 98%

cout << "If guessing then percentiles 1 to 99% will get " << quantile(quiz, 0.01)
<< " to " << quantile(complement(quiz, 0.01)) << " right." << endl;

Notice that these output integral values because the default policy is integer_round_outwards.

Quartiles 2 to 5
1 standard deviation 2 to 5
Deciles 1 to 6
5 to 95% 0 to 7
2.5 to 97.5% 0 to 8
2 to 98% 0 to 8

Quantiles values are controlled by the understanding discrete quantiles quantile policy chosen. The default is integer_round_out-
wards, so the lower quantile is rounded down, and the upper quantile is rounded up.

But we might believe that the real values tell us a little more - see discrete functions.

We could control the policy for all distributions by

#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real

at the head of the program would make this policy apply

to this one, and only, translation unit.

Or we can now create a (typedef for) policy that has discrete quantiles real (here avoiding any 'using namespaces ...' statements):

using boost::math::policies::policy;
using boost::math::policies::discrete_quantile;
using boost::math::policies::real;
using boost::math::policies::integer_round_outwards; // Default.
typedef boost::math::policies::policy<discrete_quantile<real> > real_quantile_policy;

Add a custom binomial distribution called
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real_quantile_binomial

that uses

real_quantile_policy

using boost::math::binomial_distribution;
typedef binomial_distribution<double, real_quantile_policy> real_quantile_binomial;

Construct an object of this custom distribution:

real_quantile_binomial quiz_real(questions, success_fraction);

And use this to show some quantiles - that now have real rather than integer values.

cout << "Quartiles " << quantile(quiz, 0.25) << " to "
<< quantile(complement(quiz_real, 0.25)) << endl; // Quartiles 2 to 4.6212

cout << "1 standard deviation " << quantile(quiz_real, 0.33) << " to "
<< quantile(quiz_real, 0.67) << endl; // 1 sd 2.6654 4.194

cout << "Deciles " << quantile(quiz_real, 0.1) << " to "
<< quantile(complement(quiz_real, 0.1))<< endl; // Deciles 1.3487 5.7583

cout << "5 to 95% " << quantile(quiz_real, 0.05) << " to "
<< quantile(complement(quiz_real, 0.05))<< endl; // 5 to 95% 0.83739 6.4559

cout << "2.5 to 97.5% " << quantile(quiz_real, 0.025) << " to "
<< quantile(complement(quiz_real, 0.025)) << endl; // 2.5 to 97.5% 0.42806 7.0688

cout << "2 to 98% " << quantile(quiz_real, 0.02) << " to "
<< quantile(complement(quiz_real, 0.02)) << endl; //  2 to 98% 0.31311 7.7880

cout << "If guessing, then percentiles 1 to 99% will get " << quantile(quiz_real, 0.01)
<< " to " << quantile(complement(quiz_real, 0.01)) << " right." << endl;

Real Quantiles
Quartiles 2 to 4.621
1 standard deviation 2.665 to 4.194
Deciles 1.349 to 5.758
5 to 95% 0.8374 to 6.456
2.5 to 97.5% 0.4281 to 7.069
2 to 98% 0.3131 to 7.252
If guessing then percentiles 1 to 99% will get 0 to 7.788 right.

See binomial_quiz_example.cpp for full source code and output.

Calculating Confidence Limits on the Frequency of Occurrence for a Binomial Distribution

Imagine you have a process that follows a binomial distribution: for each trial conducted, an event either occurs or does it does not,
referred to as "successes" and "failures". If, by experiment, you want to measure the frequency with which successes occur, the best
estimate is given simply by k / N, for k successes out of N trials. However our confidence in that estimate will be shaped by how
many trials were conducted, and how many successes were observed. The static member functions binomial_distribu-
tion<>::find_lower_bound_on_p and binomial_distribution<>::find_upper_bound_on_p allow you to calculate
the confidence intervals for your estimate of the occurrence frequency.

The sample program binomial_confidence_limits.cpp illustrates their use. It begins by defining a procedure that will print a table of
confidence limits for various degrees of certainty:
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#include <iostream>
#include <iomanip>
#include <boost/math/distributions/binomial.hpp>

void confidence_limits_on_frequency(unsigned trials, unsigned successes)
{

//
// trials = Total number of trials.
// successes = Total number of observed successes.
//
// Calculate confidence limits for an observed
// frequency of occurrence that follows a binomial
// distribution.
//
using namespace std;
using namespace boost::math;

// Print out general info:
cout <<

"___________________________________________\n"
"2-Sided Confidence Limits For Success Ratio\n"
"___________________________________________\n\n";

cout << setprecision(7);
cout << setw(40) << left << "Number of Observations" << "=  " << trials << "\n";
cout << setw(40) << left << "Number of successes" << "=  " << successes << "\n";
cout << setw(40) << left << "Sample frequency of occurrence" << "=  " << double(successes) / tri↵

als << "\n";

The procedure now defines a table of significance levels: these are the probabilities that the true occurrence frequency lies outside
the calculated interval:

double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

Some pretty printing of the table header follows:

cout << "\n\n"
"_______________________________________________________________________\n"
"Confidence        Lower CP       Upper CP       Lower JP       Upper JP\n"
" Value (%)        Limit          Limit          Limit          Limit\n"
"_______________________________________________________________________\n";

And now for the important part - the intervals themselves - for each value of alpha, we call find_lower_bound_on_p and
find_lower_upper_on_p to obtain lower and upper bounds respectively. Note that since we are calculating a two-sided interval,
we must divide the value of alpha in two.

Please note that calculating two separate single sided bounds, each with risk level α  is not the same thing as calculating a two sided
interval. Had we calculate two single-sided intervals each with a risk that the true value is outside the interval of α, then:

• The risk that it is less than the lower bound is α.

and

• The risk that it is greater than the upper bound is also α.

So the risk it is outside upper or lower bound, is twice alpha, and the probability that it is inside the bounds is therefore not nearly
as high as one might have thought. This is why α/2 must be used in the calculations below.

In contrast, had we been calculating a single-sided interval, for example: "Calculate a lower bound so that we are P% sure that the
true occurrence frequency is greater than some value" then we would not have divided by two.
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Finally note that binomial_distribution provides a choice of two methods for the calculation, we print out the results from
both methods in this example:

for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{

// Confidence value:
cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
// Calculate Clopper Pearson bounds:
double l = binomial_distribution<>::find_lower_bound_on_p(

trials, successes, alpha[i]/2);
double u = binomial_distribution<>::find_upper_bound_on_p(

trials, successes, alpha[i]/2);
// Print Clopper Pearson Limits:
cout << fixed << setprecision(5) << setw(15) << right << l;
cout << fixed << setprecision(5) << setw(15) << right << u;
// Calculate Jeffreys Prior Bounds:
l = binomial_distribution<>::find_lower_bound_on_p(

trials, successes, alpha[i]/2,
binomial_distribution<>::jeffreys_prior_interval);

u = binomial_distribution<>::find_upper_bound_on_p(
trials, successes, alpha[i]/2,
binomial_distribution<>::jeffreys_prior_interval);

// Print Jeffreys Prior Limits:
cout << fixed << setprecision(5) << setw(15) << right << l;
cout << fixed << setprecision(5) << setw(15) << right << u << std::endl;

}
cout << endl;

}

And that's all there is to it. Let's see some sample output for a 2 in 10 success ratio, first for 20 trials:

___________________________________________
2-Sided Confidence Limits For Success Ratio
___________________________________________

Number of Observations                  =  20
Number of successes                     =  4
Sample frequency of occurrence          =  0.2

_______________________________________________________________________
Confidence        Lower CP       Upper CP       Lower JP       Upper JP
 Value (%)        Limit          Limit          Limit          Limit
_______________________________________________________________________
    50.000        0.12840        0.29588        0.14974        0.26916
    75.000        0.09775        0.34633        0.11653        0.31861
    90.000        0.07135        0.40103        0.08734        0.37274
    95.000        0.05733        0.43661        0.07152        0.40823
    99.000        0.03576        0.50661        0.04655        0.47859
    99.900        0.01905        0.58632        0.02634        0.55960
    99.990        0.01042        0.64997        0.01530        0.62495
    99.999        0.00577        0.70216        0.00901        0.67897

As you can see, even at the 95% confidence level the bounds are really quite wide (this example is chosen to be easily compared to
the one in the NIST/SEMATECH e-Handbook of Statistical Methods. here). Note also that the Clopper-Pearson calculation method
(CP above) produces quite noticeably more pessimistic estimates than the Jeffreys Prior method (JP above).

Compare that with the program output for 2000 trials:
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___________________________________________
2-Sided Confidence Limits For Success Ratio
___________________________________________

Number of Observations                  =  2000
Number of successes                     =  400
Sample frequency of occurrence          =  0.2000000

_______________________________________________________________________
Confidence        Lower CP       Upper CP       Lower JP       Upper JP
 Value (%)        Limit          Limit          Limit          Limit
_______________________________________________________________________
    50.000        0.19382        0.20638        0.19406        0.20613
    75.000        0.18965        0.21072        0.18990        0.21047
    90.000        0.18537        0.21528        0.18561        0.21503
    95.000        0.18267        0.21821        0.18291        0.21796
    99.000        0.17745        0.22400        0.17769        0.22374
    99.900        0.17150        0.23079        0.17173        0.23053
    99.990        0.16658        0.23657        0.16681        0.23631
    99.999        0.16233        0.24169        0.16256        0.24143

Now even when the confidence level is very high, the limits are really quite close to the experimentally calculated value of 0.2.
Furthermore the difference between the two calculation methods is now really quite small.

Estimating Sample Sizes for a Binomial Distribution.

Imagine you have a critical component that you know will fail in 1 in N "uses" (for some suitable definition of "use"). You may
want to schedule routine replacement of the component so that its chance of failure between routine replacements is less than P%.
If the failures follow a binomial distribution (each time the component is "used" it either fails or does not) then the static member
function binomial_distibution<>::find_maximum_number_of_trials can be used to estimate the maximum number of
"uses" of that component for some acceptable risk level alpha.

The example program binomial_sample_sizes.cpp demonstrates its usage. It centres on a routine that prints out a table of maximum
sample sizes for various probability thresholds:

void find_max_sample_size(
double p, // success ratio.
unsigned successes) // Total number of observed successes permitted.

{

The routine then declares a table of probability thresholds: these are the maximum acceptable probability that successes or fewer
events will be observed. In our example, successes will be always zero, since we want no component failures, but in other situations
non-zero values may well make sense.

double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

Much of the rest of the program is pretty-printing, the important part is in the calculation of maximum number of permitted trials
for each value of alpha:
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for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{

// Confidence value:
cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
// calculate trials:
double t = binomial::find_maximum_number_of_trials(

successes, p, alpha[i]);
t = floor(t);
// Print Trials:
cout << fixed << setprecision(5) << setw(15) << right << t << endl;

}

Note that since we're calculating the maximum number of trials permitted, we'll err on the safe side and take the floor of the result.
Had we been calculating the minimum number of trials required to observe a certain number of successes using find_minimum_num-
ber_of_trials we would have taken the ceiling instead.

We'll finish off by looking at some sample output, firstly for a 1 in 1000 chance of component failure with each use:

________________________
Maximum Number of Trials
________________________

Success ratio                           =  0.001
Maximum Number of "successes" permitted =  0

____________________________
Confidence        Max Number
 Value (%)        Of Trials
____________________________
    50.000            692
    75.000            287
    90.000            105
    95.000             51
    99.000             10
    99.900              0
    99.990              0
    99.999              0

So 51 "uses" of the component would yield a 95% chance that no component failures would be observed.

Compare that with a 1 in 1 million chance of component failure:
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________________________
Maximum Number of Trials
________________________

Success ratio                           =  0.0000010
Maximum Number of "successes" permitted =  0

____________________________
Confidence        Max Number
 Value (%)        Of Trials
____________________________
    50.000         693146
    75.000         287681
    90.000         105360
    95.000          51293
    99.000          10050
    99.900           1000
    99.990            100
    99.999             10

In this case, even 1000 uses of the component would still yield a less than 1 in 1000 chance of observing a component failure (i.e.
a 99.9% chance of no failure).

Geometric Distribution Examples

For this example, we will opt to #define two macros to control the error and discrete handling policies. For this simple example, we
want to avoid throwing an exception (the default policy) and just return infinity. We want to treat the distribution as if it was continuous,
so we choose a discrete_quantile policy of real, rather than the default policy integer_round_outwards.

#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real

Caution

It is vital to #include distributions etc after the above #defines

After that we need some includes to provide easy access to the negative binomial distribution, and we need some std library iostream,
of course.
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#include <boost/math/distributions/geometric.hpp>
// for geometric_distribution
using ::boost::math::geometric_distribution; //
using ::boost::math::geometric; // typedef provides default type is double.
using ::boost::math::pdf; // Probability mass function.
using ::boost::math::cdf; // Cumulative density function.
using ::boost::math::quantile;

#include <boost/math/distributions/negative_binomial.hpp>
// for negative_binomial_distribution
using boost::math::negative_binomial; // typedef provides default type is double.

#include <boost/math/distributions/normal.hpp>
// for negative_binomial_distribution
using boost::math::normal; // typedef provides default type is double.

#include <iostream>
using std::cout; using std::endl;
using std::noshowpoint; using std::fixed; using std::right; using std::left;

#include <iomanip>
using std::setprecision; using std::setw;

#include <limits>
using std::numeric_limits;

It is always sensible to use try and catch blocks because defaults policies are to throw an exception if anything goes wrong.

Simple try'n'catch blocks (see below) will ensure that you get a helpful error message instead of an abrupt (and silent) program abort.

Throwing a dice

The Geometric distribution describes the probability (p) of a number of failures to get the first success in k Bernoulli trials. (A
Bernoulli trial is one with only two possible outcomes, success of failure, and p is the probability of success).

Suppose an 'fair' 6-face dice is thrown repeatedly:

double success_fraction = 1./6; // success_fraction (p) = 0.1666
// (so failure_fraction is 1 - success_fraction = 5./6 = 1- 0.1666 = 0.8333)

If the dice is thrown repeatedly until the first time a three appears. The probablility distribution of the number of times it is thrown
not getting a three (not-a-threes number of failures to get a three) is a geometric distribution with the success_fraction = 1/6 =
0.1666  .

We therefore start by constructing a geometric distribution with the one parameter success_fraction, the probability of success.

geometric g6(success_fraction); // type double by default.

To confirm, we can echo the success_fraction parameter of the distribution.

cout << "success fraction of a six-sided dice is " << g6.success_fraction() << endl;

So the probability of getting a three at the first throw (zero failures) is

cout << pdf(g6, 0) << endl; // 0.1667
cout << cdf(g6, 0) << endl; // 0.1667

Note that the cdf and pdf are identical because the is only one throw. If we want the probability of getting the first three on the 2nd
throw:
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cout << pdf(g6, 1) << endl; // 0.1389

If we want the probability of getting the first three on the 1st or 2nd throw (allowing one failure):

cout << "pdf(g6, 0) + pdf(g6, 1) = " << pdf(g6, 0) + pdf(g6, 1) << endl;

Or more conveniently, and more generally, we can use the Cumulative Distribution Function CDF.

cout << "cdf(g6, 1) = " << cdf(g6, 1) << endl; // 0.3056

If we allow many more (12) throws, the probability of getting our three gets very high:

cout << "cdf(g6, 12) = " << cdf(g6, 12) << endl; // 0.9065 or 90% probability.

If we want to be much more confident, say 99%, we can estimate the number of throws to be this sure using the inverse or quantile.

cout << "quantile(g6, 0.99) = " << quantile(g6, 0.99) << endl; // 24.26

Note that the value returned is not an integer: if you want an integer result you should use either floor, round or ceil functions, or
use the policies mechanism.

See understanding discrete quantiles.

The geometric distribution is related to the negative binomial negative_binomial_distribution(RealType r, RealType

p); with parameter r = 1. So we could get the same result using the negative binomial, but using the geometric the results will be
faster, and may be more accurate.

negative_binomial nb(1, success_fraction);
cout << pdf(nb, 1) << endl; // 0.1389
cout << cdf(nb, 1) << endl; // 0.3056

We could also the complement to express the required probability as 1 - 0.99 = 0.01 (and get the same result):

cout << "quantile(complement(g6, 1 - p))  " << quantile(complement(g6, 0.01)) << endl; // 24.26

Note too that Boost.Math geometric distribution is implemented as a continuous function. Unlike other implementations (for example
R) it uses the number of failures as a real parameter, not as an integer. If you want this integer behaviour, you may need to enforce
this by rounding the parameter you pass, probably rounding down, to the nearest integer. For example, R returns the success fraction
probability for all values of failures from 0 to 0.999999 thus:

 R> formatC(pgeom(0.0001,0.5, FALSE), digits=17) "               0.5"

So in Boost.Math the equivalent is
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geometric g05(0.5); // Probability of success = 0.5 or 50%
// Output all potentially significant digits for the type, here double.

#ifdef BOOST_NO_CXX11_NUMERIC_LIMITS
int max_digits10 = 2 + (boost::math::policies::di↵

gits<double, boost::math::policies::policy<> >() * 30103UL) / 100000UL;
cout << "BOOST_NO_CXX11_NUMERIC_LIMITS is defined" << endl;

#else
int max_digits10 = std::numeric_limits<double>::max_digits10;

#endif
cout << "Show all potentially significant decimal digits std::numeric_limits<double>::max_di↵

gits10 = "
<< max_digits10 << endl;

cout.precision(max_digits10); //

cout << cdf(g05, 0.0001) << endl; // returns 0.5000346561579232, not exact 0.5.

To get the R discrete behaviour, you simply need to round with, for example, the floor function.

cout << cdf(g05, floor(0.0001)) << endl; // returns exactly 0.5

> formatC(pgeom(0.9999999,0.5, FALSE), digits=17) [1] "              0.25"
> formatC(pgeom(1.999999,0.5, FALSE), digits=17)[1] "              0.25" k = 1
> formatC(pgeom(1.9999999,0.5, FALSE), digits=17)[1] "0.12500000000000003" k = 2

shows that R makes an arbitrary round-up decision at about 1e7 from the next integer above. This may be convenient in practice,
and could be replicated in C++ if desired.

Surveying customers to find one with a faulty product

A company knows from warranty claims that 2% of their products will be faulty, so the 'success_fraction' of finding a fault is 0.02.
It wants to interview a purchaser of faulty products to assess their 'user experience'.

To estimate how many customers they will probably need to contact in order to find one who has suffered from the fault, we first
construct a geometric distribution with probability 0.02, and then chose a confidence, say 80%, 95%, or 99% to finding a customer
with a fault. Finally, we probably want to round up the result to the integer above using the ceil function. (We could also use a
policy, but that is hardly worthwhile for this simple application.)

(This also assumes that each customer only buys one product: if customers bought more than one item, the probability of finding a
customer with a fault obviously improves.)

cout.precision(5);
geometric g(0.02); // On average, 2 in 100 products are faulty.
double c = 0.95; // 95% confidence.
cout << " quantile(g, " << c << ") = " << quantile(g, c) << endl;

cout << "To be " << c * 100
<< "% confident of finding we customer with a fault, need to survey "
<< ceil(quantile(g, c)) << " customers." << endl; // 148

c = 0.99; // Very confident.
cout << "To be " << c * 100
<< "% confident of finding we customer with a fault, need to survey "
<< ceil(quantile(g, c)) << " customers." << endl; // 227

c = 0.80; // Only reasonably confident.
cout << "To be " << c * 100
<< "% confident of finding we customer with a fault, need to survey "
<< ceil(quantile(g, c)) << " customers." << endl; // 79
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Basket Ball Shooters

According to Wikipedia, average pro basket ball players get free throws in the baskets 70 to 80 % of the time, but some get as high
as 95%, and others as low as 50%. Suppose we want to compare the probabilities of failing to get a score only on the first or on the
fifth shot? To start we will consider the average shooter, say 75%. So we construct a geometric distribution with success_fraction
parameter 75/100 = 0.75.

cout.precision(2);
geometric gav(0.75); // Shooter averages 7.5 out of 10 in the basket.

What is probability of getting 1st try in the basket, that is with no failures?

cout << "Probability of score on 1st try = " << pdf(gav, 0) << endl; // 0.75

This is, of course, the success_fraction probability 75%. What is the probability that the shooter only scores on the fifth shot? So
there are 5-1 = 4 failures before the first success.

cout << "Probability of score on 5th try = " << pdf(gav, 4) << endl; // 0.0029

Now compare this with the poor and the best players success fraction. We need to constructing new distributions with the different
success fractions, and then get the corresponding probability density functions values:

geometric gbest(0.95);
cout << "Probability of score on 5th try = " << pdf(gbest, 4) << endl; // 5.9e-6
geometric gmediocre(0.50);
cout << "Probability of score on 5th try = " << pdf(gmediocre, 4) << endl; // 0.031

So we can see the very much smaller chance (0.000006) of 4 failures by the best shooters, compared to the 0.03 of the mediocre.

Estimating failures

Of course one man's failure is an other man's success. So a fault can be defined as a 'success'.

If a fault occurs once after 100 flights, then one might naively say that the risk of fault is obviously 1 in 100 = 1/100, a probability
of 0.01.

This is the best estimate we can make, but while it is the truth, it is not the whole truth, for it hides the big uncertainty when estimating
from a single event. "One swallow doesn't make a summer." To show the magnitude of the uncertainty, the geometric (or the negative
binomial) distribution can be used.

If we chose the popular 95% confidence in the limits, corresponding to an alpha of 0.05, because we are calculating a two-sided in-
terval, we must divide alpha by two.

double alpha = 0.05;
double k = 100; // So frequency of occurrence is 1/100.
cout << "Probability is failure is " << 1/k << endl;
double t = geometric::find_lower_bound_on_p(k, alpha/2);
cout << "geometric::find_lower_bound_on_p(" << int(k) << ", " << alpha/2 << ") = "
<< t << endl; // 0.00025

t = geometric::find_upper_bound_on_p(k, alpha/2);
cout << "geometric::find_upper_bound_on_p(" << int(k) << ", " << alpha/2 << ") = "
<< t << endl; // 0.037

So while we estimate the probability is 0.01, it might lie between 0.0003 and 0.04. Even if we relax our confidence to alpha = 90%,
the bounds only contract to 0.0005 and 0.03. And if we require a high confidence, they widen to 0.00005 to 0.05.
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alpha = 0.1; // 90% confidence.
t = geometric::find_lower_bound_on_p(k, alpha/2);
cout << "geometric::find_lower_bound_on_p(" << int(k) << ", " << alpha/2 << ") = "
<< t << endl; // 0.0005

t = geometric::find_upper_bound_on_p(k, alpha/2);
cout << "geometric::find_upper_bound_on_p(" << int(k) << ", " << alpha/2 << ") = "
<< t << endl; // 0.03

alpha = 0.01; // 99% confidence.
t = geometric::find_lower_bound_on_p(k, alpha/2);
cout << "geometric::find_lower_bound_on_p(" << int(k) << ", " << alpha/2 << ") = "
<< t << endl; // 5e-005

t = geometric::find_upper_bound_on_p(k, alpha/2);
cout << "geometric::find_upper_bound_on_p(" << int(k) << ", " << alpha/2 << ") = "

<< t << endl; // 0.052

In real life, there will usually be more than one event (fault or success), when the negative binomial, which has the neccessary extra
parameter, will be needed.

As noted above, using a catch block is always a good idea, even if you hope not to use it!

}
catch(const std::exception& e)
{ // Since we have set an overflow policy of ignore_error,
// an overflow exception should never be thrown.
std::cout << "\nMessage from thrown exception was:\n " << e.what() << std::endl;

For example, without a ignore domain error policy, if we asked for

pdf(g, -1)

for example, we would get an unhelpful abort, but with a catch:

Message from thrown exception was:
 Error in function boost::math::pdf(const exponential_distribution<double>&, double):
 Number of failures argument is -1, but must be >= 0 !

See full source C++ of this example at geometric_examples.cpp

See negative_binomial confidence interval example.

Negative Binomial Distribution Examples

(See also the reference documentation for the Negative Binomial Distribution.)

Calculating Confidence Limits on the Frequency of Occurrence for the Negative Binomial
Distribution

Imagine you have a process that follows a negative binomial distribution: for each trial conducted, an event either occurs or does it
does not, referred to as "successes" and "failures". The frequency with which successes occur is variously referred to as the success
fraction, success ratio, success percentage, occurrence frequency, or probability of occurrence.

If, by experiment, you want to measure the the best estimate of success fraction is given simply by k / N, for k successes out of N
trials.

However our confidence in that estimate will be shaped by how many trials were conducted, and how many successes were observed.
The static member functions negative_binomial_distribution<>::find_lower_bound_on_p and negative_binomi-
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al_distribution<>::find_upper_bound_on_p allow you to calculate the confidence intervals for your estimate of the success
fraction.

The sample program neg_binom_confidence_limits.cpp illustrates their use.

First we need some includes to access the negative binomial distribution (and some basic std output of course).

#include <boost/math/distributions/negative_binomial.hpp>
using boost::math::negative_binomial;

#include <iostream>
using std::cout; using std::endl;
#include <iomanip>
using std::setprecision;
using std::setw; using std::left; using std::fixed; using std::right;

First define a table of significance levels: these are the probabilities that the true occurrence frequency lies outside the calculated
interval:

double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

Confidence value as % is (1 - alpha) * 100, so alpha 0.05 == 95% confidence that the true occurrence frequency lies inside the cal-
culated interval.

We need a function to calculate and print confidence limits for an observed frequency of occurrence that follows a negative binomial
distribution.

void confidence_limits_on_frequency(unsigned trials, unsigned successes)
{

// trials = Total number of trials.
// successes = Total number of observed successes.
// failures = trials - successes.
// success_fraction = successes /trials.
// Print out general info:
cout <<

"______________________________________________\n"
"2-Sided Confidence Limits For Success Fraction\n"
"______________________________________________\n\n";

cout << setprecision(7);
cout << setw(40) << left << "Number of trials" << " =  " << trials << "\n";
cout << setw(40) << left << "Number of successes" << " =  " << successes << "\n";
cout << setw(40) << left << "Number of failures" << " =  " << trials - successes << "\n";
cout << setw(40) << left << "Observed frequency of occurrence" << " =  " << double(suc↵

cesses) / trials << "\n";

// Print table header:
cout << "\n\n"

"___________________________________________\n"
"Confidence        Lower          Upper\n"
" Value (%)        Limit          Limit\n"
"___________________________________________\n";

And now for the important part - the bounds themselves. For each value of alpha, we call find_lower_bound_on_p and
find_upper_bound_on_p to obtain lower and upper bounds respectively. Note that since we are calculating a two-sided interval,
we must divide the value of alpha in two. Had we been calculating a single-sided interval, for example: "Calculate a lower bound
so that we are P% sure that the true occurrence frequency is greater than some value" then we would not have divided by two.
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// Now print out the upper and lower limits for the alpha table values.
for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{

// Confidence value:
cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
// Calculate bounds:
double lower = negative_binomial::find_lower_bound_on_p(trials, successes, alpha[i]/2);
double upper = negative_binomial::find_upper_bound_on_p(trials, successes, alpha[i]/2);
// Print limits:
cout << fixed << setprecision(5) << setw(15) << right << lower;
cout << fixed << setprecision(5) << setw(15) << right << upper << endl;

}
cout << endl;

} // void confidence_limits_on_frequency(unsigned trials, unsigned successes)

And then call confidence_limits_on_frequency with increasing numbers of trials, but always the same success fraction 0.1, or 1 in
10.

int main()
{
confidence_limits_on_frequency(20, 2); // 20 trials, 2 successes, 2 in 20, = 1 in 10 = 0.1 suc↵

cess fraction.
confidence_limits_on_frequency(200, 20); // More trials, but same 0.1 success fraction.
confidence_limits_on_frequency(2000, 200); // Many more trials, but same 0.1 success fraction.

return 0;
} // int main()

Let's see some sample output for a 1 in 10 success ratio, first for a mere 20 trials:

______________________________________________
2-Sided Confidence Limits For Success Fraction
______________________________________________
Number of trials                         =  20
Number of successes                      =  2
Number of failures                       =  18
Observed frequency of occurrence         =  0.1
___________________________________________
Confidence        Lower          Upper
 Value (%)        Limit          Limit
___________________________________________
    50.000        0.04812        0.13554
    75.000        0.03078        0.17727
    90.000        0.01807        0.22637
    95.000        0.01235        0.26028
    99.000        0.00530        0.33111
    99.900        0.00164        0.41802
    99.990        0.00051        0.49202
    99.999        0.00016        0.55574

As you can see, even at the 95% confidence level the bounds (0.012 to 0.26) are really very wide, and very asymmetric about the
observed value 0.1.

Compare that with the program output for a mass 2000 trials:
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______________________________________________
2-Sided Confidence Limits For Success Fraction
______________________________________________
Number of trials                         =  2000
Number of successes                      =  200
Number of failures                       =  1800
Observed frequency of occurrence         =  0.1
___________________________________________
Confidence        Lower          Upper
 Value (%)        Limit          Limit
___________________________________________
    50.000        0.09536        0.10445
    75.000        0.09228        0.10776
    90.000        0.08916        0.11125
    95.000        0.08720        0.11352
    99.000        0.08344        0.11802
    99.900        0.07921        0.12336
    99.990        0.07577        0.12795
    99.999        0.07282        0.13206

Now even when the confidence level is very high, the limits (at 99.999%, 0.07 to 0.13) are really quite close and nearly symmetric
to the observed value of 0.1.

Estimating Sample Sizes for the Negative Binomial.

Imagine you have an event (let's call it a "failure" - though we could equally well call it a success if we felt it was a 'good' event)
that you know will occur in 1 in N trials. You may want to know how many trials you need to conduct to be P% sure of observing
at least k such failures. If the failure events follow a negative binomial distribution (each trial either succeeds or fails) then the static
member function negative_binomial_distibution<>::find_minimum_number_of_trials can be used to estimate the
minimum number of trials required to be P% sure of observing the desired number of failures.

The example program neg_binomial_sample_sizes.cpp demonstrates its usage.

It centres around a routine that prints out a table of minimum sample sizes (number of trials) for various probability thresholds:

void find_number_of_trials(double failures, double p);

First define a table of significance levels: these are the maximum acceptable probability that failure or fewer events will be observed.

double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

Confidence value as % is (1 - alpha) * 100, so alpha 0.05 == 95% confidence that the desired number of failures will be observed.
The values range from a very low 0.5 or 50% confidence up to an extremely high confidence of 99.999.

Much of the rest of the program is pretty-printing, the important part is in the calculation of minimum number of trials required for
each value of alpha using:

(int)ceil(negative_binomial::find_minimum_number_of_trials(failures, p, alpha[i]);

find_minimum_number_of_trials returns a double, so ceil rounds this up to ensure we have an integral minimum number of trials.
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void find_number_of_trials(double failures, double p)
{

// trials = number of trials
// failures = number of failures before achieving required success(es).
// p        = success fraction (0 <= p <= 1.).
//
// Calculate how many trials we need to ensure the
// required number of failures DOES exceed "failures".

cout << "\n""Target number of failures = " << (int)failures;
cout << ",   Success fraction = " << fixed << setprecision(1) << 100 * p << "%" << endl;
// Print table header:
cout << "____________________________\n"

"Confidence        Min Number\n"
" Value (%)        Of Trials \n"
"____________________________\n";

// Now print out the data for the alpha table values.
for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{ // Confidence values %:

cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]) << "      "
// find_minimum_number_of_trials
<< setw(6) << right
<< (int)ceil(negative_binomial::find_minimum_number_of_trials(failures, p, alpha[i]))
<< endl;

}
cout << endl;

} // void find_number_of_trials(double failures, double p)

finally we can produce some tables of minimum trials for the chosen confidence levels:

int main()
{

find_number_of_trials(5, 0.5);
find_number_of_trials(50, 0.5);
find_number_of_trials(500, 0.5);
find_number_of_trials(50, 0.1);
find_number_of_trials(500, 0.1);
find_number_of_trials(5, 0.9);

return 0;
} // int main()

Note

Since we're calculating the minimum number of trials required, we'll err on the safe side and take the ceiling of the
result. Had we been calculating the maximum number of trials permitted to observe less than a certain number of
failures then we would have taken the floor instead. We would also have called find_minimum_number_of_trials
like this:

floor(negative_binomial::find_minimum_number_of_trials(failures, p, alpha[i]))

which would give us the largest number of trials we could conduct and still be P% sure of observing failures or less
failure events, when the probability of success is p.

We'll finish off by looking at some sample output, firstly suppose we wish to observe at least 5 "failures" with a 50/50 (0.5) chance
of success or failure:
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Target number of failures = 5,   Success fraction = 50%

____________________________
Confidence        Min Number
 Value (%)        Of Trials
____________________________
    50.000          11
    75.000          14
    90.000          17
    95.000          18
    99.000          22
    99.900          27
    99.990          31
    99.999          36

So 18 trials or more would yield a 95% chance that at least our 5 required failures would be observed.

Compare that to what happens if the success ratio is 90%:

Target number of failures = 5.000,   Success fraction = 90.000%

____________________________
Confidence        Min Number
 Value (%)        Of Trials
____________________________
    50.000          57
    75.000          73
    90.000          91
    95.000         103
    99.000         127
    99.900         159
    99.990         189
    99.999         217

So now 103 trials are required to observe at least 5 failures with 95% certainty.

Negative Binomial Sales Quota Example.

This example program negative_binomial_example1.cpp (full source code) demonstrates a simple use to find the probability of
meeting a sales quota.

Based on a problem by Dr. Diane Evans, Professor of Mathematics at Rose-Hulman Institute of Technology.

Pat is required to sell candy bars to raise money for the 6th grade field trip. There are thirty houses in the neighborhood, and Pat is
not supposed to return home until five candy bars have been sold. So the child goes door to door, selling candy bars. At each house,
there is a 0.4 probability (40%) of selling one candy bar and a 0.6 probability (60%) of selling nothing.

What is the probability mass (density) function (pdf) for selling the last (fifth) candy bar at the nth house?

The Negative Binomial(r, p) distribution describes the probability of k failures and r successes in k+r Bernoulli(p) trials with success
on the last trial. (A Bernoulli trial is one with only two possible outcomes, success of failure, and p is the probability of success).
See also Bernoulli distribution and Bernoulli applications.

In this example, we will deliberately produce a variety of calculations and outputs to demonstrate the ways that the negative binomial
distribution can be implemented with this library: it is also deliberately over-commented.

First we need to #define macros to control the error and discrete handling policies. For this simple example, we want to avoid
throwing an exception (the default policy) and just return infinity. We want to treat the distribution as if it was continuous, so we
choose a discrete_quantile policy of real, rather than the default policy integer_round_outwards.
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#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real

After that we need some includes to provide easy access to the negative binomial distribution,

Caution

It is vital to #include distributions etc after the above #defines

and we need some std library iostream, of course.

#include <boost/math/distributions/negative_binomial.hpp>
// for negative_binomial_distribution
using boost::math::negative_binomial; // typedef provides default type is double.
using ::boost::math::pdf; // Probability mass function.
using ::boost::math::cdf; // Cumulative density function.
using ::boost::math::quantile;

#include <iostream>
using std::cout; using std::endl;
using std::noshowpoint; using std::fixed; using std::right; using std::left;

#include <iomanip>
using std::setprecision; using std::setw;

#include <limits>
using std::numeric_limits;

It is always sensible to use try and catch blocks because defaults policies are to throw an exception if anything goes wrong.

A simple catch block (see below) will ensure that you get a helpful error message instead of an abrupt program abort.

try
{

Selling five candy bars means getting five successes, so successes r = 5. The total number of trials (n, in this case, houses visited)
this takes is therefore = sucesses + failures or k + r = k + 5.

double sales_quota = 5; // Pat's sales quota - successes (r).

At each house, there is a 0.4 probability (40%) of selling one candy bar and a 0.6 probability (60%) of selling nothing.

double success_fraction = 0.4; // success_fraction (p) - so failure_fraction is 0.6.

The Negative Binomial(r, p) distribution describes the probability of k failures and r successes in k+r Bernoulli(p) trials with success
on the last trial. (A Bernoulli trial is one with only two possible outcomes, success of failure, and p is the probability of success).

We therefore start by constructing a negative binomial distribution with parameters sales_quota (required successes) and probability
of success.

negative_binomial nb(sales_quota, success_fraction); // type double by default.

To confirm, display the success_fraction & successes parameters of the distribution.
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cout << "Pat has a sales per house success rate of " << success_fraction
<< ".\nTherefore he would, on average, sell " << nb.success_fraction() * 100
<< " bars after trying 100 houses." << endl;

int all_houses = 30; // The number of houses on the estate.

cout << "With a success rate of " << nb.success_fraction()
<< ", he might expect, on average,\n"
"to need to visit about " << success_fraction * all_houses
<< " houses in order to sell all " << nb.successes() << " bars. " << endl;

Pat has a sales per house success rate of 0.4.
Therefore he would, on average, sell 40 bars after trying 100 houses.
With a success rate of 0.4, he might expect, on average,
to need to visit about 12 houses in order to sell all 5 bars.

The random variable of interest is the number of houses that must be visited to sell five candy bars, so we substitute k = n - 5 into a
negative_binomial(5, 0.4) and obtain the Probability Density Function of the distribution of houses visited. Obviously, the best
possible case is that Pat makes sales on all the first five houses.

We calculate this using the pdf function:

cout << "Probability that Pat finishes on the " << sales_quota << "th house is "
<< pdf(nb, 5 - sales_quota) << endl; // == pdf(nb, 0)

Of course, he could not finish on fewer than 5 houses because he must sell 5 candy bars. So the 5th house is the first that he could
possibly finish on.

To finish on or before the 8th house, Pat must finish at the 5th, 6th, 7th or 8th house. The probability that he will finish on exactly
( == ) on any house is the Probability Density Function (pdf).

cout << "Probability that Pat finishes on the 6th house is "
<< pdf(nb, 6 - sales_quota) << endl;

cout << "Probability that Pat finishes on the 7th house is "
<< pdf(nb, 7 - sales_quota) << endl;

cout << "Probability that Pat finishes on the 8th house is "
<< pdf(nb, 8 - sales_quota) << endl;

Probability that Pat finishes on the 6th house is 0.03072
Probability that Pat finishes on the 7th house is 0.055296
Probability that Pat finishes on the 8th house is 0.077414

The sum of the probabilities for these houses is the Cumulative Distribution Function (cdf). We can calculate it by adding the indi-
vidual probabilities.

cout << "Probability that Pat finishes on or before the 8th house is sum "
"\n" << "pdf(sales_quota) + pdf(6) + pdf(7) + pdf(8) = "
// Sum each of the mass/density probabilities for houses sales_quota = 5, 6, 7, & 8.
<< pdf(nb, 5 - sales_quota) // 0 failures.
+ pdf(nb, 6 - sales_quota) // 1 failure.
+ pdf(nb, 7 - sales_quota) // 2 failures.
+ pdf(nb, 8 - sales_quota) // 3 failures.

<< endl;

pdf(sales_quota) + pdf(6) + pdf(7) + pdf(8) = 0.17367
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Or, usually better, by using the negative binomial cumulative distribution function.

cout << "\nProbability of selling his quota of " << sales_quota
<< " bars\non or before the " << 8 << "th house is "
<< cdf(nb, 8 - sales_quota) << endl;

Probability of selling his quota of 5 bars on or before the 8th house is 0.17367

cout << "\nProbability that Pat finishes exactly on the 10th house is "
<< pdf(nb, 10 - sales_quota) << endl;

cout << "\nProbability of selling his quota of " << sales_quota
<< " bars\non or before the " << 10 << "th house is "
<< cdf(nb, 10 - sales_quota) << endl;

Probability that Pat finishes exactly on the 10th house is 0.10033
Probability of selling his quota of 5 bars on or before the 10th house is 0.3669

cout << "Probability that Pat finishes exactly on the 11th house is "
<< pdf(nb, 11 - sales_quota) << endl;

cout << "\nProbability of selling his quota of " << sales_quota
<< " bars\non or before the " << 11 << "th house is "
<< cdf(nb, 11 - sales_quota) << endl;

Probability that Pat finishes on the 11th house is 0.10033
Probability of selling his quota of 5 candy bars
on or before the 11th house is 0.46723

cout << "Probability that Pat finishes exactly on the 12th house is "
<< pdf(nb, 12 - sales_quota) << endl;

cout << "\nProbability of selling his quota of " << sales_quota
<< " bars\non or before the " << 12 << "th house is "
<< cdf(nb, 12 - sales_quota) << endl;

Probability that Pat finishes on the 12th house is 0.094596
Probability of selling his quota of 5 candy bars
on or before the 12th house is 0.56182

Finally consider the risk of Pat not selling his quota of 5 bars even after visiting all the houses. Calculate the probability that he will
sell on or before the last house: Calculate the probability that he would sell all his quota on the very last house.

cout << "Probability that Pat finishes on the " << all_houses
<< " house is " << pdf(nb, all_houses - sales_quota) << endl;

Probability of selling his quota of 5 bars on the 30th house is

Probability that Pat finishes on the 30 house is 0.00069145

when he'd be very unlucky indeed!

What is the probability that Pat exhausts all 30 houses in the neighborhood, and still doesn't sell the required 5 candy bars?
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cout << "\nProbability of selling his quota of " << sales_quota
<< " bars\non or before the " << all_houses << "th house is "
<< cdf(nb, all_houses - sales_quota) << endl;

Probability of selling his quota of 5 bars
on or before the 30th house is 0.99849

/*So the risk of failing even after visiting all the houses is 1 - this probability, 1 - cdf(nb,

all_houses - sales_quota But using this expression may cause serious inaccuracy, so it would be

much better to use the complement of the cdf: So the risk of failing even at, or after, the 31th

(non-existent) houses is 1 - this probability, 1 - cdf(nb, all_houses - sales_quota)` But using this
expression may cause serious inaccuracy. So it would be much better to use the __complement of the cdf (see why complements?).

cout << "\nProbability of failing to sell his quota of " << sales_quota
<< " bars\neven after visiting all " << all_houses << " houses is "
<< cdf(complement(nb, all_houses - sales_quota)) << endl;

Probability of failing to sell his quota of 5 bars
even after visiting all 30 houses is 0.0015101

We can also use the quantile (percentile), the inverse of the cdf, to predict which house Pat will finish on. So for the 8th house:

double p = cdf(nb, (8 - sales_quota));
cout << "Probability of meeting sales quota on or before 8th house is "<< p << endl;

Probability of meeting sales quota on or before 8th house is 0.174

cout << "If the confidence of meeting sales quota is " << p
<< ", then the finishing house is " << quantile(nb, p) + sales_quota << endl;

cout<< " quantile(nb, p) = " << quantile(nb, p) << endl;

If the confidence of meeting sales quota is 0.17367, then the finishing house is 8

Demanding absolute certainty that all 5 will be sold, implies an infinite number of trials. (Of course, there are only 30 houses on the
estate, so he can't ever be certain of selling his quota).

cout << "If the confidence of meeting sales quota is " << 1.
<< ", then the finishing house is " << quantile(nb, 1) + sales_quota << endl;

//  1.#INF == infinity.

If the confidence of meeting sales quota is 1, then the finishing house is 1.#INF

And similarly for a few other probabilities:
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cout << "If the confidence of meeting sales quota is " << 0.
<< ", then the finishing house is " << quantile(nb, 0.) + sales_quota << endl;

cout << "If the confidence of meeting sales quota is " << 0.5
<< ", then the finishing house is " << quantile(nb, 0.5) + sales_quota << endl;

cout << "If the confidence of meeting sales quota is " << 1 - 0.00151 // 30 th
<< ", then the finishing house is " << quantile(nb, 1 - 0.00151) + sales_quota << endl;

If the confidence of meeting sales quota is 0, then the finishing house is 5
If the confidence of meeting sales quota is 0.5, then the finishing house is 11.337
If the confidence of meeting sales quota is 0.99849, then the finishing house is 30

Notice that because we chose a discrete quantile policy of real, the result can be an 'unreal' fractional house.

If the opposite is true, we don't want to assume any confidence, then this is tantamount to assuming that all the first sales_quota trials
will be successful sales.

cout << "If confidence of meeting quota is zero\n(we assume all houses are successful sales)"
", then finishing house is " << sales_quota << endl;

If confidence of meeting quota is zero (we assume all houses are successful sales), then finish↵
ing house is 5
If confidence of meeting quota is 0, then finishing house is 5

We can list quantiles for a few probabilities:

double ps[] = {0., 0.001, 0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99, 0.999, 1.};
// Confidence as fraction = 1-alpha, as percent =  100 * (1-alpha[i]) %
cout.precision(3);
for (int i = 0; i < sizeof(ps)/sizeof(ps[0]); i++)
{

cout << "If confidence of meeting quota is " << ps[i]
<< ", then finishing house is " << quantile(nb, ps[i]) + sales_quota
<< endl;

}

If confidence of meeting quota is 0, then finishing house is 5
If confidence of meeting quota is 0.001, then finishing house is 5
If confidence of meeting quota is 0.01, then finishing house is 5
If confidence of meeting quota is 0.05, then finishing house is 6.2
If confidence of meeting quota is 0.1, then finishing house is 7.06
If confidence of meeting quota is 0.5, then finishing house is 11.3
If confidence of meeting quota is 0.9, then finishing house is 17.8
If confidence of meeting quota is 0.95, then finishing house is 20.1
If confidence of meeting quota is 0.99, then finishing house is 24.8
If confidence of meeting quota is 0.999, then finishing house is 31.1
If confidence of meeting quota is 1, then finishing house is 1.#INF

We could have applied a ceil function to obtain a 'worst case' integer value for house.

ceil(quantile(nb, ps[i]))

Or, if we had used the default discrete quantile policy, integer_outside, by omitting

#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
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we would have achieved the same effect.

The real result gives some suggestion which house is most likely. For example, compare the real and integer_outside for 95% con-
fidence.

If confidence of meeting quota is 0.95, then finishing house is 20.1
If confidence of meeting quota is 0.95, then finishing house is 21

The real value 20.1 is much closer to 20 than 21, so integer_outside is pessimistic. We could also use integer_round_nearest policy
to suggest that 20 is more likely.

Finally, we can tabulate the probability for the last sale being exactly on each house.

cout << "\nHouse for " << sales_quota << "th (last) sale.  Probability (%)" << endl;
cout.precision(5);
for (int i = (int)sales_quota; i < all_houses+1; i++)
{
cout << left << setw(3) << i << "                             ↵

" << setw(8) << cdf(nb, i - sales_quota) << endl;
}
cout << endl;

House for 5 th (last) sale.  Probability (%)
5                               0.01024
6                               0.04096
7                               0.096256
8                               0.17367
9                               0.26657
10                              0.3669
11                              0.46723
12                              0.56182
13                              0.64696
14                              0.72074
15                              0.78272
16                              0.83343
17                              0.874
18                              0.90583
19                              0.93039
20                              0.94905
21                              0.96304
22                              0.97342
23                              0.98103
24                              0.98655
25                              0.99053
26                              0.99337
27                              0.99539
28                              0.99681
29                              0.9978
30                              0.99849

As noted above, using a catch block is always a good idea, even if you do not expect to use it.

}
catch(const std::exception& e)
{ // Since we have set an overflow policy of ignore_error,
// an overflow exception should never be thrown.
std::cout << "\nMessage from thrown exception was:\n " << e.what() << std::endl;

For example, without a ignore domain error policy, if we asked for
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pdf(nb, -1)

for example, we would get:

Message from thrown exception was:
 Error in function boost::math::pdf(const negative_binomial_distribution<double>&, double):
 Number of failures argument is -1, but must be >= 0 !

Negative Binomial Table Printing Example.

Example program showing output of a table of values of cdf and pdf for various k failures.

// Print a table of values that can be used to plot
// using Excel, or some other superior graphical display tool.

cout.precision(17); // Use max_digits10 precision, the maximum available for a reference table.
cout << showpoint << endl; // include trailing zeros.
// This is a maximum possible precision for the type (here double) to suit a reference table.
int maxk = static_cast<int>(2. * mynbdist.successes() / mynbdist.success_fraction());
// This maxk shows most of the range of interest, probability about 0.0001 to 0.999.
cout << "\n"" k            pdf                      cdf""\n" << endl;
for (int k = 0; k < maxk; k++)
{
cout << right << setprecision(17) << showpoint
<< right << setw(3) << k << ", "
<< left << setw(25) << pdf(mynbdist, static_cast<double>(k))
<< left << setw(25) << cdf(mynbdist, static_cast<double>(k))
<< endl;

}
cout << endl;
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k pdf cdf
0, 1.5258789062500000e-005 1.5258789062500003e-005
1, 9.1552734375000000e-005 0.00010681152343750000
2, 0.00030899047851562522 0.00041580200195312500
3, 0.00077247619628906272 0.0011882781982421875
4, 0.0015932321548461918 0.0027815103530883789
5, 0.0028678178787231476 0.0056493282318115234
6, 0.0046602040529251142 0.010309532284736633
7, 0.0069903060793876605 0.017299838364124298
8, 0.0098301179241389001 0.027129956288263202
9, 0.013106823898851871 0.040236780187115073
10, 0.016711200471036140 0.056947980658151209
11, 0.020509200578089786 0.077457181236241013
12, 0.024354675686481652 0.10181185692272265
13, 0.028101548869017230 0.12991340579173993
14, 0.031614242477644432 0.16152764826938440
15, 0.034775666725408917 0.19630331499479325
16, 0.037492515688331451 0.23379583068312471
17, 0.039697957787645101 0.27349378847076977
18, 0.041352039362130305 0.31484582783290005
19, 0.042440250924291580 0.35728607875719176
20, 0.042970754060845245 0.40025683281803687
21, 0.042970754060845225 0.44322758687888220
22, 0.042482450037426581 0.48571003691630876
23, 0.041558918514873783 0.52726895543118257
24, 0.040260202311284021 0.56752915774246648
25, 0.038649794218832620 0.60617895196129912
26, 0.036791631035234917 0.64297058299653398
27, 0.034747651533277427 0.67771823452981139
28, 0.032575923312447595 0.71029415784225891
29, 0.030329307911589130 0.74062346575384819
30, 0.028054609818219924 0.76867807557206813
31, 0.025792141284492545 0.79447021685656061
32, 0.023575629142856460 0.81804584599941710
33, 0.021432390129869489 0.83947823612928651
34, 0.019383705779220189 0.85886194190850684
35, 0.017445335201298231 0.87630727710980494
36, 0.015628112784496322 0.89193538989430121
37, 0.013938587078064250 0.90587397697236549
38, 0.012379666154859701 0.91825364312722524
39, 0.010951243136991251 0.92920488626421649
40, 0.0096507830144735539 0.93885566927869002
41, 0.0084738582566109364 0.94732952753530097
42, 0.0074146259745345548 0.95474415350983555
43, 0.0064662435824429246 0.96121039709227851
44, 0.0056212231142827853 0.96683162020656122
45, 0.0048717266990450708 0.97170334690560634
46, 0.0042098073105878630 0.97591315421619418
47, 0.0036275999165703964 0.97954075413276465
48, 0.0031174686783026818 0.98265822281106729
49, 0.0026721160099737302 0.98533033882104104
50, 0.0022846591885275322 0.98761499800956853
51, 0.0019486798960970148 0.98956367790566557
52, 0.0016582516423517923 0.99122192954801736
53, 0.0014079495076571762 0.99262987905567457
54, 0.0011928461106539983 0.99382272516632852
55, 0.0010084971662802015 0.99483122233260868
56, 0.00085091948404891532 0.99568214181665760
57, 0.00071656377604119542 0.99639870559269883
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58, 0.00060228420831048650 0.99700098980100937
59, 0.00050530624256557675 0.99750629604357488
60, 0.00042319397814867202 0.99792949002172360
61, 0.00035381791615708398 0.99828330793788067
62, 0.00029532382517950324 0.99857863176306016
63, 0.00024610318764958566 0.99882473495070978

Normal Distribution Examples

(See also the reference documentation for the Normal Distribution.)

Some Miscellaneous Examples of the Normal (Gaussian) Distribution

The sample program normal_misc_examples.cpp illustrates their use.

Traditional Tables

First we need some includes to access the normal distribution (and some std output of course).

#include <boost/math/distributions/normal.hpp> // for normal_distribution
using boost::math::normal; // typedef provides default type is double.

#include <iostream>
using std::cout; using std::endl; using std::left; using std::showpoint; using std::noshowpoint;

#include <iomanip>
using std::setw; using std::setprecision;

#include <limits>
using std::numeric_limits;

int main()
{
cout << "Example: Normal distribution, Miscellaneous Applications.";

try
{
{ // Traditional tables and values.

Let's start by printing some traditional tables.

double step = 1.; // in z
double range = 4; // min and max z = -range to +range.
int precision = 17; // traditional tables are only computed to much lower precision.
// but std::numeric_limits<double>::max_digits10; on new Standard Libraries gives
// 17, the maximum number of digits that can possibly be significant.
// std::numeric_limits<double>::digits10; == 15 is number of guaranteed digits,
// the other two digits being 'noisy'.

// Construct a standard normal distribution s
normal s; // (default mean = zero, and standard deviation = unity)
cout << "Standard normal distribution, mean = "<< s.mean()
<< ", standard deviation = " << s.standard_deviation() << endl;

First the probability distribution function (pdf).
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cout << "Probability distribution function values" << endl;
cout << "  z " "      pdf " << endl;
cout.precision(5);
for (double z = -range; z < range + step; z += step)
{
cout << left << setprecision(3) << setw(6) << z << " "
<< setprecision(precision) << setw(12) << pdf(s, z) << endl;

}
cout.precision(6); // default

And the area under the normal curve from -∞ up to z, the cumulative distribution function (cdf).

// For a standard normal distribution
cout << "Standard normal mean = "<< s.mean()
<< ", standard deviation = " << s.standard_deviation() << endl;

cout << "Integral (area under the curve) from - infinity up to z " << endl;
cout << "  z " "      cdf " << endl;
for (double z = -range; z < range + step; z += step)
{
cout << left << setprecision(3) << setw(6) << z << " "
<< setprecision(precision) << setw(12) << cdf(s, z) << endl;

}
cout.precision(6); // default

And all this you can do with a nanoscopic amount of work compared to the team of human computers toiling with Milton Abramovitz
and Irene Stegen at the US National Bureau of Standards (now NIST). Starting in 1938, their "Handbook of Mathematical Functions
with Formulas, Graphs and Mathematical Tables", was eventually published in 1964, and has been reprinted numerous times since.
(A major replacement is planned at Digital Library of Mathematical Functions).

Pretty-printing a traditional 2-dimensional table is left as an exercise for the student, but why bother now that the Math Toolkit lets
you write

double z = 2.;
cout << "Area for z = " << z << " is " << cdf(s, z) << endl; // to get the area for z.

Correspondingly, we can obtain the traditional 'critical' values for significance levels. For the 95% confidence level, the significance
level usually called alpha, is 0.05 = 1 - 0.95 (for a one-sided test), so we can write

cout << "95% of area has a z below " << quantile(s, 0.95) << endl;
// 95% of area has a z below 1.64485

and a two-sided test (a comparison between two levels, rather than a one-sided test)

cout << "95% of area has a z between " << quantile(s, 0.975)
<< " and " << -quantile(s, 0.975) << endl;

// 95% of area has a z between 1.95996 and -1.95996

First, define a table of significance levels: these are the probabilities that the true occurrence frequency lies outside the calculated
interval.

It is convenient to have an alpha level for the probability that z lies outside just one standard deviation. This will not be some nice
neat number like 0.05, but we can easily calculate it,

double alpha1 = cdf(s, -1) * 2; // 0.3173105078629142
cout << setprecision(17) << "Significance level for z == 1 is " << alpha1 << endl;

and place in our array of favorite alpha values.
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double alpha[] = {0.3173105078629142, // z for 1 standard deviation.
0.20, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

Confidence value as % is (1 - alpha) * 100 (so alpha 0.05 == 95% confidence) that the true occurrence frequency lies inside the
calculated interval.

cout << "level of significance (alpha)" << setprecision(4) << endl;
cout << "2-sided       1 -sided          z(alpha) " << endl;
for (int i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{
cout << setw(15) << alpha[i] << setw(15) << alpha[i] /2 << setw(10) << quantile(complement(s, ↵

 alpha[i]/2)) << endl;
// Use quantile(complement(s, alpha[i]/2)) to avoid potential loss of accuracy from quantile(s, ↵

 1 - alpha[i]/2)
}
cout << endl;

Notice the distinction between one-sided (also called one-tailed) where we are using a > or < test (and not both) and considering the
area of the tail (integral) from z up to +∞, and a two-sided test where we are using two > and < tests, and thus considering two tails,
from -∞ up to z low and z high up to +∞.

So the 2-sided values alpha[i] are calculated using alpha[i]/2.

If we consider a simple example of alpha = 0.05, then for a two-sided test, the lower tail area from -∞ up to -1.96 is 0.025 (alpha/2)
and the upper tail area from +z up to +1.96 is also 0.025 (alpha/2), and the area between -1.96 up to 12.96 is alpha = 0.95. and the
sum of the two tails is 0.025 + 0.025 = 0.05,

Standard deviations either side of the Mean

Armed with the cumulative distribution function, we can easily calculate the easy to remember proportion of values that lie within
1, 2 and 3 standard deviations from the mean.

cout.precision(3);
cout << showpoint << "cdf(s, s.standard_deviation()) = "
<< cdf(s, s.standard_deviation()) << endl; // from -infinity to 1 sd

cout << "cdf(complement(s, s.standard_deviation())) = "
<< cdf(complement(s, s.standard_deviation())) << endl;

cout << "Fraction 1 standard deviation within either side of mean is "
<< 1 - cdf(complement(s, s.standard_deviation())) * 2 << endl;

cout << "Fraction 2 standard deviations within either side of mean is "
<< 1 - cdf(complement(s, 2 * s.standard_deviation())) * 2 << endl;

cout << "Fraction 3 standard deviations within either side of mean is "
<< 1 - cdf(complement(s, 3 * s.standard_deviation())) * 2 << endl;

To a useful precision, the 1, 2 & 3 percentages are 68, 95 and 99.7, and these are worth memorising as useful 'rules of thumb', as,
for example, in standard deviation:

Fraction 1 standard deviation within either side of mean is 0.683
Fraction 2 standard deviations within either side of mean is 0.954
Fraction 3 standard deviations within either side of mean is 0.997

We could of course get some really accurate values for these confidence intervals by using cout.precision(15);

Fraction 1 standard deviation within either side of mean is 0.682689492137086
Fraction 2 standard deviations within either side of mean is 0.954499736103642
Fraction 3 standard deviations within either side of mean is 0.997300203936740
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But before you get too excited about this impressive precision, don't forget that the confidence intervals of the standard deviation
are surprisingly wide, especially if you have estimated the standard deviation from only a few measurements.

Some simple examples

Life of light bulbs

Examples from K. Krishnamoorthy, Handbook of Statistical Distributions with Applications, ISBN 1 58488 635 8, page 125... im-
plemented using the Math Toolkit library.

A few very simple examples are shown here:

// K. Krishnamoorthy, Handbook of Statistical Distributions with Applications,
// ISBN 1 58488 635 8, page 125, example 10.3.5

Mean lifespan of 100 W bulbs is 1100 h with standard deviation of 100 h. Assuming, perhaps with little evidence and much faith,
that the distribution is normal, we construct a normal distribution called bulbs with these values:

double mean_life = 1100.;
double life_standard_deviation = 100.;
normal bulbs(mean_life, life_standard_deviation);
double expected_life = 1000.;

The we can use the Cumulative distribution function to predict fractions (or percentages, if * 100) that will last various lifetimes.

cout << "Fraction of bulbs that will last at best (<=) " // P(X <= 1000)
<< expected_life << " is "<< cdf(bulbs, expected_life) << endl;

cout << "Fraction of bulbs that will last at least (>) " // P(X > 1000)
<< expected_life << " is "<< cdf(complement(bulbs, expected_life)) << endl;

double min_life = 900;
double max_life = 1200;
cout << "Fraction of bulbs that will last between "
<< min_life << " and " << max_life << " is "
<< cdf(bulbs, max_life) // P(X <= 1200)
- cdf(bulbs, min_life) << endl; // P(X <= 900)

Note

Real-life failures are often very ab-normal, with a significant number that 'dead-on-arrival' or suffer failure very
early in their life: the lifetime of the survivors of 'early mortality' may be well described by the normal distribution.

How many onions?

Weekly demand for 5 lb sacks of onions at a store is normally distributed with mean 140 sacks and standard deviation 10.

double mean = 140.; // sacks per week.
double standard_deviation = 10;
normal sacks(mean, standard_deviation);

double stock = 160.; // per week.
cout << "Percentage of weeks overstocked "
<< cdf(sacks, stock) * 100. << endl; // P(X <=160)

// Percentage of weeks overstocked 97.7

So there will be lots of mouldy onions! So we should be able to say what stock level will meet demand 95% of the weeks.
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double stock_95 = quantile(sacks, 0.95);
cout << "Store should stock " << int(stock_95) << " sacks to meet 95% of demands." << endl;

And it is easy to estimate how to meet 80% of demand, and waste even less.

double stock_80 = quantile(sacks, 0.80);
cout << "Store should stock " << int(stock_80) << " sacks to meet 8 out of 10 demands." << endl;

Packing beef

A machine is set to pack 3 kg of ground beef per pack. Over a long period of time it is found that the average packed was 3 kg with
a standard deviation of 0.1 kg. Assuming the packing is normally distributed, we can find the fraction (or %) of packages that weigh
more than 3.1 kg.

double mean = 3.; // kg
double standard_deviation = 0.1; // kg
normal packs(mean, standard_deviation);

double max_weight = 3.1; // kg
cout << "Percentage of packs > " << max_weight << " is "
<< cdf(complement(packs, max_weight)) << endl; // P(X > 3.1)

double under_weight = 2.9;
cout <<"fraction of packs <= " << under_weight << " with a mean of " << mean
<< " is " << cdf(complement(packs, under_weight)) << endl;

// fraction of packs <= 2.9 with a mean of 3 is 0.841345
// This is 0.84 - more than the target 0.95
// Want 95% to be over this weight, so what should we set the mean weight to be?
// KK StatCalc says:
double over_mean = 3.0664;
normal xpacks(over_mean, standard_deviation);
cout << "fraction of packs >= " << under_weight
<< " with a mean of " << xpacks.mean()
<< " is " << cdf(complement(xpacks, under_weight)) << endl;

// fraction of packs >= 2.9 with a mean of 3.06449 is 0.950005
double under_fraction = 0.05; // so 95% are above the minimum weight mean - sd = 2.9
double low_limit = standard_deviation;
double offset = mean - low_limit - quantile(packs, under_fraction);
double nominal_mean = mean + offset;

normal nominal_packs(nominal_mean, standard_deviation);
cout << "Setting the packer to " << nominal_mean << " will mean that "
<< "fraction of packs >= " << under_weight
<< " is " << cdf(complement(nominal_packs, under_weight)) << endl;

Setting the packer to 3.06449 will mean that fraction of packs >= 2.9 is 0.95.

Setting the packer to 3.13263 will mean that fraction of packs >= 2.9 is 0.99, but will more than double the mean loss from 0.0644
to 0.133.

Alternatively, we could invest in a better (more precise) packer with a lower standard deviation.

To estimate how much better (how much smaller standard deviation) it would have to be, we need to get the 5% quantile to be located
at the under_weight limit, 2.9

double p = 0.05; // wanted p th quantile.
cout << "Quantile of " << p << " = " << quantile(packs, p)
<< ", mean = " << packs.mean() << ", sd = " << packs.standard_deviation() << endl; //
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Quantile of 0.05 = 2.83551, mean = 3, sd = 0.1

With the current packer (mean = 3, sd = 0.1), the 5% quantile is at 2.8551 kg, a little below our target of 2.9 kg. So we know that
the standard deviation is going to have to be smaller.

Let's start by guessing that it (now 0.1) needs to be halved, to a standard deviation of 0.05

normal pack05(mean, 0.05);
cout << "Quantile of " << p << " = " << quantile(pack05, p)
<< ", mean = " << pack05.mean() << ", sd = " << pack05.standard_deviation() << endl;

cout <<"Fraction of packs >= " << under_weight << " with a mean of " << mean
<< " and standard deviation of " << pack05.standard_deviation()
<< " is " << cdf(complement(pack05, under_weight)) << endl;

//

Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.05 is 0.9772

So 0.05 was quite a good guess, but we are a little over the 2.9 target, so the standard deviation could be a tiny bit more. So we could
do some more guessing to get closer, say by increasing to 0.06

normal pack06(mean, 0.06);
cout << "Quantile of " << p << " = " << quantile(pack06, p)
<< ", mean = " << pack06.mean() << ", sd = " << pack06.standard_deviation() << endl;

cout <<"Fraction of packs >= " << under_weight << " with a mean of " << mean
<< " and standard deviation of " << pack06.standard_deviation()
<< " is " << cdf(complement(pack06, under_weight)) << endl;

Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.06 is 0.9522

Now we are getting really close, but to do the job properly, we could use root finding method, for example the tools provided, and
used elsewhere, in the Math Toolkit, see root-finding without derivatives.

But in this normal distribution case, we could be even smarter and make a direct calculation.

normal s; // For standard normal distribution,
double sd = 0.1;
double x = 2.9; // Our required limit.
// then probability p = N((x - mean) / sd)
// So if we want to find the standard deviation that would be required to meet this limit,
// so that the p th quantile is located at x,
// in this case the 0.95 (95%) quantile at 2.9 kg pack weight, when the mean is 3 kg.

double prob = pdf(s, (x - mean) / sd);
double qp = quantile(s, 0.95);
cout << "prob = " << prob << ", quantile(p) " << qp << endl; // p = 0.241971, quantile(p) 1.64485
// Rearranging, we can directly calculate the required standard deviation:
double sd95 = std::abs((x - mean)) / qp;

cout << "If we want the "<< p << " th quantile to be located at "
<< x << ", would need a standard deviation of " << sd95 << endl;

normal pack95(mean, sd95); // Distribution of the 'ideal better' packer.
cout <<"Fraction of packs >= " << under_weight << " with a mean of " << mean
<< " and standard deviation of " << pack95.standard_deviation()
<< " is " << cdf(complement(pack95, under_weight)) << endl;

// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.0608 is 0.95
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Notice that these two deceptively simple questions (do we over-fill or measure better) are actually very common. The weight of beef
might be replaced by a measurement of more or less anything. But the calculations rely on the accuracy of the standard deviation -
something that is almost always less good than we might wish, especially if based on a few measurements.

Length of bolts

A bolt is usable if between 3.9 and 4.1 long. From a large batch of bolts, a sample of 50 show a mean length of 3.95 with standard
deviation 0.1. Assuming a normal distribution, what proportion is usable? The true sample mean is unknown, but we can use the
sample mean and standard deviation to find approximate solutions.

normal bolts(3.95, 0.1);
double top = 4.1;
double bottom = 3.9;

cout << "Fraction long enough [ P(X <= " << top << ") ] is " << cdf(bolts, top) << endl;
cout << "Fraction too short [ P(X <= " << bottom << ") ] is " << cdf(bolts, bottom) << endl;
cout << "Fraction OK  -between " << bottom << " and " << top
<< "[ P(X <= " << top << ") - P(X<= " << bottom << " ) ] is "
<< cdf(bolts, top) - cdf(bolts, bottom) << endl;

cout << "Fraction too long [ P(X > " << top << ") ] is "
<< cdf(complement(bolts, top)) << endl;

cout << "95% of bolts are shorter than " << quantile(bolts, 0.95) << endl;

Inverse Chi-Squared Distribution Bayes Example

The scaled-inversed-chi-squared distribution is the conjugate prior distribution for the variance (σ2) parameter of a normal distribution
with known expectation (μ). As such it has widespread application in Bayesian statistics:

In Bayesian inference, the strength of belief into certain parameter values is itself described through a distribution. Parameters hence
become themselves modelled and interpreted as random variables.

In this worked example, we perform such a Bayesian analysis by using the scaled-inverse-chi-squared distribution as prior and pos-
terior distribution for the variance parameter of a normal distribution.

For more general information on Bayesian type of analyses, see:

• Andrew Gelman, John B. Carlin, Hal E. Stern, Donald B. Rubin, Bayesian Data Analysis, 2003, ISBN 978-1439840955.

• Jim Albert, Bayesian Compution with R, Springer, 2009, ISBN 978-0387922973.

(As the scaled-inversed-chi-squared is another parameterization of the inverse-gamma distribution, this example could also have
used the inverse-gamma distribution).

Consider precision machines which produce balls for a high-quality ball bearing. Ideally each ball should have a diameter of precisely
3000 μm (3 mm). Assume that machines generally produce balls of that size on average (mean), but individual balls can vary slightly
in either direction following (approximately) a normal distribution. Depending on various production conditions (e.g. raw material
used for balls, workplace temperature and humidity, maintenance frequency and quality) some machines produce balls tighter dis-
tributed around the target of 3000 μm, while others produce balls with a wider distribution. Therefore the variance parameter of the
normal distribution of the ball sizes varies from machine to machine. An extensive survey by the precision machinery manufacturer,
however, has shown that most machines operate with a variance between 15 and 50, and near 25 μm2 on average.

Using this information, we want to model the variance of the machines. The variance is strictly positive, and therefore we look for
a statistical distribution with support in the positive domain of the real numbers. Given the expectation of the normal distribution of
the balls is known (3000 μm), for reasons of conjugacy, it is customary practice in Bayesian statistics to model the variance to be
scaled-inverse-chi-squared distributed.

186

Statistical Distributions and Functions

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/Bayesian_inference
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


In a first step, we will try to use the survey information to model the general knowledge about the variance parameter of machines
measured by the manufacturer. This will provide us with a generic prior distribution that is applicable if nothing more specific is
known about a particular machine.

In a second step, we will then combine the prior-distribution information in a Bayesian analysis with data on a specific single machine
to derive a posterior distribution for that machine.

Step one: Using the survey information.

Using the survey results, we try to find the parameter set of a scaled-inverse-chi-squared distribution so that the properties of this
distribution match the results. Using the mathematical properties of the scaled-inverse-chi-squared distribution as guideline, we see
that that both the mean and mode of the scaled-inverse-chi-squared distribution are approximately given by the scale parameter (s)
of the distribution. As the survey machines operated at a variance of 25 μm2 on average, we hence set the scale parameter (sprior) of
our prior distribution equal to this value. Using some trial-and-error and calls to the global quantile function, we also find that a
value of 20 for the degrees-of-freedom (νprior) parameter is adequate so that most of the prior distribution mass is located between
15 and 50 (see figure below).

We first construct our prior distribution using these values, and then list out a few quantiles:

double priorDF = 20.0;
double priorScale = 25.0;

inverse_chi_squared prior(priorDF, priorScale);
// Using an inverse_gamma distribution instead, we could equivalently write
// inverse_gamma prior(priorDF / 2.0, priorScale * priorDF / 2.0);

cout << "Prior distribution:" << endl << endl;
cout << "  2.5% quantile: " << quantile(prior, 0.025) << endl;
cout << "  50% quantile: " << quantile(prior, 0.5) << endl;
cout << "  97.5% quantile: " << quantile(prior, 0.975) << endl << endl;

This produces this output:

Prior distribution:

2.5% quantile: 14.6
50% quantile: 25.9
97.5% quantile: 52.1

Based on this distribution, we can now calculate the probability of having a machine working with an unusual work precision
(variance) at <= 15 or > 50. For this task, we use calls to the boost::math:: functions cdf and complement, respectively, and
find a probability of about 0.031 (3.1%) for each case.

cout << "  probability variance <= 15: " << boost::math::cdf(prior, 15.0) << endl;
cout << "  probability variance <= 25: " << boost::math::cdf(prior, 25.0) << endl;
cout << "  probability variance > 50: "
<< boost::math::cdf(boost::math::complement(prior, 50.0))

<< endl << endl;

This produces this output:

probability variance <= 15: 0.031
probability variance <= 25: 0.458
probability variance > 50: 0.0318

Therefore, only 3.1% of all precision machines produce balls with a variance of 15 or less (particularly precise machines), but also
only 3.2% of all machines produce balls with a variance of as high as 50 or more (particularly imprecise machines). Moreover,
slightly more than one-half (1 - 0.458 = 54.2%) of the machines work at a variance greater than 25.
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Notice here the distinction between a Bayesian analysis and a frequentist analysis: because we model the variance as random variable
itself, we can calculate and straightforwardly interpret probabilities for given parameter values directly, while such an approach is
not possible (and interpretationally a strict must-not) in the frequentist world.

Step 2: Investigate a single machine

In the second step, we investigate a single machine, which is suspected to suffer from a major fault as the produced balls show fairly
high size variability. Based on the prior distribution of generic machinery performance (derived above) and data on balls produced
by the suspect machine, we calculate the posterior distribution for that machine and use its properties for guidance regarding continued
machine operation or suspension.

It can be shown that if the prior distribution was chosen to be scaled-inverse-chi-square distributed, then the posterior distribution
is also scaled-inverse-chi-squared-distributed (prior and posterior distributions are hence conjugate). For more details regarding
conjugacy and formula to derive the parameters set for the posterior distribution see Conjugate prior.

Given the prior distribution parameters and sample data (of size n), the posterior distribution parameters are given by the two expres-
sions:

 νposterior = νprior + n

which gives the posteriorDF below, and

 sposterior = (νpriorsprior + Σn
i=1(xi - μ)2) / (νprior + n)

which after some rearrangement gives the formula for the posteriorScale below.

Machine-specific data consist of 100 balls which were accurately measured and show the expected mean of 3000 μm and a sample
variance of 55 (calculated for a sample mean defined to be 3000 exactly). From these data, the prior parameterization, and noting
that the term Σn

i=1(xi - μ)2 equals the sample variance multiplied by n - 1, it follows that the posterior distribution of the variance
parameter is scaled-inverse-chi-squared distribution with degrees-of-freedom (νposterior) = 120 and scale (sposterior) = 49.54.

int ballsSampleSize = 100;
cout <<"balls sample size: " << ballsSampleSize << endl;
double ballsSampleVariance = 55.0;
cout <<"balls sample variance: " << ballsSampleVariance << endl;

double posteriorDF = priorDF + ballsSampleSize;
cout << "prior degrees-of-freedom: " << priorDF << endl;
cout << "posterior degrees-of-freedom: " << posteriorDF << endl;

double posteriorScale =
(priorDF * priorScale + (ballsSampleVariance * (ballsSampleSize - 1))) / posteriorDF;

cout << "prior scale: " << priorScale << endl;
cout << "posterior scale: " << posteriorScale << endl;

An interesting feature here is that one needs only to know a summary statistics of the sample to parameterize the posterior distribution:
the 100 individual ball measurements are irrelevant, just knowledge of the sample variance and number of measurements is sufficient.

That produces this output:

balls sample size: 100
balls sample variance: 55
prior degrees-of-freedom: 20
posterior degrees-of-freedom: 120
prior scale: 25
posterior scale: 49.5

To compare the generic machinery performance with our suspect machine, we calculate again the same quantiles and probabilities
as above, and find a distribution clearly shifted to greater values (see figure).
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inverse_chi_squared posterior(posteriorDF, posteriorScale);

cout << "Posterior distribution:" << endl << endl;
cout << "  2.5% quantile: " << boost::math::quantile(posterior, 0.025) << endl;
cout << "  50% quantile: " << boost::math::quantile(posterior, 0.5) << endl;
cout << "  97.5% quantile: " << boost::math::quantile(posterior, 0.975) << endl << endl;

cout << "  probability variance <= 15: " << boost::math::cdf(posterior, 15.0) << endl;
cout << "  probability variance <= 25: " << boost::math::cdf(posterior, 25.0) << endl;
cout << "  probability variance > 50: "

<< boost::math::cdf(boost::math::complement(posterior, 50.0)) << endl;

This produces this output:

Posterior distribution:

2.5% quantile: 39.1
50% quantile: 49.8
97.5% quantile: 64.9

probability variance <= 15: 2.97e-031
probability variance <= 25: 8.85e-010
probability variance > 50: 0.489

Indeed, the probability that the machine works at a low variance (<= 15) is almost zero, and even the probability of working at average
or better performance is negligibly small (less than one-millionth of a permille). On the other hand, with an almost near-half probab-
ility (49%), the machine operates in the extreme high variance range of > 50 characteristic for poorly performing machines.

Based on this information the operation of the machine is taken out of use and serviced.

In summary, the Bayesian analysis allowed us to make exact probabilistic statements about a parameter of interest, and hence provided
us results with straightforward interpretation.

A full sample output is:
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 Inverse_chi_squared_distribution Bayes example:

   Prior distribution:

    2.5% quantile: 14.6
    50% quantile: 25.9
    97.5% quantile: 52.1

    probability variance <= 15: 0.031
    probability variance <= 25: 0.458
    probability variance > 50: 0.0318

  balls sample size: 100
  balls sample variance: 55
  prior degrees-of-freedom: 20
  posterior degrees-of-freedom: 120
  prior scale: 25
  posterior scale: 49.5
  Posterior distribution:

    2.5% quantile: 39.1
    50% quantile: 49.8
    97.5% quantile: 64.9

    probability variance <= 15: 2.97e-031
    probability variance <= 25: 8.85e-010
    probability variance > 50: 0.489

(See also the reference documentation for the Inverse chi squared Distribution.)

See the full source C++ of this example at ../../example/inverse_chi_squared_bayes_eg.cpp

Non Central Chi Squared Example

(See also the reference documentation for the Noncentral Chi Squared Distribution.)

Tables of the power function of the chi2 test.

This example computes a table of the power of the χ2 test at the 5% significance level, for various degrees of freedom and non-
centrality parameters. The table is deliberately the same as Table 6 from "The Non-Central χ2 and F-Distributions and their applica-
tions.", P. B. Patnaik, Biometrika, Vol. 36, No. 1/2 (June 1949), 202-232.

First we need some includes to access the non-central chi squared distribution (and some basic std output of course).

#include <boost/math/distributions/non_central_chi_squared.hpp>
using boost::math::chi_squared;
using boost::math::non_central_chi_squared;

#include <iostream>
using std::cout; using std::endl;
using std::setprecision;

int main()
{

Create a table of the power of the χ2 test at 5% significance level, start with a table header:
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cout << "[table\n[[[nu]]";
for(int lam = 2; lam <= 20; lam += 2)
{

cout << "[[lambda]=" << lam << "]";
}
cout << "]\n";

(Note: the enclosing [] brackets are to format as a table in Boost.Quickbook).

Enumerate the rows and columns and print the power of the test for each table cell:

for(int n = 2; n <= 20; ++n)
{

cout << "[[" << n << "]";
for(int lam = 2; lam <= 20; lam += 2)
{

Calculate the χ2 statistic for a 5% significance:

double cs = quantile(complement(chi_squared(n), 0.05));

The power of the test is given by the complement of the CDF of the non-central χ2 distribution:

double beta = cdf(complement(non_central_chi_squared(n, lam), cs));

Then output the cell value:

cout << "[" << setprecision(3) << beta << "]";
}
cout << "]" << endl;

}
cout << "]" << endl;

}

The output from this program is a table in Boost.Quickbook format as shown below.

We can interpret this as follows - for example if ν=10 and λ=10 then the power of the test is 0.542 - so we have only a 54% chance
of correctly detecting that our null hypothesis is false, and a 46% chance of incurring a type II error (failing to reject the null hypo-
thesis when it is in fact false):

191

Statistical Distributions and Functions

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


λ=20λ=18λ=16λ=14λ=12λ=10λ=8λ=6λ=4λ=2ν

0.9850.9740.9570.9280.8830.8150.7180.5840.4150.2262

0.9750.9590.9340.8960.840.7610.6540.5180.3590.1923

0.9640.9430.9120.8660.8020.7160.6050.470.320.1714

0.9520.9270.890.8390.7690.6770.5640.4330.2920.1575

0.940.9110.8690.8130.7380.6440.5310.4030.270.1466

0.9280.8950.8490.7880.710.6140.5020.3780.2520.1387

0.9150.8790.8290.7650.6850.5880.4770.3570.2380.1318

0.9030.8630.8110.7440.6610.5640.4540.3390.2250.1259

0.8910.8480.7930.7230.640.5420.4350.3230.2150.12110

0.8780.8330.7750.7040.620.5230.4170.3090.2060.11711

0.8660.8180.7590.6860.6010.5050.4020.2970.1980.11312

0.8540.8040.7430.6690.5840.4880.3870.2860.1910.1113

0.8420.7910.7280.6530.5670.4730.3740.2760.1850.10814

0.830.7770.7130.6380.5520.4590.3620.2670.1790.10515

0.8190.7640.6990.6230.5380.4460.3510.2590.1740.10316

0.8070.7520.6860.6090.5250.4340.3410.2510.1690.10117

0.7960.740.6730.5960.5120.4230.3320.2440.1650.099218

0.7860.7280.660.5840.50.4120.3230.2380.1610.097619

0.7750.7160.6480.5720.4890.4020.3150.2320.1580.096120

See nc_chi_sq_example.cpp for the full C++ source code.

Error Handling Example

See error handling documentation for a detailed explanation of the mechanism of handling errors, including the common "bad" ar-
guments to distributions and functions, and how to use Policies to control it.

But, by default, exceptions will be raised, for domain errors, pole errors, numeric overflow, and internal evaluation errors. To avoid
the exceptions from getting thrown and instead get an appropriate value returned, usually a NaN (domain errors pole errors or internal
errors), or infinity (from overflow), you need to change the policy.

The following example demonstrates the effect of setting the macro BOOST_MATH_DOMAIN_ERROR_POLICY when an invalid
argument is encountered. For the purposes of this example, we'll pass a negative degrees of freedom parameter to the student's t
distribution.

Since we know that this is a single file program we could just add:
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#define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error

to the top of the source file to change the default policy to one that simply returns a NaN when a domain error occurs. Alternatively
we could use:

#define BOOST_MATH_DOMAIN_ERROR_POLICY errno_on_error

To ensure the ::errno is set when a domain error occurs as well as returning a NaN.

This is safe provided the program consists of a single translation unit and we place the define before any #includes. Note that should
we add the define after the includes then it will have no effect! A warning such as:

warning C4005: 'BOOST_MATH_OVERFLOW_ERROR_POLICY' : macro redefinition

is a certain sign that it will not have the desired effect.

We'll begin our sample program with the needed includes:

#define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error

// Boost
#include <boost/math/distributions/students_t.hpp>

using boost::math::students_t; // Probability of students_t(df, t).

// std
#include <iostream>

using std::cout;
using std::endl;

#include <stdexcept>
using std::exception;

#include <cstddef>
// using ::errno

Next we'll define the program's main() to call the student's t distribution with an invalid degrees of freedom parameter, the program
is set up to handle either an exception or a NaN:
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int main()
{

cout << "Example error handling using Student's t function. " << endl;
cout << "BOOST_MATH_DOMAIN_ERROR_POLICY is set to: "

<< BOOST_STRINGIZE(BOOST_MATH_DOMAIN_ERROR_POLICY) << endl;

double degrees_of_freedom = -1; // A bad argument!
double t = 10;

try
{

errno = 0; // Clear/reset.
students_t dist(degrees_of_freedom); // exception is thrown here if enabled.
double p = cdf(dist, t);
// Test for error reported by other means:
if((boost::math::isnan)(p))
{

cout << "cdf returned a NaN!" << endl;
if (errno != 0)
{ // So errno has been set.
cout << "errno is set to: " << errno << endl;

}
}
else

cout << "Probability of Student's t is " << p << endl;
}
catch(const std::exception& e)
{

std::cout <<
"\n""Message from thrown exception was:\n   " << e.what() << std::endl;

}
return 0;

} // int main()

Here's what the program output looks like with a default build (one that does throw exceptions):

Example error handling using Student's t function.
BOOST_MATH_DOMAIN_ERROR_POLICY is set to: throw_on_error

Message from thrown exception was:
   Error in function boost::math::students_t_distribution<double>::students_t_distribution:
   Degrees of freedom argument is -1, but must be > 0 !

Alternatively let's build with:

#define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error

Now the program output is:

Example error handling using Student's t function.
BOOST_MATH_DOMAIN_ERROR_POLICY is set to: ignore_error
cdf returned a NaN!

And finally let's build with:

#define BOOST_MATH_DOMAIN_ERROR_POLICY errno_on_error

Which gives the output show errno:
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Example error handling using Student's t function.
BOOST_MATH_DOMAIN_ERROR_POLICY is set to: errno_on_error
cdf returned a NaN!
errno is set to: 33

Caution

If throwing of exceptions is enabled (the default) but you do not have try & catch block, then the program will ter-
minate with an uncaught exception and probably abort.

Therefore to get the benefit of helpful error messages, enabling all exceptions and using try & catch is recommended
for most applications.

However, for simplicity, the is not done for most examples.

Find Location and Scale Examples

Find Location (Mean) Example

First we need some includes to access the normal distribution, the algorithms to find location (and some std output of course).

#include <boost/math/distributions/normal.hpp> // for normal_distribution
using boost::math::normal; // typedef provides default type is double.

#include <boost/math/distributions/cauchy.hpp> // for cauchy_distribution
using boost::math::cauchy; // typedef provides default type is double.

#include <boost/math/distributions/find_location.hpp>
using boost::math::find_location; // for mean

#include <boost/math/distributions/find_scale.hpp>
using boost::math::find_scale; // for standard devation
using boost::math::complement; // Needed if you want to use the complement version.
using boost::math::policies::policy;

#include <iostream>
using std::cout; using std::endl;

#include <iomanip>
using std::setw; using std::setprecision;

#include <limits>
using std::numeric_limits;

For this example, we will use the standard normal distribution, with mean (location) zero and standard deviation (scale) unity. This
is also the default for this implementation.

normal N01; // Default 'standard' normal distribution with zero mean and
double sd = 1.; // normal default standard deviation is 1.

Suppose we want to find a different normal distribution whose mean is shifted so that only fraction p (here 0.001 or 0.1%) are below
a certain chosen limit (here -2, two standard deviations).
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double z = -2.; // z to give prob p
double p = 0.001; // only 0.1% below z

cout << "Normal distribution with mean = " << N01.location()
<< ", standard deviation " << N01.scale()
<< ", has " << "fraction <= " << z
<< ", p = " << cdf(N01, z) << endl;

cout << "Normal distribution with mean = " << N01.location()
<< ", standard deviation " << N01.scale()
<< ", has " << "fraction > " << z
<< ", p = " << cdf(complement(N01, z)) << endl; // Note: uses complement.

Normal distribution with mean = 0, standard deviation 1, has fraction <= -2, p = 0.0227501
Normal distribution with mean = 0, standard deviation 1, has fraction > -2, p = 0.97725

We can now use ''find_location'' to give a new offset mean.

double l = find_location<normal>(z, p, sd);
cout << "offset location (mean) = " << l << endl;

that outputs:

offset location (mean) = 1.09023

showing that we need to shift the mean just over one standard deviation from its previous value of zero.

Then we can check that we have achieved our objective by constructing a new distribution with the offset mean (but same standard
deviation):

normal np001pc(l, sd); // Same standard_deviation (scale) but with mean (location) shifted.

And re-calculating the fraction below our chosen limit.

cout << "Normal distribution with mean = " << l
<< " has " << "fraction <= " << z
<< ", p = " << cdf(np001pc, z) << endl;

cout << "Normal distribution with mean = " << l
<< " has " << "fraction > " << z
<< ", p = " << cdf(complement(np001pc, z)) << endl;

Normal distribution with mean = 1.09023 has fraction <= -2, p = 0.001
Normal distribution with mean = 1.09023 has fraction > -2, p = 0.999

Controlling Error Handling from find_location

We can also control the policy for handling various errors. For example, we can define a new (possibly unwise) policy to ignore
domain errors ('bad' arguments).

Unless we are using the boost::math namespace, we will need:

using boost::math::policies::policy;
using boost::math::policies::domain_error;
using boost::math::policies::ignore_error;

Using a typedef is often convenient, especially if it is re-used, although it is not required, as the various examples below show.
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typedef policy<domain_error<ignore_error> > ignore_domain_policy;
// find_location with new policy, using typedef.
l = find_location<normal>(z, p, sd, ignore_domain_policy());
// Default policy policy<>, needs "using boost::math::policies::policy;"
l = find_location<normal>(z, p, sd, policy<>());
// Default policy, fully specified.
l = find_location<normal>(z, p, sd, boost::math::policies::policy<>());
// A new policy, ignoring domain errors, without using a typedef.
l = find_location<normal>(z, p, sd, policy<domain_error<ignore_error> >());

If we want to use a probability that is the complements of our probability, we should not even think of writing find_location<nor-
mal>(z, 1 - p, sd), but use the complement version, see why complements?.

z = 2.;
double q = 0.95; // = 1 - p; // complement.
l = find_location<normal>(complement(z, q, sd));

normal np95pc(l, sd); // Same standard_deviation (scale) but with mean(location) shifted
cout << "Normal distribution with mean = " << l << " has "
<< "fraction <= " << z << " = " << cdf(np95pc, z) << endl;

cout << "Normal distribution with mean = " << l << " has "
<< "fraction > " << z << " = " << cdf(complement(np95pc, z)) << endl;

See find_location_example.cpp for full source code: the program output looks like this:

Example: Find location (mean).
Normal distribution with mean = 0, standard deviation 1, has fraction <= -2, p = 0.0227501
Normal distribution with mean = 0, standard deviation 1, has fraction > -2, p = 0.97725
offset location (mean) = 1.09023
Normal distribution with mean = 1.09023 has fraction <= -2, p = 0.001
Normal distribution with mean = 1.09023 has fraction > -2, p = 0.999
Normal distribution with mean = 0.355146 has fraction <= 2 = 0.95
Normal distribution with mean = 0.355146 has fraction > 2 = 0.05

Find Scale (Standard Deviation) Example

First we need some includes to access the Normal Distribution, the algorithms to find scale (and some std output of course).

#include <boost/math/distributions/normal.hpp> // for normal_distribution
using boost::math::normal; // typedef provides default type is double.

#include <boost/math/distributions/find_scale.hpp>
using boost::math::find_scale;
using boost::math::complement; // Needed if you want to use the complement version.
using boost::math::policies::policy; // Needed to specify the error handling policy.

#include <iostream>
using std::cout; using std::endl;

#include <iomanip>
using std::setw; using std::setprecision;

#include <limits>
using std::numeric_limits;

For this example, we will use the standard Normal Distribution, with location (mean) zero and standard deviation (scale) unity.
Conveniently, this is also the default for this implementation's constructor.

normal N01; // Default 'standard' normal distribution with zero mean
double sd = 1.; // and standard deviation is 1.
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Suppose we want to find a different normal distribution with standard deviation so that only fraction p (here 0.001 or 0.1%) are below
a certain chosen limit (here -2. standard deviations).

double z = -2.; // z to give prob p
double p = 0.001; // only 0.1% below z = -2

cout << "Normal distribution with mean = " << N01.location() // aka N01.mean()
<< ", standard deviation " << N01.scale() // aka N01.standard_deviation()
<< ", has " << "fraction <= " << z
<< ", p = " << cdf(N01, z) << endl;

cout << "Normal distribution with mean = " << N01.location()
<< ", standard deviation " << N01.scale()
<< ", has " << "fraction > " << z
<< ", p = " << cdf(complement(N01, z)) << endl; // Note: uses complement.

Normal distribution with mean = 0 has fraction <= -2, p = 0.0227501
Normal distribution with mean = 0 has fraction > -2, p = 0.97725

Noting that p = 0.02 instead of our target of 0.001, we can now use find_scale to give a new standard deviation.

double l = N01.location();
double s = find_scale<normal>(z, p, l);
cout << "scale (standard deviation) = " << s << endl;

that outputs:

scale (standard deviation) = 0.647201

showing that we need to reduce the standard deviation from 1. to 0.65.

Then we can check that we have achieved our objective by constructing a new distribution with the new standard deviation (but
same zero mean):

normal np001pc(N01.location(), s);

And re-calculating the fraction below (and above) our chosen limit.

cout << "Normal distribution with mean = " << l
<< " has " << "fraction <= " << z
<< ", p = " << cdf(np001pc, z) << endl;

cout << "Normal distribution with mean = " << l
<< " has " << "fraction > " << z
<< ", p = " << cdf(complement(np001pc, z)) << endl;

Normal distribution with mean = 0 has fraction <= -2, p = 0.001
Normal distribution with mean = 0 has fraction > -2, p = 0.999

Controlling how Errors from find_scale are handled

We can also control the policy for handling various errors. For example, we can define a new (possibly unwise) policy to ignore
domain errors ('bad' arguments).

Unless we are using the boost::math namespace, we will need:
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using boost::math::policies::policy;
using boost::math::policies::domain_error;
using boost::math::policies::ignore_error;

Using a typedef is convenient, especially if it is re-used, although it is not required, as the various examples below show.

typedef policy<domain_error<ignore_error> > ignore_domain_policy;
// find_scale with new policy, using typedef.
l = find_scale<normal>(z, p, l, ignore_domain_policy());
// Default policy policy<>, needs using boost::math::policies::policy;

l = find_scale<normal>(z, p, l, policy<>());
// Default policy, fully specified.
l = find_scale<normal>(z, p, l, boost::math::policies::policy<>());
// New policy, without typedef.
l = find_scale<normal>(z, p, l, policy<domain_error<ignore_error> >());

If we want to express a probability, say 0.999, that is a complement, 1 - p we should not even think of writing
find_scale<normal>(z, 1 - p, l), but use the complements version (see why complements?).

z = -2.;
double q = 0.999; // = 1 - p; // complement of 0.001.
sd = find_scale<normal>(complement(z, q, l));

normal np95pc(l, sd); // Same standard_deviation (scale) but with mean(scale) shifted
cout << "Normal distribution with mean = " << l << " has "
<< "fraction <= " << z << " = " << cdf(np95pc, z) << endl;

cout << "Normal distribution with mean = " << l << " has "
<< "fraction > " << z << " = " << cdf(complement(np95pc, z)) << endl;

Sadly, it is all too easy to get probabilities the wrong way round, when you may get a warning like this:

Message from thrown exception was:
   Error in function boost::math::find_scale<Dist, Policy>(complement(double, double, double, ↵
Policy)):
   Computed scale (-0.48043523852179076) is <= 0! Was the complement intended?

The default error handling policy is to throw an exception with this message, but if you chose a policy to ignore the error, the (im-
possible) negative scale is quietly returned.

See find_scale_example.cpp for full source code: the program output looks like this:

Example: Find scale (standard deviation).
Normal distribution with mean = 0, standard deviation 1, has fraction <= -2, p = 0.0227501
Normal distribution with mean = 0, standard deviation 1, has fraction > -2, p = 0.97725
scale (standard deviation) = 0.647201
Normal distribution with mean = 0 has fraction <= -2, p = 0.001
Normal distribution with mean = 0 has fraction > -2, p = 0.999
Normal distribution with mean = 0.946339 has fraction <= -2 = 0.001
Normal distribution with mean = 0.946339 has fraction > -2 = 0.999

Find mean and standard deviation example

First we need some includes to access the normal distribution, the algorithms to find location and scale (and some std output of
course).
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#include <boost/math/distributions/normal.hpp> // for normal_distribution
using boost::math::normal; // typedef provides default type is double.

#include <boost/math/distributions/cauchy.hpp> // for cauchy_distribution
using boost::math::cauchy; // typedef provides default type is double.

#include <boost/math/distributions/find_location.hpp>
using boost::math::find_location;

#include <boost/math/distributions/find_scale.hpp>
using boost::math::find_scale;
using boost::math::complement;
using boost::math::policies::policy;

#include <iostream>
using std::cout; using std::endl; using std::left; using std::showpoint; using std::noshowpoint;

#include <iomanip>
using std::setw; using std::setprecision;

#include <limits>
using std::numeric_limits;

#include <stdexcept>
using std::exception;

Using find_location and find_scale to meet dispensing and measurement specifications

Consider an example from K Krishnamoorthy, Handbook of Statistical Distributions with Applications, ISBN 1-58488-635-8, (2006)
p 126, example 10.3.7.

"A machine is set to pack 3 kg of ground beef per pack. Over a long period of time it is found that the average packed was 3 kg with
a standard deviation of 0.1 kg. Assume the packing is normally distributed."

We start by constructing a normal distribution with the given parameters:

double mean = 3.; // kg
double standard_deviation = 0.1; // kg
normal packs(mean, standard_deviation);

We can then find the fraction (or %) of packages that weigh more than 3.1 kg.

double max_weight = 3.1; // kg
cout << "Percentage of packs > " << max_weight << " is "
<< cdf(complement(packs, max_weight)) * 100. << endl; // P(X > 3.1)

We might want to ensure that 95% of packs are over a minimum weight specification, then we want the value of the mean such that
P(X < 2.9) = 0.05.

Using the mean of 3 kg, we can estimate the fraction of packs that fail to meet the specification of 2.9 kg.

double minimum_weight = 2.9;
cout <<"Fraction of packs <= " << minimum_weight << " with a mean of " << mean
<< " is " << cdf(complement(packs, minimum_weight)) << endl;

// fraction of packs <= 2.9 with a mean of 3 is 0.841345

This is 0.84 - more than the target fraction of 0.95. If we want 95% to be over the minimum weight, what should we set the mean
weight to be?

Using the KK StatCalc program supplied with the book and the method given on page 126 gives 3.06449.

We can confirm this by constructing a new distribution which we call 'xpacks' with a safety margin mean of 3.06449 thus:
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double over_mean = 3.06449;
normal xpacks(over_mean, standard_deviation);
cout << "Fraction of packs >= " << minimum_weight
<< " with a mean of " << xpacks.mean()
<< " is " << cdf(complement(xpacks, minimum_weight)) << endl;

// fraction of packs >= 2.9 with a mean of 3.06449 is 0.950005

Using this Math Toolkit, we can calculate the required mean directly thus:

double under_fraction = 0.05; // so 95% are above the minimum weight mean - sd = 2.9
double low_limit = standard_deviation;
double offset = mean - low_limit - quantile(packs, under_fraction);
double nominal_mean = mean + offset;
// mean + (mean - low_limit - quantile(packs, under_fraction));

normal nominal_packs(nominal_mean, standard_deviation);
cout << "Setting the packer to " << nominal_mean << " will mean that "
<< "fraction of packs >= " << minimum_weight
<< " is " << cdf(complement(nominal_packs, minimum_weight)) << endl;

// Setting the packer to 3.06449 will mean that fraction of packs >= 2.9 is 0.95

This calculation is generalized as the free function called find_location, see algorithms.

To use this we will need to

#include <boost/math/distributions/find_location.hpp>
using boost::math::find_location;

and then use find_location function to find safe_mean, & construct a new normal distribution called 'goodpacks'.

double safe_mean = find_location<normal>(minimum_weight, under_fraction, standard_deviation);
normal good_packs(safe_mean, standard_deviation);

with the same confirmation as before:

cout << "Setting the packer to " << nominal_mean << " will mean that "
<< "fraction of packs >= " << minimum_weight
<< " is " << cdf(complement(good_packs, minimum_weight)) << endl;

// Setting the packer to 3.06449 will mean that fraction of packs >= 2.9 is 0.95

Using Cauchy-Lorentz instead of normal distribution

After examining the weight distribution of a large number of packs, we might decide that, after all, the assumption of a normal dis-
tribution is not really justified. We might find that the fit is better to a Cauchy Distribution. This distribution has wider 'wings', so
that whereas most of the values are closer to the mean than the normal, there are also more values than 'normal' that lie further from
the mean than the normal.

This might happen because a larger than normal lump of meat is either included or excluded.

We first create a Cauchy Distribution with the original mean and standard deviation, and estimate the fraction that lie below our
minimum weight specification.

cauchy cpacks(mean, standard_deviation);
cout << "Cauchy Setting the packer to " << mean << " will mean that "
<< "fraction of packs >= " << minimum_weight
<< " is " << cdf(complement(cpacks, minimum_weight)) << endl;

// Cauchy Setting the packer to 3 will mean that fraction of packs >= 2.9 is 0.75
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Note that far fewer of the packs meet the specification, only 75% instead of 95%. Now we can repeat the find_location, using the
cauchy distribution as template parameter, in place of the normal used above.

double lc = find_location<cauchy>(minimum_weight, under_fraction, standard_deviation);
cout << "find_location<cauchy>(minimum_weight, over fraction, standard_deviation); " << lc << endl;
// find_location<cauchy>(minimum_weight, over fraction, packs.standard_deviation()); 3.53138

Note that the safe_mean setting needs to be much higher, 3.53138 instead of 3.06449, so we will make rather less profit.

And again confirm that the fraction meeting specification is as expected.

cauchy goodcpacks(lc, standard_deviation);
cout << "Cauchy Setting the packer to " << lc << " will mean that "
<< "fraction of packs >= " << minimum_weight
<< " is " << cdf(complement(goodcpacks, minimum_weight)) << endl;

// Cauchy Setting the packer to 3.53138 will mean that fraction of packs >= 2.9 is 0.95

Finally we could estimate the effect of a much tighter specification, that 99% of packs met the specification.

cout << "Cauchy Setting the packer to "
<< find_location<cauchy>(minimum_weight, 0.99, standard_deviation)
<< " will mean that "
<< "fraction of packs >= " << minimum_weight
<< " is " << cdf(complement(goodcpacks, minimum_weight)) << endl;

Setting the packer to 3.13263 will mean that fraction of packs >= 2.9 is 0.99, but will more than double the mean loss from 0.0644
to 0.133 kg per pack.

Of course, this calculation is not limited to packs of meat, it applies to dispensing anything, and it also applies to a 'virtual' material
like any measurement.

The only caveat is that the calculation assumes that the standard deviation (scale) is known with a reasonably low uncertainty,
something that is not so easy to ensure in practice. And that the distribution is well defined, Normal Distribution or Cauchy Distri-
bution, or some other.

If one is simply dispensing a very large number of packs, then it may be feasible to measure the weight of hundreds or thousands of
packs. With a healthy 'degrees of freedom', the confidence intervals for the standard deviation are not too wide, typically about +
and - 10% for hundreds of observations.

For other applications, where it is more difficult or expensive to make many observations, the confidence intervals are depressingly
wide.

See Confidence Intervals on the standard deviation for a worked example chi_square_std_dev_test.cpp of estimating these intervals.

Changing the scale or standard deviation

Alternatively, we could invest in a better (more precise) packer (or measuring device) with a lower standard deviation, or scale.

This might cost more, but would reduce the amount we have to 'give away' in order to meet the specification.

To estimate how much better (how much smaller standard deviation) it would have to be, we need to get the 5% quantile to be located
at the under_weight limit, 2.9

double p = 0.05; // wanted p th quantile.
cout << "Quantile of " << p << " = " << quantile(packs, p)
<< ", mean = " << packs.mean() << ", sd = " << packs.standard_deviation() << endl;

Quantile of 0.05 = 2.83551, mean = 3, sd = 0.1

202

Statistical Distributions and Functions

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/chi_square_std_dev_test.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


With the current packer (mean = 3, sd = 0.1), the 5% quantile is at 2.8551 kg, a little below our target of 2.9 kg. So we know that
the standard deviation is going to have to be smaller.

Let's start by guessing that it (now 0.1) needs to be halved, to a standard deviation of 0.05 kg.

normal pack05(mean, 0.05);
cout << "Quantile of " << p << " = " << quantile(pack05, p)
<< ", mean = " << pack05.mean() << ", sd = " << pack05.standard_deviation() << endl;

// Quantile of 0.05 = 2.91776, mean = 3, sd = 0.05

cout <<"Fraction of packs >= " << minimum_weight << " with a mean of " << mean
<< " and standard deviation of " << pack05.standard_deviation()
<< " is " << cdf(complement(pack05, minimum_weight)) << endl;

// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.05 is 0.97725

So 0.05 was quite a good guess, but we are a little over the 2.9 target, so the standard deviation could be a tiny bit more. So we could
do some more guessing to get closer, say by increasing standard deviation to 0.06 kg, constructing another new distribution called
pack06.

normal pack06(mean, 0.06);
cout << "Quantile of " << p << " = " << quantile(pack06, p)
<< ", mean = " << pack06.mean() << ", sd = " << pack06.standard_deviation() << endl;

// Quantile of 0.05 = 2.90131, mean = 3, sd = 0.06

cout <<"Fraction of packs >= " << minimum_weight << " with a mean of " << mean
<< " and standard deviation of " << pack06.standard_deviation()
<< " is " << cdf(complement(pack06, minimum_weight)) << endl;

// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.06 is 0.95221

Now we are getting really close, but to do the job properly, we might need to use root finding method, for example the tools provided,
and used elsewhere, in the Math Toolkit, see root-finding without derivatives

But in this (normal) distribution case, we can and should be even smarter and make a direct calculation.

Our required limit is minimum_weight = 2.9 kg, often called the random variate z. For a standard normal distribution, then probab-
ility p = N((minimum_weight - mean) / sd).

We want to find the standard deviation that would be required to meet this limit, so that the p th quantile is located at z (minim-
um_weight). In this case, the 0.05 (5%) quantile is at 2.9 kg pack weight, when the mean is 3 kg, ensuring that 0.95 (95%) of packs
are above the minimum weight.

Rearranging, we can directly calculate the required standard deviation:

normal N01; // standard normal distribution with mean zero and unit standard deviation.
p = 0.05;
double qp = quantile(N01, p);
double sd95 = (minimum_weight - mean) / qp;

cout << "For the "<< p << "th quantile to be located at "
<< minimum_weight << ", would need a standard deviation of " << sd95 << endl;

// For the 0.05th quantile to be located at 2.9, would need a standard deviation of 0.0607957

We can now construct a new (normal) distribution pack95 for the 'better' packer, and check that our distribution will meet the spe-
cification.
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normal pack95(mean, sd95);
cout <<"Fraction of packs >= " << minimum_weight << " with a mean of " << mean
<< " and standard deviation of " << pack95.standard_deviation()
<< " is " << cdf(complement(pack95, minimum_weight)) << endl;

// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.0607957 is 0.95

This calculation is generalized in the free function find_scale, as shown below, giving the same standard deviation.

double ss = find_scale<normal>(minimum_weight, under_fraction, packs.mean());
cout << "find_scale<normal>(minimum_weight, under_fraction, packs.mean()); " << ss << endl;
// find_scale<normal>(minimum_weight, under_fraction, packs.mean()); 0.0607957

If we had defined an over_fraction, or percentage that must pass specification

double over_fraction = 0.95;

And (wrongly) written

double sso = find_scale<normal>(minimum_weight, over_fraction, packs.mean());

With the default policy, we would get a message like

Message from thrown exception was:
   Error in function boost::math::find_scale<Dist, Policy>(double, double, double, Policy):
   Computed scale (-0.060795683191176959) is <= 0! Was the complement intended?

But this would return a negative standard deviation - obviously impossible. The probability should be 1 - over_fraction, not
over_fraction, thus:

double ss1o = find_scale<normal>(minimum_weight, 1 - over_fraction, packs.mean());
cout << "find_scale<normal>(minimum_weight, under_fraction, packs.mean()); " << ss1o << endl;
// find_scale<normal>(minimum_weight, under_fraction, packs.mean()); 0.0607957

But notice that using '1 - over_fraction' - will lead to a loss of accuracy, especially if over_fraction was close to unity. (See why
complements?). In this (very common) case, we should instead use the complements, giving the most accurate result.

double ssc = find_scale<normal>(complement(minimum_weight, over_fraction, packs.mean()));
cout << "find_scale<normal>(complement(minimum_weight, over_fraction, packs.mean())); ↵
" << ssc << endl;
// find_scale<normal>(complement(minimum_weight, over_fraction, packs.mean())); 0.0607957

Note that our guess of 0.06 was close to the accurate value of 0.060795683191176959.

We can again confirm our prediction thus:

normal pack95c(mean, ssc);
cout <<"Fraction of packs >= " << minimum_weight << " with a mean of " << mean
<< " and standard deviation of " << pack95c.standard_deviation()
<< " is " << cdf(complement(pack95c, minimum_weight)) << endl;

// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.0607957 is 0.95

Notice that these two deceptively simple questions:

• Do we over-fill to make sure we meet a minimum specification (or under-fill to avoid an overdose)?
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and/or

• Do we measure better?

are actually extremely common.

The weight of beef might be replaced by a measurement of more or less anything, from drug tablet content, Apollo landing rocket
firing, X-ray treatment doses...

The scale can be variation in dispensing or uncertainty in measurement.

See find_mean_and_sd_normal.cpp for full source code & appended program output.

Comparison with C, R, FORTRAN-style Free Functions

You are probably familiar with a statistics library that has free functions, for example the classic NAG C library and matching NAG
FORTRAN Library, Microsoft Excel BINOMDIST(number_s,trials,probability_s,cumulative), R, MathCAD pbinom and many
others.

If so, you may find 'Distributions as Objects' unfamiliar, if not alien.

However, do not panic, both definition and usage are not really very different.

A very simple example of generating the same values as the NAG C library for the binomial distribution follows. (If you find slightly
different values, the Boost C++ version, using double or better, is very likely to be the more accurate. Of course, accuracy is not
usually a concern for most applications of this function).

The NAG function specification is

void nag_binomial_dist(Integer n, double p, Integer k,
double *plek, double *pgtk, double *peqk, NagError *fail)

and is called

g01bjc(n, p, k, &plek, &pgtk, &peqk, NAGERR_DEFAULT);

The equivalent using this Boost C++ library is:

using namespace boost::math; // Using declaration avoids very long names.
binomial my_dist(4, 0.5); // c.f. NAG n = 4, p = 0.5

and values can be output thus:

cout
<< my_dist.trials() << " " // Echo the NAG input n = 4 trials.
<< my_dist.success_fraction() << " " // Echo the NAG input p = 0.5
<< cdf(my_dist, 2) << "  " // NAG plek with k = 2
<< cdf(complement(my_dist, 2)) << "  " // NAG pgtk with k = 2
<< pdf(my_dist, 2) << endl; // NAG peqk with k = 2

cdf(dist, k) is equivalent to NAG library plek, lower tail probability of <= k

cdf(complement(dist, k)) is equivalent to NAG library pgtk, upper tail probability of > k

pdf(dist, k) is equivalent to NAG library peqk, point probability of == k

See binomial_example_nag.cpp for details.
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Using the Distributions from Within C#

The distributions in this library can be used from the C# programming language when they are built using Microsoft's Common
Language Runtime (CLR) option.

An example of this kind of usage is given in the Distribution Explorer example. See boost-root/libs/math/dot_net_example
for the source code: the application consists of a C++ .dll that contains the actual distributions, and a C# GUI that allows you to explore
their properties.

Random Variates and Distribution Parameters
Random variates and distribution parameters are conventionally distinguished (for example in Wikipedia and Wolfram MathWorld
by placing a semi-colon after the random variate (whose value you 'choose'), to separate the variate from the parameter(s) that defines
the shape of the distribution.

For example, the binomial distribution has two parameters: n (the number of trials) and p (the probability of success on one trial).
It also has the random variate k: the number of successes observed. This means the probability density/mass function (pdf) is written
as f(k; n, p).

Translating this into code the binomial_distribution constructor therefore has two parameters:

binomial_distribution(RealType n, RealType p);

While the function pdf has one argument specifying the distribution type (which includes its parameters, if any), and a second argument
for the random variate. So taking our binomial distribution example, we would write:

pdf(binomial_distribution<RealType>(n, p), k);

Discrete Probability Distributions
Note that the discrete distributions, including the binomial, negative binomial, Poisson & Bernoulli, are all mathematically defined
as discrete functions: only integral values of the random variate are envisaged and the functions are only defined at these integral
values. However because the method of calculation often uses continuous functions, it is convenient to treat them as if they were
continuous functions, and permit non-integral values of their parameters.

To enforce a strict mathematical model, users may use floor or ceil functions on the random variate, prior to calling the distribution
function, to enforce integral values.

For similar reasons, in continuous distributions, parameters like degrees of freedom that might appear to be integral, are treated as
real values (and are promoted from integer to floating-point if necessary). In this case however, that there are a small number of
situations where non-integral degrees of freedom do have a genuine meaning.

Generally speaking there is no loss of performance from allowing real-values parameters: the underlying special functions contain
optimizations for integer-valued arguments when applicable.
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Caution

The quantile function of a discrete distribution will by default return an integer result that has been rounded outwards.
That is to say lower quantiles (where the probability is less than 0.5) are rounded downward, and upper quantiles
(where the probability is greater than 0.5) are rounded upwards. This behaviour ensures that if an X% quantile is
requested, then at least the requested coverage will be present in the central region, and no more than the requested
coverage will be present in the tails.

This behaviour can be changed so that the quantile functions are rounded differently, or even return a real-valued
result using Policies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete
Distributions before using the quantile function on a discrete distribution. The reference docs describe how to change
the rounding policy for these distributions.

207

Statistical Distributions and Functions

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Statistical Distributions Reference

Non-Member Properties
Properties that are common to all distributions are accessed via non-member getter functions: non-membership allows more of these
functions to be added over time, as the need arises. Unfortunately the literature uses many different and confusing names to refer to
a rather small number of actual concepts; refer to the concept index to find the property you want by the name you are most familiar
with. Or use the function index to go straight to the function you want if you already know its name.

Function Index

• Cumulative Distribution Function.

• Complement of the Cumulative Distribution Function.

• Cumulative Hazard Function.

• Hazard Function.

• kurtosis.

• kurtosis_excess

• mean.

• median.

• mode.

• Probability Density Function.

• range.

• Quantile.

• Quantile from the complement of the probability.

• skewness.

• standard deviation.

• support.

• variance.

Conceptual Index

• Complement of the Cumulative Distribution Function.

• Cumulative Distribution Function.

• Cumulative Hazard Function.

• Inverse Cumulative Distribution Function.

• Inverse Survival Function.

• Hazard Function

• Lower Critical Value.
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• kurtosis.

• kurtosis_excess

• mean.

• median.

• mode.

• P.

• Percent Point Function.

• Probability Density Function.

• Probability Mass Function.

• range.

• Q.

• Quantile.

• Quantile from the complement of the probability.

• skewness.

• standard deviation

• Survival Function.

• support.

• Upper Critical Value.

• variance.

Cumulative Distribution Function

template <class RealType, class Policy>
RealType cdf(const Distribution-Type<RealType, Policy>& dist, const RealType& x);

The Cumulative Distribution Function is the probability that the variable takes a value less than or equal to x. It is equivalent to the
integral from -infinity to x of the Probability Density Function.

This function may return a domain_error if the random variable is outside the defined range for the distribution.

For example, the following graph shows the cdf for the normal distribution:
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Complement of the Cumulative Distribution Function

template <class Distribution, class RealType>
RealType cdf(const Unspecified-Complement-Type<Distribution, RealType>& comp);

The complement of the Cumulative Distribution Function is the probability that the variable takes a value greater than x. It is equi-
valent to the integral from x to infinity of the Probability Density Function, or 1 minus the Cumulative Distribution Function of x.

This is also known as the survival function.

This function may return a domain_error if the random variable is outside the defined range for the distribution.

In this library, it is obtained by wrapping the arguments to the cdf function in a call to complement, for example:

// standard normal distribution object:
boost::math::normal norm;
// print survival function for x=2.0:
std::cout << cdf(complement(norm, 2.0)) << std::endl;

For example, the following graph shows the __complement of the cdf for the normal distribution:
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See why complements? for why the complement is useful and when it should be used.

Hazard Function

template <class RealType, class Policy>
RealType hazard(const Distribution-Type<RealType, Policy>& dist, const RealType& x);

Returns the Hazard Function of x and distibution dist.

This function may return a domain_error if the random variable is outside the defined range for the distribution.

hazard (x) = h(x) =
pdf (x)

1 − cdf (x)

Caution

Some authors refer to this as the conditional failure density function rather than the hazard function.

Cumulative Hazard Function

template <class RealType, class Policy>
RealType chf(const Distribution-Type<RealType, Policy>& dist, const RealType& x);

Returns the Cumulative Hazard Function of x and distibution dist.

This function may return a domain_error if the random variable is outside the defined range for the distribution.

chf (dist, x) = H(x) = ∫
−∞

x

h(μ)dμ
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Caution

Some authors refer to this as simply the "Hazard Function".

mean

template<class RealType, class Policy>
RealType mean(const Distribution-Type<RealType, Policy>& dist);

Returns the mean of the distribution dist.

This function may return a domain_error if the distribution does not have a defined mean (for example the Cauchy distribution).

median

template<class RealType, class Policy>
RealType median(const Distribution-Type<RealType, Policy>& dist);

Returns the median of the distribution dist.

mode

template<class RealType, Policy>
RealType mode(const Distribution-Type<RealType, Policy>& dist);

Returns the mode of the distribution dist.

This function may return a domain_error if the distribution does not have a defined mode.

Probability Density Function

template <class RealType, class Policy>
RealType pdf(const Distribution-Type<RealType, Policy>& dist, const RealType& x);

For a continuous function, the probability density function (pdf) returns the probability that the variate has the value x. Since for
continuous distributions the probability at a single point is actually zero, the probability is better expressed as the integral of the pdf
between two points: see the Cumulative Distribution Function.

For a discrete distribution, the pdf is the probability that the variate takes the value x.

This function may return a domain_error if the random variable is outside the defined range for the distribution.

For example, for a standard normal distribution the pdf looks like this:
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Range

template<class RealType, class Policy>
std::pair<RealType, RealType> range(const Distribution-Type<RealType, Policy>& dist);

Returns the valid range of the random variable over distribution dist.

Quantile

template <class RealType, class Policy>
RealType quantile(const Distribution-Type<RealType, Policy>& dist, const RealType& p);

The quantile is best viewed as the inverse of the Cumulative Distribution Function, it returns a value x such that cdf(dist, x)

== p.

This is also known as the percent point function, or percentile, or fractile, it is also the same as calculating the lower critical value
of a distribution.

This function returns a domain_error if the probability lies outside [0,1]. The function may return an overflow_error if there is no
finite value that has the specified probability.

The following graph shows the quantile function for a standard normal distribution:
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Quantile from the complement of the probability.

See also complements.

template <class Distribution, class RealType>
RealType quantile(const Unspecified-Complement-Type<Distribution, RealType>& comp);

This is the inverse of the Complement of the Cumulative Distribution Function. It is calculated by wrapping the arguments in a call
to the quantile function in a call to complement. For example:

// define a standard normal distribution:
boost::math::normal norm;
// print the value of x for which the complement
// of the probability is 0.05:
std::cout << quantile(complement(norm, 0.05)) << std::endl;

The function computes a value x such that cdf(complement(dist, x)) == q where q is complement of the probability.

Why complements?

This function is also called the inverse survival function, and is the same as calculating the upper critical value of a distribution.

This function returns a domain_error if the probablity lies outside [0,1]. The function may return an overflow_error if there is no finite
value that has the specified probability.

The following graph show the inverse survival function for the normal distribution:
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Standard Deviation

template <class RealType, class Policy>
RealType standard_deviation(const Distribution-Type<RealType, Policy>& dist);

Returns the standard deviation of distribution dist.

This function may return a domain_error if the distribution does not have a defined standard deviation.

support

template<class RealType, class Policy>
std::pair<RealType, RealType> support(const Distribution-Type<RealType, Policy>& dist);

Returns the supported range of random variable over the distribution dist.

The distribution is said to be 'supported' over a range that is "the smallest closed set whose complement has probability zero". Non-
mathematicians might say it means the 'interesting' smallest range of random variate x that has the cdf going from zero to unity.
Outside are uninteresting zones where the pdf is zero, and the cdf zero or unity.

Variance

template <class RealType, class Policy>
RealType variance(const Distribution-Type<RealType, Policy>& dist);

Returns the variance of the distribution dist.

This function may return a domain_error if the distribution does not have a defined variance.

Skewness

template <class RealType, class Policy>
RealType skewness(const Distribution-Type<RealType, Policy>& dist);
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Returns the skewness of the distribution dist.

This function may return a domain_error if the distribution does not have a defined skewness.

Kurtosis

template <class RealType, class Policy>
RealType kurtosis(const Distribution-Type<RealType, Policy>& dist);

Returns the 'proper' kurtosis (normalized fourth moment) of the distribution dist.

kertosis = β2  = μ4   / μ2
2

Where μi   is the i'th central moment of the distribution, and in particular μ2   is the variance of the distribution.

The kurtosis is a measure of the "peakedness" of a distribution.

Note that the literature definition of kurtosis is confusing. The definition used here is that used by for example Wolfram MathWorld
(that includes a table of formulae for kurtosis excess for various distributions) but NOT the definition of kurtosis used by Wikipedia
which treats "kurtosis" and "kurtosis excess" as the same quantity.

kurtosis_excess = 'proper' kurtosis - 3

This subtraction of 3 is convenient so that the kurtosis excess of a normal distribution is zero.

This function may return a domain_error if the distribution does not have a defined kurtosis.

'Proper' kurtosis can have a value from zero to + infinity.

Kurtosis excess

template <class RealType, Policy>
RealType kurtosis_excess(const Distribution-Type<RealType, Policy>& dist);

Returns the kurtosis excess of the distribution dist.

kurtosis excess = γ2  = μ4   / μ2
2  - 3 = kurtosis - 3

Where μi   is the i'th central moment of the distribution, and in particular μ2   is the variance of the distribution.

The kurtosis excess is a measure of the "peakedness" of a distribution, and is more widely used than the "kurtosis proper". It is
defined so that the kurtosis excess of a normal distribution is zero.

This function may return a domain_error if the distribution does not have a defined kurtosis excess.

Kurtosis excess can have a value from -2 to + infinity.

kurtosis = kurtosis_excess +3;

The kurtosis excess of a normal distribution is zero.

P and Q

The terms P and Q are sometimes used to refer to the Cumulative Distribution Function and its complement respectively. Lowercase
p and q are sometimes used to refer to the values returned by these functions.
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Percent Point Function or Percentile

The percent point function, also known as the percentile, is the same as the Quantile.

Inverse CDF Function.

The inverse of the cumulative distribution function, is the same as the Quantile.

Inverse Survival Function.

The inverse of the survival function, is the same as computing the quantile from the complement of the probability.

Probability Mass Function

The Probability Mass Function is the same as the Probability Density Function.

The term Mass Function is usually applied to discrete distributions, while the term Probability Density Function applies to continuous
distributions.

Lower Critical Value.

The lower critical value calculates the value of the random variable given the area under the left tail of the distribution. It is equivalent
to calculating the Quantile.

Upper Critical Value.

The upper critical value calculates the value of the random variable given the area under the right tail of the distribution. It is equi-
valent to calculating the quantile from the complement of the probability.

Survival Function

Refer to the Complement of the Cumulative Distribution Function.

Distributions

Arcsine Distribution

#include <boost/math/distributions/arcsine.hpp>
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namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class arcsine_distribution;

typedef arcsine_distribution<double> arcsine; // double precision standard arcsine distribution ↵
[0,1].

template <class RealType, class Policy>
class arcsine_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;

// Constructor from two range parameters, x_min and x_max:
arcsine_distribution(RealType x_min, RealType x_max);

// Range Parameter accessors:
RealType x_min() const;
RealType x_max() const;

};
}} // namespaces

The class type arcsine_distribution represents an arcsine probability distribution function. The arcsine distribution is named
because its CDF uses the inverse sin-1 or arcsine.

This is implemented as a generalized version with support from x_min to x_max providing the 'standard arcsine distribution' as default
with x_min = 0 and x_max = 1. (A few make other choices for 'standard').

The arcsine distribution is generalized to include any bounded support a <= x <= b by Wolfram and Wikipedia, but also using loc-
ation and scale parameters by Virtual Laboratories in Probability and Statistics Arcsine distribution. The end-point version is simpler
and more obvious, so we implement that. If desired, this outlines how the Beta Distribution can be used to add a shape factor.

The probability density function PDF for the arcsine distribution defined on the interval [x_min, x_max] is given by:

f(x; x_min, x_max) = 1 /(π⋅√((x - x_min)⋅(x_max - x))

For example, Wolfram Alpha arcsine distribution, from input of

N[PDF[arcsinedistribution[0, 1], 0.5], 50]

computes the PDF value

0.63661977236758134307553505349005744813783858296183

The Probability Density Functions (PDF) of generalized arcsine distributions are symmetric U-shaped curves, centered on (x_max
- x_min)/2, highest (infinite) near the two extrema, and quite flat over the central region.

If random variate x is x_min or x_max, then the PDF is infinity. If random variate x is x_min then the CDF is zero. If random variate
x is x_max then the CDF is unity.

The 'Standard' (0, 1) arcsine distribution is shown in blue and some generalized examples with other x ranges.
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The Cumulative Distribution Function CDF is defined as

F(x) = 2⋅arcsin(√((x-x_min)/(x_max - x))) / π
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Constructor

arcsine_distribution(RealType x_min, RealType x_max);

constructs an arcsine distribution with range parameters x_min and x_max.

Requires x_min < x_max, otherwise domain_error is called.

For example:

arcsine_distribution<> myarcsine(-2, 4);
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constructs an arcsine distribution with x_min = -2 and x_max = 4.

Default values of x_min = 0 and x_max = 1 and a typedef arcsine_distribution<double> arcsine; mean that

arcsine as;

constructs a 'Standard 01' arcsine distribution.

Parameter Accessors

RealType x_min() const;
RealType x_max() const;

Return the parameter x_min or x_max from which this distribution was constructed.

So, for example:

using boost::math::arcsine_distribution;

arcsine_distribution<> as(2, 5); // Cconstructs a double arcsine distribution.
assert(as.x_min() == 2.); // as.x_min() returns 2.
assert(as.x_max() == 5.); // as.x_max()  returns 5.

Non-member Accessor Functions

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The formulae for calculating these are shown in the table below, and at Wolfram Mathworld.

Note

There are always two values for the mode, at x_min and at x_max, default 0 and 1, so instead we raise the exception
domain_error. At these extrema, the PDFs are infinite, and the CDFs zero or unity.

Applications

The arcsine distribution is useful to describe Random walks, (including drunken walks) Brownian motion, Weiner processes, Bernoulli
trials, and their appplication to solve stock market and other ruinous gambling games.

The random variate x is constrained to x_min and x_max, (for our 'standard' distribution, 0 and 1), and is usually some fraction. For
any other x_min and x_max a fraction can be obtained from x using

 fraction = (x - x_min) / (x_max - x_min)

The simplest example is tossing heads and tails with a fair coin and modelling the risk of losing, or winning. Walkers (molecules,
drunks...) moving left or right of a centre line are another common example.

The random variate x is the fraction of time spent on the 'winning' side. If half the time is spent on the 'winning' side (and so the
other half on the 'losing' side) then x = 1/2.

For large numbers of tosses, this is modelled by the (standard [0,1]) arcsine distribution, and the PDF can be calculated thus:

std::cout << pdf(as, 1. / 2) << std::endl; // 0.637
// pdf has a minimum at x = 0.5
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From the plot of PDF, it is clear that x = ½ is the minimum of the curve, so this is the least likely scenario. (This is highly counter-
intuitive, considering that fair tosses must eventually become equal. It turns out that eventually is not just very long, but infinite!).

The most likely scenarios are towards the extrema where x = 0 or x = 1.

If fraction of time on the left is a ¼, it is only slightly more likely because the curve is quite flat bottomed.

std::cout << pdf(as, 1. / 4) << std::endl; // 0.735

If we consider fair coin-tossing games being played for 100 days (hypothetically continuously to be 'at-limit') the person winning
after day 5 will not change in fraction 0.144 of the cases.

We can easily compute this setting x = 5./100 = 0.05

std::cout << cdf(as, 0.05) << std::endl; // 0.144

Similarly, we can compute from a fraction of 0.05 /2 = 0.025 (halved because we are considering both winners and losers) corres-
ponding to 1 - 0.025 or 97.5% of the gamblers, (walkers, particles...) on the same side of the origin

std::cout << 2 * cdf(as, 1 - 0.975) << std::endl; // 0.202

(use of the complement gives a bit more clarity, and avoids potential loss of accuracy when x is close to unity, see why complements?).

std::cout << 2 * cdf(complement(as, 0.975)) << std::endl; // 0.202

or we can reverse the calculation by assuming a fraction of time on one side, say fraction 0.2,

std::cout << quantile(as, 1 - 0.2 / 2) << std::endl; //  0.976

std::cout << quantile(complement(as, 0.2 / 2)) << std::endl; // 0.976

Summary: Every time we toss, the odds are equal, so on average we have the same change of winning and losing.

But this is not true for an an individual game where one will be mostly in a bad or good patch.

This is quite counter-intuitive to most people, but the mathematics is clear, and gamblers continue to provide proof.

Moral: if you in a losing patch, leave the game. (Because the odds to recover to a good patch are poor).

Corollary: Quit while you are ahead?

A working example is at arcsine_example.cpp including sample output .

Related distributions

The arcsine distribution with x_min = 0 and x_max = 1 is special case of the Beta Distribution with α = 1/2 and β = 1/2.

Accuracy

This distribution is implemented using sqrt, sine, cos and arc sine and cos trigonometric functions which are normally accurate to a
few machine epsilon. But all values suffer from loss of significance or cancellation error for values of x close to x_max. For example,
for a standard [0, 1] arcsine distribution as, the pdf is symmetric about random variate x = 0.5 so that one would expect pdf(as,
0.01) == pdf(as, 0.99). But as x nears unity, there is increasing loss of significance. To counteract this, the complement versions
of CDF and quantile are implemented with alternative expressions using cos-1 instead of sin-1. Users should see why complements?
for guidance on when to avoid loss of accuracy by using complements.
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Testing

The results were tested against a few accurate spot values computed by Wolfram Alpha, for example:

N[PDF[arcsinedistribution[0, 1], 0.5], 50]
0.63661977236758134307553505349005744813783858296183

Implementation

In the following table a and b are the parameters x_min   and x_max, x is the random variable, p is the probability and its complement
q = 1-p.

Implementation NotesFunction

x ∈ [a, b], default x ∈ [0, 1]support

f(x; a, b) = 1/(π⋅√(x - a)⋅(b - x))pdf

F(x) = 2/π⋅sin-1(√(x - a) / (b - a) )cdf

2/(π⋅cos-1(√(x - a) / (b - a)))cdf of complement

-a⋅sin2(½π⋅p) + a + b⋅sin2(½π⋅p)quantile

-a⋅cos2(½π⋅p) + a + b⋅cos2(½π⋅q)quantile from the complement

½(a+b)mean

½(a+b)median

x ∈ [a, b], so raises domain_error (returning NaN).mode

(b - a)2 / 8variance

0skewness

-3/2kurtosis excess

kurtosis_excess + 3kurtosis

The quantile was calculated using an expression obtained by using Wolfram Alpha to invert the formula for the CDF thus

solve [p - 2/pi sin^-1(sqrt((x-a)/(b-a))) = 0, x]

which was interpreted as

Solve[p - (2 ArcSin[Sqrt[(-a + x)/(-a + b)]])/Pi == 0, x, MaxExtraConditions -> Automatic]

and produced the resulting expression

x = -a sin^2((pi p)/2)+a+b sin^2((pi p)/2)

Thanks to Wolfram for providing this facility.
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References

• Wikipedia arcsine distribution

• Wikipedia Beta distribution

• Wolfram MathWorld

• Wolfram Alpha

Sources

• The probability of going through a bad patch Esteban Moro's Blog.

• What soschumcks and the arc sine have in common Peter Haggstrom.

• arcsine distribution.

• Wolfram reference arcsine examples.

• Shlomo Sternberg slides.

Bernoulli Distribution

#include <boost/math/distributions/bernoulli.hpp>

namespace boost{ namespace math{
template <class RealType = double,

class Policy = policies::policy<> >
class bernoulli_distribution;

typedef bernoulli_distribution<> bernoulli;

template <class RealType, class Policy>
class bernoulli_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;

bernoulli_distribution(RealType p); // Constructor.
// Accessor function.
RealType success_fraction() const
// Probability of success (as a fraction).

};
}} // namespaces

The Bernoulli distribution is a discrete distribution of the outcome of a single trial with only two results, 0 (failure) or 1 (success),
with a probability of success p.

The Bernoulli distribution is the simplest building block on which other discrete distributions of sequences of independent Bernoulli
trials can be based.

The Bernoulli is the binomial distribution (k = 1, p) with only one trial.

probability density function pdf f(0) = 1 - p, f(1) = p. Cumulative distribution function D(k) = if (k == 0) 1 - p else 1.

The following graph illustrates how the probability density function pdf varies with the outcome of the single trial:
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Member Functions

bernoulli_distribution(RealType p);

Constructs a bernoulli distribution with success_fraction p.

RealType success_fraction() const

Returns the success_fraction parameter of this distribution.
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Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is 0 and 1, and the useful supported range is only 0 or 1.

Outside this range, functions are undefined, or may throw domain_error exception and make an error message available.

Accuracy

The Bernoulli distribution is implemented with simple arithmetic operators and so should have errors within an epsilon or two.

Implementation

In the following table p is the probability of success and q = 1-p. k is the random variate, either 0 or 1.

Note

The Bernoulli distribution is implemented here as a strict discrete distribution. If a generalised version, allowing k
to be any real, is required then the binomial distribution with a single trial should be used, for example:

binomial_distribution(1, 0.25)

Implementation NotesFunction

{0, 1}Supported range

Using the relation: pdf = 1 - p for k = 0, else ppdf

Using the relation: cdf = 1 - p for k = 0, else 1cdf

q = 1 - pcdf complement

if x <= (1-p) 0 else 1quantile

if x <= (1-p) 1 else 0quantile from the complement

pmean

p * (1 - p)variance

if (p < 0.5) 0 else 1mode

(1 - 2 * p) / sqrt(p * q)skewness

6 * p * p - 6 * p +1/ p * qkurtosis

kurtosis -3kurtosis excess

References

• Wikpedia Bernoulli distribution

• Weisstein, Eric W. "Bernoulli Distribution." From MathWorld--A Wolfram Web Resource.
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Beta Distribution

#include <boost/math/distributions/beta.hpp>

namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class beta_distribution;

// typedef beta_distribution<double> beta;
// Note that this is deliberately NOT provided,
// to avoid a clash with the function name beta.

template <class RealType, class Policy>
class beta_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;
// Constructor from two shape parameters, alpha & beta:
beta_distribution(RealType a, RealType b);

// Parameter accessors:
RealType alpha() const;
RealType beta() const;

// Parameter estimators of alpha or beta from mean and variance.
static RealType find_alpha(
RealType mean, // Expected value of mean.
RealType variance); // Expected value of variance.

static RealType find_beta(
RealType mean, // Expected value of mean.
RealType variance); // Expected value of variance.

// Parameter estimators from from
// either alpha or beta, and x and probability.

static RealType find_alpha(
RealType beta, // from beta.
RealType x, //  x.
RealType probability); // cdf

static RealType find_beta(
RealType alpha, // alpha.
RealType x, // probability x.
RealType probability); // probability cdf.

};

}} // namespaces

The class type beta_distribution represents a beta probability distribution function.

The beta distribution  is used as a prior distribution for binomial proportions in Bayesian analysis.

See also: beta distribution and Bayesian statistics.

How the beta distribution is used for Bayesian analysis of one parameter models is discussed by Jeff Grynaviski.

The probability density function PDF for the beta distribution defined on the interval [0,1] is given by:
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f(x;α,β) = xα - 1 (1 - x)β -1 / B(α, β)

where B(α, β) is the beta function, implemented in this library as beta. Division by the beta function ensures that the pdf is normalized
to the range zero to unity.

The following graph illustrates examples of the pdf for various values of the shape parameters. Note the α = β = 2 (blue line) is
dome-shaped, and might be approximated by a symmetrical triangular distribution.
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If α = β = 1, then it is a __space uniform distribution, equal to unity in the entire interval x = 0 to 1. If α __space and β __space are
< 1, then the pdf is U-shaped. If α != β, then the shape is asymmetric and could be approximated by a triangle whose apex is away
from the centre (where x = half).

Member Functions

Constructor

beta_distribution(RealType alpha, RealType beta);

Constructs a beta distribution with shape parameters alpha and beta.

Requires alpha,beta > 0,otherwise domain_error is called. Note that technically the beta distribution is defined for alpha,beta >= 0,
but it's not clear whether any program can actually make use of that latitude or how many of the non-member functions can be usefully
defined in that case. Therefore for now, we regard it as an error if alpha or beta is zero.

For example:

beta_distribution<> mybeta(2, 5);

Constructs a the beta distribution with alpha=2 and beta=5 (shown in yellow in the graph above).

Parameter Accessors

RealType alpha() const;

Returns the parameter alpha from which this distribution was constructed.
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RealType beta() const;

Returns the parameter beta from which this distribution was constructed.

So for example:

beta_distribution<> mybeta(2, 5);
assert(mybeta.alpha() == 2.); // mybeta.alpha() returns 2
assert(mybeta.beta() == 5.); // mybeta.beta()  returns 5

Parameter Estimators

Two pairs of parameter estimators are provided.

One estimates either α __space or β __space from presumed-known mean and variance.

The other pair estimates either α __space or β __space from the cdf and x.

It is also possible to estimate α __space and β __space from 'known' mode & quantile. For example, calculators are provided by the
Pooled Prevalence Calculator and Beta Buster but this is not yet implemented here.

static RealType find_alpha(
RealType mean, // Expected value of mean.
RealType variance); // Expected value of variance.

Returns the unique value of α   that corresponds to a beta distribution with mean mean and variance variance.

static RealType find_beta(
RealType mean, // Expected value of mean.
RealType variance); // Expected value of variance.

Returns the unique value of β   that corresponds to a beta distribution with mean mean and variance variance.

static RealType find_alpha(
RealType beta, // from beta.
RealType x, //  x.
RealType probability); // probability cdf

Returns the value of α   that gives: cdf(beta_distribution<RealType>(alpha, beta), x) == probability.

static RealType find_beta(
RealType alpha, // alpha.
RealType x, // probability x.
RealType probability); // probability cdf.

Returns the value of β   that gives: cdf(beta_distribution<RealType>(alpha, beta), x) == probability.

Non-member Accessor Functions

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The formulae for calculating these are shown in the table below, and at Wolfram Mathworld.
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Applications

The beta distribution can be used to model events constrained to take place within an interval defined by a minimum and maximum
value: so it is used in project management systems.

It is also widely used in Bayesian statistical inference.

Related distributions

The beta distribution with both α __space and β = 1 follows a uniform distribution.

The triangular is used when less precise information is available.

The binomial distribution is closely related when α __space and β __space are integers.

With integer values of α __space and β __space the distribution B(i, j) is that of the j-th highest of a sample of i + j + 1 independent
random variables uniformly distributed between 0 and 1. The cumulative probability from 0 to x is thus the probability that the j-th
highest value is less than x. Or it is the probability that that at least i of the random variables are less than x, a probability given by
summing over the Binomial Distribution with its p parameter set to x.

Accuracy

This distribution is implemented using the beta functions beta and incomplete beta functions ibeta and ibetac; please refer to these
functions for information on accuracy.

Implementation

In the following table a and b are the parameters α   and β, x is the random variable, p is the probability and q = 1-p.
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Implementation NotesFunction

f(x;α,β) = xα - 1 (1 - x)β -1 / B(α, β)

Implemented using ibeta_derivative(a, b, x).

pdf

Using the incomplete beta function ibeta(a, b, x)cdf

ibetac(a, b, x)cdf complement

Using the inverse incomplete beta function ibeta_inv(a, b, p)quantile

ibetac_inv(a, b, q)quantile from the complement

a/(a+b)mean

a * b / (a+b)^2 * (a + b + 1)variance

(a-1) / (a + b - 2)mode

2 (b-a) sqrt(a+b+1)/(a+b+2) * sqrt(a * b)skewness

6
α3 − α2(2β − 1) + β2(β − 1) − 2αβ(β + 2)

αβ(α + β + 2)(α + β + 3)
kurtosis excess

kurtosis + 3kurtosis

parameter estimation

mean * (( (mean * (1 - mean)) / variance)- 1)alpha

from mean and variance

(1 - mean) * (((mean * (1 - mean)) /variance)-1)beta

from mean and variance

Implemented in terms of the inverse incomplete beta functions

ibeta_inva, and ibeta_invb respectively.

The member functions find_alpha and find_beta

from cdf and probability x

and either alpha or beta

ibeta_inva(beta, x, probability)find_alpha

ibeta_invb(alpha, x, probability)find_beta

References

Wikipedia Beta distribution

NIST Exploratory Data Analysis

Wolfram MathWorld
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Binomial Distribution

#include <boost/math/distributions/binomial.hpp>

namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class binomial_distribution;

typedef binomial_distribution<> binomial;

template <class RealType, class Policy>
class binomial_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;

static const unspecified-type clopper_pearson_exact_interval;
static const unspecified-type jeffreys_prior_interval;

// construct:
binomial_distribution(RealType n, RealType p);

// parameter access::
RealType success_fraction() const;
RealType trials() const;

// Bounds on success fraction:
static RealType find_lower_bound_on_p(

RealType trials,
RealType successes,
RealType probability,
unspecified-type method = clopper_pearson_exact_interval);

static RealType find_upper_bound_on_p(
RealType trials,
RealType successes,
RealType probability,
unspecified-type method = clopper_pearson_exact_interval);

// estimate min/max number of trials:
static RealType find_minimum_number_of_trials(

RealType k, // number of events
RealType p, // success fraction
RealType alpha); // risk level

static RealType find_maximum_number_of_trials(
RealType k, // number of events
RealType p, // success fraction
RealType alpha); // risk level

};

}} // namespaces

The class type binomial_distribution represents a binomial distribution: it is used when there are exactly two mutually exclusive
outcomes of a trial. These outcomes are labelled "success" and "failure". The Binomial Distribution is used to obtain the probability
of observing k successes in N trials, with the probability of success on a single trial denoted by p. The binomial distribution assumes
that p is fixed for all trials.
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Note

The random variable for the binomial distribution is the number of successes, (the number of trials is a fixed property
of the distribution) whereas for the negative binomial, the random variable is the number of trials, for a fixed number
of successes.

The PDF for the binomial distribution is given by:

f (k; n, p) = nCkp
k(1 − p)n−k

= n !
k !(n − k) ! p

k(1 − p)n−k

The following two graphs illustrate how the PDF changes depending upon the distributions parameters, first we'll keep the success
fraction p fixed at 0.5, and vary the sample size:
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Alternatively, we can keep the sample size fixed at N=20 and vary the success fraction p:
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Caution

The Binomial distribution is a discrete distribution: internally, functions like the cdf and pdf are treated "as if"
they are continuous functions, but in reality the results returned from these functions only have meaning if an integer
value is provided for the random variate argument.

The quantile function will by default return an integer result that has been rounded outwards. That is to say lower
quantiles (where the probability is less than 0.5) are rounded downward, and upper quantiles (where the probability
is greater than 0.5) are rounded upwards. This behaviour ensures that if an X% quantile is requested, then at least
the requested coverage will be present in the central region, and no more than the requested coverage will be present
in the tails.

This behaviour can be changed so that the quantile functions are rounded differently, or even return a real-valued
result using Policies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete
Distributions before using the quantile function on the Binomial distribution. The reference docs describe how to
change the rounding policy for these distributions.

Member Functions

Construct

binomial_distribution(RealType n, RealType p);

Constructor: n is the total number of trials, p is the probability of success of a single trial.

Requires 0 <= p <= 1, and n >= 0, otherwise calls domain_error.

Accessors

RealType success_fraction() const;

Returns the parameter p from which this distribution was constructed.

RealType trials() const;
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Returns the parameter n from which this distribution was constructed.

Lower Bound on the Success Fraction

static RealType find_lower_bound_on_p(
RealType trials,
RealType successes,
RealType alpha,
unspecified-type method = clopper_pearson_exact_interval);

Returns a lower bound on the success fraction:

trials The total number of trials conducted.

successes The number of successes that occurred.

alpha The largest acceptable probability that the true value of the success fraction is less than the value returned.

method An optional parameter that specifies the method to be used to compute the interval (See below).

For example, if you observe k successes from n trials the best estimate for the success fraction is simply k/n, but if you want to be
95% sure that the true value is greater than some value, pmin, then:

pmin = binomial_distribution<RealType>::find_lower_bound_on_p(
n, k, 0.05);

See worked example.

There are currently two possible values available for the method optional parameter: clopper_pearson_exact_interval or jeffreys_pri-
or_interval. These constants are both members of class template binomial_distribution, so usage is for example:

p = binomial_distribution<RealType>::find_lower_bound_on_p(
n, k, 0.05, binomial_distribution<RealType>::jeffreys_prior_interval);

The default method if this parameter is not specified is the Clopper Pearson "exact" interval. This produces an interval that guarantees
at least 100(1-alpha)% coverage, but which is known to be overly conservative, sometimes producing intervals with much greater
than the requested coverage.

The alternative calculation method produces a non-informative Jeffreys Prior interval. It produces 100(1-alpha)% coverage only
in the average case, though is typically very close to the requested coverage level. It is one of the main methods of calculation re-
commended in the review by Brown, Cai and DasGupta.

Please note that the "textbook" calculation method using a normal approximation (the Wald interval) is deliberately not provided:
it is known to produce consistently poor results, even when the sample size is surprisingly large. Refer to Brown, Cai and DasGupta
for a full explanation. Many other methods of calculation are available, and may be more appropriate for specific situations. Unfor-
tunately there appears to be no consensus amongst statisticians as to which is "best": refer to the discussion at the end of Brown, Cai
and DasGupta for examples.

The two methods provided here were chosen principally because they can be used for both one and two sided intervals. See also:

Lawrence D. Brown, T. Tony Cai and Anirban DasGupta (2001), Interval Estimation for a Binomial Proportion, Statistical Science,
Vol. 16, No. 2, 101-133.

T. Tony Cai (2005), One-sided confidence intervals in discrete distributions, Journal of Statistical Planning and Inference 131, 63-
88.

Agresti, A. and Coull, B. A. (1998). Approximate is better than "exact" for interval estimation of binomial proportions. Amer. Statist.
52 119-126.
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Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika
26 404-413.

Upper Bound on the Success Fraction

static RealType find_upper_bound_on_p(
RealType trials,
RealType successes,
RealType alpha,
unspecified-type method = clopper_pearson_exact_interval);

Returns an upper bound on the success fraction:

trials The total number of trials conducted.

successes The number of successes that occurred.

alpha The largest acceptable probability that the true value of the success fraction is greater than the value returned.

method An optional parameter that specifies the method to be used to compute the interval. Refer to the documentation for
find_upper_bound_on_p above for the meaning of the method options.

For example, if you observe k successes from n trials the best estimate for the success fraction is simply k/n, but if you want to be
95% sure that the true value is less than some value, pmax, then:

pmax = binomial_distribution<RealType>::find_upper_bound_on_p(
n, k, 0.05);

See worked example.

Note

In order to obtain a two sided bound on the success fraction, you call both find_lower_bound_on_p and
find_upper_bound_on_p each with the same arguments.

If the desired risk level that the true success fraction lies outside the bounds is α, then you pass α/2 to these functions.

So for example a two sided 95% confidence interval would be obtained by passing α = 0.025 to each of the functions.

See worked example.

Estimating the Number of Trials Required for a Certain Number of Successes

static RealType find_minimum_number_of_trials(
RealType k, // number of events
RealType p, // success fraction
RealType alpha); // probability threshold

This function estimates the minimum number of trials required to ensure that more than k events is observed with a level of risk alpha
that k or fewer events occur.

k The number of success observed.

p The probability of success for each trial.

alpha The maximum acceptable probability that k events or fewer will be observed.

For example:
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binomial_distribution<RealType>::find_number_of_trials(10, 0.5, 0.05);

Returns the smallest number of trials we must conduct to be 95% sure of seeing 10 events that occur with frequency one half.

Estimating the Maximum Number of Trials to Ensure no more than a Certain Number of Successes

static RealType find_maximum_number_of_trials(
RealType k, // number of events
RealType p, // success fraction
RealType alpha); // probability threshold

This function estimates the maximum number of trials we can conduct to ensure that k successes or fewer are observed, with a risk
alpha that more than k occur.

k The number of success observed.

p The probability of success for each trial.

alpha The maximum acceptable probability that more than k events will be observed.

For example:

binomial_distribution<RealType>::find_maximum_number_of_trials(0, 1e-6, 0.05);

Returns the largest number of trials we can conduct and still be 95% certain of not observing any events that occur with one in a
million frequency. This is typically used in failure analysis.

See Worked Example.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain for the random variable k is 0 <= k <= N, otherwise a domain_error is returned.

It's worth taking a moment to define what these accessors actually mean in the context of this distribution:
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Table 15. Meaning of the non-member accessors

MeaningFunction

The probability of obtaining exactly k successes from n trials
with success fraction p. For example:

pdf(binomial(n, p), k)

Probability Density Function

The probability of obtaining k successes or fewer from n trials
with success fraction p. For example:

cdf(binomial(n, p), k)

Cumulative Distribution Function

The probability of obtaining more than k successes from n trials
with success fraction p. For example:

cdf(complement(binomial(n, p), k))

Complement of the Cumulative Distribution Function

The greatest number of successes that may be observed from
n trials with success fraction p, at probability P. Note that the
value returned is a real-number, and not an integer. Depending
on the use case you may want to take either the floor or ceiling
of the result. For example:

quantile(binomial(n, p), P)

Quantile

The smallest number of successes that may be observed from
n trials with success fraction p, at probability P. Note that the
value returned is a real-number, and not an integer. Depending
on the use case you may want to take either the floor or ceiling
of the result. For example:

quantile(complement(binomial(n, p), P))

Quantile from the complement of the probability

Examples

Various worked examples are available illustrating the use of the binomial distribution.

Accuracy

This distribution is implemented using the incomplete beta functions ibeta and ibetac, please refer to these functions for information
on accuracy.

Implementation

In the following table p is the probability that one trial will be successful (the success fraction), n is the number of trials, k is the
number of successes, p is the probability and q = 1-p.
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Implementation NotesFunction

Implementation is in terms of ibeta_derivative: if nCk  is the bi-
nomial coefficient of a and b, then we have:

pdf

f (k; n, p) = nCkp
k(1 − p)n−k

= n !
k !(n − k) ! p

k(1 − p)n−k

= Γ(n + 1)
Γ(k + 1)Γ(n − k + 1) p

k(1 − p)n−k

= pk(1 − p)n−k

B(k + 1,n − k + 1)(n + 1)

Which can be evaluated as ibeta_derivative(k+1, n-k+1,

p) / (n+1)

The function ibeta_derivative is used here, since it has already
been optimised for the lowest possible error - indeed this is
really just a thin wrapper around part of the internals of the in-
complete beta function.

There are also various special cases: refer to the code for details.

Using the relation:cdf

p = I[sub 1-p](n - k, k + 1)
= 1 - I[sub p](k + 1, n - k)
= ibetac(k + 1, n - k, p)

There are also various special cases: refer to the code for details.

Using the relation: q = ibeta(k + 1, n - k, p)cdf complement

There are also various special cases: refer to the code for details.

Since the cdf is non-linear in variate k none of the inverse incom-
plete beta functions can be used here. Instead the quantile is

quantile

found numerically using a derivative free method (TOMS 748
algorithm).

Found numerically as above.quantile from the complement

p * nmean

p * n * (1-p)variance

floor(p * (n + 1))mode

(1 - 2 * p) / sqrt(n * p * (1 - p))skewness

3 - (6 / n) + (1 / (n * p * (1 - p)))kurtosis

(1 - 6 * p * q) / (n * p * q)kurtosis excess
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Implementation NotesFunction

The member functions find_upper_bound_on_p

find_lower_bound_on_p and find_number_of_trials
are implemented in terms of the inverse incomplete beta func-
tions ibetac_inv, ibeta_inv, and ibetac_invb respectively

parameter estimation

References

• Weisstein, Eric W. "Binomial Distribution." From MathWorld--A Wolfram Web Resource.

• Wikipedia binomial distribution.

• NIST Explorary Data Analysis.

Cauchy-Lorentz Distribution

#include <boost/math/distributions/cauchy.hpp>

template <class RealType = double,
class Policy = policies::policy<> >

class cauchy_distribution;

typedef cauchy_distribution<> cauchy;

template <class RealType, class Policy>
class cauchy_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;

cauchy_distribution(RealType location = 0, RealType scale = 1);

RealType location()const;
RealType scale()const;

};

The Cauchy-Lorentz distribution is named after Augustin Cauchy and Hendrik Lorentz. It is a continuous probability distribution
with probability distribution function PDF given by:

f (x; x0,γ) = 1
π ( γ
(x − x0)2 + γ2)

The location parameter x0   is the location of the peak of the distribution (the mode of the distribution), while the scale parameter γ
  specifies half the width of the PDF at half the maximum height. If the location is zero, and the scale 1, then the result is a standard
Cauchy distribution.

The distribution is important in physics as it is the solution to the differential equation describing forced resonance, while in spectro-
scopy it is the description of the line shape of spectral lines.

The following graph shows how the distributions moves as the location parameter changes:
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While the following graph shows how the shape (scale) parameter alters the distribution:
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Member Functions

cauchy_distribution(RealType location = 0, RealType scale = 1);

Constructs a Cauchy distribution, with location parameter location and scale parameter scale. When these parameters take their default
values (location = 0, scale = 1) then the result is a Standard Cauchy Distribution.

Requires scale > 0, otherwise calls domain_error.

RealType location()const;

Returns the location parameter of the distribution.
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RealType scale()const;

Returns the scale parameter of the distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

Note however that the Cauchy distribution does not have a mean, standard deviation, etc. See mathematically undefined function to
control whether these should fail to compile with a BOOST_STATIC_ASSERTION_FAILURE, which is the default.

Alternately, the functions mean, standard deviation, variance, skewness, kurtosis and kurtosis_excess will all return a domain_error
if called.

The domain of the random variable is [-[max_value], +[min_value]].

Accuracy

The Cauchy distribution is implemented in terms of the standard library tan and atan functions, and as such should have very low
error rates.

Implementation

In the following table x0  is the location parameter of the distribution, γ   is its scale parameter, x is the random variate, p is the
probability and q = 1-p.
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Implementation NotesFunction

Using the relation: pdf = 1 / (π * γ * (1 + ((x - x0 ) / γ)2)pdf

The cdf is normally given by:

p = 0.5 + atan(x)/π

But that suffers from cancellation error as x -> -∞. So recall that
for x < 0:

atan(x) = -π/2 - atan(1/x)

Substituting into the above we get:

p = -atan(1/x) ; x < 0

So the procedure is to calculate the cdf for -fabs(x) using the
above formula. Note that to factor in the location and scale
parameters you must substitute (x - x0 ) / γ   for x in the above.

This procedure yields the smaller of p and q, so the result may
need subtracting from 1 depending on whether we want the
complement or not, and whether x is less than x0  or not.

cdf and its complement

The same procedure is used irrespective of whether we're starting
from the probability or its complement. First the argument p is
reduced to the range [-0.5, 0.5], then the relation

x = x0  ± γ   / tan(π * p)

is used to obtain the result. Whether we're adding or subtracting
from x0  is determined by whether we're starting from the com-
plement or not.

quantile

The location parameter.mode

References

• Cauchy-Lorentz distribution

• NIST Exploratory Data Analysis

• Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A Wolfram Web Resource.

Chi Squared Distribution

#include <boost/math/distributions/chi_squared.hpp>
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namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class chi_squared_distribution;

typedef chi_squared_distribution<> chi_squared;

template <class RealType, class Policy>
class chi_squared_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;

// Constructor:
chi_squared_distribution(RealType i);

// Accessor to parameter:
RealType degrees_of_freedom()const;

// Parameter estimation:
static RealType find_degrees_of_freedom(

RealType difference_from_mean,
RealType alpha,
RealType beta,
RealType sd,
RealType hint = 100);

};

}} // namespaces

The Chi-Squared distribution is one of the most widely used distributions in statistical tests. If χi   are ν   independent, normally
distributed random variables with means μi   and variances σi

2, then the random variable:

Q = ∑
i=1

ν

( χi − νiσi )2

is distributed according to the Chi-Squared distribution.

The Chi-Squared distribution is a special case of the gamma distribution and has a single parameter ν   that specifies the number of
degrees of freedom. The following graph illustrates how the distribution changes for different values of ν:

243

Statistical Distributions and Functions

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


0 5 10 15 200
0

0.1

0.2

0.3

0.4

0.5

0

Pr
ob
ab
ili
ty

Random Variable

v=2

v=5

v=10

Chi Squared Distribution PDF

Member Functions

chi_squared_distribution(RealType v);

Constructs a Chi-Squared distribution with v degrees of freedom.

Requires v > 0, otherwise calls domain_error.

RealType degrees_of_freedom()const;

Returns the parameter v from which this object was constructed.

static RealType find_degrees_of_freedom(
RealType difference_from_variance,
RealType alpha,
RealType beta,
RealType variance,
RealType hint = 100);

Estimates the sample size required to detect a difference from a nominal variance in a Chi-Squared test for equal standard deviations.

difference_from_variance The difference from the assumed nominal variance that is to be detected: Note that the sign
of this value is critical, see below.

alpha The maximum acceptable risk of rejecting the null hypothesis when it is in fact true.

beta The maximum acceptable risk of falsely failing to reject the null hypothesis.

variance The nominal variance being tested against.

hint An optional hint on where to start looking for a result: the current sample size would be a
good choice.

Note that this calculation works with variances and not standard deviations.
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The sign of the parameter difference_from_variance is important: the Chi Squared distribution is asymmetric, and the caller must
decide in advance whether they are testing for a variance greater than a nominal value (positive difference_from_variance) or testing
for a variance less than a nominal value (negative difference_from_variance). If the latter, then obviously it is a requirement that
variance + difference_from_variance > 0, since no sample can have a negative variance!

This procedure uses the method in Diamond, W. J. (1989). Practical Experiment Designs, Van-Nostrand Reinhold, New York.

See also section on Sample sizes required in the NIST Engineering Statistics Handbook, Section 7.2.3.2.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

(We have followed the usual restriction of the mode to degrees of freedom >= 2, but note that the maximum of the pdf is actually
zero for degrees of freedom from 2 down to 0, and provide an extended definition that would avoid a discontinuity in the mode as
alternative code in a comment).

The domain of the random variable is [0, +∞].

Examples

Various worked examples are available illustrating the use of the Chi Squared Distribution.

Accuracy

The Chi-Squared distribution is implemented in terms of the incomplete gamma functions: please refer to the accuracy data for those
functions.

Implementation

In the following table v is the number of degrees of freedom of the distribution, x is the random variate, p is the probability, and q
= 1-p.

Implementation NotesFunction

Using the relation: pdf = gamma_p_derivative(v / 2, x / 2) / 2pdf

Using the relation: p = gamma_p(v / 2, x / 2)cdf

Using the relation: q = gamma_q(v / 2, x / 2)cdf complement

Using the relation: x = 2 * gamma_p_inv(v / 2, p)quantile

Using the relation: x = 2 * gamma_q_inv(v / 2, p)quantile from the complement

vmean

2vvariance

v - 2 (if v >= 2)mode

2 * sqrt(2 / v) == sqrt(8 / v)skewness

3 + 12 / vkurtosis

12 / vkurtosis excess
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References

• NIST Exploratory Data Analysis

• Chi-square distribution

• Weisstein, Eric W. "Chi-Squared Distribution." From MathWorld--A Wolfram Web Resource.

Exponential Distribution

#include <boost/math/distributions/exponential.hpp>

template <class RealType = double,
class Policy = policies::policy<> >

class exponential_distribution;

typedef exponential_distribution<> exponential;

template <class RealType, class Policy>
class exponential_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;

exponential_distribution(RealType lambda = 1);

RealType lambda()const;
};

The exponential distribution is a continuous probability distribution with PDF:

f (x) = λe−λx

It is often used to model the time between independent events that happen at a constant average rate.

The following graph shows how the distribution changes for different values of the rate parameter lambda:
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Member Functions

exponential_distribution(RealType lambda = 1);

Constructs an Exponential distribution with parameter lambda. Lambda is defined as the reciprocal of the scale parameter.

Requires lambda > 0, otherwise calls domain_error.

RealType lambda()const;

Accessor function returns the lambda parameter of the distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [0, +∞].

Accuracy

The exponential distribution is implemented in terms of the standard library functions exp, log, log1p and expm1 and as such
should have very low error rates.

Implementation

In the following table λ is the parameter lambda of the distribution, x is the random variate, p is the probability and q = 1-p.

Implementation NotesFunction

Using the relation: pdf = λ * exp(-λ * x)pdf

Using the relation: p = 1 - exp(-x * λ) = -expm1(-x * λ)cdf

Using the relation: q = exp(-x * λ)cdf complement

Using the relation: x = -log(1-p) / λ = -log1p(-p) / λquantile

Using the relation: x = -log(q) / λquantile from the complement

1/λmean

1/λstandard deviation

0mode

2skewness

9kurtosis

6kurtosis excess

references

• Weisstein, Eric W. "Exponential Distribution." From MathWorld--A Wolfram Web Resource
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• Wolfram Mathematica calculator

• NIST Exploratory Data Analysis

• Wikipedia Exponential distribution

(See also the reference documentation for the related Extreme Distributions.)

• Extreme Value Distributions, Theory and Applications Samuel Kotz & Saralees Nadarajah discuss the relationship of the types
of extreme value distributions.

Extreme Value Distribution

#include <boost/math/distributions/extreme.hpp>

template <class RealType = double,
class Policy = policies::policy<> >

class extreme_value_distribution;

typedef extreme_value_distribution<> extreme_value;

template <class RealType, class Policy>
class extreme_value_distribution
{
public:

typedef RealType value_type;

extreme_value_distribution(RealType location = 0, RealType scale = 1);

RealType scale()const;
RealType location()const;

};

There are various extreme value distributions : this implementation represents the maximum case, and is variously known as a
Fisher-Tippett distribution, a log-Weibull distribution or a Gumbel distribution.

Extreme value theory is important for assessing risk for highly unusual events, such as 100-year floods.

More information can be found on the NIST, Wikipedia, Mathworld, and Extreme value theory websites.

The relationship of the types of extreme value distributions, of which this is but one, is discussed by Extreme Value Distributions,
Theory and Applications Samuel Kotz & Saralees Nadarajah.

The distribution has a PDF given by:

f(x) = (1/scale) e-(x-location)/scale e-e-(x-location)/scale

Which in the standard case (scale = 1, location = 0) reduces to:

f(x) = e-xe-e-x

The following graph illustrates how the PDF varies with the location parameter:
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And this graph illustrates how the PDF varies with the shape parameter:
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Member Functions

extreme_value_distribution(RealType location = 0, RealType scale = 1);

Constructs an Extreme Value distribution with the specified location and scale parameters.

Requires scale > 0, otherwise calls domain_error.

RealType location()const;

Returns the location parameter of the distribution.
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RealType scale()const;

Returns the scale parameter of the distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random parameter is [-∞, +∞].

Accuracy

The extreme value distribution is implemented in terms of the standard library exp and log functions and as such should have very
low error rates.

Implementation

In the following table: a is the location parameter, b is the scale parameter, x is the random variate, p is the probability and q = 1-p.

Implementation NotesFunction

Using the relation: pdf = exp((a-x)/b) * exp(-exp((a-x)/b)) / bpdf

Using the relation: p = exp(-exp((a-x)/b))cdf

Using the relation: q = -expm1(-exp((a-x)/b))cdf complement

Using the relation: a - log(-log(p)) * bquantile

Using the relation: a - log(-log1p(-q)) * bquantile from the complement

a + Euler-Mascheroni-constant * bmean

pi * b / sqrt(6)standard deviation

The same as the location parameter a.mode

12 * sqrt(6) * zeta(3) / pi3skewness

27 / 5kurtosis

kurtosis - 3 or 12 / 5kurtosis excess

F Distribution

#include <boost/math/distributions/fisher_f.hpp>
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namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class fisher_f_distribution;

typedef fisher_f_distribution<> fisher_f;

template <class RealType, class Policy>
class fisher_f_distribution
{
public:

typedef RealType value_type;

// Construct:
fisher_f_distribution(const RealType& i, const RealType& j);

// Accessors:
RealType degrees_of_freedom1()const;
RealType degrees_of_freedom2()const;

};

}} //namespaces

The F distribution is a continuous distribution that arises when testing whether two samples have the same variance. If χ2
m   and χ2

n
  are independent variates each distributed as Chi-Squared with m and n degrees of freedom, then the test statistic:

Fn,m   = (χ2
n   / n) / (χ2

m   / m)

Is distributed over the range [0, ∞] with an F distribution, and has the PDF:

fn,m(x) = m
m
2n

n
2x

n
2−1

(m + nx)
(n+m)
2 B( n2, m2 )

The following graph illustrates how the PDF varies depending on the two degrees of freedom parameters.
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Member Functions

fisher_f_distribution(const RealType& df1, const RealType& df2);

Constructs an F-distribution with numerator degrees of freedom df1 and denominator degrees of freedom df2.

Requires that df1 and df2 are both greater than zero, otherwise domain_error is called.

RealType degrees_of_freedom1()const;

Returns the numerator degrees of freedom parameter of the distribution.

RealType degrees_of_freedom2()const;

Returns the denominator degrees of freedom parameter of the distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [0, +∞].

Examples

Various worked examples are available illustrating the use of the F Distribution.

Accuracy

The normal distribution is implemented in terms of the incomplete beta function and its inverses, refer to those functions for accuracy
data.

Implementation

In the following table v1 and v2 are the first and second degrees of freedom parameters of the distribution, x is the random variate,
p is the probability, and q = 1-p.
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Implementation NotesFunction

The usual form of the PDF is given by:pdf

fn,m(x) = m
m
2n

n
2x

n
2−1

(m + nx)
(n+m)
2 B( n2, m2 )

However, that form is hard to evaluate directly without incurring
problems with either accuracy or numeric overflow.

Direct differentiation of the CDF expressed in terms of the in-
complete beta function

led to the following two formulas:

fv1,v2(x) = y * ibeta_derivative(v2 / 2, v1 / 2, v2 / (v2 + v1 * x))

with y = (v2 * v1) / ((v2 + v1 * x) * (v2 + v1 * x))

and

fv1,v2(x) = y * ibeta_derivative(v1 / 2, v2 / 2, v1 * x / (v2 + v1
* x))

with y = (z * v1 - x * v1 * v1) / z2

and z = v2 + v1 * x

The first of these is used for v1 * x > v2, otherwise the second
is used.

The aim is to keep the x argument to ibeta_derivative away from
1 to avoid rounding error.

Using the relations:cdf

p = ibeta(v1 / 2, v2 / 2, v1 * x / (v2 + v1 * x))

and

p = ibetac(v2 / 2, v1 / 2, v2 / (v2 + v1 * x))

The first is used for v1 * x > v2, otherwise the second is used.

The aim is to keep the x argument to ibeta well away from 1 to
avoid rounding error.
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Implementation NotesFunction

Using the relations:

p = ibetac(v1 / 2, v2 / 2, v1 * x / (v2 + v1 * x))

and

p = ibeta(v2 / 2, v1 / 2, v2 / (v2 + v1 * x))

The first is used for v1 * x < v2, otherwise the second is used.

The aim is to keep the x argument to ibeta well away from 1 to
avoid rounding error.

cdf complement

Using the relation:

x = v2 * a / (v1 * b)

where:

a = ibeta_inv(v1 / 2, v2 / 2, p)

and

b = 1 - a

Quantities a and b are both computed by ibeta_inv without the
subtraction implied above.

quantile

Using the relation:

x = v2 * a / (v1 * b)

where

a = ibetac_inv(v1 / 2, v2 / 2, p)

and

b = 1 - a

Quantities a and b are both computed by ibetac_inv without the
subtraction implied above.

quantile

from the complement

v2 / (v2 - 2)mean

2 * v22  * (v1 + v2 - 2) / (v1 * (v2 - 2) * (v2 - 2) * (v2 - 4))variance

v2 * (v1 - 2) / (v1 * (v2 + 2))mode

2 * (v2 + 2 * v1 - 2) * sqrt((2 * v2 - 8) / (v1 * (v2 + v1 - 2))) /
(v2 - 6)

skewness

Refer to, Weisstein, Eric W. "F-Distribution." From MathWorld-
-A Wolfram Web Resource.

kurtosis and kurtosis excess
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Gamma (and Erlang) Distribution

#include <boost/math/distributions/gamma.hpp>

namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class gamma_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;

gamma_distribution(RealType shape, RealType scale = 1)

RealType shape()const;
RealType scale()const;

};

}} // namespaces

The gamma distribution is a continuous probability distribution. When the shape parameter is an integer then it is known as the Erlang
Distribution. It is also closely related to the Poisson and Chi Squared Distributions.

When the shape parameter has an integer value, the distribution is the Erlang distribution. Since this can be produced by ensuring
that the shape parameter has an integer value > 0, the Erlang distribution is not separately implemented.

Note

To avoid potential confusion with the gamma functions, this distribution does not provide the typedef:

typedef gamma_distribution<double> gamma;

Instead if you want a double precision gamma distribution you can write

boost::math::gamma_distribution<> my_gamma(1, 1);

For shape parameter k and scale parameter θ   it is defined by the probability density function:

f (x; k, θ) = xk−1 e
− xθ

θkΓ(k)

Sometimes an alternative formulation is used: given parameters α  = k and β  = 1 / θ, then the distribution can be defined by the
PDF:

f (x; α, β) = xα−1
βαe−βx

Γ(α)

In this form the inverse scale parameter is called a rate parameter.

Both forms are in common usage: this library uses the first definition throughout. Therefore to construct a Gamma Distribution from
a rate parameter, you should pass the reciprocal of the rate as the scale parameter.
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The following two graphs illustrate how the PDF of the gamma distribution varies as the parameters vary:
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The Erlang Distribution is the same as the Gamma, but with the shape parameter an integer. It is often expressed using a rate rather
than a scale as the second parameter (remember that the rate is the reciprocal of the scale).

Internally the functions used to implement the Gamma Distribution are already optimised for small-integer arguments, so in general
there should be no great loss of performance from using a Gamma Distribution rather than a dedicated Erlang Distribution.

Member Functions

gamma_distribution(RealType shape, RealType scale = 1);

Constructs a gamma distribution with shape shape and scale scale.

Requires that the shape and scale parameters are greater than zero, otherwise calls domain_error.
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RealType shape()const;

Returns the shape parameter of this distribution.

RealType scale()const;

Returns the scale parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [0,+∞].

Accuracy

The lognormal distribution is implemented in terms of the incomplete gamma functions gamma_p and gamma_q and their inverses
gamma_p_inv and gamma_q_inv: refer to the accuracy data for those functions for more information.

Implementation

In the following table k is the shape parameter of the distribution, θ   is its scale parameter, x is the random variate, p is the probab-
ility and q = 1-p.

Implementation NotesFunction

Using the relation: pdf = gamma_p_derivative(k, x / θ) / θpdf

Using the relation: p = gamma_p(k, x / θ)cdf

Using the relation: q = gamma_q(k, x / θ)cdf complement

Using the relation: x = θ  * gamma_p_inv(k, p)quantile

Using the relation: x = θ  * gamma_q_inv(k, p)quantile from the complement

kθmean

kθ2variance

(k-1)θ   for k>1 otherwise a domain_errormode

2 / sqrt(k)skewness

3 + 6 / kkurtosis

6 / kkurtosis excess

Geometric Distribution

#include <boost/math/distributions/geometric.hpp>
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namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class geometric_distribution;

typedef geometric_distribution<> geometric;

template <class RealType, class Policy>
class geometric_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;
// Constructor from success_fraction:
geometric_distribution(RealType p);

// Parameter accessors:
RealType success_fraction() const;
RealType successes() const;

// Bounds on success fraction:
static RealType find_lower_bound_on_p(

RealType trials,
RealType successes,
RealType probability); // alpha

static RealType find_upper_bound_on_p(
RealType trials,
RealType successes,
RealType probability); // alpha

// Estimate min/max number of trials:
static RealType find_minimum_number_of_trials(

RealType k, // Number of failures.
RealType p, // Success fraction.
RealType probability); // Probability threshold alpha.

static RealType find_maximum_number_of_trials(
RealType k, // Number of failures.
RealType p, // Success fraction.
RealType probability); // Probability threshold alpha.

};

}} // namespaces

The class type geometric_distribution represents a geometric distribution: it is used when there are exactly two mutually ex-
clusive outcomes of a Bernoulli trial: these outcomes are labelled "success" and "failure".

For Bernoulli trials each with success fraction p, the geometric distribution gives the probability of observing k trials (failures, events,
occurrences, or arrivals) before the first success.

Note

For this implementation, the set of trials includes zero (unlike another definition where the set of trials starts at one,
sometimes named shifted).

The geometric distribution assumes that success_fraction p is fixed for all k trials.

The probability that there are k failures before the first success is

 Pr(Y=k) = (1-p)kp
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For example, when throwing a 6-face dice the success probability p = 1/6 = 0.1666    . Throwing repeatedly until a three appears,
the probability distribution of the number of times not-a-three is thrown is geometric.

Geometric distribution has the Probability Density Function PDF:

 (1-p)kp

The following graph illustrates how the PDF and CDF vary for three examples of the success fraction p, (when considering the
geometric distribution as a continuous function),
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and as discrete.
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Related Distributions

The geometric distribution is a special case of the Negative Binomial Distribution with successes parameter r = 1, so only one first
and only success is required : thus by definition geometric(p) == negative_binomial(1, p)

negative_binomial_distribution(RealType r, RealType success_fraction);
negative_binomial nb(1, success_fraction);
geometric g(success_fraction);
ASSERT(pdf(nb, 1) == pdf(g, 1));

This implementation uses real numbers for the computation throughout (because it uses the real-valued power and exponential
functions). So to obtain a conventional strictly-discrete geometric distribution you must ensure that an integer value is provided for
the number of trials (random variable) k, and take integer values (floor or ceil functions) from functions that return a number of
successes.
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Caution

The geometric distribution is a discrete distribution: internally, functions like the cdf and pdf are treated "as if"
they are continuous functions, but in reality the results returned from these functions only have meaning if an integer
value is provided for the random variate argument.

The quantile function will by default return an integer result that has been rounded outwards. That is to say lower
quantiles (where the probability is less than 0.5) are rounded downward, and upper quantiles (where the probability
is greater than 0.5) are rounded upwards. This behaviour ensures that if an X% quantile is requested, then at least
the requested coverage will be present in the central region, and no more than the requested coverage will be present
in the tails.

This behaviour can be changed so that the quantile functions are rounded differently, or even return a real-valued
result using Policies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete
Distributions before using the quantile function on the geometric distribution. The reference docs describe how to
change the rounding policy for these distributions.

Member Functions

Constructor

geometric_distribution(RealType p);

Constructor: p or success_fraction is the probability of success of a single trial.

Requires: 0 <= p <= 1.

Accessors

RealType success_fraction() const; // successes / trials (0 <= p <= 1)

Returns the success_fraction parameter p from which this distribution was constructed.

RealType successes() const; // required successes always one,
// included for compatibility with negative binomial distribution
// with successes r == 1.

Returns unity.

The following functions are equivalent to those provided for the negative binomial, with successes = 1, but are provided here for
completeness.

The best method of calculation for the following functions is disputed: see Binomial Distribution and Negative Binomial Distribution
for more discussion.

Lower Bound on success_fraction Parameter p

static RealType find_lower_bound_on_p(
RealType failures,
RealType probability) // (0 <= alpha <= 1), 0.05 equivalent to 95% confidence.

Returns a lower bound on the success fraction:

failures The total number of failures before the 1st success.

alpha The largest acceptable probability that the true value of the success fraction is less than the value returned.
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For example, if you observe k failures from n trials the best estimate for the success fraction is simply 1/n, but if you want to be 95%
sure that the true value is greater than some value, pmin, then:

pmin = geometric_distribution<RealType>::
find_lower_bound_on_p(failures, 0.05);

See negative_binomial confidence interval example.

This function uses the Clopper-Pearson method of computing the lower bound on the success fraction, whilst many texts refer to
this method as giving an "exact" result in practice it produces an interval that guarantees at least the coverage required, and may
produce pessimistic estimates for some combinations of failures and successes. See:

Yong Cai and K. Krishnamoorthy, A Simple Improved Inferential Method for Some Discrete Distributions. Computational statistics
and data analysis, 2005, vol. 48, no3, 605-621.

Upper Bound on success_fraction Parameter p

static RealType find_upper_bound_on_p(
RealType trials,
RealType alpha); // (0 <= alpha <= 1), 0.05 equivalent to 95% confidence.

Returns an upper bound on the success fraction:

trials The total number of trials conducted.

alpha The largest acceptable probability that the true value of the success fraction is greater than the value returned.

For example, if you observe k successes from n trials the best estimate for the success fraction is simply k/n, but if you want to be
95% sure that the true value is less than some value, pmax, then:

pmax = geometric_distribution<RealType>::find_upper_bound_on_p(
k, 0.05);

See negative binomial confidence interval example.

This function uses the Clopper-Pearson method of computing the lower bound on the success fraction, whilst many texts refer to
this method as giving an "exact" result in practice it produces an interval that guarantees at least the coverage required, and may
produce pessimistic estimates for some combinations of failures and successes. See:

Yong Cai and K. Krishnamoorthy, A Simple Improved Inferential Method for Some Discrete Distributions. Computational statistics
and data analysis, 2005, vol. 48, no3, 605-621.

Estimating Number of Trials to Ensure at Least a Certain Number of Failures

static RealType find_minimum_number_of_trials(
RealType k, // number of failures.
RealType p, // success fraction.
RealType alpha); // probability threshold (0.05 equivalent to 95%).

This functions estimates the number of trials required to achieve a certain probability that more than k failures will be observed.

k The target number of failures to be observed.

p The probability of success for each trial.

alpha The maximum acceptable risk that only k failures or fewer will be observed.

For example:
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geometric_distribution<RealType>::find_minimum_number_of_trials(10, 0.5, 0.05);

Returns the smallest number of trials we must conduct to be 95% (1-0.05) sure of seeing 10 failures that occur with frequency one
half.

Worked Example.

This function uses numeric inversion of the geometric distribution to obtain the result: another interpretation of the result is that it
finds the number of trials (failures) that will lead to an alpha probability of observing k failures or fewer.

Estimating Number of Trials to Ensure a Maximum Number of Failures or Less

static RealType find_maximum_number_of_trials(
RealType k, // number of failures.
RealType p, // success fraction.
RealType alpha); // probability threshold (0.05 equivalent to 95%).

This functions estimates the maximum number of trials we can conduct and achieve a certain probability that k failures or fewer
will be observed.

k The maximum number of failures to be observed.

p The probability of success for each trial.

alpha The maximum acceptable risk that more than k failures will be observed.

For example:

geometric_distribution<RealType>::find_maximum_number_of_trials(0, 1.0-1.0/1000000, 0.05);

Returns the largest number of trials we can conduct and still be 95% sure of seeing no failures that occur with frequency one in one
million.

This function uses numeric inversion of the geometric distribution to obtain the result: another interpretation of the result, is that it
finds the number of trials that will lead to an alpha probability of observing more than k failures.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

However it's worth taking a moment to define what these actually mean in the context of this distribution:
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Table 16. Meaning of the non-member accessors.

MeaningFunction

The probability of obtaining exactly k failures from k trials
with success fraction p. For example:

pdf(geometric(p), k)

Probability Density Function

The probability of obtaining k failures or fewer from k trials
with success fraction p and success on the last trial. For example:

cdf(geometric(p), k)

Cumulative Distribution Function

The probability of obtaining more than k failures from k trials
with success fraction p and success on the last trial. For example:

cdf(complement(geometric(p), k))

Complement of the Cumulative Distribution Function

The greatest number of failures k expected to be observed from
k trials with success fraction p, at probability P. Note that the
value returned is a real-number, and not an integer. Depending
on the use case you may want to take either the floor or ceiling
of the real result. For example:

quantile(geometric(p), P)

Quantile

The smallest number of failures k expected to be observed from
k trials with success fraction p, at probability P. Note that the
value returned is a real-number, and not an integer. Depending
on the use case you may want to take either the floor or ceiling
of the real result. For example:

quantile(complement(geometric(p), P))

Quantile from the complement of the probability

Accuracy

This distribution is implemented using the pow and exp functions, so most results are accurate within a few epsilon for the RealType.
For extreme values of double p, for example 0.9999999999, accuracy can fall significantly, for example to 10 decimal digits (from
16).

Implementation

In the following table, p is the probability that any one trial will be successful (the success fraction), k is the number of failures, p is
the probability and q = 1-p, x is the given probability to estimate the expected number of failures using the quantile.
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Implementation NotesFunction

pdf = p * pow(q, k)pdf

cdf = 1 - qk=1cdf

exp(log1p(-p) * (k+1))cdf complement

k = log1p(-x) / log1p(-p) -1quantile

k = log(x) / log1p(-p) -1quantile from the complement

(1-p)/pmean

(1-p)/p²variance

0mode

(2-p)/√qskewness

9+p²/qkurtosis

6 +p²/qkurtosis excess

See Negative Binomial Distributionparameter estimation member functions

See Negative Binomial Distributionfind_lower_bound_on_p

See Negative Binomial Distributionfind_upper_bound_on_p

See Negative Binomial Distributionfind_minimum_number_of_trials

See Negative Binomial Distributionfind_maximum_number_of_trials

Hyperexponential Distribution

#include <boost/math/distributions/hyperexponential.hpp>
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namespace boost{ namespace math{

template <typename RealType = double,
typename Policy = policies::policy<> >

class hyperexponential_distribution;

typedef hyperexponential_distribution<> hyperexponential;

template <typename RealType, typename Policy>
class hyperexponential_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;

// Constructors:
hyperexponential_distribution(); // Default.

template <typename RateIterT, typename RateIterT2>
hyperexponential_distribution( // Default equal probabilities.

RateIterT const& rate_first,
RateIterT2 const& rate_last); // Rates using Iterators.

template <typename ProbIterT, typename RateIterT>
hyperexponential_distribution(ProbIterT prob_first, ProbIterT prob_last,

RateIterT rate_first, RateIterT rate_last); // Iterators.

template <typename ProbRangeT, typename RateRangeT>
hyperexponential_distribution(ProbRangeT const& prob_range,

RateRangeT const& rate_range); // Ranges.

template <typename RateRangeT>
hyperexponential_distribution(RateRangeT const& rate_range);

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) // C++11 initializer lists supported.
hyperexponential_distribution(std::initializer_list<RealType> l1, std::initializer_list<Real↵

Type> l2);
hyperexponential_distribution(std::initializer_list<RealType> l1);

#endif

// Accessors:
std::size_t num_phases() const;
std::vector<RealType> probabilities() const;
std::vector<RealType> rates() const;

};

}} // namespaces

Note

An implementation-defined mechanism is provided to avoid ambiguity between constructors accepting ranges,
iterators and constants as parameters. This should be transparent to the user. See below and the header file hyperex-
ponential.hpp for details and explanatory comments.

The class type hyperexponential_distribution represents a hyperexponential distribution.

A k-phase hyperexponential distribution is a continuous probability distribution obtained as a mixture of k Exponential Distributions.
It is also referred to as mixed exponential distribution or parallel k-phase exponential distribution.

A k-phase hyperexponential distribution is characterized by two parameters, namely a phase probability vector α=(α1,...,αk) and a
rate vector λ=(λ1,...,λk).
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The probability density function for random variate x in a hyperexponential distribution is given by:

∑
i=1

k

αiλie
−λix

The following graph illustrates the PDF of the hyperexponential distribution with five different parameters, namely:

1. α=(1.0) and λ=(1.0) (which degenerates to a simple exponential distribution),

2. α=(0.1, 0.9) and λ=(0.5, 1.5),

3. α=(0.9, 0.1) and λ=(0.5, 1.5),

4. α=(0.2, 0.3, 0.5) and λ=(0.5, 1.0, 1.5),

5. α=(0.5, 0.3, 0.2) and λ=(0.5, 1.0, 1.5).

Also, the following graph illustrates the PDF of the hyperexponential distribution (solid lines) where only the phase probability
vector changes together with the PDF of the two limiting exponential distributions (dashed lines):

1. α=(0.1, 0.9) and λ=(0.5, 1.5),
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2. α=(0.6, 0.4) and λ=(0.5, 1.5),

3. α=(0.9, 0.1) and λ=(0.5, 1.5),

4. Exponential distribution with parameter λ=0.5,

5. Exponential distribution with parameter λ=1.5.

As expected, as the first element α1 of the phase probability vector approaches to 1 (or, equivalently, α2 approaches to 0), the resulting
hyperexponential distribution nears the exponential distribution with parameter λ=0.5. Conversely, as the first element α2 of the
phase probability vector approaches to 1 (or, equivalently, α1 approaches to 0), the resulting hyperexponential distribution nears the
exponential distribution with parameter λ=1.5.

Finally, the following graph compares the PDF of the hyperexponential distribution with different number of phases but with the
same mean value equal to 2:

1. α=(1.0) and λ=(2.0) (which degenerates to a simple exponential distribution),

2. α=(0.5, 0.5) and λ=(0.3, 1.5),

3. α=(1.0/3.0, 1.0/3.0, 1.0/3.0) and λ=(0.2, 1.5, 3.0),
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As can be noted, even if the three distributions have the same mean value, the two hyperexponential distributions have a longer tail
with respect to the one of the exponential distribution. Indeed, the hyperexponential distribution has a larger variability than the ex-
ponential distribution, thus resulting in a Coefficient of Variation greater than 1 (as opposed to the one of the exponential distribution
which is exactly 1).

Applications

A k-phase hyperexponential distribution is frequently used in queueing theory to model the distribution of the superposition of k in-
dependent events, like, for instance, the service time distribution of a queueing station with k servers in parallel where the i-th server
is chosen with probability αi and its service time distribution is an exponential distribution with rate λi (Allen,1990; Papadopolous
et al.,1993; Trivedi,2002).

For instance, CPUs service-time distribution in a computing system has often been observed to possess such a distribution (Rosin,1965).
Also, the arrival of different types of customer to a single queueing station is often modeled as a hyperexponential distribution
(Papadopolous et al.,1993). Similarly, if a product manufactured in several parallel assembly lines and the outputs are merged, the
failure density of the overall product is likely to be hyperexponential (Trivedi,2002).

Finally, since the hyperexponential distribution exhibits a high Coefficient of Variation (CoV), that is a CoV > 1, it is especially
suited to fit empirical data with large CoV (Feitelson,2014; Wolski et al.,2013) and to approximate long-tail probability distributions
(Feldmann et al.,1998).
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Related distributions

• When the number of phases k is equal to 1, the hyperexponential distribution is simply an Exponential Distribution.

• When the k rates are all equal to λ, the hyperexponential distribution is simple an Exponential Distribution with rate λ.

Examples

Lifetime of Appliances

Suppose a customer is buying an appliance and is choosing at random between an appliance with average lifetime of 10 years and
an appliance with average lifetime of 12 years. Assuming the lifetime of this appliance follows an exponential distribution, the lifetime
distribution of the purchased appliance can be modeled as a hyperexponential distribution with phase probability vector α=(1/2,1/2)
and rate vector λ=(1/10,1/12) (Wolfram,2014).

In the rest of this section, we provide an example C++ implementation for computing the average lifetime and the probability that
the appliance will work for more than 15 years.

#include <boost/math/distributions/hyperexponential.hpp>
#include <iostream>
int main()
{

const double rates[] = { 1.0 / 10.0, 1.0 / 12.0 };

boost::math::hyperexponential he(rates);

std::cout << "Average lifetime: "
<< boost::math::mean(he)
<< " years" << std::endl;

std::cout << "Probability that the appliance will work for more than 15 years: "
<< boost::math::cdf(boost::math::complement(he, 15.0))
<< std::endl;

}

The resulting output is:

Average lifetime: 11 years
Probability that the appliance will work for more than 15 years: 0.254817

Workloads of Private Cloud Computing Systems

Cloud computing has become a popular metaphor for dynamic and secure self-service access to computational and storage capabil-
ities. In (Wolski et al.,2013), the authors analyze and model workloads gathered from enterprise-operated commercial private clouds
and show that 3-phase hyperexponential distributions (fitted using the Expectation Maximization algorithm) capture workload attributes
accurately.

In this type of computing system, user requests consist in demanding the provisioning of one or more Virtual Machines (VMs). In
particular, in (Wolski et al.,2013) the workload experienced by each cloud system is a function of four distributions, one for each of
the following workload attributes:

• Request Interarrival Time: the amount of time until the next request,

• VM Lifetime: the time duration over which a VM is provisioned to a physical machine,

• Request Size: the number of VMs in the request, and

• Core Count: the CPU core count requested for each VM.
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The authors assume that all VMs in a request have the same core count, but request sizes and core counts can vary from request to
request. Moreover, all VMs within a request are assumed to have the same lifetime. Given these assumptions, the authors build a
statistical model for the request interarrival time and VM lifetime attributes by fitting their respective data to a 3-phase hyperexpo-
nential distribution.

In the following table, we show the sample mean and standard deviation (SD), in seconds, of the request interarrival time and of the
VM lifetime distributions of the three datasets collected by authors:

Mean Single-core VM Life-
time (SD)

Mean Multi-core VM Life-
time (SD)

Mean Request Interarrival
Time (SD)

Dataset

28754.4 (1.6e+05)257173 (4.6e+05)2202.1 (2.2e+04)DS1

599815.0 (1.7e+06)144669.0 (7.9e+05)41285.7 (1.1e+05)DS2

44447.8 (2.2e+05)30739.2 (1.6e+05)11238.8 (3.0e+04)DS3

Whereas in the following table we show the hyperexponential distribution parameters resulting from the fit:

Single-core VM LifetimeMulti-core VM LifetimeRequest Interarrival TimeDataset

α=(0.09325,0.22251,0.68424),
λ=(0.000003,0.00109,0.00109)

α=(0.24667,0.37948,0.37385),
λ=(0.00004,0.000002,0.00059)

α=(0.34561,0.08648,0.56791),
λ=(0.008,0.00005,0.02894)

DS1

α=(0.44885,0.30675,0.2444),
λ=(0.00143,0.00005,0.0000004)

α=(0.42093,0.43960,0.13947),
λ=(0.00186,0.00008,0.0000008)

α=(0.38881,0.18227,0.42892),
λ=(0.000006,0.05228,0.00081)

DS2

α=(0.34131,0.12544,0.53325),
λ=(0.000297,0.000003,0.00410)

α=(0.37621,0.14838,0.47541),
λ=(0.00498,0.000005,0.00022)

α=(0.39442,0.24644,0.35914),
λ=(0.00030,0.00003,0.00257)

DS3

In the rest of this section, we provide an example C++ implementation for computing some statistical properties of the fitted distri-
butions for each of the analyzed dataset.
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#include <boost/math/distributions.hpp>
#include <iostream>
#include <string>

struct ds_info
{
std::string name;
double iat_sample_mean;
double iat_sample_sd;
boost::math::hyperexponential iat_he;
double multi_lt_sample_mean;
double multi_lt_sample_sd;
boost::math::hyperexponential multi_lt_he;
double single_lt_sample_mean;
double single_lt_sample_sd;
boost::math::hyperexponential single_lt_he;
};

// DS1 dataset
ds_info make_ds1()
{
ds_info ds;

ds.name = "DS1";

// VM interarrival time distribution
const double iat_fit_probs[] = {0.34561,0.08648,0.56791};
const double iat_fit_rates[] = {0.0008,0.00005,0.02894};
ds.iat_sample_mean = 2202.1;
ds.iat_sample_sd = 2.2e+4;
ds.iat_he = boost::math::hyperexponential(iat_fit_probs, iat_fit_rates);

// Multi-core VM lifetime distribution
const double multi_lt_fit_probs[] = {0.24667,0.37948,0.37385};
const double multi_lt_fit_rates[] = {0.00004,0.000002,0.00059};
ds.multi_lt_sample_mean = 257173;
ds.multi_lt_sample_sd = 4.6e+5;
ds.multi_lt_he = boost::math::hyperexponential(multi_lt_fit_probs, multi_lt_fit_rates);

// Single-core VM lifetime distribution
const double single_lt_fit_probs[] = {0.09325,0.22251,0.68424};
const double single_lt_fit_rates[] = {0.000003,0.00109,0.00109};
ds.single_lt_sample_mean = 28754.4;
ds.single_lt_sample_sd = 1.6e+5;
ds.single_lt_he = boost::math::hyperexponential(single_lt_fit_probs, single_lt_fit_rates);

return ds;
}

// DS2 dataset
ds_info make_ds2()
{
ds_info ds;

ds.name = "DS2";

// VM interarrival time distribution
const double iat_fit_probs[] = {0.38881,0.18227,0.42892};
const double iat_fit_rates[] = {0.000006,0.05228,0.00081};
ds.iat_sample_mean = 41285.7;
ds.iat_sample_sd = 1.1e+05;
ds.iat_he = boost::math::hyperexponential(iat_fit_probs, iat_fit_rates);
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// Multi-core VM lifetime distribution
const double multi_lt_fit_probs[] = {0.42093,0.43960,0.13947};
const double multi_lt_fit_rates[] = {0.00186,0.00008,0.0000008};
ds.multi_lt_sample_mean = 144669.0;
ds.multi_lt_sample_sd = 7.9e+05;
ds.multi_lt_he = boost::math::hyperexponential(multi_lt_fit_probs, multi_lt_fit_rates);

// Single-core VM lifetime distribution
const double single_lt_fit_probs[] = {0.44885,0.30675,0.2444};
const double single_lt_fit_rates[] = {0.00143,0.00005,0.0000004};
ds.single_lt_sample_mean = 599815.0;
ds.single_lt_sample_sd = 1.7e+06;
ds.single_lt_he = boost::math::hyperexponential(single_lt_fit_probs, single_lt_fit_rates);

return ds;
}

// DS3 dataset
ds_info make_ds3()
{
ds_info ds;

ds.name = "DS3";

// VM interarrival time distribution
const double iat_fit_probs[] = {0.39442,0.24644,0.35914};
const double iat_fit_rates[] = {0.00030,0.00003,0.00257};
ds.iat_sample_mean = 11238.8;
ds.iat_sample_sd = 3.0e+04;
ds.iat_he = boost::math::hyperexponential(iat_fit_probs, iat_fit_rates);

// Multi-core VM lifetime distribution
const double multi_lt_fit_probs[] = {0.37621,0.14838,0.47541};
const double multi_lt_fit_rates[] = {0.00498,0.000005,0.00022};
ds.multi_lt_sample_mean = 30739.2;
ds.multi_lt_sample_sd = 1.6e+05;
ds.multi_lt_he = boost::math::hyperexponential(multi_lt_fit_probs, multi_lt_fit_rates);

// Single-core VM lifetime distribution
const double single_lt_fit_probs[] = {0.34131,0.12544,0.53325};
const double single_lt_fit_rates[] = {0.000297,0.000003,0.00410};
ds.single_lt_sample_mean = 44447.8;
ds.single_lt_sample_sd = 2.2e+05;
ds.single_lt_he = boost::math::hyperexponential(single_lt_fit_probs, single_lt_fit_rates);

return ds;
}

void print_fitted(ds_info const& ds)
{
const double secs_in_a_hour = 3600;
const double secs_in_a_month = 30*24*secs_in_a_hour;

std::cout << "### " << ds.name << std::endl;
std::cout << "* Fitted Request Interarrival Time" << std::endl;
std::cout << " - Mean (SD): " << boost::math::mean(ds.iat_he) << " (" << boost::math::stand↵
ard_deviation(ds.iat_he) << ") seconds." << std::endl;
std::cout << " - 99th Percentile: ↵
" << boost::math::quantile(ds.iat_he, 0.99) << " seconds." << std::endl;
std::cout << " - Probability that a VM will arrive within 30 minutes: ↵
" << boost::math::cdf(ds.iat_he, secs_in_a_hour/2.0) << std::endl;
std::cout << " - Probability that a VM will arrive after 1 hour: ↵
" << boost::math::cdf(boost::math::complement(ds.iat_he, secs_in_a_hour)) << std::endl;
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std::cout << "* Fitted Multi-core VM Lifetime" << std::endl;
std::cout << " - Mean (SD): " << boost::math::mean(ds.multi_lt_he) << " (" << boost::math::stand↵
ard_deviation(ds.multi_lt_he) << ") seconds." << std::endl;
std::cout << " - 99th Percentile: ↵
" << boost::math::quantile(ds.multi_lt_he, 0.99) << " seconds." << std::endl;
std::cout << " - Probability that a VM will last for less than 1 month: ↵
" << boost::math::cdf(ds.multi_lt_he, secs_in_a_month) << std::endl;
std::cout << " - Probability that a VM will last for more than 3 months: ↵
" << boost::math::cdf(boost::math::complement(ds.multi_lt_he, 3.0*secs_in_a_month)) << std::endl;

std::cout << "* Fitted Single-core VM Lifetime" << std::endl;
std::cout << " - Mean (SD): " << boost::math::mean(ds.single_lt_he) << " (" << boost::math::stand↵
ard_deviation(ds.single_lt_he) << ") seconds." << std::endl;
std::cout << " - 99th Percentile: ↵
" << boost::math::quantile(ds.single_lt_he, 0.99) << " seconds." << std::endl;
std::cout << " - Probability that a VM will last for less than 1 month: ↵
" << boost::math::cdf(ds.single_lt_he, secs_in_a_month) << std::endl;
std::cout << " - Probability that a VM will last for more than 3 months: ↵
" << boost::math::cdf(boost::math::complement(ds.single_lt_he, 3.0*secs_in_a_month)) << std::endl;
}

int main()
{
print_fitted(make_ds1());

print_fitted(make_ds2());

print_fitted(make_ds3());
}

The resulting output (with floating-point precision set to 2) is:
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### DS1
* Fitted Request Interarrival Time
- Mean (SD): 2.2e+03 (8.1e+03) seconds.
- 99th Percentile: 4.3e+04 seconds.
- Probability that a VM will arrive within 30 minutes: 0.84
- Probability that a VM will arrive after 1 hour: 0.092
* Fitted Multi-core VM Lifetime
- Mean (SD): 2e+05 (3.9e+05) seconds.
- 99th Percentile: 1.8e+06 seconds.
- Probability that a VM will last for less than 1 month: 1
- Probability that a VM will last for more than 3 months: 6.7e-08
* Fitted Single-core VM Lifetime
- Mean (SD): 3.2e+04 (1.4e+05) seconds.
- 99th Percentile: 7.4e+05 seconds.
- Probability that a VM will last for less than 1 month: 1
- Probability that a VM will last for more than 3 months: 6.9e-12
### DS2
* Fitted Request Interarrival Time
- Mean (SD): 6.5e+04 (1.3e+05) seconds.
- 99th Percentile: 6.1e+05 seconds.
- Probability that a VM will arrive within 30 minutes: 0.52
- Probability that a VM will arrive after 1 hour: 0.4
* Fitted Multi-core VM Lifetime
- Mean (SD): 1.8e+05 (6.4e+05) seconds.
- 99th Percentile: 3.3e+06 seconds.
- Probability that a VM will last for less than 1 month: 0.98
- Probability that a VM will last for more than 3 months: 0.00028
* Fitted Single-core VM Lifetime
- Mean (SD): 6.2e+05 (1.6e+06) seconds.
- 99th Percentile: 8e+06 seconds.
- Probability that a VM will last for less than 1 month: 0.91
- Probability that a VM will last for more than 3 months: 0.011
### DS3
* Fitted Request Interarrival Time
- Mean (SD): 9.7e+03 (2.2e+04) seconds.
- 99th Percentile: 1.1e+05 seconds.
- Probability that a VM will arrive within 30 minutes: 0.53
- Probability that a VM will arrive after 1 hour: 0.36
* Fitted Multi-core VM Lifetime
- Mean (SD): 3.2e+04 (1e+05) seconds.
- 99th Percentile: 5.4e+05 seconds.
- Probability that a VM will last for less than 1 month: 1
- Probability that a VM will last for more than 3 months: 1.9e-18
* Fitted Single-core VM Lifetime
- Mean (SD): 4.3e+04 (1.6e+05) seconds.
- 99th Percentile: 8.4e+05 seconds.
- Probability that a VM will last for less than 1 month: 1
- Probability that a VM will last for more than 3 months: 9.3e-12

Note

The above results differ from the ones shown in Tables III, V, and VII of (Wolski et al.,2013). We carefully double-
checked them with Wolfram Mathematica 10, which confirmed our results.

Member Functions

Default Constructor

hyperexponential_distribution();
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Constructs a 1-phase hyperexponential distribution (i.e., an exponential distribution) with rate 1.

Constructor from Iterators

template <typename ProbIterT, typename RateIterT>
hyperexponential_distribution(ProbIterT prob_first, ProbIterT prob_last,

RateIterT rate_first, RateIterT rate_last);

Constructs a hyperexponential distribution with phase probability vector parameter given by the range defined by [prob_first,
prob_last) iterator pair, and rate vector parameter given by the range defined by the [rate_first, rate_last) iterator pair.

Parameters

• prob_first, prob_last: the range of non-negative real elements representing the phase probabilities; elements are normalized
to sum to unity.

• rate_first, rate_last: the range of positive elements representing the rates.

Type Requirements

• ProbIterT, RateIterT: must meet the requirements of the InputIterator concept.

Example

std::array<double, 2> phase_prob = { 0.5, 0.5 };
std::array<double, 2> rates = { 1.0 / 10, 1.0 / 12 };

hyperexponential he(phase_prob.begin(), phase_prob.end(), rates.begin(), rates.end());

Construction from Ranges/Containers

template <typename ProbRangeT, typename RateRangeT>
hyperexponential_distribution(ProbRangeT const& prob_range,

RateRangeT const& rate_range);

Constructs a hyperexponential distribution with phase probability vector parameter given by the range defined by prob_range,
and rate vector parameter given by the range defined by rate_range.

Note

As an implementation detail, this constructor uses Boost's enable_if/disable_if mechanism to disambiguate between
this and other 2-argument constructors. Refer to the source code for more details.

Parameters

• prob_range: the range of non-negative real elements representing the phase probabilities; elements are normalized to sum to
unity.

• rate_range: the range of positive real elements representing the rates.

Type Requirements

• ProbRangeT, RateRangeT: must meet the requirements of the Range concept: that includes native C++ arrays, standard library
containers, or a std::pair or iterators.
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Examples

// We could be using any standard library container here... vector, deque, array, list etc:
std::array<double, 2> phase_prob = { 0.5, 0.5 };
std::array<double, 2> rates = { 1.0 / 10, 1.0 / 12 };

hyperexponential he1(phase_prob, rates); // Construct from standard library container.

double phase_probs2[] = { 0.5, 0.5 };
double rates2[] = { 1.0 / 10, 1.0 / 12 };

hyperexponential he2(phase_probs2, rates2); // Construct from native C++ array.

Construction with rates-iterators (and all phase probabilities equal)

template <typename RateIterT, typename RateIterT2>
hyperexponential_distribution(RateIterT const& rate_first,

RateIterT2 const& rate_last);

Constructs a hyperexponential distribution with rate vector parameter given by the range defined by the [rate_first, rate_last)
iterator pair, and phase probability vector set to the equal phase probabilities (i.e., to a vector of the same length n of the rate vector
and with each element set to 1.0/n).

Note

As an implementation detail, this constructor uses Boost's enable_if/disable_if mechanism to disambiguate between
this and other 2-argument constructors. Refer to the source code for more details.

Parameters

• rate_first, rate_last: the range of positive elements representing the rates.

Type Requirements

• RateIterT, RateIterT2: must meet the requirements of the InputIterator concept.

Example

// We could be using any standard library container here... vector, deque, array, list etc:
std::array<double, 2> rates = { 1.0 / 10, 1.0 / 12 };

hyperexponential he(rates.begin(), rates.end());

assert(he.probabilities()[0] == 0.5); // Phase probabilities will be equal and normalised to unity.

Construction from a single range of rates (all phase probabilities will be equal)

template <typename RateRangeT>
hyperexponential_distribution(RateRangeT const& rate_range);

Constructs a hyperexponential distribution with rate vector parameter given by the range defined by rate_range, and phase
probability vector set to the equal phase probabilities (i.e., to a vector of the same length n of the rate vector and with each element
set to 1.0/n).
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Parameters

• rate_range: the range of positive real elements representing the rates.

Type Requirements

• RateRangeT: must meet the requirements of the Range concept: this includes native C++ array, standard library containers, and
a std::pair of iterators.

Examples

std::array<double, 2> rates = { 1.0 / 10, 1.0 / 12 };

hyperexponential he(rates);

assert(he.probabilities()[0] == 0.5); // Phase probabilities will be equal and normalised to unity.

Construction from Initializer lists

hyperexponential_distribution(std::initializer_list<RealType> l1, std::initializer_list<Real↵
Type> l2);

Constructs a hyperexponential distribution with phase probability vector parameter given by the brace-init-list defined by l1, and
rate vector parameter given by the brace-init-list defined by l2.

Parameters

• l1: the brace-init-list of non-negative real elements representing the phase probabilities; elements are normalized to sum to unity.

• l2: the brace-init-list of positive real elements representing the rates.

The number of elements of the phase probabilities list and the rates list must be the same.

Example

hyperexponential he = { { 0.5, 0.5 }, { 1.0 / 10, 1.0 / 12 } };

Construction from a single initializer list (all phase probabilities will be equal)

hyperexponential_distribution(std::initializer_list<RealType> l1);

Constructs a hyperexponential distribution with rate vector parameter given by the brace-init-list defined by l1, and phase probab-
ility vector set to the equal phase probabilities (i.e., to a vector of the same length n of the rate vector and with each element set to
1.0/n).

Parameters

• l1: the brace-init-list of non-negative real elements representing the phase probabilities; they are normalized to ensure that they
sum to unity.

Example

hyperexponential he = { 1.0 / 10, 1.0 / 12 };

assert(he.probabilities()[0] == 0.5);
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Accessors

std::size_t num_phases() const;

Gets the number of phases of this distribution (the size of both the rate and probability vectors).

Return Value

An non-negative integer number representing the number of phases of this distribution.

std::vector<RealType> probabilities() const;

Gets the phase probability vector parameter of this distribution.

Note

The returned probabilities are the normalized versions of the probability parameter values passed at construction
time.

Return Value

A vector of non-negative real numbers representing the phase probability vector parameter of this distribution.

std::vector<RealType> rates() const;

Gets the rate vector parameter of this distribution.

Return Value

A vector of positive real numbers representing the rate vector parameter of this distribution.

Warning

The return type of these functions is a vector-by-value. This is deliberate as we wish to hide the actual container
used internally which may be subject to future changes (for example to facilitate vectorization of the cdf code etc).
Users should note that some code that might otherwise have been expected to work does not. For example, an attempt
to output the (normalized) probabilities:

std::copy(he.probabilities().begin(), he.probabilities().end(), std::ostream_iterat↵
or<double>(std::cout, " "));

fails at compile or runtime because iterator types are incompatible, but, for example,

std::cout << he.probabilities()[0] << ' ' << he.probabilities()[1] << std::endl;

outputs the expected values.

In general if you want to access a member of the returned container, then assign to a variable first, and then access
those members:

std::vector<double> t = he.probabilities();
std::copy(t.begin(), t.end(), std::ostream_iterator<double>(std::cout, " "));
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Non-member Accessor Functions

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The formulae for calculating these are shown in the table below.

Accuracy

The hyperexponential distribution is implemented in terms of the Exponential Distribution and as such should have very small errors,
usually an epsilon or few.

Implementation

In the following table:

• α=(α1,...,αk) is the phase probability vector parameter of the k-phase hyperexponential distribution,

• λ=(λ1,...,λk) is the rate vector parameter of the k-phase hyperexponential distribution,

• x is the random variate.
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Implementation NotesFunction
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Hypergeometric Distribution

#include <boost/math/distributions/hypergeometric.hpp>

namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class hypergeometric_distribution;

template <class RealType, class Policy>
class hypergeometric_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;
// Construct:
hypergeometric_distribution(unsigned r, unsigned n, unsigned N);
// Accessors:
unsigned total()const;
unsigned defective()const;
unsigned sample_count()const;

};

typedef hypergeometric_distribution<> hypergeometric;

}} // namespaces

The hypergeometric distribution describes the number of "events" k from a sample n drawn from a total population N without re-
placement.

Imagine we have a sample of N objects of which r are "defective" and N-r are "not defective" (the terms "success/failure" or "red/blue"
are also used). If we sample n items without replacement then what is the probability that exactly k items in the sample are defective?
The answer is given by the pdf of the hypergeometric distribution f(k; r, n, N), whilst the probability of k defectives or fewer
is given by F(k; r, n, N), where F(k) is the CDF of the hypergeometric distribution.

Note

Unlike almost all of the other distributions in this library, the hypergeometric distribution is strictly discrete: it can
not be extended to real valued arguments of its parameters or random variable.
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The following graph shows how the distribution changes as the proportion of "defective" items changes, while keeping the population
and sample sizes constant:
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Note that since the distribution is symmetrical in parameters n and r, if we change the sample size and keep the population and pro-
portion "defective" the same then we obtain basically the same graphs:
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Member Functions

hypergeometric_distribution(unsigned r, unsigned n, unsigned N);

Constructs a hypergeometric distribution with a population of N objects, of which r are defective, and from which n are sampled.

unsigned total()const;
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Returns the total number of objects N.

unsigned defective()const;

Returns the number of objects r in population N which are defective.

unsigned sample_count()const;

Returns the number of objects n which are sampled from the population N.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is the unsigned integers in the range [max(0, n + r - N), min(n, r)]. A domain_error is raised if
the random variable is outside this range, or is not an integral value.

Caution

The quantile function will by default return an integer result that has been rounded outwards. That is to say lower
quantiles (where the probability is less than 0.5) are rounded downward, and upper quantiles (where the probability
is greater than 0.5) are rounded upwards. This behaviour ensures that if an X% quantile is requested, then at least
the requested coverage will be present in the central region, and no more than the requested coverage will be present
in the tails.

This behaviour can be changed so that the quantile functions are rounded differently using Policies. It is strongly
recommended that you read the tutorial Understanding Quantiles of Discrete Distributions before using the quantile
function on the Hypergeometric distribution. The reference docs describe how to change the rounding policy for
these distributions.

However, note that the implementation method of the quantile function always returns an integral value, therefore
attempting to use a Policy that requires (or produces) a real valued result will result in a compile time error.

Accuracy

For small N such that N < boost::math::max_factorial<RealType>::value then table based lookup of the results gives
an accuracy to a few epsilon. boost::math::max_factorial<RealType>::value is 170 at double or long double precision.

For larger N such that N < boost::math::prime(boost::math::max_prime) then only basic arithmetic is required for the
calculation and the accuracy is typically < 20 epsilon. This takes care of N up to 104729.

For N > boost::math::prime(boost::math::max_prime) then accuracy quickly degrades, with 5 or 6 decimal digits being
lost for N = 110000.

In general for very large N, the user should expect to lose log10N decimal digits of precision during the calculation, with the results
becoming meaningless for N >= 1015.

Testing

There are three sets of tests: our implementation is tested against a table of values produced by Mathematica's implementation of
this distribution. We also sanity check our implementation against some spot values computed using the online calculator here
http://stattrek.com/Tables/Hypergeometric.aspx. Finally we test accuracy against some high precision test data using this implement-
ation and NTL::RR.
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Implementation

The PDF can be calculated directly using the formula:

f (k; r, n, N) =
n !r !(N − n) !(N − r) !

N !k !(n − k) !(r − k) !(N − n − r + k) ! ; max(0,N − r − n + k) < = k < = min(r, n)

However, this can only be used directly when the largest of the factorials is guaranteed not to overflow the floating point represent-
ation used. This formula is used directly when N < max_factorial<RealType>::value in which case table lookup of the
factorials gives a rapid and accurate implementation method.

For larger N the method described in "An Accurate Computation of the Hypergeometric Distribution Function", Trong Wu, ACM
Transactions on Mathematical Software, Vol. 19, No. 1, March 1993, Pages 33-43 is used. The method relies on the fact that there
is an easy method for factorising a factorial into the product of prime numbers:

N ! = ∏
i=0

pi<N

pi
ei

Where pi is the i'th prime number, and ei is a small positive integer or zero, which can be calculated via:

ei = ∑
j=1

pi
j≤N

flοor (Npij)
Further we can combine the factorials in the expression for the PDF to yield the PDF directly as the product of prime numbers:

f (k; r, n, N) = ∏
i=0

pi<N

pi
ei

With this time the exponents ei being either positive, negative or zero. Indeed such a degree of cancellation occurs in the calculation
of the ei that many are zero, and typically most have a magnitude or no more than 1 or 2.

Calculation of the product of the primes requires some care to prevent numerical overflow, we use a novel recursive method which
splits the calculation into a series of sub-products, with a new sub-product started each time the next multiplication would cause
either overflow or underflow. The sub-products are stored in a linked list on the program stack, and combined in an order that will
guarantee no overflow or unnecessary-underflow once the last sub-product has been calculated.

This method can be used as long as N is smaller than the largest prime number we have stored in our table of primes (currently
104729). The method is relatively slow (calculating the exponents requires the most time), but requires only a small number of
arithmetic operations to calculate the result (indeed there is no shorter method involving only basic arithmetic once the exponents
have been found), the method is therefore much more accurate than the alternatives.

For much larger N, we can calculate the PDF from the factorials using either lgamma, or by directly combining lanczos approximations
to avoid calculating via logarithms. We use the latter method, as it is usually 1 or 2 decimal digits more accurate than computing via
logarithms with lgamma. However, in this area where N > 104729, the user should expect to lose around log10N decimal digits
during the calculation in the worst case.

The CDF and its complement is calculated by directly summing the PDF's. We start by deciding whether the CDF, or its complement,
is likely to be the smaller of the two and then calculate the PDF at k (or k+1 if we're calculating the complement) and calculate suc-
cessive PDF values via the recurrence relations:
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f (k + 1; r, n, N) = (n − k)(r − k)
(k + 1)(N − n − r + k + 1) f (k; r, n, N)

f (k − 1; r, n, N) = x(N − n − r + k)
(n − k + 1)(r − k + 1) f (k; r, n, N)

Until we either reach the end of the distributions domain, or the next PDF value to be summed would be too small to affect the result.

The quantile is calculated in a similar manner to the CDF: we first guess which end of the distribution we're nearer to, and then sum
PDFs starting from the end of the distribution this time, until we have some value k that gives the required CDF.

The median is simply the quantile at 0.5, and the remaining properties are calculated via:

mean = rn
N

mode = floor ( (r + 1)(n + 1)N + 2 )
variance =

r( nN )(1 − n
N )(N − r)

(N − 1)

skewness = (N − 2n) (N − 1)(N − 2r)
rn(N − n)(N − r)(N − 2)

kurtosis excess = ( N2(N − 1)
r(N − 2)(N − 3)(N − r))(N(N + 1) − 6N(N − r)

n(N − n) + 3r(N − r)(N + 6)

N2
− 6)

Inverse Chi Squared Distribution

#include <boost/math/distributions/inverse_chi_squared.hpp>

namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class inverse_chi_squared_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;

inverse_chi_squared_distribution(RealType df = 1); // Not explicitly scaled, default 1/df.
inverse_chi_squared_distribution(RealType df, RealType scale = 1/df); // Scaled.

RealType degrees_of_freedom()const; // Default 1.
RealType scale()const; // Optional scale [xi] (variance), default 1/degrees_of_freedom.

};

}} // namespace boost // namespace math

The inverse chi squared distribution is a continuous probability distribution of the reciprocal of a variable distributed according to
the chi squared distribution.

The sources below give confusingly different formulae using different symbols for the distribution pdf, but they are all the same, or
related by a change of variable, or choice of scale.

Two constructors are available to implement both the scaled and (implicitly) unscaled versions.

The main version has an explicit scale parameter which implements the scaled inverse chi_squared distribution.

A second version has an implicit scale = 1/degrees of freedom and gives the 1st definition in the Wikipedia inverse chi_squared
distribution. The 2nd Wikipedia inverse chi_squared distribution definition can be implemented by explicitly specifying a scale =
1.
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Both definitions are also available in Wolfram Mathematica and in The R Project for Statistical Computing (geoR) with default scale
= 1/degrees of freedom.

See

• Inverse chi_squared distribution http://en.wikipedia.org/wiki/Inverse-chi-square_distribution

• Scaled inverse chi_squared distributionhttp://en.wikipedia.org/wiki/Scaled-inverse-chi-square_distribution

• R inverse chi_squared distribution functions R

• Inverse chi_squared distribution functions Weisstein, Eric W. "Inverse Chi-Squared Distribution." From MathWorld--A Wolfram
Web Resource.

• Inverse chi_squared distribution reference Weisstein, Eric W. "Inverse Chi-Squared Distribution reference." From Wolfram
Mathematica.

The inverse_chi_squared distribution is used in Bayesian statistics: the scaled inverse chi-square is conjugate prior for the normal
distribution with known mean, model parameter σ² (variance).

See conjugate priors including a table of distributions and their priors.

See also Inverse Gamma Distribution and Chi Squared Distribution.

The inverse_chi_squared distribution is a special case of a inverse_gamma distribution with ν (degrees_of_freedom) shape (α) and
scale (β) where

 α= ν /2 and β = ½.

Note

This distribution does provide the typedef:

typedef inverse_chi_squared_distribution<double> inverse_chi_squared;

If you want a double precision inverse_chi_squared distribution you can use

boost::math::inverse_chi_squared_distribution<>

or you can write inverse_chi_squared my_invchisqr(2, 3);

For degrees of freedom parameter ν, the (unscaled) inverse chi_squared distribution is defined by the probability density function
(PDF):

 f(x;ν) = 2-ν/2 x-ν/2-1 e-1/2x / Γ(ν/2)

and Cumulative Density Function (CDF)

 F(x;ν) = Γ(ν/2, 1/2x) / Γ(ν/2)

For degrees of freedom parameter ν and scale parameter ξ, the scaled inverse chi_squared distribution is defined by the probability
density function (PDF):

 f(x;ν, ξ) = (ξν/2)ν/2 e-νξ/2x x-1-ν/2 / Γ(ν/2)

and Cumulative Density Function (CDF)

 F(x;ν, ξ) = Γ(ν/2, νξ/2x) / Γ(ν/2)
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The following graphs illustrate how the PDF and CDF of the inverse chi_squared distribution varies for a few values of parameters
ν and ξ:
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Member Functions

inverse_chi_squared_distribution(RealType df = 1); // Implicitly scaled 1/df.
inverse_chi_squared_distribution(RealType df = 1, RealType scale); // Explicitly scaled.

Constructs an inverse chi_squared distribution with ν degrees of freedom df, and scale scale with default value 1/df.

Requires that the degrees of freedom ν parameter is greater than zero, otherwise calls domain_error.

RealType degrees_of_freedom()const;
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Returns the degrees_of_freedom ν parameter of this distribution.

RealType scale()const;

Returns the scale ξ parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variate is [0,+∞].

Note

Unlike some definitions, this implementation supports a random variate equal to zero as a special case, returning
zero for both pdf and cdf.

Accuracy

The inverse gamma distribution is implemented in terms of the incomplete gamma functions like the Inverse Gamma Distribution
that use gamma_p and gamma_q and their inverses gamma_p_inv and gamma_q_inv: refer to the accuracy data for those functions
for more information. But in general, gamma (and thus inverse gamma) results are often accurate to a few epsilon, >14 decimal digits
accuracy for 64-bit double. unless iteration is involved, as for the estimation of degrees of freedom.

Implementation

In the following table ν is the degrees of freedom parameter and ξ is the scale parameter of the distribution, x is the random variate,
p is the probability and q = 1-p its complement. Parameters α for shape and β for scale are used for the inverse gamma function: α
= ν/2 and β = ν * ξ/2.
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Implementation NotesFunction

Using the relation: pdf = gamma_p_derivative(α, β/ x, β) / x *
x

pdf

Using the relation: p = gamma_q(α, β / x)cdf

Using the relation: q = gamma_p(α, β / x)cdf complement

Using the relation: x = β  / gamma_q_inv(α, p)quantile

Using the relation: x = α  / gamma_p_inv(α, q)quantile from the complement

ν * ξ / (ν + 2)mode

no closed form analytic equation is known, but is evaluated as
quantile(0.5)

median

νξ / (ν - 2) for ν > 2, else a domain_errormean

2 ν² ξ² / ((ν -2)² (ν -4)) for ν >4, else a domain_errorvariance

4 √2 √(ν-4) /(ν-6) for ν >6, else a domain_errorskewness

12 * (5ν - 22) / ((ν - 6) * (ν - 8)) for ν >8, else a domain_errorkurtosis_excess

3 + 12 * (5ν - 22) / ((ν - 6) * (ν-8)) for ν >8, else a domain_errorkurtosis

References

1. Bayesian Data Analysis, Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin, ISBN-13: 978-1584883883, Chapman
& Hall; 2 edition (29 July 2003).

2. Bayesian Computation with R, Jim Albert, ISBN-13: 978-0387922973, Springer; 2nd ed. edition (10 Jun 2009)

Inverse Gamma Distribution

#include <boost/math/distributions/inverse_gamma.hpp>

namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class inverse_gamma_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;

inverse_gamma_distribution(RealType shape, RealType scale = 1)

RealType shape()const;
RealType scale()const;

};

}} // namespaces
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The inverse_gamma distribution is a continuous probability distribution of the reciprocal of a variable distributed according to the
gamma distribution.

The inverse_gamma distribution is used in Bayesian statistics.

See inverse gamma distribution.

R inverse gamma distribution functions.

Wolfram inverse gamma distribution.

See also Gamma Distribution.

Note

In spite of potential confusion with the inverse gamma function, this distribution does provide the typedef:

typedef inverse_gamma_distribution<double> gamma;

If you want a double precision gamma distribution you can use

boost::math::inverse_gamma_distribution<>

or you can write inverse_gamma my_ig(2, 3);

For shape parameter α and scale parameter β, it is defined by the probability density function (PDF):

 f(x;α, β) = βα * (1/x) α+1 exp(-β/x) / Γ(α)

and cumulative density function (CDF)

 F(x;α, β) = Γ(α, β/x) / Γ(α)

The following graphs illustrate how the PDF and CDF of the inverse gamma distribution varies as the parameters vary:
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Member Functions

inverse_gamma_distribution(RealType shape = 1, RealType scale = 1);

Constructs an inverse gamma distribution with shape α and scale β.

Requires that the shape and scale parameters are greater than zero, otherwise calls domain_error.

RealType shape()const;

Returns the α shape parameter of this inverse gamma distribution.

RealType scale()const;

Returns the β scale parameter of this inverse gamma distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variate is [0,+∞].

Note

Unlike some definitions, this implementation supports a random variate equal to zero as a special case, returning
zero for pdf and cdf.

Accuracy

The inverse gamma distribution is implemented in terms of the incomplete gamma functions gamma_p and gamma_q and their inverses
gamma_p_inv and gamma_q_inv: refer to the accuracy data for those functions for more information. But in general, inverse_gamma
results are accurate to a few epsilon, >14 decimal digits accuracy for 64-bit double.
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Implementation

In the following table α is the shape parameter of the distribution, α   is its scale parameter, x is the random variate, p is the probab-
ility and q = 1-p.

Implementation NotesFunction

Using the relation: pdf = gamma_p_derivative(α, β/ x, β) / x *
x

pdf

Using the relation: p = gamma_q(α, β / x)cdf

Using the relation: q = gamma_p(α, β / x)cdf complement

Using the relation: x = β  / gamma_q_inv(α, p)quantile

Using the relation: x = α  / gamma_p_inv(α, q)quantile from the complement

β / (α + 1)mode

no analytic equation is known, but is evaluated as quantile(0.5)median

β / (α - 1) for α > 1, else a domain_errormean

(β * β) / ((α - 1) * (α - 1) * (α - 2)) for α >2, else a domain_errorvariance

4 * sqrt (α -2) / (α -3) for α >3, else a domain_errorskewness

(30 * α - 66) / ((α-3)*(α - 4)) for α >4, else a domain_errorkurtosis_excess

Inverse Gaussian (or Inverse Normal) Distribution

#include <boost/math/distributions/inverse_gaussian.hpp>

namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class inverse_gaussian_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;

inverse_gaussian_distribution(RealType mean = 1, RealType scale = 1);

RealType mean()const; // mean default 1.
RealType scale()const; // Optional scale, default 1 (unscaled).
RealType shape()const; // Shape = scale/mean.

};
typedef inverse_gaussian_distribution<double> inverse_gaussian;

}} // namespace boost // namespace math

The Inverse Gaussian distribution distribution is a continuous probability distribution.

The distribution is also called 'normal-inverse Gaussian distribution', and 'normal Inverse' distribution.
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It is also convenient to provide unity as default for both mean and scale. This is the Standard form for all distributions. The Inverse
Gaussian distribution was first studied in relation to Brownian motion. In 1956 M.C.K. Tweedie used the name Inverse Gaussian
because there is an inverse relationship between the time to cover a unit distance and distance covered in unit time. The inverse
Gaussian is one of family of distributions that have been called the Tweedie distributions.

(So inverse in the name may mislead: it does not relate to the inverse of a distribution).

The tails of the distribution decrease more slowly than the normal distribution. It is therefore suitable to model phenomena where
numerically large values are more probable than is the case for the normal distribution. For stock market returns and prices, a key
characteristic is that it models that extremely large variations from typical (crashes) can occur even when almost all (normal) variations
are small.

Examples are returns from financial assets and turbulent wind speeds.

The normal-inverse Gaussian distributions form a subclass of the generalised hyperbolic distributions.

See distribution. Weisstein, Eric W. "Inverse Gaussian Distribution." From MathWorld--A Wolfram Web Resource.

If you want a double precision inverse_gaussian distribution you can use

boost::math::inverse_gaussian_distribution<>

or, more conveniently, you can write

using boost::math::inverse_gaussian;
inverse_gaussian my_ig(2, 3);

For mean parameters μ and scale (also called precision) parameter λ, and random variate x, the inverse_gaussian distribution is
defined by the probability density function (PDF):

 f(x;μ, λ) = √(λ/2πx3) e-λ(x-μ)²/2μ²x

and Cumulative Density Function (CDF):

 F(x;μ, λ) = Φ{√(λx) (xμ-1)} + e2μ/λ Φ{-√(λ/μ) (1+x/μ)}

where Φ is the standard normal distribution CDF.

The following graphs illustrate how the PDF and CDF of the inverse_gaussian distribution varies for a few values of parameters μ
and λ:
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Tweedie also provided 3 other parameterisations where (μ and λ) are replaced by their ratio φ = λ/μ and by 1/μ: these forms may be
more suitable for Bayesian applications. These can be found on Seshadri, page 2 and are also discussed by Chhikara and Folks on
page 105. Another related parameterisation, the __wald_distrib (where mean μ is unity) is also provided.

Member Functions

inverse_gaussian_distribution(RealType df = 1, RealType scale = 1); // optionally scaled.

Constructs an inverse_gaussian distribution with μ mean, and scale λ, with both default values 1.

Requires that both the mean μ parameter and scale λ are greater than zero, otherwise calls domain_error.

RealType mean()const;
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Returns the mean μ parameter of this distribution.

RealType scale()const;

Returns the scale λ parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variate is [0,+∞).

Note

Unlike some definitions, this implementation supports a random variate equal to zero as a special case, returning
zero for both pdf and cdf.

Accuracy

The inverse_gaussian distribution is implemented in terms of the exponential function and standard normal distribution N0,1 Φ :
refer to the accuracy data for those functions for more information. But in general, gamma (and thus inverse gamma) results are often
accurate to a few epsilon, >14 decimal digits accuracy for 64-bit double.

Implementation

In the following table μ is the mean parameter and λ is the scale parameter of the inverse_gaussian distribution, x is the random
variate, p is the probability and q = 1-p its complement. Parameters μ for shape and λ for scale are used for the inverse gaussian
function.
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Implementation NotesFunction

√(λ/ 2πx3) e-λ(x - μ)²/ 2μ²xpdf

Φ{√(λx) (xμ-1)} + e2μ/λ Φ{-√(λ/μ) (1+x/μ)}cdf

using complement of Φ above.cdf complement

No closed form known. Estimated using a guess refined by
Newton-Raphson iteration.

quantile

No closed form known. Estimated using a guess refined by
Newton-Raphson iteration.

quantile from the complement

μ {√(1+9μ²/4λ²)² - 3μ/2λ}mode

No closed form analytic equation is known, but is evaluated as
quantile(0.5)

median

μmean

μ³/λvariance

3 √ (μ/λ)skewness

15μ/λkurtosis_excess

12μ/λkurtosis

References

1. Wald, A. (1947). Sequential analysis. Wiley, NY.

2. The Inverse Gaussian distribution : theory, methodology, and applications, Raj S. Chhikara, J. Leroy Folks. ISBN 0824779975
(1989).

3. The Inverse Gaussian distribution : statistical theory and applications, Seshadri, V , ISBN - 0387986189 (pbk) (Dewey 519.2)
(1998).

4. Numpy and Scipy Documentation.

5. R statmod invgauss functions.

6. R SuppDists invGauss functions. (Note that these R implementations names differ in case).

7. StatSci.org invgauss help.

8. invgauss R source.

9. pwald, qwald.

10. Brighton Webs wald.

Laplace Distribution

#include <boost/math/distributions/laplace.hpp>
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namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class laplace_distribution;

typedef laplace_distribution<> laplace;

template <class RealType, class Policy>
class laplace_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;
// Construct:
laplace_distribution(RealType location = 0, RealType scale = 1);
// Accessors:
RealType location()const;
RealType scale()const;

};

}} // namespaces

Laplace distribution is the distribution of differences between two independent variates with identical exponential distributions
(Abramowitz and Stegun 1972, p. 930). It is also called the double exponential distribution.

For location parameter μ   and scale parameter σ  , it is defined by the probability density function:

f (x; μ, σ) = 1
2σe

− |x−μ|σ

The location and scale parameters are equivalent to the mean and standard deviation of the normal or Gaussian distribution.

The following graph illustrates the effect of the parameters μ   and σ   on the PDF. Note that the domain of the random variable remains
[-∞,+∞] irrespective of the value of the location parameter:
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Member Functions

laplace_distribution(RealType location = 0, RealType scale = 1);

Constructs a laplace distribution with location location and scale scale.

The location parameter is the same as the mean of the random variate.

The scale parameter is proportional to the standard deviation of the random variate.

Requires that the scale parameter is greater than zero, otherwise calls domain_error.

RealType location()const;

Returns the location parameter of this distribution.

RealType scale()const;

Returns the scale parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [-∞,+∞].

Accuracy

The laplace distribution is implemented in terms of the standard library log and exp functions and as such should have very small
errors.

Implementation

In the following table μ is the location parameter of the distribution, σ is its scale parameter, x is the random variate, p is the probab-
ility and its complement q = 1-p.
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Implementation NotesFunction

Using the relation: pdf = e-abs(x-μ) / σ / (2 * σ)pdf

Using the relations:

x < μ : p = e(x-μ)/σ  / σ

x >= μ : p = 1 - e(μ-x)/σ  / σ

cdf

Using the relation:

-x < μ : q = e(-x-μ)/σ  / σ

-x >= μ : q = 1 - e(μ+x)/σ  / σ

cdf complement

Using the relations:

p < 0.5 : x = μ + σ * log(2*p)

p >= 0.5 : x = μ - σ * log(2-2*p)

quantile

Using the relation:

q > 0.5: x = μ + σ*log(2-2*q)

q <=0.5: x = μ - σ*log( 2*q )

quantile from the complement

μmean

2 * σ2variance

μmode

0skewness

6kurtosis

3kurtosis excess

References

• Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource.

• Laplace Distribution

• M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 1972, p. 930.

Logistic Distribution

#include <boost/math/distributions/logistic.hpp>
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namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class logistic_distribution;

template <class RealType, class Policy>
class logistic_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;
// Construct:
logistic_distribution(RealType location = 0, RealType scale = 1);
// Accessors:
RealType location()const; // location.
RealType scale()const; // scale.

};

typedef logistic_distribution<> logistic;

}} // namespaces

The logistic distribution is a continous probability distribution. It has two parameters - location and scale. The cumulative distribution
function of the logistic distribution appears in logistic regression and feedforward neural networks. Among other applications, United
State Chess Federation and FIDE use it to calculate chess ratings.

The following graph shows how the distribution changes as the parameters change:
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Member Functions

logistic_distribution(RealType u = 0, RealType s = 1);

Constructs a logistic distribution with location u and scale s.

Requires scale > 0, otherwise a domain_error is raised.
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RealType location()const;

Returns the location of this distribution.

RealType scale()const;

Returns the scale of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [-[max_value], +[min_value]]. However, the pdf and cdf support inputs of +∞ and -∞ as special
cases if RealType permits.

At p=1 and p=0, the quantile function returns the result of +overflow_error and -overflow_error, while the complement quantile
function returns the result of -overflow_error and +overflow_error respectively.

Accuracy

The logistic distribution is implemented in terms of the std::exp and the std::log functions, so its accuracy is related to the ac-
curate implementations of those functions on a given platform. When calculating the quantile with a non-zero position parameter
catastrophic cancellation errors can occur: in such cases, only a low absolute error can be guarenteed.

Implementation

Implementation NotesFunction

Using the relation: pdf = e-(x-u)/s / (s*(1+e-(x-u)/s)2)pdf

Using the relation: p = 1/(1+e-(x-u)/s)cdf

Using the relation: q = 1/(1+e(x-u)/s)cdf complement

Using the relation: x = u - s*log(1/p-1)quantile

Using the relation: x = u + s*log(p/1-p)quantile from the complement

umean

The same as the mean.mode

0skewness

6/5kurtosis excess

(π*s)2 / 3variance

Log Normal Distribution

#include <boost/math/distributions/lognormal.hpp>
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namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class lognormal_distribution;

typedef lognormal_distribution<> lognormal;

template <class RealType, class Policy>
class lognormal_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;
// Construct:
lognormal_distribution(RealType location = 0, RealType scale = 1);
// Accessors:
RealType location()const;
RealType scale()const;

};

}} // namespaces

The lognormal distribution is the distribution that arises when the logarithm of the random variable is normally distributed. A
lognormal distribution results when the variable is the product of a large number of independent, identically-distributed variables.

For location and scale parameters m and s it is defined by the probability density function:

f (x) = 1
xs 2π e

−(lnx−m)2

2s2

The location and scale parameters are equivalent to the mean and standard deviation of the logarithm of the random variable.

The following graph illustrates the effect of the location parameter on the PDF, note that the range of the random variable remains
[0,+∞] irrespective of the value of the location parameter:
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The next graph illustrates the effect of the scale parameter on the PDF:
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Member Functions

lognormal_distribution(RealType location = 0, RealType scale = 1);

Constructs a lognormal distribution with location location and scale scale.

The location parameter is the same as the mean of the logarithm of the random variate.

The scale parameter is the same as the standard deviation of the logarithm of the random variate.

Requires that the scale parameter is greater than zero, otherwise calls domain_error.

RealType location()const;

Returns the location parameter of this distribution.

RealType scale()const;

Returns the scale parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [0,+∞].

Accuracy

The lognormal distribution is implemented in terms of the standard library log and exp functions, plus the error function, and as such
should have very low error rates.
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Implementation

In the following table m is the location parameter of the distribution, s is its scale parameter, x is the random variate, p is the probab-
ility and q = 1-p.

Implementation NotesFunction

Using the relation: pdf = e-(ln(x) - m)2  / 2s2 

 / (x * s * sqrt(2pi))pdf

Using the relation: p = cdf(normal_distribtion<RealType>(m,
s), log(x))

cdf

Using the relation: q = cdf(complement(normal_distribtion<Re-
alType>(m, s), log(x)))

cdf complement

Using the relation: x = exp(quantile(normal_distribtion<Real-
Type>(m, s), p))

quantile

Using the relation: x = exp(quantile(complement(normal_dis-
tribtion<RealType>(m, s), q)))

quantile from the complement

em + s2  / 2mean

(es2

 - 1) * e2m + s2

variance

em + s2

mode

sqrt(es2

 - 1) * (2 + es2

)skewness

e4s2

 + 2e3s2

 + 3e2s2

 - 3kurtosis

e4s2

 + 2e3s2

 + 3e2s2

 - 6kurtosis excess

Negative Binomial Distribution

#include <boost/math/distributions/negative_binomial.hpp>
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namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class negative_binomial_distribution;

typedef negative_binomial_distribution<> negative_binomial;

template <class RealType, class Policy>
class negative_binomial_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;
// Constructor from successes and success_fraction:
negative_binomial_distribution(RealType r, RealType p);

// Parameter accessors:
RealType success_fraction() const;
RealType successes() const;

// Bounds on success fraction:
static RealType find_lower_bound_on_p(

RealType trials,
RealType successes,
RealType probability); // alpha

static RealType find_upper_bound_on_p(
RealType trials,
RealType successes,
RealType probability); // alpha

// Estimate min/max number of trials:
static RealType find_minimum_number_of_trials(

RealType k, // Number of failures.
RealType p, // Success fraction.
RealType probability); // Probability threshold alpha.

static RealType find_maximum_number_of_trials(
RealType k, // Number of failures.
RealType p, // Success fraction.
RealType probability); // Probability threshold alpha.

};

}} // namespaces

The class type negative_binomial_distribution represents a negative_binomial distribution: it is used when there are exactly
two mutually exclusive outcomes of a Bernoulli trial: these outcomes are labelled "success" and "failure".

For k + r Bernoulli trials each with success fraction p, the negative_binomial distribution gives the probability of observing k failures
and r successes with success on the last trial. The negative_binomial distribution assumes that success_fraction p is fixed for all (k
+ r) trials.

Note

The random variable for the negative binomial distribution is the number of trials, (the number of successes is a
fixed property of the distribution) whereas for the binomial, the random variable is the number of successes, for a
fixed number of trials.

It has the PDF:
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f (k; r, p) =
Γ(r + k)
k !Γ(r) pr(1 − p)k

The following graph illustrate how the PDF varies as the success fraction p changes:
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Alternatively, this graph shows how the shape of the PDF varies as the number of successes changes:
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Related Distributions

The name negative binomial distribution is reserved by some to the case where the successes parameter r is an integer. This integer
version is also called the Pascal distribution.

This implementation uses real numbers for the computation throughout (because it uses the real-valued incomplete beta function
family of functions). This real-valued version is also called the Polya Distribution.
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The Poisson distribution is a generalization of the Pascal distribution, where the success parameter r is an integer: to obtain the Pascal
distribution you must ensure that an integer value is provided for r, and take integer values (floor or ceiling) from functions that return
a number of successes.

For large values of r (successes), the negative binomial distribution converges to the Poisson distribution.

The geometric distribution is a special case where the successes parameter r = 1, so only a first and only success is required. geomet-
ric(p) = negative_binomial(1, p).

The Poisson distribution is a special case for large successes

poisson(λ) = lim r → ∞   negative_binomial(r, r / (λ + r)))

Caution

The Negative Binomial distribution is a discrete distribution: internally, functions like the cdf and pdf are treated
"as if" they are continuous functions, but in reality the results returned from these functions only have meaning if
an integer value is provided for the random variate argument.

The quantile function will by default return an integer result that has been rounded outwards. That is to say lower
quantiles (where the probability is less than 0.5) are rounded downward, and upper quantiles (where the probability
is greater than 0.5) are rounded upwards. This behaviour ensures that if an X% quantile is requested, then at least
the requested coverage will be present in the central region, and no more than the requested coverage will be present
in the tails.

This behaviour can be changed so that the quantile functions are rounded differently, or even return a real-valued
result using Policies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete
Distributions before using the quantile function on the Negative Binomial distribution. The reference docs describe
how to change the rounding policy for these distributions.

Member Functions

Construct

negative_binomial_distribution(RealType r, RealType p);

Constructor: r is the total number of successes, p is the probability of success of a single trial.

Requires: r > 0 and 0 <= p <= 1.

Accessors

RealType success_fraction() const; // successes / trials (0 <= p <= 1)

Returns the parameter p from which this distribution was constructed.

RealType successes() const; // required successes (r > 0)

Returns the parameter r from which this distribution was constructed.

The best method of calculation for the following functions is disputed: see Binomial Distribution for more discussion.
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Lower Bound on Parameter p

static RealType find_lower_bound_on_p(
RealType failures,
RealType successes,
RealType probability) // (0 <= alpha <= 1), 0.05 equivalent to 95% confidence.

Returns a lower bound on the success fraction:

failures The total number of failures before the rth success.

successes The number of successes required.

alpha The largest acceptable probability that the true value of the success fraction is less than the value returned.

For example, if you observe k failures and r successes from n = k + r trials the best estimate for the success fraction is simply r/n,
but if you want to be 95% sure that the true value is greater than some value, pmin, then:

pmin = negative_binomial_distribution<RealType>::find_lower_bound_on_p(
failures, successes, 0.05);

See negative binomial confidence interval example.

This function uses the Clopper-Pearson method of computing the lower bound on the success fraction, whilst many texts refer to
this method as giving an "exact" result in practice it produces an interval that guarantees at least the coverage required, and may
produce pessimistic estimates for some combinations of failures and successes. See:

Yong Cai and K. Krishnamoorthy, A Simple Improved Inferential Method for Some Discrete Distributions. Computational statistics
and data analysis, 2005, vol. 48, no3, 605-621.

Upper Bound on Parameter p

static RealType find_upper_bound_on_p(
RealType trials,
RealType successes,
RealType alpha); // (0 <= alpha <= 1), 0.05 equivalent to 95% confidence.

Returns an upper bound on the success fraction:

trials The total number of trials conducted.

successes The number of successes that occurred.

alpha The largest acceptable probability that the true value of the success fraction is greater than the value returned.

For example, if you observe k successes from n trials the best estimate for the success fraction is simply k/n, but if you want to be
95% sure that the true value is less than some value, pmax, then:

pmax = negative_binomial_distribution<RealType>::find_upper_bound_on_p(
r, k, 0.05);

See negative binomial confidence interval example.

This function uses the Clopper-Pearson method of computing the lower bound on the success fraction, whilst many texts refer to
this method as giving an "exact" result in practice it produces an interval that guarantees at least the coverage required, and may
produce pessimistic estimates for some combinations of failures and successes. See:
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Yong Cai and K. Krishnamoorthy, A Simple Improved Inferential Method for Some Discrete Distributions. Computational statistics
and data analysis, 2005, vol. 48, no3, 605-621.

Estimating Number of Trials to Ensure at Least a Certain Number of Failures

static RealType find_minimum_number_of_trials(
RealType k, // number of failures.
RealType p, // success fraction.
RealType alpha); // probability threshold (0.05 equivalent to 95%).

This functions estimates the number of trials required to achieve a certain probability that more than k failures will be observed.

k The target number of failures to be observed.

p The probability of success for each trial.

alpha The maximum acceptable risk that only k failures or fewer will be observed.

For example:

negative_binomial_distribution<RealType>::find_minimum_number_of_trials(10, 0.5, 0.05);

Returns the smallest number of trials we must conduct to be 95% sure of seeing 10 failures that occur with frequency one half.

Worked Example.

This function uses numeric inversion of the negative binomial distribution to obtain the result: another interpretation of the result,
is that it finds the number of trials (success+failures) that will lead to an alpha probability of observing k failures or fewer.

Estimating Number of Trials to Ensure a Maximum Number of Failures or Less

static RealType find_maximum_number_of_trials(
RealType k, // number of failures.
RealType p, // success fraction.
RealType alpha); // probability threshold (0.05 equivalent to 95%).

This functions estimates the maximum number of trials we can conduct and achieve a certain probability that k failures or fewer
will be observed.

k The maximum number of failures to be observed.

p The probability of success for each trial.

alpha The maximum acceptable risk that more than k failures will be observed.

For example:

negative_binomial_distribution<RealType>::find_maximum_number_of_trials(0, 1.0-1.0/1000000, 0.05);

Returns the largest number of trials we can conduct and still be 95% sure of seeing no failures that occur with frequency one in one
million.

This function uses numeric inversion of the negative binomial distribution to obtain the result: another interpretation of the result,
is that it finds the number of trials (success+failures) that will lead to an alpha probability of observing more than k failures.
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Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

However it's worth taking a moment to define what these actually mean in the context of this distribution:

Table 17. Meaning of the non-member accessors.

MeaningFunction

The probability of obtaining exactly k failures from k+r trials
with success fraction p. For example:

pdf(negative_binomial(r, p), k)

Probability Density Function

The probability of obtaining k failures or fewer from k+r trials
with success fraction p and success on the last trial. For example:

cdf(negative_binomial(r, p), k)

Cumulative Distribution Function

The probability of obtaining more than k failures from k+r
trials with success fraction p and success on the last trial. For
example:

cdf(complement(negative_binomial(r, p), k))

Complement of the Cumulative Distribution Function

The greatest number of failures k expected to be observed from
k+r trials with success fraction p, at probability P. Note that the
value returned is a real-number, and not an integer. Depending
on the use case you may want to take either the floor or ceiling
of the real result. For example:

quantile(negative_binomial(r, p), P)

Quantile

The smallest number of failures k expected to be observed from
k+r trials with success fraction p, at probability P. Note that the
value returned is a real-number, and not an integer. Depending
on the use case you may want to take either the floor or ceiling
of the real result. For example:

quantile(complement(negative_binomi↵
al(r, p), P))

Quantile from the complement of the probability

Accuracy

This distribution is implemented using the incomplete beta functions ibeta and ibetac: please refer to these functions for information
on accuracy.
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Implementation

In the following table, p is the probability that any one trial will be successful (the success fraction), r is the number of successes, k
is the number of failures, p is the probability and q = 1-p.

Implementation NotesFunction

pdf = exp(lgamma(r + k) - lgamma(r) - lgamma(k+1)) * pow(p,
r) * pow((1-p), k)

Implementation is in terms of ibeta_derivative:

(p/(r + k)) * ibeta_derivative(r, static_cast<RealType>(k+1), p)
The function ibeta_derivative is used here, since it has already
been optimised for the lowest possible error - indeed this is
really just a thin wrapper around part of the internals of the in-
complete beta function.

pdf

Using the relation:

cdf = Ip(r, k+1) = ibeta(r, k+1, p)

= ibeta(r, static_cast<RealType>(k+1), p)

cdf

Using the relation:

1 - cdf = Ip(k+1, r)

= ibetac(r, static_cast<RealType>(k+1), p)

cdf complement

ibeta_invb(r, p, P) - 1quantile

ibetac_invb(r, p, Q) -1)quantile from the complement

r(1-p)/pmean

r (1-p) / p * pvariance

floor((r-1) * (1 - p)/p)mode

(2 - p) / sqrt(r * (1 - p))skewness

6 / r + (p * p) / r * (1 - p )kurtosis

6 / r + (p * p) / r * (1 - p ) -3kurtosis excess

parameter estimation member functions

ibeta_inv(successes, failures + 1, alpha)find_lower_bound_on_p

ibetac_inv(successes, failures, alpha) plus see comments in code.find_upper_bound_on_p

ibeta_inva(k + 1, p, alpha)find_minimum_number_of_trials

ibetac_inva(k + 1, p, alpha)find_maximum_number_of_trials

Implementation notes:
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• The real concept type (that deliberately lacks the Lanczos approximation), was found to take several minutes to evaluate some
extreme test values, so the test has been disabled for this type.

• Much greater speed, and perhaps greater accuracy, might be achieved for extreme values by using a normal approximation. This
is NOT been tested or implemented.

Noncentral Beta Distribution

#include <boost/math/distributions/non_central_beta.hpp>

namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class non_central_beta_distribution;

typedef non_central_beta_distribution<> non_central_beta;

template <class RealType, class Policy>
class non_central_beta_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;

// Constructor:
non_central_beta_distribution(RealType alpha, RealType beta, RealType lambda);

// Accessor to shape parameters:
RealType alpha()const;
RealType beta()const;

// Accessor to non-centrality parameter lambda:
RealType non_centrality()const;

};

}} // namespaces

The noncentral beta distribution is a generalization of the Beta Distribution.

It is defined as the ratio X = χm
2(λ) / (χm

2(λ) + χn
2) where χm

2(λ) is a noncentral χ2 random variable with m degrees of freedom,
and χn

2 is a central χ2 random variable with n degrees of freedom.

This gives a PDF that can be expressed as a Poisson mixture of beta distribution PDFs:

f (x; α, β; λ) = ∑
i=0

∞

P(i; λ2)I x′ (α + i, β)
where P(i;λ/2) is the discrete Poisson probablity at i, with mean λ/2, and Ix

'(α, β) is the derivative of the incomplete beta function.
This leads to the usual form of the CDF as:

F(x; α, β; λ) = ∑
i=0

∞

P(i; λ2)I x(α + i, β)
The following graph illustrates how the distribution changes for different values of λ:
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Non Central Beta PDF

Member Functions

non_central_beta_distribution(RealType a, RealType b, RealType lambda);

Constructs a noncentral beta distribution with shape parameters a and b and non-centrality parameter lambda.

Requires a > 0, b > 0 and lambda >= 0, otherwise calls domain_error.

RealType alpha()const;

Returns the parameter a from which this object was constructed.

RealType beta()const;

Returns the parameter b from which this object was constructed.

RealType non_centrality()const;

Returns the parameter lambda from which this object was constructed.

Non-member Accessors

Most of the usual non-member accessor functions are supported: Cumulative Distribution Function, Probability Density Function,
Quantile, mean, variance, standard deviation, median, mode, Hazard Function, Cumulative Hazard Function, range and support.

Mean and variance are implemented using hypergeometric pfq functions and relations given in Wolfram Noncentral Beta Distribution.

However, the following are not currently implemented: skewness, kurtosis and kurtosis_excess.

The domain of the random variable is [0, 1].

Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types. No
comparison to the R-2.5.1 Math library, or to the FORTRAN implementations of AS226 or AS310 are given since these appear to
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only guarantee absolute error: this would causes our test harness to assign an "infinite" error to these libraries for some of our test
values when measuring relative error. Unless otherwise specified any floating-point type that is narrower than the one shown will
have effectively zero error.

Table 18. Errors In CDF of the Noncentral Beta

α,β,λ > 200α, β,λ < 200Platform and CompilerSignificand Size

Peak=8670 Mean=1040Peak=620 Mean=22Win32, Visual C++ 853

Peak=2.5x104 Mean=4000Peak=825 Mean=50RedHat Linux IA32, gcc-4.1.164

Peak=1.7x104 Mean=2500Peak=825 Mean=30Redhat Linux IA64, gcc-3.4.464

Peak=9200 Mean=1200Peak=420 Mean=50HPUX IA64, aCC A.06.06113

Error rates for the PDF, the complement of the CDF and for the quantile functions are broadly similar.

Tests

There are two sets of test data used to verify this implementation: firstly we can compare with a few sample values generated by the
R library. Secondly, we have tables of test data, computed with this implementation and using interval arithmetic - this data should
be accurate to at least 50 decimal digits - and is the used for our accuracy tests.

Implementation

The CDF and its complement are evaluated as follows:

First we determine which of the two values (the CDF or its complement) is likely to be the smaller, the crossover point is taken to
be the mean of the distribution: for this we use the approximation due to: R. Chattamvelli and R. Shanmugam, "Algorithm AS 310:
Computing the Non-Central Beta Distribution Function", Applied Statistics, Vol. 46, No. 1. (1997), pp. 146-156.

E(X ) ≃ 1 − ( βC )(1 + λ
2C2) ; C = α + β + λ

2

Then either the CDF or its complement is computed using the relations:

F(x; α, β; λ) = ∑i=0

∞
P(i; λ

2)I x(α + i, β)
1 − F(x; α, β; λ) = ∑i=0

∞
P(i; λ

2)(1 − I x(α + i, β))

The summation is performed by starting at i = λ/2, and then recursing in both directions, using the usual recurrence relations for the
Poisson PDF and incomplete beta functions. This is the "Method 2" described by:

Denise Benton and K. Krishnamoorthy, "Computing discrete mixtures of continuous distributions: noncentral chisquare, noncentral
t and the distribution of the square of the sample multiple correlation coefficient", Computational Statistics & Data Analysis 43
(2003) 249-267.

Specific applications of the above formulae to the noncentral beta distribution can be found in:

Russell V. Lenth, "Algorithm AS 226: Computing Noncentral Beta Probabilities", Applied Statistics, Vol. 36, No. 2. (1987), pp.
241-244.

H. Frick, "Algorithm AS R84: A Remark on Algorithm AS 226: Computing Non-Central Beta Probabilities", Applied Statistics,
Vol. 39, No. 2. (1990), pp. 311-312.

Ming Long Lam, "Remark AS R95: A Remark on Algorithm AS 226: Computing Non-Central Beta Probabilities", Applied Statistics,
Vol. 44, No. 4. (1995), pp. 551-552.
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Harry O. Posten, "An Effective Algorithm for the Noncentral Beta Distribution Function", The American Statistician, Vol. 47, No.
2. (May, 1993), pp. 129-131.

R. Chattamvelli, "A Note on the Noncentral Beta Distribution Function", The American Statistician, Vol. 49, No. 2. (May, 1995),
pp. 231-234.

Of these, the Posten reference provides the most complete overview, and includes the modification starting iteration at λ/2.

The main difference between this implementation and the above references is the direct computation of the complement when most
efficient to do so, and the accumulation of the sum to -1 rather than subtracting the result from 1 at the end: this can substantially
reduce the number of iterations required when the result is near 1.

The PDF is computed using the methodology of Benton and Krishnamoorthy and the relation:

f (x; α, β; λ) = ∑
i=0

∞

P(i; λ2)I x′ (α + i, β)
Quantiles are computed using a specially modified version of bracket and solve, starting the search for the root at the mean of the
distribution. (A Cornish-Fisher type expansion was also tried, but while this gets quite close to the root in many cases, when it is
wrong it tends to introduce quite pathological behaviour: more investigation in this area is probably warranted).

Noncentral Chi-Squared Distribution

#include <boost/math/distributions/non_central_chi_squared.hpp>
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namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class non_central_chi_squared_distribution;

typedef non_central_chi_squared_distribution<> non_central_chi_squared;

template <class RealType, class Policy>
class non_central_chi_squared_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;

// Constructor:
non_central_chi_squared_distribution(RealType v, RealType lambda);

// Accessor to degrees of freedom parameter v:
RealType degrees_of_freedom()const;

// Accessor to non centrality parameter lambda:
RealType non_centrality()const;

// Parameter finders:
static RealType find_degrees_of_freedom(RealType lambda, RealType x, RealType p);
template <class A, class B, class C>
static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c);

static RealType find_non_centrality(RealType v, RealType x, RealType p);
template <class A, class B, class C>
static RealType find_non_centrality(const complemented3_type<A,B,C>& c);

};

}} // namespaces

The noncentral chi-squared distribution is a generalization of the Chi Squared Distribution. If Xi are ν independent, normally distributed
random variables with means μi and variances σi

2, then the random variable

∑
i=1

k

( χiσi )
2

is distributed according to the noncentral chi-squared distribution.

The noncentral chi-squared distribution has two parameters: ν which specifies the number of degrees of freedom (i.e. the number
of Xi), and λ which is related to the mean of the random variables Xi by:

λ = ∑
i=1

k

(μiσi )
2

(Note that some references define λ as one half of the above sum).

This leads to a PDF of:

f (x; ν, λ) = ∑
i=0

∞

e
(− λ2)( λ2)i
i ! f (x; ν + 2i) = 1

2e
[− (x+λ)2 ](xλ )(

ν
4−

1
2)I (k2−1)

( λx )
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where f(x;k) is the central chi-squared distribution PDF, and Iv(x) is a modified Bessel function of the first kind.

The following graph illustrates how the distribution changes for different values of λ:
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Non Central Chi Squared PDF

Member Functions

non_central_chi_squared_distribution(RealType v, RealType lambda);

Constructs a Chi-Squared distribution with v degrees of freedom and non-centrality parameter lambda.

Requires v > 0 and lambda >= 0, otherwise calls domain_error.

RealType degrees_of_freedom()const;

Returns the parameter v from which this object was constructed.

RealType non_centrality()const;

Returns the parameter lambda from which this object was constructed.

static RealType find_degrees_of_freedom(RealType lambda, RealType x, RealType p);

This function returns the number of degrees of freedom v such that: cdf(non_central_chi_squared<RealType, Policy>(v,

lambda), x) == p

template <class A, class B, class C>
static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c);

When called with argument boost::math::complement(lambda, x, q) this function returns the number of degrees of freedom
v such that:

cdf(complement(non_central_chi_squared<RealType, Policy>(v, lambda), x)) == q.

static RealType find_non_centrality(RealType v, RealType x, RealType p);
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This function returns the non centrality parameter lambda such that:

cdf(non_central_chi_squared<RealType, Policy>(v, lambda), x) == p

template <class A, class B, class C>
static RealType find_non_centrality(const complemented3_type<A,B,C>& c);

When called with argument boost::math::complement(v, x, q) this function returns the non centrality parameter lambda
such that:

cdf(complement(non_central_chi_squared<RealType, Policy>(v, lambda), x)) == q.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [0, +∞].

Examples

There is a worked example for the noncentral chi-squared distribution.

Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating-point types, along
with comparisons to the R-2.5.1 Math library. Unless otherwise specified, any floating-point type that is narrower than the one shown
will have effectively zero error.

Table 19. Errors In CDF of the Noncentral Chi-Squared

ν,λ > 200ν,λ < 200Platform and CompilerSignificand Size

Peak=9780 Mean=718

R Peak=3x108 Mean=2x107

Peak=50 Mean=9.9

R Peak=685 Mean=109

Win32, Visual C++ 853

Peak=7900 Mean=900Peak=270 Mean=27RedHat Linux IA32, gcc-4.1.164

Peak=5000 Mean=630Peak=107 Mean=17Redhat Linux IA64, gcc-3.4.464

Peak=4600 Mean=560Peak=270 Mean=20HPUX IA64, aCC A.06.06113

Error rates for the complement of the CDF and for the quantile functions are broadly similar. Special mention should go to the mode
function: there is no closed form for this function, so it is evaluated numerically by finding the maxima of the PDF: in principal this
can not produce an accuracy greater than the square root of the machine epsilon.

Tests

There are two sets of test data used to verify this implementation: firstly we can compare with published data, for example with
Table 6 of "Self-Validating Computations of Probabilities for Selected Central and Noncentral Univariate Probability Functions",
Morgan C. Wang and William J. Kennedy, Journal of the American Statistical Association, Vol. 89, No. 427. (Sep., 1994), pp. 878-
887. Secondly, we have tables of test data, computed with this implementation and using interval arithmetic - this data should be
accurate to at least 50 decimal digits - and is the used for our accuracy tests.
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Implementation

The CDF and its complement are evaluated as follows:

First we determine which of the two values (the CDF or its complement) is likely to be the smaller: for this we can use the relation
due to Temme (see "Asymptotic and Numerical Aspects of the Noncentral Chi-Square Distribution", N. M. Temme, Computers
Math. Applic. Vol 25, No. 5, 55-63, 1993) that:

F(ν,λ;ν+λ) ≈ 0.5

and so compute the CDF when the random variable is less than ν+λ, and its complement when the random variable is greater than
ν+λ. If necessary the computed result is then subtracted from 1 to give the desired result (the CDF or its complement).

For small values of the non centrality parameter, the CDF is computed using the method of Ding (see "Algorithm AS 275: Computing
the Non-Central #2 Distribution Function", Cherng G. Ding, Applied Statistics, Vol. 41, No. 2. (1992), pp. 478-482). This uses the
following series representation:

P(x; ν, λ) = ∑i=0
∞ siti

s0 = u0 = e
− λ2, si = si−1 + ui, ui = ui−1

λ
2i

t0 =
1

Γ(ν2 + 1)
( x2)

ν
2e

− x2, ti = ti−1
x

ν + 2i

which requires just one call to gamma_p_derivative with the subsequent terms being computed by recursion as shown above.

For larger values of the non-centrality parameter, Ding's method can take an unreasonable number of terms before convergence is
achieved. Furthermore, the largest term is not the first term, so in extreme cases the first term may be zero, leading to a zero result,
even though the true value may be non-zero.

Therefore, when the non-centrality parameter is greater than 200, the method due to Krishnamoorthy (see "Computing discrete
mixtures of continuous distributions: noncentral chisquare, noncentral t and the distribution of the square of the sample multiple
correlation coefficient", Denise Benton and K. Krishnamoorthy, Computational Statistics & Data Analysis, 43, (2003), 249-267) is
used.

This method uses the well known sum:

P(x; ν, λ) = ∑
i=0

∞

e
− λ2( λ2)i
i ! Px

2
(ν2 + i)

Where Pa(x) is the incomplete gamma function.

The method starts at the λth term, which is where the Poisson weighting function achieves its maximum value, although this is not
necessarily the largest overall term. Subsequent terms are calculated via the normal recurrence relations for the incomplete gamma
function, and iteration proceeds both forwards and backwards until sufficient precision has been achieved. It should be noted that
recurrence in the forwards direction of Pa(x) is numerically unstable. However, since we always start after the largest term in the
series, numeric instability is introduced more slowly than the series converges.

Computation of the complement of the CDF uses an extension of Krishnamoorthy's method, given that:

1 − P(x; ν, λ) = ∑
i=0

∞

e
− λ2( λ2)i
i ! Qx

2
(ν2 + i)
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we can again start at the λ'th term and proceed in both directions from there until the required precision is achieved. This time it is
backwards recursion on the incomplete gamma function Qa(x) which is unstable. However, as long as we start well before the largest
term, this is not an issue in practice.

The PDF is computed directly using the relation:

f (x; ν, λ) = ∑
i=0

∞

e
(− λ2)( λ2)i
i ! f (x; ν + 2i) = 1

2e
[− (x+λ)2 ](xλ )(

ν
4−

1
2)I (k2−1)

( λx )

Where f(x; v) is the PDF of the central Chi Squared Distribution and Iv(x) is a modified Bessel function, see cyl_bessel_i. For small
values of the non-centrality parameter the relation in terms of cyl_bessel_i is used. However, this method fails for large values of
the non-centrality parameter, so in that case the infinite sum is evaluated using the method of Benton and Krishnamoorthy, and the
usual recurrence relations for successive terms.

The quantile functions are computed by numeric inversion of the CDF.

There is no closed form for the mode of the noncentral chi-squared distribution: it is computed numerically by finding the maximum
of the PDF. Likewise, the median is computed numerically via the quantile.

The remaining non-member functions use the following formulas:

mean = ν + λ
variance = 2(ν + 2λ)

skewness = 2
3
2(ν + 3λ)

(ν + 2λ)
3
2

Some analytic properties of noncentral distributions (particularly unimodality, and monotonicity of their modes) are surveyed and
summarized by:

Andrea van Aubel & Wolfgang Gawronski, Applied Mathematics and Computation, 141 (2003) 3-12.

Noncentral F Distribution

#include <boost/math/distributions/non_central_f.hpp>
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namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class non_central_f_distribution;

typedef non_central_f_distribution<> non_central_f;

template <class RealType, class Policy>
class non_central_f_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;

// Constructor:
non_central_f_distribution(RealType v1, RealType v2, RealType lambda);

// Accessor to degrees_of_freedom parameters v1 & v2:
RealType degrees_of_freedom1()const;
RealType degrees_of_freedom2()const;

// Accessor to non-centrality parameter lambda:
RealType non_centrality()const;

};

}} // namespaces

The noncentral F distribution is a generalization of the Fisher F Distribution. It is defined as the ratio

F = (X/v1) / (Y/v2)

where X is a noncentral χ2 random variable with v1 degrees of freedom and non-centrality parameter λ, and Y is a central χ2 random
variable with v2 degrees of freedom.

This gives the following PDF:

f (x; ν1, ν2; λ) = e
− λ2+

(λν1x)
(2(ν2+ν1x))ν1

ν1
2 ν2

ν2
2 x

ν1
2 −1(ν2 + ν1x)

−
(ν1+ν2)

2
Γ(12ν1)Γ(1 + 1

2ν2)Lν2
2

ν1
2 −1(− λν1x

2(ν2 + ν1x))
B(12ν1, 1

2ν2)Γ(12(ν1 + ν2))
where La

b(c) is a generalised Laguerre polynomial and B(a,b) is the beta function, or

f (x; ν1, ν2; λ) = ∑
k=0

∞

e
− λ2( λ2)k

B( ν22, ν12 + k)k !(
ν1
ν2)(

ν1
2 +k)( ν2

ν2 + ν1x)(
ν1+ν2
2 +k)

x
(ν12 +k−1)

The following graph illustrates how the distribution changes for different values of λ:
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Non Central F PDF

Member Functions

non_central_f_distribution(RealType v1, RealType v2, RealType lambda);

Constructs a non-central beta distribution with parameters v1 and v2 and non-centrality parameter lambda.

Requires v1 > 0, v2 > 0 and lambda >= 0, otherwise calls domain_error.

RealType degrees_of_freedom1()const;

Returns the parameter v1 from which this object was constructed.

RealType degrees_of_freedom2()const;

Returns the parameter v2 from which this object was constructed.

RealType non_centrality()const;

Returns the non-centrality parameter lambda from which this object was constructed.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [0, +∞].

Accuracy

This distribution is implemented in terms of the Noncentral Beta Distribution: refer to that distribution for accuracy data.

323

Statistical Distributions and Functions

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Tests

Since this distribution is implemented by adapting another distribution, the tests consist of basic sanity checks computed by the R-
2.5.1 Math library statistical package and its pbeta and dbeta functions.

Implementation

In the following table v1 and v2 are the first and second degrees of freedom parameters of the distribution, λ is the non-centrality
parameter, x is the random variate, p is the probability, and q = 1-p.
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Implementation NotesFunction

Implemented in terms of the non-central beta PDF using the
relation:

pdf

f(x;v1,v2;λ) = (v1/v2) / ((1+y)*(1+y)) * g(y/(1+y);v1/2,v2/2;λ)

where g(x; a, b; λ) is the non central beta PDF, and:

y = x * v1 / v2

Using the relation:cdf

p = By(v1/2, v2/2; λ)

where Bx(a, b; λ) is the noncentral beta distribution CDF and

y = x * v1 / v2

Using the relation:cdf complement

q = 1 - By(v1/2, v2/2; λ)

where 1 - Bx(a, b; λ) is the complement of the noncentral beta
distribution CDF and

y = x * v1 / v2

Using the relation:quantile

x = (bx / (1-bx)) * (v1 / v2)

where

bx = Qp
-1(v1/2, v2/2; λ)

and

Qp
-1(v1/2, v2/2; λ)

is the noncentral beta quantile.

Using the relation:quantile

x = (bx / (1-bx)) * (v1 / v2)from the complement

where

bx = QCq
-1(v1/2, v2/2; λ)

and

QCq
-1(v1/2, v2/2; λ)

is the noncentral beta quantile from the complement.

v2 * (v1 + l) / (v1 * (v2 - 2))mean

By numeric maximalisation of the PDF.mode
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Implementation NotesFunction

Refer to, Weisstein, Eric W. "Noncentral F-Distribution." From
MathWorld--A Wolfram Web Resource.

variance

Refer to, Weisstein, Eric W. "Noncentral F-Distribution." From
MathWorld--A Wolfram Web Resource., and to the Mathematica
documentation

skewness

Refer to, Weisstein, Eric W. "Noncentral F-Distribution." From
MathWorld--A Wolfram Web Resource., and to the Mathematica
documentation

kurtosis and kurtosis excess

Some analytic properties of noncentral distributions (particularly unimodality, and monotonicity of their modes) are surveyed and
summarized by:

Andrea van Aubel & Wolfgang Gawronski, Applied Mathematics and Computation, 141 (2003) 3-12.

Noncentral T Distribution

#include <boost/math/distributions/non_central_t.hpp>

namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class non_central_t_distribution;

typedef non_central_t_distribution<> non_central_t;

template <class RealType, class Policy>
class non_central_t_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;

// Constructor:
non_central_t_distribution(RealType v, RealType delta);

// Accessor to degrees_of_freedom parameter v:
RealType degrees_of_freedom()const;

// Accessor to non-centrality parameter delta:
RealType non_centrality()const;

};

}} // namespaces

The noncentral T distribution is a generalization of the Students t Distribution. Let X have a normal distribution with mean δ and
variance 1, and let ν S2 have a chi-squared distribution with degrees of freedom ν. Assume that X and S2 are independent. The dis-
tribution of tν(δ)=X/S is called a noncentral t distribution with degrees of freedom ν and noncentrality parameter δ.

This gives the following PDF:
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f (x; ν; δ) = ν
ν
2ν !

2νe
δ2
2 (ν + x2)

ν
2Γ( ν2)

( 2δx1F1(n2 + 1; 3
2 ;

δ2x2

2(n + x2))
(ν + x2)Γ(12(ν + 1))

+
1F1(12(n + 1); 1

2 ;
δ2x2

2(ν + x2))
ν + x2Γ( ν2 + 1) )

where 1F1(a;b;x) is a confluent hypergeometric function.

The following graph illustrates how the distribution changes for different values of ν and δ:
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Member Functions

non_central_t_distribution(RealType v, RealType delta);

Constructs a non-central t distribution with degrees of freedom parameter v and non-centrality parameter delta.
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Requires v > 0 (including positive infinity) and finite delta, otherwise calls domain_error.

RealType degrees_of_freedom()const;

Returns the parameter v from which this object was constructed.

RealType non_centrality()const;

Returns the non-centrality parameter delta from which this object was constructed.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [-∞, +∞].

Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating-point types. Unless
otherwise specified, any floating-point type that is narrower than the one shown will have effectively zero error.

Table 20. Errors In CDF of the Noncentral T Distribution

ν, δ < 600Platform and CompilerSignificand Size (bits)

Peak=120 Mean=26Win32, Visual C++ 853

Peak=121 Mean=26RedHat Linux IA32, gcc-4.1.164

Peak=122 Mean=25Redhat Linux IA64, gcc-3.4.464

Peak=115 Mean=24HPUX IA64, aCC A.06.06113

Caution

The complexity of the current algorithm is dependent upon δ2: consequently the time taken to evaluate the CDF
increases rapidly for δ > 500, likewise the accuracy decreases rapidly for very large δ.

Accuracy for the quantile and PDF functions should be broadly similar. The mode is determined numerically and cannot in principal
be more accurate than the square root of floating-point type FPT epsilon, accessed using boost::math::tools::epsilon<FPT>().
For 64-bit double, epsilon is about 1e-16, so the fractional accuracy is limited to 1e-8.

Tests

There are two sets of tests of this distribution:

Basic sanity checks compare this implementation to the test values given in "Computing discrete mixtures of continuous distributions:
noncentral chisquare, noncentral t and the distribution of the square of the sample multiple correlation coefficient." Denise Benton,
K. Krishnamoorthy, Computational Statistics & Data Analysis 43 (2003) 249-267.

Accuracy checks use test data computed with this implementation and arbitary precision interval arithmetic: this test data is believed
to be accurate to at least 50 decimal places.
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The cases of large (or infinite) ν and/or large δ has received special treatment to avoid catastrophic loss of accuracy. New tests have
been added to confirm the improvement achieved.

From Boost 1.52, degrees of freedom ν can be +∞ when the normal distribution located at δ (equivalent to the central Student's t
distribution) is used in place for accuracy and speed.

Implementation

The CDF is computed using a modification of the method described in "Computing discrete mixtures of continuous distributions:
noncentral chisquare, noncentral t and the distribution of the square of the sample multiple correlation coefficient." Denise Benton,
K. Krishnamoorthy, Computational Statistics & Data Analysis 43 (2003) 249-267.

This uses the following formula for the CDF:

P(t; ν; δ) = Φ(−δ) + 1
2∑i=0

∞ (PiI x(i + 1
2 ,

ν
2) + δ

2QiI x(i + 1,
ν
2))

Pi = e
−δ

2
2
(δ22 )i
i ! , Qi = e

−δ
2
2

(δ22 )i
Γ(i + 3

2)
, x = t2

(ν + t2)

Where Ix(a,b) is the incomplete beta function, and Φ(x) is the normal CDF at x.

Iteration starts at the largest of the Poisson weighting terms (at i = δ2 / 2) and then proceeds in both directions as per Benton and
Krishnamoorthy's paper.

Alternatively, by considering what happens when t = ∞, we have x = 1, and therefore Ix(a,b) = 1 and:

P(∞; ν; δ) = 1 = Φ(−δ) + 1
2∑

i=0

∞

(Pi +
δ
2Qi)

From this we can easily show that:

1 − P(t; ν; δ) = 1
2∑

i=0

∞

(PiI y(ν2, i + 1
2) + δ

2QiI y(ν2, i + 1)) ; y = 1 − x = ν
ν + t2

and therefore we have a means to compute either the probability or its complement directly without the risk of cancellation error.
The crossover criterion for choosing whether to calculate the CDF or its complement is the same as for the Noncentral Beta Distri-
bution.

The PDF can be computed by a very similar method using:

f (t; ν; δ) = νt
ν2 + 2νt2 + t4∑

i=0

∞

(PiI x
′ (i + 1

2,
ν
2) + δ

2QiI x
′ (i + 1,ν2))

Where Ix
'(a,b) is the derivative of the incomplete beta function.

For both the PDF and CDF we switch to approximating the distribution by a Student's t distribution centred on δ when ν is very
large. The crossover location appears to be when δ/(4ν) < ε, this location was estimated by inspection of equation 2.6 in "A Compar-
ison of Approximations To Percentiles of the Noncentral t-Distribution". H. Sahai and M. M. Ojeda, Revista Investigacion Opera-
cional Vol 21, No 2, 2000, page 123.

Equation 2.6 is a Fisher-Cornish expansion by Eeden and Johnson. The second term includes the ratio δ/(4ν), so when this term become
negligible, this and following terms can be ignored, leaving just Student's t distribution centred on δ.

This was also confirmed by experimental testing.
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See also

• "Some Approximations to the Percentage Points of the Noncentral t-Distribution". C. van Eeden. International Statistical Review,
29, 4-31.

• "Continuous Univariate Distributions". N.L. Johnson, S. Kotz and N. Balkrishnan. 1995. John Wiley and Sons New York.

The quantile is calculated via the usual root-finding without derivatives method with the initial guess taken as the quantile of a normal
approximation to the noncentral T.

There is no closed form for the mode, so this is computed via functional maximisation of the PDF.

The remaining functions (mean, variance etc) are implemented using the formulas given in Weisstein, Eric W. "Noncentral Student's
t-Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NoncentralStudentst-Distribution.html
and in the Mathematica documentation.

Some analytic properties of noncentral distributions (particularly unimodality, and monotonicity of their modes) are surveyed and
summarized by:

Andrea van Aubel & Wolfgang Gawronski, Applied Mathematics and Computation, 141 (2003) 3-12.

Normal (Gaussian) Distribution

#include <boost/math/distributions/normal.hpp>

namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class normal_distribution;

typedef normal_distribution<> normal;

template <class RealType, class Policy>
class normal_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;
// Construct:
normal_distribution(RealType mean = 0, RealType sd = 1);
// Accessors:
RealType mean()const; // location.
RealType standard_deviation()const; // scale.
// Synonyms, provided to allow generic use of find_location and find_scale.
RealType location()const;
RealType scale()const;

};

}} // namespaces

The normal distribution is probably the most well known statistical distribution: it is also known as the Gaussian Distribution. A
normal distribution with mean zero and standard deviation one is known as the Standard Normal Distribution.

Given mean μ  and standard deviation σ  it has the PDF:

f (x; μ, σ) = 1
σ 2π e

− (x−μ)
2

2σ2
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The variation the PDF with its parameters is illustrated in the following graph:
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The cumulative distribution function is given by

1
2{1 + er f ( (x − μ)

(2σ2) )]
and illustrated by this graph
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Member Functions

normal_distribution(RealType mean = 0, RealType sd = 1);

Constructs a normal distribution with mean mean and standard deviation sd.
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Requires sd > 0, otherwise domain_error is called.

RealType mean()const;
RealType location()const;

both return the mean of this distribution.

RealType standard_deviation()const;
RealType scale()const;

both return the standard deviation of this distribution. (Redundant location and scale function are provided to match other similar
distributions, allowing the functions find_location and find_scale to be used generically).

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [-[max_value], +[min_value]]. However, the pdf of +∞ and -∞ = 0 is also supported, and cdf
at -∞ = 0, cdf at +∞ = 1, and complement cdf -∞ = 1 and +∞ = 0, if RealType permits.

Accuracy

The normal distribution is implemented in terms of the error function, and as such should have very low error rates.

Implementation

In the following table m is the mean of the distribution, and s is its standard deviation.

Implementation NotesFunction

Using the relation: pdf = e-(x-m)2/(2s2) / (s * sqrt(2*pi))pdf

Using the relation: p = 0.5 * erfc(-(x-m)/(s*sqrt(2)))cdf

Using the relation: q = 0.5 * erfc((x-m)/(s*sqrt(2)))cdf complement

Using the relation: x = m - s * sqrt(2) * erfc_inv(2*p)quantile

Using the relation: x = m + s * sqrt(2) * erfc_inv(2*p)quantile from the complement

The same as dist.mean() and dist.standard_devi-
ation()

mean and standard deviation

The same as the mean.mode

The same as the mean.median

0skewness

3kurtosis

0kurtosis excess
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Pareto Distribution

#include <boost/math/distributions/pareto.hpp>

namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class pareto_distribution;

typedef pareto_distribution<> pareto;

template <class RealType, class Policy>
class pareto_distribution
{
public:

typedef RealType value_type;
// Constructor:
pareto_distribution(RealType scale = 1, RealType shape = 1)
// Accessors:
RealType scale()const;
RealType shape()const;

};

}} // namespaces

The Pareto distribution is a continuous distribution with the probability density function (pdf):

f(x; α, β) = αβα / xα+ 1

For shape parameter α   > 0, and scale parameter β   > 0. If x < β  , the pdf is zero.

The Pareto distribution often describes the larger compared to the smaller. A classic example is that 80% of the wealth is owned by
20% of the population.

The following graph illustrates how the PDF varies with the scale parameter β:
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And this graph illustrates how the PDF varies with the shape parameter α:
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Related distributions

Member Functions

pareto_distribution(RealType scale = 1, RealType shape = 1);

Constructs a pareto distribution with shape shape and scale scale.

Requires that the shape and scale parameters are both greater than zero, otherwise calls domain_error.

RealType scale()const;

Returns the scale parameter of this distribution.

RealType shape()const;

Returns the shape parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The supported domain of the random variable is [scale, ∞].

Accuracy

The Pareto distribution is implemented in terms of the standard library exp functions plus expm1 and so should have very small errors,
usually only a few epsilon.

If probability is near to unity (or the complement of a probability near zero) see also why complements?.
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Implementation

In the following table α   is the shape parameter of the distribution, and β   is its scale parameter, x is the random variate, p is the
probability and its complement q = 1-p.

Implementation NotesFunction

Using the relation: pdf p = αβα/xα +1pdf

Using the relation: cdf p = 1 - (β   / x)αcdf

Using the relation: q = 1 - p = -(β   / x)αcdf complement

Using the relation: x = β / (1 - p)1/αquantile

Using the relation: x = β / (q)1/αquantile from the complement

αβ / (β - 1)mean

βα2 / (β - 1)2 (β - 2)variance

αmode

Refer to Weisstein, Eric W. "Pareto Distribution." From Math-
World--A Wolfram Web Resource.

skewness

Refer to Weisstein, Eric W. "Pareto Distribution." From Math-
World--A Wolfram Web Resource.

kurtosis

Refer to Weisstein, Eric W. "pareto Distribution." From Math-
World--A Wolfram Web Resource.

kurtosis excess

References

• Pareto Distribution

• Weisstein, Eric W. "Pareto Distribution." From MathWorld--A Wolfram Web Resource.

• Handbook of Statistical Distributions with Applications, K Krishnamoorthy, ISBN 1-58488-635-8, Chapter 23, pp 257 - 267.
(Note the meaning of a and b is reversed in Wolfram and Krishnamoorthy).

Poisson Distribution

#include <boost/math/distributions/poisson.hpp>
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namespace boost { namespace math {

template <class RealType = double,
class Policy = policies::policy<> >

class poisson_distribution;

typedef poisson_distribution<> poisson;

template <class RealType, class Policy>
class poisson_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;

poisson_distribution(RealType mean = 1); // Constructor.
RealType mean()const; // Accessor.

}

}} // namespaces boost::math

The Poisson distribution is a well-known statistical discrete distribution. It expresses the probability of a number of events (or failures,
arrivals, occurrences ...) occurring in a fixed period of time, provided these events occur with a known mean rate λ   (events/time),
and are independent of the time since the last event.

The distribution was discovered by Simé on-Denis Poisson (1781 to 1840).

It has the Probability Mass Function:

f (k; λ) = e−λλk
k !

for k events, with an expected number of events λ.

The following graph illustrates how the PDF varies with the parameter λ:
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Caution

The Poisson distribution is a discrete distribution: internally, functions like the cdf and pdf are treated "as if" they
are continuous functions, but in reality the results returned from these functions only have meaning if an integer
value is provided for the random variate argument.

The quantile function will by default return an integer result that has been rounded outwards. That is to say lower
quantiles (where the probability is less than 0.5) are rounded downward, and upper quantiles (where the probability
is greater than 0.5) are rounded upwards. This behaviour ensures that if an X% quantile is requested, then at least
the requested coverage will be present in the central region, and no more than the requested coverage will be present
in the tails.

This behaviour can be changed so that the quantile functions are rounded differently, or even return a real-valued
result using Policies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete
Distributions before using the quantile function on the Poisson distribution. The reference docs describe how to
change the rounding policy for these distributions.

Member Functions

poisson_distribution(RealType mean = 1);

Constructs a poisson distribution with mean mean.

RealType mean()const;

Returns the mean of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [0, ∞].

Accuracy

The Poisson distribution is implemented in terms of the incomplete gamma functions gamma_p and gamma_q and as such should
have low error rates: but refer to the documentation of those functions for more information. The quantile and its complement use
the inverse gamma functions and are therefore probably slightly less accurate: this is because the inverse gamma functions are im-
plemented using an iterative method with a lower tolerance to avoid excessive computation.

Implementation

In the following table λ   is the mean of the distribution, k is the random variable, p is the probability and q = 1-p.
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Implementation NotesFunction

Using the relation: pdf = e-λ λk / k!pdf

Using the relation: p = Γ(k+1, λ) / k! = gamma_q(k+1, λ)cdf

Using the relation: q = gamma_p(k+1, λ)cdf complement

Using the relation: k = gamma_q_inva(λ, p) - 1quantile

Using the relation: k = gamma_p_inva(λ, q) - 1quantile from the complement

λmean

floor (λ) or  λ mode

1/√λskewness

3 + 1/λkurtosis

1/λkurtosis excess

Rayleigh Distribution

#include <boost/math/distributions/rayleigh.hpp>

namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class rayleigh_distribution;

typedef rayleigh_distribution<> rayleigh;

template <class RealType, class Policy>
class rayleigh_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;
// Construct:
rayleigh_distribution(RealType sigma = 1)
// Accessors:
RealType sigma()const;

};

}} // namespaces

The Rayleigh distribution is a continuous distribution with the probability density function:

f(x; sigma) = x * exp(-x2/2 σ2) / σ2

For sigma parameter σ   > 0, and x > 0.

The Rayleigh distribution is often used where two orthogonal components have an absolute value, for example, wind velocity and
direction may be combined to yield a wind speed, or real and imaginary components may have absolute values that are Rayleigh
distributed.
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The following graph illustrates how the Probability density Function(pdf) varies with the shape parameter σ:
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Related distributions

The absolute value of two independent normal distributions X and Y, √ (X2 + Y2) is a Rayleigh distribution.

The Chi, Rice and Weibull distributions are generalizations of the Rayleigh distribution.

Member Functions

rayleigh_distribution(RealType sigma = 1);

Constructs a Rayleigh distribution with σ sigma.
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Requires that the σ parameter is greater than zero, otherwise calls domain_error.

RealType sigma()const;

Returns the sigma parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [0, max_value].

Accuracy

The Rayleigh distribution is implemented in terms of the standard library sqrt and exp and as such should have very low error
rates. Some constants such as skewness and kurtosis were calculated using NTL RR type with 150-bit accuracy, about 50 decimal
digits.

Implementation

In the following table σ   is the sigma parameter of the distribution, x is the random variate, p is the probability and q = 1-p.

Implementation NotesFunction

Using the relation: pdf = x * exp(-x2)/2 σ2pdf

Using the relation: p = 1 - exp(-x2/2) σ2   = -expm1(-x2/2) σ2cdf

Using the relation: q = exp(-x2/ 2) * σ2cdf complement

Using the relation: x = sqrt(-2 * σ 2) * log(1 - p)) = sqrt(-2 * σ
2) * log1p(-p))

quantile

Using the relation: x = sqrt(-2 * σ 2) * log(q))quantile from the complement

σ * sqrt(π/2)mean

σ2 * (4 - π/2)variance

σmode

Constant from Weisstein, Eric W. "Weibull Distribution." From
MathWorld--A Wolfram Web Resource.

skewness

Constant from Weisstein, Eric W. "Weibull Distribution." From
MathWorld--A Wolfram Web Resource.

kurtosis

Constant from Weisstein, Eric W. "Weibull Distribution." From
MathWorld--A Wolfram Web Resource.

kurtosis excess

References

• http://en.wikipedia.org/wiki/Rayleigh_distribution

• Weisstein, Eric W. "Rayleigh Distribution." From MathWorld--A Wolfram Web Resource.
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Skew Normal Distribution

#include <boost/math/distributions/skew_normal.hpp>

namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class skew_normal_distribution;

typedef skew_normal_distribution<> normal;

template <class RealType, class Policy>
class skew_normal_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;
// Constructor:
skew_normal_distribution(RealType location = 0, RealType scale = 1, RealType shape = 0);
// Accessors:
RealType location()const; // mean if normal.
RealType scale()const; // width, standard deviation if normal.
RealType shape()const; // The distribution is right skewed if shape > 0 and is left skewed ↵

if shape < 0.
// The distribution is normal if shape is zero.

};

}} // namespaces

The skew normal distribution is a variant of the most well known Gaussian statistical distribution.

The skew normal distribution with shape zero resembles the Normal Distribution, hence the latter can be regarded as a special case
of the more generic skew normal distribution.

If the standard (mean = 0, scale = 1) normal distribution probability density function is

φ(x) = 1
(2π) e

−x2
2

and the cumulative distribution function

Φ(x) = ∫−∞
x

φ(t)dt = 1
2[1 + er f ( x2 )]

then the PDF of the skew normal distribution with shape parameter α, defined by O'Hagan and Leonhard (1976) is

f (x) = 2φ(x)Φ(αx)

Given location ξ, scale ω, and shape α, it can be transformed, to the form:

1
(ωπ)e

−(x − ξ)
2

(2ω2) ∫−∞
(α( (x−ξ)ω ))

e− t
2

2 dt

and CDF:
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Φ((x − ξ)ω ) − 2T(((x − ξ)ω ), α)
where T(h,a) is Owen's T function, and Φ(x) is the normal distribution.

The variation the PDF and CDF with its parameters is illustrated in the following graphs:
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Member Functions

skew_normal_distribution(RealType location = 0, RealType scale = 1, RealType shape = 0);

Constructs a skew_normal distribution with location ξ, scale ω and shape α.

Requires scale > 0, otherwise domain_error is called.
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RealType location()const;

returns the location ξ of this distribution,

RealType scale()const;

returns the scale ω of this distribution,

RealType shape()const;

returns the shape α of this distribution.

(Location and scale function match other similar distributions, allowing the functions find_location and find_scale to be used
generically).

Note

While the shape parameter may be chosen arbitrarily (finite), the resulting skewness of the distribution is in fact
limited to about (-1, 1); strictly, the interval is (-0.9952717, 0.9952717).

A parameter δ is related to the shape α by δ = α / (1 + α²), and used in the expression for skewness

(4 − π)
2

(δ ( 2π ))3

(1 − 2δ2π )(
3
2)

References

• Skew-Normal Probability Distribution for many links and bibliography.

• A very brief introduction to the skew-normal distribution by Adelchi Azzalini (2005-11-2).

• See a skew-normal function animation.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is -[max_value], +[min_value]. Infinite values are not supported.

There are no closed-form expression known for the mode and median, but these are computed for the

• mode - by finding the maximum of the PDF.

• median - by computing quantile(1/2).

The maximum of the PDF is sought through searching the root of f'(x)=0.

Both involve iterative methods that will have lower accuracy than other estimates.

Testing

The R Project for Statistical Computing using library(sn) described at Skew-Normal Probability Distribution, and at R skew-normal(sn)
package.
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Package sn provides functions related to the skew-normal (SN) and the skew-t (ST) probability distributions, both for the univariate
and for the the multivariate case, including regression models.

Wolfram Mathematica was also used to generate some more accurate spot test data.

Accuracy

The skew_normal distribution with shape = zero is implemented as a special case, equivalent to the normal distribution in terms of
the error function, and therefore should have excellent accuracy.

The PDF and mean, variance, skewness and kurtosis are also accurately evaluated using analytical expressions. The CDF requires
Owen's T function that is evaluated using a Boost C++ Owens T implementation of the algorithms of M. Patefield and D. Tandy,
Journal of Statistical Software, 5(5), 1-25 (2000); the complicated accuracy of this function is discussed in detail at Owens T.

The median and mode are calculated by iterative root finding, and both will be less accurate.

Implementation

In the following table, ξ is the location of the distribution, and ω is its scale, and α is its shape.
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Implementation NotesFunction

Using: 

1
(ωπ)e

−(x − ξ)
2

(2ω2) ∫−∞
(α( (x−ξ)ω ))

e− t
2

2 dt

pdf

Using: 
Φ((x − ξ)ω ) − 2T(((x − ξ)ω ), α)

where T(h,a) is Owen's T function, and Φ(x) is the normal dis-
tribution.

cdf

Using: complement of normal distribution + 2 * Owens_tcdf complement

Maximum of the pdf is sought through searching the root of
f'(x)=0

quantile

-quantile(SN(-location ξ, scale ω, -shapeα), p)quantile from the complement

location ξlocation

scale ωscale

shape αshape

quantile(1/2)median

ξ + ωδ (2π ) where δ = α
(1 + α2)

mean

Maximum of the pdf is sought through searching the root of
f'(x)=0

mode

ω2(1 − 2δ2π )variance

(4 − π)
2

(δ ( 2π ))3

(1 − 2δ2π )(
3
2)

skewness

kurtosis excess-3kurtosis

2(π − 3)
(δ ( 2π ))4

(1 − 2δ2π )2
kurtosis excess

Students t Distribution

#include <boost/math/distributions/students_t.hpp>
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namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class students_t_distribution;

typedef students_t_distribution<> students_t;

template <class RealType, class Policy>
class students_t_distribution
{

typedef RealType value_type;
typedef Policy policy_type;

// Construct:
students_t_distribution(const RealType& v);

// Accessor:
RealType degrees_of_freedom()const;

// degrees of freedom estimation:
static RealType find_degrees_of_freedom(

RealType difference_from_mean,
RealType alpha,
RealType beta,
RealType sd,
RealType hint = 100);

};

}} // namespaces

A statistical distribution published by William Gosset in 1908. His employer, Guinness Breweries, required him to publish under a
pseudonym (possibly to hide that they were using statistics), so he chose "Student". Given N independent measurements, let

t =
μ − M

s
N

where M is the population mean,μ is the sample mean, and s is the sample variance.

Student's t-distribution is defined as the distribution of the random variable t which is - very loosely - the "best" that we can do not
knowing the true standard deviation of the sample. It has the PDF:

f (x) =
Γ( ν + 12 )

νπ Γ( ν2)(1 + x2
ν )

ν+1
2

The Student's t-distribution takes a single parameter: the number of degrees of freedom of the sample. When the degrees of freedom
is one then this distribution is the same as the Cauchy-distribution. As the number of degrees of freedom tends towards infinity, then
this distribution approaches the normal-distribution. The following graph illustrates how the PDF varies with the degrees of freedom
ν:
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Member Functions

students_t_distribution(const RealType& v);

Constructs a Student's t-distribution with v degrees of freedom.

Requires v > 0, otherwise calls domain_error. Note that non-integral degrees of freedom are supported, and are meaningful under
certain circumstances.

RealType degrees_of_freedom()const;

Returns the number of degrees of freedom of this distribution.

static RealType find_degrees_of_freedom(
RealType difference_from_mean,
RealType alpha,
RealType beta,
RealType sd,
RealType hint = 100);

Returns the number of degrees of freedom required to observe a significant result in the Student's t test when the mean differs from
the "true" mean by difference_from_mean.

difference_from_mean The difference between the true mean and the sample mean that we wish to show is significant.

alpha The maximum acceptable probability of rejecting the null hypothesis when it is in fact true.

beta The maximum acceptable probability of failing to reject the null hypothesis when it is in fact false.

sd The sample standard deviation.

hint A hint for the location to start looking for the result, a good choice for this would be the sample size
of a previous borderline Student's t test.
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Note

Remember that for a two-sided test, you must divide alpha by two before calling this function.

For more information on this function see the NIST Engineering Statistics Handbook.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [-∞, +∞].

Examples

Various worked examples are available illustrating the use of the Student's t distribution.

Accuracy

The normal distribution is implemented in terms of the incomplete beta function and its inverses, refer to accuracy data on those
functions for more information.

Implementation

In the following table v is the degrees of freedom of the distribution, t is the random variate, p is the probability and q = 1-p.
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Implementation NotesFunction

Using the relation: pdf = (v / (v + t2))(1+v)/2  / (sqrt(v) * beta(v/2,
0.5))

pdf

Using the relations:

p = 1 - z iff t > 0

p = z otherwise

where z is given by:

ibeta(v / 2, 0.5, v / (v + t2)) / 2 iff v < 2t2

ibetac(0.5, v / 2, t2  / (v + t2) / 2 otherwise

cdf

Using the relation: q = cdf(-t)cdf complement

Using the relation: t = sign(p - 0.5) * sqrt(v * y / x)

where:

x = ibeta_inv(v / 2, 0.5, 2 * min(p, q))

y = 1 - x

The quantities x and y are both returned by ibeta_inv without
the subtraction implied above.

quantile

Using the relation: t = -quantile(q)quantile from the complement

0mode

0mean

if (v > 2) v / (v - 2) else NaNvariance

if (v > 3) 0 else NaNskewness

if (v > 4) 3 * (v - 2) / (v - 4) else NaNkurtosis

if (v > 4) 6 / (df - 4) else NaNkurtosis excess

If the moment index k is less than v, then the moment is undefined. Evaluating the moment will throw a domain_error unless ignored
by a policy, when it will return std::numeric_limits<>::quiet_NaN();

(For simplicity, we have not implemented the return of infinity in some cases as suggested by Wikipedia Student's t. See also
https://svn.boost.org/trac/boost/ticket/7177.)

Triangular Distribution

#include <boost/math/distributions/triangular.hpp>

349

Statistical Distributions and Functions

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/Student%27s_t-distribution
https://svn.boost.org/trac/boost/ticket/7177
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


namespace boost{ namespace math{
template <class RealType = double,

class Policy = policies::policy<> >
class triangular_distribution;

typedef triangular_distribution<> triangular;

template <class RealType, class Policy>
class triangular_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;

triangular_distribution(RealType lower = -1, RealType mode = 0) RealType upper = 1); // Con↵
structor.

: m_lower(lower), m_mode(mode), m_upper(upper) // Default is -1, 0, +1 triangular distri↵
bution.

// Accessor functions.
RealType lower()const;
RealType mode()const;
RealType upper()const;

}; // class triangular_distribution

}} // namespaces

The triangular distribution is a continuous probability distribution with a lower limit a, mode c, and upper limit b.

The triangular distribution is often used where the distribution is only vaguely known, but, like the uniform distribution, upper and
limits are 'known', but a 'best guess', the mode or center point, is also added. It has been recommended as a proxy for the beta distri-
bution. The distribution is used in business decision making and project planning.

The triangular distribution is a distribution with the probability density function:

f(x) =

• 2(x-a)/(b-a) (c-a) for a <= x <= c

• 2(b-x)/(b-a)(b-c) for c < x <= b

Parameter a (lower) can be any finite value. Parameter b (upper) can be any finite value > a (lower). Parameter c (mode) a <= c <=
b. This is the most probable value.

The random variate x must also be finite, and is supported lower <= x <= upper.

The triangular distribution may be appropriate when an assumption of a normal distribution is unjustified because uncertainty is
caused by rounding and quantization from analog to digital conversion. Upper and lower limits are known, and the most probable
value lies midway.

The distribution simplifies when the 'best guess' is either the lower or upper limit - a 90 degree angle triangle. The default chosen is
the 001 triangular distribution which expresses an estimate that the lowest value is the most likely; for example, you believe that the
next-day quoted delivery date is most likely (knowing that a quicker delivery is impossible - the postman only comes once a day),
and that longer delays are decreasingly likely, and delivery is assumed to never take more than your upper limit.

The following graph illustrates how the probability density function PDF varies with the various parameters:
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Member Functions

triangular_distribution(RealType lower = 0, RealType mode = 0 RealType upper = 1);

Constructs a triangular distribution with lower lower (a) and upper upper (b).

Requires that the lower, mode and upper parameters are all finite, otherwise calls domain_error.

RealType lower()const;

Returns the lower parameter of this distribution (default -1).
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RealType mode()const;

Returns the mode parameter of this distribution (default 0).

RealType upper()const;

Returns the upper parameter of this distribution (default+1).

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is \lowerto \upper, and the supported range is lower <= x <= upper.

Accuracy

The triangular distribution is implemented with simple arithmetic operators and so should have errors within an epsilon or two, except
quantiles with arguments nearing the extremes of zero and unity.

Implementation

In the following table, a is the lower parameter of the distribution, c is the mode parameter, b is the upper parameter, x is the random
variate, p is the probability and q = 1-p.
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Implementation NotesFunction

Using the relation: pdf = 0 for x < mode, 2(x-a)/(b-a)(c-a) else
2*(b-x)/((b-a)(b-c))

pdf

Using the relation: cdf = 0 for x < mode (x-a)2/((b-a)(c-a)) else
1 - (b-x)2/((b-a)(b-c))

cdf

Using the relation: q = 1 - pcdf complement

let p0 = (c-a)/(b-a) the point of inflection on the cdf, then given
probability p and q = 1-p:

x = sqrt((b-a)(c-a)p) + a ; for p < p0

x = c ; for p == p0

x = b - sqrt((b-a)(b-c)q) ; for p > p0

(See /boost/math/distributions/triangular.hpp for details.)

quantile

As quantile (See /boost/math/distributions/triangular.hpp for
details.)

quantile from the complement

(a + b + 3) / 3mean

(a2+b2+c2 - ab - ac - bc)/18variance

cmode

(See /boost/math/distributions/triangular.hpp for details).skewness

12/5kurtosis

-3/5kurtosis excess

Some 'known good' test values were obtained from Statlet: Calculate and plot probability distributions

References

• Wikpedia triangular distribution

• Weisstein, Eric W. "Triangular Distribution." From MathWorld--A Wolfram Web Resource.

• Evans, M.; Hastings, N.; and Peacock, B. "Triangular Distribution." Ch. 40 in Statistical Distributions, 3rd ed. New York: Wiley,
pp. 187-188, 2000, ISBN - 0471371246.

• Brighton Webs Ltd. BW D-Calc 1.0 Distribution Calculator

• The Triangular Distribution including its history.

• Gejza Wimmer, Viktor Witkovsky and Tomas Duby, Measurement Science Review, Volume 2, Section 1, 2002, Proper Rounding
Of The Measurement Results Under The Assumption Of Triangular Distribution.

Uniform Distribution

#include <boost/math/distributions/uniform.hpp>
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namespace boost{ namespace math{
template <class RealType = double,

class Policy = policies::policy<> >
class uniform_distribution;

typedef uniform_distribution<> uniform;

template <class RealType, class Policy>
class uniform_distribution
{
public:

typedef RealType value_type;

uniform_distribution(RealType lower = 0, RealType upper = 1); // Constructor.
: m_lower(lower), m_upper(upper) // Default is standard uniform distribution.

// Accessor functions.
RealType lower()const;
RealType upper()const;

}; // class uniform_distribution

}} // namespaces

The uniform distribution, also known as a rectangular distribution, is a probability distribution that has constant probability.

The continuous uniform distribution is a distribution with the probability density function:

f(x) =

• 1 / (upper - lower) for lower < x < upper

• zero for x < lower or x > upper

and in this implementation:

• 1 / (upper - lower) for x = lower or x = upper

The choice of x = lower or x = upper is made because statistical use of this distribution judged is most likely: the method of maximum
likelihood uses this definition.

There is also a discrete uniform distribution.

Parameters lower and upper can be any finite value.

The random variate x must also be finite, and is supported lower <= x <= upper.

The lower parameter is also called the location parameter, that is where the origin of a plot will lie, and (upper - lower) is also called
the scale parameter.

The following graph illustrates how the probability density function PDF varies with the shape parameter:
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Likewise for the CDF:
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Member Functions

uniform_distribution(RealType lower = 0, RealType upper = 1);

Constructs a uniform distribution with lower lower (a) and upper upper (b).

Requires that the lower and upper parameters are both finite; otherwise if infinity or NaN then calls domain_error.

RealType lower()const;

Returns the lower parameter of this distribution.
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RealType upper()const;

Returns the upper parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is any finite value, but the supported range is only lower <= x <= upper.

Accuracy

The uniform distribution is implemented with simple arithmetic operators and so should have errors within an epsilon or two.

Implementation

In the following table a is the lower parameter of the distribution, b is the upper parameter, x is the random variate, p is the probab-
ility and q = 1-p.

Implementation NotesFunction

Using the relation: pdf = 0 for x < a, 1 / (b - a) for a <= x <= b,
0 for x > b

pdf

Using the relation: cdf = 0 for x < a, (x - a) / (b - a) for a <= x
<= b, 1 for x > b

cdf

Using the relation: q = 1 - p, (b - x) / (b - a)cdf complement

Using the relation: x = p * (b - a) + a;quantile

x = -q * (b - a) + bquantile from the complement

(a + b) / 2mean

(b - a) 2 / 12variance

any value in [a, b] but a is chosen. (Would NaN be better?)mode

0skewness

-6/5 = -1.2 exactly. (kurtosis - 3)kurtosis excess

9/5kurtosis

References

• Wikpedia continuous uniform distribution

• Weisstein, Weisstein, Eric W. "Uniform Distribution." From MathWorld--A Wolfram Web Resource.

• http://www.itl.nist.gov/div898/handbook/eda/section3/eda3662.htm
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Weibull Distribution

#include <boost/math/distributions/weibull.hpp>

namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >

class weibull_distribution;

typedef weibull_distribution<> weibull;

template <class RealType, class Policy>
class weibull_distribution
{
public:

typedef RealType value_type;
typedef Policy policy_type;
// Construct:
weibull_distribution(RealType shape, RealType scale = 1)
// Accessors:
RealType shape()const;
RealType scale()const;

};

}} // namespaces

The Weibull distribution is a continuous distribution with the probability density function:

f(x; α, β) = (α/β) * (x / β)α - 1 * e-(x/β)α

For shape parameter α   > 0, and scale parameter β   > 0, and x > 0.

The Weibull distribution is often used in the field of failure analysis; in particular it can mimic distributions where the failure rate
varies over time. If the failure rate is:

• constant over time, then α   = 1, suggests that items are failing from random events.

• decreases over time, then α   < 1, suggesting "infant mortality".

• increases over time, then α   > 1, suggesting "wear out" - more likely to fail as time goes by.

The following graph illustrates how the PDF varies with the shape parameter α:
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While this graph illustrates how the PDF varies with the scale parameter β:
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Related distributions

When α   = 3, the Weibull distribution appears similar to the normal distribution. When α   = 1, the Weibull distribution reduces to
the exponential distribution. The relationship of the types of extreme value distributions, of which the Weibull is but one, is discussed
by Extreme Value Distributions, Theory and Applications Samuel Kotz & Saralees Nadarajah.

Member Functions

weibull_distribution(RealType shape, RealType scale = 1);

Constructs a Weibull distribution with shape shape and scale scale.

Requires that the shape and scale parameters are both greater than zero, otherwise calls domain_error.
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RealType shape()const;

Returns the shape parameter of this distribution.

RealType scale()const;

Returns the scale parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [0, ∞].

Accuracy

The Weibull distribution is implemented in terms of the standard library log and exp functions plus expm1 and log1p and as such
should have very low error rates.

Implementation

In the following table α   is the shape parameter of the distribution, β   is its scale parameter, x is the random variate, p is the probab-
ility and q = 1-p.

Implementation NotesFunction

Using the relation: pdf = αβ-α xα - 1 e-(x/beta)alpha

pdf

Using the relation: p = -expm1(-(x/β)α)cdf

Using the relation: q = e-(x/β)α
cdf complement

Using the relation: x = β * (-log1p(-p))1/αquantile

Using the relation: x = β * (-log(q))1/αquantile from the complement

β * Γ(1 + 1/α)mean

β2(Γ(1 + 2/α) - Γ2(1 + 1/α))variance

β((α - 1) / α)1/αmode

Refer to Weisstein, Eric W. "Weibull Distribution." From
MathWorld--A Wolfram Web Resource.

skewness

Refer to Weisstein, Eric W. "Weibull Distribution." From
MathWorld--A Wolfram Web Resource.

kurtosis

Refer to Weisstein, Eric W. "Weibull Distribution." From
MathWorld--A Wolfram Web Resource.

kurtosis excess

References

• http://en.wikipedia.org/wiki/Weibull_distribution
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• Weisstein, Eric W. "Weibull Distribution." From MathWorld--A Wolfram Web Resource.

• Weibull in NIST Exploratory Data Analysis

Distribution Algorithms

Finding the Location and Scale for Normal and similar distributions

Two functions aid finding location and scale of random variable z to give probability p (given a scale or location). Only applies to
distributions like normal, lognormal, extreme value, Cauchy, (and symmetrical triangular), that have scale and location properties.

These functions are useful to predict the mean and/or standard deviation that will be needed to meet a specified minimum weight or
maximum dose.

Complement versions are also provided, both with explicit and implicit (default) policy.

using boost::math::policies::policy; // May be needed by users defining their own policies.
using boost::math::complement; // Will be needed by users who want to use complements.

find_location function

#include <boost/math/distributions/find_location.hpp>

namespace boost{ namespace math{

template <class Dist, class Policy> // explicit error handling policy
typename Dist::value_type find_location( // For example, normal mean.
typename Dist::value_type z, // location of random variable z to give probability, P(X > z) ↵

== p.
// For example, a nominal minimum acceptable z, so that p * 100 % are > z
typename Dist::value_type p, // probability value desired at x, say 0.95 for 95% > z.
typename Dist::value_type scale, // scale parameter, for example, normal standard deviation.
const Policy& pol);

template <class Dist> // with default policy.
typename Dist::value_type find_location( // For example, normal mean.
typename Dist::value_type z, // location of random variable z to give probability, P(X > z) ↵

== p.
// For example, a nominal minimum acceptable z, so that p * 100 % are > z
typename Dist::value_type p, // probability value desired at x, say 0.95 for 95% > z.
typename Dist::value_type scale); // scale parameter, for example, normal standard deviation.

}} // namespaces

find_scale function

#include <boost/math/distributions/find_scale.hpp>
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namespace boost{ namespace math{

template <class Dist, class Policy>
typename Dist::value_type find_scale( // For example, normal mean.
typename Dist::value_type z, // location of random variable z to give probability, P(X > z) ↵

== p.
// For example, a nominal minimum acceptable weight z, so that p * 100 % are > z
typename Dist::value_type p, // probability value desired at x, say 0.95 for 95% > z.
typename Dist::value_type location, // location parameter, for example, normal distribution mean.
const Policy& pol);

template <class Dist> // with default policy.
typename Dist::value_type find_scale( // For example, normal mean.
typename Dist::value_type z, // location of random variable z to give probability, P(X > z) ↵

== p.
// For example, a nominal minimum acceptable z, so that p * 100 % are > z
typename Dist::value_type p, // probability value desired at x, say 0.95 for 95% > z.
typename Dist::value_type location) // location parameter, for example, normal distribution ↵

mean.
}} // namespaces

All argument must be finite, otherwise domain_error is called.

Probability arguments must be [0, 1], otherwise domain_error is called.

If the choice of arguments would give a negative scale, domain_error is called, unless the policy is to ignore, when the negative
(impossible) value of scale is returned.

Find Mean and standard deviation examples gives simple examples of use of both find_scale and find_location, and a longer example
finding means and standard deviations of normally distributed weights to meet a specification.
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Extras/Future Directions
Adding Additional Location and Scale Parameters

In some modelling applications we require a distribution with a specific location and scale: often this equates to a specific mean and
standard deviation, although for many distributions the relationship between these properties and the location and scale parameters
are non-trivial. See http://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm for more information.

The obvious way to handle this is via an adapter template:

template <class Dist>
class scaled_distribution
{

scaled_distribution(
const Dist dist,
typename Dist::value_type location,
typename Dist::value_type scale = 0);

};

Which would then have its own set of overloads for the non-member accessor functions.

An "any_distribution" class

It is easy to add a distribution object that virtualises the actual type of the distribution, and can therefore hold "any" object that conforms
to the conceptual requirements of a distribution:

template <class RealType>
class any_distribution
{
public:

template <class Distribution>
any_distribution(const Distribution& d);

};

// Get the cdf of the underlying distribution:
template <class RealType>
RealType cdf(const any_distribution<RealType>& d, RealType x);
// etc....

Such a class would facilitate the writing of non-template code that can function with any distribution type.

The Statistical Distribution Explorer utility for Windows is a usage example.

It's not clear yet whether there is a compelling use case though. Possibly tests for goodness of fit might provide such a use case: this
needs more investigation.

Higher Level Hypothesis Tests

Higher-level tests roughly corresponding to the Mathematica Hypothesis Tests package could be added reasonably easily, for example:

template <class InputIterator>
typename std::iterator_traits<InputIterator>::value_type

test_equal_mean(
InputIterator a,
InputIterator b,
typename std::iterator_traits<InputIterator>::value_type expected_mean);

Returns the probability that the data in the sequence [a,b) has the mean expected_mean.
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Integration With Statistical Accumulators

Eric Niebler's accumulator framework - also work in progress - provides the means to calculate various statistical properties from
experimental data. There is an opportunity to integrate the statistical tests with this framework at some later date:

// Define an accumulator, all required statistics to calculate the test
// are calculated automatically:
accumulator_set<double, features<tag::test_expected_mean> > acc(expected_mean=4);
// Pass our data to the accumulator:
acc = std::for_each(mydata.begin(), mydata.end(), acc);
// Extract the result:
double p = probability(acc);
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Special Functions
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Number Series

Bernoulli Numbers
Bernoulli numbers are a sequence of rational numbers useful for the Taylor series expansion, Euler-Maclaurin formula, and the
Riemann zeta function.

Bernoulli numbers are used in evaluation of some Boost.Math functions, including the tgamma, lgamma and polygamma functions.

Single Bernoulli number

Synopsis

#include <boost/math/special_functions/bernoulli.hpp>

namespace boost { namespace math {

template <class T>
T bernoulli_b2n(const int n); // Single Bernoulli number (default policy).

template <class T, class Policy>
T bernoulli_b2n(const int n, const Policy &pol); // User policy for errors etc.

}} // namespaces

Description

Both return the (2 * n)th Bernoulli number B2n.

Note that since all odd numbered Bernoulli numbers are zero (apart from B1 which is -½) the interface will only return the even
numbered Bernoulli numbers.

This function uses fast table lookup for low-indexed Bernoulli numbers, while larger values are calculated as needed and then cached.
The caching mechanism requires a certain amount of thread safety code, so unchecked_bernoulli_b2n may provide a better in-
terface for performance critical code.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use, etc.

Refer to Policies for more details.

Examples

A simple example computes the value of B4 where the return type is double, note that the argument to bernoulli_b2n is 2 not 4
since it computes B2N.

try
{ // It is always wise to use try'n'catch blocks around Boost.Math functions
// so that any informative error messages can be displayed in the catch block.

std::cout
<< std::setprecision(std::numeric_limits<double>::digits10)
<< boost::math::bernoulli_b2n<double>(2) << std::endl;

So B4 == -1/30 == -0.0333333333333333

If we use Boost.Multiprecision and its 50 decimal digit floating-point type cpp_dec_float_50, we can calculate the value of much
larger numbers like B200 and also obtain much higher precision.
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std::cout
<< std::setprecision(std::numeric_limits<boost::multiprecision::cpp_dec_float_50>::digits10)
<< boost::math::bernoulli_b2n<boost::multiprecision::cpp_dec_float_50>(100) << std::endl;

-3.6470772645191354362138308865549944904868234686191e+215

Single (unchecked) Bernoulli number

Synopsis

#include <boost/math/special_functions/bernoulli.hpp>

template <>
struct max_bernoulli_b2n<T>;

template<class T>
inline T unchecked_bernoulli_b2n(unsigned n);

unchecked_bernoulli_b2n provides access to Bernoulli numbers without any checks for overflow or invalid parameters. It
is implemented as a direct (and very fast) table lookup, and while not recommended for general use it can be useful inside inner
loops where the ultimate performance is required, and error checking is moved outside the loop.

The largest value you can pass to unchecked_bernoulli_b2n<> is max_bernoulli_b2n<>::value: passing values greater
than that will result in a buffer overrun error, so it's clearly important to place the error handling in your own code when using this
direct interface.

The value of boost::math::max_bernoulli_b2n<T>::value varies by the type T, for types float/double/long double

it's the largest value which doesn't overflow the target type: for example, boost::math::max_bernoulli_b2n<double>::value
is 129. However, for multiprecision types, it's the largest value for which the result can be represented as the ratio of two 64-bit integers,
for example boost::math::max_bernoulli_b2n<boost::multiprecision::cpp_dec_float_50>::value is just 17. Of
course larger indexes can be passed to bernoulli_b2n<T>(n), but then you lose fast table lookup (i.e. values may need to be
calculated).

/*For example:
*/

std::cout << "boost::math::max_bernoulli_b2n<float>::value = " ↵
 << boost::math::max_bernoulli_b2n<float>::value << std::endl;

std::cout << "Maximum Bernoulli number using float is ↵
" << boost::math::bernoulli_b2n<float>( boost::math::max_bernoulli_b2n<float>::value) << std::endl;

std::cout << "boost::math::max_bernoulli_b2n<double>::value = " ↵
 << boost::math::max_bernoulli_b2n<double>::value << std::endl;

std::cout << "Maximum Bernoulli number using double is ↵
" << boost::math::bernoulli_b2n<double>( boost::math::max_bernoulli_b2n<double>::value) << std::endl;

boost::math::max_bernoulli_b2n<float>::value = 32
Maximum Bernoulli number using float is -2.0938e+038
boost::math::max_bernoulli_b2n<double>::value = 129
Maximum Bernoulli number using double is 1.33528e+306

Multiple Bernoulli Numbers

Synopsis

#include <boost/math/special_functions/bernoulli.hpp>
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namespace boost { namespace math {

// Multiple Bernoulli numbers (default policy).
template <class T, class OutputIterator>
OutputIterator bernoulli_b2n(
int start_index,
unsigned number_of_bernoullis_b2n,
OutputIterator out_it);

// Multiple Bernoulli numbers (user policy).
template <class T, class OutputIterator, class Policy>
OutputIterator bernoulli_b2n(
int start_index,
unsigned number_of_bernoullis_b2n,
OutputIterator out_it,
const Policy& pol);

}} // namespaces

Description

Two versions of the Bernoulli number function are provided to compute multiple Bernoulli numbers with one call (one with default
policy and the other allowing a user-defined policy).

These return a series of Bernoulli numbers:

B2*start_index,B2*(start_index+1),...,B2*(start_index+number_of_bernoullis_b2n-1)

Examples

We can compute and save all the float-precision Bernoulli numbers from one call.

std::vector<float> bn; // Space for 32-bit `float` precision Bernoulli numbers.

// Start with Bernoulli number 0.
boost::math::bernoulli_b2n<float>(0, 32, std::back_inserter(bn)); // Fill vector with even ↵
Bernoulli numbers.

for(size_t i = 0; i < bn.size(); i++)
{ // Show vector of even Bernoulli numbers, showing all significant decimal digits.

std::cout << std::setprecision(std::numeric_limits<float>::digits10)
<< i*2 << ' '
<< bn[i]
<< std::endl;

}
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0 1
2 0.166667
4 -0.0333333
6 0.0238095
8 -0.0333333
10 0.0757576
12 -0.253114
14 1.16667
16 -7.09216
18 54.9712
20 -529.124
22 6192.12
24 -86580.3
26 1.42552e+006
28 -2.72982e+007
30 6.01581e+008
32 -1.51163e+010
34 4.29615e+011
36 -1.37117e+013
38 4.88332e+014
40 -1.92966e+016
42 8.41693e+017
44 -4.03381e+019
46 2.11507e+021
48 -1.20866e+023
50 7.50087e+024
52 -5.03878e+026
54 3.65288e+028
56 -2.84988e+030
58 2.38654e+032
60 -2.14e+034
62 2.0501e+036

Of course, for any floating-point type, there is a maximum Bernoulli number that can be computed before it overflows the exponent.
By default policy, if we try to compute too high a Bernoulli number, an exception will be thrown.

try
{
std::cout
<< std::setprecision(std::numeric_limits<float>::digits10)
<< "Bernoulli number " << 33 * 2 <<std::endl;

std::cout << boost::math::bernoulli_b2n<float>(33) << std::endl;
}
catch (std::exception ex)
{
std::cout << "Thrown Exception caught: " << ex.what() << std::endl;

}

and we will get a helpful error message (provided try'n'catch blocks are used).

Bernoulli number 66
Thrown Exception caught: Error in function boost::math::bernoulli_b2n<float>(n):
Overflow evaluating function at 33

The source of this example is at bernoulli_example.cpp

Accuracy

All the functions usually return values within one ULP (unit in the last place) for the floating-point type.
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Implementation

The implementation details are in bernoulli_details.hpp and unchecked_bernoulli.hpp.

For i <= max_bernoulli_index<T>::value this is implemented by simple table lookup from a statically initialized table; for
larger values of i, this is implemented by the Tangent Numbers algorithm as described in the paper: Fast Computation of Bernoulli,
Tangent and Secant Numbers, Richard P. Brent and David Harvey, http://arxiv.org/pdf/1108.0286v3.pdf (2011).

Tangent (or Zag) numbers (an even alternating permutation number) are defined and their generating function is also given therein.

The relation of Tangent numbers with Bernoulli numbers Bi is given by Brent and Harvey's equation 14:

T j = (−1)
j−122 j(22n − 1)B2n2n

Their relation with Bernoulli numbers Bi are defined by

if i > 0 and i is even then 
B j = (−1)

j
2−1

jT j/2

(4 j − 2 j)
elseif i == 0 then Bi = 1
elseif i == 1 then Bi = -1/2
elseif i < 0 or i is odd then Bi = 0

Note that computed values are stored in a fixed-size table, access is thread safe via atomic operations (i.e. lock free programming),
this imparts a much lower overhead on access to cached values than might otherwise be expected - typically for multiprecision types
the cost of thread synchronisation is negligible, while for built in types this code is not normally executed anyway. For very large
arguments which cannot be reasonably computed or stored in our cache, an asymptotic expansion due to Luschny is used:

ln(Bn) = (12 + n)ln(n) + (
1
2 − n)ln( π ) + (32 − n)ln(2) − R(n)

R(n) = n(1 − 1
12(1 −

1
30(1 −

2
7n

−2)n−2)n−2)

Tangent Numbers
Tangent numbers, also called a zag function. See also Tangent number.

The first few values are 1, 2, 16, 272, 7936, 353792, 22368256, 1903757312 ... (sequence A000182 in OEIS). They are called tangent
numbers because they appear as numerators in the Maclaurin series of tan(x).

Important: there are two competing definitions of Tangent numbers in common use (depending on whether you take the even or
odd numbered values as non-zero), we use:

Tn =
22n(22n − 1) ∣ B2n ∣

2n

Which gives:

tan(x) = ∑k=1
∞ Tk

(2k − 1)!x
2k−1

Tangent numbers are used in the computation of Bernoulli numbers, but are also made available here.

Synopsis

#include <boost/math/special_functions/detail/bernoulli.hpp>
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template <class T>
T tangent_t2n(const int i); // Single tangent number (default policy).

template <class T, class Policy>
T tangent_t2n(const int i, const Policy &pol); // Single tangent number (user policy).

// Multiple tangent numbers (default policy).
template <class T, class OutputIterator>
OutputIterator tangent_t2n(const int start_index,

const unsigned number_of_tangent_t2n,
OutputIterator out_it);

// Multiple tangent numbers (user policy).
template <class T, class OutputIterator, class Policy>
OutputIterator tangent_t2n(const int start_index,

const unsigned number_of_tangent_t2n,
OutputIterator out_it,
const Policy& pol);

Examples

We can compute and save a few Tangent numbers.

std::vector<float> tn; // Space for some `float` precision Tangent numbers.

// Start with Bernoulli number 0.
boost::math::tangent_t2n<float>(1, 6, std::back_inserter(tn)); // Fill vector with even Tangent ↵
numbers.

for(size_t i = 0; i < tn.size(); i++)
{ // Show vector of even Tangent numbers, showing all significant decimal digits.

std::cout << std::setprecision(std::numeric_limits<float>::digits10)
<< " "
<< tn[i];

}
std::cout << std::endl;

The output is:

1 2 16 272 7936 353792

The source of this example is at bernoulli_example.cpp

Implementation

Tangent numbers are calculated as intermediates in the calculation of the Bernoulli numbers: refer to the Bernoulli numbers docu-
mentation for details.

Prime Numbers

Synopsis

#include <boost/math/special_functions/prime.hpp>
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namespace boost { namespace math {

template <class Policy>
boost::uint32_t prime(unsigned n, const Policy& pol);

boost::uint32_t prime(unsigned n);

static const unsigned max_prime = 10000;

}} // namespaces

Description

The function prime provides fast table lookup to the first 10000 prime numbers (starting from 2 as the zeroth prime: as 1 isn't terribly
useful in practice). There are two function signatures one of which takes an optional Policy as the second parameter to control error
handling.

The constant max_prime is the largest value you can pass to prime without incurring an error.

Passing a value greater than max_prime results in a domain_error being raised.
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Gamma Functions

Gamma

Synopsis

#include <boost/math/special_functions/gamma.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type tgamma(T z);

template <class T, class Policy>
calculated-result-type tgamma(T z, const Policy&);

template <class T>
calculated-result-type tgamma1pm1(T dz);

template <class T, class Policy>
calculated-result-type tgamma1pm1(T dz, const Policy&);

}} // namespaces

Description

template <class T>
calculated-result-type tgamma(T z);

template <class T, class Policy>
calculated-result-type tgamma(T z, const Policy&);

Returns the "true gamma" (hence name tgamma) of value z:

tgamma (z) = Γ(z) = ∫
0

∞

tz−1e−tdt
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The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

There are effectively two versions of the tgamma function internally: a fully generic version that is slow, but reasonably accurate,
and a much more efficient approximation that is used where the number of digits in the significand of T correspond to a certain
Lanczos approximation. In practice any built in floating point type you will encounter has an appropriate Lanczos approximation
defined for it. It is also possible, given enough machine time, to generate further Lanczos approximation's using the program
libs/math/tools/lanczos_generator.cpp.

The return type of this function is computed using the result type calculation rules: the result is double when T is an integer type,
and T otherwise.

template <class T>
calculated-result-type tgamma1pm1(T dz);

template <class T, class Policy>
calculated-result-type tgamma1pm1(T dz, const Policy&);

Returns tgamma(dz + 1) - 1. Internally the implementation does not make use of the addition and subtraction implied by the
definition, leading to accurate results even for very small dz. However, the implementation is capped to either 35 digit accuracy, or
to the precision of the Lanczos approximation associated with type T, whichever is more accurate.

The return type of this function is computed using the result type calculation rules: the result is double when T is an integer type,
and T otherwise.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types, along
with comparisons to the GSL-1.9, GNU C Lib, HP-UX C Library and Cephes libraries. Unless otherwise specified any floating point
type that is narrower than the one shown will have effectively zero error.
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Values Near a
Negative Pole

Values Near 1 or
2

Values Near ZeroFactorials and
Half factorials

Platform and
Compiler

Significand Size

P e a k = 2 . 6
Mean=1.3

(GSL=2.5)

(Cephes=2.7)

P e a k = 2 . 0
Mean=1.1

(GSL=7.9)

(Cephes=1.0)

P e a k = 2 . 0
Mean=1.1

(GSL=4.5)

(Cephes=1)

P e a k = 1 . 9
Mean=0.7

(GSL=3.9)

(Cephes=3.0)

Win32 Visual C++
8

53

P e a k = 1 5 7
Mean=65

(GNU C Lib
P e a k = 2 0 5
Mean=108)

P e a k = 5 . 0
Mean=1.8

(GNU C Lib
P e a k = 0 . 9 2
Mean=0.2)

P e a k = 3 . 0
Mean=1.4

(GNU C Lib
P e a k = 1 1
Mean=3.3)

P e a k = 3 0 0
Mean=49.5

(GNU C Lib
P e a k = 3 9 5
Mean=89)

Linux IA32 / GCC64

P e a k = 5 . 0
Mean=1.7 (GNU C
Lib Peak 0)

P e a k = 4 . 8
Mean=1.5

(GNU C Lib Peak
0)

P e a k = 4 . 8
Mean=1.5

(GNU C Lib Peak
0)

GNU C Lib Peak
2.8 Mean=0.9

(GNU C Lib Peak
0.7)

Linux IA64 / GCC64

P e a k = 5 . 2
Mean=1.92

(HP-UX C Library
Peak 0)

P e a k = 3 . 5
Mean=1.6

(HP-UX C Library
Peak 0)

P e a k = 3 . 5
Mean=1.7

(HP-UX C Library
Peak 0)

P e a k = 2 . 5
Mean=1.1

(HP-UX C Library
Peak 0)

HPUX IA64, aCC
A.06.06

113

Testing

The gamma is relatively easy to test: factorials and half-integer factorials can be calculated exactly by other means and compared
with the gamma function. In addition, some accuracy tests in known tricky areas were computed at high precision using the generic
version of this function.

The function tgamma1pm1 is tested against values calculated very naively using the formula tgamma(1+dz)-1 with a lanczos ap-
proximation accurate to around 100 decimal digits.

Implementation

The generic version of the tgamma function is implemented Sterling's approximation for lgamma for large z:

ln Γ (z) ≈ (z − 1
2)ln(z) − z + 1

2 ln(2 π ) + ∑k=1
∞ B2k

2k(2k − 1)z2k−1

Following exponentiation, downward recursion is then used for small values of z.

For types of known precision the Lanczos approximation is used, a traits class boost::math::lanczos::lanczos_traits maps
type T to an appropriate approximation.

For z in the range -20 < z < 1 then recursion is used to shift to z > 1 via:

Γ(z) =
Γ(z + 1)

z

For very small z, this helps to preserve the identity:

lim
z→0

(Γ(z)) = 1
z
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For z < -20 the reflection formula:

Γ(−z) = − π
Γ(z)sin(πz)z

is used. Particular care has to be taken to evaluate the z * sin(π   * z) part: a special routine is used to reduce z prior to mul-
tiplying by π   to ensure that the result in is the range [0, π/2]. Without this an excessive amount of error occurs in this region (which
is hard enough already, as the rate of change near a negative pole is exceptionally high).

Finally if the argument is a small integer then table lookup of the factorial is used.

The function tgamma1pm1 is implemented using rational approximations devised by JM in the region -0.5 < dz < 2. These are
the same approximations (and internal routines) that are used for lgamma, and so aren't detailed further here. The result of the ap-
proximation is log(tgamma(dz+1)) which can fed into expm1 to give the desired result. Outside the range -0.5 < dz < 2 then
the naive formula tgamma1pm1(dz) = tgamma(dz+1)-1 can be used directly.

Log Gamma

Synopsis

#include <boost/math/special_functions/gamma.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type lgamma(T z);

template <class T, class Policy>
calculated-result-type lgamma(T z, const Policy&);

template <class T>
calculated-result-type lgamma(T z, int* sign);

template <class T, class Policy>
calculated-result-type lgamma(T z, int* sign, const Policy&);

}} // namespaces

Description

The lgamma function is defined by:

lgamma (z) = ln | Γ(z) |

The second form of the function takes a pointer to an integer, which if non-null is set on output to the sign of tgamma(z).

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.
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There are effectively two versions of this function internally: a fully generic version that is slow, but reasonably accurate, and a
much more efficient approximation that is used where the number of digits in the significand of T correspond to a certain Lanczos
approximation. In practice, any built-in floating-point type you will encounter has an appropriate Lanczos approximation defined
for it. It is also possible, given enough machine time, to generate further Lanczos approximation's using the program
libs/math/tools/lanczos_generator.cpp.

The return type of these functions is computed using the result type calculation rules: the result is of type double if T is an integer
type, or type T otherwise.

Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types, along
with comparisons to the GSL-1.9, GNU C Lib, HP-UX C Library and Cephes libraries. Unless otherwise specified any floating point
type that is narrower than the one shown will have effectively zero error.

Note that while the relative errors near the positive roots of lgamma are very low, the lgamma function has an infinite number of ir-
rational roots for negative arguments: very close to these negative roots only a low absolute error can be guaranteed.
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Values Near a
Negative Pole

Values Near 1 or
2

Values Near ZeroFactorials and
Half factorials

Platform and
Compiler

Significand Size

P e a k = 4 . 2
Mean=1.3

( G S L = 2 5 )
(Cephes=1.6)

P e a k = 0 . 8 6
Mean=0.46

( G S L = 1 1 6 8 )
(Cephes~500000)

P e a k = 0 . 9 6
Mean=0.46

( G S L = 5 . 2 )
(Cephes=1.1)

P e a k = 0 . 8 8
Mean=0.14

( G S L = 3 3 )
(Cephes=1.5)

Win32 Visual C++
8

53

P e a k = 6 . 0
Mean=1.8

(GNU C Lib
P e a k = 3 . 0
Mean=0.86)

P e a k = 0 . 8 6
Mean=0.35

(GNU C Lib
P e a k = 0 . 7 4
Mean=0.26)

P e a k = 1 . 4
Mean=0.57

(GNU C Lib Peak=
0.96 Mean=0.54)

P e a k = 1 . 9
Mean=0.43

(GNU C Lib
P e a k = 1 . 7
Mean=0.49)

Linux IA32 / GCC64

P e a k = 2 . 3
Mean=0.69

(GNU C Lib Peak
0)

P e a k = 0 . 8 6
Mean=0.16

(GNU C Lib Peak
0)

Pek=1.2 Mean=0.6

(GNU C Lib Peak
0)

P e a k = 0 . 9 9
Mean=0.12

(GNU C Lib Peak
0)

Linux IA64 / GCC64

P e a k = 3 . 0
Mean=0.9

(HP-UX C Library
Peak 0)

P e a k = 0 . 9
Mean=0.4

(HP-UX C Library
Peak 0)

P e a k = 0 . 9 9
Mean=0.53

(HP-UX C Library
Peak 0)

P e a k = 0 . 9 6
Mean=0.13

(HP-UX C Library
Peak 0)

HPUX IA64, aCC
A.06.06

113

Testing

The main tests for this function involve comparisons against the logs of the factorials which can be independently calculated to very
high accuracy.

Random tests in key problem areas are also used.

Implementation

The generic version of this function is implemented using Sterling's approximation for large arguments:

ln Γ (z) ≈ (z − 1
2)ln(z) − z + 1

2 ln(2 π ) + ∑k=1
∞ B2k

2k(2k − 1)z2k−1

For small arguments, the logarithm of tgamma is used.

For negative z the logarithm version of the reflection formula is used:

ln( | Γ(−z) | ) = ln(π) − ln(Γ(z)) − ln(zsin(πz))

For types of known precision, the Lanczos approximation is used, a traits class boost::math::lanczos::lanczos_traits
maps type T to an appropriate approximation. The logarithmic version of the Lanczos approximation is:

ln( | Γ(z) | ) = (z − 0.5)ln( z + g − 0.5
e ) + ln(Le,g(z))

Where Le,g   is the Lanczos sum, scaled by eg.

As before the reflection formula is used for z < 0.
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When z is very near 1 or 2, then the logarithmic version of the Lanczos approximation suffers very badly from cancellation error:
indeed for values sufficiently close to 1 or 2, arbitrarily large relative errors can be obtained (even though the absolute error is tiny).

For types with up to 113 bits of precision (up to and including 128-bit long doubles), root-preserving rational approximations devised
by JM are used over the intervals [1,2] and [2,3]. Over the interval [2,3] the approximation form used is:

lgamma(z) = (z-2)(z+1)(Y + R(z-2));

Where Y is a constant, and R(z-2) is the rational approximation: optimised so that it's absolute error is tiny compared to Y. In addition
small values of z greater than 3 can handled by argument reduction using the recurrence relation:

lgamma(z+1) = log(z) + lgamma(z);

Over the interval [1,2] two approximations have to be used, one for small z uses:

lgamma(z) = (z-1)(z-2)(Y + R(z-1));

Once again Y is a constant, and R(z-1) is optimised for low absolute error compared to Y. For z > 1.5 the above form wouldn't
converge to a minimax solution but this similar form does:

lgamma(z) = (2-z)(1-z)(Y + R(2-z));

Finally for z < 1 the recurrence relation can be used to move to z > 1:

lgamma(z) = lgamma(z+1) - log(z);

Note that while this involves a subtraction, it appears not to suffer from cancellation error: as z decreases from 1 the -log(z) term
grows positive much more rapidly than the lgamma(z+1) term becomes negative. So in this specific case, significant digits are
preserved, rather than cancelled.

For other types which do have a Lanczos approximation defined for them the current solution is as follows: imagine we balance the
two terms in the Lanczos approximation by dividing the power term by its value at z = 1, and then multiplying the Lanczos coefficients
by the same value. Now each term will take the value 1 at z = 1 and we can rearrange the power terms in terms of log1p. Likewise
if we subtract 1 from the Lanczos sum part (algebraically, by subtracting the value of each term at z = 1), we obtain a new summation
that can be also be fed into log1p. Crucially, all of the terms tend to zero, as z -> 1:

ln( | Γ(z) | ) = Δ zln(Δ z + g + 0.5
e ) + 1

2 ln(1 + Δ z
g + 0.5) + ln(1 +∑k=0

N−1 Δ zdk
k(Δ z + k))

Δ z = 1 − z ∧ dk =
g + 0.5

e (Ckeg )
The Ck   terms in the above are the same as in the Lanczos approximation.

A similar rearrangement can be performed at z = 2:

ln( | Γ(z) | ) = 3
2 ln(1 + Δ z

g + 1.5) + Δ zln( z + g − 0.5
e ) + ln(1 +∑k=1

N−1 −dk Δ z

z + kz + k2 − 1)
Δ z = z − 2 ∧ dk = ( g + 1.5e )1.5(Ckeg )
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Digamma

Synopsis

#include <boost/math/special_functions/digamma.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type digamma(T z);

template <class T, class Policy>
calculated-result-type digamma(T z, const Policy&);

}} // namespaces

Description

Returns the digamma or psi function of x. Digamma is defined as the logarithmic derivative of the gamma function:

ψ(x) = d
dx ln(Γ(x)) =

Γ ′(x)
Γ(x)
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The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

The return type of this function is computed using the result type calculation rules: the result is of type double when T is an integer
type, and type T otherwise.

Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types. Unless
otherwise specified any floating point type that is narrower than the one shown will have effectively zero error.
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Negative ValuesValues Near ZeroValues Near The
Positive Root

Random Positive
Values

Platform and
Compiler

Significand Size

P e a k = 2 1 4
Mean=16

P e a k = 0 . 9 5
Mean=0.5

P e a k = 0 . 9 9
Mean=0.5

P e a k = 0 . 9 8
Mean=0.36

Win32 Visual C++
8

53

P e a k = 1 8 0
Mean=13

P e a k = 0 . 9 8
Mean=0.35

P e a k = 1 . 3
Mean=0.45

P e a k = 1 . 4
Mean=0.4

Linux IA32 / GCC64

P e a k = 1 8 0
Mean=13

P e a k = 0 . 9 8
Mean=0.4

P e a k = 1 . 3
Mean=0.45

P e a k = 0 . 9 2
Mean=0.4

Linux IA64 / GCC64

Peak=64 Mean=6P e a k = 0 . 9 9
Mean=0.4

P e a k = 1 . 1
Mean=0.5

P e a k = 0 . 9
Mean=0.4

HPUX IA64, aCC
A.06.06

113

As shown above, error rates for positive arguments are generally very low. For negative arguments there are an infinite number of
irrational roots: relative errors very close to these can be arbitrarily large, although absolute error will remain very low.

Testing

There are two sets of tests: spot values are computed using the online calculator at functions.wolfram.com, while random test values
are generated using the high-precision reference implementation (a differentiated Lanczos approximation see below).

Implementation

The implementation is divided up into the following domains:

For Negative arguments the reflection formula:

digamma(1-x) = digamma(x) + pi/tan(pi*x);

is used to make x positive.

For arguments in the range [0,1] the recurrence relation:

digamma(x) = digamma(x+1) - 1/x

is used to shift the evaluation to [1,2].

For arguments in the range [1,2] a rational approximation devised by JM is used (see below).

For arguments in the range [2,BIG] the recurrence relation:

digamma(x+1) = digamma(x) + 1/x;

is used to shift the evaluation to the range [1,2].

For arguments > BIG the asymptotic expansion:

ψ(x) = ln(x) + 1
2x −∑

n=1

∞
B2n
2nx2n

can be used. However, this expansion is divergent after a few terms: exactly how many terms depends on the size of x. Therefore
the value of BIG must be chosen so that the series can be truncated at a term that is too small to have any effect on the result when
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evaluated at BIG. Choosing BIG=10 for up to 80-bit reals, and BIG=20 for 128-bit reals allows the series to truncated after a suitably
small number of terms and evaluated as a polynomial in 1/(x*x).

The arbitrary precision version of this function uses recurrence relations until x > BIG, and then evaluation via the asymptotic expansion
above. As special cases integer and half integer arguments are handled via:

ψ(n) =∑
k=1

n−1
1
k − γ ; n ∈ ℕ

ψ(12 − n) =∑
k=1

n−1
1
k +∑

k=n

2n−1
2
k − log(4) − γ ; n ∈ ℕ

The rational approximation devised by JM in the range [1,2] is derived as follows.

First a high precision approximation to digamma was constructed using a 60-term differentiated Lanczos approximation, the form
used is:

ψ(x) =
z − 1

2

x + g − 1
2
+ ln(x + g − 1

2) + P′(x)
P(x) −

Q′(x)
Q(x) − 1

Where P(x) and Q(x) are the polynomials from the rational form of the Lanczos sum, and P'(x) and Q'(x) are their first derivatives.
The Lanzos part of this approximation has a theoretical precision of ~100 decimal digits. However, cancellation in the above sum
will reduce that to around 99-(1/y) digits if y is the result. This approximation was used to calculate the positive root of digamma,
and was found to agree with the value used by Cody to 25 digits (See Math. Comp. 27, 123-127 (1973) by Cody, Strecok and
Thacher) and with the value used by Morris to 35 digits (See TOMS Algorithm 708).

Likewise a few spot tests agreed with values calculated using functions.wolfram.com to >40 digits. That's sufficiently precise to insure
that the approximation below is accurate to double precision. Achieving 128-bit long double precision requires that the location of
the root is known to ~70 digits, and it's not clear whether the value calculated by this method meets that requirement: the difficulty
lies in independently verifying the value obtained.

The rational approximation devised by JM was optimised for absolute error using the form:

digamma(x) = (x - X0)(Y + R(x - 1));

Where X0 is the positive root of digamma, Y is a constant, and R(x - 1) is the rational approximation. Note that since X0 is irrational,
we need twice as many digits in X0 as in x in order to avoid cancellation error during the subtraction (this assumes that x is an exact
value, if it's not then all bets are off). That means that even when x is the value of the root rounded to the nearest representable value,
the result of digamma(x) will not be zero.

Trigamma

Synopsis

#include <boost/math/special_functions/trigamma.hpp>
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namespace boost{ namespace math{

template <class T>
calculated-result-type trigamma(T z);

template <class T, class Policy>
calculated-result-type trigamma(T z, const Policy&);

}} // namespaces

Description

Returns the trigamma function of x. Trigamma is defined as the derivative of the digamma function:

ψ(1)(x) =∑
k=0

∞
1

(k + x)2
=
∂ψ(x)
∂ x
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The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

The return type of this function is computed using the result type calculation rules: the result is of type double when T is an integer
type, and type T otherwise.

Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types. Unless
otherwise specified any floating point type that is narrower than the one shown will have effectively zero error.

Random ValuesPlatform and CompilerSignificand Size

Peak=1.0 Mean=0.4Win32 Visual C++ 1253

Peak=1.4 Mean=0.4Win64 Mingw GCC64

Peak=1.0 Mean=0.5Win64 Mingw GCC __float128113
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As shown above, error rates are generally very low for built in types. For multiprecision types, error rates are typically in the order
of a few epsilon.

Testing

Testing is against Mathematica generated spot values to 35 digit precision.

Implementation

The arbitrary precision version of this function simply calls polygamma.

For built in fixed precision types, negative arguments are first made positive via:

ψ(1)(1 − x) = π2
sin2(πx)

− ψ(1)(x)

Then arguments in the range [0, 1) are shifted to >= 1 via:

ψ(1)(x) = ψ(1)(1 + x) + 1
x2

Then evaluation is via one of a number of rational approximations, for small x these are of the form:

ψ(1)(x) =
(C + R(x))

x2

and for large x of the form:

ψ(1)(x) =
(1 + R(1x ))

x

Polygamma

Synopsis

#include <boost/math/special_functions/polygamma.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type polygamma(int n, T z);

template <class T, class Policy>
calculated-result-type polygamma(int n, T z, const Policy&);

}} // namespaces

Description

Returns the polygamma function of x. Polygamma is defined as the n'th derivative of the digamma function:

ψ(n)(x) = (−1)n+1n !∑
k=0

∞
1

(k + x)n+1
=
∂nψ(x)
∂nx

The following graphs illustrate the behaviour of the function for odd and even order:
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The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

The return type of this function is computed using the result type calculation rules: the result is of type double when T is an integer
type, and type T otherwise.

Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types. Unless
otherwise specified any floating point type that is narrower than the one shown will have effectively zero error.
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Small-medium negative xSmall-medium positive argu-
ments

Platform and CompilerSignificand Size

Peak=1200 Mean=65Peak=5.0 Mean=1Win32 Visual C++ 1253

Peak=33 Mean=3Peak=16 Mean=3Win64 Mingw GCC64

Peak=30 Mean=4Peak=6.5 Mean=1Win64 Mingw GCC
__float128

113

As shown above, error rates are generally very acceptable for moderately sized arguments. Error rates should stay low for exact inputs,
however, please note that the function becomes exceptionally sensitive to small changes in input for large n and negative x, indeed
for cases where n! would overflow, the function changes directly from -∞ to +∞ somewhere between each negative integer - these
cases are not handled correctly.

For these reasons results should be treated with extreme caution when n is large and x negative.

Testing

Testing is against Mathematica generated spot values to 35 digit precision.

Implementation

For x < 0 the following reflection formula is used:

ψ(n)(1 − x) = (−1)nψ(n)(x) + (−1)nπ
∂ncot(πx)

∂ xn

The n'th derivative of cot(x) is tabulated for small n, and for larger n has the general form:

∂ncot(πx)
∂ xn = πn

sinn+1(πx) ∑
k=0

n−1

Ck,ncos
k(πn)

The coefficients of the cosine terms can be calculated iteratively starting from C1,0 = -1 and then using

∂
∂ x

cosk(θ)
sinn(θ) =

1
sinn+1(θ)

((k − n)cosn+1(θ) − kcosn−1(θ))

to generate coefficients for n+1.

Note that every other coefficient is zero, and therefore what we have are even or odd polynomials depending on whether n is even
or odd.

Once x is positive then we have two methods available to us, for small x we use the series expansion:

ψ(n)(x) =
(−1)n−1n !

xn+1
+∑

k=0

∞
(−1)k+n+1(k + n) !ζ (k + n + 1)xk

k !

Note that the evaluation of zeta functions at integer values is essentially a table lookup as zeta is optimized for those cases.

For large x we use the asymptotic expansion:
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ψ(n)(x)∝ (−1)n−1(n − 1) !(n + 2x)
2xn+1

− (−1)n∑
k=1

∞
(2k + n − 1) !
(2k) !x2k+n

B2k

For x in-between the two extremes we use the relation:

ψ(n)(x − m) = ψ(n)(x) − (−1)nn !∑
k=1

m
1

(x − k)n+1

to make x large enough for the asymptotic expansion to be used.

There are also two special cases:

ψ(n)(1) = (−1)n+1n !ς(n + 1)

ψ(n)(12) = (−1)n+1n !(2n+1 − 1)ς(n + 1)
Ratios of Gamma Functions

#include <boost/math/special_functions/gamma.hpp>

namespace boost{ namespace math{

template <class T1, class T2>
calculated-result-type tgamma_ratio(T1 a, T2 b);

template <class T1, class T2, class Policy>
calculated-result-type tgamma_ratio(T1 a, T2 b, const Policy&);

template <class T1, class T2>
calculated-result-type tgamma_delta_ratio(T1 a, T2 delta);

template <class T1, class T2, class Policy>
calculated-result-type tgamma_delta_ratio(T1 a, T2 delta, const Policy&);

}} // namespaces

Description

template <class T1, class T2>
calculated-result-type tgamma_ratio(T1 a, T2 b);

template <class T1, class T2, class Policy>
calculated-result-type tgamma_ratio(T1 a, T2 b, const Policy&);

Returns the ratio of gamma functions:

tgamma_ratio(a,b) =
Γ(a)
Γ(b)

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Internally this just calls tgamma_delta_ratio(a, b-a).
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template <class T1, class T2>
calculated-result-type tgamma_delta_ratio(T1 a, T2 delta);

template <class T1, class T2, class Policy>
calculated-result-type tgamma_delta_ratio(T1 a, T2 delta, const Policy&);

Returns the ratio of gamma functions:

tgamma_delta_ratio(a,delta) =
Γ(a)

Γ(a + delta)

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Note that the result is calculated accurately even when delta is small compared to a: indeed even if a+delta ~ a. The function is
typically used when a is large and delta is very small.

The return type of these functions is computed using the result type calculation rules when T1 and T2 are different types, otherwise
the result type is simple T1.
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Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types. Unless
otherwise specified any floating point type that is narrower than the one shown will have effectively zero error.
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Table 21. Errors In the Function tgamma_delta_ratio(a, delta)

20 < a < 80

and

delta < 1

Platform and CompilerSignificand Size

Peak=16.9 Mean=1.7Win32, Visual C++ 853

Peak=24 Mean=2.7Redhat Linux IA32, gcc-3.4.464

Peak=12.8 Mean=1.8Redhat Linux IA64, gcc-3.4.464

Peak=21.4 Mean=2.3HPUX IA64, aCC A.06.06113

Table 22. Errors In the Function tgamma_ratio(a, b)

6 < a,b < 50Platform and CompilerSignificand Size

Peak=34 Mean=9Win32, Visual C++ 853

Peak=91 Mean=23Redhat Linux IA32, gcc-3.4.464

Peak=35.6 Mean=9.3Redhat Linux IA64, gcc-3.4.464

Peak=43.9 Mean=13.2HPUX IA64, aCC A.06.06113

Testing

Accuracy tests use data generated at very high precision (with NTL RR class set at 1000-bit precision: about 300 decimal digits)
and a deliberately naive calculation of Γ(x)/Γ(y).

Implementation

The implementation of these functions is very similar to that of beta, and is based on combining similar power terms to improve
accuracy and avoid spurious overflow/underflow.

In addition there are optimisations for the situation where delta is a small integer: in which case this function is basically the recip-
rocal of a rising factorial, or where both arguments are smallish integers: in which case table lookup of factorials can be used to
calculate the ratio.

Incomplete Gamma Functions

Synopsis

#include <boost/math/special_functions/gamma.hpp>
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namespace boost{ namespace math{

template <class T1, class T2>
calculated-result-type gamma_p(T1 a, T2 z);

template <class T1, class T2, class Policy>
calculated-result-type gamma_p(T1 a, T2 z, const Policy&);

template <class T1, class T2>
calculated-result-type gamma_q(T1 a, T2 z);

template <class T1, class T2, class Policy>
calculated-result-type gamma_q(T1 a, T2 z, const Policy&);

template <class T1, class T2>
calculated-result-type tgamma_lower(T1 a, T2 z);

template <class T1, class T2, class Policy>
calculated-result-type tgamma_lower(T1 a, T2 z, const Policy&);

template <class T1, class T2>
calculated-result-type tgamma(T1 a, T2 z);

template <class T1, class T2, class Policy>
calculated-result-type tgamma(T1 a, T2 z, const Policy&);

}} // namespaces

Description

There are four incomplete gamma functions: two are normalised versions (also known as regularized incomplete gamma functions)
that return values in the range [0, 1], and two are non-normalised and return values in the range [0, Γ(a)]. Users interested in statist-
ical applications should use the normalised versions (gamma_p and gamma_q).

All of these functions require a > 0 and z >= 0, otherwise they return the result of domain_error.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

The return type of these functions is computed using the result type calculation rules when T1 and T2 are different types, otherwise
the return type is simply T1.

template <class T1, class T2>
calculated-result-type gamma_p(T1 a, T2 z);

template <class T1, class T2, class Policy>
calculated-result-type gamma_p(T1 a, T2 z, const Policy&);

Returns the normalised lower incomplete gamma function of a and z:

gamma_p (a, z) = P(a, z) =
γ(a, z)
Γ(a) = 1

Γ(a)∫
0

z

ta−1e−tdt

This function changes rapidly from 0 to 1 around the point z == a:
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template <class T1, class T2>
calculated-result-type gamma_q(T1 a, T2 z);

template <class T1, class T2, class Policy>
calculated-result-type gamma_q(T1 a, T2 z, const Policy&);

Returns the normalised upper incomplete gamma function of a and z:

gamma_q (a, z) = Q(a, z) =
Γ(a, z)
Γ(a) = 1

Γ(a)∫z
∞

ta−1e−tdt

This function changes rapidly from 1 to 0 around the point z == a:
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template <class T1, class T2>
calculated-result-type tgamma_lower(T1 a, T2 z);

template <class T1, class T2, class Policy>
calculated-result-type tgamma_lower(T1 a, T2 z, const Policy&);

Returns the full (non-normalised) lower incomplete gamma function of a and z:

tgamma_lower (a, z) = γ(a, z) = ∫
0

z

ta−1e−tdt

template <class T1, class T2>
calculated-result-type tgamma(T1 a, T2 z);

template <class T1, class T2, class Policy>
calculated-result-type tgamma(T1 a, T2 z, const Policy&);

Returns the full (non-normalised) upper incomplete gamma function of a and z:

tgamma (a, z) = Γ(a, z) = ∫
z

∞

ta−1e−tdt

Accuracy

The following tables give peak and mean relative errors in over various domains of a and z, along with comparisons to the GSL-1.9
and Cephes libraries. Note that only results for the widest floating point type on the system are given as narrower types have effectively
zero error.

Note that errors grow as a grows larger.

Note also that the higher error rates for the 80 and 128 bit long double results are somewhat misleading: expected results that are
zero at 64-bit double precision may be non-zero - but exceptionally small - with the larger exponent range of a long double. These
results therefore reflect the more extreme nature of the tests conducted for these types.

All values are in units of epsilon.

391

Special Functions

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.gnu.org/software/gsl/
http://www.netlib.org/cephes/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Table 23. Errors In the Function gamma_p(a,z)

1e-6 < a < 1.7x106

and

1 < z < 100*a

1x10-12 < a < 5x10-2

and

0.01*a < z < 100*a

0.5 < a < 100

and

0.01*a < z < 100*a

Platform and Com-
piler

Significand Size

Peak=244 Mean=21

(GSL Peak=1022
Mean=1054)

(Cephes Peak~8x106

Mean~7x104)

Peak=4.5 Mean=1.4

(GSL Peak=4.8
Mean=0.76)

(Cephes Peak=21
Mean=5.6)

Peak=36 Mean=9.1

(GSL Peak=342
Mean=46)

(Cephes Peak=491
Mean=102)

Win32, Visual C++ 853

P e a k ~ 3 0 , 2 2 0
Mean=1929

Peak=4.7 Mean=1.5Peak=241 Mean=36RedHat Linux IA32,
gcc-3.3

64

P e a k ~ 3 0 , 7 9 0
Mean=1864

Peak=4.7 Mean=1.4Peak=41 Mean=10Redhat Linux IA64,
gcc-3.4

64

Peak=5,476 Mean=440Peak=5 Mean=1.6Peak=40.2 Mean=10.2HPUX IA64, aCC
A.06.06

113

Table 24. Errors In the Function gamma_q(a,z)

1x10-6 < a < 1.7x106

and

1 < z < 100*a

1x10-12 < a < 5x10-2

and

0.01*a < z < 100*a

0.5 < a < 100

and

0.01*a < z < 100*a

Platform and Com-
piler

Significand Size

Peak=469 Mean=33

(GSL Peak=27,050
Mean=2159)

(Cephes Peak~8x106

Mean~7x105)

Peak=4.8 Mean=1.6

(GSL Peak~1.3x1010

Mean=1x10+9)

(Cephes Peak~3x1011

Mean=4x1010)

Peak=28.3 Mean=7.2

(GSL Peak=201
Mean=13)

(Cephes Peak=556
Mean=97)

Win32, Visual C++ 853

P e a k = 1 1 , 4 9 0
Mean=732

Peak=4.1 Mean=1.6Peak=280 Mean=33RedHat Linux IA32,
gcc-3.3

64

Peak=6815 Mean=414Peak=4.7 Mean=1.5Peak=32 Mean=9.4Redhat Linux IA64,
gcc-3.4

64

Peak=4,999 Mean=298Peak=11.2 Mean=2.0Peak=37 Mean=10HPUX IA64, aCC
A.06.06

113
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Table 25. Errors In the Function tgamma_lower(a,z)

1x10-12 < a < 5x10-2

and

0.01*a < z < 100*a

0.5 < a < 100

and

0.01*a < z < 100*a

Platform and CompilerSignificand Size

Peak=3.6 Mean=0.78Peak=5.5 Mean=1.4Win32, Visual C++ 853

Peak=3.4 Mean=0.8Peak=402 Mean=79RedHat Linux IA32, gcc-3.364

Peak=3.4 Mean=0.78Peak=6.8 Mean=1.4Redhat Linux IA64, gcc-3.464

Peak=3.7 Mean=0.89Peak=6.1 Mean=1.8HPUX IA64, aCC A.06.06113

Table 26. Errors In the Function tgamma(a,z)

1x10-12 < a < 5x10-2

and

0.01*a < z < 100*a

0.5 < a < 100

and

0.01*a < z < 100*a

Platform and CompilerSignificand Size

Peak=1.8 Mean=0.6Peak=5.9 Mean=1.5Win32, Visual C++ 853

Peak=3.2 Mean=0.84Peak=596 Mean=116RedHat Linux IA32, gcc-3.364

Peak=3.2 Mean=0.8Peak=40.2 Mean=2.5Redhat Linux IA64, gcc-3.4.464

Peak=12.7 Mean=1.8Peak=364 Mean=17.6HPUX IA64, aCC A.06.06113

Testing

There are two sets of tests: spot tests compare values taken from Mathworld's online evaluator with this implementation to perform
a basic "sanity check". Accuracy tests use data generated at very high precision (using NTL's RR class set at 1000-bit precision)
using this implementation with a very high precision 60-term Lanczos approximation, and some but not all of the special case
handling disabled. This is less than satisfactory: an independent method should really be used, but apparently a complete lack of
such methods are available. We can't even use a deliberately naive implementation without special case handling since Legendre's
continued fraction (see below) is unstable for small a and z.

Implementation

These four functions share a common implementation since they are all related via:

1) Q(a, x) + P(a, x) = 1

2) Γ(a, z) + γ(a, z) = Γ(a)

3) 
Q(a, z) =

Γ(a, z)
Γ(a) , P(a, z) =

γ(a, z)
Γ(a)

The lower incomplete gamma is computed from its series representation:
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4) 

γ(a, x) = xae−x∑
k=0

∞
Γ(a)

Γ(a + k + 1)x
n = xae−x∑

k=0

∞
xn

ak+1
−

Or by subtraction of the upper integral from either Γ(a) or 1 when x - (1(3x)) > a and x > 1.1/.

The upper integral is computed from Legendre's continued fraction representation:

5) 

Γ(a, x) = xae−x

x − a + 1 +
ak

bk +
ak+1

bk+1 + …

; ak = k(a − k) ; bk = x − a + 2k + 1

When (x > 1.1) or by subtraction of the lower integral from either Γ(a) or 1 when x - (1(3x)) < a/.

For x < 1.1 computation of the upper integral is more complex as the continued fraction representation is unstable in this area.
However there is another series representation for the lower integral:

6) 

γ(a, x) = xa∑
k=0

∞
(−1)kxk
(a + k)k !

That lends itself to calculation of the upper integral via rearrangement to:

7) 

Γ(a, x) = tgamma1pm1 (a) − powm1 (x, a)
a + xa∑

k=1

∞
(−1)kxk

(a + k)k !

tgamma1pm1 (a) = Γ(a + 1) − 1
powm1 (x, a) = xa − 1

Refer to the documentation for powm1 and tgamma1pm1 for details of their implementation. Note however that the precision of
tgamma1pm1 is capped to either around 35 digits, or to that of the Lanczos approximation associated with type T - if there is one -
whichever of the two is the greater. That therefore imposes a similar limit on the precision of this function in this region.

For x < 1.1 the crossover point where the result is ~0.5 no longer occurs for x ~ y. Using x * 0.75 < a as the crossover criterion for
0.5 < x <= 1.1 keeps the maximum value computed (whether it's the upper or lower interval) to around 0.75. Likewise for x <= 0.5
then using -0.4 / log(x) < a as the crossover criterion keeps the maximum value computed to around 0.7 (whether it's the upper or
lower interval).

There are two special cases used when a is an integer or half integer, and the crossover conditions listed above indicate that we should
compute the upper integral Q. If a is an integer in the range 1 <= a < 30 then the following finite sum is used:

9) 
Q(a, x) = e−x∑

n=0

a−1
xn
n ! ; a ∈ ℕ+

While for half integers in the range 0.5 <= a < 30 then the following finite sum is used:

10) 

Q(a, x) = erfc ( x ) + e−x
πx∑

n=1

i
xn

(1 − 1
2)… (n − 1

2)
; a = i + 1

2 ; i ∈ ℕ+

These are both more stable and more efficient than the continued fraction alternative.

When the argument a is large, and x ~ a then the series (4) and continued fraction (5) above are very slow to converge. In this area
an expansion due to Temme is used:
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11) 
P(a, x) = 1

2 erfc ( y ) − e−y
2πaT(a, λ) ; λ ≤ 1

12) 
Q(a, x) = 1

2 erfc ( y ) + e−y
2πaT(a, λ) ; λ > 1

13) λ =
x
a , y = a(λ − 1 − lnλ) = − a(ln(1 + σ) − σ) ; σ = x − a

a

14) 

T(a, λ) = ∑
k=0

N

(∑
n=0

M
Ck
nzn)a−k ; z = sign (λ − 1) 2σ

The double sum is truncated to a fixed number of terms - to give a specific target precision - and evaluated as a polynomial-of-
polynomials. There are versions for up to 128-bit long double precision: types requiring greater precision than that do not use these
expansions. The coefficients Ck

n are computed in advance using the recurrence relations given by Temme. The zone where these
expansions are used is

(a > 20) && (a < 200) && fabs(x-a)/a < 0.4

And:

(a > 200) && (fabs(x-a)/a < 4.5/sqrt(a))

The latter range is valid for all types up to 128-bit long doubles, and is designed to ensure that the result is larger than 10-6, the first
range is used only for types up to 80-bit long doubles. These domains are narrower than the ones recommended by either Temme
or Didonato and Morris. However, using a wider range results in large and inexact (i.e. computed) values being passed to the exp
and erfc functions resulting in significantly larger error rates. In other words there is a fine trade off here between efficiency and
error. The current limits should keep the number of terms required by (4) and (5) to no more than ~20 at double precision.

For the normalised incomplete gamma functions, calculation of the leading power terms is central to the accuracy of the function.
For smallish a and x combining the power terms with the Lanczos approximation gives the greatest accuracy:

15) 

xae−x
Γ(a) = ex−a( x

a + g − 0.5)
a a + g − 0.5

e
1

L(a)

In the event that this causes underflow/overflow then the exponent can be reduced by a factor of a and brought inside the power
term.

When a and x are large, we end up with a very large exponent with a base near one: this will not be computed accurately via the pow
function, and taking logs simply leads to cancellation errors. The worst of the errors can be avoided by using:

16) 
ex−a( x

a + g − 0.5)
a

= e
(a log1pmx ( x−a−g+0.5a+g−0.5 )+ x(0.5−g)a+g−0.5 ) ; log1pmx (z) = ln(1 + z) − z

when a-x is small and a and x are large. There is still a subtraction and therefore some cancellation errors - but the terms are small
so the absolute error will be small - and it is absolute rather than relative error that counts in the argument to the exp function. Note
that for sufficiently large a and x the errors will still get you eventually, although this does delay the inevitable much longer than
other methods. Use of log(1+x)-x here is inspired by Temme (see references below).

References

• N. M. Temme, A Set of Algorithms for the Incomplete Gamma Functions, Probability in the Engineering and Informational Sciences,
8, 1994.
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• N. M. Temme, The Asymptotic Expansion of the Incomplete Gamma Functions, Siam J. Math Anal. Vol 10 No 4, July 1979,
p757.

• A. R. Didonato and A. H. Morris, Computation of the Incomplete Gamma Function Ratios and their Inverse. ACM TOMS, Vol
12, No 4, Dec 1986, p377.

• W. Gautschi, The Incomplete Gamma Functions Since Tricomi, In Tricomi's Ideas and Contemporary Applied Mathematics, Atti
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http://citeseer.ist.psu.edu/gautschi98incomplete.html

Incomplete Gamma Function Inverses

Synopsis

#include <boost/math/special_functions/gamma.hpp>

namespace boost{ namespace math{

template <class T1, class T2>
calculated-result-type gamma_q_inv(T1 a, T2 q);

template <class T1, class T2, class Policy>
calculated-result-type gamma_q_inv(T1 a, T2 q, const Policy&);

template <class T1, class T2>
calculated-result-type gamma_p_inv(T1 a, T2 p);

template <class T1, class T2, class Policy>
calculated-result-type gamma_p_inv(T1 a, T2 p, const Policy&);

template <class T1, class T2>
calculated-result-type gamma_q_inva(T1 x, T2 q);

template <class T1, class T2, class Policy>
calculated-result-type gamma_q_inva(T1 x, T2 q, const Policy&);

template <class T1, class T2>
calculated-result-type gamma_p_inva(T1 x, T2 p);

template <class T1, class T2, class Policy>
calculated-result-type gamma_p_inva(T1 x, T2 p, const Policy&);

}} // namespaces

Description

There are four incomplete gamma function inverses which either compute x given a and p or q, or else compute a given x and either
p or q.

The return type of these functions is computed using the result type calculation rules when T1 and T2 are different types, otherwise
the return type is simply T1.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.
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Tip

When people normally talk about the inverse of the incomplete gamma function, they are talking about inverting
on parameter x. These are implemented here as gamma_p_inv and gamma_q_inv, and are by far the most efficient
of the inverses presented here.

The inverse on the a parameter finds use in some statistical applications but has to be computed by rather brute
force numerical techniques and is consequently several times slower. These are implemented here as gamma_p_inva
and gamma_q_inva.

template <class T1, class T2>
calculated-result-type gamma_q_inv(T1 a, T2 q);

template <class T1, class T2, class Policy>
calculated-result-type gamma_q_inv(T1 a, T2 q, const Policy&);

Returns a value x such that: q = gamma_q(a, x);

Requires: a > 0 and 1 >= p,q >= 0.

template <class T1, class T2>
calculated-result-type gamma_p_inv(T1 a, T2 p);

template <class T1, class T2, class Policy>
calculated-result-type gamma_p_inv(T1 a, T2 p, const Policy&);

Returns a value x such that: p = gamma_p(a, x);

Requires: a > 0 and 1 >= p,q >= 0.

template <class T1, class T2>
calculated-result-type gamma_q_inva(T1 x, T2 q);

template <class T1, class T2, class Policy>
calculated-result-type gamma_q_inva(T1 x, T2 q, const Policy&);

Returns a value a such that: q = gamma_q(a, x);

Requires: x > 0 and 1 >= p,q >= 0.

template <class T1, class T2>
calculated-result-type gamma_p_inva(T1 x, T2 p);

template <class T1, class T2, class Policy>
calculated-result-type gamma_p_inva(T1 x, T2 p, const Policy&);

Returns a value a such that: p = gamma_p(a, x);

Requires: x > 0 and 1 >= p,q >= 0.

Accuracy

The accuracy of these functions doesn't vary much by platform or by the type T. Given that these functions are computed by iterative
methods, they are deliberately "detuned" so as not to be too accurate: it is in any case impossible for these function to be more accurate
than the regular forward incomplete gamma functions. In practice, the accuracy of these functions is very similar to that of gamma_p
and gamma_q functions.
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Testing

There are two sets of tests:

• Basic sanity checks attempt to "round-trip" from a and x to p or q and back again. These tests have quite generous tolerances: in
general both the incomplete gamma, and its inverses, change so rapidly that round tripping to more than a couple of significant
digits isn't possible. This is especially true when p or q is very near one: in this case there isn't enough "information content" in
the input to the inverse function to get back where you started.

• Accuracy checks using high precision test values. These measure the accuracy of the result, given exact input values.

Implementation

The functions gamma_p_inv and gamma_q_inv share a common implementation.

First an initial approximation is computed using the methodology described in:

A. R. Didonato and A. H. Morris, Computation of the Incomplete Gamma Function Ratios and their Inverse, ACM Trans. Math.
Software 12 (1986), 377-393.

Finally, the last few bits are cleaned up using Halley iteration, the iteration limit is set to 2/3 of the number of bits in T, which by
experiment is sufficient to ensure that the inverses are at least as accurate as the normal incomplete gamma functions. In testing, no
more than 3 iterations are required to produce a result as accurate as the forward incomplete gamma function, and in many cases
only one iteration is required.

The functions gamma_p_inva and gamma_q_inva also share a common implementation but are handled separately from gamma_p_inv
and gamma_q_inv.

An initial approximation for a is computed very crudely so that gamma_p(a, x) ~ 0.5, this value is then used as a starting point for
a generic derivative-free root finding algorithm. As a consequence, these two functions are rather more expensive to compute than
the gamma_p_inv or gamma_q_inv functions. Even so, the root is usually found in fewer than 10 iterations.

Derivative of the Incomplete Gamma Function

Synopsis

#include <boost/math/special_functions/gamma.hpp>

namespace boost{ namespace math{

template <class T1, class T2>
calculated-result-type gamma_p_derivative(T1 a, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type gamma_p_derivative(T1 a, T2 x, const Policy&);

}} // namespaces

Description

This function find some uses in statistical distributions: it implements the partial derivative with respect to x of the incomplete gamma
function.

gamma_p_derivative (a, x) = ∂
∂ xP(a, x) = e−xxa−1

Γ(a)

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.
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Note that the derivative of the function gamma_q can be obtained by negating the result of this function.

The return type of this function is computed using the result type calculation rules when T1 and T2 are different types, otherwise
the return type is simply T1.

Accuracy

Almost identical to the incomplete gamma function gamma_p: refer to the documentation for that function for more information.

Implementation

This function just expose some of the internals of the incomplete gamma function gamma_p: refer to the documentation for that
function for more information.
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Factorials and Binomial Coefficients

Factorial

Synopsis

#include <boost/math/special_functions/factorials.hpp>

namespace boost{ namespace math{

template <class T>
T factorial(unsigned i);

template <class T, class Policy>
T factorial(unsigned i, const Policy&);

template <class T>
T unchecked_factorial(unsigned i);

template <class T>
struct max_factorial;

}} // namespaces

Description

Important

The functions described below are templates where the template argument T CANNOT be deduced from the arguments
passed to the function. Therefore if you write something like:

boost::math::factorial(2);

You will get a (perhaps perplexing) compiler error, ususally indicating that there is no such function to be found.
Instead you need to specify the return type explicity and write:

boost::math::factorial<double>(2);

So that the return type is known.

Furthermore, the template argument must be a real-valued type such as float or double and not an integer type
- that would overflow far too easily for quite small values of parameter i!

The source code static_assert and comment just after the will be:

BOOST_STATIC_ASSERT(!boost::is_integral<T>::value);
// factorial<unsigned int>(n) is not implemented
// because it would overflow integral type T for too small n
// to be useful. Use instead a floating-point type,
// and convert to an unsigned type if essential, for example:
// unsigned int nfac = static_cast<unsigned int>(factorial<double>(n));
// See factorial documentation for more detail.
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template <class T>
T factorial(unsigned i);

template <class T, class Policy>
T factorial(unsigned i, const Policy&);

Returns i!.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

For i <= max_factorial<T>::value this is implemented by table lookup, for larger values of i, this function is implemented
in terms of tgamma.

If i is so large that the result can not be represented in type T, then calls overflow_error.

template <class T>
T unchecked_factorial(unsigned i);

Returns i!.

Internally this function performs table lookup of the result. Further it performs no range checking on the value of i: it is up to the
caller to ensure that i <= max_factorial<T>::value. This function is intended to be used inside inner loops that require fast
table lookup of factorials, but requires care to ensure that argument i never grows too large.

template <class T>
struct max_factorial
{

static const unsigned value = X;
};

This traits class defines the largest value that can be passed to unchecked_factorial. The member value can be used where
integral constant expressions are required: for example to define the size of further tables that depend on the factorials.

Accuracy

For arguments smaller than max_factorial<T>::value the result should be correctly rounded. For larger arguments the accuracy
will be the same as for tgamma.

Testing

Basic sanity checks and spot values to verify the data tables: the main tests for the tgamma function handle those cases already.

Implementation

The factorial function is table driven for small arguments, and is implemented in terms of tgamma for larger arguments.

Double Factorial

#include <boost/math/special_functions/factorials.hpp>
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namespace boost{ namespace math{

template <class T>
T double_factorial(unsigned i);

template <class T, class Policy>
T double_factorial(unsigned i, const Policy&);

}} // namespaces

Returns i!!.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

May return the result of overflow_error if the result is too large to represent in type T. The implementation is designed to be optimised
for small i where table lookup of i! is possible.

Important

The functions described above are templates where the template argument T can not be deduced from the arguments
passed to the function. Therefore if you write something like:

boost::math::double_factorial(2);

You will get a (possibly perplexing) compiler error, ususally indicating that there is no such function to be found.
Instead you need to specifiy the return type explicity and write:

boost::math::double_factorial<double>(2);

So that the return type is known. Further, the template argument must be a real-valued type such as float or double
and not an integer type - that would overflow far too easily!

The source code static_assert and comment just after the will be:

BOOST_STATIC_ASSERT(!boost::is_integral<T>::value);
// factorial<unsigned int>(n) is not implemented
// because it would overflow integral type T for too small n
// to be useful. Use instead a floating-point type,
// and convert to an unsigned type if essential, for example:
// unsigned int nfac = static_cast<unsigned int>(factorial<double>(n));
// See factorial documentation for more detail.

Note

The argument to double_factorial is type unsigned even though technically -1!! is defined.

Accuracy

The implementation uses a trivial adaptation of the factorial function, so error rates should be no more than a couple of epsilon
higher.

Testing

The spot tests for the double factorial use data generated by functions.wolfram.com.
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Implementation

The double factorial is implemented in terms of the factorial and gamma functions using the relations:

(2n)!! = 2n  * n!

(2n+1)!! = (2n+1)! / (2n  n!)

and

(2n-1)!! = Γ((2n+1)/2) * 2n  / sqrt(pi)

Rising Factorial

#include <boost/math/special_functions/factorials.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type rising_factorial(T x, int i);

template <class T, class Policy>
calculated-result-type rising_factorial(T x, int i, const Policy&);

}} // namespaces

Returns the rising factorial of x and i:

rising_factorial(x, i) = Γ(x + i) / Γ(x);

or

rising_factorial(x, i) = x(x+1)(x+2)(x+3)...(x+i-1)

Note that both x and i can be negative as well as positive.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

May return the result of overflow_error if the result is too large to represent in type T.

The return type of these functions is computed using the result type calculation rules: the type of the result is double if T is an integer
type, otherwise the type of the result is T.

Accuracy

The accuracy will be the same as the tgamma_delta_ratio function.

Testing

The spot tests for the rising factorials use data generated by functions.wolfram.com.

Implementation

Rising and falling factorials are implemented as ratios of gamma functions using tgamma_delta_ratio. Optimisations for small integer
arguments are handled internally by that function.

403

Special Functions

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Falling Factorial

#include <boost/math/special_functions/factorials.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type falling_factorial(T x, unsigned i);

template <class T, class Policy>
calculated-result-type falling_factorial(T x, unsigned i, const Policy&);

}} // namespaces

Returns the falling factorial of x and i:

falling_factorial(x, i) = x(x-1)(x-2)(x-3)...(x-i+1)

Note that this function is only defined for positive i, hence the unsigned second argument. Argument x can be either positive or
negative however.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

May return the result of overflow_error if the result is too large to represent in type T.

The return type of these functions is computed using the result type calculation rules: the type of the result is double if T is an integer
type, otherwise the type of the result is T.

Accuracy

The accuracy will be the same as the tgamma_delta_ratio function.

Testing

The spot tests for the falling factorials use data generated by functions.wolfram.com.

Implementation

Rising and falling factorials are implemented as ratios of gamma functions using tgamma_delta_ratio. Optimisations for small integer
arguments are handled internally by that function.

Binomial Coefficients

#include <boost/math/special_functions/binomial.hpp>

namespace boost{ namespace math{

template <class T>
T binomial_coefficient(unsigned n, unsigned k);

template <class T, class Policy>
T binomial_coefficient(unsigned n, unsigned k, const Policy&);

}} // namespaces

Returns the binomial coefficient: nCk.
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Requires k <= n.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

May return the result of overflow_error if the result is too large to represent in type T.

Important

The functions described above are templates where the template argument T can not be deduced from the arguments
passed to the function. Therefore if you write something like:

boost::math::binomial_coefficient(10, 2);

You will get a compiler error, ususally indicating that there is no such function to be found. Instead you need to
specifiy the return type explicity and write:

boost::math::binomial_coefficient<double>(10, 2);

So that the return type is known. Further, the template argument must be a real-valued type such as float or double
and not an integer type - that would overflow far too easily!

Accuracy

The accuracy will be the same as for the factorials for small arguments (i.e. no more than one or two epsilon), and the beta function
for larger arguments.

Testing

The spot tests for the binomial coefficients use data generated by functions.wolfram.com.

Implementation

Binomial coefficients are calculated using table lookup of factorials where possible using:

nCk = n! / (k!(n-k)!)

Otherwise it is implemented in terms of the beta function using the relations:

nCk = 1 / (k * beta(k, n-k+1))

and

nCk = 1 / ((n-k) * beta(k+1, n-k))
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Beta Functions

Beta

Synopsis

#include <boost/math/special_functions/beta.hpp>

namespace boost{ namespace math{

template <class T1, class T2>
calculated-result-type beta(T1 a, T2 b);

template <class T1, class T2, class Policy>
calculated-result-type beta(T1 a, T2 b, const Policy&);

}} // namespaces

Description

The beta function is defined by:

beta (a, b) = B(a, b) =
Γ(a)Γ(b)
Γ(a + b)
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beta

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

There are effectively two versions of this function internally: a fully generic version that is slow, but reasonably accurate, and a
much more efficient approximation that is used where the number of digits in the significand of T correspond to a certain Lanczos
approximation. In practice any built-in floating-point type you will encounter has an appropriate Lanczos approximation defined for
it. It is also possible, given enough machine time, to generate further Lanczos approximation's using the program
libs/math/tools/lanczos_generator.cpp.
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The return type of these functions is computed using the result type calculation rules when T1 and T2 are different types.

Accuracy

The following table shows peak errors for various domains of input arguments, along with comparisons to the GSL-1.9 and Cephes
libraries. Note that only results for the widest floating point type on the system are given as narrower types have effectively zero
error.

Table 27. Peak Errors In the Beta Function

Errors in range

1e-6 < a,b < 36

Errors in range

0.4 < a,b < 100

Platform and CompilerSignificand Size

Peak=10.7 Mean=2.6

(GSL Peak=12 Mean=2.0)

(Cephes=174)

Peak=99 Mean=22

(GSL Peak=1178 Mean=238)

(Cephes=1612)

Win32, Visual C++ 853

Peak=15.8 Mean=3.6Peak=112.1 Mean=26.9Red Hat Linux IA32, g++
3.4.4

64

Peak=12.2 Mean=3.6Peak=61.4 Mean=19.5Red Hat Linux IA64, g++
3.4.4

64

Peak=9.8 Mean=3.1Peak=42.03 Mean=13.94HPUX IA64, aCC A.06.06113

Note that the worst errors occur when a or b are large, and that when this is the case the result is very close to zero, so absolute errors
will be very small.

Testing

A mixture of spot tests of exact values, and randomly generated test data are used: the test data was computed using NTL::RR at
1000-bit precision.

Implementation

Traditional methods of evaluating the beta function either involve evaluating the gamma functions directly, or taking logarithms and
then exponentiating the result. However, the former is prone to overflows for even very modest arguments, while the latter is prone
to cancellation errors. As an alternative, if we regard the gamma function as a white-box containing the Lanczos approximation,
then we can combine the power terms:

beta (a, b) = ( a + g − 0.5
a + b + g − 0.5)a−0.5( b + g − 0.5

a + b + g − 0.5)b e
b + g − 0.5

L(a)L(b)
L(c)

which is almost the ideal solution, however almost all of the error occurs in evaluating the power terms when a or b are large. If we
assume that a > b then the larger of the two power terms can be reduced by a factor of b, which immediately cuts the maximum error
in half:

beta (a, b) = ( a + g − 0.5
a + b + g − 0.5)a−b−0.5((a + g − 0.5)(b + g − 0.5)

(a + b + g − 0.5)2 )b e
b + g − 0.5

L(a)L(b)
L(c)

This may not be the final solution, but it is very competitive compared to other implementation methods.
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The generic implementation - where no Lanczos approximation approximation is available - is implemented in a very similar way
to the generic version of the gamma function. Again in order to avoid numerical overflow the power terms that prefix the series and
continued fraction parts are collected together into:

elc−la−lb( lalc )
a( lblc )

b

where la, lb and lc are the integration limits used for a, b, and a+b.

There are a few special cases worth mentioning:

When a or b are less than one, we can use the recurrence relations:

beta (a, b) =
(a + b)

b beta (a, b + 1)

beta (a, b) =
(a + b)(a + b + 1)

ab beta (a + 1,b + 1)

to move to a more favorable region where they are both greater than 1.

In addition:

if a = 1 then: beta (a, b) = 1
b

Incomplete Beta Functions

Synopsis

#include <boost/math/special_functions/beta.hpp>

namespace boost{ namespace math{

template <class T1, class T2, class T3>
calculated-result-type ibeta(T1 a, T2 b, T3 x);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibeta(T1 a, T2 b, T3 x, const Policy&);

template <class T1, class T2, class T3>
calculated-result-type ibetac(T1 a, T2 b, T3 x);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibetac(T1 a, T2 b, T3 x, const Policy&);

template <class T1, class T2, class T3>
calculated-result-type beta(T1 a, T2 b, T3 x);

template <class T1, class T2, class T3, class Policy>
calculated-result-type beta(T1 a, T2 b, T3 x, const Policy&);

template <class T1, class T2, class T3>
calculated-result-type betac(T1 a, T2 b, T3 x);

template <class T1, class T2, class T3, class Policy>
calculated-result-type betac(T1 a, T2 b, T3 x, const Policy&);

}} // namespaces

408

Special Functions

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Description

There are four incomplete beta functions : two are normalised versions (also known as regularized beta functions) that return values
in the range [0, 1], and two are non-normalised and return values in the range [0, beta(a, b)]. Users interested in statistical applications
should use the normalised (or regularized ) versions (ibeta and ibetac).

All of these functions require 0 <= x <= 1.

The normalized functions ibeta and ibetac require a,b >= 0, and in addition that not both a and b are zero.

The functions beta and betac require a,b > 0.

The return type of these functions is computed using the result type calculation rules when T1, T2 and T3 are different types.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

template <class T1, class T2, class T3>
calculated-result-type ibeta(T1 a, T2 b, T3 x);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibeta(T1 a, T2 b, T3 x, const Policy&);

Returns the normalised incomplete beta function of a, b and x:

ibeta (a, b, x) = I x(a, b) = 1
beta (a, b)∫0

x

ta−1(1 − t)b−1dt
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ibeta

template <class T1, class T2, class T3>
calculated-result-type ibetac(T1 a, T2 b, T3 x);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibetac(T1 a, T2 b, T3 x, const Policy&);

Returns the normalised complement of the incomplete beta function of a, b and x:
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ibetac (a, b, x) = 1 − I x(a, b) = I1−x(b, a)

template <class T1, class T2, class T3>
calculated-result-type beta(T1 a, T2 b, T3 x);

template <class T1, class T2, class T3, class Policy>
calculated-result-type beta(T1 a, T2 b, T3 x, const Policy&);

Returns the full (non-normalised) incomplete beta function of a, b and x:

beta (a, b, x) = Bx(a, b) = ∫0
x
ta−1(1 − t)b−1dt

template <class T1, class T2, class T3>
calculated-result-type betac(T1 a, T2 b, T3 x);

template <class T1, class T2, class T3, class Policy>
calculated-result-type betac(T1 a, T2 b, T3 x, const Policy&);

Returns the full (non-normalised) complement of the incomplete beta function of a, b and x:

betac (a, b, x) = 1 − Bx(a, b) = B1−x(b, a)

Accuracy

The following tables give peak and mean relative errors in over various domains of a, b and x, along with comparisons to the GSL-
1.9 and Cephes libraries. Note that only results for the widest floating-point type on the system are given as narrower types have
effectively zero error.

Note that the results for 80 and 128-bit long doubles are noticeably higher than for doubles: this is because the wider exponent range
of these types allow more extreme test cases to be tested. For example expected results that are zero at double precision, may be finite
but exceptionally small with the wider exponent range of the long double types.
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Table 28. Errors In the Function ibeta(a,b,x)

1x10-5 < a,b < 1x105

and

0 < x < 1

0 < a,b < 100

and

0 < x < 1

0 < a,b < 10

and

0 < x < 1

Platform and Com-
piler

Significand Size

P e a k = 4 x 1 0 3

Mean=203

(GSL Peak~3x105

Mean~2x104  )

(Cephes Peak~5x105

Mean~2x104  )

Peak=108 Mean=16.6

(GSL Peak=690
Mean=151)

(Cephes Peak=1545
Mean=218)

Peak=42.3 Mean=2.9

(GSL Peak=682
Mean=32.5)

(Cephes Peak=42.7
Mean=7.0)

Win32, Visual C++ 853

P e a k ~ 5 x 1 0 4

Mean=3x103
Peak=270.7 Mean=26.8Peak=21.9 Mean=3.1Redhat Linux IA32,

gcc-3.4.4
64

P e a k ~ 5 x 1 0 4

Mean=3x103
Peak=112.9 Mean=14.3Peak=15.4 Mean=3.0Redhat Linux IA64,

gcc-3.4.4
64

P e a k ~ 2 x 1 0 4

Mean=1x103
Peak=88.1 Mean=14.3Peak=20.9 Mean=2.6HPUX IA64, aCC

A.06.06
113

Table 29. Errors In the Function ibetac(a,b,x)

1x10-5 < a,b < 1x105

and

0 < x < 1

0 < a,b < 100

and

0 < x < 1

0 < a,b < 10

and

0 < x < 1

Platform and Com-
piler

Significand Size

P e a k = 3 x 1 0 3

Mean=159
Peak=56.2 Mean=14Peak=13.9 Mean=2.0Win32, Visual C++ 853

P e a k ~ 9 x 1 0 4

Mean=3x103
Peak=221.7 Mean=25.8Peak=21.1 Mean=3.6Redhat Linux IA32,

gcc-3.4.4
64

P e a k ~ 9 x 1 0 4

Mean=3x103
Peak=73.9 Mean=11.9Peak=10.6 Mean=2.2Redhat Linux IA64,

gcc-3.4.4
64

P e a k ~ 3 x 1 0 4

Mean=1x103
Peak=117.7 Mean=15.1Peak=9.9 Mean=2.6HPUX IA64, aCC

A.06.06
113
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Table 30. Errors In the Function beta(a, b, x)

1x10-5 < a,b < 1x105

and

0 < x < 1

0 < a,b < 100

and

0 < x < 1

0 < a,b < 10

and

0 < x < 1

Platform and Com-
piler

Significand Size

Peak=635 Mean=25Peak=91 Mean=12.7Peak=39 Mean=2.9Win32, Visual C++ 853

P e a k ~ 7 x 1 0 4

Mean=3x103
Peak=180.7 Mean=30.1Peak=26 Mean=3.6Redhat Linux IA32,

gcc-3.4.4
64

P e a k ~ 7 x 1 0 4

Mean=3x103
Peak=67.1 Mean=13.4Peak=13 Mean=2.4Redhat Linux IA64,

gcc-3.4.4
64

P e a k ~ 6 x 1 0 4

Mean=3x103
Peak=49.8 Mean=9.1Peak=27.3 Mean=3.6HPUX IA64, aCC

A.06.06
113

Table 31. Errors In the Function betac(a,b,x)

1x10-5 < a,b < 1x105

and

0 < x < 1

0 < a,b < 100

and

0 < x < 1

0 < a,b < 10

and

0 < x < 1

Platform and Com-
piler

Significand Size

P e a k = 4 x 1 0 3

Mean=113
Peak=91 Mean=15Peak=12.0 Mean=2.4Win32, Visual C++ 853

P e a k ~ 1 x 1 0 5

Mean=5x103
Peak=295.1 Mean=33.9Peak=19.8 Mean=3.8Redhat Linux IA32,

gcc-3.4.4
64

P e a k ~ 1 x 1 0 5

Mean=5x103
Peak=63.5 Mean=13.6Peak=11.2 Mean=2.4Redhat Linux IA64,

gcc-3.4.4
64

P e a k ~ 9 x 1 0 4

Mean=5x103
Peak=39.8 Mean=8.9Peak=15.6 Mean=3.5HPUX IA64, aCC

A.06.06
113

Testing

There are two sets of tests: spot tests compare values taken from Mathworld's online function evaluator with this implementation:
they provide a basic "sanity check" for the implementation, with one spot-test in each implementation-domain (see implementation
notes below).

Accuracy tests use data generated at very high precision (with NTL RR class set at 1000-bit precision), using the "textbook" continued
fraction representation (refer to the first continued fraction in the implementation discussion below). Note that this continued fraction
is not used in the implementation, and therefore we have test data that is fully independent of the code.

Implementation

This implementation is closely based upon "Algorithm 708; Significant digit computation of the incomplete beta function ratios",
DiDonato and Morris, ACM, 1992.

All four of these functions share a common implementation: this is passed both x and y, and can return either p or q where these are
related by:
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p = 1 − q = I x(a, b) = 1 − I y(b, a) ; y = 1 − x

so at any point we can swap a for b, x for y and p for q if this results in a more favourable position. Generally such swaps are performed
so that we always compute a value less than 0.9: when required this can then be subtracted from 1 without undue cancellation error.

The following continued fraction representation is found in many textbooks but is not used in this implementation - it's both slower
and less accurate than the alternatives - however it is used to generate test data:

I x(a, b) = xayb

aB(a, b)( 1

1 +
d1

1 +
d2

1 + …

)
d2m+1 = −(a + m)(a + b + m)x

(a + 2m)(a + 2m + 1)

d2m = m(b − m)x
(a + 2m − 1)(a + 2m)

The following continued fraction is due to Didonato and Morris, and is used in this implementation when a and b are both greater
than 1:

I x(a, b) = xayb

B(a, b)( α1

β1 +
α2

β2 +
α3

β3 + …
)

α1 = 1 , αm+1 = (a + m − 1)(a + b + m − 1)m(b − m)x2

(a + 2m − 1)2

βm+1 = m + m(b − m)x
a + 2m − 1 +

(a + m)(a − (a + b)x + 1 + m(2 − x))
a + 2m + 1

For smallish b and x then a series representation can be used:

I x(a, b) = xa
B(a, b)∑

n=1

∞
(1 − b)n−xn
(a + n)n !

When b << a then the transition from 0 to 1 occurs very close to x = 1 and some care has to be taken over the method of computation,
in that case the following series representation is used:

I x(a, b) ≈ M∑n=0
∞ pnJn(b, u) ; a > b

M = H(b, u)Γ(a + b)

Γ(a)Tb

H(c, u) = e−uuc
Γ(a)

T = a + b − 1
2

u = −T ln(x)
p0 = 1

pn = (b − 1)
(2n − 1) ! +

1
n∑m=1

n−1 (mb − n)
(2m + 1) ! pn−m

Where Q(a,x) is an incomplete gamma function. Note that this method relies on keeping a table of all the pn  previously computed,
which does limit the precision of the method, depending upon the size of the table used.
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When a and b are both small integers, then we can relate the incomplete beta to the binomial distribution and use the following finite
sum:

I x(a, b) = ∑
i=k+1

N
N !

i !(N − i) !x
iy(N−i) ; k = a − 1,N = a + b − 1

Finally we can sidestep difficult areas, or move to an area with a more efficient means of computation, by using the duplication
formulae:

I x(a, b) = I x(a + n, b) + xa(1 − x)b∑ j=1

n Γ(a + b + j − 1)
Γ(b)Γ(a + j) x j−1

= I x(a + n, b) +
xa(1 − x)b

a ∑
j=0

n−1
(a + b) j

−

(a + 1) j
−x j

Bx(a, b) =
(a + b)n−

an−
Bx(a + n, b) +

xa(1 − x)b
a ∑

j=0

n−1

(a + b) j
−

(a + 1) j
−x j

The domains of a, b and x for which the various methods are used are identical to those described in the Didonato and Morris TOMS
708 paper.

The Incomplete Beta Function Inverses

#include <boost/math/special_functions/beta.hpp>
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namespace boost{ namespace math{

template <class T1, class T2, class T3>
calculated-result-type ibeta_inv(T1 a, T2 b, T3 p);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibeta_inv(T1 a, T2 b, T3 p, const Policy&);

template <class T1, class T2, class T3, class T4>
calculated-result-type ibeta_inv(T1 a, T2 b, T3 p, T4* py);

template <class T1, class T2, class T3, class T4, class Policy>
calculated-result-type ibeta_inv(T1 a, T2 b, T3 p, T4* py, const Policy&);

template <class T1, class T2, class T3>
calculated-result-type ibetac_inv(T1 a, T2 b, T3 q);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibetac_inv(T1 a, T2 b, T3 q, const Policy&);

template <class T1, class T2, class T3, class T4>
calculated-result-type ibetac_inv(T1 a, T2 b, T3 q, T4* py);

template <class T1, class T2, class T3, class T4, class Policy>
calculated-result-type ibetac_inv(T1 a, T2 b, T3 q, T4* py, const Policy&);

template <class T1, class T2, class T3>
calculated-result-type ibeta_inva(T1 b, T2 x, T3 p);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibeta_inva(T1 b, T2 x, T3 p, const Policy&);

template <class T1, class T2, class T3>
calculated-result-type ibetac_inva(T1 b, T2 x, T3 q);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibetac_inva(T1 b, T2 x, T3 q, const Policy&);

template <class T1, class T2, class T3>
calculated-result-type ibeta_invb(T1 a, T2 x, T3 p);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibeta_invb(T1 a, T2 x, T3 p, const Policy&);

template <class T1, class T2, class T3>
calculated-result-type ibetac_invb(T1 a, T2 x, T3 q);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibetac_invb(T1 a, T2 x, T3 q, const Policy&);

}} // namespaces

Description

There are six incomplete beta function inverses which allow you solve for any of the three parameters to the incomplete beta, starting
from either the result of the incomplete beta (p) or its complement (q).

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.
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Tip

When people normally talk about the inverse of the incomplete beta function, they are talking about inverting on
parameter x. These are implemented here as ibeta_inv and ibetac_inv, and are by far the most efficient of the inverses
presented here.

The inverses on the a and b parameters find use in some statistical applications, but have to be computed by rather
brute force numerical techniques and are consequently several times slower. These are implemented here as ibeta_inva
and ibeta_invb, and complement versions ibetac_inva and ibetac_invb.

The return type of these functions is computed using the result type calculation rules when called with arguments T1...TN of different
types.

template <class T1, class T2, class T3>
calculated-result-type ibeta_inv(T1 a, T2 b, T3 p);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibeta_inv(T1 a, T2 b, T3 p, const Policy&);

template <class T1, class T2, class T3, class T4>
calculated-result-type ibeta_inv(T1 a, T2 b, T3 p, T4* py);

template <class T1, class T2, class T3, class T4, class Policy>
calculated-result-type ibeta_inv(T1 a, T2 b, T3 p, T4* py, const Policy&);

Returns a value x such that: p = ibeta(a, b, x); and sets *py = 1 - x when the py parameter is provided and is non-null.
Note that internally this function computes whichever is the smaller of x and 1-x, and therefore the value assigned to *py is free
from cancellation errors. That means that even if the function returns 1, the value stored in *py may be non-zero, albeit very small.

Requires: a,b > 0 and 0 <= p <= 1.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

template <class T1, class T2, class T3>
calculated-result-type ibetac_inv(T1 a, T2 b, T3 q);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibetac_inv(T1 a, T2 b, T3 q, const Policy&);

template <class T1, class T2, class T3, class T4>
calculated-result-type ibetac_inv(T1 a, T2 b, T3 q, T4* py);

template <class T1, class T2, class T3, class T4, class Policy>
calculated-result-type ibetac_inv(T1 a, T2 b, T3 q, T4* py, const Policy&);

Returns a value x such that: q = ibetac(a, b, x); and sets *py = 1 - x when the py parameter is provided and is non-null.
Note that internally this function computes whichever is the smaller of x and 1-x, and therefore the value assigned to *py is free
from cancellation errors. That means that even if the function returns 1, the value stored in *py may be non-zero, albeit very small.

Requires: a,b > 0 and 0 <= q <= 1.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.
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template <class T1, class T2, class T3>
calculated-result-type ibeta_inva(T1 b, T2 x, T3 p);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibeta_inva(T1 b, T2 x, T3 p, const Policy&);

Returns a value a such that: p = ibeta(a, b, x);

Requires: b > 0, 0 < x < 1 and 0 <= p <= 1.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

template <class T1, class T2, class T3>
calculated-result-type ibetac_inva(T1 b, T2 x, T3 p);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibetac_inva(T1 b, T2 x, T3 p, const Policy&);

Returns a value a such that: q = ibetac(a, b, x);

Requires: b > 0, 0 < x < 1 and 0 <= q <= 1.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

template <class T1, class T2, class T3>
calculated-result-type ibeta_invb(T1 b, T2 x, T3 p);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibeta_invb(T1 b, T2 x, T3 p, const Policy&);

Returns a value b such that: p = ibeta(a, b, x);

Requires: a > 0, 0 < x < 1 and 0 <= p <= 1.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

template <class T1, class T2, class T3>
calculated-result-type ibetac_invb(T1 b, T2 x, T3 p);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibetac_invb(T1 b, T2 x, T3 p, const Policy&);

Returns a value b such that: q = ibetac(a, b, x);

Requires: a > 0, 0 < x < 1 and 0 <= q <= 1.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Accuracy

The accuracy of these functions should closely follow that of the regular forward incomplete beta functions. However, note that in
some parts of their domain, these functions can be extremely sensitive to changes in input, particularly when the argument p (or it's
complement q) is very close to 0 or 1.
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Testing

There are two sets of tests:

• Basic sanity checks attempt to "round-trip" from a, b and x to p or q and back again. These tests have quite generous tolerances:
in general both the incomplete beta and its inverses change so rapidly, that round tripping to more than a couple of significant digits
isn't possible. This is especially true when p or q is very near one: in this case there isn't enough "information content" in the input
to the inverse function to get back where you started.

• Accuracy checks using high precision test values. These measure the accuracy of the result, given exact input values.

Implementation of ibeta_inv and ibetac_inv

These two functions share a common implementation.

First an initial approximation to x is computed then the last few bits are cleaned up using Halley iteration. The iteration limit is set
to 1/2 of the number of bits in T, which by experiment is sufficient to ensure that the inverses are at least as accurate as the normal
incomplete beta functions. Up to 5 iterations may be required in extreme cases, although normally only one or two are required.
Further, the number of iterations required decreases with increasing a and b (which generally form the more important use cases).

The initial guesses used for iteration are obtained as follows:

Firstly recall that:

p = 1 − q = I x(a, b) = 1 − I y(b, a) ; y = 1 − x

We may wish to start from either p or q, and to calculate either x or y. In addition at any stage we can exchange a for b, p for q, and
x for y if it results in a more manageable problem.

For a+b >= 5 the initial guess is computed using the methods described in:

Asymptotic Inversion of the Incomplete Beta Function, by N. M. Temme. Journal of Computational and Applied Mathematics 41
(1992) 145-157.

The nearly symmetrical case (section 2 of the paper) is used for

I x(a, a + β) ; β < a

and involves solving the inverse error function first. The method is accurate to at least 2 decimal digits when a = 5 rising to at least
8 digits when a = 105.

The general error function case (section 3 of the paper) is used for

I x(a, b) ; 0.2 ≤ a
a + b ≤ 0.8

and again expresses the inverse incomplete beta in terms of the inverse of the error function. The method is accurate to at least 2
decimal digits when a+b = 5 rising to 11 digits when a+b = 105. However, when the result is expected to be very small, and when
a+b is also small, then its accuracy tails off, in this case when p1/a < 0.0025 then it is better to use the following as an initial estimate:

I x
−1(a, b) ≈ (apB(a, b))

1a

Finally the for all other cases where a+b > 5 the method of section 4 of the paper is used. This expresses the inverse incomplete
beta in terms of the inverse of the incomplete gamma function, and is therefore significantly more expensive to compute than the
other cases. However the method is accurate to at least 3 decimal digits when a = 5 rising to at least 10 digits when a = 105. This
method is limited to a > b, and therefore we need to perform an exchange a for b, p for q and x for y when this is not the case. In
addition when p is close to 1 the method is inaccurate should we actually want y rather than x as output. Therefore when q is small
(q1/p < 10-3) we use:
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y = 1 − I x
−1(a, b) ≈ (bqB(a, b))

1
b

which is both cheaper to compute than the full method, and a more accurate estimate on q.

When a and b are both small there is a distinct lack of information in the literature on how to proceed. I am extremely grateful to
Prof Nico Temme who provided the following information with a great deal of patience and explanation on his part. Any errors that
follow are entirely my own, and not Prof Temme's.

When a and b are both less than 1, then there is a point of inflection in the incomplete beta at point xs = (1 - a) / (2 - a -

b). Therefore if p > Ix(a,b) we swap a for b, p for q and x for y, so that now we always look for a point x below the point of in-
flection xs, and on a convex curve. An initial estimate for x is made with:

x0 =
xg

1 + xg
; xg = (apB(a, b))

1a

which is provably below the true value for x: Newton iteration will therefore smoothly converge on x without problems caused by
overshooting etc.

When a and b are both greater than 1, but a+b is too small to use the other methods mentioned above, we proceed as follows. Observe
that there is a point of inflection in the incomplete beta at xs = (1 - a) / (2 - a - b). Therefore if p > Ix(a,b) we swap
a for b, p for q and x for y, so that now we always look for a point x below the point of inflection xs, and on a concave curve. An
initial estimate for x is made with:

I x
−1(a, b) ≈ (apB(a, b))

1a

which can be improved somewhat to:

I x
−1(a, b) ≈ (apB(a, b))

1a + b − 1
a + 1(apB(a, b))

2a +
(b − 1)(a2 + 3ba − a + 5b − 4)

2(a + 1)2(a + 2)
(apB(a, b))

3
a

when b and x are both small (I've used b < a and x < 0.2). This actually under-estimates x, which drops us on the wrong side of x
for Newton iteration to converge monotonically. However, use of higher derivatives and Halley iteration keeps everything under
control.

The final case to be considered if when one of a and b is less than or equal to 1, and the other greater that 1. Here, if b < a we swap
a for b, p for q and x for y. Now the curve of the incomplete beta is convex with no points of inflection in [0,1]. For small p, x can
be estimated using

I x
−1(a, b) ≈ (apB(a, b))

1a

which under-estimates x, and drops us on the right side of the true value for Newton iteration to converge monotonically. However,
when p is large this can quite badly underestimate x. This is especially an issue when we really want to find y, in which case this
method can be an arbitrary number of order of magnitudes out, leading to very poor convergence during iteration.

Things can be improved by considering the incomplete beta as a distorted quarter circle, and estimating y from:

y = (1 − pbB(a,b))
1
b

This doesn't guarantee that we will drop in on the right side of x for monotonic convergence, but it does get us close enough that
Halley iteration rapidly converges on the true value.

Implementation of inverses on the a and b parameters

These four functions share a common implementation.
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First an initial approximation is computed for a or b: where possible this uses a Cornish-Fisher expansion for the negative binomial
distribution to get within around 1 of the result. However, when a or b are very small the Cornish Fisher expansion is not usable, in
this case the initial approximation is chosen so that Ix(a, b) is near the middle of the range [0,1].

This initial guess is then used as a starting value for a generic root finding algorithm. The algorithm converges rapidly on the root
once it has been bracketed, but bracketing the root may take several iterations. A better initial approximation for a or b would improve
these functions quite substantially: currently 10-20 incomplete beta function invocations are required to find the root.

Derivative of the Incomplete Beta Function

Synopsis

#include <boost/math/special_functions/beta.hpp>

namespace boost{ namespace math{

template <class T1, class T2, class T3>
calculated-result-type ibeta_derivative(T1 a, T2 b, T3 x);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibeta_derivative(T1 a, T2 b, T3 x, const Policy&);

}} // namespaces

Description

This function finds some uses in statistical distributions: it computes the partial derivative with respect to x of the incomplete beta
function ibeta.

ibeta_derivative (a, b, x) = ∂
∂ x I x(a, b) =

(1 − x)b−1xa−1
B(a, b)

The return type of this function is computed using the result type calculation rules when T1, T2 and T3 are different types.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Accuracy

Almost identical to the incomplete beta function ibeta.

Implementation

This function just expose some of the internals of the incomplete beta function ibeta: refer to the documentation for that function for
more information.
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Error Functions

Error Functions

Synopsis

#include <boost/math/special_functions/erf.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type erf(T z);

template <class T, class Policy>
calculated-result-type erf(T z, const Policy&);

template <class T>
calculated-result-type erfc(T z);

template <class T, class Policy>
calculated-result-type erfc(T z, const Policy&);

}} // namespaces

The return type of these functions is computed using the result type calculation rules: the return type is double if T is an integer
type, and T otherwise.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Description

template <class T>
calculated-result-type erf(T z);

template <class T, class Policy>
calculated-result-type erf(T z, const Policy&);

Returns the error function erf of z:

erf (z) = 2
π ∫0

z

e−t
2
dt
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template <class T>
calculated-result-type erfc(T z);

template <class T, class Policy>
calculated-result-type erfc(T z, const Policy&);

Returns the complement of the error function of z:

erfc (z) = 1 − erf (z)
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Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types, along
with comparisons to the GSL-1.9, GNU C Lib, HP-UX C Library and Cephes libraries. Unless otherwise specified any floating point
type that is narrower than the one shown will have effectively zero error.
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Table 32. Errors In the Function erf(z)

z > 80.5 < z < 8z < 0.5Platform and Com-
piler

Significand Size

Peak=0 Mean=0

GSL Peak=0 Mean=0

Cephes Peak=0 Mean=0

Peak=0.9 Mean=0.09

GSL Peak=2.3
Mean=0.3

Cephes Peak=1.3
Mean=0.2

Peak=0 Mean=0

GSL Peak=2.0
Mean=0.3

Cephes Peak=1.1
Mean=0.7

Win32, Visual C++ 853

Peak=0 Mean=0

GNU C Lib Peak=0
Mean=0

Peak=0.9 Mean=0.2

GNU C Lib Peak=0.9
Mean=0.07

Peak=0.7 Mean=0.07

GNU C Lib Peak=0.9
Mean=0.2

RedHat Linux IA32,
gcc-3.3

64

Peak=0 Mean=0

GNU C Lib Peak=0
Mean=0

Peak=0.9 Mean=0.1

GNU C Lib Peak=0.5
Mean=0.03

Peak=0.7 Mean=0.07

GNU C Lib Peak=0
Mean=0

Redhat Linux IA64,
gcc-3.4.4

64

Peak=0 Mean=0

HP-UX C Library Lib
Peak=0 Mean=0

Peak=0.9 Mean=0.1

HP-UX C Library Lib
Peak=0.5 Mean=0.02

Peak=0.8 Mean=0.1

HP-UX C Library Lib
Peak=0.9 Mean=0.2

HPUX IA64, aCC
A.06.06

113

Table 33. Errors In the Function erfc(z)

z > 80.5 < z < 8z < 0.5Platform and Com-
piler

Significand Size

Peak=1.0 Mean=0.2

GSL Peak=3.9
Mean=0.4

Cephes Peak=2.7
Mean=0.4

Peak=0.99 Mean=0.3

GSL Peak=2.6
Mean=0.6

Cephes Peak=3.6
Mean=0.7

Peak=0.7 Mean=0.06

GSL Peak=1.0
Mean=0.4

Cephes Peak=0.7
Mean=0.06

Win32, Visual C++ 853

Peak=1.6 Mean=0.4

GNU C Lib Peak=1.3
Mean=0.4

Peak=1.4 Mean=0.3

GNU C Lib Peak=1.3
Mean=0.3

Peak=0 Mean=0

GNU C Lib Peak=0
Mean=0

RedHat Linux IA32,
gcc-3.3

64

Peak=1.5 Mean=0.4

GNU C Lib Peak=0
Mean=0

Peak=1.4 Mean=0.3

GNU C Lib Peak=0
Mean=0

Peak=0 Mean=0

GNU C Lib Peak=0
Mean=0

Redhat Linux IA64,
gcc-3.4.4

64

Peak=1.6 Mean=0.4

HP-UX C Library
Peak=0.9 Mean=0.1

Peak=1.5 Mean=0.3

HP-UX C Library
Peak=0.9 Mean=0.08

Peak=0 Mean=0

HP-UX C Library
Peak=0 Mean=0

HPUX IA64, aCC
A.06.06

113
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Testing

The tests for these functions come in two parts: basic sanity checks use spot values calculated using Mathworld's online evaluator,
while accuracy checks use high-precision test values calculated at 1000-bit precision with NTL::RR and this implementation. Note
that the generic and type-specific versions of these functions use differing implementations internally, so this gives us reasonably
independent test data. Using our test data to test other "known good" implementations also provides an additional sanity check.

Implementation

All versions of these functions first use the usual reflection formulas to make their arguments positive:

erf(-z) = 1 - erf(z);

erfc(-z) = 2 - erfc(z); // preferred when -z < -0.5

erfc(-z) = 1 + erf(z); // preferred when -0.5 <= -z < 0

The generic versions of these functions are implemented in terms of the incomplete gamma function.

When the significand (mantissa) size is recognised (currently for 53, 64 and 113-bit reals, plus single-precision 24-bit handled via
promotion to double) then a series of rational approximations devised by JM are used.

For z <= 0.5 then a rational approximation to erf is used, based on the observation that erf is an odd function and therefore erf is
calculated using:

erf(z) = z * (C + R(z*z));

where the rational approximation R(z*z) is optimised for absolute error: as long as its absolute error is small enough compared to
the constant C, then any round-off error incurred during the computation of R(z*z) will effectively disappear from the result. As a
result the error for erf and erfc in this region is very low: the last bit is incorrect in only a very small number of cases.

For z > 0.5 we observe that over a small interval [a, b) then:

erfc(z) * exp(z*z) * z ~ c

for some constant c.

Therefore for z > 0.5 we calculate erfc using:

erfc(z) = exp(-z*z) * (C + R(z - B)) / z;

Again R(z - B) is optimised for absolute error, and the constant C is the average of erfc(z) * exp(z*z) * z taken at the endpoints
of the range. Once again, as long as the absolute error in R(z - B) is small compared to c then c + R(z - B) will be correctly
rounded, and the error in the result will depend only on the accuracy of the exp function. In practice, in all but a very small number
of cases, the error is confined to the last bit of the result. The constant B is chosen so that the left hand end of the range of the rational
approximation is 0.

For large z over a range [a, +∞] the above approximation is modified to:

erfc(z) = exp(-z*z) * (C + R(1 / z)) / z;
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Error Function Inverses

Synopsis

#include <boost/math/special_functions/erf.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type erf_inv(T p);

template <class T, class Policy>
calculated-result-type erf_inv(T p, const Policy&);

template <class T>
calculated-result-type erfc_inv(T p);

template <class T, class Policy>
calculated-result-type erfc_inv(T p, const Policy&);

}} // namespaces

The return type of these functions is computed using the result type calculation rules: the return type is double if T is an integer
type, and T otherwise.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Description

template <class T>
calculated-result-type erf_inv(T z);

template <class T, class Policy>
calculated-result-type erf_inv(T z, const Policy&);

Returns the inverse error function of z, that is a value x such that:

p = erf(x);
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template <class T>
calculated-result-type erfc_inv(T z);

template <class T, class Policy>
calculated-result-type erfc_inv(T z, const Policy&);

Returns the inverse of the complement of the error function of z, that is a value x such that:

p = erfc(x);
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Accuracy

For types up to and including 80-bit long doubles the approximations used are accurate to less than ~ 2 epsilon. For higher precision
types these functions have the same accuracy as the forward error functions.
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Testing

There are two sets of tests:

• Basic sanity checks attempt to "round-trip" from x to p and back again. These tests have quite generous tolerances: in general both
the error functions and their inverses change so rapidly in some places that round tripping to more than a couple of significant
digits isn't possible. This is especially true when p is very near one: in this case there isn't enough "information content" in the
input to the inverse function to get back where you started.

• Accuracy checks using high-precision test values. These measure the accuracy of the result, given exact input values.

Implementation

These functions use a rational approximation devised by JM to calculate an initial approximation to the result that is accurate to
~10-19, then only if that has insufficient accuracy compared to the epsilon for T, do we clean up the result using Halley iteration.

Constructing rational approximations to the erf/erfc functions is actually surprisingly hard, especially at high precision. For this
reason no attempt has been made to achieve 10-34  accuracy suitable for use with 128-bit reals.

In the following discussion, p is the value passed to erf_inv, and q is the value passed to erfc_inv, so that p = 1 - q and q = 1 - p and
in both cases we want to solve for the same result x.

For p < 0.5 the inverse erf function is reasonably smooth and the approximation:

x = p(p + 10)(Y + R(p))

Gives a good result for a constant Y, and R(p) optimised for low absolute error compared to |Y|.

For q < 0.5 things get trickier, over the interval 0.5 > q > 0.25 the following approximation works well:

x = sqrt(-2log(q)) / (Y + R(q))

While for q < 0.25, let

z = sqrt(-log(q))

Then the result is given by:

x = z(Y + R(z - B))

As before Y is a constant and the rational function R is optimised for low absolute error compared to |Y|. B is also a constant: it is
the smallest value of z for which each approximation is valid. There are several approximations of this form each of which reaches
a little further into the tail of the erfc function (at long double precision the extended exponent range compared to double means
that the tail goes on for a very long way indeed).

427

Special Functions

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/Simple_rational_approximation
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Polynomials

Legendre (and Associated) Polynomials

Synopsis

#include <boost/math/special_functions/legendre.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type legendre_p(int n, T x);

template <class T, class Policy>
calculated-result-type legendre_p(int n, T x, const Policy&);

template <class T>
calculated-result-type legendre_p(int n, int m, T x);

template <class T, class Policy>
calculated-result-type legendre_p(int n, int m, T x, const Policy&);

template <class T>
calculated-result-type legendre_q(unsigned n, T x);

template <class T, class Policy>
calculated-result-type legendre_q(unsigned n, T x, const Policy&);

template <class T1, class T2, class T3>
calculated-result-type legendre_next(unsigned l, T1 x, T2 Pl, T3 Plm1);

template <class T1, class T2, class T3>
calculated-result-type legendre_next(unsigned l, unsigned m, T1 x, T2 Pl, T3 Plm1);

}} // namespaces

The return type of these functions is computed using the result type calculation rules: note than when there is a single template argument
the result is the same type as that argument or double if the template argument is an integer type.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Description

template <class T>
calculated-result-type legendre_p(int l, T x);

template <class T, class Policy>
calculated-result-type legendre_p(int l, T x, const Policy&);

Returns the Legendre Polynomial of the first kind:

legendre_p (l, x) = Pl(x) = 1
2ll !

dl

dxl
(x2 − 1)l ; | x | ≤ 1

Requires -1 <= x <= 1, otherwise returns the result of domain_error.
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Negative orders are handled via the reflection formula:

P-l-1(x) = Pl(x)

The following graph illustrates the behaviour of the first few Legendre Polynomials:
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Legendre Polynomials

template <class T>
calculated-result-type legendre_p(int l, int m, T x);

template <class T, class Policy>
calculated-result-type legendre_p(int l, int m, T x, const Policy&);

Returns the associated Legendre polynomial of the first kind:

legendre_p (l, m, x) = Pl
m(x) = (−1)m(1 − x2)

m
2 d

mPl(x)
dxm

Requires -1 <= x <= 1, otherwise returns the result of domain_error.

Negative values of l and m are handled via the identity relations:

Pl
−m(x) = (−1)m (l − m) !

(l + m) !Pl
m(x)

P−l−1
m (x) = Pl

m(x)
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Caution

The definition of the associated Legendre polynomial used here includes a leading Condon-Shortley phase term of
(-1)m. This matches the definition given by Abramowitz and Stegun (8.6.6) and that used by Mathworld and Math-
ematica's LegendreP function. However, uses in the literature do not always include this phase term, and strangely
the specification for the associated Legendre function in the C++ TR1 (assoc_legendre) also omits it, in spite of
stating that it uses Abramowitz and Stegun as the final arbiter on these matters.

See:

Weisstein, Eric W. "Legendre Polynomial." From MathWorld--A Wolfram Web Resource.

Abramowitz, M. and Stegun, I. A. (Eds.). "Legendre Functions" and "Orthogonal Polynomials." Ch. 22 in Chs. 8
and 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, pp. 331-339 and 771-802, 1972.

template <class T>
calculated-result-type legendre_q(unsigned n, T x);

template <class T, class Policy>
calculated-result-type legendre_q(unsigned n, T x, const Policy&);

Returns the value of the Legendre polynomial that is the second solution to the Legendre differential equation, for example:

legendre_q (0,x) = Q0(x) = 1
2 ln(1 + x

1 − x)
legendre_q (1,x) = Q1(x) = x

2 ln(1 + x
1 − x) − 1

Requires -1 <= x <= 1, otherwise domain_error is called.

The following graph illustrates the first few Legendre functions of the second kind:
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Legendre Polynomials of the Second Kind

template <class T1, class T2, class T3>
calculated-result-type legendre_next(unsigned l, T1 x, T2 Pl, T3 Plm1);
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Implements the three term recurrence relation for the Legendre polynomials, this function can be used to create a sequence of values
evaluated at the same x, and for rising l. This recurrence relation holds for Legendre Polynomials of both the first and second kinds.

Pl+1(x) =
(2l + 1)xPl(x) − lPl−1(x)

(l + 1)

For example we could produce a vector of the first 10 polynomial values using:

double x = 0.5; // Abscissa value
vector<double> v;
v.push_back(legendre_p(0, x));
v.push_back(legendre_p(1, x));
for(unsigned l = 1; l < 10; ++l)

v.push_back(legendre_next(l, x, v[l], v[l-1]));
// Double check values:
for(unsigned l = 1; l < 10; ++l)

assert(v[l] == legendre_p(l, x));

Formally the arguments are:

l The degree of the last polynomial calculated.

x The abscissa value

Pl The value of the polynomial evaluated at degree l.

Plm1 The value of the polynomial evaluated at degree l-1.

template <class T1, class T2, class T3>
calculated-result-type legendre_next(unsigned l, unsigned m, T1 x, T2 Pl, T3 Plm1);

Implements the three term recurrence relation for the Associated Legendre polynomials, this function can be used to create a sequence
of values evaluated at the same x, and for rising l.

Pl+1
m (x) =

(2l + 1)xPl
m(x) − (l + m + 1)Pl−1

m (x)
(l − m + 1)

For example we could produce a vector of the first m+10 polynomial values using:

double x = 0.5; // Abscissa value
int m = 10; // order
vector<double> v;
v.push_back(legendre_p(m, m, x));
v.push_back(legendre_p(1 + m, m, x));
for(unsigned l = 1; l < 10; ++l)

v.push_back(legendre_next(l + 10, m, x, v[l], v[l-1]));
// Double check values:
for(unsigned l = 1; l < 10; ++l)

assert(v[l] == legendre_p(10 + l, m, x));

Formally the arguments are:

l The degree of the last polynomial calculated.

m The order of the Associated Polynomial.

x The abscissa value
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Pl The value of the polynomial evaluated at degree l.

Plm1 The value of the polynomial evaluated at degree l-1.

Accuracy

The following table shows peak errors (in units of epsilon) for various domains of input arguments. Note that only results for the
widest floating point type on the system are given as narrower types have effectively zero error.

Table 34. Peak Errors In the Legendre P Function

Errors in range

20 < l < 120

Errors in range

0 < l < 20

Platform and CompilerSignificand Size

Peak=300 Mean=33Peak=211 Mean=20Win32, Visual C++ 853

Peak=700 Mean=60Peak=70 Mean=10SUSE Linux IA32, g++ 4.164

Peak=700 Mean=60Peak=70 Mean=10Red Hat Linux IA64, g++
3.4.4

64

Peak=292 Mean=41Peak=35 Mean=6HPUX IA64, aCC A.06.06113

Table 35. Peak Errors In the Associated Legendre P Function

Errors in range

0 < l < 20

Platform and CompilerSignificand Size

Peak=1200 Mean=7Win32, Visual C++ 853

Peak=80 Mean=5SUSE Linux IA32, g++ 4.164

Peak=80 Mean=5Red Hat Linux IA64, g++ 3.4.464

Peak=42 Mean=4HPUX IA64, aCC A.06.06113

Table 36. Peak Errors In the Legendre Q Function

Errors in range

20 < l < 120

Errors in range

0 < l < 20

Platform and CompilerSignificand Size

Peak=4600 Mean=370Peak=50 Mean=7Win32, Visual C++ 853

Peak=6000 Mean=480Peak=51 Mean=8SUSE Linux IA32, g++ 4.164

Peak=6000 Mean=480Peak=51 Mean=8Red Hat Linux IA64, g++
3.4.4

64

Peak=1700 Mean=140Peak=90 Mean=10HPUX IA64, aCC A.06.06113

Note that the worst errors occur when the order increases, values greater than ~120 are very unlikely to produce sensible results,
especially in the associated polynomial case when the degree is also large. Further the relative errors are likely to grow arbitrarily
large when the function is very close to a root.
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No comparisons to other libraries are shown here: there appears to be only one viable implementation method for these functions,
the comparisons to other libraries that have been run show identical error rates to those given here.

Testing

A mixture of spot tests of values calculated using functions.wolfram.com, and randomly generated test data are used: the test data
was computed using NTL::RR at 1000-bit precision.

Implementation

These functions are implemented using the stable three term recurrence relations. These relations guarentee low absolute error but
cannot guarentee low relative error near one of the roots of the polynomials.

Laguerre (and Associated) Polynomials

Synopsis

#include <boost/math/special_functions/laguerre.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type laguerre(unsigned n, T x);

template <class T, class Policy>
calculated-result-type laguerre(unsigned n, T x, const Policy&);

template <class T>
calculated-result-type laguerre(unsigned n, unsigned m, T x);

template <class T, class Policy>
calculated-result-type laguerre(unsigned n, unsigned m, T x, const Policy&);

template <class T1, class T2, class T3>
calculated-result-type laguerre_next(unsigned n, T1 x, T2 Ln, T3 Lnm1);

template <class T1, class T2, class T3>
calculated-result-type laguerre_next(unsigned n, unsigned m, T1 x, T2 Ln, T3 Lnm1);

}} // namespaces

Description

The return type of these functions is computed using the result type calculation rules: note than when there is a single template argument
the result is the same type as that argument or double if the template argument is an integer type.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

template <class T>
calculated-result-type laguerre(unsigned n, T x);

template <class T, class Policy>
calculated-result-type laguerre(unsigned n, T x, const Policy&);

Returns the value of the Laguerre Polynomial of order n at point x:
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laguerre (n, x) = Ln(x) = ex
n !

dn
dxn(x

ne−x)

The following graph illustrates the behaviour of the first few Laguerre Polynomials:
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Laguerre Polynomials

template <class T>
calculated-result-type laguerre(unsigned n, unsigned m, T x);

template <class T, class Policy>
calculated-result-type laguerre(unsigned n, unsigned m, T x, const Policy&);

Returns the Associated Laguerre polynomial of degree n and order m at point x:

laguerre (n, m, x) = Ln
m(x) = (−1)m dm

dxmLn+m(x)

template <class T1, class T2, class T3>
calculated-result-type laguerre_next(unsigned n, T1 x, T2 Ln, T3 Lnm1);

Implements the three term recurrence relation for the Laguerre polynomials, this function can be used to create a sequence of values
evaluated at the same x, and for rising n.

Ln+1(x) =
(2n + 1 − x)Ln(x) − nLn−1(x)

(n + 1)

For example we could produce a vector of the first 10 polynomial values using:

double x = 0.5; // Abscissa value
vector<double> v;
v.push_back(laguerre(0, x)).push_back(laguerre(1, x));
for(unsigned l = 1; l < 10; ++l)

v.push_back(laguerre_next(l, x, v[l], v[l-1]));
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Formally the arguments are:

n The degree n of the last polynomial calculated.

x The abscissa value

Ln The value of the polynomial evaluated at degree n.

Lnm1 The value of the polynomial evaluated at degree n-1.

template <class T1, class T2, class T3>
calculated-result-type laguerre_next(unsigned n, unsigned m, T1 x, T2 Ln, T3 Lnm1);

Implements the three term recurrence relation for the Associated Laguerre polynomials, this function can be used to create a sequence
of values evaluated at the same x, and for rising degree n.

Ln+1
m (x) = m + 2n + 1 − x

n + 1 Ln
m(x) − m + n

n + 1 Ln−1
m (x)

For example we could produce a vector of the first 10 polynomial values using:

double x = 0.5; // Abscissa value
int m = 10; // order
vector<double> v;
v.push_back(laguerre(0, m, x)).push_back(laguerre(1, m, x));
for(unsigned l = 1; l < 10; ++l)

v.push_back(laguerre_next(l, m, x, v[l], v[l-1]));

Formally the arguments are:

n The degree of the last polynomial calculated.

m The order of the Associated Polynomial.

x The abscissa value.

Ln The value of the polynomial evaluated at degree n.

Lnm1 The value of the polynomial evaluated at degree n-1.

Accuracy

The following table shows peak errors (in units of epsilon) for various domains of input arguments. Note that only results for the
widest floating point type on the system are given as narrower types have effectively zero error.

Table 37. Peak Errors In the Laguerre Polynomial

Errors in range

0 < l < 20

Platform and CompilerSignificand Size

Peak=3000 Mean=185Win32, Visual C++ 853

Peak=1x104 Mean=828SUSE Linux IA32, g++ 4.164

Peak=1x104 Mean=828Red Hat Linux IA64, g++ 3.4.464

Peak=680 Mean=40HPUX IA64, aCC A.06.06113
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Table 38. Peak Errors In the Associated Laguerre Polynomial

Errors in range

0 < l < 20

Platform and CompilerSignificand Size

Peak=433 Mean=11Win32, Visual C++ 853

Peak=61.4 Mean=19.5SUSE Linux IA32, g++ 4.164

Peak=61.4 Mean=19.5Red Hat Linux IA64, g++ 3.4.464

Peak=540 Mean=13.94HPUX IA64, aCC A.06.06113

Note that the worst errors occur when the degree increases, values greater than ~120 are very unlikely to produce sensible results,
especially in the associated polynomial case when the order is also large. Further the relative errors are likely to grow arbitrarily
large when the function is very close to a root.

Testing

A mixture of spot tests of values calculated using functions.wolfram.com, and randomly generated test data are used: the test data
was computed using NTL::RR at 1000-bit precision.

Implementation

These functions are implemented using the stable three term recurrence relations. These relations guarentee low absolute error but
cannot guarentee low relative error near one of the roots of the polynomials.

Hermite Polynomials

Synopsis

#include <boost/math/special_functions/hermite.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type hermite(unsigned n, T x);

template <class T, class Policy>
calculated-result-type hermite(unsigned n, T x, const Policy&);

template <class T1, class T2, class T3>
calculated-result-type hermite_next(unsigned n, T1 x, T2 Hn, T3 Hnm1);

}} // namespaces

Description

The return type of these functions is computed using the result type calculation rules: note than when there is a single template argument
the result is the same type as that argument or double if the template argument is an integer type.

template <class T>
calculated-result-type hermite(unsigned n, T x);

template <class T, class Policy>
calculated-result-type hermite(unsigned n, T x, const Policy&);
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Returns the value of the Hermite Polynomial of order n at point x:

hermite (x) = Hn(x) = (−1)nex
2 d2
dx2

e−x
2

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

The following graph illustrates the behaviour of the first few Hermite Polynomials:

0 10-1

0

10

20

0

-10

-20

he
rm
ite
(n
,
x)

x

n = 0

n = 1

n = 2

n = 3

n = 4

Hermite Polynomials

template <class T1, class T2, class T3>
calculated-result-type hermite_next(unsigned n, T1 x, T2 Hn, T3 Hnm1);

Implements the three term recurrence relation for the Hermite polynomials, this function can be used to create a sequence of values
evaluated at the same x, and for rising n.

Hn+1(x) = 2xHn(x) − 2nHn−1(x)

For example we could produce a vector of the first 10 polynomial values using:

double x = 0.5; // Abscissa value
vector<double> v;
v.push_back(hermite(0, x)).push_back(hermite(1, x));
for(unsigned l = 1; l < 10; ++l)

v.push_back(hermite_next(l, x, v[l], v[l-1]));

Formally the arguments are:

n The degree n of the last polynomial calculated.

x The abscissa value

Hn The value of the polynomial evaluated at degree n.

Hnm1 The value of the polynomial evaluated at degree n-1.
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Accuracy

The following table shows peak errors (in units of epsilon) for various domains of input arguments. Note that only results for the
widest floating point type on the system are given as narrower types have effectively zero error.

Table 39. Peak Errors In the Hermite Polynomial

Errors in range

0 < l < 20

Platform and CompilerSignificand Size

Peak=4.5 Mean=1.5Win32, Visual C++ 853

Peak=6 Mean=2Red Hat Linux IA32, g++ 4.164

Peak=6 Mean=2Red Hat Linux IA64, g++ 3.4.464

Peak=6 Mean=4HPUX IA64, aCC A.06.06113

Note that the worst errors occur when the degree increases, values greater than ~120 are very unlikely to produce sensible results,
especially in the associated polynomial case when the order is also large. Further the relative errors are likely to grow arbitrarily
large when the function is very close to a root.

Testing

A mixture of spot tests of values calculated using functions.wolfram.com, and randomly generated test data are used: the test data
was computed using NTL::RR at 1000-bit precision.

Implementation

These functions are implemented using the stable three term recurrence relations. These relations guarentee low absolute error but
cannot guarentee low relative error near one of the roots of the polynomials.

Spherical Harmonics

Synopsis

#include <boost/math/special_functions/spherical_harmonic.hpp>

438

Special Functions

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://shoup.net/ntl/doc/RR.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


namespace boost{ namespace math{

template <class T1, class T2>
std::complex<calculated-result-type> spherical_harmonic(unsigned n, int m, T1 theta, T2 phi);

template <class T1, class T2, class Policy>
std::complex<calculated-result-type> spherical_harmonic(un↵
signed n, int m, T1 theta, T2 phi, const Policy&);

template <class T1, class T2>
calculated-result-type spherical_harmonic_r(unsigned n, int m, T1 theta, T2 phi);

template <class T1, class T2, class Policy>
calculated-result-type spherical_harmonic_r(unsigned n, int m, T1 theta, T2 phi, const Policy&);

template <class T1, class T2>
calculated-result-type spherical_harmonic_i(unsigned n, int m, T1 theta, T2 phi);

template <class T1, class T2, class Policy>
calculated-result-type spherical_harmonic_i(unsigned n, int m, T1 theta, T2 phi, const Policy&);

}} // namespaces

Description

The return type of these functions is computed using the result type calculation rules when T1 and T2 are different types.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

template <class T1, class T2>
std::complex<calculated-result-type> spherical_harmonic(unsigned n, int m, T1 theta, T2 phi);

template <class T1, class T2, class Policy>
std::complex<calculated-result-type> spherical_harmonic(un↵
signed n, int m, T1 theta, T2 phi, const Policy&);

Returns the value of the Spherical Harmonic Yn
m(theta, phi):

Y n
m(θ, φ) = 2n + 1

4π
(n − m) !
(n + m) ! Pn

m(cosθ)eimφ

The spherical harmonics Yn
m(theta, phi) are the angular portion of the solution to Laplace's equation in spherical coordinates where

azimuthal symmetry is not present.
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Caution

Care must be taken in correctly identifying the arguments to this function: θ   is taken as the polar (colatitudinal)
coordinate with θ   in [0, π], and φ   as the azimuthal (longitudinal) coordinate with φ   in [0,2π). This is the convention
used in Physics, and matches the definition used by Mathematica in the function SpericalHarmonicY, but is opposite
to the usual mathematical conventions.

Some other sources include an additional Condon-Shortley phase term of (-1)m in the definition of this function:
note however that our definition of the associated Legendre polynomial already includes this term.

This implementation returns zero for m > n

For θ   outside [0, π] and φ   outside [0, 2π] this implementation follows the convention used by Mathematica: the
function is periodic with period π   in θ   and 2π   in φ. Please note that this is not the behaviour one would get from
a casual application of the function's definition. Cautious users should keep θ   and φ   to the range [0, π] and [0,
2π] respectively.

See: Weisstein, Eric W. "Spherical Harmonic." From MathWorld--A Wolfram Web Resource.

template <class T1, class T2>
calculated-result-type spherical_harmonic_r(unsigned n, int m, T1 theta, T2 phi);

template <class T1, class T2, class Policy>
calculated-result-type spherical_harmonic_r(unsigned n, int m, T1 theta, T2 phi, const Policy&);

Returns the real part of Yn
m(theta, phi):

Re(Y n
m(θ, φ)) = 2n + 1

4π
(n − m) !
(n + m) ! Pn

m(cosθ)cos(mφ)

template <class T1, class T2>
calculated-result-type spherical_harmonic_i(unsigned n, int m, T1 theta, T2 phi);

template <class T1, class T2, class Policy>
calculated-result-type spherical_harmonic_i(unsigned n, int m, T1 theta, T2 phi, const Policy&);

Returns the imaginary part of Yn
m(theta, phi):

Im(Y n
m(θ, φ)) = 2n + 1

4π
(n − m) !
(n + m) ! Pn

m(cosθ)sin(mφ)

Accuracy

The following table shows peak errors for various domains of input arguments. Note that only results for the widest floating point
type on the system are given as narrower types have effectively zero error. Peak errors are the same for both the real and imaginary
parts, as the error is dominated by calculation of the associated Legendre polynomials: especially near the roots of the associated
Legendre function.

All values are in units of epsilon.
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Table 40. Peak Errors In the Sperical Harmonic Functions

Errors in range

0 < l < 20

Platform and CompilerSignificand Size

Peak=2x104 Mean=700Win32, Visual C++ 853

Peak=2900 Mean=100SUSE Linux IA32, g++ 4.164

Peak=2900 Mean=100Red Hat Linux IA64, g++ 3.4.464

Peak=6700 Mean=230HPUX IA64, aCC A.06.06113

Note that the worst errors occur when the degree increases, values greater than ~120 are very unlikely to produce sensible results,
especially when the order is also large. Further the relative errors are likely to grow arbitrarily large when the function is very close
to a root.

Testing

A mixture of spot tests of values calculated using functions.wolfram.com, and randomly generated test data are used: the test data
was computed using NTL::RR at 1000-bit precision.

Implementation

These functions are implemented fairly naively using the formulae given above. Some extra care is taken to prevent roundoff error
when converting from polar coordinates (so for example the 1-x2 term used by the associated Legendre functions is calculated without
roundoff error using x = cos(theta), and 1-x2 = sin2(theta)). The limiting factor in the error rates for these functions is the need to
calculate values near the roots of the associated Legendre functions.
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Bessel Functions

Bessel Function Overview

Ordinary Bessel Functions

Bessel Functions are solutions to Bessel's ordinary differential equation:

z2d
2u
dz2

+ zdudz + (z
2 − ν2)u = 0

where ν   is the order of the equation, and may be an arbitrary real or complex number, although integer orders are the most common
occurrence.

This library supports either integer or real orders.

Since this is a second order differential equation, there must be two linearly independent solutions, the first of these is denoted Jv
and known as a Bessel function of the first kind:

J ν(z) = (12 z)
ν∑
k=0

∞ (− 1
4 z

2)k
k !Γ(ν + k + 1)

This function is implemented in this library as cyl_bessel_j.

The second solution is denoted either Yv   or Nv   and is known as either a Bessel Function of the second kind, or as a Neumann
function:

Y ν(z) =
J ν(z) cos (νπ) − J−ν(z)

sin (νπ)

This function is implemented in this library as cyl_neumann.

The Bessel functions satisfy the recurrence relations:

J ν+1(z) =
2ν
z J ν(z) − J ν−1(z)

Y ν+1(z) =
2ν
z Y ν(z) − Y ν−1(z)

Have the derivatives:

J ν
′ (z) = ν

z J ν(z) − J ν+1(z)

Y ν
′ (z) = ν

zY ν(z) − Y ν+1(z)

Have the Wronskian relation:

W = J ν(z)Y ν
′ (z) − Y ν(z)J ν

′ (z) = Y ν(z)J ν+1(z) − J ν(z)Y ν+1(z) =
2
πz

and the reflection formulae:

J−ν(z) = cos (νπ)J ν(z) − sin (νπ)Y ν(z)
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Y−ν(z) = sin (νπ)J ν(z) + cos (νπ)Y ν(z)

Modified Bessel Functions

The Bessel functions are valid for complex argument x, and an important special case is the situation where x is purely imaginary:
giving a real valued result. In this case the functions are the two linearly independent solutions to the modified Bessel equation:

z2d
2u
dz2

+ zdudz − (z
2 + ν2)u = 0

The solutions are known as the modified Bessel functions of the first and second kind (or occasionally as the hyperbolic Bessel
functions of the first and second kind). They are denoted Iv   and Kv   respectively:

Iν(z) = (12 z)
ν∑
k=0

∞ (14 z2)k
k !Γ(ν + k + 1)

Kν(z) =
π
2 ⋅

I−ν(z) − Iν(z)
sin (νπ)

These functions are implemented in this library as cyl_bessel_i and cyl_bessel_k respectively.

The modified Bessel functions satisfy the recurrence relations:

Iν+1(z) = − 2ν
z Iν(z) + Iν−1(z)

Kν+1(z) =
2ν
z Kν(z) + Kν−1(z)

Have the derivatives:

Iν
′ (z) = ν

z Iν(z) + Iν+1(z)

Kν
′ (z) = ν

zKν(z) − Kν+1(z)

Have the Wronskian relation:

W = Iν(z)Kν
′ (z) − Kν(z)Iν

′ (z) = − [Iν(z)Kν+1(z) + Kν(z)Iν+1(z)] = − 1
z

and the reflection formulae:

I−ν(z) = Iν(z) +
2
π sin (νπ)Kν(z)

K−ν(z) = Kν(z)

Spherical Bessel Functions

When solving the Helmholtz equation in spherical coordinates by separation of variables, the radial equation has the form:

z2d
2u
dz2

+ 2zdudz + [z
2 − n(n + 1)]u = 0
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The two linearly independent solutions to this equation are called the spherical Bessel functions jn   and yn  , and are related to the
ordinary Bessel functions Jn   and Yn   by:

jn(z) = π
2z Jn+12

(z)

yn(z) = π
2zY n+12

(z)

The spherical Bessel function of the second kind yn   is also known as the spherical Neumann function nn.

These functions are implemented in this library as sph_bessel and sph_neumann.

Bessel Functions of the First and Second Kinds

Synopsis

#include <boost/math/special_functions/bessel.hpp>

template <class T1, class T2>
calculated-result-type cyl_bessel_j(T1 v, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type cyl_bessel_j(T1 v, T2 x, const Policy&);

template <class T1, class T2>
calculated-result-type cyl_neumann(T1 v, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type cyl_neumann(T1 v, T2 x, const Policy&);

Description

The functions cyl_bessel_j and cyl_neumann return the result of the Bessel functions of the first and second kinds respectively:

cyl_bessel_j(v, x) = Jv(x)

cyl_neumann(v, x) = Yv(x) = Nv(x)

where:

J ν(z) = (12 z)
ν∑
k=0

∞ (− 1
4 z

2)k
k !Γ(ν + k + 1)

Y ν(z) =
J ν(z) cos (νπ) − J−ν(z)

sin (νπ)

The return type of these functions is computed using the result type calculation rules when T1 and T2 are different types. The
functions are also optimised for the relatively common case that T1 is an integer.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

The functions return the result of domain_error whenever the result is undefined or complex. For cyl_bessel_j this occurs when x
< 0 and v is not an integer, or when x == 0 and v != 0. For cyl_neumann this occurs when x <= 0.

The following graph illustrates the cyclic nature of Jv:
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The following graph shows the behaviour of Yv: this is also cyclic for large x, but tends to -∞   for small x:

0 5 10 15 20

00

-1

-2

-3

-4

-5

cy
l_
ne
um
an
n(
v,
x)

x

v = 0

v = 1

v = 2

v = 3

v = 4

Bessel Y

Testing

There are two sets of test values: spot values calculated using functions.wolfram.com, and a much larger set of tests computed using
a simplified version of this implementation (with all the special case handling removed).

Accuracy

The following tables show how the accuracy of these functions varies on various platforms, along with comparisons to the GSL-1.9
and Cephes libraries. Note that the cyclic nature of these functions means that they have an infinite number of irrational roots: in
general these functions have arbitrarily large relative errors when the arguments are sufficiently close to a root. Of course the absolute
error in such cases is always small. Note that only results for the widest floating-point type on the system are given as narrower types
have effectively zero error. All values are relative errors in units of epsilon.
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Table 41. Errors Rates in cyl_bessel_j

Jv   (large values of x
> 1000)

JvJ0   and J1Platform and Com-
piler

Significand Size

Peak=59 Mean=10

GSL Peak=6x1011

Cephes Peak=2x105

Peak=11 Mean=2.2

GSL Peak=11

Cephes Peak=17
Mean=2.5

Peak=2.5 Mean=1.1

GSL Peak=6.6

Cephes Peak=2.5
Mean=1.1

Win32 / Visual C++ 8.053

P e a k = 2 x 1 0 4

Mean=6x103
Peak=117 Mean=10Peak=7 Mean=3Red Hat Linux IA64 /

G++ 3.4
64

P e a k = 2 x 1 0 4

Mean=1x104
Peak=400 Mean=40Peak=7 Mean=3SUSE Linux AMD64 /

G++ 4.1
64

Peak=2700 Mean=450Peak=29 Mean=3Peak=14 Mean=6HP-UX / HP aCC 6113

Table 42. Errors Rates in cyl_neumann

Yv (fractional orders)Yn (integer orders)Y0   and Y1Platform and Com-
piler

Significand Size

Peak=800 Mean=40

GSL Peak=1.4x106

Mean=7x104

Cephes Peak=+INF

Peak=117 Mean=10

GSL Peak=500
Mean=54

Cephes Peak=923
Mean=83

Peak=4.7 Mean=1.7

GSL Peak=34 Mean=9

Cephes Peak=330
Mean=54

Win32 / Visual C++ 8.053

Peak=741 Mean=51Peak=843 Mean=51Peak=470 Mean=56Red Hat Linux IA64 /
G++ 3.4

64

P e a k = 1 x 1 0 5

Mean=6x103
P e a k = 2 x 1 0 4

Mean=8x103
Peak=1300 Mean=424SUSE Linux AMD64 /

G++ 4.1
64

P e a k = 2 x 1 0 4

Mean=1200
Peak=340 Mean=150Peak=180 Mean=63HP-UX / HP aCC 6113

Note that for large x these functions are largely dependent on the accuracy of the std::sin and std::cos functions.

Comparison to GSL and Cephes is interesting: both Cephes and this library optimise the integer order case - leading to identical
results - simply using the general case is for the most part slightly more accurate though, as noted by the better accuracy of GSL in
the integer argument cases. This implementation tends to perform much better when the arguments become large, Cephes in partic-
ular produces some remarkably inaccurate results with some of the test data (no significant figures correct), and even GSL performs
badly with some inputs to Jv. Note that by way of double-checking these results, the worst performing Cephes and GSL cases were
recomputed using functions.wolfram.com, and the result checked against our test data: no errors in the test data were found.

Implementation

The implementation is mostly about filtering off various special cases:

When x is negative, then the order v must be an integer or the result is a domain error. If the order is an integer then the function is
odd for odd orders and even for even orders, so we reflect to x > 0.
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When the order v is negative then the reflection formulae can be used to move to v > 0:

J−ν(z) = cos (νπ)J ν(z) − sin (νπ)Y ν(z)

Y−ν(z) = sin (νπ)J ν(z) + cos (νπ)Y ν(z)

Note that if the order is an integer, then these formulae reduce to:

J-n = (-1)nJn

Y-n = (-1)nYn

However, in general, a negative order implies that we will need to compute both J and Y.

When x is large compared to the order v then the asymptotic expansions for large x in M. Abramowitz and I.A. Stegun, Handbook
of Mathematical Functions 9.2.19 are used (these were found to be more reliable than those in A&S 9.2.5).

When the order v is an integer the method first relates the result to J0, J1, Y0   and Y1   using either forwards or backwards recurrence
(Miller's algorithm) depending upon which is stable. The values for J0, J1, Y0   and Y1   are calculated using the rational minimax
approximations on root-bracketing intervals for small |x| and Hankel asymptotic expansion for large |x|. The coefficients are from:

W.J. Cody, ALGORITHM 715: SPECFUN - A Portable FORTRAN Package of Special Function Routines and Test Drivers, ACM
Transactions on Mathematical Software, vol 19, 22 (1993).

and

J.F. Hart et al, Computer Approximations, John Wiley & Sons, New York, 1968.

These approximations are accurate to around 19 decimal digits: therefore these methods are not used when type T has more than 64
binary digits.

When x is smaller than machine epsilon then the following approximations for Y0(x), Y1(x), Y2(x) and Yn(x) can be used (see:
http://functions.wolfram.com/03.03.06.0037.01, http://functions.wolfram.com/03.03.06.0038.01,
http://functions.wolfram.com/03.03.06.0039.01 and http://functions.wolfram.com/03.03.06.0040.01):

Y 0(z) = 2
π (log( z2) + γ) ; z < ε

Y 1(z) = z
π log( z2) − 2

πz −
z
2π (1 − 2γ) ; z < ε

Y 2 = − z2
8π (32 − 2γ) − 4

πz2
+ z2
4π log( z2) ; z < ε

Y n(z) = − (n − 1) !π ( z2)
−n

; z < ε ∧ n > 2

When x is small compared to v and v is not an integer, then the following series approximation can be used for Yv(x), this is also an
area where other approximations are often too slow to converge to be used (see http://functions.wolfram.com/03.03.06.0034.01):

Y v(z) = −
Γ(v)
π ∑

k=0

∞
(−1)k( z2)2k−v
(1 − v)kk !

−
Γ(−v)cos(vπ)

π ∑
k=0

∞
(−1)k( z2)2k+v
(v + 1)kk !

; v ∉ ℤ

When x is small compared to v, Jvx   is best computed directly from the series:
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J ν(z) = (12 z)
ν∑
k=0

∞ (− 1
4 z

2)k
k !Γ(ν + k + 1)

In the general case we compute Jv   and Yv   simultaneously.

To get the initial values, let μ   = ν - floor(ν + 1/2), then μ   is the fractional part of ν   such that |μ| <= 1/2 (we need this for convergence
later). The idea is to calculate Jμ(x), Jμ+1(x), Yμ(x), Yμ+1(x) and use them to obtain Jν(x), Yν(x).

The algorithm is called Steed's method, which needs two continued fractions as well as the Wronskian:

W = J ν(z)Y ν
′ (z) − Y ν(z)J ν

′ (z) = Y ν(z)J ν+1(z) − J ν(z)Y ν+1(z) =
2
πz

CF1 : f ν =
J ν+1
J ν

= 1
2(ν + 1)

x −
1

2(ν + 2)
x −

⋅ ⋅ ⋅

CF2 : p + iq =
J ν
′ + iY ν

′

J ν + iY ν
= (i − 1

2x) + i
x[ (12)2 − ν22(x + i) +

(32)2 − ν2
2(x + 2i) + ⋅ ⋅ ⋅ ]

See: F.S. Acton, Numerical Methods that Work, The Mathematical Association of America, Washington, 1997.

The continued fractions are computed using the modified Lentz's method (W.J. Lentz, Generating Bessel functions in Mie scattering
calculations using continued fractions, Applied Optics, vol 15, 668 (1976)). Their convergence rates depend on x, therefore we need
different strategies for large x and small x.

x > v, CF1 needs O(x) iterations to converge, CF2 converges rapidly

x <= v, CF1 converges rapidly, CF2 fails to converge when x -> 0

When x is large (x > 2), both continued fractions converge (CF1 may be slow for really large x). Jμ, Jμ+1, Yμ, Yμ+1 can be calculated
by

J μ = ±( W
q + γ(p − f μ))

1
2

J μ+1 = J μ( μx − f μ)
Y μ = γJ μ

Y μ+1 = Y μ( μx − p − q
γ )

where

γ =
p − f μ
q

Jν and Yμ are then calculated using backward (Miller's algorithm) and forward recurrence respectively.

When x is small (x <= 2), CF2 convergence may fail (but CF1 works very well). The solution here is Temme's series:

Y μ = −∑
k=0

∞

ckgk

Y μ+1 = − 2
x∑
k=0

∞

ckhk
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where

ck =
1
k !(− x24 )k

gk   and hk   are also computed by recursions (involving gamma functions), but the formulas are a little complicated, readers are
refered to N.M. Temme, On the numerical evaluation of the ordinary Bessel function of the second kind, Journal of Computational
Physics, vol 21, 343 (1976). Note Temme's series converge only for |μ| <= 1/2.

As the previous case, Yν   is calculated from the forward recurrence, so is Yν+1. With these two values and fν, the Wronskian yields
Jν(x) directly without backward recurrence.

Finding Zeros of Bessel Functions of the First and Second Kinds

Synopsis

#include <boost/math/special_functions/bessel.hpp>

Functions for obtaining both a single zero or root of the Bessel function, and placing multiple zeros into a container like
std::vector by providing an output iterator.

The signature of the single value functions are:

template <class T>
T cyl_bessel_j_zero(

T v, // Floating-point value for Jv.
int m); // 1-based index of zero.

template <class T>
T cyl_neumann_zero(

T v, // Floating-point value for Jv.
int m); // 1-based index of zero.

and for multiple zeros:

template <class T, class OutputIterator>
OutputIterator cyl_bessel_j_zero(

T v, // Floating-point value for Jv.
int start_index, // 1-based index of first zero.
unsigned number_of_zeros, // How many zeros to generate.
OutputIterator out_it); // Destination for zeros.

template <class T, class OutputIterator>
OutputIterator cyl_neumann_zero(

T v, // Floating-point value for Jv.
int start_index, // 1-based index of zero.
unsigned number_of_zeros, // How many zeros to generate
OutputIterator out_it); // Destination for zeros.

There are also versions which allow control of the Policies for error handling and precision.
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template <class T>
T cyl_bessel_j_zero(

T v, // Floating-point value for Jv.
int m, // 1-based index of zero.
const Policy&); // Policy to use.

template <class T>
T cyl_neumann_zero(

T v, // Floating-point value for Jv.
int m, // 1-based index of zero.
const Policy&); // Policy to use.

template <class T, class OutputIterator>
OutputIterator cyl_bessel_j_zero(

T v, // Floating-point value for Jv.
int start_index, // 1-based index of first zero.
unsigned number_of_zeros, // How many zeros to generate.
OutputIterator out_it, // Destination for zeros.
const Policy& pol); // Policy to use.

template <class T, class OutputIterator>
OutputIterator cyl_neumann_zero(

T v, // Floating-point value for Jv.
int start_index, // 1-based index of zero.
unsigned number_of_zeros, // How many zeros to generate.
OutputIterator out_it, // Destination for zeros.
const Policy& pol); // Policy to use.

Description

Every real order ν cylindrical Bessel and Neumann functions have an infinite number of zeros on the positive real axis. The real
zeros on the positive real axis can be found by solving for the roots of

Jν(jν, m) = 0

Yν(yν, m) = 0

Here, jν, m represents the mth root of the cylindrical Bessel function of order ν, and yν, m represents the mth root of the cylindrical
Neumann function of order ν.

The zeros or roots (values of x where the function crosses the horizontal y = 0 axis) of the Bessel and Neumann functions are
computed by two functions, cyl_bessel_j_zero and cyl_neumann_zero.

In each case the index or rank of the zero returned is 1-based, which is to say:

cyl_bessel_j_zero(v, 1);

returns the first zero of Bessel J.

Passing an start_index <= 0 results in a std::domain_error being raised.

For certain parameters, however, the zero'th root is defined and it has a value of zero. For example, the zero'th root of J[sub v](x)

is defined and it has a value of zero for all values of v > 0 and for negative integer values of v = -n. Similar cases are described
in the implementation details below.

The order v of J can be positive, negative and zero for the cyl_bessel_j and cyl_neumann functions, but not infinite nor NaN.
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Examples of finding Bessel and Neumann zeros

This example demonstrates calculating zeros of the Bessel and Neumann functions. It also shows how Boost.Math and Boost.Multi-
precision can be combined to provide a many decimal digit precision. For 50 decimal digit precision we need to include

#include <boost/multiprecision/cpp_dec_float.hpp>

and a typedef for float_type may be convenient (allowing a quick switch to re-compute at built-in double or other precision)

typedef boost::multiprecision::cpp_dec_float_50 float_type;

To use the functions for finding zeros of the functions we need

#include <boost/math/special_functions/bessel.hpp>

This file includes the forward declaration signatures for the zero-finding functions:

//  #include <boost/math/special_functions/math_fwd.hpp>
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but more details are in the full documentation, for example at Boost.Math Bessel functions.

This example shows obtaining both a single zero of the Bessel function, and then placing multiple zeros into a container like
std::vector by providing an iterator.

Tip

It is always wise to place code using Boost.Math inside try'n'catch blocks; this will ensure that helpful error messages
are shown when exceptional conditions arise.

First, evaluate a single Bessel zero.

The precision is controlled by the float-point type of template parameter T of v so this example has double precision, at least 15
but up to 17 decimal digits (for the common 64-bit double).

//    double root = boost::math::cyl_bessel_j_zero(0.0, 1);
//    // Displaying with default precision of 6 decimal digits:
//    std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40483
//    // And with all the guaranteed (15) digits:
//    std::cout.precision(std::numeric_limits<double>::digits10);
//    std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // ↵
2.40482555769577

But note that because the parameter v controls the precision of the result, vmust be a floating-point type. So if you provide an integer
type, say 0, rather than 0.0, then it will fail to compile thus:

root = boost::math::cyl_bessel_j_zero(0, 1);

with this error message

error C2338: Order must be a floating-point type.

Optionally, we can use a policy to ignore errors, C-style, returning some value, perhaps infinity or NaN, or the best that can be done.
(See user error handling).

To create a (possibly unwise!) policy ignore_all_policy that ignores all errors:

typedef boost::math::policies::policy<
boost::math::policies::domain_error<boost::math::policies::ignore_error>,
boost::math::policies::overflow_error<boost::math::policies::ignore_error>,
boost::math::policies::underflow_error<boost::math::policies::ignore_error>,
boost::math::policies::denorm_error<boost::math::policies::ignore_error>,
boost::math::policies::pole_error<boost::math::policies::ignore_error>,
boost::math::policies::evaluation_error<boost::math::policies::ignore_error>

> ignore_all_policy;

Examples of use of this ignore_all_policy are
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double inf = std::numeric_limits<double>::infinity();
double nan = std::numeric_limits<double>::quiet_NaN();

double dodgy_root = boost::math::cyl_bessel_j_zero(-1.0, 1, ignore_all_policy());
std::cout << "boost::math::cyl_bessel_j_zero(-1.0, 1) " << dodgy_root << std::endl; // 1.#QNAN
double inf_root = boost::math::cyl_bessel_j_zero(inf, 1, ignore_all_policy());
std::cout << "boost::math::cyl_bessel_j_zero(inf, 1) " << inf_root << std::endl; // 1.#QNAN
double nan_root = boost::math::cyl_bessel_j_zero(nan, 1, ignore_all_policy());
std::cout << "boost::math::cyl_bessel_j_zero(nan, 1) " << nan_root << std::endl; // 1.#QNAN

Another version of cyl_bessel_j_zero allows calculation of multiple zeros with one call, placing the results in a container, often
std::vector. For example, generate and display the first five double roots of Jv for integral order 2, as column J2(x) in table 1
of Wolfram Bessel Function Zeros.

unsigned int n_roots = 5U;
std::vector<double> roots;
boost::math::cyl_bessel_j_zero(2.0, 1, n_roots, std::back_inserter(roots));
std::copy(roots.begin(),

roots.end(),
std::ostream_iterator<double>(std::cout, "\n"));

Or we can use Boost.Multiprecision to generate 50 decimal digit roots of Jv for non-integral order v= 71/19 == 3.736842, expressed
as an exact-integer fraction to generate the most accurate value possible for all floating-point types.

We set the precision of the output stream, and show trailing zeros to display a fixed 50 decimal digits.

std::cout.precision(std::numeric_limits<float_type>::digits10); // 50 decimal digits.
std::cout << std::showpoint << std::endl; // Show trailing zeros.

float_type x = float_type(71) / 19;
float_type r = boost::math::cyl_bessel_j_zero(x, 1); // 1st root.
std::cout << "x = " << x << ", r = " << r << std::endl;

r = boost::math::cyl_bessel_j_zero(x, 20U); // 20th root.
std::cout << "x = " << x << ", r = " << r << std::endl;

std::vector<float_type> zeros;
boost::math::cyl_bessel_j_zero(x, 1, 3, std::back_inserter(zeros));

std::cout << "cyl_bessel_j_zeros" << std::endl;
// Print the roots to the output stream.
std::copy(zeros.begin(), zeros.end(),

std::ostream_iterator<float_type>(std::cout, "\n"));

Using Output Iterator to sum zeros of Bessel Functions

This example demonstrates summing zeros of the Bessel functions. To use the functions for finding zeros of the functions we need

#include <boost/math/special_functions/bessel.hpp>

We use the cyl_bessel_j_zero output iterator parameter out_it to create a sum of 1/zeros2 by defining a custom output iterator:
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template <class T>
struct output_summation_iterator
{

output_summation_iterator(T* p) : p_sum(p)
{}
output_summation_iterator& operator*()
{ return *this; }
output_summation_iterator& operator++()
{ return *this; }
output_summation_iterator& operator++(int)
{ return *this; }
output_summation_iterator& operator = (T const& val)
{
*p_sum += 1./ (val * val); // Summing 1/zero^2.
return *this;

}
private:

T* p_sum;
};

The sum is calculated for many values, converging on the analytical exact value of 1/8.

using boost::math::cyl_bessel_j_zero;
double nu = 1.;
double sum = 0;
output_summation_iterator<double> it(&sum); // sum of 1/zeros^2
cyl_bessel_j_zero(nu, 1, 10000, it);

double s = 1/(4 * (nu + 1)); // 0.125 = 1/8 is exact analytical solution.
std::cout << std::setprecision(6) << "nu = " << nu << ", sum = " << sum
<< ", exact = " << s << std::endl;

// nu = 1.00000, sum = 0.124990, exact = 0.125000

Calculating zeros of the Neumann function.

This example also shows how Boost.Math and Boost.Multiprecision can be combined to provide a many decimal digit precision.
For 50 decimal digit precision we need to include

#include <boost/multiprecision/cpp_dec_float.hpp>

and a typedef for float_type may be convenient (allowing a quick switch to re-compute at built-in double or other precision)

typedef boost::multiprecision::cpp_dec_float_50 float_type;

To use the functions for finding zeros of the cyl_neumann function we need:

#include <boost/math/special_functions/bessel.hpp>

The Neumann (Bessel Y) function zeros are evaluated very similarly:
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using boost::math::cyl_neumann_zero;
double zn = cyl_neumann_zero(2., 1);
std::cout << "cyl_neumann_zero(2., 1) = " << zn << std::endl;

std::vector<float> nzeros(3); // Space for 3 zeros.
cyl_neumann_zero<float>(2.F, 1, nzeros.size(), nzeros.begin());

std::cout << "cyl_neumann_zero<float>(2.F, 1, ";
// Print the zeros to the output stream.
std::copy(nzeros.begin(), nzeros.end(),

std::ostream_iterator<float>(std::cout, ", "));

std::cout << "\n""cyl_neumann_zero(static_cast<float_type>(220)/100, 1) = "
<< cyl_neumann_zero(static_cast<float_type>(220)/100, 1) << std::endl;

// 3.6154383428745996706772556069431792744372398748422

Error messages from 'bad' input

Another example demonstrates calculating zeros of the Bessel functions showing the error messages from 'bad' input is handled by
throwing exceptions.

To use the functions for finding zeros of the functions we need:

#include <boost/math/special_functions/bessel.hpp>
#include <boost/math/special_functions/airy.hpp>

Tip

It is always wise to place all code using Boost.Math inside try'n'catch blocks; this will ensure that helpful error
messages can be shown when exceptional conditions arise.

Examples below show messages from several 'bad' arguments that throw a domain_error exception.

try
{ // Try a zero order v.
float dodgy_root = boost::math::cyl_bessel_j_zero(0.F, 0);
std::cout << "boost::math::cyl_bessel_j_zero(0.F, 0) " << dodgy_root << std::endl;
// Thrown exception Error in function boost::math::cyl_bessel_j_zero<double>(double, int):
// Requested the 0'th zero of J0, but the rank must be > 0 !

}
catch (std::exception& ex)
{
std::cout << "Thrown exception " << ex.what() << std::endl;

}

Note

The type shown in the error message is the type after promotion, using precision policy and internal promotion
policy, from float to double in this case.

In this example the promotion goes:

1. Arguments are float and int.

2. Treat int "as if" it were a double, so arguments are float and double.
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3. Common type is double - so that's the precision we want (and the type that will be returned).

4. Evaluate internally as double for full float precision.

See full code for other examples that promote from double to long double.

Other examples of 'bad' inputs like infinity and NaN are below. Some compiler warnings indicate that 'bad' values are detected at
compile time.

try
{ // order v = inf

std::cout << "boost::math::cyl_bessel_j_zero(inf, 1) " << std::endl;
double inf = std::numeric_limits<double>::infinity();
double inf_root = boost::math::cyl_bessel_j_zero(inf, 1);
std::cout << "boost::math::cyl_bessel_j_zero(inf, 1) " << inf_root << std::endl;
// Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, ↵

unsigned):
// Order argument is 1.#INF, but must be finite >= 0 !

}
catch (std::exception& ex)
{
std::cout << "Thrown exception " << ex.what() << std::endl;

}

try
{ // order v = NaN, rank m = 1

std::cout << "boost::math::cyl_bessel_j_zero(nan, 1) " << std::endl;
double nan = std::numeric_limits<double>::quiet_NaN();
double nan_root = boost::math::cyl_bessel_j_zero(nan, 1);
std::cout << "boost::math::cyl_bessel_j_zero(nan, 1) " << nan_root << std::endl;
// Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, ↵

unsigned):
// Order argument is 1.#QNAN, but must be finite >= 0 !

}
catch (std::exception& ex)
{
std::cout << "Thrown exception " << ex.what() << std::endl;

}

The output from other examples are shown appended to the full code listing.

The full code (and output) for these examples is at Bessel zeros, Bessel zeros iterator, Neumann zeros, Bessel error messages.

Implementation

Various methods are used to compute initial estimates for jν, m and yν, m ; these are described in detail below.

After finding the initial estimate of a given root, its precision is subsequently refined to the desired level using Newton-Raphson it-
eration from Boost.Math's root-finding with derivatives utilities combined with the functions cyl_bessel_j and cyl_neumann.

Newton iteration requires both Jν(x) or Yν(x) as well as its derivative. The derivatives of Jν(x) and Yν(x) with respect to x are given
by M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, NBS (1964). In particular,

d/dx Jν(x) = Jν-1(x) - ν Jν(x) / x

d/dx Yν(x) = Yν-1(x) - ν Yν(x) / x

Enumeration of the rank of a root (in other words the index of a root) begins with one and counts up, in other words m,=1,2,3,…
The value of the first root is always greater than zero.
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For certain special parameters, cylindrical Bessel functions and cylindrical Neumann functions have a root at the origin. For example,
Jν(x) has a root at the origin for every positive order ν > 0, and for every negative integer order ν = -n with n ∈   + and n ≠ 0.

In addition, Yν(x) has a root at the origin for every negative half-integer order ν = -n/2, with n ∈   + and and n ≠ 0.

For these special parameter values, the origin with a value of x = 0 is provided as the 0th root generated by cyl_bessel_j_zero()
and cyl_neumann_zero().

When calculating initial estimates for the roots of Bessel functions, a distinction is made between positive order and negative order,
and different methods are used for these. In addition, different algorithms are used for the first root m = 1 and for subsequent roots
with higher rank m ≥ 2. Furthermore, estimates of the roots for Bessel functions with order above and below a cutoff at ν = 2.2 are
calculated with different methods.

Calculations of the estimates of jν,1 and yν,1 with 0 ≤ ν < 2.2 use empirically tabulated values. The coefficients for these have been
generated by a computer algebra system.

Calculations of the estimates of jν,1 and yν,1 with ν≥ 2.2 use Eqs.9.5.14 and 9.5.15 in M. Abramowitz and I. A. Stegun, Handbook
of Mathematical Functions, NBS (1964).

In particular,

jν,1 ≅ ν + 1.85575 ν  + 1.033150 ν-  - 0.00397 ν-1 - 0.0908 ν-5/3 + 0.043 ν-7/3 + …

and

yν,1 ≅ ν + 0.93157 ν  + 0.26035 ν-  + 0.01198 ν-1 - 0.0060 ν-5/3 - 0.001 ν-7/3 + …

Calculations of the estimates of jν, m and yν, m with rank m > 2 and 0 ≤ ν < 2.2 use McMahon's approximation, as described in M.
Abramowitz and I. A. Stegan, Section 9.5 and 9.5.12. In particular,

jν,m, yν,m ≅ β - (μ-1) / 8β

- 4(μ-1)(7μ - 31) / 3(8β)3

-32(μ-1)(83μ² - 982μ + 3779) / 15(8β)5

-64(μ-1)(6949μ3 - 153855μ² + 1585743μ- 6277237) / 105(8a)7

- …  (5)

where μ = 4ν2 and β = (m + ½ν - ¼)π for jν,m and β = (m + ½ν -¾)π for yν,m.

Calculations of the estimates of jν, m and yν, m with ν ≥ 2.2 use one term in the asymptotic expansion given in Eq.9.5.22 and top line
of Eq.9.5.26 combined with Eq. 9.3.39, all in M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, NBS (1964)
explicit and easy-to-understand treatment for asymptotic expansion of zeros. The latter two equations are expressed for argument
(x) greater than one. (Olver also gives the series form of the equations in §10.21(vi) McMahon's Asymptotic Expansions for Large
Zeros - using slightly different variable names).

In summary,

jν, m ∼ νx(-ζ) + f1(-ζ/ν)

where -ζ = ν-2/3am and am is the absolute value of the mth root of Ai(x) on the negative real axis.

Here x = x(-ζ) is the inverse of the function

 (-ζ)3/2 = √(x² - 1) - cos ¹(1/x)  (7)

Furthermore,

f1(-ζ) = ½x(-ζ) {h(-ζ)}² ⋅ b0(-ζ)
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where

h(-ζ) = {4(-ζ) / (x² - 1)}4

and

b0(-ζ) = -5/(48ζ²) + 1/(-ζ)½ ⋅ { 5/(24(x2-1)3/2) + 1/(8(x2-1)½)}

When solving for x(-ζ) in Eq. 7 above, the right-hand-side is expanded to order 2 in a Taylor series for large x. This results in

 (-ζ)3/2 ≈ x + 1/2x - π/2

The positive root of the resulting quadratic equation is used to find an initial estimate x(-ζ). This initial estimate is subsequently refined
with several steps of Newton-Raphson iteration in Eq. 7.

Estimates of the roots of cylindrical Bessel functions of negative order on the positive real axis are found using interlacing relations.
For example, the mth root of the cylindrical Bessel function j-ν,m is bracketed by the mth root and the (m+1)th root of the Bessel
function of corresponding positive integer order. In other words,

jnν,m < j-ν,m < jnν,m+1

where m > 1 and nν represents the integral floor of the absolute value of |-ν|.

Similar bracketing relations are used to find estimates of the roots of Neumann functions of negative order, whereby a discontinuity
at every negative half-integer order needs to be handled.

Bracketing relations do not hold for the first root of cylindrical Bessel functions and cylindrical Neumann functions with negative
order. Therefore, iterative algorithms combined with root-finding via bisection are used to localize j-ν,1 and y-ν,1.

Testing

The precision of evaluation of zeros was tested at 50 decimal digits using cpp_dec_float_50 and found identical with spot values
computed by Wolfram Alpha.

Modified Bessel Functions of the First and Second Kinds

Synopsis

#include <boost/math/special_functions/bessel.hpp>

template <class T1, class T2>
calculated-result-type cyl_bessel_i(T1 v, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type cyl_bessel_i(T1 v, T2 x, const Policy&);

template <class T1, class T2>
calculated-result-type cyl_bessel_k(T1 v, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type cyl_bessel_k(T1 v, T2 x, const Policy&);

Description

The functions cyl_bessel_i and cyl_bessel_k return the result of the modified Bessel functions of the first and second kind respectively:

cyl_bessel_i(v, x) = Iv(x)

cyl_bessel_k(v, x) = Kv(x)
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where:

Iν(z) = (12 z)
ν∑
k=0

∞ (14 z2)k
k !Γ(ν + k + 1)

Kν(z) =
π
2 ⋅

I−ν(z) − Iν(z)
sin (νπ)

The return type of these functions is computed using the result type calculation rules when T1 and T2 are different types. The
functions are also optimised for the relatively common case that T1 is an integer.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

The functions return the result of domain_error whenever the result is undefined or complex. For cyl_bessel_j this occurs when x
< 0 and v is not an integer, or when x == 0 and v != 0. For cyl_neumann this occurs when x <= 0.

The following graph illustrates the exponential behaviour of Iv.
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The following graph illustrates the exponential decay of Kv.
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Testing

There are two sets of test values: spot values calculated using functions.wolfram.com, and a much larger set of tests computed using
a simplified version of this implementation (with all the special case handling removed).

Accuracy

The following tables show how the accuracy of these functions varies on various platforms, along with a comparison to the GSL-
1.9 library. Note that only results for the widest floating-point type on the system are given, as narrower types have effectively zero
error. All values are relative errors in units of epsilon.

Table 43. Errors Rates in cyl_bessel_i

IvPlatform and CompilerSignificand Size

Peak=10 Mean=3.4 GSL Peak=6000Win32 / Visual C++ 8.053

Peak=11 Mean=3Red Hat Linux IA64 / G++ 3.464

Peak=11 Mean=4SUSE Linux AMD64 / G++ 4.164

Peak=15 Mean=4HP-UX / HP aCC 6113
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Table 44. Errors Rates in cyl_bessel_k

KvPlatform and CompilerSignificand Size

Peak=9 Mean=2

GSL Peak=9

Win32 / Visual C++ 8.053

Peak=10 Mean=2Red Hat Linux IA64 / G++ 3.464

Peak=10 Mean=2SUSE Linux AMD64 / G++ 4.164

Peak=12 Mean=5HP-UX / HP aCC 6113

Implementation

The following are handled as special cases first:

When computing Iv   for x < 0, then ν   must be an integer or a domain error occurs. If ν   is an integer, then the function is odd if ν
  is odd and even if ν   is even, and we can reflect to x > 0.

For Iv   with v equal to 0, 1 or 0.5 are handled as special cases.

The 0 and 1 cases use minimax rational approximations on finite and infinite intervals. The coefficients are from:

• J.M. Blair and C.A. Edwards, Stable rational minimax approximations to the modified Bessel functions I_0(x) and I_1(x), Atomic
Energy of Canada Limited Report 4928, Chalk River, 1974.

• S. Moshier, Methods and Programs for Mathematical Functions, Ellis Horwood Ltd, Chichester, 1989.

While the 0.5 case is a simple trigonometric function:

I0.5(x) = sqrt(2 / πx) * sinh(x)

For Kv   with v an integer, the result is calculated using the recurrence relation:

Kν+1(z) =
2ν
z Kν(z) + Kν−1(z)

starting from K0   and K1   which are calculated using rational the approximations above. These rational approximations are accurate
to around 19 digits, and are therefore only used when T has no more than 64 binary digits of precision.

When x is small compared to v, Ivx   is best computed directly from the series:

Iv(x) = ∑
k=0

∞
1

Γ(k + v + 1)k !( x2)
2k+v

In the general case, we first normalize ν   to [0, [inf]) with the help of the reflection formulae:

I−ν(z) = Iν(z) +
2
π sin (νπ)Kν(z)

K−ν(z) = Kν(z)

Let μ   = ν - floor(ν + 1/2), then μ   is the fractional part of ν   such that |μ| <= 1/2 (we need this for convergence later). The idea is
to calculate Kμ(x) and Kμ+1(x), and use them to obtain Iν(x) and Kν(x).
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The algorithm is proposed by Temme in N.M. Temme, On the numerical evaluation of the modified bessel function of the third kind,
Journal of Computational Physics, vol 19, 324 (1975), which needs two continued fractions as well as the Wronskian:

CF1 : f ν =
Iν+1
Iν

= 1
2(ν + 1)

x +
1

2(ν + 2)
x +

⋅ ⋅ ⋅

CF2 :
z1
z0 =

1
2(x + 1) +

ν2 − (32)2
2(x + 2) +

ν2 − (52)2
2(x + 3) + ⋅ ⋅ ⋅

W = Iν(z)Kν
′ (z) − Kν(z)Iν

′ (z) = − [Iν(z)Kν+1(z) + Kν(z)Iν+1(z)] = − 1
z

The continued fractions are computed using the modified Lentz's method (W.J. Lentz, Generating Bessel functions in Mie scattering
calculations using continued fractions, Applied Optics, vol 15, 668 (1976)). Their convergence rates depend on x, therefore we need
different strategies for large x and small x.

x > v, CF1 needs O(x) iterations to converge, CF2 converges rapidly.

x <= v, CF1 converges rapidly, CF2 fails to converge when x -> 0.

When x is large (x > 2), both continued fractions converge (CF1 may be slow for really large x). Kμ   and Kμ+1   can be calculated
by

Kμ = π (2x)μe−xz0

Kμ+1 =
Kμ
x (12 + μ + x + (μ2 − 1

4)
z1
z0)

where

z0 =
1

1 + S ( 12x)μ+
1
2

S is also a series that is summed along with CF2, see I.J. Thompson and A.R. Barnett, Modified Bessel functions I_v and K_v of real
order and complex argument to selected accuracy, Computer Physics Communications, vol 47, 245 (1987).

When x is small (x <= 2), CF2 convergence may fail (but CF1 works very well). The solution here is Temme's series:

Kμ = ∑
k=0

∞
ck f k

Kμ+1 = 2
x∑
k=0

∞
ckhk

where

ck =
1
k !(x24 )k

fk   and hk   are also computed by recursions (involving gamma functions), but the formulas are a little complicated, readers are referred
to N.M. Temme, On the numerical evaluation of the modified Bessel function of the third kind, Journal of Computational Physics,
vol 19, 324 (1975). Note: Temme's series converge only for |μ| <= 1/2.

Kν(x) is then calculated from the forward recurrence, as is Kν+1(x). With these two values and fν, the Wronskian yields Iν(x) directly.
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Spherical Bessel Functions of the First and Second Kinds

Synopsis

#include <boost/math/special_functions/bessel.hpp>

template <class T1, class T2>
calculated-result-type sph_bessel(unsigned v, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type sph_bessel(unsigned v, T2 x, const Policy&);

template <class T1, class T2>
calculated-result-type sph_neumann(unsigned v, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type sph_neumann(unsigned v, T2 x, const Policy&);

Description

The functions sph_bessel and sph_neumann return the result of the Spherical Bessel functions of the first and second kinds respectively:

sph_bessel(v, x) = jv(x)

sph_neumann(v, x) = yv(x) = nv(x)

where:

jn(z) = π
2z Jn+12

(z)

yn(z) = π
2zY n+12

(z)

The return type of these functions is computed using the result type calculation rules for the single argument type T.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

The functions return the result of domain_error whenever the result is undefined or complex: this occurs when x < 0.

The jv   function is cyclic like Jv   but differs in its behaviour at the origin:
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Likewise yv   is also cyclic for large x, but tends to -∞   for small x:
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Testing

There are two sets of test values: spot values calculated using functions.wolfram.com, and a much larger set of tests computed using
a simplified version of this implementation (with all the special case handling removed).

Accuracy

Other than for some special cases, these functions are computed in terms of cyl_bessel_j and cyl_neumann: refer to these functions
for accuracy data.

Implementation

Other than error handling and a couple of special cases these functions are implemented directly in terms of their definitions:
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jn(z) = π
2z Jn+12

(z)

yn(z) = π
2zY n+12

(z)

The special cases occur for:

j0  = sinc_pi(x) = sin(x) / x

and for small x < 1, we can use the series:

jν(z) =
π
4∑

k=0

∞
(−1)k( z2)2k+n

k !Γ(n + k + 1 + 1
2)

which neatly avoids the problem of calculating 0/0 that can occur with the main definition as x → 0.

Derivatives of the Bessel Functions

Synopsis

#include <boost/math/special_functions/bessel_prime.hpp>

template <class T1, class T2>
calculated-result-type cyl_bessel_j_prime(T1 v, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type cyl_bessel_j_prime(T1 v, T2 x, const Policy&);

template <class T1, class T2>
calculated-result-type cyl_neumann_prime(T1 v, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type cyl_neumann_prime(T1 v, T2 x, const Policy&);

template <class T1, class T2>
calculated-result-type cyl_bessel_i_prime(T1 v, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type cyl_bessel_i_prime(T1 v, T2 x, const Policy&);

template <class T1, class T2>
calculated-result-type cyl_bessel_k_prime(T1 v, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type cyl_bessel_k_prime(T1 v, T2 x, const Policy&);

template <class T1, class T2>
calculated-result-type sph_bessel_prime(T1 v, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type sph_bessel_prime(T1 v, T2 x, const Policy&);

template <class T1, class T2>
calculated-result-type sph_neumann_prime(T1 v, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type sph_neumann_prime(T1 v, T2 x, const Policy&);
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Description

These functions return the first derivative with respect to x of the corresponding Bessel function.

The return type of these functions is computed using the result type calculation rules when T1 and T2 are different types. The
functions are also optimised for the relatively common case that T1 is an integer.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

The functions return the result of domain_error whenever the result is undefined or complex.

Testing

There are two sets of test values: spot values calculated using wolframalpha.com, and a much larger set of tests computed using a
relation to the underlying Bessel functions that the implementation does not use.

Accuracy

The accuracy of these functions is broadly similar to the underlying Bessel functions. Refer to those functions for more information.

Implementation

In the general case, the derivatives are calculated using the relations:

J 'v(x) =
Jv−1(x) − Jv+1(x)

2

Y'v(x) =
Yv−1(x) − Yv+1(x)

2

I'v(x) =
Iv−1(x) + Iv+1(x)

2

K'v(x) =
Kv−1(x) + Kv+1(x)

−2

j'n = (nx ) jn(x) − jn+1(x)

y'n = (nx )yn(x) − yn+1(x)

There are also a number of special cases, for large x we have:

J 'v(x) = N vcosϕv
Y'v(x) = N vsinϕv

N v
2 ≈ 2

π x{1 − 1
2
μ − 3

(2x)2
− 1

8
( μ − 1)( μ − 45)

(2x)4 }
ϕv ≈ x − (12v −

1
4) π + μ + 3

2(4x) +
μ2 + 46 μ − 63

6(4x)3
+ μ3 + 185μ2 − 2053 μ + 1899

5(4x)5

μ = 4v2

And for small x:

J 'v(z) = zv−1

2v ∑k=0
∞ (− z24 )k(v + 2k)

k! Γ (1 + k + v)

Y'v(x) = − Γ (−v)cos(v π )
π × zv−1

2v × ∑k=0
∞ (− z24 )k(v + 2k)

(v + 1)kk!
− Γ (v)

π × 2v

zv+1
× ∑k=0

∞ (− z24 )k(2k − v)
(1 − v)kk!
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Hankel Functions

Cyclic Hankel Functions

Synopsis

template <class T1, class T2>
std::complex<calculated-result-type> cyl_hankel_1(T1 v, T2 x);

template <class T1, class T2, class Policy>
std::complex<calculated-result-type> cyl_hankel_1(T1 v, T2 x, const Policy&);

template <class T1, class T2>
std::complex<calculated-result-type> cyl_hankel_2(T1 v, T2 x);

template <class T1, class T2, class Policy>
std::complex<calculated-result-type> cyl_hankel_2(T1 v, T2 x, const Policy&);

Description

The functions cyl_hankel_1 and cyl_hankel_2 return the result of the Hankel functions of the first and second kind respectively:

cyl_hankel_1(v, x) = Hv
(1)(x) = Jv(x) + i Yv(x)

cyl_hankel_2(v, x) = Hv
(2)(x) = Jv(x) - i Yv(x)

where:

Jv(x) is the Bessel function of the first kind, and Yv(x) is the Bessel function of the second kind.

The return type of these functions is computed using the result type calculation rules when T1 and T2 are different types. The
functions are also optimised for the relatively common case that T1 is an integer.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Note that while the arguments to these functions are real values, the results are complex. That means that the functions can only be
instantiated on types float, double and long double. The functions have also been extended to operate over the whole range
of v and x (unlike cyl_bessel_j and cyl_neumann).

Performance

These functions are generally more efficient than two separate calls to the underlying Bessel functions as internally Bessel J and Y
can be computed simultaneously.

Testing

There are just a few spot tests to exercise all the special case handling - the bulk of the testing is done on the Bessel functions upon
which these are based.

Accuracy

Refer to cyl_bessel_j and cyl_neumann.

Implementation

For x < 0 the following reflection formulae are used:
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J ν(−z) = (−z)νz−νJ ν(z)

Y ν(−z) = zνY ν(z)(−z)
−ν + ((−z)νz−ν − (−z)−νzν)J ν(z)cot(πν) ; ν ∉ ℤ

Y ν(−z) = (−1)ν(Y ν(z) −
2
π (log(z) − log(−z))J ν(z)) ; ν ∈ ℤ

Otherwise the implementation is trivially in terms of the Bessel J and Y functions.

Note however, that the Hankel functions compute the Bessel J and Y functions simultaneously, and therefore a single Hankel function
call is more efficient than two Bessel function calls. The one exception is when v is a small positive integer, in which case the usual
Bessel function routines for integer order are used.

Spherical Hankel Functions

Synopsis

template <class T1, class T2>
std::complex<calculated-result-type> sph_hankel_1(T1 v, T2 x);

template <class T1, class T2, class Policy>
std::complex<calculated-result-type> sph_hankel_1(T1 v, T2 x, const Policy&);

template <class T1, class T2>
std::complex<calculated-result-type> sph_hankel_2(T1 v, T2 x);

template <class T1, class T2, class Policy>
std::complex<calculated-result-type> sph_hankel_2(T1 v, T2 x, const Policy&);

Description

The functions sph_hankel_1 and sph_hankel_2 return the result of the spherical Hankel functions of the first and second kind respect-
ively:

hv
(1)(x) = π

2
1
x Hv+12

(1) (x)

hv
(2)(x) = π

2
1
x Hv+12

(2) (x)

The return type of these functions is computed using the result type calculation rules when T1 and T2 are different types. The
functions are also optimised for the relatively common case that T1 is an integer.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Note that while the arguments to these functions are real values, the results are complex. That means that the functions can only be
instantiated on types float, double and long double. The functions have also been extended to operate over the whole range
of v and x (unlike cyl_bessel_j and cyl_neumann).

Testing

There are just a few spot tests to exercise all the special case handling - the bulk of the testing is done on the Bessel functions upon
which these are based.
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Accuracy

Refer to cyl_bessel_j and cyl_neumann.

Implementation

These functions are trivially implemented in terms of cyl_hankel_1 and cyl_hankel_2.
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Airy Functions

Airy Ai Function

Synopsis

#include <boost/math/special_functions/airy.hpp>

namespace boost { namespace math {

template <class T>
calculated-result-type airy_ai(T x);

template <class T, class Policy>
calculated-result-type airy_ai(T x, const Policy&);

}} // namespaces

Description

The function airy_ai calculates the Airy function Ai which is the first solution to the differential equation:

d2w
d z2

= zw ; w = Ai(z), Bi(z), Ai(ze±2πi3 )
See Weisstein, Eric W. "Airy Functions." From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/AiryFunctions.html;

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

The following graph illustrates how this function changes as x changes: for negative x the function is cyclic, while for positive x the
value tends to zero:
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Accuracy

This function is implemented entirely in terms of the Bessel functions cyl_bessel_j and cyl_bessel_k - refer to those functions for
detailed accuracy information.

In general though, the relative error is low (less than 100 ε) for x > 0 while only the absolute error is low for x < 0.

Testing

Since this function is implemented in terms of other special functions, there are only a few basic sanity checks, using test values
from Wolfram Airy Functions.

Implementation

This function is implemented in terms of the Bessel functions using the relations:

Ai(0) = 1

3
2
3Γ(23)

Ai(z) = π−1 z
3K±13

(ζ ) ; ζ = 2
3 z

2
3

Ai(−z) = ( z
3 )(J 13(ζ ) + J

−13
(ζ ))

Airy Bi Function

Synopsis

#include <boost/math/special_functions/airy.hpp>

namespace boost { namespace math {

template <class T>
calculated-result-type airy_bi(T x);

template <class T, class Policy>
calculated-result-type airy_bi(T x, const Policy&);

}} // namespaces

Description

The function airy_bi calculates the Airy function Bi which is the second solution to the differential equation:

d2w
d z2

= zw ; w = Ai(z), Bi(z), Ai(ze±2πi3 )
The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

The following graph illustrates how this function changes as x changes: for negative x the function is cyclic, while for positive x the
value tends to infinity:
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Accuracy

This function is implemented entirely in terms of the Bessel functions cyl_bessel_i and cyl_bessel_j - refer to those functions for
detailed accuracy information.

In general though, the relative error is low (less than 100 ε) for x > 0 while only the absolute error is low for x < 0.

Testing

Since this function is implemented in terms of other special functions, there are only a few basic sanity checks, using test values
from functions.wolfram.com.

Implementation

This function is implemented in terms of the Bessel functions using the relations:

Bi(0) = 1

3
1
6Γ(23)

Bi(z) = z
3 (I 13(ζ ) + I

−13
(ζ )) ; ζ = 2

3 z
2
3

Bi(−z) = z
3 (J−13(ζ ) − J 1

3
(ζ ))

Airy Ai' Function

Synopsis

#include <boost/math/special_functions/airy.hpp>
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namespace boost { namespace math {

template <class T>
calculated-result-type airy_ai_prime(T x);

template <class T, class Policy>
calculated-result-type airy_ai_prime(T x, const Policy&);

}} // namespaces

Description

The function airy_ai_prime calculates the Airy function Ai' which is the derivative of the first solution to the differential equation:

d2w
d z2

= zw ; w = Ai(z), Bi(z), Ai(ze±2πi3 )
The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

The following graph illustrates how this function changes as x changes: for negative x the function is cyclic, while for positive x the
value tends to zero:
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Accuracy

This function is implemented entirely in terms of the Bessel functions cyl_bessel_j and cyl_bessel_k - refer to those functions for
detailed accuracy information.

In general though, the relative error is low (less than 100 ε) for x > 0 while only the absolute error is low for x < 0.

Testing

Since this function is implemented in terms of other special functions, there are only a few basic sanity checks, using test values
from functions.wolfram.com.
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Implementation

This function is implemented in terms of the Bessel functions using the relations:

Ai ′(0) = − 1

3
1
3Γ(13)

Ai ′(z) = z
π 3K±23

(ζ ) ; ζ = 2
3 z

2
3

Ai ′(−z) = z
3(J 23(ζ ) − J

−23
(ζ ))

Airy Bi' Function

Synopsis

#include <boost/math/special_functions/airy.hpp>

namespace boost { namespace math {

template <class T>
calculated-result-type airy_bi_prime(T x);

template <class T, class Policy>
calculated-result-type airy_bi_prime(T x, const Policy&);

}} // namespaces

Description

The function airy_bi_prime calculates the Airy function Bi' which is the derivative of the second solution to the differential equation:

d2w
d z2

= zw ; w = Ai(z), Bi(z), Ai(ze±2πi3 )
The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

The following graph illustrates how this function changes as x changes: for negative x the function is cyclic, while for positive x the
value tends to infinity:
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Accuracy

This function is implemented entirely in terms of the Bessel functions cyl_bessel_i and cyl_bessel_j - refer to those functions for
detailed accuracy information.

In general though, the relative error is low (less than 100 ε) for x > 0 while only the absolute error is low for x < 0.

Testing

Since this function is implemented in terms of other special functions, there are only a few basic sanity checks, using test values
from functions.wolfram.com.

Implementation

This function is implemented in terms of the Bessel functions using the relations:

Bi ′(0) = 3
1
6

Γ(13)

Bi ′(z) = z
3 (I 23(ζ ) + I

−23
(ζ )) ; ζ = 2

3 z
2
3

Bi ′(−z) = z
3 (J−23(ζ ) + J 2

3
(ζ ))
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Elliptic Integrals

Elliptic Integral Overview
The main reference for the elliptic integrals is:

M. Abramowitz and I. A. Stegun (Eds.) (1964) Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office,
Washington, D.C.

Mathworld also contain a lot of useful background information:

Weisstein, Eric W. "Elliptic Integral." From MathWorld--A Wolfram Web Resource.

As does Wikipedia Elliptic integral.

Notation

All variables are real numbers unless otherwise noted.

Definition

∫R(t, s)dt
is called elliptic integral if R(t, s) is a rational function of t and s, and s2 is a cubic or quartic polynomial in t.

Elliptic integrals generally can not be expressed in terms of elementary functions. However, Legendre showed that all elliptic integrals
can be reduced to the following three canonical forms:

Elliptic Integral of the First Kind (Legendre form)

F(φ, k) = ∫0
φ

dθ
1 − k2sin2θ

Elliptic Integral of the Second Kind (Legendre form)

E(φ, k) = ∫0
φ

1 − k2sin2θ dθ

Elliptic Integral of the Third Kind (Legendre form)

Π(n, φ, k) = ∫0
φ

dθ
(1 − nsin2θ) 1 − k2sin2θ

where

k = sin α, | k | ≤ 1
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Note

φ is called the amplitude.

k is called the modulus.

α is called the modular angle.

n is called the characteristic.

Caution

Perhaps more than any other special functions the elliptic integrals are expressed in a variety of different ways. In
particular, the final parameter k (the modulus) may be expressed using a modular angle α, or a parameter m. These
are related by:

k = sinα

m = k2 = sin2α

So that the integral of the third kind (for example) may be expressed as either:

Π(n, φ, k)

Π(n, φ \ α)

Π(n, φ| m)

To further complicate matters, some texts refer to the complement of the parameter m, or 1 - m, where:

1 - m = 1 - k2 = cos2α

This implementation uses k throughout: this matches the requirements of the Technical Report on C++ Library
Extensions. However, you should be extra careful when using these functions!

When φ = π / 2, the elliptic integrals are called complete.

Complete Elliptic Integral of the First Kind (Legendre form)

K(k) = F(π2 , k) = ∫0
π
2 dθ

1 − k2sin2θ

Complete Elliptic Integral of the Second Kind (Legendre form)

E(k) = E(π2 , k) = ∫0
π
2

1 − k2sin2θ dθ

Complete Elliptic Integral of the Third Kind (Legendre form)

∏ (n, k) =∏(n, π2 , k) = ∫0
π
2 dθ
(1 − nsin2θ) 1 − k2sin2θ

Legendre also defined a forth integral D(φ,k) which is a combination of the other three:
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D(φ, k) = ∫0
φ

sin2θ
(1 − k2sin2θ)dθ

= ∫0
sinφ

t2

1 − t2 1 − k2t2
dt

= (F(φ, k) − E(φ, k))
k2

= 1
3RD(c − 1,c − k2,c) ; c = 1

sin2φ

Like the other Legendre integrals this comes in both complete and incomplete forms.

Carlson Elliptic Integrals

Carlson [Carlson77] [Carlson78] gives an alternative definition of elliptic integral's canonical forms:

Carlson's Elliptic Integral of the First Kind

RF(x, y, z) =
1
2∫0

∞

[(t + x)(t + y)(t + z)]
−12dt

where x, y, z are nonnegative and at most one of them may be zero.

Carlson's Elliptic Integral of the Second Kind

RD(x, y, z) =
3
2∫0

∞

[(t + x)(t + y)]
−12(t + z)

−32dt

where x, y are nonnegative, at most one of them may be zero, and z must be positive.

Carlson's Elliptic Integral of the Third Kind

RJ(x, y, z, p) =
3
2∫0

∞

(t + p)−1[(t + x)(t + y)(t + z)]
−12dt

where x, y, z are nonnegative, at most one of them may be zero, and p must be nonzero.

Carlson's Degenerate Elliptic Integral

RC(x, y) =
1
2∫0

∞

(t + x)
−12(t + y)−1dt

where x is nonnegative and y is nonzero.

Note

RC(x, y) = RF(x, y, y)

RD(x, y, z) = RJ(x, y, z, z)

Carlson's Symmetric Integral
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RG(x, y, z) =
1
4π∫0

2π

∫0
π

(xsin2θcos2φ + ysin2θsin2φ + zcos2θ) sinθd θdφ
Duplication Theorem

Carlson proved in [Carlson78] that

RF(x, y, z) = 2RF(x + λ, y + λ, z + λ)

= RF( x + λ
4 , y + λ

4 , z + λ
4 )

λ = xy + yz + zx

Carlson's Formulas

The Legendre form and Carlson form of elliptic integrals are related by equations:

F(φ, k) = sin φRF(cos2φ, 1 − k2sin2φ, 1)
E(φ, k) = sin φRF(cos2φ, 1 − k2sin2φ, 1) − 1

3k
2sin3φRD(cos2φ, 1 − k2sin2φ, 1)

Π(n, φ, k) = sin φRF(cos2φ, 1 − k2sin2φ, 1) + 1
3nsin

3φRJ(cos2φ, 1 − k2sin2φ, 1, 1 − nsin2φ)

In particular,

K(k) = RF(0, 1 − k2, 1)
E(k) = RF(0, 1 − k2, 1) − 1

3k
2RD(0, 1 − k2, 1)

Π(n, k) = RF(0, 1 − k2, 1) + 1
3nRJ(0, 1 − k2, 1, 1 − n)

Miscellaneous Elliptic Integrals

There are two functions related to the elliptic integrals which otherwise defy categorisation, these are the Jacobi Zeta function:

Z(φ, k) = E(φ, k) − E(k)F(φ, k)
K(k)

= k2
3K(k)sinφcosφ (1 − k2sin2φ)RJ(0,1 − k2, 1,1 − k2sin2φ)

and the Heuman Lambda function:

Λ0(φ, k) = F(φ, 1 − k2)
K( 1 − k2) + 2

πK(k)Z(φ, 1 − k2)

= 2
π
(1 − k2)sinφcosφ

Δ (RF(0,1 − k2, 1) + k2

3Δ2RJ(0,1 − k2, 1,1 − k2

Δ2)) ; Δ2 = 1 − (1 − k2)sin2φ
Both of these functions are easily implemented in terms of Carlson's integrals, and are provided in this library as jacobi_zeta and
heuman_lambda.

Numerical Algorithms

The conventional methods for computing elliptic integrals are Gauss and Landen transformations, which converge quadratically and
work well for elliptic integrals of the first and second kinds. Unfortunately they suffer from loss of significant digits for the third
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kind. Carlson's algorithm [Carlson79] [Carlson78], by contrast, provides a unified method for all three kinds of elliptic integrals with
satisfactory precisions.

References

Special mention goes to:

A. M. Legendre, Traitd des Fonctions Elliptiques et des Integrales Euleriennes, Vol. 1. Paris (1825).

However the main references are:

1. M. Abramowitz and I. A. Stegun (Eds.) (1964) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables, National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C.

2. B.C. Carlson, Computing elliptic integrals by duplication, Numerische Mathematik, vol 33, 1 (1979).

3. B.C. Carlson, Elliptic Integrals of the First Kind, SIAM Journal on Mathematical Analysis, vol 8, 231 (1977).

4. B.C. Carlson, Short Proofs of Three Theorems on Elliptic Integrals, SIAM Journal on Mathematical Analysis, vol 9, 524 (1978).

5. B.C. Carlson and E.M. Notis, ALGORITHM 577: Algorithms for Incomplete Elliptic Integrals, ACM Transactions on Mathematmal
Software, vol 7, 398 (1981).

6. B. C. Carlson, On computing elliptic integrals and functions. J. Math. and Phys., 44 (1965), pp. 36-51.

7. B. C. Carlson, A table of elliptic integrals of the second kind. Math. Comp., 49 (1987), pp. 595-606. (Supplement, ibid., pp. S13-
S17.)

8. B. C. Carlson, A table of elliptic integrals of the third kind. Math. Comp., 51 (1988), pp. 267-280. (Supplement, ibid., pp. S1-S5.)

9. B. C. Carlson, A table of elliptic integrals: cubic cases. Math. Comp., 53 (1989), pp. 327-333.

10. B. C. Carlson, A table of elliptic integrals: one quadratic factor. Math. Comp., 56 (1991), pp. 267-280.

11. B. C. Carlson, A table of elliptic integrals: two quadratic factors. Math. Comp., 59 (1992), pp. 165-180.

12. B. C. Carlson, Numerical computation of real or complex elliptic integrals. Numerical Algorithms, Volume 10, Number 1 / March,
1995, p13-26.

13. B. C. Carlson and John L. Gustafson, Asymptotic Approximations for Symmetric Elliptic Integrals, SIAM Journal on Mathemat-
ical Analysis, Volume 25, Issue 2 (March 1994), 288-303.

The following references, while not directly relevent to our implementation, may also be of interest:

1. R. Burlisch, Numerical Compuation of Elliptic Integrals and Elliptic Functions. Numerical Mathematik 7, 78-90.

2. R. Burlisch, An extension of the Bartky Transformation to Incomplete Elliptic Integrals of the Third Kind. Numerical Mathematik
13, 266-284.

3. R. Burlisch, Numerical Compuation of Elliptic Integrals and Elliptic Functions. III. Numerical Mathematik 13, 305-315.

4. T. Fukushima and H. Ishizaki, Numerical Computation of Incomplete Elliptic Integrals of a General Form. Celestial Mechanics
and Dynamical Astronomy, Volume 59, Number 3 / July, 1994, 237-251.

Elliptic Integrals - Carlson Form

Synopsis

#include <boost/math/special_functions/ellint_rf.hpp>
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namespace boost { namespace math {

template <class T1, class T2, class T3>
calculated-result-type ellint_rf(T1 x, T2 y, T3 z)

template <class T1, class T2, class T3, class Policy>
calculated-result-type ellint_rf(T1 x, T2 y, T3 z, const Policy&)

}} // namespaces

#include <boost/math/special_functions/ellint_rd.hpp>

namespace boost { namespace math {

template <class T1, class T2, class T3>
calculated-result-type ellint_rd(T1 x, T2 y, T3 z)

template <class T1, class T2, class T3, class Policy>
calculated-result-type ellint_rd(T1 x, T2 y, T3 z, const Policy&)

}} // namespaces

#include <boost/math/special_functions/ellint_rj.hpp>

namespace boost { namespace math {

template <class T1, class T2, class T3, class T4>
calculated-result-type ellint_rj(T1 x, T2 y, T3 z, T4 p)

template <class T1, class T2, class T3, class T4, class Policy>
calculated-result-type ellint_rj(T1 x, T2 y, T3 z, T4 p, const Policy&)

}} // namespaces

#include <boost/math/special_functions/ellint_rc.hpp>

namespace boost { namespace math {

template <class T1, class T2>
calculated-result-type ellint_rc(T1 x, T2 y)

template <class T1, class T2, class Policy>
calculated-result-type ellint_rc(T1 x, T2 y, const Policy&)

}} // namespaces

#include <boost/math/special_functions/ellint_rg.hpp>
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namespace boost { namespace math {

template <class T1, class T2, class T3>
calculated-result-type ellint_rg(T1 x, T2 y, T3 z)

template <class T1, class T2, class T3, class Policy>
calculated-result-type ellint_rg(T1 x, T2 y, T3 z, const Policy&)

}} // namespaces

Description

These functions return Carlson's symmetrical elliptic integrals, the functions have complicated behavior over all their possible domains,
but the following graph gives an idea of their behavior:
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Elliptic Integrals

The return type of these functions is computed using the result type calculation rules when the arguments are of different types:
otherwise the return is the same type as the arguments.

template <class T1, class T2, class T3>
calculated-result-type ellint_rf(T1 x, T2 y, T3 z)

template <class T1, class T2, class T3, class Policy>
calculated-result-type ellint_rf(T1 x, T2 y, T3 z, const Policy&)

Returns Carlson's Elliptic Integral RF:

RF(x, y, z) =
1
2∫0

∞

[(t + x)(t + y)(t + z)]
−12dt

Requires that all of the arguments are non-negative, and at most one may be zero. Otherwise returns the result of domain_error.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.
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template <class T1, class T2, class T3>
calculated-result-type ellint_rd(T1 x, T2 y, T3 z)

template <class T1, class T2, class T3, class Policy>
calculated-result-type ellint_rd(T1 x, T2 y, T3 z, const Policy&)

Returns Carlson's elliptic integral RD:

RD(x, y, z) =
3
2∫0

∞

[(t + x)(t + y)]
−12(t + z)

−32dt

Requires that x and y are non-negative, with at most one of them zero, and that z >= 0. Otherwise returns the result of domain_error.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

template <class T1, class T2, class T3, class T4>
calculated-result-type ellint_rj(T1 x, T2 y, T3 z, T4 p)

template <class T1, class T2, class T3, class T4, class Policy>
calculated-result-type ellint_rj(T1 x, T2 y, T3 z, T4 p, const Policy&)

Returns Carlson's elliptic integral RJ:

RJ(x, y, z, p) =
3
2∫0

∞

(t + p)−1[(t + x)(t + y)(t + z)]
−12dt

Requires that x, y and z are non-negative, with at most one of them zero, and that p != 0. Otherwise returns the result of domain_error.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

When p < 0 the function returns the Cauchy principal value using the relation:

(y + q)RJ(x, y, z, − q) = (p − y)RJ(x, y, z, p) − 3RF(x, y, z)

+3( xyz
xz + pq)

1
2RC(xz + pq, pq)

with: q > 0 and: p = y + (z − y)(y − x)
(y + q)

template <class T1, class T2>
calculated-result-type ellint_rc(T1 x, T2 y)

template <class T1, class T2, class Policy>
calculated-result-type ellint_rc(T1 x, T2 y, const Policy&)

Returns Carlson's elliptic integral RC:

RC(x, y) =
1
2∫0

∞

(t + x)
−12(t + y)−1dt

Requires that x > 0 and that y != 0. Otherwise returns the result of domain_error.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

When y < 0 the function returns the Cauchy principal value using the relation:
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RC(x, − y) = ( x
x + y)

1
2RC(x + y, y)

template <class T1, class T2, class T3>
calculated-result-type ellint_rg(T1 x, T2 y, T3 z)

template <class T1, class T2, class T3, class Policy>
calculated-result-type ellint_rg(T1 x, T2 y, T3 z, const Policy&)

Returns Carlson's elliptic integral RG:

RG(x, y, z) =
1
4π∫0

2π

∫0
π

(xsin2θcos2φ + ysin2θsin2φ + zcos2θ) sinθd θdφ
Requires that x and y are non-negative, otherwise returns the result of domain_error.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Testing

There are two sets of tests.

Spot tests compare selected values with test data given in:

B. C. Carlson, Numerical computation of real or complex elliptic integrals. Numerical Algorithms, Volume 10,
Number 1 / March, 1995, pp 13-26.

Random test data generated using NTL::RR at 1000-bit precision and our implementation checks for rounding-errors and/or regressions.

There are also sanity checks that use the inter-relations between the integrals to verify their correctness: see the above Carlson paper
for details.

Accuracy

These functions are computed using only basic arithmetic operations, so there isn't much variation in accuracy over differing platforms.
Note that only results for the widest floating-point type on the system are given as narrower types have effectively zero error. All
values are relative errors in units of epsilon.

Table 45. Errors Rates in the Carlson Elliptic Integrals

RCRJRDRFPlatform and
Compiler

Significand Size

P e a k = 2 . 4
Mean=0.6

P e a k = 1 0 8
Mean=6.9

P e a k = 2 . 6
Mean=0.9

P e a k = 2 . 9
Mean=0.75

Win32 / Visual
C++ 8.0

53

P e a k = 1 . 9
Mean=0.7

Peak=105 Mean=8P e a k = 2 . 7
Mean=0.9

P e a k = 2 . 5
Mean=0.75

Red Hat Linux /
G++ 3.4

64

P e a k = 1 . 8
Mean=0.7

P e a k = 1 8 0
Mean=12

P e a k = 2 . 9
Mean=0.99

P e a k = 5 . 3
Mean=1.6

HP-UX / HP aCC
6

113

Implementation

The key of Carlson's algorithm [Carlson79] is the duplication theorem:
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RF(x, y, z) = 2RF(x + λ, y + λ, z + λ)

= RF( x + λ
4 , y + λ

4 , z + λ
4 )

λ = xy + yz + zx

By applying it repeatedly, x, y, z get closer and closer. When they are nearly equal, the special case equation

RF(x, x, x) =
1
x

is used. More specifically, [R F] is evaluated from a Taylor series expansion to the fifth order. The calculations of the other three
integrals are analogous, except for RC which can be computed from elementary functions.

For p < 0 in RJ(x, y, z, p) and y < 0 in RC(x, y), the integrals are singular and their Cauchy principal values are returned via the relations:

(y + q)RJ(x, y, z, − q) = (p − y)RJ(x, y, z, p) − 3RF(x, y, z)

+3( xyz
xz + pq)

1
2RC(xz + pq, pq)

with: q > 0 and: p = y + (z − y)(y − x)
(y + q)

RC(x, − y) = ( x
x + y)

1
2RC(x + y, y)

Elliptic Integrals of the First Kind - Legendre Form

Synopsis

#include <boost/math/special_functions/ellint_1.hpp>

namespace boost { namespace math {

template <class T1, class T2>
calculated-result-type ellint_1(T1 k, T2 phi);

template <class T1, class T2, class Policy>
calculated-result-type ellint_1(T1 k, T2 phi, const Policy&);

template <class T>
calculated-result-type ellint_1(T k);

template <class T, class Policy>
calculated-result-type ellint_1(T k, const Policy&);

}} // namespaces

Description

These two functions evaluate the incomplete elliptic integral of the first kind F(φ, k) and its complete counterpart K(k) = F(π/2, k).
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Elliptic Of the First Kind

The return type of these functions is computed using the result type calculation rules when T1 and T2 are different types: when they
are the same type then the result is the same type as the arguments.

template <class T1, class T2>
calculated-result-type ellint_1(T1 k, T2 phi);

template <class T1, class T2, class Policy>
calculated-result-type ellint_1(T1 k, T2 phi, const Policy&);

Returns the incomplete elliptic integral of the first kind F(φ, k):

F(φ, k) = ∫0
φ

dθ
1 − k2sin2θ

Requires -1 <= k <= 1, otherwise returns the result of domain_error.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

template <class T>
calculated-result-type ellint_1(T k);

template <class T>
calculated-result-type ellint_1(T k, const Policy&);

Returns the complete elliptic integral of the first kind K(k):

K(k) = F(π2 , k) = ∫0
π
2 dθ

1 − k2sin2θ

Requires -1 <= k <= 1, otherwise returns the result of domain_error.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.
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Accuracy

These functions are computed using only basic arithmetic operations, so there isn't much variation in accuracy over differing platforms.
Note that only results for the widest floating point type on the system are given as narrower types have effectively zero error. All
values are relative errors in units of epsilon.

Table 46. Errors Rates in the Elliptic Integrals of the First Kind

K(k)F(φ, k)Platform and CompilerSignificand Size

Peak=1.8 Mean=0.7Peak=3 Mean=0.8Win32 / Visual C++ 8.053

Peak=2.2 Mean=1.8Peak=2.6 Mean=1.7Red Hat Linux / G++ 3.464

Peak=3.7 Mean=1.5Peak=4.6 Mean=1.5HP-UX / HP aCC 6113

Testing

The tests use a mixture of spot test values calculated using the online calculator at functions.wolfram.com, and random test data
generated using NTL::RR at 1000-bit precision and this implementation.

Implementation

These functions are implemented in terms of Carlson's integrals using the relations:

F(−φ, k) = −F(φ, k)
F(φ + mπ, k) = F(φ, k) + 2mK(k)

F(φ, k) = sinφRF(cos2φ, 1 − k2sin2φ, 1)

and

K(k) = RF(0,1 − k2, 1)

Elliptic Integrals of the Second Kind - Legendre Form

Synopsis

#include <boost/math/special_functions/ellint_2.hpp>

namespace boost { namespace math {

template <class T1, class T2>
calculated-result-type ellint_2(T1 k, T2 phi);

template <class T1, class T2, class Policy>
calculated-result-type ellint_2(T1 k, T2 phi, const Policy&);

template <class T>
calculated-result-type ellint_2(T k);

template <class T, class Policy>
calculated-result-type ellint_2(T k, const Policy&);

}} // namespaces
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Description

These two functions evaluate the incomplete elliptic integral of the second kind E(φ, k) and its complete counterpart E(k) = E(π/2,
k).
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Elliptic Of the Second Kind

The return type of these functions is computed using the result type calculation rules when T1 and T2 are different types: when they
are the same type then the result is the same type as the arguments.

template <class T1, class T2>
calculated-result-type ellint_2(T1 k, T2 phi);

template <class T1, class T2, class Policy>
calculated-result-type ellint_2(T1 k, T2 phi, const Policy&);

Returns the incomplete elliptic integral of the second kind E(φ, k):

E(φ, k) = ∫0
φ

1 − k2sin2θ dθ

Requires -1 <= k <= 1, otherwise returns the result of domain_error.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

template <class T>
calculated-result-type ellint_2(T k);

template <class T>
calculated-result-type ellint_2(T k, const Policy&);

Returns the complete elliptic integral of the second kind E(k):

E(k) = E(π2 , k) = ∫0
π
2

1 − k2sin2θ dθ

Requires -1 <= k <= 1, otherwise returns the result of domain_error.

488

Special Functions

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Accuracy

These functions are computed using only basic arithmetic operations, so there isn't much variation in accuracy over differing platforms.
Note that only results for the widest floating point type on the system are given as narrower types have effectively zero error. All
values are relative errors in units of epsilon.

Table 47. Errors Rates in the Elliptic Integrals of the Second Kind

K(k)F(φ, k)Platform and CompilerSignificand Size

Peak=3.5 Mean=1.0Peak=4.6 Mean=1.2Win32 / Visual C++ 8.053

Peak=4.6 Mean=1.2Peak=4.3 Mean=1.1Red Hat Linux / G++ 3.464

Peak=10.8 Mean=2.3Peak=5.8 Mean=2.2HP-UX / HP aCC 6113

Testing

The tests use a mixture of spot test values calculated using the online calculator at functions.wolfram.com, and random test data
generated using NTL::RR at 1000-bit precision and this implementation.

Implementation

These functions are implemented in terms of Carlson's integrals using the relations:

E(−φ, k) = −E(φ, k)
E(φ + mπ, k) = E(φ, k) + 2mE(k) ; φ ∉ [0,π2 ]

E(φ, k) = sinφRF(cos2φ, 1 − k2sin2φ, 1) − 1
3k

2sin3φRD(cos2φ, 1 − k2sin2φ, 1)

and

E(k) = RF(0,1 − k2, 1) − 1
3k

2RD(0,1 − k2, 1)

Elliptic Integrals of the Third Kind - Legendre Form

Synopsis

#include <boost/math/special_functions/ellint_3.hpp>
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namespace boost { namespace math {

template <class T1, class T2, class T3>
calculated-result-type ellint_3(T1 k, T2 n, T3 phi);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ellint_3(T1 k, T2 n, T3 phi, const Policy&);

template <class T1, class T2>
calculated-result-type ellint_3(T1 k, T2 n);

template <class T1, class T2, class Policy>
calculated-result-type ellint_3(T1 k, T2 n, const Policy&);

}} // namespaces

Description

These two functions evaluate the incomplete elliptic integral of the third kind Π(n, φ, k) and its complete counterpart Π(n, k) = E(n,
π/2, k).
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Elliptic Of the Third Kind

The return type of these functions is computed using the result type calculation rules when the arguments are of different types:
when they are the same type then the result is the same type as the arguments.

template <class T1, class T2, class T3>
calculated-result-type ellint_3(T1 k, T2 n, T3 phi);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ellint_3(T1 k, T2 n, T3 phi, const Policy&);

Returns the incomplete elliptic integral of the third kind Π(n, φ, k):

Π(n, φ, k) = ∫0
φ

dθ
(1 − nsin2θ) 1 − k2sin2θ

Requires -1 <= k <= 1 and n < 1/sin2(φ), otherwise returns the result of domain_error (outside this range the result would be complex).
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The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

template <class T1, class T2>
calculated-result-type ellint_3(T1 k, T2 n);

template <class T1, class T2, class Policy>
calculated-result-type ellint_3(T1 k, T2 n, const Policy&);

Returns the complete elliptic integral of the first kind Π(n, k):

∏ (n, k) =∏(n, π2 , k) = ∫0
π
2 dθ
(1 − nsin2θ) 1 − k2sin2θ

Requires -1 <= k <= 1 and n < 1, otherwise returns the result of domain_error (outside this range the result would be complex).

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Accuracy

These functions are computed using only basic arithmetic operations, so there isn't much variation in accuracy over differing platforms.
Note that only results for the widest floating point type on the system are given as narrower types have effectively zero error. All
values are relative errors in units of epsilon.

Table 48. Errors Rates in the Elliptic Integrals of the Third Kind

Π(n, k)Π(n, φ, k)Platform and CompilerSignificand Size

Peak=3 Mean=0.8Peak=29 Mean=2.2Win32 / Visual C++ 8.053

Peak=2.3 Mean=0.8Peak=14 Mean=1.3Red Hat Linux / G++ 3.464

Peak=4.2 Mean=1.1Peak=10 Mean=1.4HP-UX / HP aCC 6113

Testing

The tests use a mixture of spot test values calculated using the online calculator at functions.wolfram.com, and random test data
generated using NTL::RR at 1000-bit precision and this implementation.

Implementation

The implementation for Π(n, φ, k) first siphons off the special cases:

Π(0, φ, k) = F(φ, k)

Π(n, π/2, k) = Π(n, k)

and

∏(n, φ, 0) = 1
1 − n tan

−1( 1 − n tanφ) ; n < 1

= 1
n − 1 tanh

−1( n − 1tanφ) ; n > 1
= tanφ ; n = 1

Then if n < 0 the relations (A&S 17.7.15/16):
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(1 − n)(1 − k2
n )∏(n, φ, k) = (1 − N)(1 − k2

N )∏(N , φ, k)

+ k2
p2F(φ, k)

+ tan−1( p22 sin2φ
? (φ) )

N =
(k2 − n)
(1 − n)

p2 = − n
1 − n(k2 − n)

are used to shift n to the range [0, 1].

Then the relations:

Π(n, -φ, k) = -Π(n, φ, k)

Π(n, φ+mπ, k) = Π(n, φ, k) + 2mΠ(n, k) ; n <= 1

Π(n, φ+mπ, k) = Π(n, φ, k) ; n > 1 1

are used to move φ   to the range [0, π/2].

The functions are then implemented in terms of Carlson's integrals using the relations:

∏ (n, φ, k) = sinφRF(cos2φ, 1 − k2sin2φ, 1) + n
3sin

3φRJ(cos2φ, 1 − k2sin2φ, 1,1 − nsin2φ)

and

∏ (n, k) = RF(0,1 − k2, 1) + n
3RJ(0,1 − k2, 1,1 − n)

Elliptic Integral D - Legendre Form

Synopsis

#include <boost/math/special_functions/ellint_d.hpp>

namespace boost { namespace math {

template <class T1, class T2>
calculated-result-type ellint_d(T1 k, T2 phi);

template <class T1, class T2, class Policy>
calculated-result-type ellint_d(T1 k, T2 phi, const Policy&);

template <class T1>
calculated-result-type ellint_d(T1 k);

template <class T1, class Policy>
calculated-result-type ellint_d(T1 k, const Policy&);

}} // namespaces

1 I haven't been able to find a literature reference for this relation, but it appears to be the convention used by Mathematica. Intuitively the first 2 * m * Π(n, k) terms
cancel out as the derivative alternates between +∞ and -∞.
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Description

These two functions evaluate the incomplete elliptic integral D(φ, k) and its complete counterpart D(k) = D(π/2, k).

The return type of these functions is computed using the __arg_pomotion_rules when the arguments are of different types: when
they are the same type then the result is the same type as the arguments.

template <class T1, class T2>
calculated-result-type ellint_d(T1 k, T2 phi);

template <class T1, class T2, class Policy>
calculated-result-type ellint_3(T1 k, T2 phi, const Policy&);

Returns the incomplete elliptic integral:

D(φ, k) = ∫0
φ

sin2θ
(1 − k2sin2θ)dθ

= ∫0
sinφ

t2

1 − t2 1 − k2t2
dt

= (F(φ, k) − E(φ, k))
k2

= 1
3RD(c − 1,c − k2,c) ; c = 1

sin2φ

Requires -1 <= k <= 1, otherwise returns the result of domain_error (outside this range the result would be complex).

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

template <class T1>
calculated-result-type ellint_d(T1 k);

template <class T1, class Policy>
calculated-result-type ellint_d(T1 k, const Policy&);

Returns the complete elliptic integral D(k) = D(π/2, k)

Requires -1 <= k <= 1 otherwise returns the result of domain_error (outside this range the result would be complex).

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Accuracy

These functions are trivially computed in terms of other elliptic integrals and generally have very low error rates (a few epsilon)
unless parameter φ is very large, in which case the usual trigonometric function argument-reduction issues apply.

Testing

The tests use a mixture of spot test values calculated using values calculated at wolframalpha.com, and random test data generated
using MPFR at 1000-bit precision and a deliberately naive implementation in terms of the Legendre integrals.
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Implementation

The implementation for D(φ, k) first performs argument reduction using the relations:

D(-φ, k) = -D(φ, k)

and

D(nπ+φ, k) = 2nD(k) + D(φ, k)

to move φ   to the range [0, π/2].

The functions are then implemented in terms of Carlson's integral RD using the relation:

D(φ, k) = ∫0
φ

sin2θ
(1 − k2sin2θ)dθ

= ∫0
sinφ

t2

1 − t2 1 − k2t2
dt

= (F(φ, k) − E(φ, k))
k2

= 1
3RD(c − 1,c − k2,c) ; c = 1

sin2φ

Jacobi Zeta Function

Synopsis

#include <boost/math/special_functions/jacobi_zeta.hpp>

namespace boost { namespace math {

template <class T1, class T2>
calculated-result-type jacobi_zeta(T1 k, T2 phi);

template <class T1, class T2, class Policy>
calculated-result-type jacobi_zeta(T1 k, T2 phi, const Policy&);

}} // namespaces

Description

This function evaluates the Jacobi Zeta Function Z(φ, k)

Z(φ, k) = E(φ, k) − E(k)F(φ, k)
K(k)

= k2
3K(k)sinφcosφ (1 − k2sin2φ)RJ(0,1 − k2, 1,1 − k2sin2φ)

The return type of this function is computed using the __arg_pomotion_rules when the arguments are of different types: when they
are the same type then the result is the same type as the arguments.

Requires -1 <= k <= 1, otherwise returns the result of domain_error (outside this range the result would be complex).
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The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Note that there is no complete analogue of this function (where φ = π / 2) as this takes the value 0 for all k.

Accuracy

These functions are trivially computed in terms of other elliptic integrals and generally have very low error rates (a few epsilon)
unless parameter φ is very large, in which case the usual trigonometric function argument-reduction issues apply.

Testing

The tests use a mixture of spot test values calculated using values calculated at wolframalpha.com, and random test data generated
using MPFR at 1000-bit precision and a deliberately naive implementation in terms of the Legendre integrals.

Implementation

The implementation for Z(φ, k) first makes the argument φ positive using:

Z(-φ, k) = -Z(φ, k)

The function is then implemented in terms of Carlson's integral RJ using the relation:

Z(φ, k) = E(φ, k) − E(k)F(φ, k)
K(k)

= k2
3K(k)sinφcosφ (1 − k2sin2φ)RJ(0,1 − k2, 1,1 − k2sin2φ)

There is one special case where the above relation fails: when k = 1, in that case the function simplifies to

Z(φ, 1) = sign(cos(φ)) sin(φ)

Heuman Lambda Function

Synopsis

#include <boost/math/special_functions/heuman_lambda.hpp>

namespace boost { namespace math {

template <class T1, class T2>
calculated-result-type heuman_lambda(T1 k, T2 phi);

template <class T1, class T2, class Policy>
calculated-result-type heuman_lambda(T1 k, T2 phi, const Policy&);

}} // namespaces

Description

This function evaluates the Heuman Lambda Function Λ0(φ, k)
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Λ0(φ, k) = F(φ, 1 − k2)
K( 1 − k2) + 2

πK(k)Z(φ, 1 − k2)

= 2
π
(1 − k2)sinφcosφ

Δ (RF(0,1 − k2, 1) + k2

3Δ2RJ(0,1 − k2, 1,1 − k2

Δ2)) ; Δ2 = 1 − (1 − k2)sin2φ
The return type of this function is computed using the __arg_pomotion_rules when the arguments are of different types: when they
are the same type then the result is the same type as the arguments.

Requires -1 <= k <= 1, otherwise returns the result of domain_error (outside this range the result would be complex).

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Note that there is no complete analogue of this function (where φ = π / 2) as this takes the value 1 for all k.

Accuracy

These functions are trivially computed in terms of other elliptic integrals and generally have very low error rates (a few epsilon)
unless parameter φ is very large, in which case the usual trigonometric function argument-reduction issues apply.

Testing

The tests use a mixture of spot test values calculated using values calculated at wolframalpha.com, and random test data generated
using MPFR at 1000-bit precision and a deliberately naive implementation in terms of the Legendre integrals.

Implementation

The function is then implemented in terms of Carlson's integrals RJ and RF using the relation:

Λ0(φ, k) = F(φ, 1 − k2)
K( 1 − k2) + 2

πK(k)Z(φ, 1 − k2)

= 2
π
(1 − k2)sinφcosφ

Δ (RF(0,1 − k2, 1) + k2

3Δ2RJ(0,1 − k2, 1,1 − k2

Δ2)) ; Δ2 = 1 − (1 − k2)sin2φ
This relation fails for |φ| >= π/2 in which case the definition in terms of the Jacobi Zeta is used.
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Jacobi Elliptic Functions

Overvew of the Jacobi Elliptic Functions
There are twelve Jacobi Elliptic functions, of which the three copolar functions sn, cn and dn are the most important as the other
nine can be computed from these three 2 3 4.

These functions each take two arguments: a parameter, and a variable as described below.

Like all elliptic functions these can be parameterised in a number of ways:

• In terms of a parameter m.

• In terms of the elliptic modulus k where m = k2.

• In terms of the modular angle α, where m = sin2α.

In our implementation, these functions all take the elliptic modulus k as the parameter.

In addition the variable u is sometimes expressed as an amplitude φ, in our implementation we always use u.

Finally note that our functions all take the elliptic modulus as the first argument - this is for alignment with the Elliptic Integrals.

There are twenve functions for computing the twelve individual Jacobi elliptic functions: jacobi_cd, jacobi_cn, jacobi_cs, jacobi_dc,
jacobi_dn, jacobi_ds, jacobi_nc, jacobi_nd, jacobi_ns, jacobi_sc, jacobi_sd and jacobi_sn.

They are all called as for example:

jacobi_cs(k, u);

Note however that these individual functions are all really thin wrappers around the function jacobi_elliptic which calculates the
three copolar functions sn, cn and dn in a single function call. Thus if you need more than one of these functions for a given set of
arguments, it's most efficient to use jacobi_elliptic.

Jacobi Elliptic SN, CN and DN

Synopsis

#include <boost/math/special_functions/jacobi_elliptic.hpp>

namespace boost { namespace math {

template <class T, class U, class V>
calculated-result-type jacobi_elliptic(T k, U u, V* pcn, V* pdn);

template <class T, class U, class V, class Policy>
calculated-result-type jacobi_elliptic(T k, U u, V* pcn, V* pdn, const Policy&);

}} // namespaces

2 Wikipedia: Jacobi elliptic functions
3 Weisstein, Eric W. "Jacobi Elliptic Functions." From MathWorld - A Wolfram Web Resource.
4 Digital Library of Mathematical Functions: Jacobian Elliptic Functions
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Description

The function jacobi_elliptic calculates the three copolar Jacobi elliptic functions sn(u, k), cn(u, k) and dn(u, k). The returned value
is sn(u, k), and if provided, *pcn is set to cn(u, k), and *pdn is set to dn(u, k).

The functions are defined as follows, given:

u = ∫
0

φ

dφ
(1 − k2sin2φ)

The the angle φ is called the amplitude and:

sn(u, k) = sinφ
cn(u, k) = cosφ

dn(u, k) = (1 − k2sin2φ)

Note

φ is called the amplitude.

k is called the modulus.

Caution

Rather like other elliptic functions, the Jacobi functions are expressed in a variety of different ways. In particular,
the parameter k (the modulus) may also be expressed using a modular angle α, or a parameter m. These are related
by:

k = sinα

m = k2 = sin2α

So that the function sn (for example) may be expressed as either:

sn(u, k)

sn(u \ α)

sn(u| m)

To further complicate matters, some texts refer to the complement of the parameter m, or 1 - m, where:

1 - m = 1 - k2 = cos2α

This implementation uses k throughout, and makes this the first argument to the functions: this is for alignment with
the elliptic integrals which match the requirements of the Technical Report on C++ Library Extensions. However,
you should be extra careful when using these functions!

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

The following graphs illustrate how these functions change as k changes: for small k these are sine waves, while as k tends to 1 they
become hyperbolic functions:
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Accuracy

These functions are computed using only basic arithmetic operations and trigomometric functions, so there isn't much variation in
accuracy over differing platforms. Typically errors are trivially small for small angles, and as is typical for cyclic functions, grow
as the angle increases. Note that only results for the widest floating point type on the system are given as narrower types have effectively
zero error. All values are relative errors in units of epsilon.

Table 49. Errors Rates in the Jacobi Elliptic Functions

Large uu < 1Platform and CompilerSignificand Size

Peak=44000 Mean=2500Peak=2 Mean=0.5Win32 / Visual C++ 8.053

Peak=25000 Mean=1500Peak=2.0 Mean=0.5Ubuntu Linux / G++ 4.764

Testing

The tests use a mixture of spot test values calculated using the online calculator at functions.wolfram.com, and random test data
generated using MPFR at 1000-bit precision and this implementation.

Implementation

For k > 1 we apply the relations:

μ = 1
k2

ν = uk
sn(u, k) = sn(ν, μ)

k
cn(u, k) = dn(ν, μ)
dn(u, k) = cn(ν, k)

Then filter off the special cases:

sn(0, k) = 0 and cn(0, k) = dn(0, k) = 1.
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sn(u, 0) = sin(u), cn(u, 0) = cos(u) and dn(u, 0) = 1.

sn(u, 1) = tanh(u), cn(u, 1) = dn(u, 1) = 1 / cosh(u).

And for k4 < ε we have:

sn(u, k) ≈ sin(u) − 1
4k

2(u − sin(u)cos(u))cos(u)

cn(u, k) ≈ cos(u) + 1
4k

2(u − sin(u)cos(u))sin(u)

dn(u, k) ≈ 1 − 1
2k

2sin2(u)

Otherwise the values are calculated using the method of arithmetic geometric means.

Jacobi Elliptic Function cd

Synopsis

#include <boost/math/special_functions/jacobi_elliptic.hpp>

namespace boost { namespace math {

template <class T, class U>
calculated-result-type jacobi_cd(T k, U u);

template <class T, class U, class Policy>
calculated-result-type jacobi_cd(T k, U u, const Policy& pol);

}} // namespaces

Description

This function returns the Jacobi elliptic function cd.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

This function is a trivial wrapper around jacobi_elliptic, with:

cd(u, k) = cn(u, k) / dn(u, k)
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Jacobi Elliptic Function cn

Synopsis

#include <boost/math/special_functions/jacobi_elliptic.hpp>

namespace boost { namespace math {

template <class T, class U>
calculated-result-type jacobi_cn(T k, U u);

template <class T, class U, class Policy>
calculated-result-type jacobi_cn(T k, U u, const Policy& pol);

}} // namespaces

Description

This function returns the Jacobi elliptic function cn.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

This function is a trivial wrapper around jacobi_elliptic.
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Jacobi Elliptic Function cs

Synopsis

#include <boost/math/special_functions/jacobi_elliptic.hpp>

namespace boost { namespace math {

template <class T, class U>
calculated-result-type jacobi_cs(T k, U u);

template <class T, class U, class Policy>
calculated-result-type jacobi_cs(T k, U u, const Policy& pol);

}} // namespaces

Description

This function returns the Jacobi elliptic function cs.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

This function is a trivial wrapper around jacobi_elliptic, with:

cs(u, k) = cn(u, k) / sn(u, k)
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Jacobi Elliptic Function dc

Synopsis

#include <boost/math/special_functions/jacobi_elliptic.hpp>

namespace boost { namespace math {

template <class T, class U>
calculated-result-type jacobi_dc(T k, U u);

template <class T, class U, class Policy>
calculated-result-type jacobi_dc(T k, U u, const Policy& pol);

}} // namespaces

Description

This function returns the Jacobi elliptic function dc.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

This function is a trivial wrapper around jacobi_elliptic, with:

dc(u, k) = dn(u, k) / cn(u, k)
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Jacobi Elliptic Function dn

Synopsis

#include <boost/math/special_functions/jacobi_elliptic.hpp>

namespace boost { namespace math {

template <class T, class U>
calculated-result-type jacobi_dn(T k, U u);

template <class T, class U, class Policy>
calculated-result-type jacobi_dn(T k, U u, const Policy& pol);

}} // namespaces

Description

This function returns the Jacobi elliptic function dn.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

This function is a trivial wrapper around jacobi_elliptic.
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Jacobi Elliptic Function ds

Synopsis

#include <boost/math/special_functions/jacobi_elliptic.hpp>

namespace boost { namespace math {

template <class T, class U>
calculated-result-type jacobi_ds(T k, U u);

template <class T, class U, class Policy>
calculated-result-type jacobi_ds(T k, U u, const Policy& pol);

}} // namespaces

Description

This function returns the Jacobi elliptic function ds.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

This function is a trivial wrapper around jacobi_elliptic, with:

ds(u, k) = dn(u, k) / sn(u, k)
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Jacobi Elliptic Function nc

Synopsis

#include <boost/math/special_functions/jacobi_elliptic.hpp>

namespace boost { namespace math {

template <class T, class U>
calculated-result-type jacobi_nc(T k, U u);

template <class T, class U, class Policy>
calculated-result-type jacobi_nc(T k, U u, const Policy& pol);

}} // namespaces

Description

This function returns the Jacobi elliptic function nc.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

This function is a trivial wrapper around jacobi_elliptic, with:

nc(u, k) = 1 / cn(u, k)
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Jacobi Elliptic Function nd

Synopsis

#include <boost/math/special_functions/jacobi_elliptic.hpp>

namespace boost { namespace math {

template <class T, class U>
calculated-result-type jacobi_nd(T k, U u);

template <class T, class U, class Policy>
calculated-result-type jacobi_nd(T k, U u, const Policy& pol);

}} // namespaces

Description

This function returns the Jacobi elliptic function nd.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

This function is a trivial wrapper around jacobi_elliptic, with:

nd(u, k) = 1 / dn(u, k)
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Jacobi Elliptic Function ns

Synopsis

#include <boost/math/special_functions/jacobi_elliptic.hpp>

namespace boost { namespace math {

template <class T, class U>
calculated-result-type jacobi_ns(T k, U u);

template <class T, class U, class Policy>
calculated-result-type jacobi_ns(T k, U u, const Policy& pol);

}} // namespaces

Description

This function returns the Jacobi elliptic function ns.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

This function is a trivial wrapper around jacobi_elliptic, with:

ns(u, k) = 1 / sn(u, k)
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Jacobi Elliptic Function sc

Synopsis

#include <boost/math/special_functions/jacobi_elliptic.hpp>

namespace boost { namespace math {

template <class T, class U>
calculated-result-type jacobi_sc(T k, U u);

template <class T, class U, class Policy>
calculated-result-type jacobi_sc(T k, U u, const Policy& pol);

}} // namespaces

Description

This function returns the Jacobi elliptic function sc.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

This function is a trivial wrapper around jacobi_elliptic, with:

sc(u, k) = sn(u, k) / cn(u, k)
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Jacobi Elliptic Function sd

Synopsis

#include <boost/math/special_functions/jacobi_elliptic.hpp>

namespace boost { namespace math {

template <class T, class U>
calculated-result-type jacobi_sd(T k, U u);

template <class T, class U, class Policy>
calculated-result-type jacobi_sd(T k, U u, const Policy& pol);

}} // namespaces

Description

This function returns the Jacobi elliptic function sd.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

This function is a trivial wrapper around jacobi_elliptic, with:

sd(u, k) = sn(u, k) / dn(u, k)
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Jacobi Elliptic Function sn

Synopsis

#include <boost/math/special_functions/jacobi_elliptic.hpp>

namespace boost { namespace math {

template <class T, class U>
calculated-result-type jacobi_sn(T k, U u);

template <class T, class U, class Policy>
calculated-result-type jacobi_sn(T k, U u, const Policy& pol);

}} // namespaces

Description

This function returns the Jacobi elliptic function sn.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

This function is a trivial wrapper around jacobi_elliptic.
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Zeta Functions

Riemann Zeta Function

Synopsis

#include <boost/math/special_functions/zeta.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type zeta(T z);

template <class T, class Policy>
calculated-result-type zeta(T z, const Policy&);

}} // namespaces

The return type of these functions is computed using the result type calculation rules: the return type is double if T is an integer
type, and T otherwise.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Description

template <class T>
calculated-result-type zeta(T z);

template <class T, class Policy>
calculated-result-type zeta(T z, const Policy&);

Returns the zeta function of z:

ζ (s) = ∑
k=1

∞
1
ks

514

Special Functions

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://mathworld.wolfram.com/RiemannZetaFunction.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


0 5 100-5-10-15-20

0

10

20

30

40

0

ze
ta
(z
)

z

Zeta Function Over [-20,10]

00-5-10

00

-0.1

-0.2

-0.3

-0.4

ze
ta
(z
)

z

Zeta Function Over [-14,0]

Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types, along
with comparisons to the GSL-1.9 and Cephes libraries. Unless otherwise specified any floating point type that is narrower than the
one shown will have effectively zero error.
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Table 50. Errors In the Function zeta(z)

z < 0z > 0Platform and CompilerSignificand Size

Peak=7.1 Mean=3.0

GSL Peak=137 Mean=14

Cephes Peak=5084 Mean=470

Peak=0.99 Mean=0.1

GSL Peak=8.7 Mean=1.0

Cephes Peak=2.1 Mean=1.1

Win32, Visual C++ 853

Peak=570 Mean=60Peak=0.99 Mean=0.5RedHat Linux IA_EM64, gcc-
4.1

64

Peak=559 Mean=56Peak=0.99 Mean=0.5Redhat Linux IA64, gcc-4.164

Peak=1018 Mean=79Peak=1.0 Mean=0.4HPUX IA64, aCC A.06.06113

Testing

The tests for these functions come in two parts: basic sanity checks use spot values calculated using Mathworld's online evaluator,
while accuracy checks use high-precision test values calculated at 1000-bit precision with NTL::RR and this implementation. Note
that the generic and type-specific versions of these functions use differing implementations internally, so this gives us reasonably
independent test data. Using our test data to test other "known good" implementations also provides an additional sanity check.

Implementation

All versions of these functions first use the usual reflection formulas to make their arguments positive:

ζ (1 − s) = 2sin(π1 − s
2 )(2π−s)Γ(s)ζ (s)

The generic versions of these functions are implemented using the series:

ζ (s) = −1
sn(1 − 21−s)∑

j=0

2n−1
e j

( j + 1)s + γ(s) ; e j = (−1)
j(∑
k=0

j−n
n !

k !(n − k) ! − 2
n) ∧ | γn(s) | < = 1

8n | 1 − 21−s |

When the significand (mantissa) size is recognised (currently for 53, 64 and 113-bit reals, plus single-precision 24-bit handled via
promotion to double) then a series of rational approximations devised by JM are used.

For 0 < z < 1 the approximating form is:

ς(s) =
C + R(1 − s) − s

1 − s

For a rational approximation R(1-z) and a constant C.

For 1 < z < 4 the approximating form is:

ς(s) = C + R(s − n) + 1
s − 1

For a rational approximation R(n-z) and a constant C and integer n.

For z > 4 the approximating form is:

ζ(z) = 1 + eR(z - n)
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For a rational approximation R(z-n) and integer n, note that the accuracy required for R(z-n) is not full machine precision, but an
absolute error of: ε/R(0). This saves us quite a few digits when dealing with large z, especially when ε is small.

Finally, there are some special cases for integer arguments, there are closed forms for negative or even integers:

ζ (−n) =
(−1)n
n + 1 Bn+1 ; n ∈ ℕ

ζ (−2n) = 0 ; n ∈ ℕ

ζ (2n) =
(−1)n−122n−1π2n

(2n) ! B2n ; n ∈ ℕ

and for positive odd integers we simply cache pre-computed values as these are of great benefit to some infinite series calculations.
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Exponential Integrals

Exponential Integral En

Synopsis

#include <boost/math/special_functions/expint.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type expint(unsigned n, T z);

template <class T, class Policy>
calculated-result-type expint(unsigned n, T z, const Policy&);

}} // namespaces

The return type of these functions is computed using the result type calculation rules: the return type is double if T is an integer
type, and T otherwise.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Description

template <class T>
calculated-result-type expint(unsigned n, T z);

template <class T, class Policy>
calculated-result-type expint(unsigned n, T z, const Policy&);

Returns the exponential integral En of z:

En(x) = ∫1
∞
e−xtdt
tn
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Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types, along
with comparisons to the Cephes library. Unless otherwise specified any floating point type that is narrower than the one shown will
have effectively zero error.

Table 51. Errors In the Function expint(n, z)

E1EnPlatform and CompilerSignificand Size

Peak=0.99 Mean=0.5

Cephes Peak=3.1 Mean=1.1

Peak=7.1 Mean=1.8

Cephes Peak=5.1 Mean=1.3

Win32, Visual C++ 853

Peak=0.97 Mean=0.4Peak=9.9 Mean=2.1RedHat Linux IA_EM64, gcc-
4.1

64

Peak=0.97 Mean=0.4Peak=9.9 Mean=2.1Redhat Linux IA64, gcc-4.164

Peak=1.6 Mean=0.5Peak=23.3 Mean=3.7HPUX IA64, aCC A.06.06113

Testing

The tests for these functions come in two parts: basic sanity checks use spot values calculated using Mathworld's online evaluator,
while accuracy checks use high-precision test values calculated at 1000-bit precision with NTL::RR and this implementation. Note
that the generic and type-specific versions of these functions use differing implementations internally, so this gives us reasonably
independent test data. Using our test data to test other "known good" implementations also provides an additional sanity check.

Implementation

The generic version of this function uses the continued fraction:
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En(x) =
e−x

n + x − n

2 + n + x −
2(n + 1)

4 + n + x −
3(n + 2)

6 + n + x −
4(n + 3)

8 + n + x − …

for large x and the infinite series:

En(x) =
(−z)n−1
(n − 1) !(ψ(n) − log(z)) − ∑

k=0,k≠n−1

∞
(−1)kzk

(k − n + 1)k !

for small x.

Where the precision of x is known at compile time and is 113 bits or fewer in precision, then rational approximations devised by JM
are used for the n == 1 case.

For x < 1 the approximating form is a minimax approximation:

E1(x) = x + log(x) + c + R(x)

and for x > 1 a Chebyshev interpolated approximation of the form:

E1(x) =
e−x
x (1 + R(1x ))

is used.

Exponential Integral Ei

Synopsis

#include <boost/math/special_functions/expint.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type expint(T z);

template <class T, class Policy>
calculated-result-type expint(T z, const Policy&);

}} // namespaces

The return type of these functions is computed using the result type calculation rules: the return type is double if T is an integer
type, and T otherwise.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Description

template <class T>
calculated-result-type expint(T z);

template <class T, class Policy>
calculated-result-type expint(T z, const Policy&);
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Returns the exponential integral of z:

Ei(x) = − E1(−x) = ∫−x
∞

e−tdt
t
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Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types, along
with comparisons to Cody's SPECFUN implementation and the GSL-1.9 library. Unless otherwise specified any floating point type
that is narrower than the one shown will have effectively zero error.

Table 52. Errors In the Function expint(z)

ErrorPlatform and CompilerSignificand Size

Peak=2.4 Mean=0.6

GSL Peak=8.9 Mean=0.7

SPECFUN (Cody) Peak=2.5 Mean=0.6

Win32, Visual C++ 853

Peak=5.1 Mean=0.8RedHat Linux IA_EM64, gcc-4.164

Peak=5.0 Mean=0.8Redhat Linux IA64, gcc-4.164

Peak=1.9 Mean=0.63HPUX IA64, aCC A.06.06113

It should be noted that all three libraries tested above offer sub-epsilon precision over most of their range.

GSL has the greatest difficulty near the positive root of En, while Cody's SPECFUN along with this implementation increase their
error rates very slightly over the range [4,6].

Testing

The tests for these functions come in two parts: basic sanity checks use spot values calculated using Mathworld's online evaluator,
while accuracy checks use high-precision test values calculated at 1000-bit precision with NTL::RR and this implementation. Note
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that the generic and type-specific versions of these functions use differing implementations internally, so this gives us reasonably
independent test data. Using our test data to test other "known good" implementations also provides an additional sanity check.

Implementation

For x < 0 this function just calls zeta(1, -x): which in turn is implemented in terms of rational approximations when the type of x
has 113 or fewer bits of precision.

For x > 0 the generic version is implemented using the infinte series:

Ei (z) = log(z) + γ +∑
k=0

∞
zk
kk !

However, when the precision of the argument type is known at compile time and is 113 bits or less, then rational approximations
devised by JM are used.

For 0 < z < 6 a root-preserving approximation of the form:

Ei (z) = log( zz0) + (z − z0)R( z3 − 1)
is used, where z0 is the positive root of the function, and R(z/3 - 1) is a minimax rational approximation rescaled so that it is evaluated
over [-1,1]. Note that while the rational approximation over [0,6] converges rapidly to the minimax solution it is rather ill-conditioned
in practice. Cody and Thacher 5 experienced the same issue and converted the polynomials into Chebeshev form to ensure stable
computation. By experiment we found that the polynomials are just as stable in polynomial as Chebyshev form, provided they are
computed over the interval [-1,1].

Over the a series of intervals [a,b] and [b,INF] the rational approximation takes the form:

Ei (z) = z + ez
z (c + R(t))

where c is a constant, and R(t) is a minimax solution optimised for low absolute error compared to c. Variable t is 1/z when the
range in infinite and 2z/(b-a) - (2a/(b-a) + 1) otherwise: this has the effect of scaling z to the interval [-1,1]. As before ra-
tional approximations over arbitrary intervals were found to be ill-conditioned: Cody and Thacher solved this issue by converting
the polynomials to their J-Fraction equivalent. However, as long as the interval of evaluation was [-1,1] and the number of terms
carefully chosen, it was found that the polynomials could be evaluated to suitable precision: error rates are typically 2 to 3 epsilon
which is comparible to the error rate that Cody and Thacher achieved using J-Fractions, but marginally more efficient given that
fewer divisions are involved.

5 W. J. Cody and H. C. Thacher, Jr., Rational Chebyshev approximations for the exponential integral E1(x), Math. Comp. 22 (1968), 641-649, and W. J. Cody and
H. C. Thacher, Jr., Chebyshev approximations for the exponential integral Ei(x), Math. Comp. 23 (1969), 289-303.
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Basic Functions

sin_pi

#include <boost/math/special_functions/sin_pi.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type sin_pi(T x);

template <class T, class Policy>
calculated-result-type sin_pi(T x, const Policy&);

}} // namespaces

Returns the sine of πx.

The return type of this function is computed using the result type calculation rules: the return is double when x is an integer type
and T otherwise.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

This function performs exact all-integer arithmetic argument reduction before computing the sine of πx.

cos_pi

#include <boost/math/special_functions/cos_pi.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type cos_pi(T x);

template <class T, class Policy>
calculated-result-type cos_pi(T x, const Policy&);

}} // namespaces

Returns the cosine of πx.

The return type of this function is computed using the result type calculation rules: the return is double when x is an integer type
and T otherwise.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

This function performs exact all-integer arithmetic argument reduction before computing the cosine of πx.

log1p

#include <boost/math/special_functions/log1p.hpp>
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namespace boost{ namespace math{

template <class T>
calculated-result-type log1p(T x);

template <class T, class Policy>
calculated-result-type log1p(T x, const Policy&);

}} // namespaces

Returns the natural logarithm of x+1.

The return type of this function is computed using the result type calculation rules: the return is double when x is an integer type
and T otherwise.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

There are many situations where it is desirable to compute log(x+1). However, for small x then x+1 suffers from catastrophic
cancellation errors so that x+1 == 1 and log(x+1) == 0, when in fact for very small x, the best approximation to log(x+1)
would be x. log1p calculates the best approximation to log(1+x) using a Taylor series expansion for accuracy (less than 2 ). Al-
ternatively note that there are faster methods available, for example using the equivalence:

log(1+x) == (log(1+x) * x) / ((1+x) - 1)

However, experience has shown that these methods tend to fail quite spectacularly once the compiler's optimizations are turned on,
consequently they are used only when known not to break with a particular compiler. In contrast, the series expansion method seems
to be reasonably immune to optimizer-induced errors.

Finally when BOOST_HAS_LOG1P is defined then the float/double/long double specializations of this template simply
forward to the platform's native (POSIX) implementation of this function.

The following graph illustrates the behaviour of log1p:
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Accuracy

For built in floating point types log1p should have approximately 1 epsilon accuracy.
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Testing

A mixture of spot test sanity checks, and random high precision test values calculated using NTL::RR at 1000-bit precision.

expm1

#include <boost/math/special_functions/expm1.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type expm1(T x);

template <class T, class Policy>
calculated-result-type expm1(T x, const Policy&);

}} // namespaces

Returns ex - 1.

The return type of this function is computed using the result type calculation rules: the return is double when x is an integer type
and T otherwise.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

For small x, then ex is very close to 1, as a result calculating ex - 1 results in catastrophic cancellation errors when x is small. expm1
calculates ex - 1 using rational approximations (for up to 128-bit long doubles), otherwise via a series expansion when x is small
(giving an accuracy of less than 2 ).

Finally when BOOST_HAS_EXPM1 is defined then the float/double/long double specializations of this template simply
forward to the platform's native (POSIX) implementation of this function.

The following graph illustrates the behaviour of expm1:
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Accuracy

For built in floating point types expm1 should have approximately 1 epsilon accuracy.

Testing

A mixture of spot test sanity checks, and random high precision test values calculated using NTL::RR at 1000-bit precision.

cbrt

#include <boost/math/special_functions/cbrt.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type cbrt(T x);

template <class T, class Policy>
calculated-result-type cbrt(T x, const Policy&);

}} // namespaces

Returns the cubed root of x: x1/3.

The return type of this function is computed using the result type calculation rules: the return is double when x is an integer type
and T otherwise.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Implemented using Halley iteration.

The following graph illustrates the behaviour of cbrt:
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Accuracy

For built in floating-point types cbrt should have approximately 2 epsilon accuracy.

Testing

A mixture of spot test sanity checks, and random high precision test values calculated using NTL::RR at 1000-bit precision.

sqrt1pm1

#include <boost/math/special_functions/sqrt1pm1.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type sqrt1pm1(T x);

template <class T, class Policy>
calculated-result-type sqrt1pm1(T x, const Policy&);

}} // namespaces

Returns sqrt(1+x) - 1.

The return type of this function is computed using the result type calculation rules: the return is double when x is an integer type
and T otherwise.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

This function is useful when you need the difference between sqrt(x) and 1, when x is itself close to 1.

Implemented in terms of log1p and expm1.

The following graph illustrates the behaviour of sqrt1pm1:
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Accuracy

For built in floating-point types sqrt1pm1 should have approximately 3 epsilon accuracy.

Testing

A selection of random high precision test values calculated using NTL::RR at 1000-bit precision.

powm1

#include <boost/math/special_functions/powm1.hpp>

namespace boost{ namespace math{

template <class T1, class T2>
calculated-result-type powm1(T1 x, T2 y);

template <class T1, class T2, class Policy>
calculated-result-type powm1(T1 x, T2 y, const Policy&);

}} // namespaces

Returns xy  - 1.

The return type of this function is computed using the result type calculation rules when T1 and T2 are dufferent types.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

There are two domains where this is useful: when y is very small, or when x is close to 1.

Implemented in terms of expm1.

The following graph illustrates the behaviour of powm1:
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Accuracy

Should have approximately 2-3 epsilon accuracy.

Testing

A selection of random high precision test values calculated using NTL::RR at 1000-bit precision.

hypot

template <class T1, class T2>
calculated-result-type hypot(T1 x, T2 y);

template <class T1, class T2, class Policy>
calculated-result-type hypot(T1 x, T2 y, const Policy&);

Effects:  computes hypot (x, y) = x2 + y2  in such a way as to avoid undue underflow and overflow.

The return type of this function is computed using the result type calculation rules when T1 and T2 are of different types.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

When calculating hypot (x, y) = x2 + y2  it's quite easy for the intermediate terms to either overflow or underflow, even
though the result is in fact perfectly representable.

Implementation

The function is even and symmetric in x and y, so first take assume x,y > 0 and x > y (we can permute the arguments if this is not
the case).

Then if x * ε   >= y we can simply return x.

Otherwise the result is given by:

hypot (x, y) = x 1 + ( yx )2

Compile Time Power of a Runtime Base
The pow function effectively computes the compile-time integral power of a run-time base.

Synopsis

#include <boost/math/special_functions/pow.hpp>

namespace boost { namespace math {

template <int N, typename T>
calculated-result-type pow(T base);

template <int N, typename T, class Policy>
calculated-result-type pow(T base, const Policy& policy);

}}
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Rationale and Usage

Computing the power of a number with an exponent that is known at compile time is a common need for programmers. In such
cases, the usual method is to avoid the overhead implied by the pow, powf and powl C functions by hardcoding an expression such
as:

// Hand-written 8th power of a 'base' variable
double result = base*base*base*base*base*base*base*base;

However, this kind of expression is not really readable (knowing the value of the exponent involves counting the number of occurrences
of base), error-prone (it's easy to forget an occurrence), syntactically bulky, and non-optimal in terms of performance.

The pow function of Boost.Math helps writing this kind expression along with solving all the problems listed above:

// 8th power of a 'base' variable using math::pow
double result = pow<8>(base);

The expression is now shorter, easier to read, safer, and even faster. Indeed, pow will compute the expression such that only log2(N)
products are made for a power of N. For instance in the example above, the resulting expression will be the same as if we had written
this, with only one computation of each identical subexpression:

// Internal effect of pow<8>(base)
double result = ((base*base)*(base*base))*((base*base)*(base*base));

Only 3 different products were actually computed.

Return Type

The return type of these functions is computed using the result type calculation rules. For example:

• If T is a float, the return type is a float.

• If T is a long double, the return type is a long double.

• Otherwise, the return type is a double.

Policies

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Error Handling

Two cases of errors can occur when using pow:

• In case of null base and negative exponent, an overflow_error occurs since this operation is a division by 0 (it equals to 1/0).

• In case of null base and null exponent, an indeterminate_result_error occurs since the result of this operation is indeterminate.
Those errors follow the general policies of error handling in Boost.Math.

The default overflow error policy is throw_on_error. A call like pow<-2>(0) will thus throw a std::overflow_error exception.
As shown in the link given above, other error handling policies can be used:

• errno_on_error: Sets ::errno to ERANGE and returns std::numeric_limits<T>::infinity().

• ignore_error: Returns std::numeric_limits<T>::infinity().

530

Special Functions

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


• user_error: Returns the result of boost::math::policies::user_overflow_error: this function must be defined by the
user.

The default indeterminate result error policy is ignore_error, which for this function returns 1 since it's the most commonly chosen
result for a power of 0. Here again, other error handling policies can be used:

• throw_on_error: Throws std::domain_error

• errno_on_error: Sets ::errno to EDOM and returns 1.

• user_error: Returns the result of boost::math::policies::user_indeterminate_result_error: this function must
be defined by the user.

Here is an example of error handling customization where we want to specify the result that has to be returned in case of error. We
will thus use the user_error policy, by passing as second argument an instance of an overflow_error policy templated with
user_error:

// First we open the boost::math::policies namespace and define the `user_overflow_error`
// by making it return the value we want in case of error (-1 here)

namespace boost { namespace math { namespace policies {
template <class T>
T user_overflow_error(const char*, const char*, const T&)
{ return -1; }
}}}

// Then we invoke pow and indicate that we want to use the user_error policy
using boost::math::policies;
double result = pow<-5>(base, policy<overflow_error<user_error> >());

// We can now test the returned value and treat the special case if needed:
if (result == -1)
{

// there was an error, do something...
}

Another way is to redefine the default overflow_error policy by using the BOOST_MATH_OVERFLOW_ERROR_POLICY
macro. Once the user_overflow_error function is defined as above, we can achieve the same result like this:

// Redefine the default error_overflow policy
#define BOOST_MATH_OVERFLOW_ERROR_POLICY user_error
#include <boost/math/special_functions/pow.hpp>

// From this point, passing a policy in argument is no longer needed, a call like this one
// will return -1 in case of error:

double result = pow<-5>(base);
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Sinus Cardinal and Hyperbolic Sinus Cardinal Func-
tions

Sinus Cardinal and Hyperbolic Sinus Cardinal Functions Overview
The Sinus Cardinal family of functions (indexed by the family of indices a > 0) is defined by

sinca(x) =
sin(πxa )

πx
a

it sees heavy use in signal processing tasks.

By analogy, the Hyperbolic Sinus Cardinal family of functions (also indexed by the family of indices a > 0) is defined by

sinhca(x) =
sinh(πxa )

πx
a

These two families of functions are composed of entire functions.

These functions (sinc_pi and sinhc_pi) are needed by our implementation of quaternions and octonions.

Sinus Cardinal of index pi (purple) and Hyperbolic Sinus Cardinal of index pi (red) on R
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sinc_pi

#include <boost/math/special_functions/sinc.hpp>

template<class T>
calculated-result-type sinc_pi(const T x);

template<class T, class Policy>
calculated-result-type sinc_pi(const T x, const Policy&);

template<class T, template<typename> class U>
U<T> sinc_pi(const U<T> x);

template<class T, template<typename> class U, class Policy>
U<T> sinc_pi(const U<T> x, const Policy&);

Computes the Sinus Cardinal of x:

sinc_pi(x) = sin(x) / x

The second form is for complex numbers, quaternions, octonions etc. Taylor series are used at the origin to ensure accuracy.
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The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

sinhc_pi

#include <boost/math/special_functions/sinhc.hpp>
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template<class T>
calculated-result-type sinhc_pi(const T x);

template<class T, class Policy>
calculated-result-type sinhc_pi(const T x, const Policy&);

template<typename T, template<typename> class U>
U<T> sinhc_pi(const U<T> x);

template<class T, template<typename> class U, class Policy>
U<T> sinhc_pi(const U<T> x, const Policy&);

Computes http://mathworld.wolfram.com/SinhcFunction.html the Hyperbolic Sinus Cardinal of x:

sinhc_pi(x) = sinh(x) / x

The second form is for complex numbers, quaternions, octonions etc. Taylor series are used at the origin to ensure accuracy.

The return type of the first form is computed using the result type calculation rules when T is an integer type.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.
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Inverse Hyperbolic Functions

Inverse Hyperbolic Functions Overview

The exponential funtion is defined, for all objects for which this makes sense, as the power series 
exp (x) = ∑

n=0

∞
xn
n !

, with n!
= 1x2x3x4x5...xn (and 0! = 1 by definition) being the factorial of n. In particular, the exponential function is well defined for
real numbers, complex number, quaternions, octonions, and matrices of complex numbers, among others.

Graph of exp on R

Real and Imaginary parts of exp on C
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The hyperbolic functions are defined as power series which can be computed (for reals, complex, quaternions and octonions) as:

Hyperbolic cosine: 
cosh (x) =

exp(x) + exp(−x)
2

Hyperbolic sine: 
sinh (x) =

exp(x) − exp(−x)
2

Hyperbolic tangent: 
tanh (x) =

sinh (x)
cosh (x)

Trigonometric functions on R (cos: purple; sin: red; tan: blue)
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Hyperbolic functions on r (cosh: purple; sinh: red; tanh: blue)
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The hyperbolic sine is one to one on the set of real numbers, with range the full set of reals, while the hyperbolic tangent is also one
to one on the set of real numbers but with range [0;+∞[, and therefore both have inverses. The hyperbolic cosine is one to one from
]-∞;+1[ onto ]-∞;-1[ (and from ]+1;+∞[ onto ]-∞;-1[); the inverse function we use here is defined on ]-∞;-1[ with range
]-∞;+1[.

The inverse of the hyperbolic tangent is called the Argument hyperbolic tangent, and can be computed as 
atanh (x) =

log(1 + x
1 − x)
2 .

The inverse of the hyperbolic sine is called the Argument hyperbolic sine, and can be computed (for [-1;-1+ε[) as

asinh (x) = log(x + x2 + 1 ).
The inverse of the hyperbolic cosine is called the Argument hyperbolic cosine, and can be computed as

acosh (x) = log(x + x2 − 1 ).

acosh

#include <boost/math/special_functions/acosh.hpp>

template<class T>
calculated-result-type acosh(const T x);

template<class T, class Policy>
calculated-result-type acosh(const T x, const Policy&);

Computes the reciprocal of (the restriction to the range of [0;+∞[) the hyperbolic cosine function, at x. Values returned are positive.
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If x is in the range ]-∞;+1[ then returns the result of domain_error.

The return type of this function is computed using the result type calculation rules: the return type is double when T is an integer
type, and T otherwise.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.
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Accuracy

Generally accuracy is to within 1 or 2 epsilon across all supported platforms.

Testing

This function is tested using a combination of random test values designed to give full function coverage computed at high precision
using the "naive" formula:

acosh (x) = ln(x + x2 − 1 )
along with a selection of sanity check values computed using functions.wolfram.com to at least 50 decimal digits.

Implementation

For sufficiently large x, we can use the approximation:

acosh (x) ≈ ln(2x) ; x > 1
ε

For x sufficiently close to 1 we can use the approximation:

acosh (x) ≈ 2y (1 − y
12 +

3y2
160) ; y = x − 1 ∧ y < ε

Otherwise for x close to 1 we can use the following rearrangement of the primary definition to preserve accuracy:

acosh (x) = log1p (y + y2 + 2y ) ; y = x − 1
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Otherwise the primary definition is used:

acosh (x) = ln(x + x2 − 1 )

asinh

#include <boost/math/special_functions/asinh.hpp>

template<class T>
calculated-result-type asinh(const T x);

template<class T, class Policy>
calculated-result-type asinh(const T x, const Policy&);

Computes the reciprocal of the hyperbolic sine function.

The return type of this function is computed using the result type calculation rules: the return type is double when T is an integer
type, and T otherwise.
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The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Accuracy

Generally accuracy is to within 1 or 2 epsilon across all supported platforms.

Testing

This function is tested using a combination of random test values designed to give full function coverage computed at high precision
using the "naive" formula:

asinh (x) = ln(x + x2 + 1 )
along with a selection of sanity check values computed using functions.wolfram.com to at least 50 decimal digits.
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Implementation

For sufficiently large x we can use the approximation:

asinh (x) ≈ ln(2x) + 1
4x2

; x > 1
ε

While for very small x we can use the approximation:

asinh (x) ≈ x − x3
6 ; x < ε

For 0.5 > x > ε the following rearrangement of the primary definition is used:

asinh (x) = log1p (x + sqrtp1m1 (x2))

Otherwise evalution is via the primary definition:

asinh (x) = log1p (x + sqrtp1m1 (x2))

atanh

#include <boost/math/special_functions/atanh.hpp>

template<class T>
calculated-result-type atanh(const T x);

template<class T, class Policy>
calculated-result-type atanh(const T x, const Policy&);

Computes the reciprocal of the hyperbolic tangent function, at x.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

If x is in the range ]-∞;-1[ or in the range ]+1;+∞[ then returns the result of domain_error.

If x is in the range [-1;-1+ε[, then the result of -overflow_error is returned, with ε   denoting numeric_limits<T>::epsilon().

If x is in the range ]+1-ε;+1], then the result of overflow_error is returned, with ε   denoting numeric_limits<T>::epsilon().

The return type of this function is computed using the result type calculation rules: the return type is double when T is an integer
type, and T otherwise.
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Accuracy

Generally accuracy is to within 1 or 2 epsilon across all supported platforms.

Testing

This function is tested using a combination of random test values designed to give full function coverage computed at high precision
using the "naive" formula:

atanh (x) =
ln(1 + x

1 − x)
2

along with a selection of sanity check values computed using functions.wolfram.com to at least 50 decimal digits.

Implementation

For sufficiently small x we can use the approximation:

atanh (x) ≈ x + x3
3 ; x < ε

Otherwise the primary definition:

atanh (x) =
ln(1 + x

1 − x)
2

or its equivalent form:

atanh (x) =
log1p (x) − log1p (−x)

2

is used.
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Owen's T function
Synopsis

#include <boost/math/special_functions/owens_t.hpp>

namespace boost{ namespace math{

template <class T>
calculated-result-type owens_t(T h, T a);

template <class T, class Policy>
calculated-result-type owens_t(T h, T a, const Policy&);

}} // namespaces

Description

Returns the Owens_t function of h and a.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

T(h, a) = 1
(2π)∫0

a

exp{ − 1
2h

2(1 + x2)}
(1 + x2) dx ; (−∞ < h, a < + ∞)
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The function owens_t(h, a) gives the probability of the event (X > h and 0 < Y < a * X), where X and Y are independent standard
normal random variables.

For h and a > 0, T(h,a), gives the volume of an uncorrelated bivariate normal distribution with zero means and unit variances over
the area between y = ax and y = 0 and to the right of x = h.

That is the area shaded in the figure below (Owens 1956).
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and is also illustrated by a 3D plot.
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This function is used in the computation of the Skew Normal Distribution. It is also used in the computation of bivariate and mul-
tivariate normal distribution probabilities. The return type of this function is computed using the result type calculation rules: the
result is of type double when T is an integer type, and type T otherwise.

Owen's original paper (page 1077) provides some additional corner cases.

T(h, 0) = 0

T(0, a) = ½π arctan(a)

T(h, 1) = ½ G(h) [1 - G(h)]

T(h, ∞) = G(|h|)

where G(h) is the univariate normal with zero mean and unit variance integral from -∞ to h.

Accuracy

Over the built-in types and range tested, errors are less than 10 * std::numeric_limits<RealType>::epsilon().

Testing

Test data was generated by Patefield and Tandy algorithms T1 and T4, and also the suggested reference routine T7.

• T1 was rejected if the result was too small compared to atan(a) (ie cancellation),

• T4 was rejected if there was no convergence,

• Both were rejected if they didn't agree.

Over the built-in types and range tested, errors are less than 10 std::numeric_limits<RealType>::epsilon().
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However, that there was a whole domain (large h, small a) where it was not possible to generate any reliable test values (all the
methods got rejected for one reason or another).

There are also two sets of sanity tests: spot values are computed using Wolfram Mathematica and The R Project for Statistical
Computing.

Implementation

The function was proposed and evaluated by Donald. B. Owen, Tables for computing bivariate normal probabilities, Ann. Math.
Statist., 27, 1075-1090 (1956).

The algorithms of Patefield, M. and Tandy, D. "Fast and accurate Calculation of Owen's T-Function", Journal of Statistical Software,
5 (5), 1 - 25 (2000) are adapted for C++ with arbitrary RealType.

The Patefield-Tandy algorithm provides six methods of evalualution (T1 to T6); the best method is selected according to the values
of a and h. See the original paper and the source in owens_t.hpp for details.

The Patefield-Tandy algorithm is accurate to approximately 20 decimal places, so for types with greater precision we use:

• A modified version of T1 which folds the calculation of atan(h) into the T1 series (to avoid subtracting two values similar in
magnitude), and then accelerates the resulting alternating series using method 1 from H. Cohen, F. Rodriguez Villegas, D. Zagier,
"Convergence acceleration of alternating series", Bonn, (1991). The result is valid everywhere, but doesn't always converge, or
may become too divergent in the first few terms to sum accurately. This is used for ah < 1.

• A modified version of T2 which is accelerated in the same manner as T1. This is used for h > 1.

• A version of T4 only when both T1 and T2 have failed to produce an accurate answer.

• Fallback to the Patefiled Tandy algorithm when all the above methods fail: this happens not at all for our test data at 100 decimal
digits precision. However, there is a difficult area when a is very close to 1 and the precision increases which may cause this to
happen in very exceptional circumstances.

Using the above algorithm and a 100-decimal digit type, results accurate to 80 decimal places were obtained in the difficult area
where a is close to 1, and greater than 95 decimal places elsewhere.
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TR1 and C99 external "C" Functions
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C99 and TR1 C Functions Overview
Many of the special functions included in this library are also a part of the either the C99 Standard ISO/IEC 9899:1999 or the
Technical Report on C++ Library Extensions. Therefore this library includes a thin wrapper header boost/math/tr1.hpp that
provides compatibility with these two standards.

There are various pros and cons to using the library in this way:

Pros:

• The header to include is lightweight (i.e. fast to compile).

• The functions have extern "C" linkage, and so are usable from other languages (not just C and C++).

• C99 and C++ TR1 Standard compatibility.

Cons:

• You will need to compile and link to the external Boost.Math libraries.

• Limited to support for the types, float, double and long double.

• Error handling is handled via setting ::errno and returning NaN's and infinities: this may be less flexible than an C++ exception
based approach.

Note

The separate libraries are required only if you choose to use boost/math/tr1.hpp rather than some other Boost.Math
header, the rest of Boost.Math remains header-only.

The separate libraries required in order to use tr1.hpp can be compiled using bjam from within the libs/math/build directory, or from
the Boost root directory using the usual Boost-wide install procedure. Alternatively the source files are located in libs/math/src and
each have the same name as the function they implement. The various libraries are named as follows:

FunctionsTypeName

C99 Functionsfloatboost_math_c99f-<suffix>

C99 Functionsdoubleboost_math_c99-<suffix>

C99 Functionslong doubleboost_math_c99l-<suffix>

TR1 Functionsfloatboost_math_tr1f-<suffix>

TR1 Functionsdoubleboost_math_tr1-<suffix>

TR1 Functionslong doubleboost_math_tr1l-<suffix>

Where <suffix> encodes the compiler and build options used to build the libraries: for example "libboost_math_tr1-vc80-mt-gd.lib"
would be the statically linked TR1 library to use with Visual C++ 8.0, in multithreading debug mode, with the DLL VC++ runtime,
where as "boost_math_tr1-vc80-mt.lib" would be import library for the TR1 DLL to be used with Visual C++ 8.0 with the release
multithreaded DLL VC++ runtime. Refer to the getting started guide for a full explanation of the <suffix> meanings.
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Note

Visual C++ users will typically have the correct library variant to link against selected for them by boost/math/tr1.hpp
based on your compiler settings.

Users will need to define BOOST_MATH_TR1_DYN_LINK when building their code if they want to link against
the DLL versions of these libraries rather than the static versions.

Users can disable auto-linking by defining BOOST_MATH_TR1_NO_LIB when building: this is typically only
used when linking against a customised build of the libraries.

Note

Linux and Unix users will generally only have one variant of these libraries installed, and can generally just link
against -lboost_math_tr1 etc.

Usage Recomendations

This library now presents the user with a choice:

• To include the header only versions of the functions and have an easier time linking, but a longer compile time.

• To include the TR1 headers and link against an external library.

Which option you choose depends largely on how you prefer to work and how your system is set up.

For example a casual user who just needs the acosh function, would probably be better off including <boost/math/special_func-
tions/acosh.hpp> and using boost::math::acosh(x) in their code.

However, for large scale software development where compile times are significant, and where the Boost libraries are already built
and installed on the system, then including <boost/math/tr1.hpp> and using boost::math::tr1::acosh(x) will speed up
compile times, reduce object files sizes (since there are no templates being instantiated any more), and also speed up debugging
runtimes - since the externally compiled libraries can be compiler optimised, rather than built using full settings - the difference in
performance between release and debug builds can be as much as 20 times, so for complex applications this can be a big win.

Supported C99 Functions

See also the quick reference guide for these functions.
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namespace boost{ namespace math{ namespace tr1{ extern "C"{

typedef unspecified float_t;
typedef unspecified double_t;

double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

double erf(double x);
float erff(float x);
long double erfl(long double x);

double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);

double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);

double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);

double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);

double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);

long lround(double x);
long lroundf(float x);
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long lroundl(long double x);

double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

double round(double x);
float roundf(float x);
long double roundl(long double x);

double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

double trunc(double x);
float truncf(float x);
long double truncl(long double x);

}}}} // namespaces

Supported TR1 Functions

See also the quick reference guide for these functions.
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namespace boost{ namespace math{ namespace tr1{ extern "C"{

// [5.2.1.1] associated Laguerre polynomials:
double assoc_laguerre(unsigned n, unsigned m, double x);
float assoc_laguerref(unsigned n, unsigned m, float x);
long double assoc_laguerrel(unsigned n, unsigned m, long double x);

// [5.2.1.2] associated Legendre functions:
double assoc_legendre(unsigned l, unsigned m, double x);
float assoc_legendref(unsigned l, unsigned m, float x);
long double assoc_legendrel(unsigned l, unsigned m, long double x);

// [5.2.1.3] beta function:
double beta(double x, double y);
float betaf(float x, float y);
long double betal(long double x, long double y);

// [5.2.1.4] (complete) elliptic integral of the first kind:
double comp_ellint_1(double k);
float comp_ellint_1f(float k);
long double comp_ellint_1l(long double k);

// [5.2.1.5] (complete) elliptic integral of the second kind:
double comp_ellint_2(double k);
float comp_ellint_2f(float k);
long double comp_ellint_2l(long double k);

// [5.2.1.6] (complete) elliptic integral of the third kind:
double comp_ellint_3(double k, double nu);
float comp_ellint_3f(float k, float nu);
long double comp_ellint_3l(long double k, long double nu);

// [5.2.1.8] regular modified cylindrical Bessel functions:
double cyl_bessel_i(double nu, double x);
float cyl_bessel_if(float nu, float x);
long double cyl_bessel_il(long double nu, long double x);

// [5.2.1.9] cylindrical Bessel functions (of the first kind):
double cyl_bessel_j(double nu, double x);
float cyl_bessel_jf(float nu, float x);
long double cyl_bessel_jl(long double nu, long double x);

// [5.2.1.10] irregular modified cylindrical Bessel functions:
double cyl_bessel_k(double nu, double x);
float cyl_bessel_kf(float nu, float x);
long double cyl_bessel_kl(long double nu, long double x);

// [5.2.1.11] cylindrical Neumann functions;
// cylindrical Bessel functions (of the second kind):
double cyl_neumann(double nu, double x);
float cyl_neumannf(float nu, float x);
long double cyl_neumannl(long double nu, long double x);

// [5.2.1.12] (incomplete) elliptic integral of the first kind:
double ellint_1(double k, double phi);
float ellint_1f(float k, float phi);
long double ellint_1l(long double k, long double phi);

// [5.2.1.13] (incomplete) elliptic integral of the second kind:
double ellint_2(double k, double phi);
float ellint_2f(float k, float phi);
long double ellint_2l(long double k, long double phi);
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// [5.2.1.14] (incomplete) elliptic integral of the third kind:
double ellint_3(double k, double nu, double phi);
float ellint_3f(float k, float nu, float phi);
long double ellint_3l(long double k, long double nu, long double phi);

// [5.2.1.15] exponential integral:
double expint(double x);
float expintf(float x);
long double expintl(long double x);

// [5.2.1.16] Hermite polynomials:
double hermite(unsigned n, double x);
float hermitef(unsigned n, float x);
long double hermitel(unsigned n, long double x);

// [5.2.1.18] Laguerre polynomials:
double laguerre(unsigned n, double x);
float laguerref(unsigned n, float x);
long double laguerrel(unsigned n, long double x);

// [5.2.1.19] Legendre polynomials:
double legendre(unsigned l, double x);
float legendref(unsigned l, float x);
long double legendrel(unsigned l, long double x);

// [5.2.1.20] Riemann zeta function:
double riemann_zeta(double);
float riemann_zetaf(float);
long double riemann_zetal(long double);

// [5.2.1.21] spherical Bessel functions (of the first kind):
double sph_bessel(unsigned n, double x);
float sph_besself(unsigned n, float x);
long double sph_bessell(unsigned n, long double x);

// [5.2.1.22] spherical associated Legendre functions:
double sph_legendre(unsigned l, unsigned m, double theta);
float sph_legendref(unsigned l, unsigned m, float theta);
long double sph_legendrel(unsigned l, unsigned m, long double theta);

// [5.2.1.23] spherical Neumann functions;
// spherical Bessel functions (of the second kind):
double sph_neumann(unsigned n, double x);
float sph_neumannf(unsigned n, float x);
long double sph_neumannl(unsigned n, long double x);

}}}} // namespaces

In addition sufficient additional overloads of the double versions of the above functions are provided, so that calling the function
with any mixture of float, double, long double, or integer arguments is supported, with the return type determined by the result
type calculation rules.
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Currently Unsupported C99 Functions

double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);

double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);

int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);

long long llrint(double x);
long long llrintf(float x);
long long llrintl(long double x);

double log2(double x);
float log2f(float x);
long double log2l(long double x);

double logb(double x);
float logbf(float x);
long double logbl(long double x);

long lrint(double x);
long lrintf(float x);
long lrintl(long double x);

double nan(const char *str);
float nanf(const char *str);
long double nanl(const char *str);

double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);

double remquo(double x, double y, int *pquo);
float remquof(float x, float y, int *pquo);
long double remquol(long double x, long double y, int *pquo);

double rint(double x);
float rintf(float x);
long double rintl(long double x);

double scalbln(double x, long ex);
float scalblnf(float x, long ex);
long double scalblnl(long double x, long ex);

double scalbn(double x, int ex);
float scalbnf(float x, int ex);
long double scalbnl(long double x, int ex);
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Currently Unsupported TR1 Functions

// [5.2.1.7] confluent hypergeometric functions:
double conf_hyperg(double a, double c, double x);
float conf_hypergf(float a, float c, float x);
long double conf_hypergl(long double a, long double c, long double x);

// [5.2.1.17] hypergeometric functions:
double hyperg(double a, double b, double c, double x);
float hypergf(float a, float b, float c, float x);
long double hypergl(long double a, long double b, long double c,
long double x);
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C99 C Functions
Supported C99 Functions

namespace boost{ namespace math{ namespace tr1{ extern "C"{

typedef unspecified float_t;
typedef unspecified double_t;

double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

double erf(double x);
float erff(float x);
long double erfl(long double x);

double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);

double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);

double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);

double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);

double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

double log1p(double x);
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float log1pf(float x);
long double log1pl(long double x);

long lround(double x);
long lroundf(float x);
long lroundl(long double x);

double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

double round(double x);
float roundf(float x);
long double roundl(long double x);

double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

double trunc(double x);
float truncf(float x);
long double truncl(long double x);

}}}} // namespaces

In addition sufficient additional overloads of the double versions of the above functions are provided, so that calling the function
with any mixture of float, double, long double, or integer arguments is supported, with the return type determined by the result
type calculation rules.

For example:

acoshf(2.0f); // float version, returns float.
acosh(2.0f); // also calls the float version and returns float.
acosh(2.0); // double version, returns double.
acoshl(2.0L); // long double version, returns a long double.
acosh(2.0L); // also calls the long double version.
acosh(2); // integer argument is treated as a double, returns double.

Quick Reference

More detailed descriptions of these functions are available in the C99 standard.

typedef unspecified float_t;
typedef unspecified double_t;

In this implementation float_t is the same as type float, and double_t the same as type double unless the preprocessor symbol
FLT_EVAL_METHOD is defined, in which case these are set as follows:

double_tfloat_tFLT_EVAL_METHOD

doublefloat0

doubledouble1

long doublelong double2
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double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

Returns the inverse hyperbolic cosine of x.

See also acosh for the full template (header only) version of this function.

double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

Returns the inverse hyperbolic sine of x.

See also asinh for the full template (header only) version of this function.

double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

Returns the inverse hyperbolic tangent of x.

See also atanh for the full template (header only) version of this function.

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

Returns the cubed root of x.

See also cbrt for the full template (header only) version of this function.

double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

Returns a value with the magnitude of x and the sign of y.

double erf(double x);
float erff(float x);
long double erfl(long double x);

Returns the error function of x:

erf (z) = 2
π ∫0

z

e−t
2
dt

See also erf for the full template (header only) version of this function.

double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);

Returns the complementary error function of x 1-erf(x) without the loss of precision implied by the subtraction.
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See also erfc for the full template (header only) version of this function.

double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);

Returns exp(x)-1 without the loss of precision implied by the subtraction.

See also expm1 for the full template (header only) version of this function.

double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);

Returns the larger (most positive) of x and y.

double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);

Returns the smaller (most negative) of x and y.

double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

Returns sqrt(x*x + y*y) without the danger of numeric overflow implied by that formulation.

See also hypot for the full template (header only) version of this function.

double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);

Returns the log of the gamma function of x.

lgamma (z) = ln | Γ(z) |

See also lgamma for the full template (header only) version of this function.

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

Returns the value x rounded to the nearest integer as a long long: equivalent to floor(x + 0.5)

See also round for the full template (header only) version of this function.

double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);

Returns the log(x+1) without the loss of precision implied by that formulation.

See also log1p for the full template (header only) version of this function.
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long lround(double x);
long lroundf(float x);
long lroundl(long double x);

Returns the value x rounded to the nearest integer as a long: equivalent to floor(x + 0.5)

See also round for the full template (header only) version of this function.

double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

Returns the next representable floating point number after x in the direction of y, or x if x == y.

double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

As nextafter, but with y always expressed as a long double.

double round(double x);
float roundf(float x);
long double roundl(long double x);

Returns the value x rounded to the nearest integer: equivalent to floor(x + 0.5)

See also round for the full template (header only) version of this function.

double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

Returns the gamma function of x:

tgamma (z) = Γ(z) = ∫
0

∞

tz−1e−tdt

See also tgamma for the full template (header only) version of this function.

double trunc(double x);
float truncf(float x);
long double truncl(long double x);

Returns x truncated to the nearest integer.

See also trunc for the full template (header only) version of this function.

See also C99 ISO Standard
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TR1 C Functions Quick Reference
Supported TR1 Functions

namespace boost{ namespace math{ namespace tr1{ extern "C"{

// [5.2.1.1] associated Laguerre polynomials:
double assoc_laguerre(unsigned n, unsigned m, double x);
float assoc_laguerref(unsigned n, unsigned m, float x);
long double assoc_laguerrel(unsigned n, unsigned m, long double x);

// [5.2.1.2] associated Legendre functions:
double assoc_legendre(unsigned l, unsigned m, double x);
float assoc_legendref(unsigned l, unsigned m, float x);
long double assoc_legendrel(unsigned l, unsigned m, long double x);

// [5.2.1.3] beta function:
double beta(double x, double y);
float betaf(float x, float y);
long double betal(long double x, long double y);

// [5.2.1.4] (complete) elliptic integral of the first kind:
double comp_ellint_1(double k);
float comp_ellint_1f(float k);
long double comp_ellint_1l(long double k);

// [5.2.1.5] (complete) elliptic integral of the second kind:
double comp_ellint_2(double k);
float comp_ellint_2f(float k);
long double comp_ellint_2l(long double k);

// [5.2.1.6] (complete) elliptic integral of the third kind:
double comp_ellint_3(double k, double nu);
float comp_ellint_3f(float k, float nu);
long double comp_ellint_3l(long double k, long double nu);

// [5.2.1.8] regular modified cylindrical Bessel functions:
double cyl_bessel_i(double nu, double x);
float cyl_bessel_if(float nu, float x);
long double cyl_bessel_il(long double nu, long double x);

// [5.2.1.9] cylindrical Bessel functions (of the first kind):
double cyl_bessel_j(double nu, double x);
float cyl_bessel_jf(float nu, float x);
long double cyl_bessel_jl(long double nu, long double x);

// [5.2.1.10] irregular modified cylindrical Bessel functions:
double cyl_bessel_k(double nu, double x);
float cyl_bessel_kf(float nu, float x);
long double cyl_bessel_kl(long double nu, long double x);

// [5.2.1.11] cylindrical Neumann functions;
// cylindrical Bessel functions (of the second kind):
double cyl_neumann(double nu, double x);
float cyl_neumannf(float nu, float x);
long double cyl_neumannl(long double nu, long double x);

// [5.2.1.12] (incomplete) elliptic integral of the first kind:
double ellint_1(double k, double phi);
float ellint_1f(float k, float phi);
long double ellint_1l(long double k, long double phi);
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// [5.2.1.13] (incomplete) elliptic integral of the second kind:
double ellint_2(double k, double phi);
float ellint_2f(float k, float phi);
long double ellint_2l(long double k, long double phi);

// [5.2.1.14] (incomplete) elliptic integral of the third kind:
double ellint_3(double k, double nu, double phi);
float ellint_3f(float k, float nu, float phi);
long double ellint_3l(long double k, long double nu, long double phi);

// [5.2.1.15] exponential integral:
double expint(double x);
float expintf(float x);
long double expintl(long double x);

// [5.2.1.16] Hermite polynomials:
double hermite(unsigned n, double x);
float hermitef(unsigned n, float x);
long double hermitel(unsigned n, long double x);

// [5.2.1.18] Laguerre polynomials:
double laguerre(unsigned n, double x);
float laguerref(unsigned n, float x);
long double laguerrel(unsigned n, long double x);

// [5.2.1.19] Legendre polynomials:
double legendre(unsigned l, double x);
float legendref(unsigned l, float x);
long double legendrel(unsigned l, long double x);

// [5.2.1.20] Riemann zeta function:
double riemann_zeta(double);
float riemann_zetaf(float);
long double riemann_zetal(long double);

// [5.2.1.21] spherical Bessel functions (of the first kind):
double sph_bessel(unsigned n, double x);
float sph_besself(unsigned n, float x);
long double sph_bessell(unsigned n, long double x);

// [5.2.1.22] spherical associated Legendre functions:
double sph_legendre(unsigned l, unsigned m, double theta);
float sph_legendref(unsigned l, unsigned m, float theta);
long double sph_legendrel(unsigned l, unsigned m, long double theta);

// [5.2.1.23] spherical Neumann functions;
// spherical Bessel functions (of the second kind):
double sph_neumann(unsigned n, double x);
float sph_neumannf(unsigned n, float x);
long double sph_neumannl(unsigned n, long double x);

}}}} // namespaces

In addition sufficient additional overloads of the double versions of the above functions are provided, so that calling the function
with any mixture of float, double, long double, or integer arguments is supported, with the return type determined by the result
type calculation rules.

For example:
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expintf(2.0f); // float version, returns float.
expint(2.0f); // also calls the float version and returns float.
expint(2.0); // double version, returns double.
expintl(2.0L); // long double version, returns a long double.
expint(2.0L); // also calls the long double version.
expint(2); // integer argument is treated as a double, returns double.

Quick Reference

// [5.2.1.1] associated Laguerre polynomials:
double assoc_laguerre(unsigned n, unsigned m, double x);
float assoc_laguerref(unsigned n, unsigned m, float x);
long double assoc_laguerrel(unsigned n, unsigned m, long double x);

The assoc_laguerre functions return:

laguerre (n, m, x) = Ln
m(x) = (−1)m dm

dxmLn+m(x)

See also laguerre for the full template (header only) version of this function.

// [5.2.1.2] associated Legendre functions:
double assoc_legendre(unsigned l, unsigned m, double x);
float assoc_legendref(unsigned l, unsigned m, float x);
long double assoc_legendrel(unsigned l, unsigned m, long double x);

The assoc_legendre functions return:

legendre_p (l, m, x) = Pl
m(x) = (1 − x2)

m
2 d

mPl(x)
dxm

See also legendre_p for the full template (header only) version of this function.

// [5.2.1.3] beta function:
double beta(double x, double y);
float betaf(float x, float y);
long double betal(long double x, long double y);

Returns the beta function of x and y:

beta (a, b) = B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

See also beta for the full template (header only) version of this function.

// [5.2.1.4] (complete) elliptic integral of the first kind:
double comp_ellint_1(double k);
float comp_ellint_1f(float k);
long double comp_ellint_1l(long double k);

Returns the complete elliptic integral of the first kind of k:

K(k) = F(π2 , k) = ∫0
π
2 dθ

1 − k2sin2θ
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See also ellint_1 for the full template (header only) version of this function.

// [5.2.1.5] (complete) elliptic integral of the second kind:
double comp_ellint_2(double k);
float comp_ellint_2f(float k);
long double comp_ellint_2l(long double k);

Returns the complete elliptic integral of the second kind of k:

E(k) = E(π2 , k) = ∫0
π
2

1 − k2sin2θ dθ

See also ellint_2 for the full template (header only) version of this function.

// [5.2.1.6] (complete) elliptic integral of the third kind:
double comp_ellint_3(double k, double nu);
float comp_ellint_3f(float k, float nu);
long double comp_ellint_3l(long double k, long double nu);

Returns the complete elliptic integral of the third kind of k and nu:

∏ (n, k) =∏(n, π2 , k) = ∫0
π
2 dθ
(1 − nsin2θ) 1 − k2sin2θ

See also ellint_3 for the full template (header only) version of this function.

// [5.2.1.8] regular modified cylindrical Bessel functions:
double cyl_bessel_i(double nu, double x);
float cyl_bessel_if(float nu, float x);
long double cyl_bessel_il(long double nu, long double x);

Returns the modified bessel function of the first kind of nu and x:

Iν(z) = (12 z)
ν∑
k=0

∞ (14 z2)k
k !Γ(ν + k + 1)

See also cyl_bessel_i for the full template (header only) version of this function.

// [5.2.1.9] cylindrical Bessel functions (of the first kind):
double cyl_bessel_j(double nu, double x);
float cyl_bessel_jf(float nu, float x);
long double cyl_bessel_jl(long double nu, long double x);

Returns the bessel function of the first kind of nu and x:

J ν(z) = (12 z)
ν∑
k=0

∞ (− 1
4 z

2)k
k !Γ(ν + k + 1)

See also cyl_bessel_j for the full template (header only) version of this function.
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// [5.2.1.10] irregular modified cylindrical Bessel functions:
double cyl_bessel_k(double nu, double x);
float cyl_bessel_kf(float nu, float x);
long double cyl_bessel_kl(long double nu, long double x);

Returns the modified bessel function of the second kind of nu and x:

Kν(z) =
π
2 ⋅

I−ν(z) − Iν(z)
sin (νπ)

See also cyl_bessel_k for the full template (header only) version of this function.

// [5.2.1.11] cylindrical Neumann functions;
// cylindrical Bessel functions (of the second kind):
double cyl_neumann(double nu, double x);
float cyl_neumannf(float nu, float x);
long double cyl_neumannl(long double nu, long double x);

Returns the bessel function of the second kind (Neumann function) of nu and x:

Y ν(z) =
J ν(z) cos (νπ) − J−ν(z)

sin (νπ)

See also cyl_neumann for the full template (header only) version of this function.

// [5.2.1.12] (incomplete) elliptic integral of the first kind:
double ellint_1(double k, double phi);
float ellint_1f(float k, float phi);
long double ellint_1l(long double k, long double phi);

Returns the incomplete elliptic integral of the first kind of k and phi:

F(φ, k) = ∫0
φ

dθ
1 − k2sin2θ

See also ellint_1 for the full template (header only) version of this function.

// [5.2.1.13] (incomplete) elliptic integral of the second kind:
double ellint_2(double k, double phi);
float ellint_2f(float k, float phi);
long double ellint_2l(long double k, long double phi);

Returns the incomplete elliptic integral of the second kind of k and phi:

E(φ, k) = ∫0
φ

1 − k2sin2θ dθ

See also ellint_2 for the full template (header only) version of this function.

// [5.2.1.14] (incomplete) elliptic integral of the third kind:
double ellint_3(double k, double nu, double phi);
float ellint_3f(float k, float nu, float phi);
long double ellint_3l(long double k, long double nu, long double phi);

Returns the incomplete elliptic integral of the third kind of k, nu and phi:
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Π(n, φ, k) = ∫0
φ

dθ
(1 − nsin2θ) 1 − k2sin2θ

See also ellint_3 for the full template (header only) version of this function.

// [5.2.1.15] exponential integral:
double expint(double x);
float expintf(float x);
long double expintl(long double x);

Returns the exponential integral Ei of x:

Ei(x) = − E1(−x) = ∫−x
∞

e−tdt
t

See also expint for the full template (header only) version of this function.

// [5.2.1.16] Hermite polynomials:
double hermite(unsigned n, double x);
float hermitef(unsigned n, float x);
long double hermitel(unsigned n, long double x);

Returns the n'th Hermite polynomial of x:

hermite (x) = Hn(x) = (−1)nex
2 d2
dx2

e−x
2

See also hermite for the full template (header only) version of this function.

// [5.2.1.18] Laguerre polynomials:
double laguerre(unsigned n, double x);
float laguerref(unsigned n, float x);
long double laguerrel(unsigned n, long double x);

Returns the n'th Laguerre polynomial of x:

laguerre (n, x) = Ln(x) = ex
n !

dn
dxn(x

ne−x)

See also laguerre for the full template (header only) version of this function.

// [5.2.1.19] Legendre polynomials:
double legendre(unsigned l, double x);
float legendref(unsigned l, float x);
long double legendrel(unsigned l, long double x);

Returns the l'th Legendre polynomial of x:

legendre_p (l, x) = Pl(x) = 1
2ll !

dl

dxl
(x2 − 1)l ; | x | ≤ 1

See also legendre_p for the full template (header only) version of this function.
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// [5.2.1.20] Riemann zeta function:
double riemann_zeta(double);
float riemann_zetaf(float);
long double riemann_zetal(long double);

Returns the Riemann Zeta function of x:

ζ (s) = ∑
k=1

∞
1
ks

See also zeta for the full template (header only) version of this function.

// [5.2.1.21] spherical Bessel functions (of the first kind):
double sph_bessel(unsigned n, double x);
float sph_besself(unsigned n, float x);
long double sph_bessell(unsigned n, long double x);

Returns the spherical Bessel function of the first kind of x jn(x):

jn(z) = π
2z Jn+12

(z)

yn(z) = π
2zY n+12

(z)

See also sph_bessel for the full template (header only) version of this function.

// [5.2.1.22] spherical associated Legendre functions:
double sph_legendre(unsigned l, unsigned m, double theta);
float sph_legendref(unsigned l, unsigned m, float theta);
long double sph_legendrel(unsigned l, unsigned m, long double theta);

Returns the spherical associated Legendre function of l, m and theta:

sph_legendre (l, m, θ) = Y l
m(θ, 0) = (−1)m 2l + 1

4π
(l − m) !
(l + m) ! Pl

m(cosθ)

See also spherical_harmonic for the full template (header only) version of this function.

// [5.2.1.23] spherical Neumann functions;
// spherical Bessel functions (of the second kind):
double sph_neumann(unsigned n, double x);
float sph_neumannf(unsigned n, float x);
long double sph_neumannl(unsigned n, long double x);

Returns the spherical Neumann function of x yn(x):

jn(z) = π
2z Jn+12

(z)

yn(z) = π
2zY n+12

(z)

See also sph_bessel for the full template (header only) version of this function.
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Currently Unsupported TR1 Functions

// [5.2.1.7] confluent hypergeometric functions:
double conf_hyperg(double a, double c, double x);
float conf_hypergf(float a, float c, float x);
long double conf_hypergl(long double a, long double c, long double x);

// [5.2.1.17] hypergeometric functions:
double hyperg(double a, double b, double c, double x);
float hypergf(float a, float b, float c, float x);
long double hypergl(long double a, long double b, long double c,
long double x);

Note

These two functions are not implemented as they are not believed to be numerically stable.
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Complex Number Functions
The following complex number algorithms are the inverses of trigonometric functions currently present in the C++ standard. Equi-
valents to these functions are part of the C99 standard, and are part of the Technical Report on C++ Library Extensions.
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Implementation and Accuracy
Although there are deceptively simple formulae available for all of these functions, a naive implementation that used these formulae
would fail catastrophically for some input values. The Boost versions of these functions have been implemented using the methodology
described in "Implementing the Complex Arcsine and Arccosine Functions Using Exception Handling" by T. E. Hull Thomas F.
Fairgrieve and Ping Tak Peter Tang, ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997. This means
that the functions are well defined over the entire complex number range, and produce accurate values even at the extremes of that
range, where as a naive formula would cause overflow or underflow to occur during the calculation, even though the result is actually
a representable value. The maximum theoretical relative error for all of these functions is less than 9.5ε for every machine-representable
point in the complex plane. Please refer to comments in the header files themselves and to the above mentioned paper for more in-
formation on the implementation methodology.
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asin
Header:

#include <boost/math/complex/asin.hpp>

Synopsis:

template<class T>
std::complex<T> asin(const std::complex<T>& z);

Effects:  returns the inverse sine of the complex number z.

Formula: 
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acos
Header:

#include <boost/math/complex/acos.hpp>

Synopsis:

template<class T>
std::complex<T> acos(const std::complex<T>& z);

Effects:  returns the inverse cosine of the complex number z.

Formula: 
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atan
Header:

#include <boost/math/complex/atan.hpp>

Synopsis:

template<class T>
std::complex<T> atan(const std::complex<T>& z);

Effects:  returns the inverse tangent of the complex number z.

Formula: 
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asinh
Header:

#include <boost/math/complex/asinh.hpp>

Synopsis:

template<class T>
std::complex<T> asinh(const std::complex<T>& z);

Effects:  returns the inverse hyperbolic sine of the complex number z.

Formula: 
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acosh
Header:

#include <boost/math/complex/acosh.hpp>

Synopsis:

template<class T>
std::complex<T> acosh(const std::complex<T>& z);

Effects:  returns the inverse hyperbolic cosine of the complex number z.

Formula: 
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atanh
Header:

#include <boost/math/complex/atanh.hpp>

Synopsis:

template<class T>
std::complex<T> atanh(const std::complex<T>& z);

Effects:  returns the inverse hyperbolic tangent of the complex number z.

Formula: 
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History
• 2005/12/17: Added support for platforms with no meaningful numeric_limits<>::infinity().

• 2005/12/01: Initial version, added as part of the TR1 library.
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Quaternions
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Overview
Quaternions are a relative of complex numbers.

Quaternions are in fact part of a small hierarchy of structures built upon the real numbers, which comprise only the set of real numbers
(traditionally named R), the set of complex numbers (traditionally named C), the set of quaternions (traditionally named H) and the
set of octonions (traditionally named O), which possess interesting mathematical properties (chief among which is the fact that they
are division algebras, i.e. where the following property is true: if y is an element of that algebra and is not equal to zero, then yx
= yx', where x and x' denote elements of that algebra, implies that x = x'). Each member of the hierarchy is a super-set of the
former.

One of the most important aspects of quaternions is that they provide an efficient way to parameterize rotations in R3 (the usual
three-dimensional space) and R4.

In practical terms, a quaternion is simply a quadruple of real numbers (α,β,γ,δ), which we can write in the form q = α + βi + γj
+ δk, where i is the same object as for complex numbers, and j and k are distinct objects which play essentially the same kind of
role as i.

An addition and a multiplication is defined on the set of quaternions, which generalize their real and complex counterparts. The main
novelty here is that the multiplication is not commutative (i.e. there are quaternions x and y such that xy ≠ yx). A good
mnemotechnical way of remembering things is by using the formula i*i = j*j = k*k = -1.

Quaternions (and their kin) are described in far more details in this other document (with errata and addenda).

Some traditional constructs, such as the exponential, carry over without too much change into the realms of quaternions, but other,
such as taking a square root, do not.
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Header File
The interface and implementation are both supplied by the header file quaternion.hpp.
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Synopsis
namespace boost{ namespace math{

template<typename T> class quaternion;
template<> class quaternion<float>;
template<> class quaternion<double>;
template<> class quaternion<long double>;

// operators
template<typename T> quaternion<T> operator + (T const & lhs, quaternion<T> const & rhs);
template<typename T> quaternion<T> operator + (quaternion<T> const & lhs, T const & rhs);
template<typename T> quaternion<T> operator + (::std::complex<T> const & lhs, qua↵
ternion<T> const & rhs);
template<typename T> quaternion<T> operator + (quaternion<T> const & lhs, ::std::com↵
plex<T> const & rhs);
template<typename T> quaternion<T> operator + (quaternion<T> const & lhs, qua↵
ternion<T> const & rhs);

template<typename T> quaternion<T> operator - (T const & lhs, quaternion<T> const & rhs);
template<typename T> quaternion<T> operator - (quaternion<T> const & lhs, T const & rhs);
template<typename T> quaternion<T> operator - (::std::complex<T> const & lhs, qua↵
ternion<T> const & rhs);
template<typename T> quaternion<T> operator - (quaternion<T> const & lhs, ::std::com↵
plex<T> const & rhs);
template<typename T> quaternion<T> operator - (quaternion<T> const & lhs, qua↵
ternion<T> const & rhs);

template<typename T> quaternion<T> operator * (T const & lhs, quaternion<T> const & rhs);
template<typename T> quaternion<T> operator * (quaternion<T> const & lhs, T const & rhs);
template<typename T> quaternion<T> operator * (::std::complex<T> const & lhs, qua↵
ternion<T> const & rhs);
template<typename T> quaternion<T> operator * (quaternion<T> const & lhs, ::std::com↵
plex<T> const & rhs);
template<typename T> quaternion<T> operator * (quaternion<T> const & lhs, qua↵
ternion<T> const & rhs);

template<typename T> quaternion<T> operator / (T const & lhs, quaternion<T> const & rhs);
template<typename T> quaternion<T> operator / (quaternion<T> const & lhs, T const & rhs);
template<typename T> quaternion<T> operator / (::std::complex<T> const & lhs, qua↵
ternion<T> const & rhs);
template<typename T> quaternion<T> operator / (quaternion<T> const & lhs, ::std::com↵
plex<T> const & rhs);
template<typename T> quaternion<T> operator / (quaternion<T> const & lhs, qua↵
ternion<T> const & rhs);

template<typename T> quaternion<T> operator + (quaternion<T> const & q);
template<typename T> quaternion<T> operator - (quaternion<T> const & q);

template<typename T> bool operator == (T const & lhs, quaternion<T> const & rhs);
template<typename T> bool operator == (quaternion<T> const & lhs, T const & rhs);
template<typename T> bool operator == (::std::complex<T> const & lhs, quaternion<T> const & rhs);
template<typename T> bool operator == (quaternion<T> const & lhs, ::std::complex<T> const & rhs);
template<typename T> bool operator == (quaternion<T> const & lhs, quaternion<T> const & rhs);

template<typename T> bool operator != (T const & lhs, quaternion<T> const & rhs);
template<typename T> bool operator != (quaternion<T> const & lhs, T const & rhs);
template<typename T> bool operator != (::std::complex<T> const & lhs, quaternion<T> const & rhs);
template<typename T> bool operator != (quaternion<T> const & lhs, ::std::complex<T> const & rhs);
template<typename T> bool operator != (quaternion<T> const & lhs, quaternion<T> const & rhs);

template<typename T, typename charT, class traits>
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::std::basic_istream<charT,traits>& operator >> (::std::basic_istream<charT,traits> & is, qua↵
ternion<T> & q);

template<typename T, typename charT, class traits>
::std::basic_ostream<charT,traits>& operator operator << (::std::basic_os↵
tream<charT,traits> & os, quaternion<T> const & q);

// values
template<typename T> T real(quaternion<T> const & q);
template<typename T> quaternion<T> unreal(quaternion<T> const & q);

template<typename T> T sup(quaternion<T> const & q);
template<typename T> T l1(quaternion<T> const & q);
template<typename T> T abs(quaternion<T> const & q);
template<typename T> T norm(quaternion<T>const & q);
template<typename T> quaternion<T> conj(quaternion<T> const & q);

template<typename T> quaternion<T> math_quaternions.creation_spheric↵
al(T const & rho, T const & theta, T const & phi1, T const & phi2);
template<typename T> quaternion<T> semipolar(T const & rho, T const & al↵
pha, T const & theta1, T const & theta2);
template<typename T> quaternion<T> multi↵
polar(T const & rho1, T const & theta1, T const & rho2, T const & theta2);
template<typename T> quaternion<T> cylindrospherical(T const & t, T const & radius, T const & lon↵
gitude, T const & latitude);
template<typename T> quaternion<T> cylindric↵
al(T const & r, T const & angle, T const & h1, T const & h2);

// transcendentals
template<typename T> quaternion<T> exp(quaternion<T> const & q);
template<typename T> quaternion<T> cos(quaternion<T> const & q);
template<typename T> quaternion<T> sin(quaternion<T> const & q);
template<typename T> quaternion<T> tan(quaternion<T> const & q);
template<typename T> quaternion<T> cosh(quaternion<T> const & q);
template<typename T> quaternion<T> sinh(quaternion<T> const & q);
template<typename T> quaternion<T> tanh(quaternion<T> const & q);
template<typename T> quaternion<T> pow(quaternion<T> const & q, int n);

} // namespace math
} // namespace boost
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Template Class quaternion
namespace boost{ namespace math{

template<typename T>
class quaternion
{
public:

typedef T value_type;

explicit quaternion(T const & requested_a = T(), T const & requested_b = T(), T const & re↵
quested_c = T(), T const & requested_d = T());

explicit quaternion(::std::complex<T> const & z0, ::std::complex<T> const & z1 = ::std::com↵
plex<T>());

template<typename X>
explicit quaternion(quaternion<X> const & a_recopier);

T real() const;
quaternion<T> unreal() const;
T R_component_1() const;
T R_component_2() const;
T R_component_3() const;
T R_component_4() const;
::std::complex<T> C_component_1() const;
::std::complex<T> C_component_2() const;

quaternion<T>& operator = (quaternion<T> const & a_affecter);
template<typename X>
quaternion<T>& operator = (quaternion<X> const & a_affecter);
quaternion<T>& operator = (T const & a_affecter);
quaternion<T>& operator = (::std::complex<T> const & a_affecter);

quaternion<T>& operator += (T const & rhs);
quaternion<T>& operator += (::std::complex<T> const & rhs);
template<typename X>
quaternion<T>& operator += (quaternion<X> const & rhs);

quaternion<T>& operator -= (T const & rhs);
quaternion<T>& operator -= (::std::complex<T> const & rhs);
template<typename X>
quaternion<T>& operator -= (quaternion<X> const & rhs);

quaternion<T>& operator *= (T const & rhs);
quaternion<T>& operator *= (::std::complex<T> const & rhs);
template<typename X>
quaternion<T>& operator *= (quaternion<X> const & rhs);

quaternion<T>& operator /= (T const & rhs);
quaternion<T>& operator /= (::std::complex<T> const & rhs);
template<typename X>
quaternion<T>& operator /= (quaternion<X> const & rhs);

};

} // namespace math
} // namespace boost
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Quaternion Specializations
namespace boost{ namespace math{

template<>
class quaternion<float>
{
public:

typedef float value_type;

explicit quaternion(float const & requested_a = 0.0f, float const & reques↵
ted_b = 0.0f, float const & requested_c = 0.0f, float const & requested_d = 0.0f);

explicit quaternion(::std::complex<float> const & z0, ::std::com↵
plex<float> const & z1 = ::std::complex<float>());

explicit quaternion(quaternion<double> const & a_recopier);
explicit quaternion(quaternion<long double> const & a_recopier);

float real() const;
quaternion<float> unreal() const;
float R_component_1() const;
float R_component_2() const;
float R_component_3() const;
float R_component_4() const;
::std::complex<float> C_component_1() const;
::std::complex<float> C_component_2() const;

quaternion<float>& operator = (quaternion<float> const & a_affecter);
template<typename X>
quaternion<float>& operator = (quaternion<X> const & a_affecter);
quaternion<float>& operator = (float const & a_affecter);
quaternion<float>& operator = (::std::complex<float> const & a_affecter);

quaternion<float>& operator += (float const & rhs);
quaternion<float>& operator += (::std::complex<float> const & rhs);
template<typename X>
quaternion<float>& operator += (quaternion<X> const & rhs);

quaternion<float>& operator -= (float const & rhs);
quaternion<float>& operator -= (::std::complex<float> const & rhs);
template<typename X>
quaternion<float>& operator -= (quaternion<X> const & rhs);

quaternion<float>& operator *= (float const & rhs);
quaternion<float>& operator *= (::std::complex<float> const & rhs);
template<typename X>
quaternion<float>& operator *= (quaternion<X> const & rhs);

quaternion<float>& operator /= (float const & rhs);
quaternion<float>& operator /= (::std::complex<float> const & rhs);
template<typename X>
quaternion<float>& operator /= (quaternion<X> const & rhs);

};

585

Quaternions

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


template<>
class quaternion<double>
{
public:

typedef double value_type;

explicit quaternion(double const & requested_a = 0.0, double const & reques↵
ted_b = 0.0, double const & requested_c = 0.0, double const & requested_d = 0.0);

explicit quaternion(::std::complex<double> const & z0, ::std::com↵
plex<double> const & z1 = ::std::complex<double>());

explicit quaternion(quaternion<float> const & a_recopier);
explicit quaternion(quaternion<long double> const & a_recopier);

double real() const;
quaternion<double> unreal() const;
double R_component_1() const;
double R_component_2() const;
double R_component_3() const;
double R_component_4() const;
::std::complex<double> C_component_1() const;
::std::complex<double> C_component_2() const;

quaternion<double>& operator = (quaternion<double> const & a_affecter);
template<typename X>
quaternion<double>& operator = (quaternion<X> const & a_affecter);
quaternion<double>& operator = (double const & a_affecter);
quaternion<double>& operator = (::std::complex<double> const & a_affecter);

quaternion<double>& operator += (double const & rhs);
quaternion<double>& operator += (::std::complex<double> const & rhs);
template<typename X>
quaternion<double>& operator += (quaternion<X> const & rhs);

quaternion<double>& operator -= (double const & rhs);
quaternion<double>& operator -= (::std::complex<double> const & rhs);
template<typename X>
quaternion<double>& operator -= (quaternion<X> const & rhs);

quaternion<double>& operator *= (double const & rhs);
quaternion<double>& operator *= (::std::complex<double> const & rhs);
template<typename X>
quaternion<double>& operator *= (quaternion<X> const & rhs);

quaternion<double>& operator /= (double const & rhs);
quaternion<double>& operator /= (::std::complex<double> const & rhs);
template<typename X>
quaternion<double>& operator /= (quaternion<X> const & rhs);

};
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template<>
class quaternion<long double>
{
public:

typedef long double value_type;

explicit quaternion(long double const & requested_a = 0.0L, long double const & reques↵
ted_b = 0.0L, long double const & requested_c = 0.0L, long double const & requested_d = 0.0L);

explicit quaternion(::std::complex<long double> const & z0, ::std::com↵
plex<long double> const & z1 = ::std::complex<long double>());

explicit quaternion(quaternion<float> const & a_recopier);
explicit quaternion(quaternion<double> const & a_recopier);

long double real() const;
quaternion<long double> unreal() const;
long double R_component_1() const;
long double R_component_2() const;
long double R_component_3() const;
long double R_component_4() const;
::std::complex<long double> C_component_1() const;
::std::complex<long double> C_component_2() const;

quaternion<long double>& operator = (quaternion<long double> const & a_affecter);
template<typename X>
quaternion<long double>& operator = (quaternion<X> const & a_affecter);
quaternion<long double>& operator = (long double const & a_affecter);
quaternion<long double>& operator = (::std::complex<long double> const & a_affecter);

quaternion<long double>& operator += (long double const & rhs);
quaternion<long double>& operator += (::std::complex<long double> const & rhs);
template<typename X>
quaternion<long double>& operator += (quaternion<X> const & rhs);

quaternion<long double>& operator -= (long double const & rhs);
quaternion<long double>& operator -= (::std::complex<long double> const & rhs);
template<typename X>
quaternion<long double>& operator -= (quaternion<X> const & rhs);

quaternion<long double>& operator *= (long double const & rhs);
quaternion<long double>& operator *= (::std::complex<long double> const & rhs);
template<typename X>
quaternion<long double>& operator *= (quaternion<X> const & rhs);

quaternion<long double>& operator /= (long double const & rhs);
quaternion<long double>& operator /= (::std::complex<long double> const & rhs);
template<typename X>
quaternion<long double>& operator /= (quaternion<X> const & rhs);

};

} // namespace math
} // namespace boost

587

Quaternions

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Quaternion Member Typedefs
value_type

Template version:

typedef T value_type;

Float specialization version:

typedef float value_type;

Double specialization version:

typedef double value_type;

Long double specialization version:

typedef long double value_type;

These provide easy acces to the type the template is built upon.
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Quaternion Member Functions
Constructors

Template version:

explicit quaternion(T const & requested_a = T(), T const & requested_b = T(), T const & reques↵
ted_c = T(), T const & requested_d = T());
explicit quaternion(::std::complex<T> const & z0, ::std::complex<T> const & z1 = ::std::com↵
plex<T>());
template<typename X>
explicit quaternion(quaternion<X> const & a_recopier);

Float specialization version:

explicit quaternion(float const & requested_a = 0.0f, float const & reques↵
ted_b = 0.0f, float const & requested_c = 0.0f, float const & requested_d = 0.0f);
explicit quaternion(::std::complex<float> const & z0,::std::complex<float> const & z1 = ::std::com↵
plex<float>());
explicit quaternion(quaternion<double> const & a_recopier);
explicit quaternion(quaternion<long double> const & a_recopier);

Double specialization version:

explicit quaternion(double const & requested_a = 0.0, double const & reques↵
ted_b = 0.0, double const & requested_c = 0.0, double const & requested_d = 0.0);
explicit quaternion(::std::complex<double> const & z0, ::std::com↵
plex<double> const & z1 = ::std::complex<double>());
explicit quaternion(quaternion<float> const & a_recopier);
explicit quaternion(quaternion<long double> const & a_recopier);

Long double specialization version:

explicit quaternion(long double const & requested_a = 0.0L, long double const & reques↵
ted_b = 0.0L, long double const & requested_c = 0.0L, long double const & requested_d = 0.0L);
explicit quaternion( ::std::complex<long double> const & z0, ::std::com↵
plex<long double> const & z1 = ::std::complex<long double>());
explicit quaternion(quaternion<float> const & a_recopier);
explicit quaternion(quaternion<double> const & a_recopier);

A default constructor is provided for each form, which initializes each component to the default values for their type (i.e. zero for
floating numbers). This constructor can also accept one to four base type arguments. A constructor is also provided to build quaternions
from one or two complex numbers sharing the same base type. The unspecialized template also sports a templarized copy constructor,
while the specialized forms have copy constructors from the other two specializations, which are explicit when a risk of precision
loss exists. For the unspecialized form, the base type's constructors must not throw.

Destructors and untemplated copy constructors (from the same type) are provided by the compiler. Converting copy constructors
make use of a templated helper function in a "detail" subnamespace.

Other member functions

Real and Unreal Parts

T real() const;
quaternion<T> unreal() const;

589

Quaternions

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Like complex number, quaternions do have a meaningful notion of "real part", but unlike them there is no meaningful notion of
"imaginary part". Instead there is an "unreal part" which itself is a quaternion, and usually nothing simpler (as opposed to the complex
number case). These are returned by the first two functions.

Individual Real Components

T R_component_1() const;
T R_component_2() const;
T R_component_3() const;
T R_component_4() const;

A quaternion having four real components, these are returned by these four functions. Hence real and R_component_1 return the
same value.

Individual Complex Components

::std::complex<T> C_component_1() const;
::std::complex<T> C_component_2() const;

A quaternion likewise has two complex components, and as we have seen above, for any quaternion q = α + βi + γj + δk we
also have q = (α + βi) + (γ + δi)j . These functions return them. The real part of q.C_component_1() is the same as
q.real().

Quaternion Member Operators

Assignment Operators

quaternion<T>& operator = (quaternion<T> const & a_affecter);
template<typename X>
quaternion<T>& operator = (quaternion<X> const& a_affecter);
quaternion<T>& operator = (T const& a_affecter);
quaternion<T>& operator = (::std::complex<T> const& a_affecter);

These perform the expected assignment, with type modification if necessary (for instance, assigning from a base type will set the
real part to that value, and all other components to zero). For the unspecialized form, the base type's assignment operators must not
throw.

Addition Operators

quaternion<T>& operator += (T const & rhs)
quaternion<T>& operator += (::std::complex<T> const & rhs);
template<typename X>
quaternion<T>& operator += (quaternion<X> const & rhs);

These perform the mathematical operation (*this)+rhs and store the result in *this. The unspecialized form has exception
guards, which the specialized forms do not, so as to insure exception safety. For the unspecialized form, the base type's assignment
operators must not throw.

Subtraction Operators

quaternion<T>& operator -= (T const & rhs)
quaternion<T>& operator -= (::std::complex<T> const & rhs);
template<typename X>
quaternion<T>& operator -= (quaternion<X> const & rhs);
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These perform the mathematical operation (*this)-rhs and store the result in *this. The unspecialized form has exception
guards, which the specialized forms do not, so as to insure exception safety. For the unspecialized form, the base type's assignment
operators must not throw.

Multiplication Operators

quaternion<T>& operator *= (T const & rhs)
quaternion<T>& operator *= (::std::complex<T> const & rhs);
template<typename X>
quaternion<T>& operator *= (quaternion<X> const & rhs);

These perform the mathematical operation (*this)*rhs in this order (order is important as multiplication is not commutative for
quaternions) and store the result in *this. The unspecialized form has exception guards, which the specialized forms do not, so as
to insure exception safety. For the unspecialized form, the base type's assignment operators must not throw.

Division Operators

quaternion<T>& operator /= (T const & rhs)
quaternion<T>& operator /= (::std::complex<T> const & rhs);
template<typename X>
quaternion<T>& operator /= (quaternion<X> const & rhs);

These perform the mathematical operation (*this)*inverse_of(rhs) in this order (order is important as multiplication is not
commutative for quaternions) and store the result in *this. The unspecialized form has exception guards, which the specialized
forms do not, so as to insure exception safety. For the unspecialized form, the base type's assignment operators must not throw.
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Quaternion Non-Member Operators
Unary Plus

template<typename T>
quaternion<T> operator + (quaternion<T> const & q);

This unary operator simply returns q.

Unary Minus

template<typename T>
quaternion<T> operator - (quaternion<T> const & q);

This unary operator returns the opposite of q.

Binary Addition Operators

template<typename T> quaternion<T> operator + (T const & lhs, quaternion<T> const & rhs);
template<typename T> quaternion<T> operator + (quaternion<T> const & lhs, T const & rhs);
template<typename T> quaternion<T> operator + (::std::complex<T> const & lhs, qua↵
ternion<T> const & rhs);
template<typename T> quaternion<T> operator + (quaternion<T> const & lhs, ::std::com↵
plex<T> const & rhs);
template<typename T> quaternion<T> operator + (quaternion<T> const & lhs, qua↵
ternion<T> const & rhs);

These operators return quaternion<T>(lhs) += rhs.

Binary Subtraction Operators

template<typename T> quaternion<T> operator - (T const & lhs, quaternion<T> const & rhs);
template<typename T> quaternion<T> operator - (quaternion<T> const & lhs, T const & rhs);
template<typename T> quaternion<T> operator - (::std::complex<T> const & lhs, qua↵
ternion<T> const & rhs);
template<typename T> quaternion<T> operator - (quaternion<T> const & lhs, ::std::com↵
plex<T> const & rhs);
template<typename T> quaternion<T> operator - (quaternion<T> const & lhs, qua↵
ternion<T> const & rhs);

These operators return quaternion<T>(lhs) -= rhs.

Binary Multiplication Operators

template<typename T> quaternion<T> operator * (T const & lhs, quaternion<T> const & rhs);
template<typename T> quaternion<T> operator * (quaternion<T> const & lhs, T const & rhs);
template<typename T> quaternion<T> operator * (::std::complex<T> const & lhs, qua↵
ternion<T> const & rhs);
template<typename T> quaternion<T> operator * (quaternion<T> const & lhs, ::std::com↵
plex<T> const & rhs);
template<typename T> quaternion<T> operator * (quaternion<T> const & lhs, qua↵
ternion<T> const & rhs);

These operators return quaternion<T>(lhs) *= rhs.
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Binary Division Operators

template<typename T> quaternion<T> operator / (T const & lhs, quaternion<T> const & rhs);
template<typename T> quaternion<T> operator / (quaternion<T> const & lhs, T const & rhs);
template<typename T> quaternion<T> operator / (::std::complex<T> const & lhs, qua↵
ternion<T> const & rhs);
template<typename T> quaternion<T> operator / (quaternion<T> const & lhs, ::std::com↵
plex<T> const & rhs);
template<typename T> quaternion<T> operator / (quaternion<T> const & lhs, qua↵
ternion<T> const & rhs);

These operators return quaternion<T>(lhs) /= rhs. It is of course still an error to divide by zero...

Equality Operators

template<typename T> bool operator == (T const & lhs, quaternion<T> const & rhs);
template<typename T> bool operator == (quaternion<T> const & lhs, T const & rhs);
template<typename T> bool operator == (::std::complex<T> const & lhs, quaternion<T> const & rhs);
template<typename T> bool operator == (quaternion<T> const & lhs, ::std::complex<T> const & rhs);
template<typename T> bool operator == (quaternion<T> const & lhs, quaternion<T> const & rhs);

These return true if and only if the four components of quaternion<T>(lhs) are equal to their counterparts in qua-
ternion<T>(rhs). As with any floating-type entity, this is essentially meaningless.

Inequality Operators

template<typename T> bool operator != (T const & lhs, quaternion<T> const & rhs);
template<typename T> bool operator != (quaternion<T> const & lhs, T const & rhs);
template<typename T> bool operator != (::std::complex<T> const & lhs, quaternion<T> const & rhs);
template<typename T> bool operator != (quaternion<T> const & lhs, ::std::complex<T> const & rhs);
template<typename T> bool operator != (quaternion<T> const & lhs, quaternion<T> const & rhs);

These return true if and only if quaternion<T>(lhs) == quaternion<T>(rhs) is false. As with any floating-type entity, this
is essentially meaningless.

Stream Extractor

template<typename T, typename charT, class traits>
::std::basic_istream<charT,traits>& operator >> (::std::basic_istream<charT,traits> & is, qua↵
ternion<T> & q);

Extracts a quaternion q of one of the following forms (with a, b, c and d of type T):

a (a), (a,b), (a,b,c), (a,b,c,d) (a,(c)), (a,(c,d)), ((a)), ((a),c), ((a),(c)), ((a),(c,d)),

((a,b)), ((a,b),c), ((a,b),(c)), ((a,b),(c,d))

The input values must be convertible to T. If bad input is encountered, calls is.setstate(ios::failbit) (which may throw
ios::failure (27.4.5.3)).

Returns: is.

The rationale for the list of accepted formats is that either we have a list of up to four reals, or else we have a couple of complex
numbers, and in that case if it formated as a proper complex number, then it should be accepted. Thus potential ambiguities are lifted
(for instance (a,b) is (a,b,0,0) and not (a,0,b,0), i.e. it is parsed as a list of two real numbers and not two complex numbers which
happen to have imaginary parts equal to zero).
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Stream Inserter

template<typename T, typename charT, class traits>
::std::basic_ostream<charT,traits>& operator << (::std::basic_ostream<charT,traits> & os, qua↵
ternion<T> const & q);

Inserts the quaternion q onto the stream os as if it were implemented as follows:

template<typename T, typename charT, class traits>
::std::basic_ostream<charT,traits>& operator << (

::std::basic_ostream<charT,traits> & os,
quaternion<T> const & q)

{
::std::basic_ostringstream<charT,traits> s;

s.flags(os.flags());
s.imbue(os.getloc());
s.precision(os.precision());

s << '(' << q.R_component_1() << ','
<< q.R_component_2() << ','
<< q.R_component_3() << ','
<< q.R_component_4() << ')';

return os << s.str();
}
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Quaternion Value Operations
real and unreal

template<typename T> T real(quaternion<T> const & q);
template<typename T> quaternion<T> unreal(quaternion<T> const & q);

These return q.real() and q.unreal() respectively.

conj

template<typename T> quaternion<T> conj(quaternion<T> const & q);

This returns the conjugate of the quaternion.

sup

template<typename T> T sup(quaternion<T> const & q);

This return the sup norm (the greatest among abs(q.R_component_1())...abs(q.R_component_4())) of the quaternion.

l1

template<typename T> T l1(quaternion<T> const & q);

This return the l1 norm (abs(q.R_component_1())+...+abs(q.R_component_4())) of the quaternion.

abs

template<typename T> T abs(quaternion<T> const & q);

This return the magnitude (Euclidian norm) of the quaternion.

norm

template<typename T> T norm(quaternion<T>const & q);

This return the (Cayley) norm of the quaternion. The term "norm" might be confusing, as most people associate it with the Euclidian
norm (and quadratic functionals). For this version of (the mathematical objects known as) quaternions, the Euclidian norm (also
known as magnitude) is the square root of the Cayley norm.
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Quaternion Creation Functions
template<typename T> quaternion<T> spheric↵
al(T const & rho, T const & theta, T const & phi1, T const & phi2);
template<typename T> quaternion<T> semipolar(T const & rho, T const & al↵
pha, T const & theta1, T const & theta2);
template<typename T> quaternion<T> multi↵
polar(T const & rho1, T const & theta1, T const & rho2, T const & theta2);
template<typename T> quaternion<T> cylindrospherical(T const & t, T const & radius, T const & lon↵
gitude, T const & latitude);
template<typename T> quaternion<T> cylindric↵
al(T const & r, T const & angle, T const & h1, T const & h2);

These build quaternions in a way similar to the way polar builds complex numbers, as there is no strict equivalent to polar coordinates
for quaternions.

spherical is a simple transposition of polar, it takes as inputs a (positive) magnitude and a point on the hypersphere, given by
three angles. The first of these, theta has a natural range of -pi to +pi, and the other two have natural ranges of -pi/2 to +pi/2
(as is the case with the usual spherical coordinates in R3). Due to the many symmetries and periodicities, nothing untoward happens
if the magnitude is negative or the angles are outside their natural ranges. The expected degeneracies (a magnitude of zero ignores
the angles settings...) do happen however.

cylindrical is likewise a simple transposition of the usual cylindrical coordinates in R3, which in turn is another derivative of
planar polar coordinates. The first two inputs are the polar coordinates of the first C component of the quaternion. The third and
fourth inputs are placed into the third and fourth R components of the quaternion, respectively.

multipolar is yet another simple generalization of polar coordinates. This time, both C components of the quaternion are given
in polar coordinates.

cylindrospherical is specific to quaternions. It is often interesting to consider H as the cartesian product of R by R3 (the qua-
ternionic multiplication as then a special form, as given here). This function therefore builds a quaternion from this representation,
with the R3 component given in usual R3 spherical coordinates.

semipolar is another generator which is specific to quaternions. It takes as a first input the magnitude of the quaternion, as a second
input an angle in the range 0 to +pi/2 such that magnitudes of the first two C components of the quaternion are the product of the
first input and the sine and cosine of this angle, respectively, and finally as third and fourth inputs angles in the range -pi/2 to
+pi/2 which represent the arguments of the first and second C components of the quaternion, respectively. As usual, nothing untoward
happens if what should be magnitudes are negative numbers or angles are out of their natural ranges, as symmetries and periodicities
kick in.

In this version of our implementation of quaternions, there is no analogue of the complex value operation arg as the situation is
somewhat more complicated. Unit quaternions are linked both to rotations in R3 and in R4, and the correspondences are not too
complicated, but there is currently a lack of standard (de facto or de jure) matrix library with which the conversions could work.
This should be remedied in a further revision. In the mean time, an example of how this could be done is presented here for R3, and
here for R4 (example test file).
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Quaternion Transcendentals
There is no log or sqrt provided for quaternions in this implementation, and pow is likewise restricted to integral powers of the
exponent. There are several reasons to this: on the one hand, the equivalent of analytic continuation for quaternions ("branch cuts")
remains to be investigated thoroughly (by me, at any rate...), and we wish to avoid the nonsense introduced in the standard by expo-
nentiations of complexes by complexes (which is well defined, but not in the standard...). Talking of nonsense, saying that pow(0,0)
is "implementation defined" is just plain brain-dead...

We do, however provide several transcendentals, chief among which is the exponential. This author claims the complete proof of
the "closed formula" as his own, as well as its independant invention (there are claims to prior invention of the formula, such as one
by Professor Shoemake, and it is possible that the formula had been known a couple of centuries back, but in absence of bibliograph-
ical reference, the matter is pending, awaiting further investigation; on the other hand, the definition and existence of the exponential
on the quaternions, is of course a fact known for a very long time). Basically, any converging power series with real coefficients
which allows for a closed formula in C can be transposed to H. More transcendentals of this type could be added in a further revision
upon request. It should be noted that it is these functions which force the dependency upon the boost/math/special_functions/sinc.hpp
and the boost/math/special_functions/sinhc.hpp headers.

exp

template<typename T> quaternion<T> exp(quaternion<T> const & q);

Computes the exponential of the quaternion.

cos

template<typename T> quaternion<T> cos(quaternion<T> const & q);

Computes the cosine of the quaternion

sin

template<typename T> quaternion<T> sin(quaternion<T> const & q);

Computes the sine of the quaternion.

tan

template<typename T> quaternion<T> tan(quaternion<T> const & q);

Computes the tangent of the quaternion.

cosh

template<typename T> quaternion<T> cosh(quaternion<T> const & q);

Computes the hyperbolic cosine of the quaternion.

sinh

template<typename T> quaternion<T> sinh(quaternion<T> const & q);

Computes the hyperbolic sine of the quaternion.
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tanh

template<typename T> quaternion<T> tanh(quaternion<T> const & q);

Computes the hyperbolic tangent of the quaternion.

pow

template<typename T> quaternion<T> pow(quaternion<T> const & q, int n);

Computes the n-th power of the quaternion q.
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Test Program
The quaternion_test.cpp test program tests quaternions specializations for float, double and long double (sample output, with message
output enabled).

If you define the symbol TEST_VERBOSE, you will get additional output (verbose output); this will only be helpfull if you enable
message output at the same time, of course (by uncommenting the relevant line in the test or by adding --log_level=messages
to your command line,...). In that case, and if you are running interactively, you may in addition define the symbol BOOST_INTER-
ACTIVE_TEST_INPUT_ITERATOR to interactively test the input operator with input of your choice from the standard input (instead
of hard-coding it in the test).
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The Quaternionic Exponential
Please refer to the following PDF's:

• The Quaternionic Exponential (and beyond)

• The Quaternionic Exponential (and beyond) ERRATA & ADDENDA
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History
• 1.5.9 - 13/5/2013: Incorporated into Boost.Math.

• 1.5.8 - 17/12/2005: Converted documentation to Quickbook Format.

• 1.5.7 - 24/02/2003: transitionned to the unit test framework; <boost/config.hpp> now included by the library header (rather than
the test files).

• 1.5.6 - 15/10/2002: Gcc2.95.x and stlport on linux compatibility by Alkis Evlogimenos (alkis@routescience.com).

• 1.5.5 - 27/09/2002: Microsoft VCPP 7 compatibility, by Michael Stevens (michael@acfr.usyd.edu.au); requires the /Za compiler
option.

• 1.5.4 - 19/09/2002: fixed problem with multiple inclusion (in different translation units); attempt at an improved compatibility
with Microsoft compilers, by Michael Stevens (michael@acfr.usyd.edu.au) and Fredrik Blomqvist; other compatibility fixes.

• 1.5.3 - 01/02/2002: bugfix and Gcc 2.95.3 compatibility by Douglas Gregor (gregod@cs.rpi.edu).

• 1.5.2 - 07/07/2001: introduced namespace math.

• 1.5.1 - 07/06/2001: (end of Boost review) now includes <boost/math/special_functions/sinc.hpp> and <boost/math/special_func-
tions/sinhc.hpp> instead of <boost/special_functions.hpp>; corrected bug in sin (Daryle Walker); removed check for self-assignment
(Gary Powel); made converting functions explicit (Gary Powel); added overflow guards for division operators and abs (Peter
Schmitteckert); added sup and l1; used Vesa Karvonen's CPP metaprograming technique to simplify code.

• 1.5.0 - 26/03/2001: boostification, inlining of all operators except input, output and pow, fixed exception safety of some members
(template version) and output operator, added spherical, semipolar, multipolar, cylindrospherical and cylindrical.

• 1.4.0 - 09/01/2001: added tan and tanh.

• 1.3.1 - 08/01/2001: cosmetic fixes.

• 1.3.0 - 12/07/2000: pow now uses Maarten Hilferink's (mhilferink@tip.nl) algorithm.

• 1.2.0 - 25/05/2000: fixed the division operators and output; changed many signatures.

• 1.1.0 - 23/05/2000: changed sinc into sinc_pi; added sin, cos, sinh, cosh.

• 1.0.0 - 10/08/1999: first public version.
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To Do
• Improve testing.

• Rewrite input operatore using Spirit (creates a dependency).

• Put in place an Expression Template mechanism (perhaps borrowing from uBlas).

• Use uBlas for the link with rotations (and move from the example implementation to an efficient one).
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Octonions
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Overview
Octonions, like quaternions, are a relative of complex numbers.

Octonions see some use in theoretical physics.

In practical terms, an octonion is simply an octuple of real numbers (α,β,γ,δ,ε,ζ,η,θ), which we can write in the form o = α + βi
+ γj + δk + εe' + ζi' + ηj' + θk', where i, j and k are the same objects as for quaternions, and e', i', j' and k' are
distinct objects which play essentially the same kind of role as i (or j or k).

Addition and a multiplication is defined on the set of octonions, which generalize their quaternionic counterparts. The main novelty
this time is that the multiplication is not only not commutative, is now not even associative (i.e. there are octonions x, y and z
such that x(yz) ≠ (xy)z). A way of remembering things is by using the following multiplication table:

Octonions (and their kin) are described in far more details in this other document (with errata and addenda).

Some traditional constructs, such as the exponential, carry over without too much change into the realms of octonions, but other,
such as taking a square root, do not (the fact that the exponential has a closed form is a result of the author, but the fact that the ex-
ponential exists at all for octonions is known since quite a long time ago).
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Header File
The interface and implementation are both supplied by the header file octonion.hpp.
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Synopsis
namespace boost{ namespace math{

template<typename T> class octonion;
template<> class octonion<float>;
template<> class octonion<double>;
template<> class octonion<long double>;

// operators

template<typename T> octonion<T> operator + (T const & lhs, octonion<T> const & rhs);
template<typename T> octonion<T> operator + (octonion<T> const & lhs, T const & rhs);
template<typename T> octonion<T> operator + (::std::complex<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> octonion<T> operator + (octonion<T> const & lhs, ::std::com↵
plex<T> const & rhs);
template<typename T> octonion<T> operator + (::boost::math::quaternion<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> octonion<T> operator + (octonion<T> const & lhs, ::boost::math::qua↵
ternion<T> const & rhs);
template<typename T> octonion<T> operator + (octonion<T> const & lhs, octonion<T> const & rhs);

template<typename T> octonion<T> operator - (T const & lhs, octonion<T> const & rhs);
template<typename T> octonion<T> operator - (octonion<T> const & lhs, T const & rhs);
template<typename T> octonion<T> operator - (::std::complex<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> octonion<T> operator - (octonion<T> const & lhs, ::std::com↵
plex<T> const & rhs);
template<typename T> octonion<T> operator - (::boost::math::quaternion<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> octonion<T> operator - (octonion<T> const & lhs, ::boost::math::qua↵
ternion<T> const & rhs);
template<typename T> octonion<T> operator - (octonion<T> const & lhs, octonion<T> const & rhs);

template<typename T> octonion<T> operator * (T const & lhs, octonion<T> const & rhs);
template<typename T> octonion<T> operator * (octonion<T> const & lhs, T const & rhs);
template<typename T> octonion<T> operator * (::std::complex<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> octonion<T> operator * (octonion<T> const & lhs, ::std::com↵
plex<T> const & rhs);
template<typename T> octonion<T> operator * (::boost::math::quaternion<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> octonion<T> operator * (octonion<T> const & lhs, ::boost::math::qua↵
ternion<T> const & rhs);
template<typename T> octonion<T> operator * (octonion<T> const & lhs, octonion<T> const & rhs);

template<typename T> octonion<T> operator / (T const & lhs, octonion<T> const & rhs);
template<typename T> octonion<T> operator / (octonion<T> const & lhs, T const & rhs);
template<typename T> octonion<T> operator / (::std::complex<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> octonion<T> operator / (octonion<T> const & lhs, ::std::com↵
plex<T> const & rhs);
template<typename T> octonion<T> operator / (::boost::math::quaternion<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> octonion<T> operator / (octonion<T> const & lhs, ::boost::math::qua↵
ternion<T> const & rhs);
template<typename T> octonion<T> operator / (octonion<T> const & lhs, octonion<T> const & rhs);

template<typename T> octonion<T> operator + (octonion<T> const & o);
template<typename T> octonion<T> operator - (octonion<T> const & o);
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template<typename T> bool operator == (T const & lhs, octonion<T> const & rhs);
template<typename T> bool operator == (octonion<T> const & lhs, T const & rhs);
template<typename T> bool operator == (::std::complex<T> const & lhs, octonion<T> const & rhs);
template<typename T> bool operator == (octonion<T> const & lhs, ::std::complex<T> const & rhs);
template<typename T> bool operator == (::boost::math::quaternion<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> bool operator == (octonion<T> const & lhs, ::boost::math::qua↵
ternion<T> const & rhs);
template<typename T> bool operator == (octonion<T> const & lhs, octonion<T> const & rhs);

template<typename T> bool operator != (T const & lhs, octonion<T> const & rhs);
template<typename T> bool operator != (octonion<T> const & lhs, T const & rhs);
template<typename T> bool operator != (::std::complex<T> const & lhs, octonion<T> const & rhs);
template<typename T> bool operator != (octonion<T> const & lhs, ::std::complex<T> const & rhs);
template<typename T> bool operator != (::boost::math::quaternion<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> bool operator != (octonion<T> const & lhs, ::boost::math::qua↵
ternion<T> const & rhs);
template<typename T> bool operator != (octonion<T> const & lhs, octonion<T> const & rhs);

template<typename T, typename charT, class traits>
::std::basic_istream<charT,traits> & operator >> (::std::basic_istream<charT,traits> & is, octo↵
nion<T> & o);

template<typename T, typename charT, class traits>
::std::basic_ostream<charT,traits> & operator << (::std::basic_ostream<charT,traits> & os, octo↵
nion<T> const & o);

// values

template<typename T> T real(octonion<T> const & o);
template<typename T> octonion<T> unreal(octonion<T> const & o);

template<typename T> T sup(octonion<T> const & o);
template<typename T> T l1(octonion<T>const & o);
template<typename T> T abs(octonion<T> const & o);
template<typename T> T norm(octonion<T>const & o);
template<typename T> octonion<T> conj(octonion<T> const & o);

template<typename T> octonion<T> spheric↵
al(T const & rho, T const & theta, T const & phi1, T const & phi2, T const & phi3, T const & phi4, T const & phi5, T const & phi6);
template<typename T> octonion<T> multi↵
polar(Tconst&rho1,Tconst&theta1,Tconst&rho2,Tconst&theta2,Tconst&rho3,Tconst&theta3,Tconst&rho4,Tconst&theta4);
template<typename T> octonion<T> cylindric↵
al(T const & r, T const & angle, T const & h1, T const & h2, T const & h3, T const & h4, T const & h5, T const & h6);

// transcendentals

template<typename T> octonion<T> exp(octonion<T> const & o);
template<typename T> octonion<T> cos(octonion<T> const & o);
template<typename T> octonion<T> sin(octonion<T> const & o);
template<typename T> octonion<T> tan(octonion<T> const & o);
template<typename T> octonion<T> cosh(octonion<T> const & o);
template<typename T> octonion<T> sinh(octonion<T> const & o);
template<typename T> octonion<T> tanh(octonion<T> const & o);

template<typename T> octonion<T> pow(octonion<T> const & o, int n);

} } // namespaces
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Template Class octonion
namespace boost{ namespace math {

template<typename T>
class octonion
{
public:

typedef T value_type;

explicit octonion(T const & requested_a = T(), T const & requested_b = T(), T const & reques↵
ted_c = T(), T const & requested_d = T(), T const & requested_e = T(), T const & reques↵
ted_f = T(), T const & requested_g = T(), T const & requested_h = T());

explicit octonion(::std::complex<T> const & z0, ::std::complex<T> const & z1 = ::std::com↵
plex<T>(), ::std::complex<T> const & z2 = ::std::complex<T>(), ::std::com↵
plex<T> const & z3 = ::std::complex<T>());

explicit octonion(::boost::math::quaternion<T> const & q0, ::boost::math::qua↵
ternion<T> const & q1 = ::boost::math::quaternion<T>());

template<typename X>
explicit octonion(octonion<X> const & a_recopier);

T real() const;
octonion<T> unreal() const;

T R_component_1() const;
T R_component_2() const;
T R_component_3() const;
T R_component_4() const;
T R_component_5() const;
T R_component_6() const;
T R_component_7() const;
T R_component_8() const;

::std::complex<T> C_component_1() const;
::std::complex<T> C_component_2() const;
::std::complex<T> C_component_3() const;
::std::complex<T> C_component_4() const;

::boost::math::quaternion<T> H_component_1() const;
::boost::math::quaternion<T> H_component_2() const;

octonion<T> & operator = (octonion<T> const & a_affecter);
template<typename X>
octonion<T> & operator = (octonion<X> const & a_affecter);
octonion<T> & operator = (T const & a_affecter);
octonion<T> & operator = (::std::complex<T> const & a_affecter);
octonion<T> & operator = (::boost::math::quaternion<T> const & a_affecter);

octonion<T> & operator += (T const & rhs);
octonion<T> & operator += (::std::complex<T> const & rhs);
octonion<T> & operator += (::boost::math::quaternion<T> const & rhs);
template<typename X>
octonion<T> & operator += (octonion<X> const & rhs);

octonion<T> & operator -= (T const & rhs);
octonion<T> & operator -= (::std::complex<T> const & rhs);
octonion<T> & operator -= (::boost::math::quaternion<T> const & rhs);
template<typename X>
octonion<T> & operator -= (octonion<X> const & rhs);

octonion<T> & operator *= (T const & rhs);
octonion<T> & operator *= (::std::complex<T> const & rhs);
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octonion<T> & operator *= (::boost::math::quaternion<T> const & rhs);
template<typename X>
octonion<T> & operator *= (octonion<X> const & rhs);

octonion<T> & operator /= (T const & rhs);
octonion<T> & operator /= (::std::complex<T> const & rhs);
octonion<T> & operator /= (::boost::math::quaternion<T> const & rhs);
template<typename X>
octonion<T> & operator /= (octonion<X> const & rhs);

};

} } // namespaces
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Octonion Specializations
namespace boost{ namespace math{

template<>
class octonion<float>
{
public:

typedef float value_type;

explicit octonion(float const & requested_a = 0.0f, float const & reques↵
ted_b = 0.0f, float const & requested_c = 0.0f, float const & requested_d = 0.0f, float const & re↵
quested_e = 0.0f, float const & requested_f = 0.0f, float const & reques↵
ted_g = 0.0f, float const & requested_h = 0.0f);

explicit octonion(::std::complex<float> const & z0, ::std::com↵
plex<float> const & z1 = ::std::complex<float>(), ::std::complex<float> const & z2 = ::std::com↵
plex<float>(), ::std::complex<float> const & z3 = ::std::complex<float>());

explicit octonion(::boost::math::quaternion<float> const & q0, ::boost::math::qua↵
ternion<float> const & q1 = ::boost::math::quaternion<float>());

explicit octonion(octonion<double> const & a_recopier);
explicit octonion(octonion<long double> const & a_recopier);

float real() const;
octonion<float> unreal() const;

float R_component_1() const;
float R_component_2() const;
float R_component_3() const;
float R_component_4() const;
float R_component_5() const;
float R_component_6() const;
float R_component_7() const;
float R_component_8() const;

::std::complex<float> C_component_1() const;
::std::complex<float> C_component_2() const;
::std::complex<float> C_component_3() const;
::std::complex<float> C_component_4() const;

::boost::math::quaternion<float> H_component_1() const;
::boost::math::quaternion<float> H_component_2() const;

octonion<float> & operator = (octonion<float> const & a_affecter);
template<typename X>
octonion<float> & operator = (octonion<X> const & a_affecter);
octonion<float> & operator = (float const & a_affecter);
octonion<float> & operator = (::std::complex<float> const & a_affecter);
octonion<float> & operator = (::boost::math::quaternion<float> const & a_affecter);

octonion<float> & operator += (float const & rhs);
octonion<float> & operator += (::std::complex<float> const & rhs);
octonion<float> & operator += (::boost::math::quaternion<float> const & rhs);
template<typename X>
octonion<float> & operator += (octonion<X> const & rhs);

octonion<float> & operator -= (float const & rhs);
octonion<float> & operator -= (::std::complex<float> const & rhs);
octonion<float> & operator -= (::boost::math::quaternion<float> const & rhs);
template<typename X>
octonion<float> & operator -= (octonion<X> const & rhs);

octonion<float> & operator *= (float const & rhs);
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octonion<float> & operator *= (::std::complex<float> const & rhs);
octonion<float> & operator *= (::boost::math::quaternion<float> const & rhs);
template<typename X>
octonion<float> & operator *= (octonion<X> const & rhs);

octonion<float> & operator /= (float const & rhs);
octonion<float> & operator /= (::std::complex<float> const & rhs);
octonion<float> & operator /= (::boost::math::quaternion<float> const & rhs);
template<typename X>
octonion<float> & operator /= (octonion<X> const & rhs);

};

template<>
class octonion<double>
{
public:

typedef double value_type;

explicit octonion(double const & requested_a = 0.0, double const & reques↵
ted_b = 0.0, double const & requested_c = 0.0, double const & requested_d = 0.0, double const & re↵
quested_e = 0.0, double const & requested_f = 0.0, double const & reques↵
ted_g = 0.0, double const & requested_h = 0.0);

explicit octonion(::std::complex<double> const & z0, ::std::com↵
plex<double> const & z1 = ::std::complex<double>(), ::std::complex<double> const & z2 = ::std::com↵
plex<double>(), ::std::complex<double> const & z3 = ::std::complex<double>());

explicit octonion(::boost::math::quaternion<double> const & q0, ::boost::math::qua↵
ternion<double> const & q1 = ::boost::math::quaternion<double>());

explicit octonion(octonion<float> const & a_recopier);
explicit octonion(octonion<long double> const & a_recopier);

double real() const;
octonion<double> unreal() const;

double R_component_1() const;
double R_component_2() const;
double R_component_3() const;
double R_component_4() const;
double R_component_5() const;
double R_component_6() const;
double R_component_7() const;
double R_component_8() const;

::std::complex<double> C_component_1() const;
::std::complex<double> C_component_2() const;
::std::complex<double> C_component_3() const;
::std::complex<double> C_component_4() const;

::boost::math::quaternion<double> H_component_1() const;
::boost::math::quaternion<double> H_component_2() const;

octonion<double> & operator = (octonion<double> const & a_affecter);
template<typename X>
octonion<double> & operator = (octonion<X> const & a_affecter);
octonion<double> & operator = (double const & a_affecter);
octonion<double> & operator = (::std::complex<double> const & a_affecter);
octonion<double> & operator = (::boost::math::quaternion<double> const & a_affecter);

octonion<double> & operator += (double const & rhs);
octonion<double> & operator += (::std::complex<double> const & rhs);
octonion<double> & operator += (::boost::math::quaternion<double> const & rhs);
template<typename X>
octonion<double> & operator += (octonion<X> const & rhs);
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octonion<double> & operator -= (double const & rhs);
octonion<double> & operator -= (::std::complex<double> const & rhs);
octonion<double> & operator -= (::boost::math::quaternion<double> const & rhs);
template<typename X>
octonion<double> & operator -= (octonion<X> const & rhs);

octonion<double> & operator *= (double const & rhs);
octonion<double> & operator *= (::std::complex<double> const & rhs);
octonion<double> & operator *= (::boost::math::quaternion<double> const & rhs);
template<typename X>
octonion<double> & operator *= (octonion<X> const & rhs);

octonion<double> & operator /= (double const & rhs);
octonion<double> & operator /= (::std::complex<double> const & rhs);
octonion<double> & operator /= (::boost::math::quaternion<double> const & rhs);
template<typename X>
octonion<double> & operator /= (octonion<X> const & rhs);

};

template<>
class octonion<long double>
{
public:

typedef long double value_type;

explicit octonion(long double const & requested_a = 0.0L, long double const & reques↵
ted_b = 0.0L, long double const & requested_c = 0.0L, long double const & reques↵
ted_d = 0.0L, long double const & requested_e = 0.0L, long double const & reques↵
ted_f = 0.0L, long double const & requested_g = 0.0L, long double const & requested_h = 0.0L);

explicit octonion( ::std::complex<long double> const & z0, ::std::com↵
plex<long double> const & z1 = ::std::complex<long double>(), ::std::com↵
plex<long double> const & z2 = ::std::complex<long double>(), ::std::com↵
plex<long double> const & z3 = ::std::complex<long double>());

explicit octonion( ::boost::math::quaternion<long double> const & q0, ::boost::math::qua↵
ternion<long double> const & z1 = ::boost::math::quaternion<long double>());

explicit octonion(octonion<float> const & a_recopier);
explicit octonion(octonion<double> const & a_recopier);

long double real() const;
octonion<long double> unreal() const;

long double R_component_1() const;
long double R_component_2() const;
long double R_component_3() const;
long double R_component_4() const;
long double R_component_5() const;
long double R_component_6() const;
long double R_component_7() const;
long double R_component_8() const;

::std::complex<long double> C_component_1() const;
::std::complex<long double> C_component_2() const;
::std::complex<long double> C_component_3() const;
::std::complex<long double> C_component_4() const;

::boost::math::quaternion<long double> H_component_1() const;
::boost::math::quaternion<long double> H_component_2() const;

octonion<long double> & operator = (octonion<long double> const & a_affecter);
template<typename X>
octonion<long double> & operator = (octonion<X> const & a_affecter);
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octonion<long double> & operator = (long double const & a_affecter);
octonion<long double> & operator = (::std::complex<long double> const & a_affecter);
octonion<long double> & operator = (::boost::math::quaternion<long double> const & a_affecter);

octonion<long double> & operator += (long double const & rhs);
octonion<long double> & operator += (::std::complex<long double> const & rhs);
octonion<long double> & operator += (::boost::math::quaternion<long double> const & rhs);
template<typename X>
octonion<long double> & operator += (octonion<X> const & rhs);

octonion<long double> & operator -= (long double const & rhs);
octonion<long double> & operator -= (::std::complex<long double> const & rhs);
octonion<long double> & operator -= (::boost::math::quaternion<long double> const & rhs);
template<typename X>
octonion<long double> & operator -= (octonion<X> const & rhs);

octonion<long double> & operator *= (long double const & rhs);
octonion<long double> & operator *= (::std::complex<long double> const & rhs);
octonion<long double> & operator *= (::boost::math::quaternion<long double> const & rhs);
template<typename X>
octonion<long double> & operator *= (octonion<X> const & rhs);

octonion<long double> & operator /= (long double const & rhs);
octonion<long double> & operator /= (::std::complex<long double> const & rhs);
octonion<long double> & operator /= (::boost::math::quaternion<long double> const & rhs);
template<typename X>
octonion<long double> & operator /= (octonion<X> const & rhs);

};

} } // namespaces
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Octonion Member Typedefs
value_type

Template version:

typedef T value_type;

Float specialization version:

typedef float value_type;

Double specialization version:

typedef double value_type;

Long double specialization version:

typedef long double value_type;

These provide easy acces to the type the template is built upon.
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Octonion Member Functions
Constructors

Template version:

explicit octonion(T const & requested_a = T(), T const & requested_b = T(), T const & reques↵
ted_c = T(), T const & requested_d = T(), T const & requested_e = T(), T const & reques↵
ted_f = T(), T const & requested_g = T(), T const & requested_h = T());
explicit octonion(::std::complex<T> const & z0, ::std::complex<T> const & z1 = ::std::com↵
plex<T>(), ::std::complex<T> const & z2 = ::std::complex<T>(), ::std::com↵
plex<T> const & z3 = ::std::complex<T>());
explicit octonion(::boost::math::quaternion<T> const & q0, ::boost::math::qua↵
ternion<T> const & q1 = ::boost::math::quaternion<T>());
template<typename X>
explicit octonion(octonion<X> const & a_recopier);

Float specialization version:

explicit octonion(float const & requested_a = 0.0f, float const & reques↵
ted_b = 0.0f, float const & requested_c = 0.0f, float const & requested_d = 0.0f, float const & re↵
quested_e = 0.0f, float const & requested_f = 0.0f, float const & reques↵
ted_g = 0.0f, float const & requested_h = 0.0f);
explicit octonion(::std::complex<float> const & z0, ::std::complex<float> const & z1 = ::std::com↵
plex<float>(), ::std::complex<float> const & z2 = ::std::complex<float>(), ::std::com↵
plex<float> const & z3 = ::std::complex<float>());
explicit octonion(::boost::math::quaternion<float> const & q0, ::boost::math::qua↵
ternion<float> const & q1 = ::boost::math::quaternion<float>());
explicit octonion(octonion<double> const & a_recopier);
explicit octonion(octonion<long double> const & a_recopier);

Double specialization version:

explicit octonion(double const & requested_a = 0.0, double const & reques↵
ted_b = 0.0, double const & requested_c = 0.0, double const & requested_d = 0.0, double const & re↵
quested_e = 0.0, double const & requested_f = 0.0, double const & reques↵
ted_g = 0.0, double const & requested_h = 0.0);
explicit octonion(::std::complex<double> const & z0, ::std::com↵
plex<double> const & z1 = ::std::complex<double>(), ::std::complex<double> const & z2 = ::std::com↵
plex<double>(), ::std::complex<double> const & z3 = ::std::complex<double>());
explicit octonion(::boost::math::quaternion<double> const & q0, ::boost::math::qua↵
ternion<double> const & q1 = ::boost::math::quaternion<double>());
explicit octonion(octonion<float> const & a_recopier);
explicit octonion(octonion<long double> const & a_recopier);

Long double specialization version:
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explicit octonion(long double const & requested_a = 0.0L, long double const & reques↵
ted_b = 0.0L, long double const & requested_c = 0.0L, long double const & reques↵
ted_d = 0.0L, long double const & requested_e = 0.0L, long double const & reques↵
ted_f = 0.0L, long double const & requested_g = 0.0L, long double const & requested_h = 0.0L);
explicit octonion( ::std::complex<long double> const & z0, ::std::com↵
plex<long double> const & z1 = ::std::complex<long double>(), ::std::com↵
plex<long double> const & z2 = ::std::complex<long double>(), ::std::com↵
plex<long double> const & z3 = ::std::complex<long double>());
explicit octonion(::boost::math::quaternion<long double> const & q0, ::boost::math::qua↵
ternion<long double> const & q1 = ::boost::math::quaternion<long double>());
explicit octonion(octonion<float> const & a_recopier);
explicit octonion(octonion<double> const & a_recopier);

A default constructor is provided for each form, which initializes each component to the default values for their type (i.e. zero for
floating numbers). This constructor can also accept one to eight base type arguments. A constructor is also provided to build octonions
from one to four complex numbers sharing the same base type, and another taking one or two quaternions sharing the same base
type. The unspecialized template also sports a templarized copy constructor, while the specialized forms have copy constructors
from the other two specializations, which are explicit when a risk of precision loss exists. For the unspecialized form, the base type's
constructors must not throw.

Destructors and untemplated copy constructors (from the same type) are provided by the compiler. Converting copy constructors
make use of a templated helper function in a "detail" subnamespace.

Other member functions

Real and Unreal Parts

T real() const;
octonion<T> unreal() const;

Like complex number, octonions do have a meaningful notion of "real part", but unlike them there is no meaningful notion of
"imaginary part". Instead there is an "unreal part" which itself is a octonion, and usually nothing simpler (as opposed to the complex
number case). These are returned by the first two functions.

Individual Real Components

T R_component_1() const;
T R_component_2() const;
T R_component_3() const;
T R_component_4() const;
T R_component_5() const;
T R_component_6() const;
T R_component_7() const;
T R_component_8() const;

A octonion having eight real components, these are returned by these eight functions. Hence real and R_component_1 return the
same value.

Individual Complex Components

::std::complex<T> C_component_1() const;
::std::complex<T> C_component_2() const;
::std::complex<T> C_component_3() const;
::std::complex<T> C_component_4() const;

A octonion likewise has four complex components. Actually, octonions are indeed a (left) vector field over the complexes, but beware,
as for any octonion o = α + βi + γj + δk + εe' + ζi' + ηj' + θk' we also have o = (α + βi) + (γ + δi)j + (ε
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+ ζi)e' + (η - θi)j' (note the minus sign in the last factor). What the C_component_n functions return, however, are the
complexes which could be used to build the octonion using the constructor, and not the components of the octonion on the basis
(1, j, e', j').

Individual Quaternion Components

::boost::math::quaternion<T> H_component_1() const;
::boost::math::quaternion<T> H_component_2() const;

Likewise, for any octonion o = α + βi + γj + δk + εe' + ζi' + ηj' + θk' we also have o = (α + βi + γj + δk) +
(ε + ζi + ηj - θj)e', though there is no meaningful vector-space-like structure based on the quaternions. What the H_compon-
ent_n functions return are the quaternions which could be used to build the octonion using the constructor.

Octonion Member Operators

Assignment Operators

octonion<T> & operator = (octonion<T> const & a_affecter);
template<typename X>
octonion<T> & operator = (octonion<X> const & a_affecter);
octonion<T> & operator = (T const & a_affecter);
octonion<T> & operator = (::std::complex<T> const & a_affecter);
octonion<T> & operator = (::boost::math::quaternion<T> const & a_affecter);

These perform the expected assignment, with type modification if necessary (for instance, assigning from a base type will set the
real part to that value, and all other components to zero). For the unspecialized form, the base type's assignment operators must not
throw.

Other Member Operators

octonion<T> & operator += (T const & rhs)
octonion<T> & operator += (::std::complex<T> const & rhs);
octonion<T> & operator += (::boost::math::quaternion<T> const & rhs);
template<typename X>
octonion<T> & operator += (octonion<X> const & rhs);

These perform the mathematical operation (*this)+rhs and store the result in *this. The unspecialized form has exception
guards, which the specialized forms do not, so as to insure exception safety. For the unspecialized form, the base type's assignment
operators must not throw.

octonion<T> & operator -= (T const & rhs)
octonion<T> & operator -= (::std::complex<T> const & rhs);
octonion<T> & operator -= (::boost::math::quaternion<T> const & rhs);
template<typename X>
octonion<T> & operator -= (octonion<X> const & rhs);

These perform the mathematical operation (*this)-rhs and store the result in *this. The unspecialized form has exception
guards, which the specialized forms do not, so as to insure exception safety. For the unspecialized form, the base type's assignment
operators must not throw.

octonion<T> & operator *= (T const & rhs)
octonion<T> & operator *= (::std::complex<T> const & rhs);
octonion<T> & operator *= (::boost::math::quaternion<T> const & rhs);
template<typename X>
octonion<T> & operator *= (octonion<X> const & rhs);
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These perform the mathematical operation (*this)*rhs in this order (order is important as multiplication is not commutative for
octonions) and store the result in *this. The unspecialized form has exception guards, which the specialized forms do not, so as to
insure exception safety. For the unspecialized form, the base type's assignment operators must not throw. Also, for clarity's sake,
you should always group the factors in a multiplication by groups of two, as the multiplication is not even associative on the octonions
(though there are of course cases where this does not matter, it usually does).

octonion<T> & operator /= (T const & rhs)
octonion<T> & operator /= (::std::complex<T> const & rhs);
octonion<T> & operator /= (::boost::math::quaternion<T> const & rhs);
template<typename X>
octonion<T> & operator /= (octonion<X> const & rhs);

These perform the mathematical operation (*this)*inverse_of(rhs) in this order (order is important as multiplication is not
commutative for octonions) and store the result in *this. The unspecialized form has exception guards, which the specialized forms
do not, so as to insure exception safety. For the unspecialized form, the base type's assignment operators must not throw. As for the
multiplication, remember to group any two factors using parenthesis.
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Octonion Non-Member Operators
Unary Plus and Minus Operators

template<typename T> octonion<T> operator + (octonion<T> const & o);

This unary operator simply returns o.

template<typename T> octonion<T> operator - (octonion<T> const & o);

This unary operator returns the opposite of o.

Binary Addition Operators

template<typename T> octonion<T> operator + (T const & lhs, octonion<T> const & rhs);
template<typename T> octonion<T> operator + (octonion<T> const & lhs, T const & rhs);
template<typename T> octonion<T> operator + (::std::complex<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> octonion<T> operator + (octonion<T> const & lhs, ::std::com↵
plex<T> const & rhs);
template<typename T> octonion<T> operator + (::boost::math::quaternion<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> octonion<T> operator + (octonion<T> const & lhs, ::boost::math::qua↵
ternion<T> const & rhs);
template<typename T> octonion<T> operator + (octonion<T> const & lhs, octonion<T> const & rhs);

These operators return octonion<T>(lhs) += rhs.

Binary Subtraction Operators

template<typename T> octonion<T> operator - (T const & lhs, octonion<T> const & rhs);
template<typename T> octonion<T> operator - (octonion<T> const & lhs, T const & rhs);
template<typename T> octonion<T> operator - (::std::complex<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> octonion<T> operator - (octonion<T> const & lhs, ::std::com↵
plex<T> const & rhs);
template<typename T> octonion<T> operator - (::boost::math::quaternion<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> octonion<T> operator - (octonion<T> const & lhs, ::boost::math::qua↵
ternion<T> const & rhs);
template<typename T> octonion<T> operator - (octonion<T> const & lhs, octonion<T> const & rhs);

These operators return octonion<T>(lhs) -= rhs.
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Binary Multiplication Operators

template<typename T> octonion<T> operator * (T const & lhs, octonion<T> const & rhs);
template<typename T> octonion<T> operator * (octonion<T> const & lhs, T const & rhs);
template<typename T> octonion<T> operator * (::std::complex<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> octonion<T> operator * (octonion<T> const & lhs, ::std::com↵
plex<T> const & rhs);
template<typename T> octonion<T> operator * (::boost::math::quaternion<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> octonion<T> operator * (octonion<T> const & lhs, ::boost::math::qua↵
ternion<T> const & rhs);
template<typename T> octonion<T> operator * (octonion<T> const & lhs, octonion<T> const & rhs);

These operators return octonion<T>(lhs) *= rhs.

Binary Division Operators

template<typename T> octonion<T> operator / (T const & lhs, octonion<T> const & rhs);
template<typename T> octonion<T> operator / (octonion<T> const & lhs, T const & rhs);
template<typename T> octonion<T> operator / (::std::complex<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> octonion<T> operator / (octonion<T> const & lhs, ::std::com↵
plex<T> const & rhs);
template<typename T> octonion<T> operator / (::boost::math::quaternion<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> octonion<T> operator / (octonion<T> const & lhs, ::boost::math::qua↵
ternion<T> const & rhs);
template<typename T> octonion<T> operator / (octonion<T> const & lhs, octonion<T> const & rhs);

These operators return octonion<T>(lhs) /= rhs. It is of course still an error to divide by zero...

Binary Equality Operators

template<typename T> bool operator == (T const & lhs, octonion<T> const & rhs);
template<typename T> bool operator == (octonion<T> const & lhs, T const & rhs);
template<typename T> bool operator == (::std::complex<T> const & lhs, octonion<T> const & rhs);
template<typename T> bool operator == (octonion<T> const & lhs, ::std::complex<T> const & rhs);
template<typename T> bool operator == (::boost::math::quaternion<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> bool operator == (octonion<T> const & lhs, ::boost::math::qua↵
ternion<T> const & rhs);
template<typename T> bool operator == (octonion<T> const & lhs, octonion<T> const & rhs);

These return true if and only if the four components of octonion<T>(lhs) are equal to their counterparts in octonion<T>(rhs).
As with any floating-type entity, this is essentially meaningless.
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Binary Inequality Operators

template<typename T> bool operator != (T const & lhs, octonion<T> const & rhs);
template<typename T> bool operator != (octonion<T> const & lhs, T const & rhs);
template<typename T> bool operator != (::std::complex<T> const & lhs, octonion<T> const & rhs);
template<typename T> bool operator != (octonion<T> const & lhs, ::std::complex<T> const & rhs);
template<typename T> bool operator != (::boost::math::quaternion<T> const & lhs, octo↵
nion<T> const & rhs);
template<typename T> bool operator != (octonion<T> const & lhs, ::boost::math::qua↵
ternion<T> const & rhs);
template<typename T> bool operator != (octonion<T> const & lhs, octonion<T> const & rhs);

These return true if and only if octonion<T>(lhs) == octonion<T>(rhs) is false. As with any floating-type entity, this is es-
sentially meaningless.

Stream Extractor

template<typename T, typename charT, class traits>
::std::basic_istream<charT,traits> & operator >> (::std::basic_istream<charT,traits> & is, octo↵
nion<T> & o);

Extracts an octonion o. We accept any format which seems reasonable. However, since this leads to a great many ambiguities, decisions
were made to lift these. In case of doubt, stick to lists of reals.

The input values must be convertible to T. If bad input is encountered, calls is.setstate(ios::failbit) (which may throw
ios::failure (27.4.5.3)).

Returns is.

Stream Inserter

template<typename T, typename charT, class traits>
::std::basic_ostream<charT,traits> & operator << (::std::basic_ostream<charT,traits> & os, octo↵
nion<T> const & o);

Inserts the octonion o onto the stream os as if it were implemented as follows:

template<typename T, typename charT, class traits>
::std::basic_ostream<charT,traits> & operator << ( ::std::basic_ostream<charT,traits> & os,
octonion<T> const & o)
{

::std::basic_ostringstream<charT,traits> s;

s.flags(os.flags());
s.imbue(os.getloc());
s.precision(os.precision());

s << '(' << o.R_component_1() << ','
<< o.R_component_2() << ','
<< o.R_component_3() << ','
<< o.R_component_4() << ','
<< o.R_component_5() << ','
<< o.R_component_6() << ','
<< o.R_component_7() << ','
<< o.R_component_8() << ')';

return os << s.str();
}
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Octonion Value Operations
Real and Unreal

template<typename T> T real(octonion<T> const & o);
template<typename T> octonion<T> unreal(octonion<T> const & o);

These return o.real() and o.unreal() respectively.

conj

template<typename T> octonion<T> conj(octonion<T> const & o);

This returns the conjugate of the octonion.

sup

template<typename T> T sup(octonion<T> const & o);

This return the sup norm (the greatest among abs(o.R_component_1())...abs(o.R_component_8())) of the octonion.

l1

template<typename T> T l1(octonion<T> const & o);

This return the l1 norm (abs(o.R_component_1())+...+abs(o.R_component_8())) of the octonion.

abs

template<typename T> T abs(octonion<T> const & o);

This return the magnitude (Euclidian norm) of the octonion.

norm

template<typename T> T norm(octonion<T>const & o);

This return the (Cayley) norm of the octonion. The term "norm" might be confusing, as most people associate it with the Euclidian
norm (and quadratic functionals). For this version of (the mathematical objects known as) octonions, the Euclidian norm (also known
as magnitude) is the square root of the Cayley norm.
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Octonion Creation Functions
template<typename T> octonion<T> spheric↵
al(T const & rho, T const & theta, T const & phi1, T const & phi2, T const & phi3, T const & phi4, T const & phi5, T const & phi6);
template<typename T> octonion<T> multi↵
polar(Tconst&rho1,Tconst&theta1,Tconst&rho2,Tconst&theta2,Tconst&rho3,Tconst&theta3,Tconst&rho4,Tconst&theta4);
template<typename T> octonion<T> cylindric↵
al(T const & r, T const & angle, T const & h1, T const & h2, T const & h3, T const & h4, T const & h5, T const & h6);

These build octonions in a way similar to the way polar builds complex numbers, as there is no strict equivalent to polar coordinates
for octonions.

spherical is a simple transposition of polar, it takes as inputs a (positive) magnitude and a point on the hypersphere, given by
three angles. The first of these, theta has a natural range of -pi to +pi, and the other two have natural ranges of -pi/2 to +pi/2 (as is
the case with the usual spherical coordinates in R3). Due to the many symmetries and periodicities, nothing untoward happens if the
magnitude is negative or the angles are outside their natural ranges. The expected degeneracies (a magnitude of zero ignores the
angles settings...) do happen however.

cylindrical is likewise a simple transposition of the usual cylindrical coordinates in R3, which in turn is another derivative of
planar polar coordinates. The first two inputs are the polar coordinates of the first C component of the octonion. The third and fourth
inputs are placed into the third and fourth R components of the octonion, respectively.

multipolar is yet another simple generalization of polar coordinates. This time, both C components of the octonion are given in
polar coordinates.

In this version of our implementation of octonions, there is no analogue of the complex value operation arg as the situation is
somewhat more complicated.
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Octonions Transcendentals
There is no log or sqrt provided for octonions in this implementation, and pow is likewise restricted to integral powers of the ex-
ponent. There are several reasons to this: on the one hand, the equivalent of analytic continuation for octonions ("branch cuts") remains
to be investigated thoroughly (by me, at any rate...), and we wish to avoid the nonsense introduced in the standard by exponentiations
of complexes by complexes (which is well defined, but not in the standard...). Talking of nonsense, saying that pow(0,0) is "imple-
mentation defined" is just plain brain-dead...

We do, however provide several transcendentals, chief among which is the exponential. That it allows for a "closed formula" is a
result of the author (the existence and definition of the exponential, on the octonions among others, on the other hand, is a few cen-
turies old). Basically, any converging power series with real coefficients which allows for a closed formula in C can be transposed
to O. More transcendentals of this type could be added in a further revision upon request. It should be noted that it is these functions
which force the dependency upon the boost/math/special_functions/sinc.hpp and the boost/math/special_functions/sinhc.hpp headers.

exp

template<typename T>
octonion<T> exp(octonion<T> const & o);

Computes the exponential of the octonion.

cos

template<typename T>
octonion<T> cos(octonion<T> const & o);

Computes the cosine of the octonion

sin

template<typename T>
octonion<T> sin(octonion<T> const & o);

Computes the sine of the octonion.

tan

template<typename T>
octonion<T> tan(octonion<T> const & o);

Computes the tangent of the octonion.

cosh

template<typename T>
octonion<T> cosh(octonion<T> const & o);

Computes the hyperbolic cosine of the octonion.

sinh

template<typename T>
octonion<T> sinh(octonion<T> const & o);
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Computes the hyperbolic sine of the octonion.

tanh

template<typename T>
octonion<T> tanh(octonion<T> const & o);

Computes the hyperbolic tangent of the octonion.

pow

template<typename T>
octonion<T> pow(octonion<T> const & o, int n);

Computes the n-th power of the octonion q.
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Test Program
The octonion_test.cpp test program tests octonions specialisations for float, double and long double (sample output).

If you define the symbol BOOST_OCTONION_TEST_VERBOSE, you will get additional output (verbose output); this will only
be helpfull if you enable message output at the same time, of course (by uncommenting the relevant line in the test or by adding --
log_level=messages to your command line,...). In that case, and if you are running interactively, you may in addition define the
symbol BOOST_INTERACTIVE_TEST_INPUT_ITERATOR to interactively test the input operator with input of your choice from
the standard input (instead of hard-coding it in the test).
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History
• 1.5.9 - 13/5/2013: Incorporated into Boost.Math.

• 1.5.8 - 17/12/2005: Converted documentation to Quickbook Format.

• 1.5.7 - 25/02/2003: transitionned to the unit test framework; <boost/config.hpp> now included by the library header (rather than
the test files), via <boost/math/quaternion.hpp>.

• 1.5.6 - 15/10/2002: Gcc2.95.x and stlport on linux compatibility by Alkis Evlogimenos (alkis@routescience.com).

• 1.5.5 - 27/09/2002: Microsoft VCPP 7 compatibility, by Michael Stevens (michael@acfr.usyd.edu.au); requires the /Za compiler
option.

• 1.5.4 - 19/09/2002: fixed problem with multiple inclusion (in different translation units); attempt at an improved compatibility
with Microsoft compilers, by Michael Stevens (michael@acfr.usyd.edu.au) and Fredrik Blomqvist; other compatibility fixes.

• 1.5.3 - 01/02/2002: bugfix and Gcc 2.95.3 compatibility by Douglas Gregor (gregod@cs.rpi.edu).

• 1.5.2 - 07/07/2001: introduced namespace math.

• 1.5.1 - 07/06/2001: (end of Boost review) now includes <boost/math/special_functions/sinc.hpp> and <boost/math/special_func-
tions/sinhc.hpp> instead of <boost/special_functions.hpp>; corrected bug in sin (Daryle Walker); removed check for self-assignment
(Gary Powel); made converting functions explicit (Gary Powel); added overflow guards for division operators and abs (Peter
Schmitteckert); added sup and l1; used Vesa Karvonen's CPP metaprograming technique to simplify code.

• 1.5.0 - 23/03/2001: boostification, inlining of all operators except input, output and pow, fixed exception safety of some members
(template version).

• 1.4.0 - 09/01/2001: added tan and tanh.

• 1.3.1 - 08/01/2001: cosmetic fixes.

• 1.3.0 - 12/07/2000: pow now uses Maarten Hilferink's (mhilferink@tip.nl) algorithm.

• 1.2.0 - 25/05/2000: fixed the division operators and output; changed many signatures.

• 1.1.0 - 23/05/2000: changed sinc into sinc_pi; added sin, cos, sinh, cosh.

• 1.0.0 - 10/08/1999: first public version.
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To Do
• Improve testing.

• Rewrite input operatore using Spirit (creates a dependency).

• Put in place an Expression Template mechanism (perhaps borrowing from uBlas).
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Integer Utilities (Greatest Common Divisor
and Least Common Multiple)
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Introduction
The class and function templates in <boost/math/common_factor.hpp> provide run-time and compile-time evaluation of the greatest
common divisor (GCD) or least common multiple (LCM) of two integers. These facilities are useful for many numeric-oriented
generic programming problems.
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Synopsis
namespace boost
{
namespace math
{

template < typename IntegerType >
class gcd_evaluator;

template < typename IntegerType >
class lcm_evaluator;

template < typename IntegerType >
IntegerType gcd( IntegerType const &a, IntegerType const &b );

template < typename IntegerType >
IntegerType lcm( IntegerType const &a, IntegerType const &b );

typedef see-below static_gcd_type;

template < static_gcd_type Value1, static_gcd_type Value2 >
struct static_gcd;

template < static_gcd_type Value1, static_gcd_type Value2 >
struct static_lcm;

}
}
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GCD Function Object
Header: <boost/math/common_factor_rt.hpp>

template < typename IntegerType >
class boost::math::gcd_evaluator
{
public:

// Types
typedef IntegerType result_type;
typedef IntegerType first_argument_type;
typedef IntegerType second_argument_type;

// Function object interface
result_type operator ()( first_argument_type const &a,
second_argument_type const &b ) const;

};

The boost::math::gcd_evaluator class template defines a function object class to return the greatest common divisor of two integers.
The template is parameterized by a single type, called IntegerType here. This type should be a numeric type that represents integers.
The result of the function object is always nonnegative, even if either of the operator arguments is negative.

This function object class template is used in the corresponding version of the GCD function template. If a numeric type wants to
customize evaluations of its greatest common divisors, then the type should specialize on the gcd_evaluator class template.
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LCM Function Object
Header: <boost/math/common_factor_rt.hpp>

template < typename IntegerType >
class boost::math::lcm_evaluator
{
public:

// Types
typedef IntegerType result_type;
typedef IntegerType first_argument_type;
typedef IntegerType second_argument_type;

// Function object interface
result_type operator ()( first_argument_type const &a,
second_argument_type const &b ) const;

};

The boost::math::lcm_evaluator class template defines a function object class to return the least common multiple of two integers.
The template is parameterized by a single type, called IntegerType here. This type should be a numeric type that represents integers.
The result of the function object is always nonnegative, even if either of the operator arguments is negative. If the least common
multiple is beyond the range of the integer type, the results are undefined.

This function object class template is used in the corresponding version of the LCM function template. If a numeric type wants to
customize evaluations of its least common multiples, then the type should specialize on the lcm_evaluator class template.
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Run-time GCD & LCM Determination
Header: <boost/math/common_factor_rt.hpp>

template < typename IntegerType >
IntegerType boost::math::gcd( IntegerType const &a, IntegerType const &b );

template < typename IntegerType >
IntegerType boost::math::lcm( IntegerType const &a, IntegerType const &b );

The boost::math::gcd function template returns the greatest common (nonnegative) divisor of the two integers passed to it. The
boost::math::lcm function template returns the least common (nonnegative) multiple of the two integers passed to it. The function
templates are parameterized on the function arguments' IntegerType, which is also the return type. Internally, these function templates
use an object of the corresponding version of the gcd_evaluator and lcm_evaluator class templates, respectively.
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Compile time GCD and LCM determination
Header: <boost/math/common_factor_ct.hpp>

typedef unspecified static_gcd_type;

template < static_gcd_type Value1, static_gcd_type Value2 >
struct boost::math::static_gcd : public mpl::integral_c<static_gcd_type, implementation_defined>
{
};

template < static_gcd_type Value1, static_gcd_type Value2 >
struct boost::math::static_lcm : public mpl::integral_c<static_gcd_type, implementation_defined>
{
};

The type static_gcd_type is the widest unsigned-integer-type that is supported for use in integral-constant-expressions by the
compiler. Usually this the same type as boost::uintmax_t, but may fall back to being unsigned long for some older compilers.

The boost::math::static_gcd and boost::math::static_lcm class templates take two value-based template parameters of the static_gcd_type
type and inherit from the type boost::mpl::integral_c. Inherited from the base class, they have a member value that is the
greatest common factor or least common multiple, respectively, of the template arguments. A compile-time error will occur if the
least common multiple is beyond the range of static_gcd_type.

Example

#include <boost/math/common_factor.hpp>
#include <algorithm>
#include <iterator>
#include <iostream>

int main()
{

using std::cout;
using std::endl;

cout << "The GCD and LCM of 6 and 15 are "
<< boost::math::gcd(6, 15) << " and "
<< boost::math::lcm(6, 15) << ", respectively."
<< endl;

cout << "The GCD and LCM of 8 and 9 are "
<< boost::math::static_gcd<8, 9>::value
<< " and "
<< boost::math::static_lcm<8, 9>::value
<< ", respectively." << endl;

int a[] = { 4, 5, 6 }, b[] = { 7, 8, 9 }, c[3];
std::transform( a, a + 3, b, c, boost::math::gcd_evaluator<int>() );
std::copy( c, c + 3, std::ostream_iterator<int>(cout, " ") );

}
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Header <boost/math/common_factor.hpp>
This header simply includes the headers <boost/math/common_factor_ct.hpp> and <boost/math/common_factor_rt.hpp>.

Note this is a legacy header: it used to contain the actual implementation, but the compile-time and run-time facilities were moved
to separate headers (since they were independent of each other).
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Demonstration Program
The program common_factor_test.cpp is a demonstration of the results from instantiating various examples of the run-time GCD
and LCM function templates and the compile-time GCD and LCM class templates. (The run-time GCD and LCM class templates
are tested indirectly through the run-time function templates.)
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Rationale
The greatest common divisor and least common multiple functions are greatly used in some numeric contexts, including some of
the other Boost libraries. Centralizing these functions to one header improves code factoring and eases maintainence.
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History
• 13 May 2013 Moved into main Boost.Math Quickbook documentation.

• 17 Dec 2005: Converted documentation to Quickbook Format.

• 2 Jul 2002: Compile-time and run-time items separated to new headers.

• 7 Nov 2001: Initial version
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Credits
The author of the Boost compilation of GCD and LCM computations is Daryle Walker. The code was prompted by existing code
hiding in the implementations of Paul Moore's rational library and Steve Cleary's pool library. The code had updates by Helmut
Zeisel.
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Tools: Root Finding and Minimization
Algorithms
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Root finding
Several tools are provided to aid finding minima and roots of functions.

Some root-finding without derivatives methods are bisection, bracket and solve, including use of TOMS 748 algorithm.

For root-finding with derivatives the methods of Newton-Raphson iteration, Halley, and Schröder are implemented.

For locating minima of a function, a Brent minima finding example is provided.

There are several fully-worked root-finding examples, including:

• root-finding without derivatives

• root-finding with 1st derivatives

• root-finding with 1st and 2nd derivatives

Root Finding Without Derivatives

Synopsis

#include <boost/math/tools/roots.hpp>
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namespace boost { namespace math {
namespace tools { // Note namespace boost::math::tools.
// Bisection
template <class F, class T, class Tol>
std::pair<T, T>

bisect(
F f,
T min,
T max,
Tol tol,
boost::uintmax_t& max_iter);

template <class F, class T, class Tol>
std::pair<T, T>

bisect(
F f,
T min,
T max,
Tol tol);

template <class F, class T, class Tol, class Policy>
std::pair<T, T>

bisect(
F f,
T min,
T max,
Tol tol,
boost::uintmax_t& max_iter,
const Policy&);

// Bracket and Solve Root
template <class F, class T, class Tol>
std::pair<T, T>

bracket_and_solve_root(
F f,
const T& guess,
const T& factor,
bool rising,
Tol tol,
boost::uintmax_t& max_iter);

template <class F, class T, class Tol, class Policy>
std::pair<T, T>

bracket_and_solve_root(
F f,
const T& guess,
const T& factor,
bool rising,
Tol tol,
boost::uintmax_t& max_iter,
const Policy&);

// TOMS 748 algorithm
template <class F, class T, class Tol>
std::pair<T, T>

toms748_solve(
F f,
const T& a,
const T& b,
Tol tol,
boost::uintmax_t& max_iter);

template <class F, class T, class Tol, class Policy>
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std::pair<T, T>
toms748_solve(

F f,
const T& a,
const T& b,
Tol tol,
boost::uintmax_t& max_iter,
const Policy&);

template <class F, class T, class Tol>
std::pair<T, T>

toms748_solve(
F f,
const T& a,
const T& b,
const T& fa,
const T& fb,
Tol tol,
boost::uintmax_t& max_iter);

template <class F, class T, class Tol, class Policy>
std::pair<T, T>

toms748_solve(
F f,
const T& a,
const T& b,
const T& fa,
const T& fb,
Tol tol,
boost::uintmax_t& max_iter,
const Policy&);

// Termination conditions:
template <class T>
struct eps_tolerance;

struct equal_floor;
struct equal_ceil;
struct equal_nearest_integer;

}}} // boost::math::tools namespaces

Description

These functions solve the root of some function f(x) - without the need for any derivatives of f(x).

The bracket_and_solve_root functions use TOMS 748 algorithm by Alefeld, Potra and Shi that is asymptotically the most ef-
ficient known, and has been shown to be optimal for a certain classes of smooth functions. Variants with and without Policies are
provided.

Alternatively, bisect is a simple bisection routine which can be useful in its own right in some situations, or alternatively for narrowing
down the range containing the root, prior to calling a more advanced algorithm.

All the algorithms in this section reduce the diameter of the enclosing interval with the same asymptotic efficiency with which they
locate the root. This is in contrast to the derivative based methods which may never significantly reduce the enclosing interval, even
though they rapidly approach the root. This is also in contrast to some other derivative-free methods (for example, Brent's method
described at Brent-Dekker) which only reduces the enclosing interval on the final step. Therefore these methods return a std::pair
containing the enclosing interval found, and accept a function object specifying the termination condition.

Three function objects are provided for ready-made termination conditions:

• eps_tolerance causes termination when the relative error in the enclosing interval is below a certain threshold.
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• equal_floor and equal_ceil are useful for certain statistical applications where the result is known to be an integer.

• Other user-defined termination conditions are likely to be used only rarely, but may be useful in some specific circumstances.

Bisection

template <class F, class T, class Tol>
std::pair<T, T>

bisect( // Unlimited iterations.
F f,
T min,
T max,
Tol tol);

template <class F, class T, class Tol>
std::pair<T, T>

bisect( // Limited iterations.
F f,
T min,
T max,
Tol tol,
boost::uintmax_t& max_iter);

template <class F, class T, class Tol, class Policy>
std::pair<T, T>

bisect( // Specified policy.
F f,
T min,
T max,
Tol tol,
boost::uintmax_t& max_iter,
const Policy&);

These functions locate the root using bisection.

bisect function arguments are:

f A unary functor which is the function f(x) whose root is to be found.

min The left bracket of the interval known to contain the root.

max The right bracket of the interval known to contain the root.
It is a precondition that min < max and f(min)*f(max) <= 0, the function raises an evaluation_error if these preconditions
are violated. The action taken on error is controlled by the Policy template argument: the default behavior is to throw
a boost::math::evaluation_error. If the Policy is changed to not throw then it returns std::pair<T>(min, min).

tol A binary functor that specifies the termination condition: the function will return the current brackets enclosing the
root when tol(min, max) becomes true. See also predefined termination functors.

max_iter The maximum number of invocations of f(x) to make while searching for the root. On exit, this is updated to the actual
number of invocations performed.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Returns: a pair of values r that bracket the root so that:

f(r.first) * f(r.second) <= 0

and either
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tol(r.first, r.second) == true

or

max_iter >= m

where m is the initial value of max_iter passed to the function.

In other words, it's up to the caller to verify whether termination occurred as a result of exceeding max_iter function invocations
(easily done by checking the updated value of max_iter when the function returns), rather than because the termination condition
tol was satisfied.

Bracket and Solve Root

template <class F, class T, class Tol>
std::pair<T, T>

bracket_and_solve_root(
F f,
const T& guess,
const T& factor,
bool rising,
Tol tol,
boost::uintmax_t& max_iter);

template <class F, class T, class Tol, class Policy>
std::pair<T, T>

bracket_and_solve_root(
F f,
const T& guess,
const T& factor,
bool rising,
Tol tol,
boost::uintmax_t& max_iter,
const Policy&);

bracket_and_solve_root is a convenience function that calls TOMS 748 algorithm internally to find the root of f(x). It is generally
much easier to use this function rather than TOMS 748 algorithm, since it does the hard work of bracketing the root for you. It's
bracketing routines are quite robust and will usually be more foolproof than home-grown routines, unless the function can be analysed
to yield tight brackets.

Note that this routine can only be used when:

• f(x) is monotonic in the half of the real axis containing guess.

• The value of the inital guess must have the same sign as the root: the function will never cross the origin when searching for the
root.

• The location of the root should be known at least approximately, if the location of the root differs by many orders of magnitude
from guess then many iterations will be needed to bracket the root in spite of the special heuristics used to guard against this very
situation. A typical example would be setting the initial guess to 0.1, when the root is at 1e-300.

The bracket_and_solve_root parameters are:

f A unary functor that is the function whose root is to be solved. f(x) must be uniformly increasing or decreasing on x.

guess An initial approximation to the root.

factor A scaling factor that is used to bracket the root: the value guess is multiplied (or divided as appropriate) by factor
until two values are found that bracket the root. A value such as 2 is a typical choice for factor. In addition factor will
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be multiplied by 2 every 32 iterations: this is to guard against a really very bad initial guess, typically these occur
when it's known the result is very large or small, but not the exact order of magnitude.

rising Set to true if f(x) is rising on x and false if f(x) is falling on x. This value is used along with the result of f(guess) to
determine if guess is above or below the root.

tol A binary functor that determines the termination condition for the search for the root. tol is passed the current brackets
at each step, when it returns true then the current brackets are returned as the pair result. See also predefined termination
functors.

max_iter The maximum number of function invocations to perform in the search for the root. On exit is set to the actual number
of invocations performed.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

Returns: a pair of values r that bracket the root so that:

f(r.first) * f(r.second) <= 0

and either

tol(r.first, r.second) == true

or

max_iter >= m

where m is the initial value of max_iter passed to the function.

In other words, it's up to the caller to verify whether termination occurred as a result of exceeding max_iter function invocations
(easily done by checking the value of max_iter when the function returns), rather than because the termination condition tol was
satisfied.
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Algorithm TOMS 748: Alefeld, Potra and Shi: Enclosing zeros of continuous
functions

template <class F, class T, class Tol>
std::pair<T, T>

toms748_solve(
F f,
const T& a,
const T& b,
Tol tol,
boost::uintmax_t& max_iter);

template <class F, class T, class Tol, class Policy>
std::pair<T, T>

toms748_solve(
F f,
const T& a,
const T& b,
Tol tol,
boost::uintmax_t& max_iter,
const Policy&);

template <class F, class T, class Tol>
std::pair<T, T>

toms748_solve(
F f,
const T& a,
const T& b,
const T& fa,
const T& fb,
Tol tol,
boost::uintmax_t& max_iter);

template <class F, class T, class Tol, class Policy>
std::pair<T, T>

toms748_solve(
F f,
const T& a,
const T& b,
const T& fa,
const T& fb,
Tol tol,
boost::uintmax_t& max_iter,
const Policy&);

These functions implement TOMS Algorithm 748: it uses a mixture of cubic, quadratic and linear (secant) interpolation to locate
the root of f(x). The two pairs of functions differ only by whether values for f(a) and f(b) are already available.

Generally speaking it is easier (and often more efficient) to use bracket and solve rather than trying to bracket the root yourself as
this function requires.

This function is provided rather than Brent's method as it is known to be more effient in many cases (it is asymptotically the most
efficient known, and has been shown to be optimal for a certain classes of smooth functions). It also has the useful property of de-
creasing the bracket size with each step, unlike Brent's method which only shrinks the enclosing interval in the final step. This makes
it particularly useful when you need a result where the ends of the interval round to the same integer: as often happens in statistical
applications for example. In this situation the function is able to exit after a much smaller number of iterations than would otherwise
be possible.
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The TOMS 748 algorithm parameters are:

f A unary functor that is the function whose root is to be solved. f(x) need not be uniformly increasing or decreasing
on x and may have multiple roots. However, the bounds given must bracket a single root.

a The lower bound for the initial bracket of the root.

b The upper bound for the initial bracket of the root. It is a precondition that a < b and that a and b bracket the root to
find so that f(a) * f(b) < 0.

fa Optional: the value of f(a).

fb Optional: the value of f(b).

tol A binary functor that determines the termination condition for the search for the root. tol is passed the current brackets
at each step, when it returns true, then the current brackets are returned as the result. See also predefined termination
functors.

max_iter The maximum number of function invocations to perform in the search for the root. On exit, max_iter is set to actual
number of function invocations used.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of
precision to use etc. Refer to the policy documentation for more details.

toms748_solve returns: a pair of values r that bracket the root so that:

f(r.first) * f(r.second) <= 0

and either

tol(r.first, r.second) == true

or

max_iter >= m

where m is the initial value of max_iter passed to the function.

In other words, it's up to the caller to verify whether termination occurred as a result of exceeding max_iter function invocations
(easily done by checking the updated value of max_iter against its previous value passed as parameter), rather than because the ter-
mination condition tol was satisfied.

Brent-Decker Algorithm

The Brent-Dekker algorithm although very well know is not provided by this library as TOMS 748 algorithm or its slightly easier
to use variant bracket and solve are superior and provide equivalent functionality.

Termination Condition Functors

template <class T>
struct eps_tolerance
{

eps_tolerance();
eps_tolerance(int bits);
bool operator()(const T& a, const T& b)const;

};
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eps_tolerance is the usual termination condition used with these root finding functions. Its operator() will return true when
the relative distance between a and b is less than four times the machine epsilon for T, or 21-bits, whichever is the larger. In other
words, you set bits to the number of bits of precision you want in the result. The minimal tolerance of four times the machine epsilon
of type T is required to ensure that we get back a bracketing interval, since this must clearly be at greater than one epsilon in size.
While in theory a maximum distance of twice machine epsilon is possible to achieve, in practice this results in a great deal of
"thrashing" given that the function whose root is being found can only ever be accurate to 1 epsilon at best.

struct equal_floor
{

equal_floor();
template <class T> bool operator()(const T& a, const T& b)const;

};

This termination condition is used when you want to find an integer result that is the floor of the true root. It will terminate as soon
as both ends of the interval have the same floor.

struct equal_ceil
{

equal_ceil();
template <class T> bool operator()(const T& a, const T& b)const;

};

This termination condition is used when you want to find an integer result that is the ceil of the true root. It will terminate as soon
as both ends of the interval have the same ceil.

struct equal_nearest_integer
{

equal_nearest_integer();
template <class T> bool operator()(const T& a, const T& b)const;

};

This termination condition is used when you want to find an integer result that is the closest to the true root. It will terminate as soon
as both ends of the interval round to the same nearest integer.

Implementation

The implementation of the bisection algorithm is extremely straightforward and not detailed here.

TOMS Algorithm 748: enclosing zeros of continuous functions is described in detail in:

Algorithm 748: Enclosing Zeros of Continuous Functions, G. E. Alefeld, F. A. Potra and Yixun Shi, ACM Transactions on Mathem-
atica1 Software, Vol. 21. No. 3. September 1995. Pages 327-344.

The implementation here is a faithful translation of this paper into C++.

Root Finding With Derivatives: Newton-Raphson, Halley &
Schröder

Synopsis

#include <boost/math/tools/roots.hpp>
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namespace boost { namespace math {
namespace tools { // Note namespace boost::math::tools.
// Newton-Raphson
template <class F, class T>
T newton_raphson_iterate(F f, T guess, T min, T max, int digits);

template <class F, class T>
T newton_raphson_iterate(F f, T guess, T min, T max, int digits, boost::uintmax_t& max_iter);

// Halley
template <class F, class T>
T halley_iterate(F f, T guess, T min, T max, int digits);

template <class F, class T>
T halley_iterate(F f, T guess, T min, T max, int digits, boost::uintmax_t& max_iter);

// Schr'''&#xf6;'''der
template <class F, class T>
T schroder_iterate(F f, T guess, T min, T max, int digits);

template <class F, class T>
T schroder_iterate(F f, T guess, T min, T max, int digits, boost::uintmax_t& max_iter);

}}} // namespaces boost::math::tools.

Description

These functions all perform iterative root-finding using derivatives:

• newton_raphson_iterate performs second-order Newton-Raphson iteration.

• halley_iterate and schroder_iterate perform third-order Halley and Schröder iteration.

The functions all take the same parameters:

Parameters of the root finding functions

F f Type F must be a callable function object that accepts one parameter and returns a std::pair, std::tuple,
boost::tuple or boost::fusion::tuple:

For second-order iterative method (Newton Raphson) the tuple should have two elements containing
the evaluation of the function and its first derivative.

For the third-order methods (Halley and Schröder) the tuple should have three elements containing
the evaluation of the function and its first and second derivatives.

T guess The initial starting value. A good guess is crucial to quick convergence!

T min The minimum possible value for the result, this is used as an initial lower bracket.

T max The maximum possible value for the result, this is used as an initial upper bracket.

int digits The desired number of binary digits precision.

uintmax_t& max_iter An optional maximum number of iterations to perform. On exit, this is updated to the actual number
of iterations performed.

When using these functions you should note that:

• Default max_iter = (std::numeric_limits<boost::uintmax_t>::max)() is effectively 'iterate for ever'.
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• They may be very sensitive to the initial guess, typically they converge very rapidly if the initial guess has two or three decimal
digits correct. However convergence can be no better than bisect, or in some rare cases, even worse than bisect if the initial guess
is a long way from the correct value and the derivatives are close to zero.

• These functions include special cases to handle zero first (and second where appropriate) derivatives, and fall back to bisect in
this case. However, it is helpful if functor F is defined to return an arbitrarily small value of the correct sign rather than zero.

• If the derivative at the current best guess for the result is infinite (or very close to being infinite) then these functions may terminate
prematurely. A large first derivative leads to a very small next step, triggering the termination condition. Derivative based iteration
may not be appropriate in such cases.

• If the function is 'Really Well Behaved' (is monotonic and has only one root) the bracket bounds min and max may as well be set
to the widest limits like zero and numeric_limits<T>::max().

• But if the function more complex and may have more than one root or a pole, the choice of bounds is protection against jumping
out to seek the 'wrong' root.

• These functions fall back to bisect if the next computed step would take the next value out of bounds. The bounds are updated
after each step to ensure this leads to convergence. However, a good initial guess backed up by asymptotically-tight bounds will
improve performance no end - rather than relying on bisection.

• The value of digits is crucial to good performance of these functions, if it is set too high then at best you will get one extra (unne-
cessary) iteration, and at worst the last few steps will proceed by bisection. Remember that the returned value can never be more
accurate than f(x) can be evaluated, and that if f(x) suffers from cancellation errors as it tends to zero then the computed steps will
be effectively random. The value of digits should be set so that iteration terminates before this point: remember that for second
and third order methods the number of correct digits in the result is increasing quite substantially with each iteration, digits should
be set by experiment so that the final iteration just takes the next value into the zone where f(x) becomes inaccurate. A good
starting point for digits would be 0.6*D for Newton and 0.4*D for Halley or Shröder iteration, where D is std::numeric_lim-
its<T>::digits.

• If you need some diagnostic output to see what is going on, you can #define BOOST_MATH_INSTRUMENT before the #include
<boost/math/tools/roots.hpp>, and also ensure that display of all the significant digits with cout.precision(std::nu-
meric_limits<double>::digits10): or even possibly significant digits with cout.precision(std::numeric_lim-

its<double>::max_digits10): but be warned, this may produce copious output!

• Finally: you may well be able to do better than these functions by hand-coding the heuristics used so that they are tailored to a
specific function. You may also be able to compute the ratio of derivatives used by these methods more efficiently than computing
the derivatives themselves. As ever, algebraic simplification can be a big win.

Newton Raphson Method

Given an initial guess x0 the subsequent values are computed using:

xN+1 = xN −
f (x)
f ′(x)

Out of bounds steps revert to bisection of the current bounds.

Under ideal conditions, the number of correct digits doubles with each iteration.

Halley's Method

Given an initial guess x0 the subsequent values are computed using:

xN+1 = xN −
2 f (x) f ′(x)

2( f ′(x))2 − f (x) f ″ (x)

Over-compensation by the second derivative (one which would proceed in the wrong direction) causes the method to revert to a
Newton-Raphson step.
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Out of bounds steps revert to bisection of the current bounds.

Under ideal conditions, the number of correct digits trebles with each iteration.

Schröder's Method

Given an initial guess x0 the subsequent values are computed using:

xN+1 = xN −
f (x)
f ′(x) −

f ″ (x)( f (x))2

2( f ′(x))3

Over-compensation by the second derivative (one which would proceed in the wrong direction) causes the method to revert to a
Newton-Raphson step. Likewise a Newton step is used whenever that Newton step would change the next value by more than 10%.

Out of bounds steps revert to bisection of the current bounds.

Under ideal conditions, the number of correct digits trebles with each iteration.

This is Schröder's general result (equation 18 from Stewart, G. W. "On Infinitely Many Algorithms for Solving Equations." English
translation of Schröder's original paper. College Park, MD: University of Maryland, Institute for Advanced Computer Studies, De-
partment of Computer Science, 1993.)

This method guarantees at least quadratic convergence (the same as Newton's method), and is known to work well in the presence
of multiple roots: something that neither Newton nor Halley can do.

Examples

See root-finding examples.

Examples of Root-Finding (with and without derivatives)
The examples demonstrate how to use the various tools for root finding.

We start with the simple cube root function cbrt ( C++ standard function name cbrt) showing without derivatives.

We then show how use of derivatives can improve the speed of convergence.

(But these examples are only a demonstration and do not try to make the ultimate improvements of an 'industrial-strength' implement-
ation, for example, of boost::math::cbrt, mainly by using a better computed initial 'guess' at cbrt.hpp).

Then we show how a higher root (fifth root) 5√ can be computed, and in root_finding_n_example.cpp a generic method for the nth
root that constructs the derivatives at compile-time.

These methods should be applicable to other functions that can be differentiated easily.

Finding the Cubed Root With and Without Derivatives

First some #includes that will be needed.
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#include <boost/math/tools/roots.hpp>
//using boost::math::policies::policy;
//using boost::math::tools::newton_raphson_iterate;
//using boost::math::tools::halley_iterate; //
//using boost::math::tools::eps_tolerance; // Binary functor for specified number of bits.
//using boost::math::tools::bracket_and_solve_root;
//using boost::math::tools::toms748_solve;

#include <boost/math/special_functions/next.hpp> // For float_distance.
#include <tuple> // for std::tuple and std::make_tuple.
#include <boost/math/special_functions/cbrt.hpp> // For boost::math::cbrt.

Tip

For clarity, using statements are provided to list what functions are being used in this example: you can, of course,
partly or fully qualify the names in other ways. (For your application, you may wish to extract some parts into
header files, but you should never use using statements globally in header files).

Let's suppose we want to find the root of a number a, and to start, compute the cube root.

So the equation we want to solve is:

f(x) = x³ -a

We will first solve this without using any information about the slope or curvature of the cube root function.

Fortunately, the cube-root function is 'Really Well Behaved' in that it is monotonic and has only one root (we leave negative values
'as an exercise for the student').

We then show how adding what we can know about this function, first just the slope or 1st derivative f'(x), will speed homing in on
the solution.

Lastly, we show how adding the curvature f''(x) too will speed convergence even more.

Cube root function without derivatives

First we define a function object (functor):

template <class T>
struct cbrt_functor_noderiv
{
//  cube root of x using only function - no derivatives.
cbrt_functor_noderiv(T const& to_find_root_of) : a(to_find_root_of)
{ /* Constructor just stores value a to find root of. */ }
T operator()(T const& x)
{
T fx = x*x*x - a; // Difference (estimate x^3 - a).
return fx;

}
private:
T a; // to be 'cube_rooted'.

};

Implementing the cube-root function itself is fairly trivial now: the hardest part is finding a good approximation to begin with. In
this case we'll just divide the exponent by three. (There are better but more complex guess algorithms used in 'real life'.)
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template <class T>
T cbrt_noderiv(T x)
{
// return cube root of x using bracket_and_solve (no derivatives).
using namespace std; // Help ADL of std functions.
using namespace boost::math::tools; // For bracket_and_solve_root.

int exponent;
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
T guess = ldexp(1., exponent/3); // Rough guess is to divide the exponent by three.
T factor = 2; // How big steps to take when searching.

const boost::uintmax_t maxit = 20; // Limit to maximum iterations.
boost::uintmax_t it = maxit; // Initally our chosen max iterations, but up↵

dated with actual.
bool is_rising = true; // So if result if guess^3 is too low, then try ↵

increasing guess.
int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for ↵

type T.
// Some fraction of digits is used to control how accurate to try to make the result.
int get_digits = digits - 3; // We have to have a non-zero interval at each ↵

step, so
// maximum accuracy is digits - 1.  But we also ↵

have to
// allow for inaccuracy in f(x), otherwise the ↵

last few
// iterations just thrash around.

eps_tolerance<T> tol(get_digits); // Set the tolerance.
std::pair<T, T> r = bracket_and_solve_root(cbrt_functor_node↵

riv<T>(x), guess, factor, is_rising, tol, it);
return r.first + (r.second - r.first)/2; // Midway between brackets is our result, if ne↵

cessary we could
// return the result as an interval here.

}

Note

The final parameter specifying a maximum number of iterations is optional. However, it defaults to
boost::uintmax_t maxit = (std::numeric_limits<boost::uintmax_t>::max)(); which is
18446744073709551615 and is more than anyone would wish to wait for!

So it may be wise to chose some reasonable estimate of how many iterations may be needed, In this case the function
is so well behaved that we can chose a low value of 20.

Internally when Boost.Math uses these functions, it sets the maximum iterations to
policies::get_max_root_iterations<Policy>();.

Should we have wished we can show how many iterations were used in bracket_and_solve_root (this information is lost outside
cbrt_noderiv), for example with:

if (it >= maxit)
{
std::cout << "Unable to locate solution in " << maxit << " iterations:"
" Current best guess is between " << r.first << " and " << r.second << std::endl;

}
else
{
std::cout << "Converged after " << it << " (from maximum of " << maxit << " itera↵

tions)." << std::endl;
}
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for output like

Converged after 11 (from maximum of 20 iterations).

This snippet from main() in root_finding_example.cpp shows how it can be used.

try
{
double threecubed = 27.; // Value that has an *exactly representable* integer cube root.
double threecubedp1 = 28.; // Value whose cube root is *not* exactly representable.

std::cout << "cbrt(28) " << boost::math::cbrt(28.) << std::endl; // boost::math:: version of ↵
cbrt.
std::cout << "std::cbrt(28) " << std::cbrt(28.) << std::endl; // std:: version of cbrt.
std::cout <<" cast double " << stat↵

ic_cast<double>(3.0365889718756625194208095785056696355814539772481111) << std::endl;

// Cube root using bracketing:
double r = cbrt_noderiv(threecubed);
std::cout << "cbrt_noderiv(" << threecubed << ") = " << r << std::endl;
r = cbrt_noderiv(threecubedp1);
std::cout << "cbrt_noderiv(" << threecubedp1 << ") = " << r << std::endl;

  cbrt_noderiv(27) = 3
  cbrt_noderiv(28) = 3.0365889718756618

The result of bracket_and_solve_root is a pair of values that could be displayed.

The number of bits separating them can be found using float_distance(r.first, r.second). The distance is zero (closest
representable) for 33 = 27 but float_distance(r.first, r.second) = 3 for cube root of 28 with this function. The result
(avoiding overflow) is midway between these two values.

Cube root function with 1st derivative (slope)

We now solve the same problem, but using more information about the function, to show how this can speed up finding the best
estimate of the root.

For the root function, the 1st differential (the slope of the tangent to a curve at any point) is known.

This algorithm is similar to this nth root algorithm.

If you need some reminders, then derivatives of elementary functions may help.

Using the rule that the derivative of xn for positive n (actually all nonzero n) is n xn-1, allows us to get the 1st differential as 3x2.

To see how this extra information is used to find a root, view Newton-Raphson iterations and the animation.

We define a better functor cbrt_functor_deriv that returns both the evaluation of the function to solve, along with its first deriv-
ative:

To 'return' two values, we use a std::pair of floating-point values.
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template <class T>
struct cbrt_functor_deriv
{ // Functor also returning 1st derivative.
cbrt_functor_deriv(T const& to_find_root_of) : a(to_find_root_of)
{ // Constructor stores value a to find root of,
// for example: calling cbrt_functor_deriv<T>(a) to use to get cube root of a.

}
std::pair<T, T> operator()(T const& x)
{
// Return both f(x) and f'(x).
T fx = x*x*x - a; // Difference (estimate x^3 - value).
T dx = 3 * x*x; // 1st derivative = 3x^2.
return std::make_pair(fx, dx); // 'return' both fx and dx.

}
private:
T a; // Store value to be 'cube_rooted'.

};

Our cube root function is now:

template <class T>
T cbrt_deriv(T x)
{
// return cube root of x using 1st derivative and Newton_Raphson.
using namespace boost::math::tools;
int exponent;
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
T guess = ldexp(1., exponent/3); // Rough guess is to divide the exponent ↵

by three.
T min = ldexp(0.5, exponent/3); // Minimum possible value is half our guess.
T max = ldexp(2., exponent/3); // Maximum possible value is twice our guess.
const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accur↵

acy for type T.
int get_digits = static_cast<int>(digits * 0.6); // Accuracy doubles with each step, so ↵

stop when we have
// just over half the digits correct.

const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit;
T result = newton_raphson_iterate(cbrt_functor_deriv<T>(x), guess, min, max, get_digits, it);
return result;

}

The result of newton_raphson_iterate function is a single value.

Tip

There is a compromise between accuracy and speed when chosing the value of digits. It is tempting to simply
chose std::numeric_limits<T>::digits, but this may mean some inefficient and unnecessary iterations as
the function thrashes around trying to locate the last bit. In theory, since the precision doubles with each step it is
sufficient to stop when half the bits are correct: as the last step will have doubled that to full precision. Of course
the function has no way to tell if that is actually the case unless it does one more step to be sure. In practice setting
the precision to slightly more than std::numeric_limits<T>::digits / 2 is a good choice.

Note that it is up to the caller of the function to check the iteration count after the call to see if iteration stoped as a result of running
out of iterations rather than meeting the required precision.

Using the test data in /test/test_cbrt.cpp this found the cube root exact to the last digit in every case, and in no more than 6 iterations
at double precision. However, you will note that a high precision was used in this example, exactly what was warned against earlier
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on in these docs! In this particular case it is possible to compute f(x) exactly and without undue cancellation error, so a high limit is
not too much of an issue.

However, reducing the limit to std::numeric_limits<T>::digits * 2 / 3 gave full precision in all but one of the test cases
(and that one was out by just one bit). The maximum number of iterations remained 6, but in most cases was reduced by one.

Note also that the above code omits a probable optimization by computing z² and reusing it, omits error handling, and does not handle
negative values of z correctly. (These are left as the customary exercise for the reader!)

The boost::math::cbrt function also includes these and other improvements: most importantly it uses a much better initial guess
which reduces the iteration count to just 1 in almost all cases.

Cube root with 1st & 2nd derivative (slope & curvature)

Next we define yet another even better functor cbrt_functor_2deriv that returns both the evaluation of the function to solve,
along with its first and second derivative:

f''(x) = 6x

using information about both slope and curvature to speed convergence.

To 'return' three values, we use a tuple of three floating-point values:

template <class T>
struct cbrt_functor_2deriv
{
// Functor returning both 1st and 2nd derivatives.
cbrt_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
{ // Constructor stores value a to find root of, for example:
// calling cbrt_functor_2deriv<T>(x) to get cube root of x,

}
std::tuple<T, T, T> operator()(T const& x)
{
// Return both f(x) and f'(x) and f''(x).
T fx = x*x*x - a; // Difference (estimate x^3 - value).
T dx = 3 * x*x; // 1st derivative = 3x^2.
T d2x = 6 * x; // 2nd derivative = 6x.
return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.

}
private:
T a; // to be 'cube_rooted'.

};

Our cube root function is now:
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template <class T>
T cbrt_2deriv(T x)
{
// return cube root of x using 1st and 2nd derivatives and Halley.
//using namespace std;  // Help ADL of std functions.
using namespace boost::math::tools;
int exponent;
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
T guess = ldexp(1., exponent/3); // Rough guess is to divide the exponent ↵

by three.
T min = ldexp(0.5, exponent/3); // Minimum possible value is half our guess.
T max = ldexp(2., exponent/3); // Maximum possible value is twice our guess.
const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accur↵

acy for type T.
// digits used to control how accurate to try to make the result.
int get_digits = static_cast<int>(digits * 0.4); // Accuracy triples with each step, so ↵

stop when just
// over one third of the digits are correct.

boost::uintmax_t maxit = 20;
T result = halley_iterate(cbrt_functor_2deriv<T>(x), guess, min, max, get_digits, maxit);
return result;

}

The function halley_iterate also returns a single value, and the number of iterations will reveal if it met the convergence criterion
set by get_digits.

The no-derivative method gives a result of

cbrt_noderiv(28) = 3.0365889718756618

with a 3 bits distance between the bracketed values, whereas the derivative methods both converge to a single value

cbrt_2deriv(28) = 3.0365889718756627

which we can compare with the boost::math::cbrt

cbrt(28) = 3.0365889718756627

Note that the iterations are set to stop at just one-half of full precision, and yet, even so, not one of the test cases had a single bit
wrong. What's more, the maximum number of iterations was now just 4.

Just to complete the picture, we could have called schroder_iterate in the last example: and in fact it makes no difference to
the accuracy or number of iterations in this particular case. However, the relative performance of these two methods may vary de-
pending upon the nature of f(x), and the accuracy to which the initial guess can be computed. There appear to be no generalisations
that can be made except "try them and see".

Finally, had we called cbrt with NTL::RR set to 1000 bit precision (about 300 decimal digits), then full precision can be obtained
with just 7 iterations. To put that in perspective, an increase in precision by a factor of 20, has less than doubled the number of iter-
ations. That just goes to emphasise that most of the iterations are used up getting the first few digits correct: after that these methods
can churn out further digits with remarkable efficiency.

Or to put it another way: nothing beats a really good initial guess!

Full code of this example is at root_finding_example.cpp,
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Using C++11 Lambda's

Since all the root finding functions accept a function-object, they can be made to work (often in a lot less code) with C++11 lambda's.
Here's the much reduced code for our "toy" cube root function:

template <class T>
T cbrt_2deriv_lambda(T x)
{

// return cube root of x using 1st and 2nd derivatives and Halley.
//using namespace std;  // Help ADL of std functions.
using namespace boost::math::tools;
int exponent;
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
T guess = ldexp(1., exponent / 3); // Rough guess is to divide the expo↵

nent by three.
T min = ldexp(0.5, exponent / 3); // Minimum possible value is half our ↵

guess.
T max = ldexp(2., exponent / 3); // Maximum possible value is twice our ↵

guess.
const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accur↵

acy for type T.
// digits used to control how accurate to try to make the result.
int get_digits = static_cast<int>(digits * 0.4); // Accuracy triples with each step, so ↵

stop when just
// over one third of the digits are correct.
boost::uintmax_t maxit = 20;
T result = halley_iterate(

// lambda function:
[x](const T& g){ return std::make_tuple(g * g * g - x, 3 * g * g, 6 * g); },
guess, min, max, get_digits, maxit);

return result;
}

Full code of this example is at root_finding_example.cpp,

Computing the Fifth Root

Let's now suppose we want to find the fifth root of a number a.

The equation we want to solve is :

f(x) = x5 -a

If your differentiation is a little rusty (or you are faced with an function whose complexity makes differentiation daunting), then you
can get help, for example, from the invaluable WolframAlpha site.

For example, entering the commmand: differentiate x ^ 5

or the Wolfram Language command: D[x ^ 5, x]

gives the output: d/dx(x ^ 5) = 5 x ^ 4

and to get the second differential, enter: second differentiate x ^ 5

or the Wolfram Language command: D[x ^ 5, { x, 2 }]

to get the output: d ^ 2 / dx ^ 2(x ^ 5) = 20 x ^ 3

To get a reference value, we can enter: fifth root 3126

or: N[3126 ^ (1 / 5), 50]
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to get a result with a precision of 50 decimal digits:

5.0003199590478625588206333405631053401128722314376

(We could also get a reference value using multiprecision root).

The 1st and 2nd derivatives of x5 are:

f'(x) = 5x4

f''(x) = 20x3

Using these expressions for the derivatives, the functor is:

template <class T>
struct fifth_functor_2deriv
{
// Functor returning both 1st and 2nd derivatives.
fifth_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
{ /* Constructor stores value a to find root of, for example: */ }

std::tuple<T, T, T> operator()(T const& x)
{
// Return both f(x) and f'(x) and f''(x).
T fx = boost::math::pow<5>(x) - a; // Difference (estimate x^3 - value).
T dx = 5 * boost::math::pow<4>(x); // 1st derivative = 5x^4.
T d2x = 20 * boost::math::pow<3>(x); // 2nd derivative = 20 x^3
return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.

}
private:
T a; // to be 'fifth_rooted'.

}; // struct fifth_functor_2deriv

Our fifth-root function is now:

template <class T>
T fifth_2deriv(T x)
{
// return fifth root of x using 1st and 2nd derivatives and Halley.
using namespace std; // Help ADL of std functions.
using namespace boost::math::tools; // for halley_iterate.

int exponent;
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
T guess = ldexp(1., exponent / 5); // Rough guess is to divide the exponent by five.
T min = ldexp(0.5, exponent / 5); // Minimum possible value is half our guess.
T max = ldexp(2., exponent / 5); // Maximum possible value is twice our guess.
// Stop when slightly more than one of the digits are correct:
const int digits = static_cast<int>(std::numeric_limits<T>::digits * 0.4);
const boost::uintmax_t maxit = 50;
boost::uintmax_t it = maxit;
T result = halley_iterate(fifth_functor_2deriv<T>(x), guess, min, max, digits, it);
return result;

}

Full code of this example is at root_finding_example.cpp and root_finding_n_example.cpp.

Root-finding using Boost.Multiprecision

The apocryphally astute reader might, by now, be asking "How do we know if this computes the 'right' answer?".
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For most values, there is, sadly, no 'right' answer. This is because values can only rarely be exactly represented by C++ floating-
point types. What we do want is the 'best' representation - one that is the nearest representable value. (For more about how numbers
are represented see Floating point).

Of course, we might start with finding an external reference source like Wolfram Alpha, as above, but this is not always possible.

Another way to reassure is to compute 'reference' values at higher precision with which to compare the results of our iterative com-
putations using built-in like double. They should agree within the tolerance that was set.

The result of static_casting to double from a higher-precision type like cpp_bin_float_50 is guaranteed to be the nearest
representable double value.

For example, the cube root functions in our example for cbrt(28.) return

std::cbrt<double>(28.) = 3.0365889718756627

WolframAlpha says 3.036588971875662519420809578505669635581453977248111123242141...

static_cast<double>(3.03658897187566251942080957850) = 3.0365889718756627

This example cbrt(28.) = 3.0365889718756627

Tip

To ensure that all potentially significant decimal digits are displayed use std::numeric_limits<T>::max_di-
gits10 (or if not available on older platforms or compilers use 2+std::numeric_limits<double>::di-
gits*3010/10000).

Ideally, values should agree to std::numeric-limits<T>::digits10 decimal digits.

This also means that a 'reference' value to be input or static_cast should have at least max_digits10 decimal
digits (17 for 64-bit double).

If we wish to compute higher-precision values then, on some platforms, we may be able to use long double with a higher precision
than double to compare with the very common double and/or a more efficient built-in quad floating-point type like __float128.

Almost all platforms can easily use Boost.Multiprecision, for example, cpp_dec_float or a binary type cpp_bin_float types, to compute
values at very much higher precision.

Note

With multiprecision types, it is debatable whether to use the type T for computing the initial guesses. Type double
is like to be accurate enough for the method used in these examples. This would limit the range of possible values
to that of double. There is also the cost of conversion to and from type T to consider. In these examples, double
is used via typedef double guess_type.

Since the functors and functions used above are templated on the value type, we can very simply use them with any of the
Boost.Multiprecision types. As a reminder, here's our toy cube root function using 2 derivatives and C++11 lambda functions to find
the root:
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template <class T>
T cbrt_2deriv_lambda(T x)
{

// return cube root of x using 1st and 2nd derivatives and Halley.
//using namespace std;  // Help ADL of std functions.
using namespace boost::math::tools;
int exponent;
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
T guess = ldexp(1., exponent / 3); // Rough guess is to divide the expo↵

nent by three.
T min = ldexp(0.5, exponent / 3); // Minimum possible value is half our ↵

guess.
T max = ldexp(2., exponent / 3); // Maximum possible value is twice our ↵

guess.
const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accur↵

acy for type T.
// digits used to control how accurate to try to make the result.
int get_digits = static_cast<int>(digits * 0.4); // Accuracy triples with each step, so ↵

stop when just
// over one third of the digits are correct.
boost::uintmax_t maxit = 20;
T result = halley_iterate(

// lambda function:
[x](const T& g){ return std::make_tuple(g * g * g - x, 3 * g * g, 6 * g); },
guess, min, max, get_digits, maxit);

return result;
}

Some examples below are 50 decimal digit decimal and binary types (and on some platforms a much faster float128 or quad_float
type ) that we can use with these includes:

#include <boost/multiprecision/cpp_bin_float.hpp> // For cpp_bin_float_50.
#include <boost/multiprecision/cpp_dec_float.hpp> // For cpp_dec_float_50.
#ifndef _MSC_VER // float128 is not yet supported by Microsoft compiler at 2013.
#  include <boost/multiprecision/float128.hpp> // Requires libquadmath.
#endif

Some using statements simplify their use:

using boost::multiprecision::cpp_dec_float_50; // decimal.
using boost::multiprecision::cpp_bin_float_50; // binary.

#ifndef _MSC_VER // Not supported by Microsoft compiler.
using boost::multiprecision::float128;

#endif

They can be used thus:
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std::cout.precision(std::numeric_limits<cpp_dec_float_50>::digits10);

cpp_dec_float_50 two = 2; // 
cpp_dec_float_50 r = cbrt_2deriv(two);
std::cout << "cbrt(" << two << ") = " << r << std::endl;

r = cbrt_2deriv(2.); // Passing a double, so ADL will compute a double precision result.
std::cout << "cbrt(" << two << ") = " << r << std::endl;
// cbrt(2) = 1.2599210498948731906665443602832965552806854248047 'wrong' from digits 17 onwards!
r = cbrt_2deriv(static_cast<cpp_dec_float_50>(2.)); // Passing a cpp_dec_float_50, 
// so will compute a cpp_dec_float_50 precision result.
std::cout << "cbrt(" << two << ") = " << r << std::endl;
r = cbrt_2deriv<cpp_dec_float_50>(2.); // Explictly a cpp_dec_float_50, so will compute a ↵
cpp_dec_float_50 precision result.
std::cout << "cbrt(" << two << ") = " << r << std::endl;
// cpp_dec_float_50 1.2599210498948731647672106072782283505702514647015

A reference value computed by Wolfram Alpha is

N[2^(1/3), 50] 1.2599210498948731647672106072782283505702514647015

which agrees exactly.

To show values to their full precision, it is necessary to adjust the std::ostream precision to suit the type, for example:

template <typename T>
T show_cube_root(T value)
{ // Demonstrate by printing the root using all definitely significant digits.
std::cout.precision(std::numeric_limits<T>::digits10);
T r = cbrt_2deriv(value);
std::cout << "value = " << value << ", cube root =" << r << std::endl;
return r;

}

show_cube_root(2.);
show_cube_root(2.L);
show_cube_root(two);

which outputs:

cbrt(2) = 1.2599210498948731647672106072782283505702514647015

value = 2, cube root =1.25992104989487
value = 2, cube root =1.25992104989487
value = 2, cube root =1.2599210498948731647672106072782283505702514647015
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Tip

Be very careful about the floating-point type T that is passed to the root-finding function. Carelessly passing a integer
by writing cpp_dec_float_50 r = cbrt_2deriv(2); or show_cube_root(2); will provoke many warnings
and compile errors.

Even show_cube_root(2.F); will produce warnings because typedef double guess_type defines the type
used to compute the guess and bracket values as double.

Even more treacherous is passing a double as in cpp_dec_float_50 r = cbrt_2deriv(2.); which silently
gives the 'wrong' result, computing a double result and then converting to cpp_dec_float_50! All digits beyond
max_digits10 will be incorrect. Making the cbrt type explicit with cbrt_2deriv<cpp_dec_float_50>(2.);
will give you the desired 50 decimal digit precision result.

Full code of this example is at root_finding_multiprecision_example.cpp.

Generalizing to Compute the nth root

If desired, we can now further generalize to compute the nth root by computing the derivatives at compile-time using the rules for
differentiation and boost::math::pow<N> where template parameter N is an integer and a compile time constant. Our functor and
function now have an additional template parameter N, for the root required.

Note

Since the powers and derivatives are fixed at compile time, the resulting code is as efficient as as if hand-coded as
the cube and fifth-root examples above. A good compiler should also optimise any repeated multiplications.

Our nth root functor is

template <int N, class T = double>
struct nth_functor_2deriv
{ // Functor returning both 1st and 2nd derivatives.
BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types ↵

can be used!");
BOOST_STATIC_ASSERT_MSG((N > 0) == true, "root N must be > 0!");

nth_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
{ /* Constructor stores value a to find root of, for example: */ }

// using boost::math::tuple; // to return three values.
std::tuple<T, T, T> operator()(T const& x)
{
// Return f(x), f'(x) and f''(x).
using boost::math::pow;
T fx = pow<N>(x) - a; // Difference (estimate x^n - a).
T dx = N * pow<N - 1>(x); // 1st derivative f'(x).
T d2x = N * (N - 1) * pow<N - 2 >(x); // 2nd derivative f''(x).

return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
}

private:
T a; // to be 'nth_rooted'.

};

and our nth root function is
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template <int N, class T = double>
T nth_2deriv(T x)
{ // return nth root of x using 1st and 2nd derivatives and Halley.

using namespace std; // Help ADL of std functions.
using namespace boost::math::tools; // For halley_iterate.

BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types ↵
can be used!");
BOOST_STATIC_ASSERT_MSG((N > 0) == true, "root N must be > 0!");
BOOST_STATIC_ASSERT_MSG((N > 1000) == false, "root N is too big!");

typedef double guess_type; // double may restrict (exponent) range for a multiprecision T?

int exponent;
frexp(static_cast<guess_type>(x), &exponent); // Get exponent of z (ignore man↵

tissa).
T guess = ldexp(static_cast<guess_type>(1.), exponent / N); // Rough guess is to divide the ↵

exponent by n.
T min = ldexp(static_cast<guess_type>(1.) / 2, exponent / N); // Minimum possible value is ↵

half our guess.
T max = ldexp(static_cast<guess_type>(2.), exponent / N); // Maximum possible value is ↵

twice our guess.

int digits = std::numeric_limits<T>::digits * 0.4; // Accuracy triples with each ↵
step, so stop when

// slightly more than one third ↵
of the digits are correct.
const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit;
T result = halley_iterate(nth_functor_2deriv<N, T>(x), guess, min, max, digits, it);
return result;

}

show_nth_root<5, double>(2.);
show_nth_root<5, long double>(2.);

#ifndef _MSC_VER // float128 is not supported by Microsoft compiler 2013.
show_nth_root<5, float128>(2);

#endif
show_nth_root<5, cpp_dec_float_50>(2); // dec
show_nth_root<5, cpp_bin_float_50>(2); // bin

produces an output similar to this

Using MSVC 2013

nth Root finding Example.
Type double value = 2, 5th root = 1.14869835499704
Type long double value = 2, 5th root = 1.14869835499704
Type class boost::multiprecision::number<class boost::multipreci↵
sion::backends::cpp_dec_float<50,int,void>,1> value = 2,
5th root = 1.1486983549970350067986269467779275894438508890978

Type class boost::multiprecision::number<class boost::multipreci↵
sion::backends::cpp_bin_float<50,10,void,int,0,0>,0> value = 2,
5th root = 1.1486983549970350067986269467779275894438508890978
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Tip

Take care with the type passed to the function. It is best to pass a double or greater-precision floating-point type.

Passing an integer value, for example, nth_2deriv<5>(2) will be rejected, while nth_2deriv<5, double>(2)

converts the integer to double.

Avoid passing a float value that will provoke warnings (actually spurious) from the compiler about potential loss
of data, as noted above.

Warning

Asking for unreasonable roots, for example, show_nth_root<1000000>(2.); may lead to Loss of significance
like Type double value = 2, 1000000th root = 1.00000069314783. Use of the the pow function is
more sensible for this unusual need.

Full code of this example is at root_finding_n_example.cpp.

A More complex example - Inverting the Elliptic Integrals

The arc length of an ellipse with radii a and b is given by:

L(a, b) = 4aE(k)

With:

k = √(1 - b2/a2)

Where E(k) is the complete elliptic integral of the second kind - see ellint_2.

Let's suppose we know the arc length and one radii, we can then calculate the other radius by inverting the formula above. We'll
begin by encoding the above formula into a functor that our root finding algorithms can call. Note that while not completely obvious
from the formula above, the function is completely symmetrical in the two radii - which can be interchanged at will - in this case we
need to make sure that a >= b so that we don't accidentally take the square root of a negative number:

template <typename T = double>
struct elliptic_root_functor_noderiv
{ //  Nth root of x using only function - no derivatives.

elliptic_root_functor_noderiv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius)
{ // Constructor just stores value a to find root of.
}
T operator()(T const& x)
{

using std::sqrt;
// return the difference between required arc-length, and the calculated arc-length for an
// ellipse with radii m_radius and x:
T a = (std::max)(m_radius, x);
T b = (std::min)(m_radius, x);
T k = sqrt(1 - b * b / (a * a));
return 4 * a * boost::math::ellint_2(k) - m_arc;

}
private:

T m_arc; // length of arc.
T m_radius; // one of the two radii of the ellipse

}; // template <class T> struct elliptic_root_functor_noderiv
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We'll also need a decent estimate to start searching from, the approximation:

L(a, b) ≈ 4√(a2 + b2)

Is easily inverted to give us what we need, which using derivative-free root finding leads to the algorithm:

template <class T = double>
T elliptic_root_noderiv(T radius, T arc)
{ // return the other radius of an ellipse, given one radii and the arc-length

using namespace std; // Help ADL of std functions.
using namespace boost::math::tools; // For bracket_and_solve_root.

T guess = sqrt(arc * arc / 16 - radius * radius);
T factor = 1.2; // How big steps to take when searching.

const boost::uintmax_t maxit = 50; // Limit to maximum iterations.
boost::uintmax_t it = maxit; // Initally our chosen max iterations, but updated with ↵

actual.
bool is_rising = true; // arc-length increases if one radii increases, so func↵

tion is rising
// Define a termination condition, stop when nearly all digits are correct, but allow for
// the fact that we are returning a range, and must have some inaccuracy in the elliptic in↵

tegral:
eps_tolerance<T> tol(std::numeric_limits<T>::digits - 2);
// Call bracket_and_solve_root to find the solution, note that this is a rising function:
std::pair<T, T> r = bracket_and_solve_root(elliptic_root_functor_noderiv<T>(arc, radi↵

us), guess, factor, is_rising, tol, it);
// Result is midway between the endpoints of the range:
return r.first + (r.second - r.first) / 2;

} // template <class T> T elliptic_root_noderiv(T x)

This function generally finds the root within 8-10 iterations, so given that the runtime is completely dominated by the cost of calling
the ellliptic integral it would be nice to reduce that count somewhat. We'll try to do that by using a derivative based method, the de-
rivatives of this function are rather hard to work out by hand, but fortunately Wolfram Alpha can do the grunt work for us to give:

d/da L(a, b) = 4(a2E(k) - b2K(k)) / (a2 - b2)

Note that now we have two elliptic integral calls to get the derivative, so our functor will be at least twice as expensive to call as the
derivative-free one above: we'll have to reduce the iteration count quite substantially to make a difference!

Here's the revised functor:
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template <class T = double>
struct elliptic_root_functor_1deriv
{ // Functor also returning 1st derviative.

BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type ↵
types can be used!");

elliptic_root_functor_1deriv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius)
{ // Constructor just stores value a to find root of.
}
std::pair<T, T> operator()(T const& x)
{

using std::sqrt;
// Return the difference between required arc-length, and the calculated arc-length for an
// ellipse with radii m_radius and x, plus it's derivative.
// See http://www.wolframalpha.com/input/?i=d%2Fda+[4+*+a+*+EllipticE%281+-+b^2%2Fa^2%29]
// We require two elliptic integral calls, but from these we can calculate both
// the function and it's derivative:
T a = (std::max)(m_radius, x);
T b = (std::min)(m_radius, x);
T a2 = a * a;
T b2 = b * b;
T k = sqrt(1 - b2 / a2);
T Ek = boost::math::ellint_2(k);
T Kk = boost::math::ellint_1(k);
T fx = 4 * a * Ek - m_arc;
T dfx = 4 * (a2 * Ek - b2 * Kk) / (a2 - b2);
return std::make_pair(fx, dfx);

}
private:

T m_arc; // length of arc.
T m_radius; // one of the two radii of the ellipse

}; // struct elliptic_root__functor_1deriv

The root finding code is now almost the same as before, but we'll make use of Newton iteration to get the result:

template <class T = double>
T elliptic_root_1deriv(T radius, T arc)
{

using namespace std; // Help ADL of std functions.
using namespace boost::math::tools; // For newton_raphson_iterate.

BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type ↵
types can be used!");

T guess = sqrt(arc * arc / 16 - radius * radius);
T min = 0; // Minimum possible value is zero.
T max = arc; // Maximum possible value is the arc length.

// Accuracy doubles at each step, so stop when just over half of the digits are
// correct, and rely on that step to polish off the remainder:
int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.6);
const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit;
T result = newton_raphson_iterate(elliptic_root_functor_1deriv<T>(arc, radi↵

us), guess, min, max, get_digits, it);
return result;

} // T elliptic_root_1_deriv  Newton-Raphson

The number of iterations required for double precision is now usually around 4 - so we've slightly more than halved the number of
iterations, but made the functor twice as expensive to call!
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Interestingly though, the second derivative requires no more expensive elliptic integral calls than the first does, in other words it
comes essentially "for free", in which case we might as well make use of it and use Halley-iteration. This is quite a typical situation
when inverting special-functions. Here's the revised functor:

template <class T = double>
struct elliptic_root_functor_2deriv
{ // Functor returning both 1st and 2nd derivatives.

BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type ↵
types can be used!");

elliptic_root_functor_2deriv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius) {}
std::tuple<T, T, T> operator()(T const& x)
{

using std::sqrt;
// Return the difference between required arc-length, and the calculated arc-length for an
// ellipse with radii m_radius and x, plus it's derivative.
// See http://www.wolframalpha.com/input/?i=d^2%2Fda^2+[4+*+a+*+EllipticE%281+-+b^2%2Fa^2%29]
// for the second derivative.
T a = (std::max)(m_radius, x);
T b = (std::min)(m_radius, x);
T a2 = a * a;
T b2 = b * b;
T k = sqrt(1 - b2 / a2);
T Ek = boost::math::ellint_2(k);
T Kk = boost::math::ellint_1(k);
T fx = 4 * a * Ek - m_arc;
T dfx = 4 * (a2 * Ek - b2 * Kk) / (a2 - b2);
T dfx2 = 4 * b2 * ((a2 + b2) * Kk - 2 * a2 * Ek) / (a * (a2 - b2) * (a2 - b2));
return std::make_tuple(fx, dfx, dfx2);

}
private:

T m_arc; // length of arc.
T m_radius; // one of the two radii of the ellipse

};

The actual root finding code is almost the same as before, except we can use Halley, rather than Newton iteration:

template <class T = double>
T elliptic_root_2deriv(T radius, T arc)
{

using namespace std; // Help ADL of std functions.
using namespace boost::math::tools; // For halley_iterate.

BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type ↵
types can be used!");

T guess = sqrt(arc * arc / 16 - radius * radius);
T min = 0; // Minimum possible value is zero.
T max = arc; // radius can't be larger than the arc length.

// Accuracy triples at each step, so stop when just over one-third of the digits
// are correct, and the last iteration will polish off the remaining digits:
int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.4);
const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit;
T result = halley_iterate(elliptic_root_functor_2deriv<T>(arc, radius), guess, min, max, get_di↵

gits, it);
return result;

} // nth_2deriv Halley

While this function uses only slightly fewer iterations (typically around 3) to find the root, compared to the original derivative free
method, we've moved from 8-10 elliptic integral calls to 6.
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Full code of this example is at root_elliptic_finding.cpp.

The Effect of a Poor Initial Guess
It's instructive to take our "toy" example algorithms, and use deliberately bad initial guesses to see how the various root finding al-
gorithms fair. We'll start with the cubed root, and using the cube root of 500 as the test case:

5 0 0
(≈47.6)

100%
(≈15.87)

5 0 %
(≈11.91)

2 0 %
(≈9.52)

1 0 %
(≈8.73)

5 %
(≈8.33)

- 5 %
(≈7.54)

- 1 0 %
(≈7.14)

- 2 0 %
(≈6.35)

- 5 0 %
(≈3.96)

-100%
(≈3.97)

-500%
(≈1.323)

Initial
Guess=

137111111111111108812brack-
et_and_solve_root

9765544557712n e w -
ton_it-
erate

644333333447h a l -
ley_it-
erate

8554333346611s c h -
roder_it-
erate

As you can see bracket_and_solve_root is relatively insensitive to starting location - as long as you don't start many orders of
magnitude away from the root it will take roughly the same number of steps to bracket the root and solve it. On the other hand the
derivative based methods are slow to start, but once they have some digits correct they increase precision exceptionally fast: they
are therefore quite sensitive to the initial starting location.

The next table shows the number of iterations required to find the second radius of an ellipse with first radius 50 and arc-length 500:

5 0 0
(≈741.7)

100%
(≈247.2)

5 0 %
(≈185.4)

2 0 %
(≈148.3)

1 0 %
(≈136)

5 %
(≈129.8)

- 5 %
(≈117.4)

- 1 0 %
(≈111.3)

- 2 0 %
(≈98.9)

- 5 0 %
(≈61.81)

-100%
(≈61.81)

-500%
(≈20.6)

Initial
Guess=

10689877885511brack-
et_and_solve_root

444333333444n e w -
ton_it-
erate

333332233334h a l -
ley_it-
erate

333332233334s c h -
roder_it-
erate

Interestingly this function is much more resistant to a poor initial guess when using derivatives.

Examples Where Root Finding Goes Wrong
There are many reasons why root root finding can fail, here are just a few of the more common examples:

673

Tools: Root Finding and Minimization Al-
gorithms

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/root_elliptic_finding.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Local Minima

If you start in the wrong place, such as z0 here:

Z 0

Then almost any root finding algorithm will descend into a local minima rather than find the root.

Flatlining

In this example, we're starting from a location (z0) where the first derivative is essentially zero:

Z 0

In this situation the next iteration will shoot off to infinity (assuming we're using derivatives that is). Our code guards against this
by insisting that the root is always bracketed, and then never stepping outside those bounds. In a case like this, no root finding algorithm
can do better than bisecting until the root is found.

Note that there is no scale on the graph, we have seen examples of this situation occur in practice even when several decimal places
of the initial guess z0 are correct.

This is really a special case of a more common situation where root finding with derivatives is divergent. Consider starting at z0 in
this case:
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Z 0

An initial Newton step would take you further from the root than you started, as will all subsequent steps.

Micro-stepping / Non-convergence

Consider starting at z0 in this situation:

Z 0

The first derivative is essentially infinite, and the second close to zero (and so offers no correction if we use it), as a result we take
a very small first step. In the worst case situation, the first step is so small - perhaps even so small that subtracting from z0 has no
effect at the current working precision - that our algorithm will assume we are at the root already and terminate. Otherwise we will
take lot's of very small steps which never converge on the root: our algorithms will protect against that by reverting to bisection.

An example of this situation would be trying to find the root of e-1/z2

 - this function has a single root at z = 0, but for z0 < 0 neither
Newton nor Halley steps will ever converge on the root, and for z0 > 0 the steps are actually divergent.

Locating Function Minima using Brent's algorithm

Synopsis

#include <boost/math/tools/minima.hpp>
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template <class F, class T>
std::pair<T, T> brent_find_minima(F f, T min, T max, int bits);

template <class F, class T>
std::pair<T, T> brent_find_minima(F f, T min, T max, int bits, boost::uintmax_t& max_iter);

Description

These two functions locate the minima of the continuous function f using Brent's method: specifically it uses quadratic interpolation
to locate the minima, or if that fails, falls back to a golden-section search.

Parameters

f The function to minimise: a function object (functor) that should be smooth over the range [min, max], with no maxima
occurring in that interval.

min The lower endpoint of the range in which to search for the minima.

max The upper endpoint of the range in which to search for the minima.

bits The number of bits precision to which the minima should be found.
Note that in principle, the minima can not be located to greater accuracy than the square root of machine epsilon (for
64-bit double, sqrt(1e-16)≅1e-8), therefore the value of bits will be ignored if it's greater than half the number of bits
in the mantissa of T.

max_iter The maximum number of iterations to use in the algorithm, if not provided the algorithm will just keep on going until
the minima is found.

Returns:

A pair of type T containing the value of the abscissa at the minima and the value of f(x) at the minima.

Tip

Defining BOOST_MATH_INSTRUMENT will show some parameters, for example:

Type T is double
bits = 24, maximum 26
tolerance = 1.19209289550781e-007
seeking minimum in range min-4 to 1.33333333333333
maximum iterations 18446744073709551615
10 iterations.

Brent Minimisation Example

As a demonstration, we replicate this Wikipedia example minimising the function y= (x+3)(x-1)2.

It is obvious from the equation and the plot that there is a minimum at exactly one and the value of the function at one is exactly
zero.

Tip

This observation shows that an analytical or Closed-form expression solution always beats brute-force hands-down
for both speed and precision.
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y=(x+3)(x-1)²

First an include is needed:

#include <boost/math/tools/minima.hpp>

This function is encoded in C++ as function object (functor) using double precision thus:

struct funcdouble
{
double operator()(double const& x)
{ //
return (x + 3) * (x - 1) * (x - 1); // (x + 3)(x - 1)^2

}
};

The Brent function is conveniently accessed through a using statement (noting sub-namespace ::tools).

The search minimum and maximum are chosen as -4 to 4/3 (as in the Wikipedia example).

Tip

S A Stage (reference 6) reports that the Brent algorithm is slow to start, but fast to converge, so choosing a tight
min-max range is good.

For simplicity, we set the precision parameter bits to std::numeric_limits<double>::digits, which is effectively the
maximum possible i.e. std::numeric_limits<double>::digits/2. Nor do we provide a maximum iterations parameter
max_iter, (perhaps unwidely), so the function will iterate until it finds a minimum.

int bits = std::numeric_limits<double>::digits;

std::pair<double, double> r = brent_find_minima(funcdouble(), -4., 4. / 3, bits);

std::cout.precision(std::numeric_limits<double>::digits10);
std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second << std::endl;
// x at minimum = 1.00000000112345, f(1.00000000112345) = 5.04852568272458e-018

The resulting std::pair contains the minimum close to one and the minimum value close to zero.

x at minimum = 1.00000000112345, f(1.00000000112345) = 5.04852568272458e-018
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The differences from the expected one and zero are less than the uncertainty (for double) 1.5e-008 calculated from
sqrt(std::numeric_limits<double>::digits) == 53.

We can use it like this to check that the two values are close-enough to those expected,

using boost::math::fpc::is_close_to;
using boost::math::fpc::is_small;

double uncertainty = sqrt(std::numeric_limits<double>::digits);
is_close_to(1., r.first, uncertainty);
is_small(r.second, uncertainty);

x == 1 (compared to uncertainty 0.00034527) is true
f(x) == 0 (compared to uncertainty 0.00034527) is true

It is possible to make this comparison more generally with a templated function, returning true when this criterion is met, for example:

//
template <class T = double>
bool close(T expect, T got, T tolerance)
{
using boost::math::fpc::is_close_to;
using boost::math::fpc::is_small;

if (is_small<T>(expect, tolerance))
{
return is_small<T>(got, tolerance);

}
else
{
return is_close_to<T>(expect, got, tolerance);

}
}

In practical applications, we might want to know how many iterations, and maybe to limit iterations and perhaps to trade some loss
of precision for speed, for example:

const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit;
r = brent_find_minima(funcdouble(), -4., 4. / 3, bits, it);
std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second
<< " after " << it << " iterations. " << std::endl;

limits to a maximum of 20 iterations (a reasonable estimate for this application, even for higher precision shown later).

The parameter it is updated to return the actual number of iterations (so it may be useful to also keep a record of the limit in maxit).

It is neat to avoid showing insignificant digits by computing the number of decimal digits to display.

std::streamsize prec = static_cast<int>(2 + sqrt(bits)); // Number of significant decimal digits.
std::cout << "Showing " << bits << " bits precision with " << prec
<< " decimal digits from tolerance " << sqrt(std::numeric_limits<double>::epsilon())
<< std::endl;

std::streamsize precision = std::cout.precision(prec); // Save.

std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second
<< " after " << it << " iterations. " << std::endl;
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Showing 53 bits precision with 9 decimal digits from tolerance 1.49011611938477e-008
x at minimum = 1, f(1) = 5.04852568e-018

We can also half the number of precision bits from 52 to 26.

bits /= 2; // Half digits precision (effective maximum).
double epsilon_2 = boost::math::pow<-(std::numeric_limits<double>::digits/2 - 1), double>(2);

std::cout << "Showing " << bits << " bits precision with " << prec
<< " decimal digits from tolerance " << sqrt(epsilon_2)
<< std::endl;

std::streamsize precision = std::cout.precision(prec); // Save.

boost::uintmax_t it = maxit;
r = brent_find_minima(funcdouble(), -4., 4. / 3, bits, it);
std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second << std::endl;
std::cout << it << " iterations. " << std::endl;

showing no change in the result and no change in the number of iterations, as expected.

It is only if we reduce the precision to a quarter, specifying only 13 precision bits

bits /= 2; // Quarter precision.
double epsilon_4 = boost::math::pow<-(std::numeric_limits<double>::digits / 4 - 1), double>(2);

std::cout << "Showing " << bits << " bits precision with " << prec
<< " decimal digits from tolerance " << sqrt(epsilon_4)
<< std::endl;

std::streamsize precision = std::cout.precision(prec); // Save.

boost::uintmax_t it = maxit;
r = brent_find_minima(funcdouble(), -4., 4. / 3, bits, it);
std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second
<< ", after " << it << " iterations. " << std::endl;

that we reduce the number of iterations from 10 to 7 and the result significantly differing from one and zero.

Showing 13 bits precision with 9 decimal digits from tolerance 0.015625
x at minimum = 0.9999776, f(0.9999776) = 2.0069572e-009 after 7 iterations.

Templating on floating-point type

If we want to switch the floating-point type, then the functor must be revised. Since the functor is stateless, the easiest option is to
simply make operator() a template member function:

struct func
{
template <class T>
T operator()(T const& x)
{ //
return (x + 3) * (x - 1) * (x - 1); //

}
};

The brent_find_minima function can now be used in template form.
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std::cout.precision(std::numeric_limits<long double>::digits10);
long double bracket_min = -4.;
long double bracket_max = 4. / 3;
int bits = std::numeric_limits<long double>::digits;
const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit;

std::pair<long double, long double> r = brent_find_minima(func(), bracket_min, brack↵
et_max, bits, it);
std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second
<< ", after " << it << " iterations. " << std::endl;

The form shown uses the floating-point type long double by deduction, but it is also possible to be more explicit, for example:

std::pair<long double, long double> r = brent_find_minima<func, long double>
(func(), bracket_min, bracket_max, bits, it);

In order to show the use of multiprecision below, it may be convenient to write a templated function to use this.

template <class T>
void show_minima()
{
using boost::math::tools::brent_find_minima;
try
{ // Always use try'n'catch blocks with Boost.Math to get any error messages.

int bits = std::numeric_limits<T>::digits/2; // Maximum is digits/2;
std::streamsize prec = static_cast<int>(2 + sqrt(bits)); // Number of significant decimal ↵

digits.
std::streamsize precision = std::cout.precision(prec); // Save.

std::cout << "\n\nFor type  " << typeid(T).name()
<< ",\n  epsilon = " << std::numeric_limits<T>::epsilon()
// << ", precision of " << bits << " bits"
<< ",\n  the maximum theoretical precision from Brent minimization is " << sqrt(std::numer↵

ic_limits<T>::epsilon())
<< "\n  Displaying to std::numeric_limits<T>::digits10 " << prec << " significant decimal ↵

digits."
<< std::endl;

const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit;
// Construct using string, not double, avoids loss of precision.
//T bracket_min = static_cast<T>("-4");
//T bracket_max = static_cast<T>("1.3333333333333333333333333333333333333333333333333");

//  Construction from double may cause loss of precision for multiprecision types like ↵
cpp_bin_float.

// but brackets values are good enough for using Brent minimization.
T bracket_min = static_cast<T>(-4);
T bracket_max = static_cast<T>(1.3333333333333333333333333333333333333333333333333);

std::pair<T, T> r = brent_find_minima<func, T>(func(), bracket_min, bracket_max, bits, it);

std::cout << "  x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second;
if (it < maxit)
{
std::cout << ",\n  met " << bits << " bits precision" << ", after " << it << " itera↵

tions." << std::endl;
}
else
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{
std::cout << ",\n  did NOT meet " << bits << " bits precision" << " after " << it << " it↵

erations!" << std::endl;
}
// Check that result is that expected (compared to theoretical uncertainty).
T uncertainty = sqrt(std::numeric_limits<T>::epsilon());
//std::cout << std::boolalpha << "x == 1 (compared to uncertainty " << uncertainty << ") is ↵

" << close(static_cast<T>(1), r.first, uncertainty) << std::endl;
//std::cout << std::boolalpha << "f(x) == (0 compared to uncertainty " << uncertainty << ") ↵

is " << close(static_cast<T>(0), r.second, uncertainty) << std::endl;
// Problems with this using multiprecision with expression template on?
std::cout.precision(precision); // Restore.

}
catch (const std::exception& e)
{ // Always useful to include try & catch blocks because default policies
// are to throw exceptions on arguments that cause errors like underflow, overflow.
// Lacking try & catch blocks, the program will abort without a message below,
// which may give some helpful clues as to the cause of the exception.
std::cout <<
"\n""Message from thrown exception was:\n   " << e.what() << std::endl;

}
} // void show_minima()

We can use this with all built-in floating-point types, for example

show_minima<float>();
show_minima<double>();
show_minima<long double>();

and, on platforms that provide it, a 128-bit quad type. (See float128).

For this optional include, the build should define the macro BOOST_HAVE_QUADMATH:

#ifdef BOOST_HAVE_QUADMATH // Define only if GCC or Intel and have quadmath.lib or .dll library ↵
available.
using boost::multiprecision::float128;

#endif

or

// #ifndef _MSC_VER
#ifdef BOOST_HAVE_QUADMATH // Define only if GCC or Intel and have quadmath.lib or .dll library ↵
available.
show_minima<float128>(); // Needs quadmath_snprintf, sqrtQ, fabsq that are in in quadmath lib↵

rary.
#endif

Multiprecision

If a higher precision than double (or long double if that is more precise) is required, then this is easily achieved using
Boost.Multiprecision with some includes from

#include <boost/multiprecision/cpp_dec_float.hpp> // For decimal boost::multipreci↵
sion::cpp_dec_float_50.
#include <boost/multiprecision/cpp_bin_float.hpp> // For binary boost::multipreci↵
sion::cpp_bin_float_50;

and some typdefs.
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using boost::multiprecision::cpp_bin_float_50; // binary.

typedef boost::multiprecision::number<boost::multiprecision::cpp_bin_float<50>,
boost::multiprecision::et_on>
cpp_bin_float_50_et_on; // et_on is default so is same as cpp_bin_float_50.

typedef boost::multiprecision::number<boost::multiprecision::cpp_bin_float<50>,
boost::multiprecision::et_off>
cpp_bin_float_50_et_off;

using boost::multiprecision::cpp_dec_float_50; // decimal.

typedef boost::multiprecision::number<boost::multiprecision::cpp_dec_float<50>,
boost::multiprecision::et_on> // et_on is default so is same as cpp_dec_float_50.
cpp_dec_float_50_et_on;

typedef boost::multiprecision::number<boost::multiprecision::cpp_dec_float<50>,
boost::multiprecision::et_off>
cpp_dec_float_50_et_off;

Using thus

std::cout.precision(std::numeric_limits<cpp_bin_float_50>::digits10);

cpp_bin_float_50 fpv("-1.2345");
cpp_bin_float_50 absv;

absv = fpv < static_cast<cpp_bin_float_50>(0) ? -fpv : fpv;
std::cout << fpv << ' ' << absv << std::endl;

int bits = std::numeric_limits<cpp_bin_float_50>::digits / 2 - 2;

cpp_bin_float_50 bracket_min = static_cast<cpp_bin_float_50>("-4");
cpp_bin_float_50 bracket_max = stat↵
ic_cast<cpp_bin_float_50>("1.3333333333333333333333333333333333333333333333333");

std::cout << bracket_min << " " << bracket_max << std::endl;
const boost::uintmax_t maxit = 20;
boost::uintmax_t it = maxit;
std::pair<cpp_bin_float_50, cpp_bin_float_50> r = brent_find_minima(func(), bracket_min, brack↵
et_max, bits, it);

std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second
// x at minimum = 1, f(1) = 5.04853e-018
<< ", after " << it << " iterations. " << std::endl;

close(static_cast<cpp_bin_float_50>(1), r.first, sqrt(std::numeric_limits<cpp_bin_float_50>::ep↵
silon()));

and with our show function

show_minima<cpp_bin_float_50_et_on>(); //
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For type class boost::multiprecision::number<class boost::multipreci↵
sion::backends::cpp_bin_float<50, 10, void, int, 0, 0>, 1>,
epsilon = 5.3455294202e-51,
the maximum theoretical precision from Brent minimization is 7.311312755e-26
Displaying to std::numeric_limits<T>::digits10 11 significant decimal digits.
x at minimum = 1, f(1) = 5.6273022713e-58,
met 84 bits precision, after 14 iterations.

For type class boost::multiprecision::number<class boost::multipreci↵
sion::backends::cpp_bin_float<50, 10, void, int, 0, 0>, 1>,

Tip

One can usually rely on template argument deduction to avoid specifying the verbose multiprecision types, but great
care in needed with the type of the values provided to avoid confusing the compiler.

Tip

Using std::cout.precision(std::numeric_limits<T>::digits10); or std::cout.precision(std::nu-
meric_limits<T>::max_digits10); during debugging may be wise because it gives some warning if construction
of multiprecision values involves unintended conversion from double by showing trailing zero or random digits
after max_digits10, that is 17 for double, digit 18... may be just noise.

The complete example code is at brent_minimise_example.cpp.

Implementation

This is a reasonably faithful implementation of Brent's algorithm.
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Comparison of Root Finding Algorithms

Comparison of Cube Root Finding Algorithms

In the table below, the cube root of 28 was computed for three fundamental types floating-point types, and one Boost.Multiprecision
type cpp_bin_float using 50 decimal digit precision, using four algorithms.

The 'exact' answer was computed using a 100 decimal digit type:
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cpp_bin_float_100 full_an↵
swer ("3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895");

Times were measured using Boost.Timer using class cpu_timer.

• Its is the number of iterations taken to find the root.

• Times is the CPU time-taken in arbitrary units.

• Norm is a normalized time, in comparison to the quickest algorithm (with value 1.00).

• Dis is the distance from the nearest representation of the 'exact' root in bits. Distance from the 'exact' answer is measured by using
function Boost.Math float_distance. One or two bits distance means that all results are effectively 'correct'. Zero means 'exact' -
the nearest representable value for the floating-point type.

The cube-root function is a simple function, and is a contrived example for root-finding. It does allow us to investigate some of the
factors controlling efficiency that may be extrapolated to more complex functions.

The program used was root_finding_algorithms.cpp. 100000 evaluations of each floating-point type and algorithm were used and
the CPU times were judged from repeat runs to have an uncertainty of 10 %. Comparing MSVC for double and long double

(which are identical on this patform) may give a guide to uncertainty of timing.

The requested precision was set as follows:

Precision RequestedFunction

numeric_limits<T>::digits - 2TOMS748

floor(numeric_limits<T>::digits * 0.6)Newton

floor(numeric_limits<T>::digits * 0.4)Halley

floor(numeric_limits<T>::digits * 0.4)Schröder

• The C++ Standard cube root function std::cbrt is only defined for built-in or fundamental types, so cannot be used with any User-
Defined floating-point types like Boost.Multiprecision. This, and that the cube function is so impeccably-behaved, allows the
implementer to use many tricks to achieve a fast computation. On some platforms,std::cbrt appeared several times as quick
as the more general boost::math::cbrt, on other platforms / compiler options boost::math::cbrt is noticeably faster. In
general, the results are highly dependent on the code-generation / processor architecture selection compiler options used. One can
assume that the standard library will have been compiled with options nearly optimal for the platform it was installed on, where
as the user has more choice over the options used for Boost.Math. Pick something too general/conservative and performance suffers,
while selecting options that make use of the latest instruction set opcodes speed's things up noticeably.

• Two compilers in optimise mode were compared: GCC 4.9.1 using Netbeans IDS and Microsoft Visual Studio 2013 (Update 1)
on the same hardware. The number of iterations seemed consistent, but the relative run-times surprisingly different.

• boost::math::cbrt allows use with any user-defined floating-point type, conveniently Boost.Multiprecision. It too can take
some advantage of the good-behaviour of the cube function, compared to the more general implementation in the nth root-finding
examples. For example, it uses a polynomial approximation to generate a better guess than dividing the exponent by three, and
can avoid the complex checks in Newton-Raphson iteration required to prevent the search going wildly off-track. For a known
precision, it may also be possible to fix the number of iterations, allowing inlining and loop unrolling. It also algebraically simplifies
the Halley steps leading to a big reduction in the number of floating point operations required compared to a "black box" imple-
mentation that calculates the derivatives seperately and then combines them in the Halley code. Typically, it was found that
computation using type double took a few times longer when using the various root-finding algorithms directly rather than the
hand coded/optimized cbrt routine.
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• The importance of getting a good guess can be seen by the iteration count for the multiprecision case: here we "cheat" a little and
use the cube-root calculated to double precision as the initial guess. The limitation of this tactic is that the range of possible (ex-
ponent) values may be less than the multiprecision type.

• For fundamental types, there was little to choose between the three derivative methods, but for cpp_bin_float, Newton-Raphson
iteration was twice as fast. Note that the cube-root is an extreme test case as the cost of calling the functor is so cheap that the
runtimes are largely dominated by the complexity of the iteration code.

• Compiling with optimisation halved computation times, and any differences between algorithms became nearly negligible. The
optimisation speed-up of the TOMS Algorithm 748: enclosing zeros of continuous functions was especially noticable.

• Using a multiprecision type like cpp_bin_float_50 for a precision of 50 decimal digits took a lot longer, as expected because
most computation uses software rather than 64-bit floating-point hardware. Speeds are often more than 50 times slower.

• Using cpp_bin_float_50, TOMS Algorithm 748: enclosing zeros of continuous functions was much slower showing the benefit
of using derivatives. Newton-Raphson iteration was found to be twice as quick as either of the second-derivative methods: this is
an extreme case though, the function and its derivatives are so cheap to compute that we're really measuring the complexity of
the boilerplate root-finding code.

• For multiprecision types only one or two extra iterations are needed to get the remaining 35 digits, whatever the algorithm used.
(The time taken was of course much greater for these types).

• Using a 100 decimal-digit type only doubled the time and required only a very few more iterations, so the cost of extra precision
is mainly the underlying cost of computing more digits, not in the way the algorithm works. This confirms previous observations
using NTL A Library for doing Number Theory high-precision types.

Program root_finding_algorithms.cpp, Microsoft Visual C++ version 12.0, Dinkumware standard library version
610, Win32, x64
1000000 evaluations of each of 5 root_finding algorithms.

Table 53. Cube root(28) for float, double, long double and cpp_bin_float_50

cpp50long
d

doublefloat

DisNormTimesItsDisNormTimesItsDisNormTimesItsDisNormTimesItsAl-
gorithm

01.14906250011.046875011.046875001.0468750cbrt

-215.66218750729.34375001129.343750011-15.02343758TOMS748

01.04531250203.0140625602.7125000602.31093755New-
ton

02.310625000203.3156250403.3156250402.71250003Hal-
ley

02.913109375204.3203125504.0187500503.01406254Schröder

Program root_finding_algorithms.cpp, GNU C++ version 4.9.2, GNU libstdc++ version 20141030, Win32, x64
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1000000 evaluations of each of 5 root_finding algorithms.

Table 54. Cube root(28) for float, double, long double and cpp_bin_float_50

cpp50long
d

doublefloat

DisNormTimesItsDisNormTimesItsDisNormTimesItsDisNormTimesItsAl-
gorithm

01.13500000001.046875001.046875001.0468750cbrt

-214.445312507-113.6093751028.740625011-14.01875008TOMS748

-11.03140625203.7171875602.3109375602.0937505New-
ton

02.37171875204.7218750402.7125000402.0937503Hal-
ley

02.88703125206.0281250503.7171875502.31093754Schröder

Comparison of Nth-root Finding Algorithms

A second example compares four generalized nth-root finding algorithms for various n-th roots (5, 7 and 13) of a single value 28.0,
for four floating-point types, float, double, long double and a Boost.Multiprecision type cpp_bin_float_50. In each case
the target accuracy was set using our "recomended" accuracy limits (or at least limits that make a good starting point - which is likely
to give close to full accuracy without resorting to unnecessary iterations).

Precision RequestedFunction

numeric_limits<T>::digits - 2TOMS748

floor(numeric_limits<T>::digits * 0.6)Newton

floor(numeric_limits<T>::digits * 0.4)Halley

floor(numeric_limits<T>::digits * 0.4)Schröder

Tests used Microsoft Visual Studio 2013 (Update 1) and GCC 4.9.1 using source code root_n_finding_algorithms.cpp.

The timing uncertainty (especially using MSVC) is at least 5% of normalized time 'Norm'.

To pick out the 'best' and 'worst' algorithms are highlighted in blue and red. More than one result can be 'best' when normalized times
are indistinguishable within the uncertainty.

Program root_n_finding_algorithms.cpp, Microsoft Visual C++ version 12.0, Dinkumware
standard library version 610, Win32 Compiled in optimise mode., _X86_SSE2

Fraction of full accuracy 1
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Table 55. 5th root(28) for float, double, long double and cpp_bin_float_50 types, using _X86_SSE2

cpp50long
d

doublefloat

DisNormTimesItsDisNormTimesItsDisNormTimesItsDisNormTimesItsAlgo

07.521198431212.485571112.615761101.533207TOMS748

01.00159376-11.002254-11.00221401.002093New-
ton

01.7828437401.08243301.16256301.022142Hal-
ley

02.24356254-11.092453-11.11245301.042182Schröder

Table 56. 7th root(28) for float, double, long double and cpp_bin_float_50 types, using _X86_SSE2

cpp50long
d

doublefloat

DisNormTimesItsDisNormTimesItsDisNormTimesItsDisNormTimesItsAlgo

07.091573431423.087651523.057621512.1849312TOMS748

01.0022187801.00248601.00250601.002265New-
ton

01.9944062601.18293501.17293501.142574Hal-
ley

02.7761406701.28317601.27317601.262855Schröder

Table 57. 11th root(28) for float, double, long double and cpp_bin_float_50 types, using _X86_SSE2

cpp50long
d

doublefloat

DisNormTimesItsDisNormTimesItsDisNormTimesItsDisNormTimesItsAlgo

28.882357811722.947931422.9478414-22.2455612TOMS748

01.0026562901.00270701.00267701.002486New-
ton

01.7546406601.09293501.092905-11.022544Hal-
ley

02.8776250801.32356701.31351701.263126Schröder

Program root_n_finding_algorithms.cpp, Microsoft Visual C++ version 12.0, Dinkumware
standard library version 610, Win32 Compiled in optimise mode., _X64_AVX

Fraction of full accuracy 1
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Table 58. 5th root(28) for float, double, long double and cpp_bin_float_50 types, using _X64_AVX

cpp50long
d

doublefloat

DisNormTimesItsDisNormTimesItsDisNormTimesItsDisNormTimesItsAlgo

07.51903121212.494391112.534511101.502397TOMS748

01.00120316-11.001764-11.00178401.001593New-
ton

01.7420937401.13198301.14203301.061682Hal-
ley

02.18262504-11.152033-11.16206301.091732Schröder

Table 59. 7th root(28) for float, double, long double and cpp_bin_float_50 types, using _X64_AVX

cpp50long
d

doublefloat

DisNormTimesItsDisNormTimesItsDisNormTimesItsDisNormTimesItsAlgo

06.811148431423.176211523.136351512.1938512TOMS748

01.0016875801.00196601.00203601.001765New-
ton

01.9232343601.26246501.25254501.192094Hal-
ley

02.6845156701.40275601.34273601.272235Schröder

Table 60. 11th root(28) for float, double, long double and cpp_bin_float_50 types, using _X64_AVX

cpp50long
d

doublefloat

DisNormTimesItsDisNormTimesItsDisNormTimesItsDisNormTimesItsAlgo

28.851700001722.996401423.0664814-22.4246712TOMS748

01.0019218901.00214701.00212701.001936New-
ton

01.7032656601.17250501.212565-11.082094Hal-
ley

02.7853437801.39298701.44306701.282486Schröder

Program root_n_finding_algorithms.cpp, GNU C++ version 4.9.2, GNU libstdc++ version
20141030, Win32 Compiled in optimise mode., _X64_SSE2

Fraction of full accuracy 1
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Table 61. 5th root(28) for float, double, long double and cpp_bin_float_50 types, using _X64_SSE2

cpp50long
d

doublefloat

DisNormTimesItsDisNormTimesItsDisNormTimesItsDisNormTimesItsAlgo

07.56590621203.83579913.864321102.141937TOMS748

01.007812601.001515-11.00112401.00903New-
ton

01.7613750401.33201301.21135301.09982Hal-
ley

02.1817031401.362063-11.27142301.241122Schröder

Table 62. 7th root(28) for float, double, long double and cpp_bin_float_50 types, using _X64_SSE2

cpp50long
d

doublefloat

DisNormTimesItsDisNormTimesItsDisNormTimesItsDisNormTimesItsAlgo

07.10754681403.619061323.186211511.9735112TOMS748

01.0010625801.00251701.00195601.001785New-
ton

01.9921093601.37345501.24242501.101964Hal-
ley

02.7429062701.53384601.38270601.262255Schröder

Table 63. 11th root(28) for float, double, long double and cpp_bin_float_50 types, using _X64_SSE2

cpp50long
d

doublefloat

DisNormTimesItsDisNormTimesItsDisNormTimesItsDisNormTimesItsAlgo

28.831145311713.9410981423.0267914-22.2242912TOMS748

01.0012968901.00279701.00225701.001936New-
ton

01.6721718601.25348501.102485-11.021964Hal-
ley

02.7535625801.62453701.44323701.322546Schröder

Some tentative conclusions can be drawn from this limited exercise.

• Perhaps surprisingly, there is little difference between the various algorithms for fundamental types floating-point types. Using
the first derivatives (Newton-Raphson iteration) is usually the best, but while the improvement over the no-derivative TOMS Al-
gorithm 748: enclosing zeros of continuous functions is considerable in number of iterations, but little in execution time. This reflects
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the fact that the function we are finding the root for is trivial to evaluate, so runtimetimes are dominated by the time taken by the
boilerplate code in each method.

• The extra cost of evaluating the second derivatives (Halley or Schröder) is usually too much for any net benefit: as with the cube
root, these functors are so cheap to evaluate that the runtime is largely dominated by the complexity of the root finding method.

• For a Boost.Multiprecision floating-point type, the Newton-Raphson iteration is a clear winner with a several-fold gain over TOMS
Algorithm 748: enclosing zeros of continuous functions, and again no improvement from the second-derivative algorithms.

• The run-time of 50 decimal-digit Boost.Multiprecision is about 30-fold greater than double.

• The column 'dis' showing the number of bits distance from the correct result. The Newton-Raphson algorithm shows a bit or two
better accuracy than TOMS Algorithm 748: enclosing zeros of continuous functions.

• The goodness of the 'guess' is especially crucial for Boost.Multiprecision. Separate experiments show that evaluating the 'guess'
using double allows convergence to the final exact result in one or two iterations. So in this contrived example, crudely dividing
the exponent by N for a 'guess', it would be far better to use a pow<double> or , if more precise pow<long double>, function
to estimate a 'guess'. The limitation of this tactic is that the range of possible (exponent) values may be less than the multiprecision
type.

• Using floating-point extension SSE2 instructions made a modest ten-percent speedup.

• Using MSVC, there was some improvement using 64-bit, markedly for Boost.Multiprecision.

• The GCC compiler 4.9.1 using 64-bit was at least five-folder faster that 32-bit, apparently reflecting better optimization.

Clearly, your mileage will vary, but in summary, Newton-Raphson iteration seems the first choice of algorithm, and effort to find
a good 'guess' the first speed-up target, especially for Boost.Multiprecision. And of course, compiler optimisation is crucial for speed.

Comparison of Elliptic Integral Root Finding Algoritghms

A second example compares four root finding algorithms for locating the second radius of an ellipse with first radius 28 and arc
length 300, for four floating-point types, float, double, long double and a Boost.Multiprecision type cpp_bin_float_50.

Which is to say we're solving:

4xE(sqrt(1 - 282 / x2)) - 300 = 0

In each case the target accuracy was set using our "recomended" accuracy limits (or at least limits that make a good starting point -
which is likely to give close to full accuracy without resorting to unnecessary iterations).

Precision RequestedFunction

numeric_limits<T>::digits - 2TOMS748

floor(numeric_limits<T>::digits * 0.6)Newton

floor(numeric_limits<T>::digits * 0.4)Halley

floor(numeric_limits<T>::digits * 0.4)Schröder

Tests used Microsoft Visual Studio 2013 (Update 1) and GCC 4.9.1 using source code root_elliptic_finding.cpp.

The timing uncertainty (especially using MSVC) is at least 5% of normalized time 'Norm'.

To pick out the 'best' and 'worst' algorithms are highlighted in blue and red. More than one result can be 'best' when normalized times
are indistinguishable within the uncertainty.
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Program root_elliptic_finding.cpp, Microsoft Visual C++ version 12.0, Dinkumware standard
library version 610, Win32 Compiled in optimise mode., _X86_SSE2

Table 64. root with radius 28 and arc length 300) for float, double, long double and cpp_bin_float_50
types, using _X86_SSE2

cpp50long
d

doublefloat

DisNormTimesItsDisNormTimesItsDisNormTimesItsDisNormTimesItsAlgo

-31.538718751111.82968911.829689-11.435155TOMS748

01.20685937511.21640411.216404-11.264533New-
ton

01.00570312431.00531331.00531301.003592Hal-
ley

-21.30742187511.85984611.8810006-11.354843Schröder

Program root_elliptic_finding.cpp, Microsoft Visual C++ version 12.0, Dinkumware standard
library version 610, Win32 Compiled in optimise mode., _X64_AVX

Table 65. root with radius 28 and arc length 300) for float, double, long double and cpp_bin_float_50
types, using _X64_AVX

cpp50long
d

doublefloat

DisNormTimesItsDisNormTimesItsDisNormTimesItsDisNormTimesItsAlgo

-31.546984371111.701062911.7210469-11.335005TOMS748

01.20545312511.10687411.217344-11.294843New-
ton

01.00453125431.00625331.00609301.003752Hal-
ley

-21.24564062511.901187611.8211096-11.465463Schröder
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Program root_elliptic_finding.cpp, GNU C++ version 4.9.2, GNU libstdc++ version 20141030,
Win32 Compiled in optimise mode., _X64_SSE2

Table 66. root with radius 28 and arc length 300) for float, double, long double and cpp_bin_float_50
types, using _X64_SSE2

cpp50long
d

doublefloat

DisNormTimesItsDisNormTimesItsDisNormTimesItsDisNormTimesItsAlgo

-31.494796871141.691109801.518758-11.313285TOMS748

01.20387500511.19781411.166714-11.313283New-
ton

01.00321875471.00656311.00578301.002502Hal-
ley

-21.29414062531.26828401.277344-11.503753Schröder

Remarks:

• The function being solved is now moderately expensive to call, and twice as expensive to call when obtaining the derivative than
when not. Consequently there is very little improvement in moving from a derivative free method, to Newton iteration. However,
once you've calculated the first derivative the second comes almost for free, consequently the third order methods (Halley) does
much the best.

• Of the two second order methods, Halley does best as would be expected: the Schroder method offers better guarentees of quad-
ratic convergence, while Halley relies on a smooth function with a single root to give cubic convergence. It's not entirely clear
why Schroder iteration often does worse than Newton.
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Overview
This section contains internal utilities used by the library's implementation along with tools used in development and testing. These
tools have limitied documentation, but now have quite stable interfaces and may also be useful outside Boost.Math.

There is no doubt that these components can be improved, but they are also largely incidental to the main purpose of this library.

These tools are designed to "just get the job done", and receive minimal documentation here, in the hopes that they will help stimulate
further submissions to this library.
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Internal tools

Series Evaluation

Synopsis

#include <boost/math/tools/series.hpp>

namespace boost{ namespace math{ namespace tools{

template <class Functor, class U, class V>
inline typename Functor::result_type sum_series(Functor& func, const U& toler↵
ance, boost::uintmax_t& max_terms, const V& init_value);

template <class Functor, class U, class V>
inline typename Functor::result_type sum_series(Functor& func, const U& toler↵
ance, boost::uintmax_t& max_terms);

//
// The following interfaces are now deprecated:
//   
template <class Functor>
typename Functor::result_type sum_series(Functor& func, int bits);

template <class Functor>
typename Functor::result_type sum_series(Functor& func, int bits, boost::uintmax_t& max_terms);

template <class Functor, class U>
typename Functor::result_type sum_series(Functor& func, int bits, U init_value);

template <class Functor, class U>
typename Functor::result_type sum_series(Func↵
tor& func, int bits, boost::uintmax_t& max_terms, U init_value);

template <class Functor>
typename Functor::result_type kahan_sum_series(Functor& func, int bits);

template <class Functor>
typename Functor::result_type kahan_sum_series(Func↵
tor& func, int bits, boost::uintmax_t& max_terms);

}}} // namespaces

Description

These algorithms are intended for the summation of infinite series.

Each of the algorithms takes a nullary-function object as the first argument: the function object will be repeatedly invoked to pull
successive terms from the series being summed.

The second argument is the precision required, summation will stop when the next term is less than tolerance times the result. The
deprecated versions of sum_series take an integer number of bits here - internally they just convert this to a tolerance and forward
the call.

The third argument max_terms sets an upper limit on the number of terms of the series to evaluate. In addition, on exit the function
will set max_terms to the actual number of terms of the series that were evaluated: this is particularly useful for profiling the conver-
gence properties of a new series.
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The final optional argument init_value is the initial value of the sum to which the terms of the series should be added. This is useful
in two situations:

• Where the first value of the series has a different formula to successive terms. In this case the first value in the series can be passed
as the last argument and the logic of the function object can then be simplified to return subsequent terms.

• Where the series is being added (or subtracted) from some other value: termination of the series will likely occur much more
rapidly if that other value is passed as the last argument. For example, there are several functions that can be expressed as 1 - S(z)
where S(z) is an infinite series. In this case, pass -1 as the last argument and then negate the result of the summation to get the
result of 1 - S(z).

The two kahan_sum_series variants of these algorithms maintain a carry term that corrects for roundoff error during summation.
They are inspired by the Kahan Summation Formula that appears in What Every Computer Scientist Should Know About Floating-
Point Arithmetic. However, it should be pointed out that there are very few series that require summation in this way.

Example

Let's suppose we want to implement log(1+x) via its infinite series,

log(1 + x) = ∑
k=1

∞
(−1)k−1xk

k

We begin by writing a small function object to return successive terms of the series:

template <class T>
struct log1p_series
{

// we must define a result_type typedef:
typedef T result_type;

log1p_series(T x)
: k(0), m_mult(-x), m_prod(-1){}

T operator()()
{

// This is the function operator invoked by the summation
// algorithm, the first call to this operator should return
// the first term of the series, the second call the second 
// term and so on.
m_prod *= m_mult;
return m_prod / ++k;

}

private:
int k;
const T m_mult;
T m_prod;

};

Implementing log(1+x) is now fairly trivial:
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template <class T>
T log1p(T x)
{

// We really should add some error checking on x here!
assert(std::fabs(x) < 1);

// Construct the series functor:
log1p_series<T> s(x);
// Set a limit on how many iterations we permit:
boost::uintmax_t max_iter = 1000;
// Add it up, with enough precision for full machine precision:
return tools::sum_series(s, std::numeric_limits<T>::epsilon(), max_iter);

}

Continued Fraction Evaluation

Synopsis

#include <boost/math/tools/fraction.hpp>

namespace boost{ namespace math{ namespace tools{

template <class Gen, class U>
typename detail::fraction_traits<Gen>::result_type

continued_fraction_b(Gen& g, const U& tolerance, boost::uintmax_t& max_terms)

template <class Gen, class U>
typename detail::fraction_traits<Gen>::result_type

continued_fraction_b(Gen& g, const U& tolerance)

template <class Gen, class U>
typename detail::fraction_traits<Gen>::result_type

continued_fraction_a(Gen& g, const U& tolerance, boost::uintmax_t& max_terms)

template <class Gen, class U>
typename detail::fraction_traits<Gen>::result_type

continued_fraction_a(Gen& g, const U& tolerance)

//
// These interfaces are present for legacy reasons, and are now deprecated:
//
template <class Gen>
typename detail::fraction_traits<Gen>::result_type

continued_fraction_b(Gen& g, int bits);

template <class Gen>
typename detail::fraction_traits<Gen>::result_type

continued_fraction_b(Gen& g, int bits, boost::uintmax_t& max_terms);

template <class Gen>
typename detail::fraction_traits<Gen>::result_type

continued_fraction_a(Gen& g, int bits);

template <class Gen>
typename detail::fraction_traits<Gen>::result_type

continued_fraction_a(Gen& g, int bits, boost::uintmax_t& max_terms);

}}} // namespaces
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Description

Continued fractions are a common method of approximation. These functions all evaluate the continued fraction described by the
generator type argument. The functions with an "_a" suffix evaluate the fraction:

a1
b1 +

a2

b2 +
a3

b3 +
a4
b4

+ …

and those with a "_b" suffix evaluate the fraction:

b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4
b4

+ …

This latter form is somewhat more natural in that it corresponds with the usual definition of a continued fraction, but note that the
first a value returned by the generator is discarded. Further, often the first a and b values in a continued fraction have different defining
equations to the remaining terms, which may make the "_a" suffixed form more appropriate.

The generator type should be a function object which supports the following operations:

DescriptionExpression

The type that is the result of invoking operator(). This can be
either an arithmetic type, or a std::pair<> of arithmetic types.

Gen::result_type

Returns an object of type Gen::result_type.

Each time this operator is called then the next pair of a and b
values is returned. Or, if result_type is an arithmetic type, then
the next b value is returned and all the a values are assumed to
1.

g()

In all the continued fraction evaluation functions the tolerance parameter is the precision desired in the result, evaluation of the
fraction will continue until the last term evaluated leaves the relative error in the result less than tolerance. The deprecated interfaces
take a number of digits precision here, internally they just convert this to a tolerance and forward call.

If the optional max_terms parameter is specified then no more than max_terms calls to the generator will be made, and on output,
max_terms will be set to actual number of calls made. This facility is particularly useful when profiling a continued fraction for
convergence.

Implementation

Internally these algorithms all use the modified Lentz algorithm: refer to Numeric Recipes in C++, W. H. Press et all, chapter 5,
(especially 5.2 Evaluation of continued fractions, p 175 - 179) for more information, also Lentz, W.J. 1976, Applied Optics, vol. 15,
pp. 668-671.

Examples

The golden ratio phi = 1.618033989... can be computed from the simplest continued fraction of all:

Golden Ratio = 1
1 + 1

1 + 1
1 + 1

1 + …
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We begin by defining a generator function:

template <class T>
struct golden_ratio_fraction
{

typedef T result_type;

result_type operator()
{

return 1;
}

};

The golden ratio can then be computed to double precision using:

continued_fraction_a(
golden_ratio_fraction<double>(),
std::numeric_limits<double>::epsilon());

It's more usual though to have to define both the a's and the b's when evaluating special functions by continued fractions, for example
the tan function is defined by:

tan(z) = z
1 − z2

3 − z2

5 − z2

7 − z2
9 − …

So its generator object would look like:

template <class T>
struct tan_fraction
{
private:

T a, b;
public:

tan_fraction(T v)
: a(-v*v), b(-1)

{}

typedef std::pair<T,T> result_type;

std::pair<T,T> operator()()
{

b += 2;
return std::make_pair(a, b);

}
};

Notice that if the continuant is subtracted from the b terms, as is the case here, then all the a terms returned by the generator will be
negative. The tangent function can now be evaluated using:

template <class T>
T tan(T a)
{

tan_fraction<T> fract(a);
return a / continued_fraction_b(fract, std::numeric_limits<T>::epsilon());

}
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Notice that this time we're using the "_b" suffixed version to evaluate the fraction: we're removing the leading a term during fraction
evaluation as it's different from all the others.

Polynomial and Rational Function Evaluation

synopsis

#include <boost/math/tools/rational.hpp>

// Polynomials:
template <std::size_t N, class T, class V>
V evaluate_polynomial(const T(&poly)[N], const V& val);

template <std::size_t N, class T, class V>
V evaluate_polynomial(const boost::array<T,N>& poly, const V& val);

template <class T, class U>
U evaluate_polynomial(const T* poly, U z, std::size_t count);

// Even polynomials:
template <std::size_t N, class T, class V>
V evaluate_even_polynomial(const T(&poly)[N], const V& z);

template <std::size_t N, class T, class V>
V evaluate_even_polynomial(const boost::array<T,N>& poly, const V& z);

template <class T, class U>
U evaluate_even_polynomial(const T* poly, U z, std::size_t count);

// Odd polynomials   
template <std::size_t N, class T, class V>
V evaluate_odd_polynomial(const T(&a)[N], const V& z);

template <std::size_t N, class T, class V>
V evaluate_odd_polynomial(const boost::array<T,N>& a, const V& z);

template <class T, class U>
U evaluate_odd_polynomial(const T* poly, U z, std::size_t count);

// Rational Functions:
template <std::size_t N, class T, class V>
V evaluate_rational(const T(&a)[N], const T(&b)[N], const V& z);

template <std::size_t N, class T, class V>
V evaluate_rational(const boost::array<T,N>& a, const boost::array<T,N>& b, const V& z);

template <class T, class U, class V>
V evaluate_rational(const T* num, const U* denom, V z, unsigned count);

Description

Each of the functions come in three variants: a pair of overloaded functions where the order of the polynomial or rational function
is evaluated at compile time, and an overload that accepts a runtime variable for the size of the coefficient array. Generally speaking,
compile time evaluation of the array size results in better type safety, is less prone to programmer errors, and may result in better
optimised code. The polynomial evaluation functions in particular, are specialised for various array sizes, allowing for loop unrolling,
and one hopes, optimal inline expansion.
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template <std::size_t N, class T, class V>
V evaluate_polynomial(const T(&poly)[N], const V& val);

template <std::size_t N, class T, class V>
V evaluate_polynomial(const boost::array<T,N>& poly, const V& val);

template <class T, class U>
U evaluate_polynomial(const T* poly, U z, std::size_t count);

Evaluates the polynomial described by the coefficients stored in poly.

If the size of the array is specified at runtime, then the polynomial most have order count-1 with count coefficients. Otherwise it has
order N-1 with N coefficients.

Coefficients should be stored such that the coefficients for the xi  terms are in poly[i].

The types of the coefficients and of variable z may differ as long as *poly is convertible to type U. This allows, for example, for the
coefficient table to be a table of integers if this is appropriate.

template <std::size_t N, class T, class V>
V evaluate_even_polynomial(const T(&poly)[N], const V& z);

template <std::size_t N, class T, class V>
V evaluate_even_polynomial(const boost::array<T,N>& poly, const V& z);

template <class T, class U>
U evaluate_even_polynomial(const T* poly, U z, std::size_t count);

As above, but evaluates an even polynomial: one where all the powers of z are even numbers. Equivalent to calling evaluate_poly-
nomial(poly, z*z, count).

template <std::size_t N, class T, class V>
V evaluate_odd_polynomial(const T(&a)[N], const V& z);

template <std::size_t N, class T, class V>
V evaluate_odd_polynomial(const boost::array<T,N>& a, const V& z);

template <class T, class U>
U evaluate_odd_polynomial(const T* poly, U z, std::size_t count);

As above but evaluates a polynomial where all the powers are odd numbers. Equivalent to evaluate_polynomial(poly+1,
z*z, count-1) * z + poly[0].

template <std::size_t N, class T, class U, class V>
V evaluate_rational(const T(&num)[N], const U(&denom)[N], const V& z);

template <std::size_t N, class T, class U, class V>
V evaluate_rational(const boost::array<T,N>& num, const boost::array<U,N>& denom, const V& z);

template <class T, class U, class V>
V evaluate_rational(const T* num, const U* denom, V z, unsigned count);

Evaluates the rational function (the ratio of two polynomials) described by the coefficients stored in num and demom.

If the size of the array is specified at runtime then both polynomials most have order count-1 with count coefficients. Otherwise both
polynomials have order N-1 with N coefficients.

Array num describes the numerator, and demon the denominator.
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Coefficients should be stored such that the coefficients for the xi  terms are in num[i] and denom[i].

The types of the coefficients and of variable v may differ as long as *num and *denom are convertible to type V. This allows, for
example, for one or both of the coefficient tables to be a table of integers if this is appropriate.

These functions are designed to safely evaluate the result, even when the value z is very large. As such they do not take advantage
of compile time array sizes to make any optimisations. These functions are best reserved for situations where z may be large: if you
can be sure that numerical overflow will not occur then polynomial evaluation with compile-time array sizes may offer slightly
better performance.

Implementation

Polynomials are evaluated by Horners method. If the array size is known at compile time then the functions dispatch to size-specific
implementations that unroll the evaluation loop.

Rational evaluation is by Horners method: with the two polynomials being evaluated in parallel to make the most of the processors
floating-point pipeline. If v is greater than one, then the polynomials are evaluated in reverse order as polynomials in 1/v: this avoids
unnecessary numerical overflow when the coefficients are large.

Both the polynomial and rational function evaluation algorithms can be tuned using various configuration macros to provide optimal
performance for a particular combination of compiler and platform. This includes support for second-order Horner's methods. The
various options are documented here. However, the performance benefits to be gained from these are marginal on most current
hardware, consequently it's best to run the performance test application before changing the default settings.

Tuples

Synopsis

#include <boost/math/tools/tuple.hpp>

Description

This header defines the type boost::math::tuple, the associated free functions ignore, tie, make_tuple, get, and associated
types tuple_size and tuple_element.

These types and functions are aliases for:

• std::tuple etc when available, otherwise:

• std::tr1::tuple etc when available, otherwise:

• boost::fusion::tuple etc if the compiler supports it, otherwise:

• boost::tuple.

So this boost::math::tuple is strongly recommended for maximum portability.

Polynomials

Synopsis

#include <boost/math/tools/polynomial.hpp>
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namespace boost{ namespace math{ namespace tools{

template <class T>
class polynomial
{
public:

// typedefs:
typedef typename std::vector<T>::value_type value_type;
typedef typename std::vector<T>::size_type size_type;

// construct:
polynomial(){}
template <class U>
polynomial(const U* data, unsigned order);
template <class U>
polynomial(const U& point);

// access:
size_type size()const;
size_type degree()const;
value_type& operator[](size_type i);
const value_type& operator[](size_type i)const;

// operators:
template <class U>
polynomial& operator +=(const U& value);
template <class U>
polynomial& operator -=(const U& value);
template <class U>
polynomial& operator *=(const U& value);
template <class U>
polynomial& operator +=(const polynomial<U>& value);
template <class U>
polynomial& operator -=(const polynomial<U>& value);
template <class U>
polynomial& operator *=(const polynomial<U>& value);

};

template <class T>
polynomial<T> operator + (const polynomial<T>& a, const polynomial<T>& b);
template <class T>
polynomial<T> operator - (const polynomial<T>& a, const polynomial<T>& b);
template <class T>
polynomial<T> operator * (const polynomial<T>& a, const polynomial<T>& b);

template <class T, class U>
polynomial<T> operator + (const polynomial<T>& a, const U& b);
template <class T, class U>
polynomial<T> operator - (const polynomial<T>& a, const U& b);
template <class T, class U>
polynomial<T> operator * (const polynomial<T>& a, const U& b);

template <class U, class T>
polynomial<T> operator + (const U& a, const polynomial<T>& b);
template <class U, class T>
polynomial<T> operator - (const U& a, const polynomial<T>& b);
template <class U, class T>
polynomial<T> operator * (const U& a, const polynomial<T>& b);
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template <class charT, class traits, class T>
std::basic_ostream<charT, traits>& operator <<

(std::basic_ostream<charT, traits>& os, const polynomial<T>& poly);

}}} // namespaces

Description

This is a fairly trivial class for polynomial manipulation.

Implementation is currently of the "naive" variety, with O(N^2) multiplication for example. This class should not be used in high-
performance computing environments: it is intended for the simple manipulation of small polynomials, typically generated for special
function approximation.

Advanced manipulations: the FFT, division, GCD, factorisation etc are not currently provided. Submissions for these are of course
welcome :-)

Minimax Approximations and the Remez Algorithm
The directory libs/math/minimax contains a command line driven program for the generation of minimax approximations using the
Remez algorithm. Both polynomial and rational approximations are supported, although the latter are tricky to converge: it is not
uncommon for convergence of rational forms to fail. No such limitations are present for polynomial approximations which should
always converge smoothly.

It's worth stressing that developing rational approximations to functions is often not an easy task, and one to which many books have
been devoted. To use this tool, you will need to have a reasonable grasp of what the Remez algorithm is, and the general form of the
approximation you want to achieve.

Unless you already familar with the Remez method, you should first read the brief background article explaining the principles behind
the Remez algorithm.

The program consists of two parts:

main.cpp Contains the command line parser, and all the calls to the Remez code.

f.cpp Contains the function to approximate.

Therefore to use this tool, you must modify f.cpp to return the function to approximate. The tools supports multiple function approx-
imations within the same compiled program: each as a separate variant:

NTL::RR f(const NTL::RR& x, int variant);

Returns the value of the function variant at point x. So if you wish you can just add the function to approximate as a new variant
after the existing examples.

In addition to those two files, the program needs to be linked to a patched NTL library to compile.

Note that the function f must return the rational part of the approximation: for example if you are approximating a function f(x) then
it is quite common to use:

f(x) = g(x)(Y + R(x))

where g(x) is the dominant part of f(x), Y is some constant, and R(x) is the rational approximation part, usually optimised for a low
absolute error compared to |Y|.

In this case you would define f to return f(x)/g(x) and then set the y-offset of the approximation to Y (see command line options below).
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Many other forms are possible, but in all cases the objective is to split f(x) into a dominant part that you can evaluate easily using
standard math functions, and a smooth and slowly changing rational approximation part. Refer to your favourite textbook for more
examples.

Command line options for the program are as follows:

variant N Sets the current function variant to N. This allows multiple functions that are to be approximated
to be compiled into the same executable. Defaults to 0.

range a b Sets the domain for the approximation to the range [a,b], defaults to [0,1].

relative Sets the Remez code to optimise for relative error. This is the default at program startup. Note
that relative error can only be used if f(x) has no roots over the range being optimised.

absolute Sets the Remez code to optimise for absolute error.

pin [true|false] "Pins" the code so that the rational approximation passes through the origin. Obviously only
set this to true if R(0) must be zero. This is typically used when trying to preserve a root at
[0,0] while also optimising for relative error.

order N D Sets the order of the approximation to N in the numerator and D in the denominator. If D is
zero then the result will be a polynomial approximation. There will be N+D+2 coefficients
in total, the first coefficient of the numerator is zero if pin was set to true, and the first coeffi-
cient of the denominator is always one.

working-precision N Sets the working precision of NTL::RR to N binary digits. Defaults to 250.

target-precision N Sets the precision of printed output to N binary digits: set to the same number of digits as the
type that will be used to evaluate the approximation. Defaults to 53 (for double precision).

skew val "Skews" the initial interpolated control points towards one end or the other of the range. Pos-
itive values skew the initial control points towards the left hand side of the range, and negative
values towards the right hand side. If an approximation won't converge (a common situation)
try adjusting the skew parameter until the first step yields the smallest possible error. val
should be in the range [-100,+100], the default is zero.

brake val Sets a brake on each step so that the change in the control points is braked by val%. Defaults
to 50, try a higher value if an approximation won't converge, or a lower value to get speedier
convergence.

x-offset val Sets the x-offset to val: the approximation will be generated for f(S * (x + X)) + Y where
X is the x-offset, S is the x-scale and Y is the y-offset. Defaults to zero. To avoid rounding
errors, take care to specify a value that can be exactly represented as a floating point number.

x-scale val Sets the x-scale to val: the approximation will be generated for f(S * (x + X)) + Y where
S is the x-scale, X is the x-offset and Y is the y-offset. Defaults to one. To avoid rounding errors,
take care to specify a value that can be exactly represented as a floating point number.

y-offset val Sets the y-offset to val: the approximation will be generated for f(S * (x + X)) + Y where
X is the x-offset, S is the x-scale and Y is the y-offset. Defaults to zero. To avoid rounding
errors, take care to specify a value that can be exactly represented as a floating point number.

y-offset auto Sets the y-offset to the average value of f(x) evaluated at the two endpoints of the range plus
the midpoint of the range. The calculated value is deliberately truncated to float precision (and
should be stored as a float in your code). The approximation will be generated for f(x + X)

+ Y where X is the x-offset and Y is the y-offset. Defaults to zero.

graph N Prints N evaluations of f(x) at evenly spaced points over the range being optimised. If unspe-
cified then N defaults to 3. Use to check that f(x) is indeed smooth over the range of interest.
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step N Performs N steps, or one step if N is unspecified. After each step prints: the peek error at the
extrema of the error function of the approximation, the theoretical error term solved for on
the last step, and the maximum relative change in the location of the Chebyshev control points.
The approximation is converged on the minimax solution when the two error terms are (ap-
proximately) equal, and the change in the control points has decreased to a suitably small
value.

test [float|double|long] Tests the current approximation at float, double, or long double precision. Useful to check for
rounding errors in evaluating the approximation at fixed precision. Tests are conducted at the
extrema of the error function of the approximation, and at the zeros of the error function.

test [float|double|long] N Tests the current approximation at float, double, or long double precision. Useful to check for
rounding errors in evaluating the approximation at fixed precision. Tests are conducted at N
evenly spaced points over the range of the approximation. If none of [float|double|long] are
specified then tests using NTL::RR, this can be used to obtain the error function of the approx-
imation.

rescale a b Takes the current Chebeshev control points, and rescales them over a new interval [a,b].
Sometimes this can be used to obtain starting control points for an approximation that can not
otherwise be converged.

rotate Moves one term from the numerator to the denominator, but keeps the Chebyshev control
points the same. Sometimes this can be used to obtain starting control points for an approxim-
ation that can not otherwise be converged.

info Prints out the current approximation: the location of the zeros of the error function, the location
of the Chebyshev control points, the x and y offsets, and of course the coefficients of the
polynomials.

Relative Error and Testing

Synopsis

#include <boost/math/tools/test.hpp>

Important

The header boost/math/tools/test.hpp is located under libs/math/include_private and is not installed
to the usual locations by default, you will need to add libs/math/include_private to your compiler's include
path in order to use this header.

template <class T>
T relative_error(T a, T b);

template <class A, class F1, class F2>
test_result<see-below> test(const A& a, F1 test_func, F2 expect_func);

Description

template <class T>
T relative_error(T a, T v);

Returns the relative error between a and v using the usual formula:

max( | a − va | , | a − vv | )
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In addition the value returned is zero if:

• Both a and v are infinite.

• Both a and v are denormalised numbers or zero.

Otherwise if only one of a and v is zero then the value returned is 1.

template <class A, class F1, class F2>
test_result<see-below> test(const A& a, F1 test_func, F2 expect_func);

This function is used for testing a function against tabulated test data.

The return type contains statistical data on the relative errors (max, mean, variance, and the number of test cases etc), as well as the
row of test data that caused the largest relative error. Public members of type test_result are:

unsigned worst()const; Returns the row at which the worst error occurred.

T min()const; Returns the smallest relative error found.

T max()const; Returns the largest relative error found.

T mean()const; Returns the mean error found.

boost::uintmax_t

count()const;

Returns the number of test cases.

T variance()const; Returns the variance of the errors found.

T variance1()const; Returns the unbiased variance of the errors found.

T rms()const Returns the Root Mean Square, or quadratic mean of the errors.

test_result& operat-

or+=(const test_result& t)

Combines two test_result's into a single result.

The template parameter of test_result, is the same type as the values in the two dimensional array passed to function test, roughly
that's A::value_type::value_type.

Parameter a is a matrix of test data: and must be a standard library Sequence type, that contains another Sequence type: typically it
will be a two dimensional instance of boost::array. Each row of a should contain all the parameters that are passed to the function
under test as well as the expected result.

Parameter test_func is the function under test, it is invoked with each row of test data in a. Typically type F1 is created with
Boost.Lambda: see the example below.

Parameter expect_func is a functor that extracts the expected result from a row of test data in a. Typically type F2 is created with
Boost.Lambda: see the example below.

If the function under test returns a non-finite value when a finite result is expected, or if a gross error is found, then a message is
sent to std::cerr, and a call to BOOST_ERROR() made (which means that including this header requires you use Boost.Test).
This is mainly a debugging/development aid (and a good place for a breakpoint).

Example

Suppose we want to test the tgamma and lgamma functions, we can create a two dimensional matrix of test data, each row is one
test case, and contains three elements: the input value, and the expected results for the tgamma and lgamma functions respectively.
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static const boost::array<boost::array<TestType, 3>, NumberOfTests>
factorials = {

/* big array of test data goes here */
};

Now we can invoke the test function to test tgamma:

using namespace boost::math::tools;
using namespace boost::lambda;

// get a pointer to the function under test:
TestType (*funcp)(TestType) = boost::math::tgamma;

// declare something to hold the result:
test_result<TestType> result;
//
// and test tgamma against data:
//
result = test(

factorials,
bind(funcp, ret<TestType>(_1[0])), // calls tgamma with factorials[row][0]
ret<TestType>(_1[1]) // extracts the expected result from factorials[row][1]

);
//
// Print out some results:
//
std::cout << "The Mean was " << result.mean() << std::endl;
std::cout << "The worst error was " << (result.max)() << std::endl;
std::cout << "The worst error was at row " << result.worst_case() << std::endl;
//
// same again with lgamma this time:
//
funcp = boost::math::lgamma;
result = test(

factorials,
bind(funcp, ret<TestType>(_1[0])), // calls tgamma with factorials[row][0]
ret<TestType>(_1[2]) // extracts the expected result from factorials[row][2]

);
//
// etc ...
//

Graphing, Profiling, and Generating Test Data for Special Func-
tions
The class test_data and associated helper functions are designed so that in just a few lines of code you should be able to:

• Profile a continued fraction, or infinite series for convergence and accuracy.

• Generate csv data from a special function that can be imported into your favorite graphing program (or spreadsheet) for further
analysis.

• Generate high precision test data.

Synopsis

#include <boost/math/tools/test_data.hpp>
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Important

This is a non-core Boost.Math header that is predominantly used for internal maintenance of the library: as a result
the library is located under libs/math/include_private and you will need to add that directory to your include
path in order to use this feature.

namespace boost{ namespace math{ namespace tools{

enum parameter_type
{

random_in_range = 0,
periodic_in_range = 1,
power_series = 2,
dummy_param = 0x80,

};

template <class T>
struct parameter_info;

template <class T>
parameter_info<T> make_random_param(T start_range, T end_range, int n_points);

template <class T>
parameter_info<T> make_periodic_param(T start_range, T end_range, int n_points);

template <class T>
parameter_info<T> make_power_param(T basis, int start_exponent, int end_exponent);

template <class T>
bool get_user_parameter_info(parameter_info<T>& info, const char* param_name);

template <class T>
class test_data
{
public:

typedef std::vector<T> row_type;
typedef row_type value_type;

private:
typedef std::set<row_type> container_type;

public:
typedef typename container_type::reference reference;
typedef typename container_type::const_reference const_reference;
typedef typename container_type::iterator iterator;
typedef typename container_type::const_iterator const_iterator;
typedef typename container_type::difference_type difference_type;
typedef typename container_type::size_type size_type;

// creation:
test_data(){}
template <class F>
test_data(F func, const parameter_info<T>& arg1);

// insertion:
template <class F>
test_data& insert(F func, const parameter_info<T>& arg1);

template <class F>
test_data& insert(F func, const parameter_info<T>& arg1,

const parameter_info<T>& arg2);

template <class F>

709

Internal Details: Series, Rationals and Con-
tinued Fractions, Testing, and Development

Tools

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


test_data& insert(F func, const parameter_info<T>& arg1,
const parameter_info<T>& arg2,
const parameter_info<T>& arg3);

void clear();

// access:
iterator begin();
iterator end();
const_iterator begin()const;
const_iterator end()const;
bool operator==(const test_data& d)const;
bool operator!=(const test_data& d)const;
void swap(test_data& other);
size_type size()const;
size_type max_size()const;
bool empty()const;

bool operator < (const test_data& dat)const;
bool operator <= (const test_data& dat)const;
bool operator > (const test_data& dat)const;
bool operator >= (const test_data& dat)const;

};

template <class charT, class traits, class T>
std::basic_ostream<charT, traits>& write_csv(

std::basic_ostream<charT, traits>& os,
const test_data<T>& data);

template <class charT, class traits, class T>
std::basic_ostream<charT, traits>& write_csv(

std::basic_ostream<charT, traits>& os,
const test_data<T>& data,
const charT* separator);

template <class T>
std::ostream& write_code(std::ostream& os,

const test_data<T>& data,
const char* name);

}}} // namespaces

Description

This tool is best illustrated with the following series of examples.

The functionality of test_data is split into the following parts:

• A functor that implements the function for which data is being generated: this is the bit you have to write.

• One of more parameters that are to be passed to the functor, these are described in fairly abstract terms: give me N points distributed
like this etc.

• The class test_data, that takes the functor and descriptions of the parameters and computes how ever many output points have
been requested, these are stored in a sorted container.

• Routines to iterate over the test_data container and output the data in either csv format, or as C++ source code (as a table using
Boost.Array).

Example 1: Output Data for Graph Plotting

For example, lets say we want to graph the lgamma function between -3 and 100, one could do this like so:
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#include <boost/math/tools/test_data.hpp>
#include <boost/math/special_functions/gamma.hpp>

int main()
{

using namespace boost::math::tools;

// create an object to hold the data:
test_data<double> data;

// insert 500 points at uniform intervals between just after -3 and 100:
double (*pf)(double) = boost::math::lgamma;
data.insert(pf, make_periodic_param(-3.0 + 0.00001, 100.0, 500));

// print out in csv format:
write_csv(std::cout, data, ", ");
return 0;

}

Which, when plotted, results in:
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Example 2: Creating Test Data

As a second example, let's suppose we want to create highly accurate test data for a special function. Since many special functions
have two or more independent parameters, it's very hard to effectively cover all of the possible parameter space without generating
gigabytes of data at great computational expense. A second best approach is to provide the tools by which a user (or the library
maintainer) can quickly generate more data on demand to probe the function over a particular domain of interest.

In this example we'll generate test data for the beta function using NTL::RR at 1000 bit precision. Rather than call our generic version
of the beta function, we'll implement a deliberately naive version of the beta function using lgamma, and rely on the high precision
of the data type used to get results accurate to at least 128-bit precision. In this way our test data is independent of whatever clever
tricks we may wish to use inside the our beta function.

To start with then, here's the function object that creates the test data:
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#include <boost/math/tools/ntl.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/tools/test_data.hpp>
#include <fstream>

#include <boost/math/tools/test_data.hpp>

using namespace boost::math::tools;

struct beta_data_generator
{

NTL::RR operator()(NTL::RR a, NTL::RR b)
{

//
// If we throw a domain error then test_data will
// ignore this input point. We'll use this to filter
// out all cases where a < b since the beta function
// is symmetrical in a and b:
//
if(a < b)

throw std::domain_error("");

// very naively calculate spots with lgamma:
NTL::RR g1, g2, g3;
int s1, s2, s3;
g1 = boost::math::lgamma(a, &s1);
g2 = boost::math::lgamma(b, &s2);
g3 = boost::math::lgamma(a+b, &s3);
g1 += g2 - g3;
g1 = exp(g1);
g1 *= s1 * s2 * s3;
return g1;

}
};

To create the data, we'll need to input the domains for a and b for which the function will be tested: the function get_user_para-
meter_info is designed for just that purpose. The start of main will look something like:
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// Set the precision on RR:
NTL::RR::SetPrecision(1000); // bits.
NTL::RR::SetOutputPrecision(40); // decimal digits.

parameter_info<NTL::RR> arg1, arg2;
test_data<NTL::RR> data;

std::cout << "Welcome.\n"
"This program will generate spot tests for the beta function:\n"
"  beta(a, b)\n\n";

bool cont;
std::string line;

do{
// prompt the user for the domain of a and b to test:
get_user_parameter_info(arg1, "a");
get_user_parameter_info(arg2, "b");

// create the data:
data.insert(beta_data_generator(), arg1, arg2);

// see if the user want's any more domains tested:
std::cout << "Any more data [y/n]?";
std::getline(std::cin, line);
boost::algorithm::trim(line);
cont = (line == "y");

}while(cont);

Caution

At this point one potential stumbling block should be mentioned: test_data<>::insert will create a matrix of test data
when there are two or more parameters, so if we have two parameters and we're asked for a thousand points on each,
that's a million test points in total. Don't say you weren't warned!

There's just one final step now, and that's to write the test data to file:

std::cout << "Enter name of test data file [default=beta_data.ipp]";
std::getline(std::cin, line);
boost::algorithm::trim(line);
if(line == "")

line = "beta_data.ipp";
std::ofstream ofs(line.c_str());
write_code(ofs, data, "beta_data");

The format of the test data looks something like:

#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 3>, 1830>
beta_med_data = {

SC_(0.4883005917072296142578125),
SC_(0.4883005917072296142578125),
SC_(3.245912809500479157065104747353807392371),
SC_(3.5808107852935791015625),
SC_(0.4883005917072296142578125),
SC_(1.007653173802923954909901438393379243537),
/* ... lots of rows skipped */

};
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The first two values in each row are the input parameters that were passed to our functor and the last value is the return value from
the functor. Had our functor returned a boost::math::tuple rather than a value, then we would have had one entry for each element
in the tuple in addition to the input parameters.

The first #define serves two purposes:

• It reduces the file sizes considerably: all those static_cast's add up to a lot of bytes otherwise (they are needed to suppress
compiler warnings when T is narrower than a long double).

• It provides a useful customisation point: for example if we were testing a user-defined type that has more precision than a long
double we could change it to:

#define SC_(x) lexical_cast<T>(BOOST_STRINGIZE(x))

in order to ensure that no truncation of the values occurs prior to conversion to T. Note that this isn't used by default as it's rather
hard on the compiler when the table is large.

Example 3: Profiling a Continued Fraction for Convergence and Accuracy

Alternatively, lets say we want to profile a continued fraction for convergence and error. As an example, we'll use the continued
fraction for the upper incomplete gamma function, the following function object returns the next aN  and bN  of the continued fraction
each time it's invoked:

template <class T>
struct upper_incomplete_gamma_fract
{
private:

T z, a;
int k;

public:
typedef std::pair<T,T> result_type;

upper_incomplete_gamma_fract(T a1, T z1)
: z(z1-a1+1), a(a1), k(0)

{
}

result_type operator()()
{

++k;
z += 2;
return result_type(k * (a - k), z);

}
};

We want to measure both the relative error, and the rate of convergence of this fraction, so we'll write a functor that returns both as
a boost::math::tuple: class test_data will unpack the tuple for us, and create one column of data for each element in the tuple (in ad-
dition to the input parameters):
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#include <boost/math/tools/test_data.hpp>
#include <boost/math/tools/test.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/tools/ntl.hpp>
#include <boost/math/tools/tuple.hpp>

template <class T>
struct profile_gamma_fraction
{

typedef boost::math::tuple<T, T> result_type;

result_type operator()(T val)
{

using namespace boost::math::tools;
// estimate the true value, using arbitary precision
// arithmetic and NTL::RR:
NTL::RR rval(val);
upper_incomplete_gamma_fract<NTL::RR> f1(rval, rval);
NTL::RR true_val = continued_fraction_a(f1, 1000);
//
// Now get the aproximation at double precision, along with the number of
// iterations required:
boost::uintmax_t iters = std::numeric_limits<boost::uintmax_t>::max();
upper_incomplete_gamma_fract<T> f2(val, val);
T found_val = continued_fraction_a(f2, std::numeric_limits<T>::digits, iters);
//
// Work out the relative error, as measured in units of epsilon:
T err = real_cast<T>(relative_error(true_val, NTL::RR(found_val)) / std::numeric_lim↵

its<T>::epsilon());
//
// now just return the results as a tuple:
return boost::math::make_tuple(err, iters);

}
};

Feeding that functor into test_data allows rapid output of csv data, for whatever type T we may be interested in:

int main()
{

using namespace boost::math::tools;
// create an object to hold the data:
test_data<double> data;
// insert 500 points at uniform intervals between just after 0 and 100:
data.insert(profile_gamma_fraction<double>(), make_periodic_param(0.01, 100.0, 100));
// print out in csv format:
write_csv(std::cout, data, ", ");
return 0;

}

This time there's no need to plot a graph, the first few rows are:

a and z, Error/epsilon, Iterations required

0.01, 9723.14, 4726
1.0099, 9.54818, 87
2.0098, 3.84777, 40
3.0097, 0.728358, 25
4.0096, 2.39712, 21
5.0095, 0.233263, 16

So it's pretty clear that this fraction shouldn't be used for small values of a and z.
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reference

Most of this tool has been described already in the examples above, we'll just add the following notes on the non-member functions:

template <class T>
parameter_info<T> make_random_param(T start_range, T end_range, int n_points);

Tells class test_data to test n_points random values in the range [start_range,end_range].

template <class T>
parameter_info<T> make_periodic_param(T start_range, T end_range, int n_points);

Tells class test_data to test n_points evenly spaced values in the range [start_range,end_range].

template <class T>
parameter_info<T> make_power_param(T basis, int start_exponent, int end_exponent);

Tells class test_data to test points of the form basis + R * 2expon for each expon in the range [start_exponent, end_exponent], and R
a random number in [0.5, 1].

template <class T>
bool get_user_parameter_info(parameter_info<T>& info, const char* param_name);

Prompts the user for the parameter range and form to use.

Finally, if we don't want the parameter to be included in the output, we can tell test_data by setting it a "dummy parameter":

parameter_info<double> p = make_random_param(2.0, 5.0, 10);
p.type |= dummy_param;

This is useful when the functor used transforms the parameter in some way before passing it to the function under test, usually the
functor will then return both the transformed input and the result in a tuple, so there's no need for the original pseudo-parameter to
be included in program output.
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Use with User-Defined Floating-Point Types
- Boost.Multiprecision and others
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Using Boost.Math with High-Precision Floating-Point
Libraries
The special functions, distributions, constants and tools in this library can be used with a number of high-precision libraries, including:

• Boost.Multiprecision

• e_float (TOMS Algorithm 910)

• NTL A Library for doing Number Theory

• GNU Multiple Precision Arithmetic Library

• GNU MPFR library

• __float128

The last four have some license restrictions; only Boost.Multiprecision when using the cpp_float backend can provide an unres-
tricted Boost license.

At present, the price of a free license is slightly lower speed.

Of course, the main cost of higher precision is very much decreased (usually at least hundred-fold) computation speed, and big increases
in memory use.

Some libraries offer true arbitrary-precision arithmetic where the precision is limited only by available memory and compute time,
but most are used at some arbitrarily-fixed precision, say 100 decimal digits, like __boost_multiprecision cpp_dec_float_100.

Boost.Multiprecision can operate in both ways, but the most popular choice is likely to be about a hundred decimal digits, though
examples of computing about a million digits have been demonstrated.

Why use a high-precision library rather than built-in floating-point
types?
For nearly all applications, the built-in floating-point types, double (and long double if this offers higher precision than double)
offer enough precision, typically a dozen decimal digits.

Some reasons why one would want to use a higher precision:

• A much more precise result (many more digits) is just a requirement.

• The range of the computed value exceeds the range of the type: factorials are the textbook example.

• Using double is (or may be) too inaccurate.

• Using long double (or may be) is too inaccurate.

• Using an extended precision type implemented in software as double-double (Darwin) is sometimes unpredictably inaccurate.

• Loss of precision or inaccuracy caused by extreme arguments or cancellation error.

• An accuracy as good as possible for a chosen built-in floating-point type is required.

• As a reference value, for example, to determine the inaccuracy of a value computed with a built-in floating point type, (perhaps
even using some quick'n'dirty algorithm). The accuracy of many functions and distributions in Boost.Math has been measured in
this way from tables of very high precision (up to 1000 decimal digits).
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Many functions and distributions have differences from exact values that are only a few least significant bits - computation noise.
Others, often those for which analytical solutions are not available, require approximations and iteration: these may lose several
decimal digits of precision.

Much larger loss of precision can occur for boundary or corner cases, often caused by cancellation errors.

(Some of the worst and most common examples of cancellation error or loss of significance can be avoided by using complements:
see why complements?).

If you require a value which is as accurate as can be represented in the floating-point type, and is thus the closest representable value
and has an error less than 1/2 a least significant bit or ulp it may be useful to use a higher-precision type, for example,
cpp_dec_float_50, to generate this value. Conversion of this value to a built-in floating-point type ('float', double or long
double) will not cause any further loss of precision. A decimal digit string will also be 'read' precisely by the compiler into a built-
in floating-point type to the nearest representable value.

Note

In contrast, reading a value from an std::istream into a built-in floating-point type is not guaranteed by the
C++ Standard to give the nearest representable value.

William Kahan coined the term Table-Maker's Dilemma for the problem of correctly rounding functions. Using a much higher pre-
cision (50 or 100 decimal digits) is a practical way of generating (almost always) correctly rounded values.

Using Boost.Multiprecision
All new projects are recommended to use Boost.Multiprecision.

Using Boost.Multiprecision cpp_float for numerical calculations with high precision.

The Boost.Multiprecision library can be used for computations requiring precision exceeding that of standard built-in types such as
float, double and long double. For extended-precision calculations, Boost.Multiprecision supplies a template data type called
cpp_dec_float. The number of decimal digits of precision is fixed at compile-time via template parameter.

To use these floating-point types and constants, we need some includes:

#include <boost/math/constants/constants.hpp>

#include <boost/multiprecision/cpp_dec_float.hpp>
// using boost::multiprecision::cpp_dec_float

#include <iostream>
#include <limits>

So now we can demonstrate with some trivial calculations:

int main()
{

Using typedef cpp_dec_float_50 hides the complexity of multiprecision to allow us to define variables with 50 decimal digit
precision just like built-in double.

using boost::multiprecision::cpp_dec_float_50;

cpp_dec_float_50 seventh = cpp_dec_float_50(1) / 7;

By default, output would only show the standard 6 decimal digits, so set precision to show all 50 significant digits.
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std::cout.precision(std::numeric_limits<cpp_dec_float_50>::digits10);
std::cout << seventh << std::endl;

which outputs:

0.14285714285714285714285714285714285714285714285714

We can also use constants, guaranteed to be initialized with the very last bit of precision.

cpp_dec_float_50 circumference = boost::math::constants::pi<cpp_dec_float_50>() * 2 * seventh;

std::cout << circumference << std::endl;

which outputs

0.89759790102565521098932668093700082405633411410717

Using Boost.Multiprecision to generate a high-precision array of sin coefficents for use with FFT.

The Boost.Multiprecision library can be used for computations requiring precision exceeding that of standard built-in types such as
float, double and long double. For extended-precision calculations, Boost.Multiprecision supplies a template data type called
cpp_dec_float. The number of decimal digits of precision is fixed at compile-time via template parameter.

To use these floating-point types and constants, we need some includes:

#include <boost/math/constants/constants.hpp>
// using boost::math::constants::pi;

#include <boost/multiprecision/cpp_dec_float.hpp>
// using boost::multiprecision::cpp_dec_float

#include <iostream>
#include <limits>
#include <vector>
#include <algorithm>
#include <iomanip>
#include <iterator>
#include <fstream>

Define a text string which is a C++ comment with the program licence, copyright etc. You could of course, tailor this to your needs,
including your copyright claim. There are versions of array provided by Boost.Array in boost::array or the C++11 std::array,
but since not all platforms provide C++11 support, this program provides the Boost version as fallback.
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static const char* prolog =
{
"// Use, modification and distribution are subject to the\n"
"// Boost Software License, Version 1.0.\n"
"// (See accompanying file LICENSE_1_0.txt\n"
"// or copy at ""http://www.boost.org/LICENSE_1_0.txt)\n\n"

"// Copyright ???? 2013.\n\n"

"// Use boost/array if std::array (C++11 feature) is not available.\n"
"#ifdef  BOOST_NO_CXX11_HDR_ARRAY\n"
"#include <boost/array/array.hpp>\n"
"#else\n"
"#include <array>\n"
"#endif\n\n"

};

using boost::multiprecision::cpp_dec_float_50;
using boost::math::constants::pi;
// VS 2010 (wrongly) requires these at file scope, not local scope in `main`.
// This program also requires `-std=c++11` option to compile using Clang and GCC.

int main()
{

One often needs to compute tables of numbers in mathematical software.

A fast Fourier transform (FFT), for example, may use a table of the values of sin((π/2n) in its implementation details. In order to
maximize the precision in the FFT implementation, the precision of the tabulated trigonometric values should exceed that of the
built-in floating-point type used in the FFT.

The sample below computes a table of the values of sin(π/2n) in the range 1 <= n <= 31.

This program makes use of, among other program elements, the data type boost::multiprecision::cpp_dec_float_50 for
a precision of 50 decimal digits from Boost.Multiprecision, the value of constant π retrieved from Boost.Math, guaranteed to be
initialized with the very last bit of precision for the type, here cpp_dec_float_50, and a C++11 lambda function combined with
std::for_each().

define the number of values in the array.

std::size_t size = 32U;
cpp_dec_float_50 p = pi<cpp_dec_float_50>();
cpp_dec_float_50 p2 = boost::math::constants::pi<cpp_dec_float_50>();

std::vector <cpp_dec_float_50> sin_values (size);
unsigned n = 1U;
// Generate the sine values.
std::for_each
(
sin_values.begin (),
sin_values.end (),
[&n](cpp_dec_float_50& y)
{
y = sin( pi<cpp_dec_float_50>() / pow(cpp_dec_float_50 (2), n));
++n;

}
);

Define the floating-point type for the generated file, either built-in double, float, or long double, or a user defined type like
cpp_dec_float_50.
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std::string fp_type = "double";

std::cout << "Generating an `std::array` or `boost::array` for floating-point type: "
<< fp_type << ". " << std::endl;

By default, output would only show the standard 6 decimal digits, so set precision to show enough significant digits for the chosen
floating-point type. For cpp_dec_float_50 is 50. (50 decimal digits should be ample for most applications).

std::streamsize precision = std::numeric_limits<cpp_dec_float_50>::digits10;

//  std::cout.precision(std::numeric_limits<cpp_dec_float_50>::digits10);
std::cout << precision << " decimal digits precision. " << std::endl;

Of course, one could also choose less, for example, 36 would be sufficient for the most precise current long double implementations
using 128-bit. In general, it should be a couple of decimal digits more (guard digits) than std::numeric_limits<Real-
Type>::max_digits10 for the target system floating-point type. If the implementation does not provide max_digits10, the the
Kahan formula std::numeric_limits<RealType>::digits * 3010/10000 + 2 can be used instead.

The compiler will read these values as decimal digits strings and use the nearest representation for the floating-point type.

Now output all the sine table, to a file of your chosen name.
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const char sines_name[] = "sines.hpp"; // In same directory as .exe

std::ofstream fout(sines_name, std::ios_base::out); // Creates if no file exists,
// & uses default overwrite/ ios::replace.
if (fout.is_open() == false)
{ // failed to open OK!
std::cout << "Open file " << sines_name << " failed!" << std::endl;
return EXIT_FAILURE;

}
else
{
std::cout << "Open file " << sines_name << " for output OK." << std::endl;
fout << prolog << "// Table of " << sin_values.size() << " values with "
<< precision << " decimal digits precision,\n"
"// generated by program fft_sines_table.cpp.\n" << std::endl;

fout <<
"#ifdef BOOST_NO_CXX11_HDR_ARRAY""\n"
"  static const boost::array<double, " << size << "> sines =\n"
"#else""\n"
"  static const std::array<double, " << size << "> sines =\n"
"#endif""\n"

"{{\n"; // 2nd { needed for some GCC compiler versions.
fout.precision(precision);

for (unsigned int i = 0U; ;)
{
fout << "  " << sin_values[i];
if (i == sin_values.size()-1)
{ // next is last value.

fout << "\n}};\n"; // 2nd } needed for some earlier GCC compiler versions.
break;

}
else
{

fout << ",\n";
i++;

}
}

fout.close();
std::cout << "Close file " << sines_name << " for output OK." << std::endl;

}

The output file generated can be seen at ../../example/sines.hpp

The table output is:
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The printed table is:

1
0.70710678118654752440084436210484903928483593768847
0.38268343236508977172845998403039886676134456248563
0.19509032201612826784828486847702224092769161775195
0.098017140329560601994195563888641845861136673167501
0.049067674327418014254954976942682658314745363025753
0.024541228522912288031734529459282925065466119239451
0.012271538285719926079408261951003212140372319591769
0.0061358846491544753596402345903725809170578863173913
0.003067956762965976270145365490919842518944610213452
0.0015339801862847656123036971502640790799548645752374
0.00076699031874270452693856835794857664314091945206328
0.00038349518757139558907246168118138126339502603496474
0.00019174759731070330743990956198900093346887403385916
9.5873799095977345870517210976476351187065612851145e-05
4.7936899603066884549003990494658872746866687685767e-05
2.3968449808418218729186577165021820094761474895673e-05
1.1984224905069706421521561596988984804731977538387e-05
5.9921124526424278428797118088908617299871778780951e-06
2.9960562263346607504548128083570598118251878683408e-06
1.4980281131690112288542788461553611206917585861527e-06
7.4901405658471572113049856673065563715595930217207e-07
3.7450702829238412390316917908463317739740476297248e-07
1.8725351414619534486882457659356361712045272098287e-07
9.3626757073098082799067286680885620193236507169473e-08
4.681337853654909269511551813854009695950362701667e-08
2.3406689268274552759505493419034844037886207223779e-08
1.1703344634137277181246213503238103798093456639976e-08
5.8516723170686386908097901008341396943900085051757e-09
2.9258361585343193579282304690689559020175857150074e-09
1.4629180792671596805295321618659637103742615227834e-09

*/

The output can be copied as text and readily integrated into a given source code. Alternatively, the output can be written to a text or
even be used within a self-written automatic code generator as this example.

A computer algebra system can be used to verify the results obtained from Boost.Math and Boost.Multiprecision. For example, the
Wolfram Mathematica computer algebra system can obtain a similar table with the command:

Table[N[Sin[Pi / (2^n)], 50], {n, 1, 31, 1}]

The Wolfram Alpha computational knowledge engine can also be used to generate this table. The same command can be pasted into
the compute box.

Using with GCC's __float128 datatype
At present support for GCC's native __float128 datatype is extremely limited: the numeric constants will all work with that type,
and that's about it. If you want to use the distributions or special functions then you will need to provide your own wrapper header
that:

• Provides std::numeric_limits<__float128> support.

• Provides overloads of the standard library math function for type __float128and which forward to the libquadmath equivalents.

Ultimately these facilities should be provided by GCC and libstdc++.
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Using With MPFR or GMP - High-Precision Floating-Point Library
The special functions and tools in this library can be used with MPFR (an arbitrary precision number type based on the GNU Multiple
Precision Arithmetic Library), either via the bindings in boost/math/bindings/mpfr.hpp, or via boost/math/bindings/mpreal.hpp.

New projects are recommended to use Boost.Multiprecision with GMP/MPFR backend instead.

In order to use these bindings you will need to have installed MPFR plus its dependency the GMP library. You will also need one
of the two supported C++ wrappers for MPFR: gmpfrxx (or mpfr_class), or mpfr-C++ (mpreal).

Unfortunately neither mpfr_class nor mpreal quite satisfy our conceptual requirements, so there is a very thin set of additional
interfaces and some helper traits defined in boost/math/bindings/mpfr.hpp and boost/math/bindings/mpreal.hpp that you should use
in place of including 'gmpfrxx.h' or 'mpreal.h' directly. The classes mpfr_class or mpreal are then usable unchanged once this
header is included, so for example mpfr_class's performance-enhancing expression templates are preserved and fully supported
by this library:

#include <boost/math/bindings/mpfr.hpp>
#include <boost/math/special_functions/gamma.hpp>

int main()
{

mpfr_class::set_dprec(500); // 500 bit precision
//
// Note that the argument to tgamma is
// an expression template - that's just fine here.
//
mpfr_class v = boost::math::tgamma(sqrt(mpfr_class(2)));
std::cout << std::setprecision(50) << v << std::endl;

}

Alternatively use with mpreal would look like:

#include <boost/math/bindings/mpreal.hpp>
#include <boost/math/special_functions/gamma.hpp>

int main()
{

mpfr::mpreal::set_precision(500); // 500 bit precision
mpfr::mpreal v = boost::math::tgamma(sqrt(mpfr::mpreal(2)));
std::cout << std::setprecision(50) << v << std::endl;

}

For those functions that are based upon the Lanczos approximation, the bindings defines a series of approximations with up to 61
terms and accuracy up to approximately 3e-113. This therefore sets the upper limit for accuracy to the majority of functions defined
this library when used with either mpfr_class or mpreal.

There is a concept checking test program for mpfr support here and here.

Using e_float Library
Boost.Multiprecision was a development from the e_float (TOMS Algorithm 910) library by Christopher Kormanyos.

e_float can still be used with Boost.Math library via the header:

<boost/math/bindings/e_float.hpp>

And the type boost::math::ef::e_float: this type is a thin wrapper class around ::e_float which provides the necessary syn-
tactic sugar to make everything "just work".
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There is also a concept checking test program for e_float support here.

New projects are recommended to use Boost.Multiprecision with cpp_float backend instead.

Using NTL Library
NTL::RR (an arbitrarily-fixed precision floating-point number type), can be used via the bindings in boost/math/bindings/rr.hpp.
For details, see NTL: A Library for doing Number Theory by Victor Shoup.

New projects are recommended to use Boost.Multiprecision instead.

Unfortunately NTL::RR doesn't quite satisfy our conceptual requirements, so there is a very thin wrapper class
boost::math::ntl::RR defined in boost/math/bindings/rr.hpp that you should use in place of NTL::RR. The class is intended to
be a drop-in replacement for the "real" NTL::RR that adds some syntactic sugar to keep this library happy, plus some of the standard
library functions not implemented in NTL.

For those functions that are based upon the Lanczos approximation, the bindings defines a series of approximations with up to 61
terms and accuracy up to approximately 3e-113. This therefore sets the upper limit for accuracy to the majority of functions defined
this library when used with NTL::RR.

There is a concept checking test program for NTL support here.

Using without expression templates for Boost.Test and others
As noted in the Boost.Multiprecision documentation, certain program constructs will not compile when using expression templates.
One example that many users may encounter is Boost.Test (1.54 and earlier) when using macro BOOST_CHECK_CLOSE and
BOOST_CHECK_CLOSE_FRACTION.

If, for example, you wish to use any multiprecision type like cpp_dec_float_50 in place of double to give more precision, you
will need to override the default boost::multiprecision::et_on with boost::multiprecision::et_off.

#include <boost/multiprecision/cpp_dec_float.hpp>

To define a 50 decimal digit type using cpp_dec_float, you must pass two template parameters to boost::multiprecision::num-
ber.

It may be more legible to use a two-staged type definition such as this:

typedef boost::multiprecision::cpp_dec_float<50> mp_backend;
typedef boost::multiprecision::number<mp_backend, boost::multipreci↵
sion::et_off> cpp_dec_float_50_noet;

Here, we first define mp_backend as cpp_dec_float with 50 digits. The second step passes this backend to boost::multipre-
cision::number with boost::multiprecision::et_off, an enumerated type.

typedef boost::multiprecision::number<boost::multiprecision::cpp_dec_float<50>, boost::multipre↵
cision::et_off>
cpp_dec_float_50_noet;

You can reduce typing with a using directive using namespace boost::multiprecision; if desired, as shown below.

using namespace boost::multiprecision;

Now cpp_dec_float_50_noet or cpp_dec_float_50_et can be used as a direct replacement for built-in types like double
etc.
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BOOST_AUTO_TEST_CASE(cpp_float_test_check_close_noet)
{ // No expression templates/
typedef number<cpp_dec_float<50>, et_off> cpp_dec_float_50_noet;

std::cout.precision(std::numeric_limits<cpp_dec_float_50_noet>::digits10); // All significant ↵
digits.
std::cout << std::showpoint << std::endl; // Show trailing zeros.

cpp_dec_float_50_noet a ("1.0");
cpp_dec_float_50_noet b ("1.0");
b += std::numeric_limits<cpp_dec_float_50_noet>::epsilon(); // Increment least significant ↵

decimal digit.

cpp_dec_float_50_noet eps = std::numeric_limits<cpp_dec_float_50_noet>::epsilon();

std::cout <<"a = " << a << ",\nb = " << b << ",\neps = " << eps << std::endl;

BOOST_CHECK_CLOSE(a, b, eps * 100); // Expected to pass (because tolerance is as percent).
BOOST_CHECK_CLOSE_FRACTION(a, b, eps); // Expected to pass (because tolerance is as fraction).

} // BOOST_AUTO_TEST_CASE(cpp_float_test_check_close)

BOOST_AUTO_TEST_CASE(cpp_float_test_check_close_et)
{ // Using expression templates.
typedef number<cpp_dec_float<50>, et_on> cpp_dec_float_50_et;

std::cout.precision(std::numeric_limits<cpp_dec_float_50_et>::digits10); // All significant ↵
digits.
std::cout << std::showpoint << std::endl; // Show trailing zeros.

cpp_dec_float_50_et a("1.0");
cpp_dec_float_50_et b("1.0");
b += std::numeric_limits<cpp_dec_float_50_et>::epsilon(); // Increment least significant decim↵

al digit.

cpp_dec_float_50_et eps = std::numeric_limits<cpp_dec_float_50_et>::epsilon();

std::cout << "a = " << a << ",\nb = " << b << ",\neps = " << eps << std::endl;

BOOST_CHECK_CLOSE(a, b, eps * 100); // Expected to pass (because tolerance is as percent).
BOOST_CHECK_CLOSE_FRACTION(a, b, eps); // Expected to pass (because tolerance is as fraction).

Using cpp_dec_float_50 with the default expression template use switched on, the compiler error message for
`BOOST_CHECK_CLOSE_FRACTION(a, b, eps); would be:

// failure floating_point_comparison.hpp(59): error C2440: 'static_cast' :
// cannot convert from 'int' to 'boost::multiprecision::detail::expres↵
sion<tag,Arg1,Arg2,Arg3,Arg4>'

A full example code is at test_cpp_float_close_fraction.cpp
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Conceptual Requirements for Real Number Types
The functions and statistical distributions in this library can be used with any type RealType that meets the conceptual requirements
given below. All the built-in floating-point types like double will meet these requirements. (Built-in types are also called fundamental
types).

User-defined types that meet the conceptual requirements can also be used. For example, with a thin wrapper class one of the types
provided with NTL (RR) can be used. But now that Boost.Multiprecision library is available, this has become the preferred real-
number type, typically cpp_dec_float or cpp_bin_float.

Submissions of binding to other extended precision types would also still be welcome.

The guiding principal behind these requirements is that a RealType behaves just like a built-in floating-point type.

Basic Arithmetic Requirements

These requirements are common to all of the functions in this library.

In the following table r is an object of type RealType, cr and cr2 are objects of type const RealType, and ca is an object of type
const arithmetic-type (arithmetic types include all the built in integers and floating point types).
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NotesResult TypeExpression

RealType is copy constructible.RealTypeRealType(cr)

RealType is copy constructible from the
arithmetic types.

RealTypeRealType(ca)

Assignment operator.RealType&r = cr

Assignment operator from the arithmetic
types.

RealType&r = ca

Adds cr to r.RealType&r += cr

Adds ar to r.RealType&r += ca

Subtracts cr from r.RealType&r -= cr

Subtracts ca from r.RealType&r -= ca

Multiplies r by cr.RealType&r *= cr

Multiplies r by ca.RealType&r *= ca

Divides r by cr.RealType&r /= cr

Divides r by ca.RealType&r /= ca

Unary Negation.RealType-r

Identity Operation.RealType&+r

Binary AdditionRealTypecr + cr2

Binary AdditionRealTypecr + ca

Binary AdditionRealTypeca + cr

Binary SubtractionRealTypecr - cr2

Binary SubtractionRealTypecr - ca

Binary SubtractionRealTypeca - cr

Binary MultiplicationRealTypecr * cr2

Binary MultiplicationRealTypecr * ca

Binary MultiplicationRealTypeca * cr

Binary SubtractionRealTypecr / cr2

Binary SubtractionRealTypecr / ca

Binary SubtractionRealTypeca / cr

Equality Comparisonboolcr == cr2
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NotesResult TypeExpression

Equality Comparisonboolcr == ca

Equality Comparisonboolca == cr

Inequality Comparisonboolcr != cr2

Inequality Comparisonboolcr != ca

Inequality Comparisonboolca != cr

Less than equal to.boolcr <= cr2

Less than equal to.boolcr <= ca

Less than equal to.boolca <= cr

Greater than equal to.boolcr >= cr2

Greater than equal to.boolcr >= ca

Greater than equal to.boolca >= cr

Less than comparison.boolcr < cr2

Less than comparison.boolcr < ca

Less than comparison.boolca < cr

Greater than comparison.boolcr > cr2

Greater than comparison.boolcr > ca

Greater than comparison.boolca > cr

The number of digits in the significand of
RealType.

intboost::math::tools::digits<Real-

Type>()

The largest representable number by type
RealType.

RealTypeboost::math::tools::max_value<Re-

alType>()

The smallest representable number by
type RealType.

RealTypeboost::math::tools::min_value<Re-

alType>()

The natural logarithm of the largest repres-
entable number by type RealType.

RealTypeboost::math::tools::log_max_value<Re-

alType>()

The natural logarithm of the smallest
representable number by type RealType.

RealTypeboost::math::tools::log_min_value<Re-

alType>()

The machine epsilon of RealType.RealTypeboost::math::tools::epsilon<Re-

alType>()

Note that:

1. The functions log_max_value and log_min_value can be synthesised from the others, and so no explicit specialisation is re-
quired.
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2. The function epsilon can be synthesised from the others, so no explicit specialisation is required provided the precision of Re-
alType does not vary at runtime (see the header boost/math/bindings/rr.hpp for an example where the precision does vary at
runtime).

3. The functions digits, max_value and min_value, all get synthesised automatically from std::numeric_limits. However,
if numeric_limits is not specialised for type RealType, then you will get a compiler error when code tries to use these functions,
unless you explicitly specialise them. For example if the precision of RealType varies at runtime, then numeric_limits support
may not be appropriate, see boost/math/bindings/rr.hpp for examples.

Warning

If std::numeric_limits<> is not specialized for type RealType then the default float precision of 6 decimal
digits will be used by other Boost programs including:

Boost.Test: giving misleading error messages like

"difference between {9.79796} and {9.79796} exceeds 5.42101e-19%".

Boost.LexicalCast and Boost.Serialization when converting the number to a string, causing potentially serious loss
of accuracy on output.

Although it might seem obvious that RealType should require std::numeric_limits to be specialized, this is
not sensible for NTL::RR and similar classes where the number of digits is a runtime parameter (whereas for
numeric_limits everything has to be fixed at compile time).

Standard Library Support Requirements

Many (though not all) of the functions in this library make calls to standard library functions, the following table summarises the
requirements. Note that most of the functions in this library will only call a small subset of the functions listed here, so if in doubt
whether a user-defined type has enough standard library support to be useable the best advise is to try it and see!

In the following table r is an object of type RealType, cr1 and cr2 are objects of type const RealType, and i is an object of type
int.

731

Use with User-Defined Floating-Point Types
- Boost.Multiprecision and others

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../../boost/math/bindings/rr.hpp
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../../boost/math/bindings/rr.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Result TypeExpression

RealTypefabs(cr1)

RealTypeabs(cr1)

RealTypeceil(cr1)

RealTypefloor(cr1)

RealTypeexp(cr1)

RealTypepow(cr1, cr2)

RealTypesqrt(cr1)

RealTypelog(cr1)

RealTypefrexp(cr1, &i)

RealTypeldexp(cr1, i)

RealTypecos(cr1)

RealTypesin(cr1)

RealTypeasin(cr1)

RealTypetan(cr1)

RealTypeatan(cr1)

RealTypefmod(cr1)

RealTyperound(cr1)

intiround(cr1)

RealTypetrunc(cr1)

intitrunc(cr1)

Note that the table above lists only those standard library functions known to be used (or likely to be used in the near future) by this
library. The following functions: acos, atan2, fmod, cosh, sinh, tanh, log10, lround, llround, ltrunc, lltrunc and modf
are not currently used, but may be if further special functions are added.

Note that the round, trunc and modf functions are not part of the current C++ standard: they are part of the additions added to C99
which will likely be in the next C++ standard. There are Boost versions of these provided as a backup, and the functions are always
called unqualified so that argument-dependent-lookup can take place.

In addition, for efficient and accurate results, a Lanczos approximation is highly desirable. You may be able to adapt an existing
approximation from boost/math/special_functions/lanczos.hpp or boost/math/bindings/detail/big_lanczos.hpp: in the former case
you will need change static_cast's to lexical_cast's, and the constants to strings (in order to ensure the coefficients aren't
truncated to long double) and then specialise lanczos_traits for type T. Otherwise you may have to hack
libs/math/tools/lanczos_generator.cpp to find a suitable approximation for your RealType. The code will still compile if you don't
do this, but both accuracy and efficiency will be greatly compromised in any function that makes use of the gamma/beta/erf family
of functions.
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Conceptual Requirements for Distribution Types
A DistributionType is a type that implements the following conceptual requirements, and encapsulates a statistical distribution.

Please note that this documentation should not be used as a substitute for the reference documentation, and tutorial of the statistical
distributions.

In the following table, d is an object of type DistributionType, cd is an object of type const DistributionType and cr is an
object of a type convertible to RealType.
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NotesResult TypeExpression

The real-number type RealType upon
which the distribution operates.

RealTypeDistributionType::value_type

The Policy to use when evaluating func-
tions that depend on this distribution.

RealTypeDistributionType::policy_type

Distribution types are assignable.Distribution&d = cd

Distribution types are copy constructible.DistributionDistribution(cd)

Returns the PDF of the distribution.RealTypepdf(cd, cr)

Returns the CDF of the distribution.RealTypecdf(cd, cr)

Returns the complement of the CDF of
the distribution, the same as: 1-cdf(cd,
cr)

RealTypecdf(complement(cd, cr))

Returns the quantile (or percentile) of the
distribution.

RealTypequantile(cd, cr)

Returns the quantile (or percentile) of the
distribution, starting from the complement
of the probability, the same as:
quantile(cd, 1-cr)

RealTypequantile(complement(cd, cr))

Returns the cumulative hazard function
of the distribution.

RealTypechf(cd, cr)

Returns the hazard function of the distri-
bution.

RealTypehazard(cd, cr)

Returns the kurtosis of the distribution.RealTypekurtosis(cd)

Returns the kurtosis excess of the distribu-
tion.

RealTypekurtosis_excess(cd)

Returns the mean of the distribution.RealTypemean(cd)

Returns the mode of the distribution.RealTypemode(cd)

Returns the skewness of the distribution.RealTypeskewness(cd)

Returns the standard deviation of the dis-
tribution.

RealTypestandard_deviation(cd)

Returns the variance of the distribution.RealTypevariance(cd)
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Conceptual Archetypes for Reals and Distributions
There are a few concept archetypes available:

• Real concept for floating-point types.

• Distribution concept for statistical distributions.

Real concept

std_real_concept is an archetype for theReal types, including the built-in float, double, long double.

#include <boost/concepts/std_real_concept.hpp>

namespace boost{
namespace math{
namespace concepts
{
class std_real_concept;

}
}} // namespaces

The main purpose in providing this type is to verify that standard library functions are found via a using declaration - bringing those
functions into the current scope - and not just because they happen to be in global scope.

In order to ensure that a call to say pow can be found either via argument dependent lookup, or failing that then in the std namespace:
all calls to standard library functions are unqualified, with the std:: versions found via a using declaration to make them visible in
the current scope. Unfortunately it's all to easy to forget the using declaration, and call the double version of the function that happens
to be in the global scope by mistake.

For example if the code calls ::pow rather than std::pow, the code will cleanly compile, but truncation of long doubles to double will
cause a significant loss of precision. In contrast a template instantiated with std_real_concept will only compile if the all the standard
library functions used have been brought into the current scope with a using declaration.

Testing the real concept
There is a test program libs/math/test/std_real_concept_check.cpp that instantiates every template in this library with type
std_real_concept to verify its usage of standard library functions.

#include <boost/math/concepts/real_concept.hpp>

namespace boost{
namespace math{
namespace concepts{

class real_concept;

}}} // namespaces

real_concept is an archetype for user defined real types, it declares its standard library functions in its own namespace: these will
only be found if they are called unqualified allowing argument dependent lookup to locate them. In addition this type is useable at
runtime: this allows code that would not otherwise be exercised by the built-in floating point types to be tested. There is no std::nu-
meric_limits<> support for this type, since numeric_limits is not a conceptual requirement for RealTypes.

NTL RR is an example of a type meeting the requirements that this type models, but note that use of a thin wrapper class is required:
refer to "Using With NTL - a High-Precision Floating-Point Library".
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There is no specific test case for type real_concept, instead, since this type is usable at runtime, each individual test case as well
as testing float, double and long double, also tests real_concept.

Distribution Concept
Distribution Concept models statistical distributions.

#include <boost/math/concepts/distribution.hpp>

namespace boost{
namespace math{
namespace concepts
{
template <class RealType>
class distribution_archetype;

template <class Distribution>
struct DistributionConcept;

}}} // namespaces

The class template distribution_archetype is a model of the Distribution concept.

The class template DistributionConcept is a concept checking class for distribution types.

Testing the distribution concept
The test program distribution_concept_check.cpp is responsible for using DistributionConcept to verify that all the distributions
in this library conform to the Distribution concept.

The class template DistributionConcept verifies the existence (but not proper function) of the non-member accessors required
by the Distribution concept. These are checked by calls like

v = pdf(dist, x); // (Result v is ignored).

And in addition, those that accept two arguments do the right thing when the arguments are of different types (the result type is always
the same as the distribution's value_type). (This is implemented by some additional forwarding-functions in derived_accessors.hpp,
so that there is no need for any code changes. Likewise boilerplate versions of the hazard/chf/coefficient_of_variation functions are
implemented in there too.)
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Policies: Controlling Precision, Error Handling
etc
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Policy Overview
Policies are a powerful fine-grain mechanism that allow you to customise the behaviour of this library according to your needs.
There is more information available in the policy tutorial and the policy reference.

Generally speaking, unless you find that the default policy behaviour when encountering 'bad' argument values does not meet your
needs, you should not need to worry about policies.

Policies are a compile-time mechanism that allow you to change error-handling or calculation precision either program wide, or at
the call site.

Although the policy mechanism itself is rather complicated, in practice it is easy to use, and very flexible.

Using policies you can control:

• How results from 'bad' arguments are handled, including those that cannot be fully evaluated.

• How accuracy is controlled by internal promotion to use more precise types.

• What working precision should be used to calculate results.

• What to do when a mathematically undefined function is used: Should this raise a run-time or compile-time error?

• Whether discrete functions, like the binomial, should return real or only integral values, and how they are rounded.

• How many iterations a special function is permitted to perform in a series evaluation or root finding algorithm before it gives up
and raises an evaluation_error.

You can control policies:

• Using macros to change any default policy: the is the prefered method for installation wide policies.

• At your chosen namespace scope for distributions and/or functions: this is the prefered method for project, namespace, or translation
unit scope policies.

• In an ad-hoc manner by passing a specific policy to a special function, or to a statistical distribution.
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Policy Tutorial

So Just What is a Policy Anyway?
A policy is a compile-time mechanism for customising the behaviour of a special function, or a statistical distribution. With Policies
you can control:

• What action to take when an error occurs.

• What happens when you call a function that is mathematically undefined (for example, if you ask for the mean of a Cauchy distri-
bution).

• What happens when you ask for a quantile of a discrete distribution.

• Whether the library is allowed to internally promote float to double and double to long double in order to improve precision.

• What precision to use when calculating the result.

Some of these policies could arguably be runtime variables, but then we couldn't use compile-time dispatch internally to select the
best evaluation method for the given policies.

For this reason a Policy is a type: in fact it's an instance of the class template boost::math::policies::policy<>. This class
is just a compile-time-container of user-selected policies (sometimes called a type-list):

using namespace boost::math::policies;
//
// Define a policy that sets ::errno on overflow, and does
// not promote double to long double internally:
//
typedef policy<domain_error<errno_on_error>, promote_double<false> > mypolicy;

Policies Have Sensible Defaults
Most of the time you can just ignore the policy framework.

*The defaults for the various policies are as follows, if these work OK for you then you can stop reading now!

Domain Error Throws a std::domain_error exception.

Pole Error Occurs when a function is evaluated at a pole: throws a std::domain_error exception.

Overflow Error Throws a std::overflow_error exception.

Underflow Ignores the underflow, and returns zero.

Denormalised Result Ignores the fact that the result is denormalised, and returns it.

Rounding Error Throws a boost::math::rounding_error exception.

Internal Evaluation Error Throws a boost::math::evaluation_error exception.

Indeterminate Result Error Returns a result that depends on the function where the error occurred.

Promotion of float to double Does occur by default - gives full float precision results.

Promotion of double to long double Does occur by default if long double offers more precision than double.

Precision of Approximation Used By default uses an approximation that will result in the lowest level of error for the type of
the result.
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Behaviour of Discrete Quantiles The quantile function will by default return an integer result that has been rounded outwards.
That is to say lower quantiles (where the probability is less than 0.5) are rounded downward,
and upper quantiles (where the probability is greater than 0.5) are rounded upwards. This be-
haviour ensures that if an X% quantile is requested, then at least the requested coverage will
be present in the central region, and no more than the requested coverage will be present in
the tails.

This behaviour can be changed so that the quantile functions are rounded differently, or even
return a real-valued result using Policies. It is strongly recommended that you read the tutorial
Understanding Quantiles of Discrete Distributions before using the quantile function on a
discrete distribution. The reference docs describe how to change the rounding policy for these
distributions.

What's more, if you define your own policy type, then it automatically inherits the defaults for any policies not explicitly set, so
given:

using namespace boost::math::policies;
//
// Define a policy that sets ::errno on overflow, and does
// not promote double to long double internally:
//
typedef policy<domain_error<errno_on_error>, promote_double<false> > mypolicy;

then mypolicy defines a policy where only the overflow error handling and double-promotion policies differ from the defaults.

So How are Policies Used Anyway?
The details follow later, but basically policies can be set by either:

• Defining some macros that change the default behaviour: this is the recommended method for setting installation-wide policies.

• By instantiating a distribution object with an explicit policy: this is mainly reserved for ad hoc policy changes.

• By passing a policy to a special function as an optional final argument: this is mainly reserved for ad hoc policy changes.

• By using some helper macros to define a set of functions or distributions in the current namespace that use a specific policy: this
is the recommended method for setting policies on a project- or translation-unit-wide basis.

The following sections introduce these methods in more detail.

Changing the Policy Defaults
The default policies used by the library are changed by the usual configuration macro method.

For example, passing -DBOOST_MATH_DOMAIN_ERROR_POLICY=errno_on_error to your compiler will cause domain errors to
set ::errno and return a NaN rather than the usual default behaviour of throwing a std::domain_error exception.
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Tip

For Microsoft Visual Studio,you can add to the Project Property Page, C/C++, Preprocessor, Preprocessor definitions
like:

BOOST_MATH_ASSERT_UNDEFINED_POLICY=0
BOOST_MATH_OVERFLOW_ERROR_POLICY=errno_on_error

This may be helpful to avoid complications with pre-compiled headers that may mean that the equivalent definitions
in source code:

#define BOOST_MATH_ASSERT_UNDEFINED_POLICY false
#define BOOST_MATH_OVERFLOW_ERROR_POLICY errno_on_error

may be ignored.

The compiler command line shows:

/D "BOOST_MATH_ASSERT_UNDEFINED_POLICY=0"
/D "BOOST_MATH_OVERFLOW_ERROR_POLICY=errno_on_error"

There is however a very important caveat to this:

Important

Default policies changed by setting configuration macros must be changed uniformly in every translation
unit in the program.

Failure to follow this rule may result in violations of the "One Definition Rule (ODR)" and result in unpredictable
program behaviour.

That means there are only two safe ways to use these macros:

• Edit them in boost/math/tools/user.hpp, so that the defaults are set on an installation-wide basis. Unfortunately this may not be
convenient if you are using a pre-installed Boost distribution (on Linux for example).

• Set the defines in your project's Makefile or build environment, so that they are set uniformly across all translation units.

What you should not do is:

• Set the defines in the source file using #define as doing so almost certainly will break your program, unless you're absolutely
certain that the program is restricted to a single translation unit.

And, yes, you will find examples in our test programs where we break this rule: but only because we know there will always be a
single translation unit only: don't say that you weren't warned!

The following example demonstrates the effect of setting the macro BOOST_MATH_DOMAIN_ERROR_POLICY when an invalid
argument is encountered. For the purposes of this example, we'll pass a negative degrees of freedom parameter to the student's t
distribution.

Since we know that this is a single file program we could just add:

#define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error
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to the top of the source file to change the default policy to one that simply returns a NaN when a domain error occurs. Alternatively
we could use:

#define BOOST_MATH_DOMAIN_ERROR_POLICY errno_on_error

To ensure the ::errno is set when a domain error occurs as well as returning a NaN.

This is safe provided the program consists of a single translation unit and we place the define before any #includes. Note that should
we add the define after the includes then it will have no effect! A warning such as:

warning C4005: 'BOOST_MATH_OVERFLOW_ERROR_POLICY' : macro redefinition

is a certain sign that it will not have the desired effect.

We'll begin our sample program with the needed includes:

#define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error

// Boost
#include <boost/math/distributions/students_t.hpp>

using boost::math::students_t; // Probability of students_t(df, t).

// std
#include <iostream>

using std::cout;
using std::endl;

#include <stdexcept>
using std::exception;

#include <cstddef>
// using ::errno

Next we'll define the program's main() to call the student's t distribution with an invalid degrees of freedom parameter, the program
is set up to handle either an exception or a NaN:
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int main()
{

cout << "Example error handling using Student's t function. " << endl;
cout << "BOOST_MATH_DOMAIN_ERROR_POLICY is set to: "

<< BOOST_STRINGIZE(BOOST_MATH_DOMAIN_ERROR_POLICY) << endl;

double degrees_of_freedom = -1; // A bad argument!
double t = 10;

try
{

errno = 0; // Clear/reset.
students_t dist(degrees_of_freedom); // exception is thrown here if enabled.
double p = cdf(dist, t);
// Test for error reported by other means:
if((boost::math::isnan)(p))
{

cout << "cdf returned a NaN!" << endl;
if (errno != 0)
{ // So errno has been set.
cout << "errno is set to: " << errno << endl;

}
}
else

cout << "Probability of Student's t is " << p << endl;
}
catch(const std::exception& e)
{

std::cout <<
"\n""Message from thrown exception was:\n   " << e.what() << std::endl;

}
return 0;

} // int main()

Here's what the program output looks like with a default build (one that does throw exceptions):

Example error handling using Student's t function.
BOOST_MATH_DOMAIN_ERROR_POLICY is set to: throw_on_error

Message from thrown exception was:
   Error in function boost::math::students_t_distribution<double>::students_t_distribution:
   Degrees of freedom argument is -1, but must be > 0 !

Alternatively let's build with:

#define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error

Now the program output is:

Example error handling using Student's t function.
BOOST_MATH_DOMAIN_ERROR_POLICY is set to: ignore_error
cdf returned a NaN!

And finally let's build with:

#define BOOST_MATH_DOMAIN_ERROR_POLICY errno_on_error

Which gives the output show errno:
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Example error handling using Student's t function.
BOOST_MATH_DOMAIN_ERROR_POLICY is set to: errno_on_error
cdf returned a NaN!
errno is set to: 33

Setting Policies for Distributions on an Ad Hoc Basis
All of the statistical distributions in this library are class templates that accept two template parameters: real type (float, double ...)
and policy (how to handle exceptional events), both with sensible defaults, for example:

namespace boost{ namespace math{

template <class RealType = double, class Policy = policies::policy<> >
class fisher_f_distribution;

typedef fisher_f_distribution<> fisher_f;

}}

This policy gets used by all the accessor functions that accept a distribution as an argument, and forwarded to all the functions called
by these. So if you use the shorthand-typedef for the distribution, then you get double precision arithmetic and all the default
policies.

However, say for example we wanted to evaluate the quantile of the binomial distribution at float precision, without internal promotion
to double, and with the result rounded to the nearest integer, then here's how it can be done:

#include <boost/math/distributions/binomial.hpp>
using boost::math::binomial_distribution;

// Begin by defining a policy type, that gives the behaviour we want:

//using namespace boost::math::policies; or explicitly
using boost::math::policies::policy;

using boost::math::policies::promote_float;
using boost::math::policies::discrete_quantile;
using boost::math::policies::integer_round_nearest;

typedef policy<
promote_float<false>, // Do not promote to double.
discrete_quantile<integer_round_nearest> // Round result to nearest integer.

> mypolicy;
//
// Then define a new distribution that uses it:
typedef boost::math::binomial_distribution<float, mypolicy> mybinom;

//  And now use it to get the quantile:

int main()
{

cout << "quantile(mybinom(200, 0.25), 0.05) is: " <<
quantile(mybinom(200, 0.25), 0.05) << endl;

}

Which outputs:

quantile is: 40
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Changing the Policy on an Ad Hoc Basis for the Special Functions
All of the special functions in this library come in two overloaded forms, one with a final "policy" parameter, and one without. For
example:

namespace boost{ namespace math{

template <class RealType, class Policy>
RealType tgamma(RealType, const Policy&);

template <class RealType>
RealType tgamma(RealType);

}} // namespaces

Normally, the second version is just a forwarding wrapper to the first like this:

template <class RealType>
inline RealType tgamma(RealType x)
{

return tgamma(x, policies::policy<>());
}

So calling a special function with a specific policy is just a matter of defining the policy type to use and passing it as the final para-
meter. For example, suppose we want tgamma to behave in a C-compatible fashion and set ::errno when an error occurs, and
never throw an exception:
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#include <boost/math/special_functions/gamma.hpp>
using boost::math::tgamma;

// Define the policy to use:
using namespace boost::math::policies; // may be convenient, or

using boost::math::policies::policy;
// Types of error whose action can be altered by policies:.
using boost::math::policies::evaluation_error;
using boost::math::policies::domain_error;
using boost::math::policies::overflow_error;
using boost::math::policies::domain_error;
using boost::math::policies::pole_error;
// Actions on error (in enum error_policy_type):
using boost::math::policies::errno_on_error;
using boost::math::policies::ignore_error;
using boost::math::policies::throw_on_error;
using boost::math::policies::user_error;

typedef policy<
domain_error<errno_on_error>,
pole_error<errno_on_error>,
overflow_error<errno_on_error>,
evaluation_error<errno_on_error>

> c_policy;
//
// Now use the policy when calling tgamma:

// http://msdn.microsoft.com/en-us/library/t3ayayh1.aspx 
// Microsoft errno declared in STDLIB.H as "extern int errno;" 

int main()
{

errno = 0; // Reset.
cout << "Result of tgamma(30000) is: "

<< tgamma(30000, c_policy()) << endl; // Too big parameter
cout << "errno = " << errno << endl; // errno 34 Numerical result out of range.
cout << "Result of tgamma(-10) is: "

<< boost::math::tgamma(-10, c_policy()) << endl; // Negative parameter.
cout << "errno = " << errno << endl; // error 33 Numerical argument out of domain.

} // int main()

which outputs:

Result of tgamma(30000) is: 1.#INF
errno = 34
Result of tgamma(-10) is: 1.#QNAN
errno = 33

Alternatively, for ad hoc use, we can use the make_policy helper function to create a policy for us: this usage is more verbose, so
is probably only preferred when a policy is going to be used once only:
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#include <boost/math/special_functions/gamma.hpp>
using boost::math::tgamma;

int main()
{

// using namespace boost::math::policies; // or
using boost::math::policies::errno_on_error;
using boost::math::policies::make_policy;
using boost::math::policies::pole_error;
using boost::math::policies::domain_error;
using boost::math::policies::overflow_error;
using boost::math::policies::evaluation_error;

errno = 0;
std::cout << "Result of tgamma(30000) is: "

<< boost::math::tgamma(
30000,
make_policy(

domain_error<errno_on_error>(),
pole_error<errno_on_error>(),
overflow_error<errno_on_error>(),
evaluation_error<errno_on_error>()

)
) << std::endl;

// Check errno was set:
std::cout << "errno = " << errno << std::endl;
// and again with evaluation at a pole:
std::cout << "Result of tgamma(-10) is: "

<< boost::math::tgamma(
-10,
make_policy(

domain_error<errno_on_error>(),
pole_error<errno_on_error>(),
overflow_error<errno_on_error>(),
evaluation_error<errno_on_error>()

)
) << std::endl;

// Check errno was set:
std::cout << "errno = " << errno << std::endl;

}

Setting Policies at Namespace or Translation Unit Scope
Sometimes what you want to do is just change a set of policies within the current scope: the one thing you should not do in this
situation is use the configuration macros, as this can lead to "One Definition Rule" violations. Instead this library provides a pair
of macros especially for this purpose.

Let's consider the special functions first: we can declare a set of forwarding functions that all use a specific policy using the macro
BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS(Policy). This macro should be used either inside a unique namespace set
aside for the purpose (for example, a C namespace for a C-style policy), or an unnamed namespace if you just want the functions
visible in global scope for the current file only.

Suppose we want C::foo() to behave in a C-compatible way and set ::errno on error rather than throwing any exceptions.

We'll begin by including the needed header for our function:

#include <boost/math/special_functions.hpp>
//using boost::math::tgamma; // Not needed because using C::tgamma.
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Open up the "C" namespace that we'll use for our functions, and define the policy type we want: in this case a C-style one that sets
::errno and returns a standard value, rather than throwing exceptions.

Any policies we don't specify here will inherit the defaults.

namespace C
{ // To hold our C-style policy.
//using namespace boost::math::policies; or explicitly:
using boost::math::policies::policy;

using boost::math::policies::domain_error;
using boost::math::policies::pole_error;
using boost::math::policies::overflow_error;
using boost::math::policies::evaluation_error;
using boost::math::policies::errno_on_error;

typedef policy<
domain_error<errno_on_error>,
pole_error<errno_on_error>,
overflow_error<errno_on_error>,
evaluation_error<errno_on_error>

> c_policy;

All we need do now is invoke the BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS macro passing our policy type c_policy
as the single argument:

BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS(c_policy)

} // close namespace C

We now have a set of forwarding functions defined in namespace C that all look something like this:

template <class RealType>
inline typename boost::math::tools::promote_args<RT>::type

tgamma(RT z)
{

return boost::math::tgamma(z, c_policy());
}

So that when we call C::tgamma(z), we really end up calling boost::math::tgamma(z, C::c_policy()):

int main()
{

errno = 0;
cout << "Result of tgamma(30000) is: "

<< C::tgamma(30000) << endl; // Note using C::tgamma
cout << "errno = " << errno << endl; // errno = 34
cout << "Result of tgamma(-10) is: "

<< C::tgamma(-10) << endl;
cout << "errno = " << errno << endl; // errno = 33, overwriting previous value of 34.

}

Which outputs:

Result of C::tgamma(30000) is: 1.#INF
errno = 34
Result of C::tgamma(-10) is: 1.#QNAN
errno = 33
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This mechanism is particularly useful when we want to define a project-wide policy, and don't want to modify the Boost source, or
to set project wide build macros (possibly fragile and easy to forget).

The same mechanism works well at file scope as well, by using an unnamed namespace, we can ensure that these declarations don't
conflict with any alternate policies present in other translation units:

#include <boost/math/special_functions.hpp>
// using boost::math::tgamma; // Would create an ambiguity between
// 'double boost::math::tgamma<int>(T)' and
// 'double 'anonymous-namespace'::tgamma<int>(RT)'.

namespace mymath
{ // unnamed

using namespace boost::math::policies;

typedef policy<
domain_error<errno_on_error>,
pole_error<errno_on_error>,
overflow_error<errno_on_error>,
evaluation_error<errno_on_error>

> c_policy;

BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS(c_policy)

So that when we call mymath::tgamma(z), we really end up calling boost::math::tgamma(z, anonym-

ous-namespace::c_policy()).

} // close unnamed namespace

int main()
{

errno = 0;
cout << "Result of tgamma(30000) is: "

<< mymath::tgamma(30000) << endl;
// tgamma in unnamed namespace in this translation unit (file) only.

cout << "errno = " << errno << endl;
cout << "Result of tgamma(-10) is: "

<< mymath::tgamma(-10) << endl;
cout << "errno = " << errno << endl;
// Default tgamma policy would throw an exception, and abort.

}

Handling policies for the statistical distributions is very similar except that now the macro BOOST_MATH_DECLARE_DISTRI-
BUTIONS accepts two parameters: the floating point type to use, and the policy type to apply. For example:

BOOST_MATH_DECLARE_DISTRIBUTIONS(double, mypolicy)

Results a set of typedefs being defined like this:

typedef boost::math::normal_distribution<double, mypolicy> normal;

The name of each typedef is the same as the name of the distribution class template, but without the "_distribution" suffix.

Suppose we want a set of distributions to behave as follows:

• Return infinity on overflow, rather than throwing an exception.

• Don't perform any promotion from double to long double internally.
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• Return the closest integer result from the quantiles of discrete distributions.

We'll begin by including the needed header for all the distributions:

#include <boost/math/distributions.hpp>

Open up an appropriate namespace, calling it my_distributions, for our distributions, and define the policy type we want. Any
policies we don't specify here will inherit the defaults:

namespace my_distributions
{
using namespace boost::math::policies;
// using boost::math::policies::errno_on_error; // etc.

typedef policy<
// return infinity and set errno rather than throw:
overflow_error<errno_on_error>,
// Don't promote double -> long double internally:
promote_double<false>,
// Return the closest integer result for discrete quantiles:
discrete_quantile<integer_round_nearest>

> my_policy;

All we need do now is invoke the BOOST_MATH_DECLARE_DISTRIBUTIONS macro passing the floating point type double
and policy types my_policy as arguments:

BOOST_MATH_DECLARE_DISTRIBUTIONS(double, my_policy)

} // close namespace my_namespace

We now have a set of typedefs defined in namespace my_distributions that all look something like this:

typedef boost::math::normal_distribution<double, my_policy> normal;
typedef boost::math::cauchy_distribution<double, my_policy> cauchy;
typedef boost::math::gamma_distribution<double, my_policy> gamma;
// etc

So that when we use my_distributions::normal we really end up using boost::math::normal_distribution<double,
my_policy>:
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int main()
{

// Construct distribution with something we know will overflow
// (using double rather than if promoted to long double):
my_distributions::normal norm(10, 2);

errno = 0;
cout << "Result of quantile(norm, 0) is: "

<< quantile(norm, 0) << endl; // -infinity.
cout << "errno = " << errno << endl;
errno = 0;
cout << "Result of quantile(norm, 1) is: "

<< quantile(norm, 1) << endl; // +infinity.
cout << "errno = " << errno << endl;

// Now try a discrete distribution.
my_distributions::binomial binom(20, 0.25);
cout << "Result of quantile(binom, 0.05) is: "

<< quantile(binom, 0.05) << endl; // To check we get integer results.
cout << "Result of quantile(complement(binom, 0.05)) is: "

<< quantile(complement(binom, 0.05)) << endl;
}

Which outputs:

Result of quantile(norm, 0) is: -1.#INF
errno = 34
Result of quantile(norm, 1) is: 1.#INF
errno = 34
Result of quantile(binom, 0.05) is: 1
Result of quantile(complement(binom, 0.05)) is: 8

This mechanism is particularly useful when we want to define a project-wide policy, and don't want to modify the Boost source or
set project wide build macros (possibly fragile and easy to forget).

Note

There is an important limitation to note: you can *not use the macros BOOST_MATH_DECLARE_DISTRIBUTIONS
and BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS in the same namespace*, as doing so creates ambiguities
between functions and distributions of the same name.

As before, the same mechanism works well at file scope as well: by using an unnamed namespace, we can ensure that these declar-
ations don't conflict with any alternate policies present in other translation units:
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#include <boost/math/distributions.hpp> // All distributions.
// using boost::math::normal; // Would create an ambguity between
// boost::math::normal_distribution<RealType> boost::math::normal and
// 'anonymous-namespace'::normal'.

namespace
{ // anonymous or unnnamed (rather than named as in policy_eg_6.cpp).

using namespace boost::math::policies;
// using boost::math::policies::errno_on_error; // etc.

typedef policy<
// return infinity and set errno rather than throw:
overflow_error<errno_on_error>,
// Don't promote double -> long double internally:
promote_double<false>,
// Return the closest integer result for discrete quantiles:
discrete_quantile<integer_round_nearest>

> my_policy;

BOOST_MATH_DECLARE_DISTRIBUTIONS(double, my_policy)

} // close namespace my_namespace

int main()
{

// Construct distribution with something we know will overflow.
normal norm(10, 2); // using 'anonymous-namespace'::normal
errno = 0;
cout << "Result of quantile(norm, 0) is: "

<< quantile(norm, 0) << endl;
cout << "errno = " << errno << endl;
errno = 0;
cout << "Result of quantile(norm, 1) is: "

<< quantile(norm, 1) << endl;
cout << "errno = " << errno << endl;
//
// Now try a discrete distribution:
binomial binom(20, 0.25);
cout << "Result of quantile(binom, 0.05) is: "

<< quantile(binom, 0.05) << endl;
cout << "Result of quantile(complement(binom, 0.05)) is: "

<< quantile(complement(binom, 0.05)) << endl;
}

Calling User Defined Error Handlers
Suppose we want our own user-defined error handlers rather than the any of the default ones supplied by the library to be used. If
we set the policy for a specific type of error to user_error then the library will call a user-supplied error handler. These are forward
declared, but not defined in boost/math/policies/error_handling.hpp like this:
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namespace boost{ namespace math{ namespace policies{

template <class T>
T user_domain_error(const char* function, const char* message, const T& val);
template <class T>
T user_pole_error(const char* function, const char* message, const T& val);
template <class T>
T user_overflow_error(const char* function, const char* message, const T& val);
template <class T>
T user_underflow_error(const char* function, const char* message, const T& val);
template <class T>
T user_denorm_error(const char* function, const char* message, const T& val);
template <class T>
T user_evaluation_error(const char* function, const char* message, const T& val);
template <class T, class TargetType>
T user_rounding_error(const char* function, const char* message, const T& val, const Target↵
Type& t);
template <class T>
T user_indeterminate_result_error(const char* function, const char* message, const T& val);

}}} // namespaces

So out first job is to include the header we want to use, and then provide definitions for our user-defined error handlers that we want
to use. We only provide our special domain and pole error handlers; other errors like overflow and underflow use the default.

#include <boost/math/special_functions.hpp>

namespace boost{ namespace math
{
namespace policies
{
template <class T>
T user_domain_error(const char* function, const char* message, const T& val)
{ // Ignoring function, message and val for this example, perhaps unhelpfully.

cerr << "Domain Error!" << endl;
return std::numeric_limits<T>::quiet_NaN();

}

template <class T>
T user_pole_error(const char* function, const char* message, const T& val)
{ // Ignoring function, message and val for this example, perhaps unhelpfully.

cerr << "Pole Error!" << endl;
return std::numeric_limits<T>::quiet_NaN();

}
} // namespace policies

}} // namespace boost{ namespace math

Now we'll need to define a suitable policy that will call these handlers, and define some forwarding functions that make use of the
policy:
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namespace mymath{

using namespace boost::math::policies;

typedef policy<
domain_error<user_error>,
pole_error<user_error>

> user_error_policy;

BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS(user_error_policy)

} // close unnamed namespace

We now have a set of forwarding functions defined in namespace mymath that all look something like this:

template <class RealType>
inline typename boost::math::tools::promote_args<RT>::type

tgamma(RT z)
{

return boost::math::tgamma(z, user_error_policy());
}

So that when we call mymath::tgamma(z) we really end up calling boost::math::tgamma(z, user_error_policy()), and
any errors will get directed to our own error handlers.

int main()
{

cout << "Result of erf_inv(-10) is: "
<< mymath::erf_inv(-10) << endl;

cout << "Result of tgamma(-10) is: "
<< mymath::tgamma(-10) << endl;

}

Which outputs:

  Domain Error!
  Pole Error!
  Result of erf_inv(-10) is: 1.#QNAN
  Result of tgamma(-10) is: 1.#QNAN

The previous example was all well and good, but the custom error handlers didn't really do much of any use. In this example we'll
implement all the custom handlers and show how the information provided to them can be used to generate nice formatted error
messages.

Each error handler has the general form:

template <class T>
T user_error_type(

const char* function,
const char* message,
const T& val);

and accepts three arguments:

const char* function The name of the function that raised the error, this string contains one or more %1% format specifiers
that should be replaced by the name of real type T, like float or double.
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const char* message A message associated with the error, normally this contains a %1% format specifier that should be
replaced with the value of value: however note that overflow and underflow messages do not contain
this %1% specifier (since the value of value is immaterial in these cases).

const T& value The value that caused the error: either an argument to the function if this is a domain or pole error,
the tentative result if this is a denorm or evaluation error, or zero or infinity for underflow or overflow
errors.

As before we'll include the headers we need first:

#include <boost/math/special_functions.hpp>

Next we'll implement our own error handlers for each type of error, starting with domain errors:

namespace boost{ namespace math{
namespace policies
{

template <class T>
T user_domain_error(const char* function, const char* message, const T& val)
{

We'll begin with a bit of defensive programming in case function or message are empty:

if(function == 0)
function = "Unknown function with arguments of type %1%";

if(message == 0)
message = "Cause unknown with bad argument %1%";

Next we'll format the name of the function with the name of type T, perhaps double:

std::string msg("Error in function ");
msg += (boost::format(function) % typeid(T).name()).str();

Then likewise format the error message with the value of parameter val, making sure we output all the potentially significant digits
of val:

msg += ": \n";
int prec = 2 + (std::numeric_limits<T>::digits * 30103UL) / 100000UL;
// int prec = std::numeric_limits<T>::max_digits10; //  For C++0X Standard Library
msg += (boost::format(message) % boost::io::group(std::setprecision(prec), val)).str();

Now we just have to do something with the message, we could throw an exception, but for the purposes of this example we'll just
dump the message to std::cerr:

std::cerr << msg << std::endl;

Finally the only sensible value we can return from a domain error is a NaN:

return std::numeric_limits<T>::quiet_NaN();
}

Pole errors are essentially a special case of domain errors, so in this example we'll just return the result of a domain error:
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template <class T>
T user_pole_error(const char* function, const char* message, const T& val)
{

return user_domain_error(function, message, val);
}

Overflow errors are very similar to domain errors, except that there's no %1% format specifier in the message parameter:

template <class T>
T user_overflow_error(const char* function, const char* message, const T& val)
{

if(function == 0)
function = "Unknown function with arguments of type %1%";

if(message == 0)
message = "Result of function is too large to represent";

std::string msg("Error in function ");
msg += (boost::format(function) % typeid(T).name()).str();

msg += ": \n";
msg += message;

std::cerr << msg << std::endl;

// Value passed to the function is an infinity, just return it:
return val;

}

Underflow errors are much the same as overflow:

template <class T>
T user_underflow_error(const char* function, const char* message, const T& val)
{

if(function == 0)
function = "Unknown function with arguments of type %1%";

if(message == 0)
message = "Result of function is too small to represent";

std::string msg("Error in function ");
msg += (boost::format(function) % typeid(T).name()).str();

msg += ": \n";
msg += message;

std::cerr << msg << std::endl;

// Value passed to the function is zero, just return it:
return val;

}

Denormalised results are much the same as underflow:
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template <class T>
T user_denorm_error(const char* function, const char* message, const T& val)
{

if(function == 0)
function = "Unknown function with arguments of type %1%";

if(message == 0)
message = "Result of function is denormalised";

std::string msg("Error in function ");
msg += (boost::format(function) % typeid(T).name()).str();

msg += ": \n";
msg += message;

std::cerr << msg << std::endl;

// Value passed to the function is denormalised, just return it:
return val;

}

Which leaves us with evaluation errors: these occur when an internal error occurs that prevents the function being fully evaluated.
The parameter val contains the closest approximation to the result found so far:

template <class T>
T user_evaluation_error(const char* function, const char* message, const T& val)
{

if(function == 0)
function = "Unknown function with arguments of type %1%";

if(message == 0)
message = "An internal evaluation error occurred with "

"the best value calculated so far of %1%";

std::string msg("Error in function ");
msg += (boost::format(function) % typeid(T).name()).str();

msg += ": \n";
int prec = 2 + (std::numeric_limits<T>::digits * 30103UL) / 100000UL;
// int prec = std::numeric_limits<T>::max_digits10; // For C++0X Standard Library
msg += (boost::format(message) % boost::io::group(std::setprecision(prec), val)).str();

std::cerr << msg << std::endl;

// What do we return here?  This is generally a fatal error, that should never occur,
// so we just return a NaN for the purposes of the example:
return std::numeric_limits<T>::quiet_NaN();

}

} // policies
}} // boost::math

Now we'll need to define a suitable policy that will call these handlers, and define some forwarding functions that make use of the
policy:
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namespace mymath
{ // unnamed.

using namespace boost::math::policies;

typedef policy<
domain_error<user_error>,
pole_error<user_error>,
overflow_error<user_error>,
underflow_error<user_error>,
denorm_error<user_error>,
evaluation_error<user_error>

> user_error_policy;

BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS(user_error_policy)

} // unnamed namespace

We now have a set of forwarding functions, defined in namespace mymath, that all look something like this:

template <class RealType>
inline typename boost::math::tools::promote_args<RT>::type

tgamma(RT z)
{

return boost::math::tgamma(z, user_error_policy());
}

So that when we call mymath::tgamma(z) we really end up calling boost::math::tgamma(z, user_error_policy()), and
any errors will get directed to our own error handlers:

int main()
{

// Raise a domain error:
cout << "Result of erf_inv(-10) is: "

<< mymath::erf_inv(-10) << std::endl << endl;
// Raise a pole error:
cout << "Result of tgamma(-10) is: "

<< mymath::tgamma(-10) << std::endl << endl;
// Raise an overflow error:
cout << "Result of tgamma(3000) is: "

<< mymath::tgamma(3000) << std::endl << endl;
// Raise an underflow error:
cout << "Result of tgamma(-190.5) is: "

<< mymath::tgamma(-190.5) << std::endl << endl;
// Unfortunately we can't predicably raise a denormalised
// result, nor can we raise an evaluation error in this example
// since these should never really occur!

} // int main()

Which outputs:
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Error in function boost::math::erf_inv<double>(double, double):
Argument outside range [-1, 1] in inverse erf function (got p=-10).
Result of erf_inv(-10) is: 1.#QNAN

Error in function boost::math::tgamma<long double>(long double):
Evaluation of tgamma at a negative integer -10.
Result of tgamma(-10) is: 1.#QNAN

Error in function boost::math::tgamma<long double>(long double):
Result of tgamma is too large to represent.
Error in function boost::math::tgamma<double>(double):
Result of function is too large to represent
Result of tgamma(3000) is: 1.#INF

Error in function boost::math::tgamma<long double>(long double):
Result of tgamma is too large to represent.
Error in function boost::math::tgamma<long double>(long double):
Result of tgamma is too small to represent.
Result of tgamma(-190.5) is: 0

Notice how some of the calls result in an error handler being called more than once, or for more than one handler to be called: this
is an artefact of the fact that many functions are implemented in terms of one or more sub-routines each of which may have it's own
error handling. For example tgamma(-190.5) is implemented in terms of tgamma(190.5) - which overflows - the reflection
formula for tgamma then notices that it is dividing by infinity and so underflows.

Understanding Quantiles of Discrete Distributions
Discrete distributions present us with a problem when calculating the quantile: we are starting from a continuous real-valued variable
- the probability - but the result (the value of the random variable) should really be discrete.

Consider for example a Binomial distribution, with a sample size of 50, and a success fraction of 0.5. There are a variety of ways
we can plot a discrete distribution, but if we plot the PDF as a step-function then it looks something like this:
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Now lets suppose that the user asks for a the quantile that corresponds to a probability of 0.05, if we zoom in on the CDF for that
region here's what we see:
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As can be seen there is no random variable that corresponds to a probability of exactly 0.05, so we're left with two choices as shown
in the figure:

• We could round the result down to 18.

• We could round the result up to 19.

In fact there's actually a third choice as well: we could "pretend" that the distribution was continuous and return a real valued result:
in this case we would calculate a result of approximately 18.701 (this accurately reflects the fact that the result is nearer to 19 than
18).

By using policies we can offer any of the above as options, but that still leaves the question: What is actually the right thing to do?

And in particular: What policy should we use by default?

In coming to an answer we should realise that:

• Calculating an integer result is often much faster than calculating a real-valued result: in fact in our tests it was up to 20 times
faster.

• Normally people calculate quantiles so that they can perform a test of some kind: "If the random variable is less than N then we
can reject our null-hypothesis with 90% confidence."
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So there is a genuine benefit to calculating an integer result as well as it being "the right thing to do" from a philosophical point of
view. What's more if someone asks for a quantile at 0.05, then we can normally assume that they are asking for at least 95% of the
probability to the right of the value chosen, and no more than 5% of the probability to the left of the value chosen.

In the above binomial example we would therefore round the result down to 18.

The converse applies to upper-quantiles: If the probability is greater than 0.5 we would want to round the quantile up, so that at least
the requested probability is to the left of the value returned, and no more than 1 - the requested probability is to the right of the
value returned.

Likewise for two-sided intervals, we would round lower quantiles down, and upper quantiles up. This ensures that we have at least
the requested probability in the central region and no more than 1 minus the requested probability in the tail areas.

For example, taking our 50 sample binomial distribution with a success fraction of 0.5, if we wanted a two sided 90% confidence
interval, then we would ask for the 0.05 and 0.95 quantiles with the results rounded outwards so that at least 90% of the probability
is in the central area:

So far so good, but there is in fact a trap waiting for the unwary here:

quantile(binomial(50, 0.5), 0.05);

returns 18 as the result, which is what we would expect from the graph above, and indeed there is no x greater than 18 for which:
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cdf(binomial(50, 0.5), x) <= 0.05;

However:

quantile(binomial(50, 0.5), 0.95);

returns 31, and indeed while there is no x less than 31 for which:

cdf(binomial(50, 0.5), x) >= 0.95;

We might naively expect that for this symmetrical distribution the result would be 32 (since 32 = 50 - 18), but we need to remember
that the cdf of the binomial is inclusive of the random variable. So while the left tail area includes the quantile returned, the right tail
area always excludes an upper quantile value: since that "belongs" to the central area.

Look at the graph above to see what's going on here: the lower quantile of 18 belongs to the left tail, so any value <= 18 is in the left
tail. The upper quantile of 31 on the other hand belongs to the central area, so the tail area actually starts at 32, so any value > 31 is
in the right tail.

Therefore if U and L are the upper and lower quantiles respectively, then a random variable X is in the tail area - where we would
reject the null hypothesis if:

X <= L || X > U

And the a variable X is inside the central region if:

L < X <= U

The moral here is to always be very careful with your comparisons when dealing with a discrete distribution, and if in doubt, base
your comparisons on CDF's instead.

Other Rounding Policies are Available

As you would expect from a section on policies, you won't be surprised to know that other rounding options are available:

integer_round_outwards This is the default policy as described above: lower quantiles are rounded down (probability <
0.5), and upper quantiles (probability > 0.5) are rounded up.

This gives no more than the requested probability in the tails, and at least the requested probab-
ility in the central area.

integer_round_inwards This is the exact opposite of the default policy: lower quantiles are rounded up (probability <
0.5), and upper quantiles (probability > 0.5) are rounded down.

This gives at least the requested probability in the tails, and no more than the requested probab-
ility in the central area.

integer_round_down This policy will always round the result down no matter whether it is an upper or lower quantile

integer_round_up This policy will always round the result up no matter whether it is an upper or lower quantile

integer_round_nearest This policy will always round the result to the nearest integer no matter whether it is an upper
or lower quantile

real This policy will return a real valued result for the quantile of a discrete distribution: this is gen-
erally much slower than finding an integer result but does allow for more sophisticated rounding
policies.
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To understand how the rounding policies for the discrete distributions can be used, we'll use the 50-sample binomial distribution
with a success fraction of 0.5 once again, and calculate all the possible quantiles at 0.05 and 0.95.

Begin by including the needed headers (and some using statements for conciseness):

#include <iostream>
using std::cout; using std::endl;
using std::left; using std::fixed; using std::right; using std::scientific;
#include <iomanip>
using std::setw;
using std::setprecision;

#include <boost/math/distributions/binomial.hpp>

Next we'll bring the needed declarations into scope, and define distribution types for all the available rounding policies:

// Avoid 
// using namespace std; // and 
// using namespace boost::math;
// to avoid potential ambiguity of names, like binomial.
// using namespace boost::math::policies; is small risk, but
// the necessary items are brought into scope thus:

using boost::math::binomial_distribution;
using boost::math::policies::policy;
using boost::math::policies::discrete_quantile;

using boost::math::policies::integer_round_outwards;
using boost::math::policies::integer_round_down;
using boost::math::policies::integer_round_up;
using boost::math::policies::integer_round_nearest;
using boost::math::policies::integer_round_inwards;
using boost::math::policies::real;

using boost::math::binomial_distribution; // Not std::binomial_distribution.

typedef binomial_distribution<
double,
policy<discrete_quantile<integer_round_outwards> > >

binom_round_outwards;

typedef binomial_distribution<
double,
policy<discrete_quantile<integer_round_inwards> > >

binom_round_inwards;

typedef binomial_distribution<
double,
policy<discrete_quantile<integer_round_down> > >

binom_round_down;

typedef binomial_distribution<
double,
policy<discrete_quantile<integer_round_up> > >

binom_round_up;

typedef binomial_distribution<
double,
policy<discrete_quantile<integer_round_nearest> > >
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binom_round_nearest;

typedef binomial_distribution<
double,
policy<discrete_quantile<real> > >

binom_real_quantile;

Now let's set to work calling those quantiles:

int main()
{

cout <<
"Testing rounding policies for a 50 sample binomial distribution,\n"
"with a success fraction of 0.5.\n\n"
"Lower quantiles are calculated at p = 0.05\n\n"
"Upper quantiles at p = 0.95.\n\n";

cout << setw(25) << right
<< "Policy"<< setw(18) << right
<< "Lower Quantile" << setw(18) << right
<< "Upper Quantile" << endl;

// Test integer_round_outwards:
cout << setw(25) << right

<< "integer_round_outwards"
<< setw(18) << right
<< quantile(binom_round_outwards(50, 0.5), 0.05)
<< setw(18) << right
<< quantile(binom_round_outwards(50, 0.5), 0.95)
<< endl;

// Test integer_round_inwards:
cout << setw(25) << right

<< "integer_round_inwards"
<< setw(18) << right
<< quantile(binom_round_inwards(50, 0.5), 0.05)
<< setw(18) << right
<< quantile(binom_round_inwards(50, 0.5), 0.95)
<< endl;

// Test integer_round_down:
cout << setw(25) << right

<< "integer_round_down"
<< setw(18) << right
<< quantile(binom_round_down(50, 0.5), 0.05)
<< setw(18) << right
<< quantile(binom_round_down(50, 0.5), 0.95)
<< endl;

// Test integer_round_up:
cout << setw(25) << right

<< "integer_round_up"
<< setw(18) << right
<< quantile(binom_round_up(50, 0.5), 0.05)
<< setw(18) << right
<< quantile(binom_round_up(50, 0.5), 0.95)
<< endl;

// Test integer_round_nearest:
cout << setw(25) << right

<< "integer_round_nearest"
<< setw(18) << right
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<< quantile(binom_round_nearest(50, 0.5), 0.05)
<< setw(18) << right
<< quantile(binom_round_nearest(50, 0.5), 0.95)
<< endl;

// Test real:
cout << setw(25) << right

<< "real"
<< setw(18) << right
<< quantile(binom_real_quantile(50, 0.5), 0.05)
<< setw(18) << right
<< quantile(binom_real_quantile(50, 0.5), 0.95)
<< endl;

} // int main()

Which produces the program output:

  policy_eg_10.vcxproj -> J:\Cpp\MathToolkit\test\Math_test\Release\policy_eg_10.exe
  Testing rounding policies for a 50 sample binomial distribution,
  with a success fraction of 0.5.

  Lower quantiles are calculated at p = 0.05

  Upper quantiles at p = 0.95.

                     Policy    Lower Quantile    Upper Quantile
     integer_round_outwards                18                31
      integer_round_inwards                19                30
         integer_round_down                18                30
           integer_round_up                19                31
      integer_round_nearest                19                30
                       real            18.701            30.299
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Policy Reference

Error Handling Policies
There are two orthogonal aspects to error handling:

• What to do (if anything) with the error.

• What kind of error is being raised.

Available Actions When an Error is Raised

What to do with the error is encapsulated by an enumerated type:

namespace boost { namespace math { namespace policies {

enum error_policy_type
{

throw_on_error = 0, // throw an exception.
errno_on_error = 1, // set ::errno & return 0, NaN, infinity or best guess.
ignore_error = 2, // return 0, NaN, infinity or best guess.
user_error = 3 // call a user-defined error handler.

};

}}} // namespaces

The various enumerated values have the following meanings:

throw_on_error

Will throw one of the following exceptions, depending upon the type of the error:

ExceptionError Type

std::domain_errorDomain Error

std::domain_errorPole Error

std::overflow_errorOverflow Error

std::underflow_errorUnderflow Error

std::underflow_errorDenorm Error

boost::math::evaluation_errorEvaluation Error

std::domain_errorIndeterminate Result Error

errno_on_error

Will set global ::errno ::errno to one of the following values depending upon the error type (often EDOM = 33 and ERANGE
= 34), and then return the same value as if the error had been ignored:
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errno valueError Type

EDOMDomain Error

EDOMPole Error

ERANGEOverflow Error

ERANGEUnderflow Error

ERANGEDenorm Error

EDOMEvaluation Error

EDOMIndeterminate Result Error

ignore_error

Will return one of the values below depending on the error type (::errno is NOT changed)::

Returned ValueError Type

std::numeric_limits<T>::quiet_NaN()Domain Error

std::numeric_limits<T>::quiet_NaN()Pole Error

std::numeric_limits<T>::infinity()Overflow Error

0Underflow Error

The denormalised value.Denorm Error

The best guess (perhaps NaN) as to the result: which may be
significantly in error.

Evaluation Error

Depends on the function where the error occurredIndeterminate Result Error

user_error

Will call a user defined error handler: these are forward declared in boost/math/policies/error_handling.hpp, but the actual definitions
must be provided by the user:
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namespace boost{ namespace math{ namespace policies{

template <class T>
T user_domain_error(const char* function, const char* message, const T& val);

template <class T>
T user_pole_error(const char* function, const char* message, const T& val);

template <class T>
T user_overflow_error(const char* function, const char* message, const T& val);

template <class T>
T user_underflow_error(const char* function, const char* message, const T& val);

template <class T>
T user_denorm_error(const char* function, const char* message, const T& val);

template <class T>
T user_rounding_error(const char* function, const char* message, const T& val);

template <class T>
T user_evaluation_error(const char* function, const char* message, const T& val);

template <class T>
T user_indeterminate_result_error(const char* function, const char* message, const T& val);

}}} // namespaces

Note that the strings function and message may contain "%1%" format specifiers designed to be used in conjunction with Boost.Format.
If these strings are to be presented to the program's end-user then the "%1%" format specifier should be replaced with the name of
type T in the function string, and if there is a %1% specifier in the message string then it should be replaced with the value of val.

There is more information on user-defined error handlers in the tutorial here.

Kinds of Error Raised

There are six kinds of error reported by this library, which are summarised in the following table:
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DescriptionPolicy ClassError Type

Raised when more or more arguments are
outside the defined range of the function.

boost::math::policies::domain_error<ac-
tion>

Domain Error

D e f a u l t s  t o
boost::math::policies::do-

main_error<throw_on_error>

When the action is set to throw_on_error
then throws std::domain_error

Raised when more or more arguments
would cause the function to be evaluated
at a pole.

boost::math::policies::pole_error<action>Pole Error

D e f a u l t s  t o
boost::math::policies::pole_er-

ror<throw_on_error>

When the action is throw_on_error then
throw a std::domain_error

Raised when the result of the function is
outside the representable range of the
floating point type used.

boost::math::policies::overflow_error<ac-
tion>

Overflow Error

D e f a u l t s  t o
boost::math::policies::over-

flow_error<throw_on_error>.

When the action is throw_on_error then
throws a std::overflow_error.

Raised when the result of the function is
too small to be represented in the floating
point type used.

boost::math::policies::underflow_error<ac-
tion>

Underflow Error

D e f a u l t s  t o
boost::math::policies::under-

flow_error<ignore_error>

When the specified action is
throw_on_error then throws a std::un-
derflow_error

Raised when the result of the function is
a denormalised value.

boost::math::policies::denorm_error<ac-
tion>

Denorm Error

D e f a u l t s  t o
boost::math::policies::de-

norm_error<ignore_error>

When the action is throw_on_error then
throws a std::underflow_error
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DescriptionPolicy ClassError Type

Raised When one of the rounding func-
tions round, trunc or modf is called with
an argument that has no integer represent-
ation, or is too large to be represented in
the result type

D e f a u l t s  t o
boost::math::policies::round-

ing_error<throw_on_error>

When the action is throw_on_error then
throws boost::math::rounding_er-
ror

boost::math::policies::rounding_error<ac-
tion>

Rounding Error

Raised when the result of the function is
well defined and finite, but we were un-
able to compute it. Typically this occurs
when an iterative method fails to con-
verge. Of course ideally this error should
never be raised: feel free to report it as a
bug if it is!

D e f a u l t s  t o
boost::math::policies::evalu-

ation_error<throw_on_error>

When the action is throw_on_error then
throws boost::math::evaluation_er-
ror

boost::math::policies::evaluation_error<ac-
tion>

Evaluation Error

Raised when the result of a function is not
defined for the values that were passed to
it.

D e f a u l t s  t o
boost::math::policies::indeterm-

inate_result_error<ignore_er-

ror>

When the action is throw_on_error then
throws std::domain_error

boost::math::policies::indeterminate_res-
ult_error<action>

Indeterminate Result Error

Examples

Suppose we want a call to tgamma to behave in a C-compatible way and set global ::errno rather than throw an exception, we can
achieve this at the call site using:
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#include <boost/math/special_functions/gamma.hpp>
using boost::math::tgamma;

//using namespace boost::math::policies; may also be convenient.
using boost::math::policies::policy;
using boost::math::policies::evaluation_error;
using boost::math::policies::domain_error;
using boost::math::policies::overflow_error;
using boost::math::policies::domain_error;
using boost::math::policies::pole_error;
using boost::math::policies::errno_on_error;

// Define a policy:
typedef policy<
domain_error<errno_on_error>,
pole_error<errno_on_error>,
overflow_error<errno_on_error>,
evaluation_error<errno_on_error>

> my_policy;

double my_value = 0.; // 

// Call the function applying my_policy:
double t1 = tgamma(my_value, my_policy());

// Alternatively (and equivalently) we could use helpful function
// make_policy and define everything at the call site:
double t2 = tgamma(my_value,
make_policy(
domain_error<errno_on_error>(),
pole_error<errno_on_error>(),
overflow_error<errno_on_error>(),
evaluation_error<errno_on_error>() )

);

Suppose we want a statistical distribution to return infinities, rather than throw exceptions, then we can use:

#include <boost/math/distributions/normal.hpp>
using boost::math::normal_distribution;

using namespace boost::math::policies;

// Define a specific policy:
typedef policy<

overflow_error<ignore_error>
> my_policy;

// Define the distribution, using my_policy:
typedef normal_distribution<double, my_policy> my_norm;

// Construct a my_norm distribution, using default mean and standard deviation,
// and get a 0.05 or 5% quantile:
double q = quantile(my_norm(), 0.05); // = -1.64485

Internal Floating-point Promotion Policies
Normally when evaluating a function at say float precision, maximal accuracy is assured by conducting the calculation at double
precision internally, and then rounding the result. There are two policies that control whether internal promotion to a higher precision
floating-point type takes place, or not:

772

Policies: Controlling Precision, Error Hand-
ling etc

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


MeaningPolicy

Indicates whether float arguments should be promoted to
double precision internally: defaults to
boost::math::policies::promote_float<true>

boost::math::policies::promote_float<B>

Indicates whether double arguments should be promoted to
long double precision internally: defaults to
boost::math::policies::promote_double<true>

boost::math::policies::promote_double<B>

Examples

Suppose we want tgamma to be evaluated without internal promotion to long double, then we could use:

#include <boost/math/special_functions/gamma.hpp>

using namespace boost::math::policies;
using boost::math::tgamma;

// Define a new policy *not* internally promoting RealType to double:
typedef policy<

promote_double<false>
> my_policy;

// Call the function, applying the new policy:
double t1 = tgamma(some_value, my_policy());

// Alternatively we could use helper function make_policy,
// and concisely define everything at the call site:
double t2 = tgamma(some_value, make_policy(promote_double<false>()));

Alternatively, suppose we want a distribution to perform calculations without promoting float to double, then we could use:

#include <boost/math/distributions/normal.hpp>
using boost::math::normal_distribution;

using namespace boost::math::policies;

// Define a policy:
typedef policy<

promote_float<false>
> my_policy;

// Define the new normal distribution using my_policy:
typedef normal_distribution<float, my_policy> my_norm;

// Get a quantile:
float q = quantile(my_norm(), 0.05f);

Mathematically Undefined Function Policies
There are some functions that are generic (they are present for all the statistical distributions supported) but which may be mathem-
atically undefined for certain distributions, but defined for others.

For example, the Cauchy distribution does not have a meaningful mean, so what should

mean(cauchy<>());
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return, and should such an expression even compile at all?

The default behaviour is for all such functions to not compile at all - in fact they will raise a static assertion - but by changing the
policy we can have them return the result of a domain error instead (which may well throw an exception, depending on the error
handling policy).

This behaviour is controlled by the assert_undefined<> policy:

namespace boost{ namespace math{ namespace policies {

template <bool b>
class assert_undefined;

}}} //namespaces

For example:

#include <boost/math/distributions/cauchy.hpp>

using namespace boost::math::policies;
using namespace boost::math;

// This will not compile, cauchy has no mean!
double m1 = mean(cauchy());

// This will compile, but raises a domain error!
double m2 = mean(cauchy_distribution<double, policy<assert_undefined<false> > >());

policy<assert_undefined<false> behaviour can also be obtained by defining the macro

#define BOOST_MATH_ASSERT_UNDEFINED_POLICY false

at the head of the file - see Using Macros to Change the Policy Defaults.

Discrete Quantile Policies
If a statistical distribution is discrete then the random variable can only have integer values - this leaves us with a problem when
calculating quantiles - we can either ignore the discreteness of the distribution and return a real value, or we can round to an integer.
As it happens, computing integer values can be substantially faster than calculating a real value, so there are definite advantages to
returning an integer, but we do then need to decide how best to round the result. The discrete_quantile policy defines how
discrete quantiles work, and how integer results are rounded:

enum discrete_quantile_policy_type
{

real,
integer_round_outwards, // default
integer_round_inwards,
integer_round_down,
integer_round_up,
integer_round_nearest

};

template <discrete_quantile_policy_type>
struct discrete_quantile;

The values that discrete_quantile can take have the following meanings:
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real

Ignores the discreteness of the distribution, and returns a real-valued result. For example:

#include <boost/math/distributions/negative_binomial.hpp>
using boost::math::negative_binomial_distribution;

using namespace boost::math::policies;

typedef negative_binomial_distribution<
double,
policy<discrete_quantile<real> >

> dist_type;

// Lower 5% quantile:
double x = quantile(dist_type(20, 0.3), 0.05);
// Upper 95% quantile:
double y = quantile(complement(dist_type(20, 0.3), 0.05));

Results in x = 27.3898 and y = 68.1584.

integer_round_outwards

This is the default policy: an integer value is returned so that:

• Lower quantiles (where the probability is less than 0.5) are rounded down.

• Upper quantiles (where the probability is greater than 0.5) are rounded up.

This is normally the safest rounding policy, since it ensures that both one and two sided intervals are guaranteed to have at least the
requested coverage. For example:

#include <boost/math/distributions/negative_binomial.hpp>
using boost::math::negative_binomial;

// Use the default rounding policy integer_round_outwards.
// Lower quantile rounded down:
double x = quantile(negative_binomial(20, 0.3), 0.05); // rounded up 27 from 27.3898
// Upper quantile rounded up:
double y = quantile(complement(negative_binomial(20, 0.3), 0.05)); // rounded down to 69 from ↵
68.1584

Results in x = 27 (rounded down from 27.3898) and y = 69 (rounded up from 68.1584).

The variables x and y are now defined so that:

cdf(negative_binomial(20), x) <= 0.05
cdf(negative_binomial(20), y) >= 0.95

In other words we guarantee at least 90% coverage in the central region overall, and also no more than 5% coverage in each tail.

integer_round_inwards

This is the opposite of integer_round_outwards: an integer value is returned so that:

• Lower quantiles (where the probability is less than 0.5) are rounded up.

• Upper quantiles (where the probability is greater than 0.5) are rounded down.

For example:
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#include <boost/math/distributions/negative_binomial.hpp>
using boost::math::negative_binomial_distribution;

using namespace boost::math::policies;

typedef negative_binomial_distribution<
double,
policy<discrete_quantile<integer_round_inwards> >

> dist_type;

// Lower quantile rounded up:
double x = quantile(dist_type(20, 0.3), 0.05); // 28 rounded up from 27.3898
// Upper quantile rounded down:
double y = quantile(complement(dist_type(20, 0.3), 0.05)); // 68 rounded down from 68.1584

Results in x = 28 (rounded up from 27.3898) and y = 68 (rounded down from 68.1584).

The variables x and y are now defined so that:

cdf(negative_binomial(20), x) >= 0.05
cdf(negative_binomial(20), y) <= 0.95

In other words we guarantee at no more than 90% coverage in the central region overall, and also at least 5% coverage in each tail.

integer_round_down

Always rounds down to an integer value, no matter whether it's an upper or a lower quantile.

integer_round_up

Always rounds up to an integer value, no matter whether it's an upper or a lower quantile.

integer_round_nearest

Always rounds to the nearest integer value, no matter whether it's an upper or a lower quantile. This will produce the requested
coverage in the average case, but for any specific example may results in either significantly more or less coverage than the requested
amount. For example:

For example:

#include <boost/math/distributions/negative_binomial.hpp>
using boost::math::negative_binomial_distribution;

using namespace boost::math::policies;

typedef negative_binomial_distribution<
double,
policy<discrete_quantile<integer_round_nearest> >

> dist_type;

// Lower quantile rounded (down) to nearest:
double x = quantile(dist_type(20, 0.3), 0.05); // 27
// Upper quantile rounded (down) to nearest:
double y = quantile(complement(dist_type(20, 0.3), 0.05)); // 68

Results in x = 27 (rounded from 27.3898) and y = 68 (rounded from 68.1584).
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Precision Policies
There are two equivalent policies that effect the working precision used to calculate results, these policies both default to 0 - meaning
calculate to the maximum precision available in the type being used - but can be set to other values to cause lower levels of precision
to be used. One might want to trade precision for evaluation speed.

namespace boost{ namespace math{ namespace policies{

template <int N>
digits10;

template <int N>
digits2;

}}} // namespaces

As you would expect, digits10 specifies the number of decimal digits to use, and digits2 the number of binary digits. Internally,
whichever is used, the precision is always converted to binary digits.

These policies are specified at compile-time, because many of the special functions use compile-time-dispatch to select which ap-
proximation to use based on the precision requested and the numeric type being used.

For example we could calculate tgamma to approximately 5 decimal digits using:

#include <boost/math/special_functions/gamma.hpp>
using boost::math::tgamma;
using boost::math::policies::policy;
using boost::math::policies::digits10;

typedef policy<digits10<5> > my_pol_5; // Define a new, non-default, policy
// to calculate tgamma to accuracy of approximately 5 decimal digits.

Or again using helper function make_policy:

#include <boost/math/special_functions/gamma.hpp>
using boost::math::tgamma;

using namespace boost::math::policies;

double t = tgamma(12, policy<digits10<5> >()); // Concise make_policy.

And for a quantile of a distribution to approximately 25-bit precision:

#include <boost/math/distributions/normal.hpp>
using boost::math::normal_distribution;

using namespace boost::math::policies;

const int bits = 25; // approximate precision.

double q = quantile(
normal_distribution<double, policy<digits2<bits> > >(),
0.05); // 5% quantile.

Iteration Limits Policies
There are two policies that effect the iterative algorithms used to implement the special functions in this library:
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template <unsigned long limit = BOOST_MATH_MAX_SERIES_ITERATION_POLICY>
class max_series_iterations;

template <unsigned long limit = BOOST_MATH_MAX_ROOT_ITERATION_POLICY>
class max_root_iterations;

The class max_series_iterations determines the maximum number of iterations permitted in a series evaluation, before the
special function gives up and returns the result of evaluation_error.

The class max_root_iterations determines the maximum number of iterations permitted in a root-finding algorithm before the
special function gives up and returns the result of evaluation_error.

Using Macros to Change the Policy Defaults
You can use the various macros below to change any (or all) of the policies.

You can make a local change by placing a macro definition before a function or distribution #include.

Caution

There is a danger of One-Definition-Rule violations if you add ad-hoc macros to more than one source files: these
must be set the same in every translation unit.

Caution

If you place it after the #include it will have no effect, (and it will affect only any other following #includes). This
is probably not what you intend!

If you want to alter the defaults for any or all of the policies for all functions and distributions, installation-wide, then you can do so
by defining various macros in boost/math/tools/user.hpp.

BOOST_MATH_DOMAIN_ERROR_POLICY

Defines what happens when a domain error occurs, if not defined then defaults to throw_on_error, but can be set to any of the
enumerated actions for error handing: throw_on_error, errno_on_error, ignore_error or user_error.

BOOST_MATH_POLE_ERROR_POLICY

Defines what happens when a pole error occurs, if not defined then defaults to throw_on_error, but can be set to any of the enu-
merated actions for error handing: throw_on_error, errno_on_error, ignore_error or user_error.

BOOST_MATH_OVERFLOW_ERROR_POLICY

Defines what happens when an overflow error occurs, if not defined then defaults to throw_on_error, but can be set to any of the
enumerated actions for error handing: throw_on_error, errno_on_error, ignore_error or user_error.

BOOST_MATH_ROUNDING_ERROR_POLICY

Defines what happens when a rounding error occurs, if not defined then defaults to throw_on_error, but can be set to any of the
enumerated actions for error handing: throw_on_error, errno_on_error, ignore_error or user_error.

BOOST_MATH_EVALUATION_ERROR_POLICY

Defines what happens when an internal evaluation error occurs, if not defined then defaults to throw_on_error, but can be set to
any of the enumerated actions for error handing: throw_on_error, errno_on_error, ignore_error or user_error.
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BOOST_MATH_UNDERFLOW_ERROR_POLICY

Defines what happens when an overflow error occurs, if not defined then defaults to ignore_error, but can be set to any of the
enumerated actions for error handing: throw_on_error, errno_on_error, ignore_error or user_error.

BOOST_MATH_DENORM_ERROR_POLICY

Defines what happens when a denormalisation error occurs, if not defined then defaults to ignore_error, but can be set to any of
the enumerated actions for error handing: throw_on_error, errno_on_error, ignore_error or user_error.

BOOST_MATH_INDETERMINATE_RESULT_ERROR_POLICY

Defines what happens when the result is indeterminate, but where there is none the less a convention for the result. If not defined
then defaults to ignore_error, but can be set to any of the enumerated actions for error handing: throw_on_error, errno_on_er-
ror, ignore_error or user_error.

BOOST_MATH_DIGITS10_POLICY

Defines how many decimal digits to use in internal computations: defaults to 0 - meaning use all available digits - but can be set to
some other decimal value. Since setting this is likely to have a substantial impact on accuracy, it's not generally recommended that
you change this from the default.

BOOST_MATH_PROMOTE_FLOAT_POLICY

Determines whether float types get promoted to double internally to ensure maximum precision in the result, defaults to true,
but can be set to false to turn promotion of float's off.

BOOST_MATH_PROMOTE_DOUBLE_POLICY

Determines whether double types get promoted to long double internally to ensure maximum precision in the result, defaults to
true, but can be set to false to turn promotion of double's off.

BOOST_MATH_DISCRETE_QUANTILE_POLICY

Determines how discrete quantiles return their results: either as an integer, or as a real value, can be set to one of the enumerated
values: real, integer_round_outwards, integer_round_inwards, integer_round_down, integer_round_up, in-
teger_round_nearest. Defaults to integer_round_outwards.

BOOST_MATH_ASSERT_UNDEFINED_POLICY

Determines whether functions that are mathematically undefined for a specific distribution compile or raise a static (i.e. compile-
time) assertion. Defaults to true: meaning that any mathematically undefined function will not compile. When set to false then
the function will compile but return the result of a domain error: this can be useful for some generic code, that needs to work with
all distributions and determine at runtime whether or not a particular property is well defined.

BOOST_MATH_MAX_SERIES_ITERATION_POLICY

Determines how many series iterations a special function is permitted to perform before it gives up and returns an evaluation_error:
Defaults to 1000000.

BOOST_MATH_MAX_ROOT_ITERATION_POLICY

Determines how many root-finding iterations a special function is permitted to perform before it gives up and returns an evaluation_er-
ror: Defaults to 200.

Example

Suppose we want overflow errors to set ::errno and return an infinity, discrete quantiles to return a real-valued result (rather than
round to integer), and for mathematically undefined functions to compile, but return a domain error. Then we could add the following
to boost/math/tools/user.hpp:
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#define BOOST_MATH_OVERFLOW_ERROR_POLICY errno_on_error
#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
#define BOOST_MATH_ASSERT_UNDEFINED_POLICY false

or we could place these definitions before

#include <boost/math/distributions/normal.hpp>
using boost::math::normal_distribution;

in a source .cpp file.

Setting Polices at Namespace Scope
Sometimes what you really want to do is bring all the special functions, or all the distributions into a specific namespace-scope,
along with a specific policy to use with them. There are two macros defined to assist with that:

BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS(Policy)

and:

BOOST_MATH_DECLARE_DISTRIBUTIONS(Type, Policy)

You can use either of these macros after including any special function or distribution header. For example:

#include <boost/math/special_functions/gamma.hpp>
//using boost::math::tgamma;
// Need not declare using boost::math::tgamma here,
// because will define tgamma in myspace using macro below.

namespace myspace
{
using namespace boost::math::policies;

// Define a policy that does not throw on overflow:
typedef policy<overflow_error<errno_on_error> > my_policy;

// Define the special functions in this scope to use the policy:   
BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS(my_policy)

}

// Now we can use myspace::tgamma etc.
// They will automatically use "my_policy":
//
double t = myspace::tgamma(30.0); // Will *not* throw on overflow,
// despite the large value of factorial 30 = 265252859812191058636308480000000
// unlike default policy boost::math::tgamma;

In this example, using BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS results in a set of thin inline forwarding functions
being defined:

template <class T>
inline T tgamma(T a){ return ::boost::math::tgamma(a, mypolicy()); }

template <class T>
inline T lgamma(T a) ( return ::boost::math::lgamma(a, mypolicy()); }
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and so on. Note that while a forwarding function is defined for all the special functions, however, unless you include the specific
header for the special function you use (or boost/math/special_functions.hpp to include everything), you will get linker errors from
functions that are forward declared, but not defined.

We can do the same thing with the distributions, but this time we need to specify the floating-point type to use:

#include <boost/math/distributions/cauchy.hpp>

namespace myspace
{ // using namespace boost::math::policies; // May be convenient in myspace.

// Define a policy called my_policy to use.
using boost::math::policies::policy;

// In this case we want all the distribution accessor functions to compile,
// even if they are mathematically undefined, so
// make the policy assert_undefined.
using boost::math::policies::assert_undefined;

typedef policy<assert_undefined<false> > my_policy;

// Finally apply this policy to type double.
BOOST_MATH_DECLARE_DISTRIBUTIONS(double, my_policy)
} // namespace myspace

// Now we can use myspace::cauchy etc, which will use policy
// myspace::mypolicy:
//
// This compiles but throws a domain error exception at runtime.
// Caution! If you omit the try'n'catch blocks, 
// it will just silently terminate, giving no clues as to why! 
// So try'n'catch blocks are very strongly recommended.

void test_cauchy()
{

try
{

double d = mean(myspace::cauchy()); // Cauchy does not have a mean!
}
catch(const std::domain_error& e)
{

cout << e.what() << endl;
}

}

In this example the result of BOOST_MATH_DECLARE_DISTRIBUTIONS is to declare a typedef for each distribution like this:

typedef boost::math::cauchy_distribution<double, my_policy> cauchy;
tyepdef boost::math::gamma_distribution<double, my_policy> gamma;

and so on. The name given to each typedef is the name of the distribution with the "_distribution" suffix removed.

Policy Class Reference
There's very little to say here, the policy class is just a rag-bag compile-time container for a collection of policies:

#include <boost/math/policies/policy.hpp>
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namespace boost{
namespace math{
namespace policies

template <class A1 = default_policy,
class A2 = default_policy,
class A3 = default_policy,
class A4 = default_policy,
class A5 = default_policy,
class A6 = default_policy,
class A7 = default_policy,
class A8 = default_policy,
class A9 = default_policy,
class A10 = default_policy,
class A11 = default_policy,
class A12 = default_policy,
class A13 = default_policy>

struct policy
{
public:

typedef computed-from-template-arguments domain_error_type;
typedef computed-from-template-arguments pole_error_type;
typedef computed-from-template-arguments overflow_error_type;
typedef computed-from-template-arguments underflow_error_type;
typedef computed-from-template-arguments denorm_error_type;
typedef computed-from-template-arguments rounding_error_type;
typedef computed-from-template-arguments evaluation_error_type;
typedef computed-from-template-arguments indeterminate_result_error_type;
typedef computed-from-template-arguments precision_type;
typedef computed-from-template-arguments promote_float_type;
typedef computed-from-template-arguments promote_double_type;
typedef computed-from-template-arguments discrete_quantile_type;
typedef computed-from-template-arguments assert_undefined_type;

};

template <...argument list...>
typename normalise<policy<>, A1>::type make_policy(...argument list..);

template <class Policy,
class A1 = default_policy,
class A2 = default_policy,
class A3 = default_policy,
class A4 = default_policy,
class A5 = default_policy,
class A6 = default_policy,
class A7 = default_policy,
class A8 = default_policy,
class A9 = default_policy,
class A10 = default_policy,
class A11 = default_policy,
class A12 = default_policy,
class A13 = default_policy>

struct normalise
{

typedef computed-from-template-arguments type;
};

The member typedefs of class policy are intended for internal use but are documented briefly here for the sake of completeness.

policy<...>::domain_error_type
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Specifies how domain errors are handled, will be an instance of boost::math::policies::domain_error<> with the template
argument to domain_error one of the error_policy_type enumerated values.

policy<...>::pole_error_type

Specifies how pole-errors are handled, will be an instance of boost::math::policies::pole_error<> with the template argument
to pole_error one of the error_policy_type enumerated values.

policy<...>::overflow_error_type

Specifies how overflow errors are handled, will be an instance of boost::math::policies::overflow_error<> with the
template argument to overflow_error one of the error_policy_type enumerated values.

policy<...>::underflow_error_type

Specifies how underflow errors are handled, will be an instance of boost::math::policies::underflow_error<> with the
template argument to underflow_error one of the error_policy_type enumerated values.

policy<...>::denorm_error_type

Specifies how denorm errors are handled, will be an instance of boost::math::policies::denorm_error<> with the template
argument to denorm_error one of the error_policy_type enumerated values.

policy<...>::rounding_error_type

Specifies how rounding errors are handled, will be an instance of boost::math::policies::rounding_error<> with the
template argument to rounding_error one of the error_policy_type enumerated values.

policy<...>::evaluation_error_type

Specifies how evaluation errors are handled, will be an instance of boost::math::policies::evaluation_error<> with the
template argument to evaluation_error one of the error_policy_type enumerated values.

policy<...>::indeterminate_error_type

Specifies how indeterminate result errors are handled, will be an instance of boost::math::policies::indeterminate_res-
ult_error<> with the template argument to indeterminate_result_error one of the error_policy_type enumerated
values.

policy<...>::precision_type

Specifies the internal precision to use in binary digits (uses zero to represent whatever the default precision is). Will be an instance
of boost::math::policies::digits2<N> which in turn inherits from boost::mpl::int_<N>.

policy<...>::promote_float_type

Specifies whether or not to promote float arguments to double precision internally. Will be an instance of
boost::math::policies::promote_float<B> which in turn inherits from boost::mpl::bool_<B>.

policy<...>::promote_double_type

783

Policies: Controlling Precision, Error Hand-
ling etc

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Specifies whether or not to promote double arguments to long double precision internally. Will be an instance of
boost::math::policies::promote_float<B> which in turn inherits from boost::mpl::bool_<B>.

policy<...>::discrete_quantile_type

Specifies how discrete quantiles are evaluated, will be an instance of boost::math::policies::discrete_quantile<> instan-
tiated with one of the discrete_quantile_policy_type enumerated type.

policy<...>::assert_undefined_type

Specifies whether mathematically-undefined properties are asserted as compile-time errors, or treated as runtime errors instead. Will
be an instance of boost::math::policies::assert_undefined<B> which in turn inherits from
boost::math::mpl::bool_<B>.

template <...argument list...>
typename normalise<policy<>, A1>::type make_policy(...argument list..);

make_policy is a helper function that converts a list of policies into a normalised policy class.

template <class Policy,
class A1 = default_policy,
class A2 = default_policy,
class A3 = default_policy,
class A4 = default_policy,
class A5 = default_policy,
class A6 = default_policy,
class A7 = default_policy,
class A8 = default_policy,
class A9 = default_policy,
class A10 = default_policy,
class A11 = default_policy,
class A12 = default_policy,
class A13 = default_policy>

struct normalise
{

typedef computed-from-template-arguments type;
};

The normalise class template converts one instantiation of the policy class into a normalised form. This is used internally to reduce
code bloat: so that instantiating a special function on policy<A,B> or policy<B,A> actually both generate the same code internally.

Further more, normalise can be used to combine a policy with one or more policies: for example many of the special functions
will use this to set policies which they don't make use of to their default values, before forwarding to the actual implementation. In
this way code bloat is reduced, since the actual implementation depends only on the policy types that they actually use.
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Performance Overview
By and large the performance of this library should be acceptable for most needs. However, you should note that this library's primary
emphasis is on accuracy and numerical stability, and not speed.

In terms of the algorithms used, this library aims to use the same "best of breed" algorithms as many other libraries: the principle
difference is that this library is implemented in C++ - taking advantage of all the abstraction mechanisms that C++ offers - where
as most traditional numeric libraries are implemented in C or FORTRAN. Traditionally languages such as C or FORTRAN are
perceived as easier to optimise than more complex languages like C++, so in a sense this library provides a good test of current
compiler technology, and the "abstraction penalty" - if any - of C++ compared to other languages.

The two most important things you can do to ensure the best performance from this library are:

1. Turn on your compilers optimisations: the difference between "release" and "debug" builds can easily be a factor of 20.

2. Pick your compiler carefully: performance differences of up to 8 fold have been found between some Windows compilers for
example.

The performance section contains more information on the performance of this library, what you can do to fine tune it, and how this
library compares to some other open source alternatives.
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Interpreting these Results
In all of the following tables, the best performing result in each row, is assigned a relative value of "1" and shown in bold, so a score
of "2" means "twice as slow as the best performing result". Actual timings in seconds per function call are also shown in parenthesis.

Result were obtained on a system with an Intel 2.8GHz Pentium 4 processor with 2Gb of RAM and running either Windows XP or
Mandriva Linux.

Caution

As usual with performance results these should be taken with a large pinch of salt: relative performance is known
to shift quite a bit depending upon the architecture of the particular test system used. Further more, our performance
results were obtained using our own test data: these test values are designed to provide good coverage of our code
and test all the appropriate corner cases. They do not necessarily represent "typical" usage: whatever that may be!

Note

Since these tests were run, most compilers have improved their code optimisation, and processor speeds have improved
too, so these results are known to be out of date.
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Getting the Best Performance from this Library
By far the most important thing you can do when using this library is turn on your compiler's optimisation options. As the following
table shows the penalty for using the library in debug mode can be quite large.

Table 67. Performance Comparison of Release and Debug Settings

Microsoft Visual C++ 8.0

Release settings: /Ox /arch:SSE2

Microsoft Visual C++ 8.0

Debug Settings: /Od /ZI

Function

1.00

(1.483e-007s)

16.65

(1.028e-006s)

erf

1.00

(4.888e-007s)

19.28

(1.215e-006s)

erf_inv

1.00

(1.852e-006s)

8.32

(1.540e-005s)

ibeta and ibetac

1.00

(7.311e-006s)

10.25

(7.492e-005s)

ibeta_inv and ibetac_inv

1.00

(2.847e-005s)

8.57

(2.441e-004s)

ibeta_inva, ibetac_inva, ibeta_invb and
ibetac_invb

1.00

(9.504e-007s)

10.98

(1.044e-005s)

gamma_p and gamma_q

1.00

(3.631e-006s)

10.25

(3.721e-005s)

gamma_p_inv and gamma_q_inv

1.00

(9.982e-006s)

11.26

(1.124e-004s)

gamma_p_inva and gamma_q_inva
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Comparing Compilers
After a good choice of build settings the next most important thing you can do, is choose your compiler - and the standard C library
it sits on top of - very carefully. GCC-3.x in particular has been found to be particularly bad at inlining code, and performing the
kinds of high level transformations that good C++ performance demands (thankfully GCC-4.x is somewhat better in this respect).

Table 68. Performance Comparison of Various Windows Compilers

Cygwin G++ 3.4

( /O3 )

Microsoft Visual C++ 8.0

( /Ox /arch:SSE2 )

Intel C++ 10.0

( /Ox /Qipo /QxN )

Function

3.24

(1.336e-007s)

1.00

(1.483e-007s)

1.00

(4.118e-008s)

erf

7.88

(3.500e-007s)

1.00

(4.888e-007s)

1.00

(4.439e-008s)

erf_inv

3.05

(4.975e-006s)

1.14

(1.852e-006s)

1.00

(1.631e-006s)

ibeta and ibetac

2.60

(1.597e-005s)

1.19

(7.311e-006s)

1.00

(6.133e-006s)

ibeta_inv and ibetac_inv

2.83

(6.947e-005s)

1.16

(2.847e-005s)

1.00

(2.453e-005s)

ibeta_inva, ibetac_inva,
ibeta_invb and ibetac_invb

2.78

(1.872e-006s)

1.41

(9.504e-007s)

1.00

(6.735e-007s)

gamma_p and gamma_q

3.31

(8.736e-006s)

1.38

(3.631e-006s)

1.00

(2.637e-006s)

gamma_p_inv  and
gamma_q_inv

2.56

(1.974e-005s)

1.29

(9.982e-006s)

1.00

(7.716e-006s)

gamma_p_inva and
gamma_q_inva
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Performance Tuning Macros
There are a small number of performance tuning options that are determined by configuration macros. These should be set in
boost/math/tools/user.hpp; or else reported to the Boost-development mailing list so that the appropriate option for a given compiler
and OS platform can be set automatically in our configuration setup.

MeaningMacro

Determines how polynomials and most rational functions are
evaluated. Define to one of the values 0, 1, 2 or 3: see below
for the meaning of these values.

BOOST_MATH_POLY_METHOD

Determines how symmetrical rational functions are evaluated:
mostly this only effects how the Lanczos approximation is
evaluated, and how the evaluate_rational function behaves.
Define to one of the values 0, 1, 2 or 3: see below for the
meaning of these values.

BOOST_MATH_RATIONAL_METHOD

The maximum order of polynomial or rational function that will
be evaluated by a method other than 0 (a simple "for" loop).

BOOST_MATH_MAX_POLY_ORDER

Many of the coefficients to the polynomials and rational func-
tions used by this library are integers. Normally these are stored
as tables as integers, but if mixed integer / floating point arith-
metic is much slower than regular floating point arithmetic then
they can be stored as tables of floating point values instead. If
mixed arithmetic is slow then add:

#define BOOST_MATH_INT_TABLE_TYPE(RT, IT) RT

to boost/math/tools/user.hpp, otherwise the default of:

#define BOOST_MATH_INT_TABLE_TYPE(RT, IT) IT

Set in boost/math/config.hpp is fine, and may well result in
smaller code.

BOOST_MATH_INT_TABLE_TYPE(RT, IT)

The values to which BOOST_MATH_POLY_METHOD and BOOST_MATH_RATIONAL_METHOD may be set are as follows:
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EffectValue

The polynomial or rational function is evaluated using Horner's
method, and a simple for-loop.

Note that if the order of the polynomial or rational function is
a runtime parameter, or the order is greater than the value of
BOOST_MATH_MAX_POLY_ORDER, then this method is always
used, irrespective of the value of BOOST_MATH_POLY_METHOD
or BOOST_MATH_RATIONAL_METHOD.

0

The polynomial or rational function is evaluated without the use
of a loop, and using Horner's method. This only occurs if the
order of the polynomial is known at compile time and is less
than or equal to BOOST_MATH_MAX_POLY_ORDER.

1

The polynomial or rational function is evaluated without the use
of a loop, and using a second order Horner's method. In theory
this permits two operations to occur in parallel for polynomials,
and four in parallel for rational functions. This only occurs if
the order of the polynomial is known at compile time and is less
than or equal to BOOST_MATH_MAX_POLY_ORDER.

2

The polynomial or rational function is evaluated without the use
of a loop, and using a second order Horner's method. In theory
this permits two operations to occur in parallel for polynomials,
and four in parallel for rational functions. This differs from
method "2" in that the code is carefully ordered to make the
parallelisation more obvious to the compiler: rather than relying
on the compiler's optimiser to spot the parallelisation opportun-
ities. This only occurs if the order of the polynomial is known
at compile time and is less than or equal to
BOOST_MATH_MAX_POLY_ORDER.

3

To determine which of these options is best for your particular compiler/platform build the performance test application with your
usual release settings, and run the program with the --tune command line option.

In practice the difference between methods is rather small at present, as the following table shows. However, parallelisation /vector-
isation is likely to become more important in the future: quite likely the methods currently supported will need to be supplemented
or replaced by ones more suited to highly vectorisable processors in the future.
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Table 69. A Comparison of Polynomial Evaluation Methods

Method 3Method 2Method 1Method 0Compiler/platform

1.04

(6.115e-008s)

1.00

(5.901e-008s)

1.22

(7.226e-008s)

1.26

(7.421e-008s)

Microsoft C++ 9.0,
Polynomial evaluation

1.40

(1.409e-007s)

1.43

(1.445e-007s)

1.00

(1.008e-007s)

1.00

(1.008e-007s)

Microsoft C++ 9.0, Ra-
tional evaluation

1.00

(5.516e-008s)

1.00

(5.516e-008s)

1.18

(6.505e-008s)

1.18

(6.517e-008s)

Intel C++ 11.1 (Win-
dows), Polynomial
evaluation

1.04

(9.325e-008s)

1.49

(1.333e-007s)

1.02

(9.130e-008s)

1.00

(8.947e-008s)

Intel C++ 11.1 (Win-
dows), Rational evalu-
ation

1.00

(7.566e-008s)

1.23

(9.275e-008s)

1.68

(1.269e-007s)

1.61

(1.220e-007s)

GNU G++ 4.2 (Linux),
Polynomial evaluation

1.15

(1.513e-007s)

1.00

(1.318e-007s)

1.33

(1.758e-007s)

1.26

(1.660e-007s)

GNU G++ 4.2 (Linux),
Rational evaluation

1.00

(7.934e-008s)

1.00

(7.934e-008s)

1.15

(9.154e-008s)

1.15

(9.154e-008s)

Intel C++ 10.0 (Linux),
Polynomial evaluation

1.04

(1.294e-007s)

1.35

(1.684e-007s)

1.00

(1.245e-007s)

1.00

(1.245e-007s)

Intel C++ 10.0 (Linux),
Rational evaluation

There is one final performance tuning option that is available as a compile time policy. Normally when evaluating functions at
double precision, these are actually evaluated at long double precision internally: this helps to ensure that as close to full double
precision as possible is achieved, but may slow down execution in some environments. The defaults for this policy can be changed
by defining the macro BOOST_MATH_PROMOTE_DOUBLE_POLICY to false, or by specifying a specific policy when calling the
special functions or distributions. See also the policy tutorial.
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Table 70. Performance Comparison with and Without Internal Promotion to long double

GCC 4.2, Linux

(without promotion of double).

GCC 4.2 , Linux

(with internal promotion of double to
long double).

Function

1.00

(9.377e-008s)

1.48

(1.387e-007s)

erf

1.00

(3.598e-007s)

1.11

(4.009e-007s)

erf_inv

1.00

(4.137e-006s)

1.29

(5.354e-006s)

ibeta and ibetac

1.00

(1.538e-005s)

1.44

(2.220e-005s)

ibeta_inv and ibetac_inv

1.00

(5.607e-005s)

1.25

(7.009e-005s)

ibeta_inva, ibetac_inva, ibeta_invb and
ibetac_invb

1.00

(2.464e-006s)

1.26

(3.116e-006s)

gamma_p and gamma_q

1.00

(9.291e-006s)

1.27

(1.178e-005s)

gamma_p_inv and gamma_q_inv

1.00

(2.311e-005s)

1.20

(2.765e-005s)

gamma_p_inva and gamma_q_inva

793

Performance

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Comparisons to Other Open Source Libraries
We've run our performance tests both for our own code, and against other open source implementations of the same functions. The
results are presented below to give you a rough idea of how they all compare.

Caution

You should exercise extreme caution when interpreting these results, relative performance may vary by platform,
the tests use data that gives good code coverage of our code, but which may skew the results towards the corner
cases. Finally, remember that different libraries make different choices with regard to performance verses numerical
stability.

Comparison to GSL-1.13 and Cephes

All the results were measured on a 2.0GHz Intel T5800 Core 2 Duo, 4Gb RAM, Windows Vista machine, with the test program
compiled with Microsoft Visual C++ 2009 using the /Ox option.
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CephesGSL-1.9BoostFunction

1.00N/A1.00cbrt

(6.699e-007s)(4.873e-007s)

1.001.001.00log1p

(1.189e-007s)(2.677e-007s)(1.664e-007s)

1.001.001.00expm1

(8.169e-008s)(1.248e-007s)(8.760e-008s)

1.001.541.80tgamma

(1.666e-007s)(2.569e-007s)(2.997e-007s)

1.004.142.20lgamma

(1.381e-007s)(5.713e-007s)(3.045e-007s)

1.001.001.00erf and erfc

(1.722e-007s)(7.052e-007s)(1.483e-007s)

4.293.571.00gamma_p and gamma_q

(2.651e-006s)(2.209e-006s)(6.182e-007s)

+INF 1N/A1.00gamma_p_inv  and
gamma_q_inv

(1.943e-006s)

1.161.161.00ibeta and ibetac

(1.935e-006s)(1.935e-006s)(1.670e-006s)

2.45N/A1.00ibeta_inv and ibetac_inv

(1.489e-005s)(6.075e-006s)

1.001.0017.892cyl_bessel_j

(2.374e-006s)(5.214e-006s)(4.248e-005s)

1.001.001.00cyl_bessel_i

(4.823e-006s)(4.487e-006s)(5.924e-006s)

N/A1.001.00cyl_bessel_k

(3.927e-006s)(2.783e-006s)

1.001.001.00cyl_neumann

(4.977e-006s)(1.230e-005s)(4.465e-006s)

1 Cephes gets stuck in an infinite loop while trying to execute our test cases.
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2 The performance here is dominated by a few cases where the parameters grow very large: faster asymptotic expansions are available, but are of limited (or even
frankly terrible) precision. The same issue effects all of our Bessel function implementations, but doesn't necessarily show in the current performance data. More
investigation is needed here.

Comparison to the R and DCDFLIB Statistical Libraries on Windows

All the results were measured on a 2.0GHz Intel T5800 Core 2 Duo, 4Gb RAM, Windows Vista machine, with the test program
compiled with Microsoft Visual C++ 2009, and R-2.9.2 compiled in "standalone mode" with MinGW-4.3 (R-2.9.2 appears not to
be buildable with Visual C++).
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Table 71. A Comparison to the R Statistical Library on Windows XP

DCDFLIBRBoostStatistical Function

1.061.001.08Beta Distribution CDF

(1.349e-006s)(1.278e-006s)(1.385e-006s)

4.2367.6611.00Beta Distribution Quantile

(2.103e-005s)(3.366e-004s)(4.975e-006s)

1.001.811.06Binomial Distribution CDF

(4.239e-007s)(7.680e-007s)(4.503e-007s)

7.251.151.00Binomial Distribution Quantile

(2.358e-005s)(3.746e-006s)(3.254e-006s)

NA1.081.00Cauchy Distribution CDF

(1.227e-007s)(1.134e-007s)

NA1.001.00Cauchy Distribution Quantile

(1.203e-007s)(1.203e-007s)

1.002.831.21Chi Squared Distribution CDF

(4.155e-007s)(1.176e-006s)(5.021e-007s)

5.732.721.00Chi Squared Distribution
Quantile

(1.106e-005s)(5.243e-006s)(1.930e-006s)

NA5.891.00Exponential Distribution CDF

(2.236e-007s)(3.798e-008s)

NA1.001.41Exponential Distribution
Quantile

(6.380e-008s)(9.006e-008s)

1.241.341.00Fisher F Distribution CDF

(1.183e-006s)(1.283e-006s)(9.556e-007s)

3.161.331.00Fisher F Distribution Quantile

(2.205e-005s)(9.325e-006s)(6.987e-006s)

1.003.111.52Gamma Distribution CDF

(4.111e-007s)(1.279e-006s)(6.240e-007s)

1.006.251.24Gamma Distribution Quantile

(1.764e-006s)(1.102e-005s)(2.179e-006s)
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DCDFLIBRBoostStatistical Function

NA1.00

(1.665e-007s)

3.602

(5.987e-007s)

hypergeometric Distribution
CDF

NA3.53

(2.004e-006s)

1.00

(5.684e-007s)

hypergeometric Distribution
Quantile

NA5.24

(8.984e-007s)

1.00

(1.714e-007s)

Logistic Distribution CDF

NA1.00

(2.043e-007s)

1.02

(2.084e-007s)

Logistic Distribution Quantile

NA1.49

(5.332e-007s)

1.00

(3.579e-007s)

Log-normal Distribution CDF

NA1.57

(1.507e-006s)

1.00

(9.622e-007s)

Log-normal Distribution
Quantile

2.21

(1.378e-006s)

2.25

(1.403e-006s)

1.00

(6.227e-007s)

Negative Binomial Distribu-
tion CDF

3.48

(2.994e-005s)

43.433

(3.732e-004s)

1.00

(8.594e-006s)

Negative Binomial Distribu-
tion Quantile

1.00

(1.814e-006s)

79.93

(1.450e-004s)

2.16

(3.926e-006s)

Noncentral Chi Squared Distri-
bution CDF

1.00

(6.786e-005s)

393.904

(2.673e-002s)

5.00

(3.393e-004s)

Noncentral Chi Squared Distri-
bution Quantile

1.00

(4.274e-006s)

1.00

(7.087e-006s)

1.59

(1.128e-005s)

Noncentral F Distribution
CDF

1.00

(4.274e-006s)

1.62

(7.681e-004s)

1.00

(4.750e-004s)

Noncentral F Distribution
Quantile

NA1.00

(5.436e-006s)

3.41

(1.852e-005s)

noncentral T distribution CDF

NA1.005

(4.411e-004s)

1.31

(5.768e-004s)

noncentral T distribution
Quantile
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DCDFLIBRBoostStatistical Function

6.01

(5.029e-007s)

1.68

(1.409e-007s)

1.00

(8.373e-008s)

Normal Distribution CDF

10.85

(1.283e-006s)

1.00

(1.182e-007s)

1.29

(1.521e-007s)

Normal Distribution Quantile

1.00

(4.410e-007s)

2.98

(1.314e-006s)

1.18

(5.193e-007s)

Poisson Distribution CDF

7.86

(9.457e-006s)

2.20

(2.642e-006s)

1.00

(1.203e-006s)

Poisson Distribution

1.04

(8.999e-007s)

1.06

(9.166e-007s)

1.00

(8.655e-007s)

Students t Distribution CDF

4.82

(1.106e-005s)

1.36

(3.131e-006s)

1.00

(2.294e-006s)

Students t Distribution
Quantile

NA2.33

(4.341e-007s)

1.00

(1.865e-007s)

Weibull Distribution CDF

NA1.22

(4.410e-007s)

1.00

(3.608e-007s)

Weibull Distribution Quantile

1 There are a small number of our test cases where the R library fails to converge on a result: these tend to dominate the performance result.
2 This result is somewhat misleading: for small values of the parameters there is virtually no difference between the two libraries, but for large values the Boost im-
plementation is much slower, albeit with much improved precision.
3 The R library appears to use a linear-search strategy, that can perform very badly in a small number of pathological cases, but may or may not be more efficient in
"typical" cases
4 There are a small number of our test cases where the R library fails to converge on a result: these tend to dominate the performance result.
5 There are a small number of our test cases where the R library fails to converge on a result: these tend to dominate the performance result.

Comparison to the R Statistical Library on Linux

All the results were measured on a 2.0GHz Intel T5800 Core 2 Duo, 4Gb RAM, Ubuntu Linux 9 machine, with the test program
and R-2.9.2 compiled with GNU G++ 4.3.3 using -O3 -DNDEBUG=1.
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Table 72. A Comparison to the R Statistical Library on Linux

DCDFLIBRBoostStatistical Function

1.191.002.09Beta Distribution CDF

(1.822e-006s)(1.526e-006s)(3.189e-006s)

2.5230.5111.00Beta Distribution Quantile

(2.989e-005s)(3.616e-004s)(1.185e-005s)

1.003.594.41Binomial Distribution CDF

(2.081e-007s)(7.476e-007s)(9.175e-007s)

7.431.001.57Binomial Distribution Quantile

(3.274e-005s)(4.407e-006s)(6.925e-006s)

NA1.041.00Cauchy Distribution CDF

(1.654e-007s)(1.594e-007s)

NA1.001.21Cauchy Distribution Quantile

(1.448e-007s)(1.752e-007s)

1.002.362.61Chi Squared Distribution CDF

(5.270e-007s)(1.243e-006s)(1.376e-006s)

3.471.341.00Chi Squared Distribution
Quantile

(1.477e-005s)(5.700e-006s)(4.252e-006s)

NA1.251.00Exponential Distribution CDF

(1.677e-007s)(1.342e-007s)

NA1.071.00Exponential Distribution
Quantile

(9.470e-008s)(8.827e-008s)

1.001.191.62Fisher F Distribution CDF

(1.437e-006s)(1.711e-006s)(2.324e-006s)

2.631.001.53Fisher F Distribution Quantile

(2.719e-005s)(1.033e-005s)(1.577e-005s)

1.002.633.18Gamma Distribution CDF

(4.980e-007s)(1.309e-006s)(1.582e-006s)

1.006.942.19Gamma Distribution Quantile

(2.179e-006s)(1.513e-005s)(4.770e-006s)
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DCDFLIBRBoostStatistical Function

NA1.00

(1.601e-007s)

2.202

(3.522e-007s)

hypergeometric Distribution
CDF

NA2.57

(2.125e-006s)

1.00

(8.279e-007s)

hypergeometric Distribution
Quantile

NA2.75

(2.588e-007s)

1.00

(9.398e-008s)

Logistic Distribution CDF

NA1.30

(1.285e-007s)

1.00

(9.893e-008s)

Logistic Distribution Quantile

NA1.39

(2.539e-007s)

1.00

(1.831e-007s)

Log-normal Distribution CDF

NA1.00

(5.037e-007s)

1.10

(5.551e-007s)

Log-normal Distribution
Quantile

1.00

(1.444e-006s)

1.00

(1.444e-006s)

1.08

(1.563e-006s)

Negative Binomial Distribu-
tion CDF

1.93

(3.274e-005s)

25.923

(4.407e-004s)

1.00

(1.700e-005s)

Negative Binomial Distribu-
tion Quantile

1.00

(5.617e-006s)

25.01

(1.405e-004s)

5.06

(2.841e-005s)

Noncentral Chi Squared Distri-
bution CDF

1.00

(2.218e-004s)

144.914

(3.214e-002s)

8.47

(1.879e-003s)

Noncentral Chi Squared Distri-
bution Quantile

1.00

(5.682e-006s)

1.42

(8.058e-006s)

10.33

(5.868e-005s)

Noncentral F Distribution
CDF

1.00

(1.396e-004s)

6.63

(9.256e-004s)

5.64

(7.869e-004s)

Noncentral F Distribution
Quantile

NA1.00

(6.844e-006s)

4.91

(3.357e-005s)

noncentral T distribution CDF

NA1.005

(5.916e-004s)

1.57

(9.265e-004s)

noncentral T distribution
Quantile
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DCDFLIBRBoostStatistical Function

5.36

(5.762e-007s)

1.16

(1.245e-007s)

1.00

(1.074e-007s)

Normal Distribution CDF

10.35

(1.542e-006s)

1.00

(1.490e-007s)

1.28

(1.902e-007s)

Normal Distribution Quantile

1.00

(4.937e-007s)

2.25

(1.110e-006s)

2.43

(1.198e-006s)

Poisson Distribution CDF

4.07

(1.110e-005s)

1.00

(2.724e-006s)

1.11

(3.032e-006s)

Poisson Distribution

1.10

(1.021e-006s)

1.00

(9.321e-007s)

2.17

(2.020e-006s)

Students t Distribution CDF

3.89

(1.308e-005s)

1.00

(3.364e-006s)

1.18

(3.972e-006s)

Students t Distribution
Quantile

NA1.04

(3.808e-007s)

1.00

(3.662e-007s)

Weibull Distribution CDF

NA1.05

(4.317e-007s)

1.00

(4.112e-007s)

Weibull Distribution Quantile

1 There are a small number of our test cases where the R library fails to converge on a result: these tend to dominate the performance result.
2 This result is somewhat misleading: for small values of the parameters there is virtually no difference between the two libraries, but for large values the Boost im-
plementation is much slower, albeit with much improved precision.
3 The R library appears to use a linear-search strategy, that can perform very badly in a small number of pathological cases, but may or may not be more efficient in
"typical" cases
4 There are a small number of our test cases where the R library fails to converge on a result: these tend to dominate the performance result.
5 There are a small number of our test cases where the R library fails to converge on a result: these tend to dominate the performance result.
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The Performance Test Application
Under boost-path/libs/math/performance you will find a (fairly rudimentary) performance test application for this library.

To run this application yourself, build the all the .cpp files in boost-path/libs/math/performance into an application using your usual
release-build settings. Run the application with --help to see a full list of options, or with --all to test everything (which takes quite
a while), or with --tune to test the available performance tuning options.

If you want to use this application to test the effect of changing any of the Policies, then you will need to build and run it twice: once
with the default Policies, and then a second time with the Policies you want to test set as the default.
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Backgrounders
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Additional Implementation Notes
The majority of the implementation notes are included with the documentation of each function or distribution. The notes here are
of a more general nature, and reflect more the general implementation philosophy used.

Implemention philosophy

"First be right, then be fast."

There will always be potential compromises to be made between speed and accuracy. It may be possible to find faster methods,
particularly for certain limited ranges of arguments, but for most applications of math functions and distributions, we judge that
speed is rarely as important as accuracy.

So our priority is accuracy.

To permit evaluation of accuracy of the special functions, production of extremely accurate tables of test values has received consid-
erable effort.

(It also required much CPU effort - there was some danger of molten plastic dripping from the bottom of JM's laptop, so instead,
PAB's Dual-core desktop was kept 50% busy for days calculating some tables of test values!)

For a specific RealType, say float or double, it may be possible to find approximations for some functions that are simpler and
thus faster, but less accurate (perhaps because there are no refining iterations, for example, when calculating inverse functions).

If these prove accurate enough to be "fit for his purpose", then a user may substitute his custom specialization.

For example, there are approximations dating back from times when computation was a lot more expensive:

H Goldberg and H Levine, Approximate formulas for percentage points and normalisation of t and chi squared, Ann. Math. Stat.,
17(4), 216 - 225 (Dec 1946).

A H Carter, Approximations to percentage points of the z-distribution, Biometrika 34(2), 352 - 358 (Dec 1947).

These could still provide sufficient accuracy for some speed-critical applications.

Accuracy and Representation of Test Values

In order to be accurate enough for as many as possible real types, constant values are given to 50 decimal digits if available (though
many sources proved only accurate near to 64-bit double precision). Values are specified as long double types by appending L, unless
they are exactly representable, for example integers, or binary fractions like 0.125. This avoids the risk of loss of accuracy converting
from double, the default type. Values are used after static_cast<RealType>(1.2345L) to provide the appropriate RealType
for spot tests.

Functions that return constants values, like kurtosis for example, are written as

static_cast<RealType>(-3) / 5;

to provide the most accurate value that the compiler can compute for the real type. (The denominator is an integer and so will be
promoted exactly).

So tests for one third, not exactly representable with radix two floating-point, (should) use, for example:

static_cast<RealType>(1) / 3;

If a function is very sensitive to changes in input, specifying an inexact value as input (such as 0.1) can throw the result off by a
noticeable amount: 0.1f is "wrong" by ~1e-7 for example (because 0.1 has no exact binary representation). That is why exact binary
values - halves, quarters, and eighths etc - are used in test code along with the occasional fraction a/b with b a power of two (in order
to ensure that the result is an exactly representable binary value).
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Tolerance of Tests

The tolerances need to be set to the maximum of:

• Some epsilon value.

• The accuracy of the data (often only near 64-bit double).

Otherwise when long double has more digits than the test data, then no amount of tweaking an epsilon based tolerance will work.

A common problem is when tolerances that are suitable for implementations like Microsoft VS.NET where double and long double
are the same size: tests fail on other systems where long double is more accurate than double. Check first that the suffix L is present,
and then that the tolerance is big enough.

Handling Unsuitable Arguments

In Errors in Mathematical Special Functions, J. Marraffino & M. Paterno it is proposed that signalling a domain error is mandatory
when the argument would give an mathematically undefined result.

• Guideline 1

A mathematical function is said to be defined at a point a = (a1, a2, . . .) if the limits as x = (x1, x2, . . .) 'approaches
a from all directions agree'. The defined value may be any number, or +infinity, or -infinity.

Put crudely, if the function goes to + infinity and then emerges 'round-the-back' with - infinity, it is NOT defined.

The library function which approximates a mathematical function shall signal a domain error whenever evaluated
with argument values for which the mathematical function is undefined.

• Guideline 2

The library function which approximates a mathematical function shall signal a domain error whenever evaluated
with argument values for which the mathematical function obtains a non-real value.

This implementation is believed to follow these proposals and to assist compatibility with ISO/IEC 9899:1999 Programming languages
- C and with the Draft Technical Report on C++ Library Extensions, 2005-06-24, section 5.2.1, paragraph 5. See also domain_error.

See policy reference for details of the error handling policies that should allow a user to comply with any of these recommendations,
as well as other behaviour.

See error handling for a detailed explanation of the mechanism, and error_handling example and error_handling_example.cpp

Caution

If you enable throw but do NOT have try & catch block, then the program will terminate with an uncaught exception
and probably abort. Therefore to get the benefit of helpful error messages, enabling all exceptions and using
try&catch is recommended for all applications. However, for simplicity, this is not done for most examples.

Handling of Functions that are Not Mathematically defined

Functions that are not mathematically defined, like the Cauchy mean, fail to compile by default. A policy allows control of this.

If the policy is to permit undefined functions, then calling them throws a domain error, by default. But the error policy can be set to
not throw, and to return NaN instead. For example,

#define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error

appears before the first Boost include, then if the un-implemented function is called, mean(cauchy<>()) will return std::numeric_lim-
its<T>::quiet_NaN().
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Warning

If std::numeric_limits<T>::has_quiet_NaN is false (for example, if T is a User-defined type without NaN
support), then an exception will always be thrown when a domain error occurs. Catching exceptions is therefore
strongly recommended.

Median of distributions

There are many distributions for which we have been unable to find an analytic formula, and this has deterred us from implementing
median functions, the mid-point in a list of values.

However a useful numerical approximation for distribution dist is available as usual as an accessor non-member function median
using median(dist), that may be evaluated (in the absence of an analytic formula) by calling

quantile(dist, 0.5) (this is the mathematical definition of course).

Mean, Median, and Skew, Paul T von Hippel

Descriptive Statistics,

and

Mathematica Basic Statistics. give more detail, in particular for discrete distributions.

Handling of Floating-Point Infinity

Some functions and distributions are well defined with + or - infinity as argument(s), but after some experiments with handling in-
finite arguments as special cases, we concluded that it was generally more useful to forbid this, and instead to return the result of
domain_error.

Handling infinity as special cases is additionally complicated because, unlike built-in types on most - but not all - platforms, not all
User-Defined Types are specialized to provide std::numeric_limits<RealType>::infinity() and would return zero rather
than any representation of infinity.

The rationale is that non-finiteness may happen because of error or overflow in the users code, and it will be more helpful for this
to be diagnosed promptly rather than just continuing. The code also became much more complicated, more error-prone, much more
work to test, and much less readable.

However in a few cases, for example normal, where we felt it obvious, we have permitted argument(s) to be infinity, provided infinity
is implemented for the RealType on that implementation, and it is supported and tested by the distribution.

The range for these distributions is set to infinity if supported by the platform, (by testing std::numeric_limits<Real-
Type>::has_infinity) else the maximum value provided for the RealType by Boost.Math.

Testing for has_infinity is obviously important for arbitrary precision types where infinity makes much less sense than for IEEE754
floating-point.

So far we have not set support() function (only range) on the grounds that the PDF is uninteresting/zero for infinities.

Users who require special handling of infinity (or other specific value) can, of course, always intercept this before calling a distribution
or function and return their own choice of value, or other behavior. This will often be simpler than trying to handle the aftermath of
the error policy.

Overflow, underflow, denorm can be handled using error handling policies.

We have also tried to catch boundary cases where the mathematical specification would result in divide by zero or overflow and
signalling these similarly. What happens at (and near), poles can be controlled through error handling policies.
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Scale, Shape and Location

We considered adding location and scale to the list of functions, for example:

template <class RealType>
inline RealType scale(const triangular_distribution<RealType>& dist)
{
RealType lower = dist.lower();
RealType mode = dist.mode();
RealType upper = dist.upper();
RealType result; // of checks.
if(false == detail::check_triangular(BOOST_CURRENT_FUNCTION, lower, mode, upper, &result))
{
return result;

}
return (upper - lower);

}

but found that these concepts are not defined (or their definition too contentious) for too many distributions to be generally applicable.
Because they are non-member functions, they can be added if required.

Notes on Implementation of Specific Functions & Distributions

• Default parameters for the Triangular Distribution. We are uncertain about the best default parameters. Some sources suggest that
the Standard Triangular Distribution has lower = 0, mode = half and upper = 1. However as a approximation for the normal distri-
bution, the most common usage, lower = -1, mode = 0 and upper = 1 would be more suitable.

Rational Approximations Used

Some of the special functions in this library are implemented via rational approximations. These are either taken from the literature,
or devised by John Maddock using our Remez code.

Rational rather than Polynomial approximations are used to ensure accuracy: polynomial approximations are often wonderful up to
a certain level of accuracy, but then quite often fail to provide much greater accuracy no matter how many more terms are added.

Our own approximations were devised either for added accuracy (to support 128-bit long doubles for example), or because literature
methods were unavailable or under non-BSL compatible license. Our Remez code is known to produce good agreement with literature
results in fairly simple "toy" cases. All approximations were checked for convergence and to ensure that they were not ill-conditioned
(the coefficients can give a theoretically good solution, but the resulting rational function may be un-computable at fixed precision).

Recomputing using different Remez implementations may well produce differing coefficients: the problem is well known to be ill
conditioned in general, and our Remez implementation often found a broad and ill-defined minima for many of these approximations
(of course for simple "toy" examples like approximating exp the minima is well defined, and the coeffiecents should agree no matter
whose Remez implementation is used). This should not in general effect the validity of the approximations: there's good literature
supporting the idea that coefficients can be "in error" without necessarily adversely effecting the result. Note that "in error" has a
special meaning in this context, see "Approximate construction of rational approximations and the effect of error autocorrection.",
Grigori Litvinov, eprint arXiv:math/0101042. Therefore the coefficients still need to be accurately calculated, even if they can be
in error compared to the "true" minimax solution.

Representation of Mathematical Constants

A macro BOOST_DEFINE_MATH_CONSTANT in constants.hpp is used to provide high accuracy constants to mathematical
functions and distributions, since it is important to provide values uniformly for both built-in float, double and long double types,
and for User Defined types in Boost.Multiprecision like cpp_dec_float. and others like NTL::quad_float and NTL::RR.

To permit calculations in this Math ToolKit and its tests, (and elsewhere) at about 100 decimal digits with NTL::RR type, it is obviously
necessary to define constants to this accuracy.

However, some compilers do not accept decimal digits strings as long as this. So the constant is split into two parts, with the 1st
containing at least long double precision, and the 2nd zero if not needed or known. The 3rd part permits an exponent to be provided
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if necessary (use zero if none) - the other two parameters may only contain decimal digits (and sign and decimal point), and may
NOT include an exponent like 1.234E99 (nor a trailing F or L). The second digit string is only used if T is a User-Defined Type,
when the constant is converted to a long string literal and lexical_casted to type T. (This is necessary because you can't use a numeric
constant since even a long double might not have enough digits).

For example, pi is defined:

BOOST_DEFINE_MATH_CONSTANT(pi,
3.141592653589793238462643383279502884197169399375105820974944,
5923078164062862089986280348253421170679821480865132823066470938446095505,
0)

And used thus:

using namespace boost::math::constants;

double diameter = 1.;
double radius = diameter * pi<double>();

or boost::math::constants::pi<NTL::RR>()

Note that it is necessary (if inconvenient) to specify the type explicitly.

So you cannot write

double p = boost::math::constants::pi<>(); // could not deduce template argument for 'T'

Neither can you write:

double p = boost::math::constants::pi; // Context does not allow for disambiguation of overloaded ↵
function
double p = boost::math::constants::pi(); // Context does not allow for disambiguation of over↵
loaded function

Thread safety

Reporting of error by setting errno should be thread-safe already (otherwise none of the std lib math functions would be thread
safe?). If you turn on reporting of errors via exceptions, errno gets left unused anyway.

For normal C++ usage, the Boost.Math static const constants are now thread-safe so for built-in real-number types: float,
double and long double are all thread safe.

For User_defined types, for example, cpp_dec_float, the Boost.Math should also be thread-safe, (thought we are unsure how to rig-
orously prove this).

(Thread safety has received attention in the C++11 Standard revision, so hopefully all compilers will do the right thing here at some
point.)

Sources of Test Data

We found a large number of sources of test data. We have assumed that these are "known good" if they agree with the results from
our test and only consulted other sources for their 'vote' in the case of serious disagreement. The accuracy, actual and claimed, vary
very widely. Only Wolfram Mathematica functions provided a higher accuracy than C++ double (64-bit floating-point) and was re-
garded as the most-trusted source by far. The The R Project for Statistical Computing provided the widest range of distributions, but
the usual Intel X86 distribution uses 64-but doubles, so our use was limited to the 15 to 17 decimal digit accuracy.

A useful index of sources is: Web-oriented Teaching Resources in Probability and Statistics
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Statlet: Is a Javascript application that calculates and plots probability distributions, and provides the most complete range of distri-
butions:

Bernoulli, Binomial, discrete uniform, geometric, hypergeometric, negative binomial, Poisson, beta, Cauchy-
Lorentz, chi-sequared, Erlang, exponential, extreme value, Fisher, gamma, Laplace, logistic, lognormal, normal,
Parteo, Student's t, triangular, uniform, and Weibull.

It calculates pdf, cdf, survivor, log survivor, hazard, tail areas, & critical values for 5 tail values.

It is also the only independent source found for the Weibull distribution; unfortunately it appears to suffer from very poor accuracy
in areas where the underlying special function is known to be difficult to implement.

Testing for Invalid Parameters to Functions and Constructors

After finding that some 'bad' parameters (like NaN) were not throwing a domain_error exception as they should, a function

check_out_of_range (in test_out_of_range.hpp) was devised by JM to check (using Boost.Test's BOOST_CHECK_THROW
macro) that bad parameters passed to constructors and functions throw domain_error exceptions.

Usage is check_out_of_range< DistributionType >(list-of-params);Where list-of-params is a list of valid parameters
from which the distribution can be constructed - ie the same number of args are passed to the function, as are passed to the distribution
constructor.

The values of the parameters are not important, but must be valid to pass the contructor checks; the default values are suitable, but
must be explicitly provided, for example:

check_out_of_range<extreme_value_distribution<RealType> >(1, 2);

Checks made are:

• Infinity or NaN (if available) passed in place of each of the valid params.

• Infinity or NaN (if available) as a random variable.

• Out-of-range random variable passed to pdf and cdf (ie outside of "range(DistributionType)").

• Out-of-range probability passed to quantile function and complement.

but does not check finite but out-of-range parameters to the constructor because these are specific to each distribution, for example:

BOOST_CHECK_THROW(pdf(pareto_distribution<RealType>(0, 1), 0), std::domain_error);
BOOST_CHECK_THROW(pdf(pareto_distribution<RealType>(1, 0), 0), std::domain_error);

checks scale and shape parameters are both > 0 by checking that domain_error exception is thrown if either are == 0.

(Use of check_out_of_range function may mean that some previous tests are now redundant).

It was also noted that if more than one parameter is bad, then only the first detected will be reported by the error message.

Creating and Managing the Equations

Equations that fit on a single line can most easily be produced by inline Quickbook code using templates for Unicode Greek and
Unicode Math symbols. All Greek letter and small set of Math symbols is available at /boost-
path/libs/math/doc/sf_and_dist/html4_symbols.qbk

Where equations need to use more than one line, real Math editors were used.

The primary source for the equations is now MathML: see the *.mml files in libs/math/doc/sf_and_dist/equations/.
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These are most easily edited by a GUI editor such as Mathcast, please note that the equation editor supplied with Open Office currently
mangles these files and should not currently be used.

Conversion to SVG was achieved using SVGMath and a command line such as:

$for file in *.mml; do
>/cygdrive/c/Python25/python.exe 'C:\download\open\SVGMath-0.3.1\math2svg.py' \
>>$file > $(basename $file .mml).svg
>done

See also the section on "Using Python to run Inkscape" and "Using inkscape to convert scalable vector SVG files to Portable Network
graphic PNG".

Note that SVGMath requires that the mml files are not wrapped in an XHTML XML wrapper - this is added by Mathcast by default
- one workaround is to copy an existing mml file and then edit it with Mathcast: the existing format should then be preserved. This
is a bug in the XML parser used by SVGMath which the author is aware of.

If neccessary the XHTML wrapper can be removed with:

cat filename | tr -d "\r\n" | sed -e 's/.*\(<math[^>]*>.*</math>\).*/\1/' > newfile

Setting up fonts for SVGMath is currently rather tricky, on a Windows XP system JM's font setup is the same as the sample config
file provided with SVGMath but with:

    <!-- Double-struck -->
    <mathvariant name="double-struck" family="Mathematica7, Lucida Sans Unicode"/>

changed to:

    <!-- Double-struck -->
    <mathvariant name="double-struck" family="Lucida Sans Unicode"/>

Note that unlike the sample config file supplied with SVGMath, this does not make use of the Mathematica 7 font as this lacks suf-
ficient Unicode information for it to be used with either SVGMath or XEP "as is".

Also note that the SVG files in the repository are almost certainly Windows-specific since they reference various Windows Fonts.

PNG files can be created from the SVGs using Batik and a command such as:

java -jar 'C:\download\open\batik-1.7\batik-rasterizer.jar' -dpi 120 *.svg

Or using Inkscape (File, Export bitmap, Drawing tab, bitmap size (default size, 100 dpi), Filename (default). png)

or Using Cygwin, a command such as:

for file in *.svg; do
  /cygdrive/c/progra~1/Inkscape/inkscape -d 120 -e $(cygpath -a -w $(basename $file .svg).png) ↵
$(cygpath -a -w $file);
done

Using BASH

# Convert single SVG to PNG file.
# /c/progra~1/Inkscape/inkscape -d 120 -e a.png a.svg

or to convert All files in folder SVG to PNG.
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for file in *.svg; do
/c/progra~1/Inkscape/inkscape -d 120 -e $(basename $file .svg).png $file
done

Currently Inkscape seems to generate the better looking PNGs.

The PDF is generated into \pdf\math.pdf using a command from a shell or command window with current directory
\math_toolkit\libs\math\doc\sf_and_dist, typically:

bjam -a pdf >math_pdf.log

Note that XEP will have to be configured to use and embed whatever fonts are used by the SVG equations (almost certainly editing
the sample xep.xml provided by the XEP installation). If you fail to do this you will get XEP warnings in the log file like

[warning]could not find any font family matching "Times New Roman"; replaced by Helvetica

(html is the default so it is generated at libs\math\doc\html\index.html using command line >bjam -a > math_toolkit.docs.log).

<!-- Sample configuration for Windows TrueType fonts. -->

is provided in the xep.xml downloaded, but the Windows TrueType fonts are commented out.

JM's XEP config file \xep\xep.xml has the following font configuration section added:
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    <font-group xml:base="file:/C:/Windows/Fonts/" label="Windows TrueType" embed="true" sub↵
set="true">
      <font-family name="Arial">
        <font><font-data ttf="arial.ttf"/></font>
        <font style="oblique"><font-data ttf="ariali.ttf"/></font>
        <font weight="bold"><font-data ttf="arialbd.ttf"/></font>
        <font weight="bold" style="oblique"><font-data ttf="arialbi.ttf"/></font>
      </font-family>

      <font-family name="Times New Roman" ligatures="&#xFB01; &#xFB02;">
        <font><font-data ttf="times.ttf"/></font>
        <font style="italic"><font-data ttf="timesi.ttf"/></font>
        <font weight="bold"><font-data ttf="timesbd.ttf"/></font>
        <font weight="bold" style="italic"><font-data ttf="timesbi.ttf"/></font>
      </font-family>

      <font-family name="Courier New">
        <font><font-data ttf="cour.ttf"/></font>
        <font style="oblique"><font-data ttf="couri.ttf"/></font>
        <font weight="bold"><font-data ttf="courbd.ttf"/></font>
        <font weight="bold" style="oblique"><font-data ttf="courbi.ttf"/></font>
      </font-family>

      <font-family name="Tahoma" embed="true">
        <font><font-data ttf="tahoma.ttf"/></font>
        <font weight="bold"><font-data ttf="tahomabd.ttf"/></font>
      </font-family>

      <font-family name="Verdana" embed="true">
        <font><font-data ttf="verdana.ttf"/></font>
        <font style="oblique"><font-data ttf="verdanai.ttf"/></font>
        <font weight="bold"><font-data ttf="verdanab.ttf"/></font>
        <font weight="bold" style="oblique"><font-data ttf="verdanaz.ttf"/></font>
      </font-family>

      <font-family name="Palatino" embed="true" ligatures="&#xFB00; &#xFB01; &#xFB02; &#xFB03; ↵
&#xFB04;">
        <font><font-data ttf="pala.ttf"/></font>
        <font style="italic"><font-data ttf="palai.ttf"/></font>
        <font weight="bold"><font-data ttf="palab.ttf"/></font>
        <font weight="bold" style="italic"><font-data ttf="palabi.ttf"/></font>
      </font-family>

    <font-family name="Lucida Sans Unicode">
         <!-- <font><font-data ttf="lsansuni.ttf"><font> -->
         <!-- actually called l_10646.ttf on Windows 2000 and Vista Sp1 -->
         <font><font-data ttf="l_10646.ttf"></font>
    </font-family>

PAB had to alter his because the Lucida Sans Unicode font had a different name. Other changes are very likely to be required if you
are not using Windows.

XZ authored his equations using the venerable Latex, JM converted these to MathML using mxlatex. This process is currently unre-
liable and required some manual intervention: consequently Latex source is not considered a viable route for the automatic production
of SVG versions of equations.

Equations are embedded in the quickbook source using the equation template defined in math.qbk. This outputs Docbook XML that
looks like:
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<inlinemediaobject>
<imageobject role="html">
<imagedata fileref="../equations/myfile.png"></imagedata>
</imageobject>
<imageobject role="print">
<imagedata fileref="../equations/myfile.svg"></imagedata>
</imageobject>
</inlinemediaobject>

MathML is not currently present in the Docbook output, or in the generated HTML: this needs further investigation.

Producing Graphs

Graphs were produced in SVG format and then converted to PNG's using the same process as the equations.

The programs /libs/math/doc/sf_and_dist/graphs/dist_graphs.cpp  and
/libs/math/doc/sf_and_dist/graphs/sf_graphs.cpp generate the SVG's directly using the Google Summer of Code 2007
project of Jacob Voytko (whose work so far, considerably enhanced and now reasonably mature and usable, by Paul A. Bristow, is
at .\boost-sandbox\SOC\2007\visualization).

814

Backgrounders

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://code.google.com/soc/2007/boost/about.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Tutorial: How to Write a New Special Function

Implementation
In this section, we'll provide a "recipe" for adding a new special function to this library to make life easier for future authors wishing
to contribute. We'll assume the function returns a single floating-point result, and takes two floating-point arguments. For the sake
of exposition we'll give the function the name my_special.

Normally, the implementation of such a function is split into two layers - a public user layer, and an internal implementation layer
that does the actual work. The implementation layer is declared inside a detail namespace and has a simple signature:

namespace boost { namespace math { namespace detail {

template <class T, class Policy>
T my_special_imp(const T& a, const T&b, const Policy& pol)
{

/* Implementation goes here */
}

}}} // namespaces

We'll come back to what can go inside the implementation later, but first lets look at the user layer. This consists of two overloads
of the function, with and without a Policy argument:

namespace boost{ namespace math{

template <class T, class U>
typename tools::promote_args<T, U>::type my_special(const T& a, const U& b);

template <class T, class U, class Policy>
typename tools::promote_args<T, U>::type my_special(const T& a, const U& b, const Policy& pol);

}} // namespaces

Note how each argument has a different template type - this allows for mixed type arguments - the return type is computed from a
traits class and is the "common type" of all the arguments after any integer arguments have been promoted to type double.

The implementation of the non-policy overload is trivial:

namespace boost{ namespace math{

template <class T, class U>
inline typename tools::promote_args<T, U>::type my_special(const T& a, const U& b)
{

// Simply forward with a default policy:
return my_special(a, b, policies::policy<>();

}

}} // namespaces

The implementation of the other overload is somewhat more complex, as there's some meta-programming to do, but from a runtime
perspective is still a one-line forwarding function. Here it is with comments explaining what each line does:
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namespace boost{ namespace math{

template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type my_spe↵
cial(const T& a, const U& b, const Policy& pol)
{

//
// We've found some standard library functions to misbehave if any FPU exception flags
// are set prior to their call, this code will clear those flags, then reset them
// on exit:
//
BOOST_FPU_EXCEPTION_GUARD
//
// The type of the result - the common type of T and U after
// any integer types have been promoted to double:
//
typedef typename tools::promote_args<T, U>::type result_type;
//
// The type used for the calculation.  This may be a wider type than
// the result in order to ensure full precision:
//
typedef typename policies::evaluation<result_type, Policy>::type value_type;
//
// The type of the policy to forward to the actual implementation.
// We disable promotion of float and double as that's [possibly]
// happened already in the line above.  Also reset to the default
// any policies we don't use (reduces code bloat if we're called
// multiple times with differing policies we don't actually use).
// Also normalise the type, again to reduce code bloat in case we're
// called multiple times with functionally identical policies that happen
// to be different types.
//
typedef typename policies::normalise<

Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;

//
// Whew.  Now we can make the actual call to the implementation.
// Arguments are explicitly cast to the evaluation type, and the result
// passed through checked_narrowing_cast which handles things like overflow
// according to the policy passed:
//
return policies::checked_narrowing_cast<result_type, forwarding_policy>(

detail::my_special_imp(
static_cast<value_type>(a),
static_cast<value_type>(x),
forwarding_policy()),

"boost::math::my_special<%1%>(%1%, %1%)");
}

}} // namespaces

We're now almost there, we just need to flesh out the details of the implementation layer:
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namespace boost { namespace math { namespace detail {

template <class T, class Policy>
T my_special_imp(const T& a, const T&b, const Policy& pol)
{

/* Implementation goes here */
}

}}} // namespaces

The following guidelines indicate what (other than basic arithmetic) can go in the implementation:

• Error conditions (for example bad arguments) should be handled by calling one of the policy based error handlers.

• Calls to standard library functions should be made unqualified (this allows argument dependent lookup to find standard library
functions for user-defined floating point types such as those from Boost.Multiprecision). In addition, the macro
BOOST_MATH_STD_USING should appear at the start of the function (note no semi-colon afterwards!) so that all the math functions
in namespace std are visible in the current scope.

• Calls to other special functions should be made as fully qualified calls, and include the policy parameter as the last argument, for
example boost::math::tgamma(a, pol).

• Where possible, evaluation of series, continued fractions, polynomials, or root finding should use one of the boiler-plate functions.
In any case, after any iterative method, you should verify that the number of iterations did not exceed the maximum specified in
the Policy type, and if it did terminate as a result of exceeding the maximum, then the appropriate error handler should be called
(see existing code for examples).

• Numeric constants such as π etc should be obtained via a call to the appropriate function, for example: constants::pi<T>().

• Where tables of coefficients are used (for example for rational approximations), care should be taken to ensure these are initialized
at program startup to ensure thread safety when using user-defined number types. See for example the use of erf_initializer
in erf.hpp.

Here are some other useful internal functions:
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Meaningfunction

Returns number of binary digits in T (possible overridden by
the policy).

policies::digits<T, Policy>()

Maximum number of iterations for series evaluation.policies::get_max_series_iterations<Policy>()

Maximum number of iterations for root finding.policies::get_max_root_iterations<Policy>()

Epsilon for type T, possibly overridden by the Policy.polices::get_epsilon<T, Policy>()

Returns the number of binary digits in T.tools::digits<T>()

Equivalent to std::numeric_limits<T>::max()tools::max_value<T>()

Equivalent to std::numeric_limits<T>::min()tools::min_value<T>()

Equivalent to the natural logarithm of std::numeric_lim-
its<T>::max()

tools::log_max_value<T>()

Equivalent to the natural logarithm of std::numeric_lim-
its<T>::min()

tools::log_min_value<T>()

Equivalent to std::numeric_limits<T>::epsilon().tools::epsilon<T>()

Equivalent to the square root of std::numeric_lim-

its<T>::epsilon().
tools::root_epsilon<T>()

Equivalent to the forth root of std::numeric_limits<T>::ep-
silon().

tools::forth_root_epsilon<T>()

Testing
We work under the assumption that untested code doesn't work, so some tests for your new special function are in order, we'll divide
these up in to 3 main categories:

Spot Tests

Spot tests consist of checking that the expected exception is generated when the inputs are in error (or otherwise generate undefined
values), and checking any special values. We can check for expected exceptions with BOOST_CHECK_THROW, so for example if it's
a domain error for the last parameter to be outside the range [0,1] then we might have:

BOOST_CHECK_THROW(my_special(0, -0.1), std::domain_error);
BOOST_CHECK_THROW(my_special(0, 1.1), std::domain_error);

When the function has known exact values (typically integer values) we can use BOOST_CHECK_EQUAL:

BOOST_CHECK_EQUAL(my_special(1.0, 0.0), 0);
BOOST_CHECK_EQUAL(my_special(1.0, 1.0), 1);

When the function has known values which are not exact (from a floating point perspective) then we can use
BOOST_CHECK_CLOSE_FRACTION:
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// Assumes 4 epsilon is as close as we can get to a true value of 2Pi:
BOOST_CHECK_CLOSE_FRACTION(my_special(0.5, 0.5), 2 * constants::pi<double>(), std::numeric_lim↵
its<double>::epsilon() * 4);

Independent Test Values

If the function is implemented by some other known good source (for example Mathematica or it's online versions func-
tions.wolfram.com or www.wolframalpha.com then it's a good idea to sanity check our implementation by having at least one inde-
pendendly generated value for each code branch our implementation may take. To slot these in nicely with our testing framework
it's best to tabulate these like this:

// function values calculated on http://functions.wolfram.com/
static const boost::array<boost::array<T, 3>, 10> my_special_data = {{

{{ SC_(0), SC_(0), SC_(1) }},
{{ SC_(0), SC_(1), SC_(1.26606587775200833559824462521471753760767031135496220680814) }},
/* More values here... */

}};

We'll see how to use this table and the meaning of the SC_ macro later. One important point is to make sure that the input values
have exact binary representations: so choose values such as 1.5, 1.25, 1.125 etc. This ensures that if my_special is unusually
sensitive in one area, that we don't get apparently large errors just because the inputs are 0.5 ulp in error.

Random Test Values

We can generate a large number of test values to check both for future regressions, and for accumulated rounding or cancellation
error in our implementation. Ideally we would use an independent implementation for this (for example my_special may be defined
in directly terms of other special functions but not implemented that way for performance or accuracy reasons). Alternatively we
may use our own implementation directly, but with any special cases (asymptotic expansions etc) disabled. We have a set of tools
to generate test data directly, here's a typical example:
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#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/math/tools/test_data.hpp>
#include <boost/test/included/prg_exec_monitor.hpp>
#include <fstream>

using namespace boost::math::tools;
using namespace boost::math;
using namespace std;
using namespace boost::multiprecision;

template <class T>
T my_special(T a, T b)
{

// Implementation of my_special here...
return a + b;

}

int cpp_main(int argc, char*argv [])
{

//
// We'll use so many digits of precision that any
// calculation errors will still leave us with
// 40-50 good digits.  We'll only run this program
// once so it doesn't matter too much how long this takes!
//
typedef number<cpp_dec_float<500> > bignum;

parameter_info<bignum> arg1, arg2;
test_data<bignum> data;

bool cont;
std::string line;

if(argc < 1)
return 1;

do{
//
// User interface which prompts for 
// range of input parameters:
//
if(0 == get_user_parameter_info(arg1, "a"))

return 1;
if(0 == get_user_parameter_info(arg2, "b"))

return 1;

//
// Get a pointer to the function and call
// test_data::insert to actually generate
// the values.
//
bignum (*fp)(bignum, bignum) = &my_special;
data.insert(fp, arg2, arg1);

std::cout << "Any more data [y/n]?";
std::getline(std::cin, line);
boost::algorithm::trim(line);
cont = (line == "y");

}while(cont);
//
// Just need to write the results to a file:
//
std::cout << "Enter name of test data file [default=my_special.ipp]";
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std::getline(std::cin, line);
boost::algorithm::trim(line);
if(line == "")

line = "my_special.ipp";
std::ofstream ofs(line.c_str());
line.erase(line.find('.'));
ofs << std::scientific << std::setprecision(50);
write_code(ofs, data, line.c_str());

return 0;
}

Typically several sets of data will be generated this way, including random values in some "normal" range, extreme values (very
large or very small), and values close to any "interesting" behaviour of the function (singularities etc).

The Test File Header

We split the actual test file into 2 distinct parts: a header that contains the testing code as a series of function templates, and the ac-
tual .cpp test driver that decides which types are tested, and sets the "expected" error rates for those types. It's done this way because:

• We want to test with both built in floating point types, and with multiprecision types. However, both compile and runtimes with
the latter can be too long for the folks who run the tests to realistically cope with, so it makes sense to split the test into (at least)
2 parts.

• The definition of the SC_ macro used in our tables of data may differ depending on what type we're testing (see below). Again
this is largely a matter of managing compile times as large tables of user-defined-types can take a crazy amount of time to compile
with some compilers.

The test header contains 2 functions:

template <class Real, class T>
void do_test(const T& data, const char* type_name, const char* test_name);

template <class T>
void test(T, const char* type_name);

Before implementing those, we'll include the headers we'll need, and provide a default definition for the SC_ macro:

// A couple of Boost.Test headers in case we need any BOOST_CHECK_* macros:
#include <boost/test/unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp>
// Our function to test:
#include <boost/math/special_functions/my_special.hpp>
// We need boost::array for our test data, plus a few headers from
// libs/math/test that contain our testing machinary:
#include <boost/array.hpp>
#include "functor.hpp"
#include "handle_test_result.hpp"
#include "table_type.hpp"

#ifndef SC_
#define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
#endif

The easiest function to implement is the "test" function which is what we'll be calling from the test-driver program. It simply includes
the files containing the tabular test data and calls do_test function for each table, along with a description of what's being tested:
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template <class T>
void test(T, const char* type_name)
{

//
// The actual test data is rather verbose, so it's in a separate file
//
// The contents are as follows, each row of data contains
// three items, input value a, input value b and my_special(a, b):
//

#  include "my_special_1.ipp"

do_test<T>(my_special_1, name, "MySpecial Function: Mathematica Values");

#  include "my_special_2.ipp"

do_test<T>(my_special_2, name, "MySpecial Function: Random Values");

#  include "my_special_3.ipp"

do_test<T>(my_special_3, name, "MySpecial Function: Very Small Values");
}

The function do_test takes each table of data and calculates values for each row of data, along with statistics for max and mean
error etc, most of this is handled by some boilerplate code:
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template <class Real, class T>
void do_test(const T& data, const char* type_name, const char* test_name)
{

// Get the type of each row and each element in the rows:
typedef typename T::value_type row_type;
typedef Real value_type;

// Get a pointer to our function, we have to use a workaround here
// as some compilers require the template types to be explicitly
// specified, while others don't much like it if it is!
typedef value_type (*pg)(value_type, value_type);

#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
pg funcp = boost::math::my_special<value_type, value_type>;

#else
pg funcp = boost::math::my_special;

#endif

// Somewhere to hold our results:
boost::math::tools::test_result<value_type> result;
// And some pretty printing:
std::cout << "Testing " << test_name << " with type " << type_name

<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";

//
// Test my_special against data:
//
result = boost::math::tools::test_hetero<Real>(

/* First argument is the table */
data,
/* Next comes our function pointer, plus the indexes of it's arguments in the table */
bind_func<Real>(funcp, 0, 1),
/* Then the index of the result in the table - potentially we can test several

      related functions this way, each having the same input arguments, and different
      output values in different indexes in the table */

extract_result<Real>(2));
//
// Finish off with some boilerplate to check the results were within the expected errors,
// and pretty print the results:
//
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::my_spe↵

cial", test_name);
}

Now we just need to write the test driver program, at it's most basic it looks something like this:
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#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/tools/test.hpp>
#include <boost/math/tools/stats.hpp>
#include <boost/type_traits.hpp>
#include <boost/array.hpp>
#include "functor.hpp"

#include "handle_test_result.hpp"
#include "test_my_special.hpp"

BOOST_AUTO_TEST_CASE( test_main )
{

//
// Test each floating point type, plus real_concept.
// We specify the name of each type by hand as typeid(T).name()
// often gives an unreadable mangled name.
//
test(0.1F, "float");
test(0.1, "double");
//
// Testing of long double and real_concept is protected
// by some logic to disable these for unsupported
// or problem compilers.
//

#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test(0.1L, "long double");

#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))

test(boost::math::concepts::real_concept(0.1), "real_concept");
#endif
#endif
#else

std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
"not available at all, or because they are too inaccurate for these tests "
"to pass.</note>" << std::cout;

#endif
}

That's almost all there is too it - except that if the above program is run it's very likely that all the tests will fail as the default maximum
allowable error is 1 epsilon. So we'll define a function (don't forget to call it from the start of the test_main above) to up the limits
to something sensible, based both on the function we're calling and on the particular tests plus the platform and compiler:
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void expected_results()
{

//
// Define the max and mean errors expected for
// various compilers and platforms.
//
const char* largest_type;

#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
if(boost::math::policies::di↵

gits<double, boost::math::policies::policy<> >() == boost::math::policies::di↵
gits<long double, boost::math::policies::policy<> >())

{
largest_type = "(long\\s+)?double|real_concept";

}
else
{

largest_type = "long double|real_concept";
}

#else
largest_type = "(long\\s+)?double";

#endif
//
// We call add_expected_result for each error rate we wish to adjust, these tell
// handle_test_result what level of error is acceptable.  We can have as many calls
// to add_expected_result as we need, each one establishes a rule for acceptable error
// with rules set first given preference.
//
add_expected_result(

/* First argument is a regular expression to match against the name of the compiler
         set in BOOST_COMPILER */

".*",
/* Second argument is a regular expression to match against the name of the

         C++ standard library as set in BOOST_STDLIB */
".*",
/* Third argument is a regular expression to match against the name of the

         platform as set in BOOST_PLATFORM */
".*",
/* Forth argument is the name of the type being tested, normally we will

         only need to up the acceptable error rate for the widest floating
         point type being tested */

largest_real,
/* Fifth argument is a regular expression to match against

         the name of the group of data being tested */
"MySpecial Function:.*Small.*",
/* Sixth argument is a regular expression to match against the name

         of the function being tested */
"boost::math::my_special",
/* Seventh argument is the maximum allowable error expressed in units

         of machine epsilon passed as a long integer value */
50,
/* Eighth argument is the maximum allowable mean error expressed in units

         of machine epsilon passed as a long integer value */
20);

}

Testing Multiprecision Types

Testing of multiprecision types is handled by the test drivers in libs/multiprecision/test/math, please refer to these for examples. Note
that these tests are run only occationally as they take a lot of CPU cycles to build and run.
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Improving Compile Times

As noted above, these test programs can take a while to build as we're instantiating a lot of templates for several different types, and
our test runners are already stretched to the limit, and probably using outdated "spare" hardware. There are two things we can do to
speed things up:

• Use a precompiled header.

• Use separate compilation of our special function templates.

We can make these changes by changing the list of includes from:

#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/tools/test.hpp>
#include <boost/math/tools/stats.hpp>
#include <boost/type_traits.hpp>
#include <boost/array.hpp>
#include "functor.hpp"

#include "handle_test_result.hpp"

To just:

#include <pch_light.hpp>

And changing

#include <boost/math/special_functions/my_special.hpp>

To:

#include <boost/math/special_functions/math_fwd.hpp>

The Jamfile target that builds the test program will need the targets

test_instances//test_instances pch_light

adding to it's list of source dependencies (see the Jamfile for examples).

Finally the project in libs/math/test/test_instances will need modifying to instantiate function my_special.

These changes should be made last, when my_special is stable and the code is in Trunk.

Concept Checks

Our concept checks verify that your function's implementation makes no assumptions that aren't required by our Real number con-
ceptual requirements. They also check for various common bugs and programming traps that we've fallen into over time. To add
your function to these tests, edit libs/math/test/compile_test/instantiate.hpp to add calls to your function: there are 7 calls to each
function, each with a different purpose. Search for something like "ibeta" or "gamm_p" and follow their examples.
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Relative Error
Given an actual value a and a found value v the relative error can be calculated from:

| a − va |
However the test programs in the library use the symmetrical form:

max( | a − va | , | a − vv | )
which measures relative difference and happens to be less error prone in use since we don't have to worry which value is the "true"
result, and which is the experimental one. It guarantees to return a value at least as large as the relative error.

Special care needs to be taken when one value is zero: we could either take the absolute error in this case (but that's cheating as the
absolute error is likely to be very small), or we could assign a value of either 1 or infinity to the relative error in this special case. In
the test cases for the special functions in this library, everything below a threshold is regarded as "effectively zero", otherwise the
relative error is assigned the value of 1 if only one of the terms is zero. The threshold is currently set at std::numeric_lim-
its<>::min(): in other words all denormalised numbers are regarded as a zero.

All the test programs calculate quantized relative error, whereas the graphs in this manual are produced with the actual error. The
difference is as follows: in the test programs, the test data is rounded to the target real type under test when the program is compiled,
so the error observed will then be a whole number of units in the last place either rounded up from the actual error, or rounded down
(possibly to zero). In contrast the true error is obtained by extending the precision of the calculated value, and then comparing to
the actual value: in this case the calculated error may be some fraction of units in the last place.

Note that throughout this manual and the test programs the relative error is usually quoted in units of epsilon. However, remember
that units in the last place more accurately reflect the number of contaminated digits, and that relative error can "wobble" by a factor
of 2 compared to units in the last place. In other words: two implementations of the same function, whose maximum relative errors
differ by a factor of 2, can actually be accurate to the same number of binary digits. You have been warned!

The Impossibility of Zero Error

For many of the functions in this library, it is assumed that the error is "effectively zero" if the computation can be done with a
number of guard digits. However it should be remembered that if the result is a transcendental number then as a point of principle
we can never be sure that the result is accurate to more than 1 ulp. This is an example of what
http://en.wikipedia.org/wiki/William_Kahan called http://en.wikipedia.org/wiki/Rounding#The_table-maker.27s_dilemma: consider
what happens if the first guard digit is a one, and the remaining guard digits are all zero. Do we have a tie or not? Since the only
thing we can tell about a transcendental number is that its digits have no particular pattern, we can never tell if we have a tie, no
matter how many guard digits we have. Therefore, we can never be completely sure that the result has been rounded in the right
direction. Of course, transcendental numbers that just happen to be a tie - for however many guard digits we have - are extremely
rare, and get rarer the more guard digits we have, but even so....

Refer to the classic text What Every Computer Scientist Should Know About Floating-Point Arithmetic for more information.
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The Lanczos Approximation
Motivation

Why base gamma and gamma-like functions on the Lanczos approximation?

First of all I should make clear that for the gamma function over real numbers (as opposed to complex ones) the Lanczos approxim-
ation (See Wikipedia or Mathworld) appears to offer no clear advantage over more traditional methods such as Stirling's approxim-
ation. Pugh carried out an extensive comparison of the various methods available and discovered that they were all very similar in
terms of complexity and relative error. However, the Lanczos approximation does have a couple of properties that make it worthy
of further consideration:

• The approximation has an easy to compute truncation error that holds for all z > 0. In practice that means we can use the same
approximation for all z > 0, and be certain that no matter how large or small z is, the truncation error will at worst be bounded by
some finite value.

• The approximation has a form that is particularly amenable to analytic manipulation, in particular ratios of gamma or gamma-like
functions are particularly easy to compute without resorting to logarithms.

It is the combination of these two properties that make the approximation attractive: Stirling's approximation is highly accurate for
large z, and has some of the same analytic properties as the Lanczos approximation, but can't easily be used across the whole range
of z.

As the simplest example, consider the ratio of two gamma functions: one could compute the result via lgamma:

exp(lgamma(a) - lgamma(b));

However, even if lgamma is uniformly accurate to 0.5ulp, the worst case relative error in the above can easily be shown to be:

Erel > a * log(a)/2 + b * log(b)/2

For small a and b that's not a problem, but to put the relationship another way: each time a and b increase in magnitude by a factor
of 10, at least one decimal digit of precision will be lost.

In contrast, by analytically combining like power terms in a ratio of Lanczos approximation's, these errors can be virtually eliminated
for small a and b, and kept under control for very large (or very small for that matter) a and b. Of course, computing large powers
is itself a notoriously hard problem, but even so, analytic combinations of Lanczos approximations can make the difference between
obtaining a valid result, or simply garbage. Refer to the implementation notes for the beta function for an example of this method in
practice. The incomplete gamma_p gamma and beta functions use similar analytic combinations of power terms, to combine gamma
and beta functions divided by large powers into single (simpler) expressions.

The Approximation

The Lanczos Approximation to the Gamma Function is given by:

Γ(z + 1) = 2π (z + g + 0.5)z+0.5e−(z+g+0.5)Sg(z)

Where Sg(z) is an infinite sum, that is convergent for all z > 0, and g is an arbitrary parameter that controls the "shape" of the terms
in the sum which is given by:

Sg(z) = [12a0 + a1 z
z + 1 + a2

z(z − 1)
(z + 1)(z + 2) + … ]

With individual coefficients defined in closed form by:
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ak = (−1)k 2
π e

gk∑
j=0

k

(−1) j
(k + j − 1) !
(k − j) ! j ! ( e

j + g + 1
2
) j+12

However, evaluation of the sum in that form can lead to numerical instability in the computation of the ratios of rising and falling
factorials (effectively we're multiplying by a series of numbers very close to 1, so roundoff errors can accumulate quite rapidly).

The Lanczos approximation is therefore often written in partial fraction form with the leading constants absorbed by the coefficients
in the sum:

Γ(z) =
(z + g − 0.5)z−0.5

ez+g−0.5
Lg(z);

where:

Lg(z) = C0 +∑
k=1

N−1
CN

z + k − 1

Again parameter g is an arbitrarily chosen constant, and N is an arbitrarily chosen number of terms to evaluate in the "Lanczos sum"
part.

Note

Some authors choose to define the sum from k=1 to N, and hence end up with N+1 coefficients. This happens to
confuse both the following discussion and the code (since C++ deals with half open array ranges, rather than the
closed range of the sum). This convention is consistent with Godfrey, but not Pugh, so take care when referring to
the literature in this field.

Computing the Coefficients

The coefficients C0..CN-1 need to be computed from N and g at high precision, and then stored as part of the program. Calculation
of the coefficients is performed via the method of Godfrey; let the constants be contained in a column vector P, then:

P = D B C F

where B is an NxN matrix:

Bi, j = { 1 i f i = 0

−1 j−iX i f i > 0 j ≥ i
0 otherwise

; X = (i + j − 1
j − i )

D is an NxN matrix:

Di j = { 0 i f i ≠ j
1 i f i = j = 0
−1 i f i = j = 1

Di−1,i−12(2i − 1)
i − 1 otherwise

C is an NxN matrix:
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Ci, j = { 1
2 i f i = j = 0
0 i f j > i

−1i− jS otherwise

; S =∑
k=0

i

(2i2k)( k
k + j − i)

and F is an N element column vector:

Fi =
(2i) !ei+g+0.5

i !22i−1(i + g + 0.5)i+0.5

Note than the matrices B, D and C contain all integer terms and depend only on N, this product should be computed first, and then
multiplied by F as the last step.

Choosing the Right Parameters

The trick is to choose N and g to give the desired level of accuracy: choosing a small value for g leads to a strictly convergent series,
but one which converges only slowly. Choosing a larger value of g causes the terms in the series to be large and/or divergent for
about the first g-1 terms, and to then suddenly converge with a "crunch".

Pugh has determined the optimal value of g for N in the range 1 <= N <= 60: unfortunately in practice choosing these values leads
to cancellation errors in the Lanczos sum as the largest term in the (alternating) series is approximately 1000 times larger than the
result. These optimal values appear not to be useful in practice unless the evaluation can be done with a number of guard digits and
the coefficients are stored at higher precision than that desired in the result. These values are best reserved for say, computing to
float precision with double precision arithmetic.

Table 73. Optimal choices for N and g when computing with guard digits (source: Pugh)

Max ErrorgNSignificand Size

9.51e-125.581624

9.2213e-2313.1445651353

The alternative described by Godfrey is to perform an exhaustive search of the N and g parameter space to determine the optimal
combination for a given p digit floating-point type. Repeating this work found a good approximation for double precision arithmetic
(close to the one Godfrey found), but failed to find really good approximations for 80 or 128-bit long doubles. Further it was observed
that the approximations obtained tended to optimised for the small values of z (1 < z < 200) used to test the implementation against
the factorials. Computing ratios of gamma functions with large arguments were observed to suffer from error resulting from the
truncation of the Lancozos series.

Pugh identified all the locations where the theoretical error of the approximation were at a minimum, but unfortunately has published
only the largest of these minima. However, he makes the observation that the minima coincide closely with the location where the
first neglected term (aN) in the Lanczos series Sg(z) changes sign. These locations are quite easy to locate, albeit with considerable
computer time. These "sweet spots" need only be computed once, tabulated, and then searched when required for an approximation
that delivers the required precision for some fixed precision type.

Unfortunately, following this path failed to find a really good approximation for 128-bit long doubles, and those found for 64 and
80-bit reals required an excessive number of terms. There are two competing issues here: high precision requires a large value of g,
but avoiding cancellation errors in the evaluation requires a small g.

At this point note that the Lanczos sum can be converted into rational form (a ratio of two polynomials, obtained from the partial-
fraction form using polynomial arithmetic), and doing so changes the coefficients so that they are all positive. That means that the
sum in rational form can be evaluated without cancellation error, albeit with double the number of coefficients for a given N. Repeating
the search of the "sweet spots", this time evaluating the Lanczos sum in rational form, and testing only those "sweet spots" whose
theoretical error is less than the machine epsilon for the type being tested, yielded good approximations for all the types tested. The
optimal values found were quite close to the best cases reported by Pugh (just slightly larger N and slightly smaller g for a given
precision than Pugh reports), and even though converting to rational form doubles the number of stored coefficients, it should be
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noted that half of them are integers (and therefore require less storage space) and the approximations require a smaller N than would
otherwise be required, so fewer floating point operations may be required overall.

The following table shows the optimal values for N and g when computing at fixed precision. These should be taken as work in
progress: there are no values for 106-bit significand machines (Darwin long doubles & NTL quad_float), and further optimisation
of the values of g may be possible. Errors given in the table are estimates of the error due to truncation of the Lanczos infinite series
to N terms. They are calculated from the sum of the first five neglected terms - and are known to be rather pessimistic estimates -
although it is noticeable that the best combinations of N and g occurred when the estimated truncation error almost exactly matches
the machine epsilon for the type in question.

Table 74. Optimum value for N and g when computing at fixed precision

Max Truncation ErrorgNPlatform/Compiler
Used

Significand Size

9.41e-0071.4284561350941658020019531256Win32, VC++ 7.124

3.23e-0166.02468004077672958374023437513Win32, VC++ 7.153

2.34e-02412.225222736597061157226562517Suse Linux 9 IA64,
gcc-3.3.3

64

4.75e-03520.320982187986373901367187524HP Tru64 Unix 5.1B /
Alpha, Compaq C++
V7.1-006

116

Finally note that the Lanczos approximation can be written as follows by removing a factor of exp(g) from the denominator, and
then dividing all the coefficients by exp(g):

Γ(z) = ( z + g − 0.5
e )z−0.5Lg,e(z);

This form is more convenient for calculating lgamma, but for the gamma function the division by e turns a possibly exact quality
into an inexact value: this reduces accuracy in the common case that the input is exact, and so isn't used for the gamma function.
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The Remez Method
The Remez algorithm is a methodology for locating the minimax rational approximation to a function. This short article gives a brief
overview of the method, but it should not be regarded as a thorough theoretical treatment, for that you should consult your favorite
textbook.

Imagine that you want to approximate some function f(x) by way of a rational function R(x), where R(x) may be either a polynomial
P(x) or a ratio of two polynomials P(x)/Q(x) (a rational function). Initially we'll concentrate on the polynomial case, as it's by far
the easier to deal with, later we'll extend to the full rational function case.

We want to find the "best" rational approximation, where "best" is defined to be the approximation that has the least deviation from
f(x). We can measure the deviation by way of an error function:

Eabs(x) = f(x) - R(x)

which is expressed in terms of absolute error, but we can equally use relative error:

Erel(x) = (f(x) - R(x)) / |f(x)|

And indeed in general we can scale the error function in any way we want, it makes no difference to the maths, although the two
forms above cover almost every practical case that you're likely to encounter.

The minimax rational function R(x) is then defined to be the function that yields the smallest maximal value of the error function.
Chebyshev showed that there is a unique minimax solution for R(x) that has the following properties:

• If R(x) is a polynomial of degree N, then there are N+2 unknowns: the N+1 coefficients of the polynomial, and maximal value of
the error function.

• The error function has N+1 roots, and N+2 extrema (minima and maxima).

• The extrema alternate in sign, and all have the same magnitude.

That means that if we know the location of the extrema of the error function then we can write N+2 simultaneous equations:

R(xi) + (-1)iE = f(xi)

where E is the maximal error term, and xi are the abscissa values of the N+2 extrema of the error function. It is then trivial to solve
the simultaneous equations to obtain the polynomial coefficients and the error term.

Unfortunately we don't know where the extrema of the error function are located!

The Remez Method

The Remez method is an iterative technique which, given a broad range of assumptions, will converge on the extrema of the error
function, and therefore the minimax solution.

In the following discussion we'll use a concrete example to illustrate the Remez method: an approximation to the function ex   over
the range [-1, 1].

Before we can begin the Remez method, we must obtain an initial value for the location of the extrema of the error function. We
could "guess" these, but a much closer first approximation can be obtained by first constructing an interpolated polynomial approx-
imation to f(x).

In order to obtain the N+1 coefficients of the interpolated polynomial we need N+1 points (x0...xN): with our interpolated form
passing through each of those points that yields N+1 simultaneous equations:

f(xi) = P(xi) = c0 + c1xi ... + cNxi
N

Which can be solved for the coefficients c0...cN in P(x).
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Obviously this is not a minimax solution, indeed our only guarantee is that f(x) and P(x) touch at N+1 locations, away from those
points the error may be arbitrarily large. However, we would clearly like this initial approximation to be as close to f(x) as possible,
and it turns out that using the zeros of an orthogonal polynomial as the initial interpolation points is a good choice. In our example
we'll use the zeros of a Chebyshev polynomial as these are particularly easy to calculate, interpolating for a polynomial of degree 4,
and measuring relative error we get the following error function:

Which has a peak relative error of 1.2x10-3.

While this is a pretty good approximation already, judging by the shape of the error function we can clearly do better. Before starting
on the Remez method propper, we have one more step to perform: locate all the extrema of the error function, and store these locations
as our initial Chebyshev control points.

Note

In the simple case of a polynomial approximation, by interpolating through the roots of a Chebyshev polynomial
we have in fact created a Chebyshev approximation to the function: in terms of absolute error this is the best a priori
choice for the interpolated form we can achieve, and typically is very close to the minimax solution.

However, if we want to optimise for relative error, or if the approximation is a rational function, then the initial
Chebyshev solution can be quite far from the ideal minimax solution.

A more technical discussion of the theory involved can be found in this online course.

Remez Step 1

The first step in the Remez method, given our current set of N+2 Chebyshev control points xi, is to solve the N+2 simultaneous
equations:

P(xi) + (-1)iE = f(xi)

To obtain the error term E, and the coefficients of the polynomial P(x).

This gives us a new approximation to f(x) that has the same error E at each of the control points, and whose error function alternates
in sign at the control points. This is still not necessarily the minimax solution though: since the control points may not be at the extrema
of the error function. After this first step here's what our approximation's error function looks like:
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Clearly this is still not the minimax solution since the control points are not located at the extrema, but the maximum relative error
has now dropped to 5.6x10-4.

Remez Step 2

The second step is to locate the extrema of the new approximation, which we do in two stages: first, since the error function changes
sign at each control point, we must have N+1 roots of the error function located between each pair of N+2 control points. Once these
roots are found by standard root finding techniques, we know that N extrema are bracketed between each pair of roots, plus two
more between the endpoints of the range and the first and last roots. The N+2 extrema can then be found using standard function
minimisation techniques.

We now have a choice: multi-point exchange, or single point exchange.

In single point exchange, we move the control point nearest to the largest extrema to the absissa value of the extrema.

In multi-point exchange we swap all the current control points, for the locations of the extrema.

In our example we perform multi-point exchange.

Iteration

The Remez method then performs steps 1 and 2 above iteratively until the control points are located at the extrema of the error
function: this is then the minimax solution.

For our current example, two more iterations converges on a minimax solution with a peak relative error of 5x10-4 and an error
function that looks like:
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Rational Approximations

If we wish to extend the Remez method to a rational approximation of the form

f(x) = R(x) = P(x) / Q(x)

where P(x) and Q(x) are polynomials, then we proceed as before, except that now we have N+M+2 unknowns if P(x) is of order N
and Q(x) is of order M. This assumes that Q(x) is normalised so that its leading coefficient is 1, giving N+M+1 polynomial coefficients
in total, plus the error term E.

The simultaneous equations to be solved are now:

P(xi) / Q(xi) + (-1)iE = f(xi)

Evaluated at the N+M+2 control points xi.

Unfortunately these equations are non-linear in the error term E: we can only solve them if we know E, and yet E is one of the un-
knowns!

The method usually adopted to solve these equations is an iterative one: we guess the value of E, solve the equations to obtain a new
value for E (as well as the polynomial coefficients), then use the new value of E as the next guess. The method is repeated until E
converges on a stable value.

These complications extend the running time required for the development of rational approximations quite considerably. It is often
desirable to obtain a rational rather than polynomial approximation none the less: rational approximations will often match more
difficult to approximate functions, to greater accuracy, and with greater efficiency, than their polynomial alternatives. For example,
if we takes our previous example of an approximation to ex, we obtained 5x10-4 accuracy with an order 4 polynomial. If we move
two of the unknowns into the denominator to give a pair of order 2 polynomials, and re-minimise, then the peak relative error drops
to 8.7x10-5. That's a 5 fold increase in accuracy, for the same number of terms overall.

Practical Considerations

Most treatises on approximation theory stop at this point. However, from a practical point of view, most of the work involves finding
the right approximating form, and then persuading the Remez method to converge on a solution.

So far we have used a direct approximation:

f(x) = R(x)
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But this will converge to a useful approximation only if f(x) is smooth. In addition round-off errors when evaluating the rational
form mean that this will never get closer than within a few epsilon of machine precision. Therefore this form of direct approximation
is often reserved for situations where we want efficiency, rather than accuracy.

The first step in improving the situation is generally to split f(x) into a dominant part that we can compute accurately by another
method, and a slowly changing remainder which can be approximated by a rational approximation. We might be tempted to write:

f(x) = g(x) + R(x)

where g(x) is the dominant part of f(x), but if f(x)/g(x) is approximately constant over the interval of interest then:

f(x) = g(x)(c + R(x))

Will yield a much better solution: here c is a constant that is the approximate value of f(x)/g(x) and R(x) is typically tiny compared
to c. In this situation if R(x) is optimised for absolute error, then as long as its error is small compared to the constant c, that error
will effectively get wiped out when R(x) is added to c.

The difficult part is obviously finding the right g(x) to extract from your function: often the asymptotic behaviour of the function
will give a clue, so for example the function erfc becomes proportional to e-x2

/x as x becomes large. Therefore using:

erfc(z) = (C + R(x)) e-x2

/x

as the approximating form seems like an obvious thing to try, and does indeed yield a useful approximation.

However, the difficulty then becomes one of converging the minimax solution. Unfortunately, it is known that for some functions
the Remez method can lead to divergent behaviour, even when the initial starting approximation is quite good. Furthermore, it is
not uncommon for the solution obtained in the first Remez step above to be a bad one: the equations to be solved are generally "stiff",
often very close to being singular, and assuming a solution is found at all, round-off errors and a rapidly changing error function,
can lead to a situation where the error function does not in fact change sign at each control point as required. If this occurs, it is fatal
to the Remez method. It is also possible to obtain solutions that are perfectly valid mathematically, but which are quite useless
computationally: either because there is an unavoidable amount of roundoff error in the computation of the rational function, or because
the denominator has one or more roots over the interval of the approximation. In the latter case while the approximation may have
the correct limiting value at the roots, the approximation is nonetheless useless.

Assuming that the approximation does not have any fatal errors, and that the only issue is converging adequately on the minimax
solution, the aim is to get as close as possible to the minimax solution before beginning the Remez method. Using the zeros of a
Chebyshev polynomial for the initial interpolation is a good start, but may not be ideal when dealing with relative errors and/or ra-
tional (rather than polynomial) approximations. One approach is to skew the initial interpolation points to one end: for example if
we raise the roots of the Chebyshev polynomial to a positive power greater than 1 then the roots will be skewed towards the middle
of the [-1,1] interval, while a positive power less than one will skew them towards either end. More usefully, if we initially rescale
the points over [0,1] and then raise to a positive power, we can skew them to the left or right. Returning to our example of ex   over
[-1,1], the initial interpolated form was some way from the minimax solution:
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However, if we first skew the interpolation points to the left (rescale them to [0, 1], raise to the power 1.3, and then rescale back to
[-1,1]) we reduce the error from 1.3x10-3  to 6x10-4:

It's clearly still not ideal, but it is only a few percent away from our desired minimax solution (5x10-4).

Remez Method Checklist

The following lists some of the things to check if the Remez method goes wrong, it is by no means an exhaustive list, but is provided
in the hopes that it will prove useful.

• Is the function smooth enough? Can it be better separated into a rapidly changing part, and an asymptotic part?

• Does the function being approximated have any "blips" in it? Check for problems as the function changes computation method,
or if a root, or an infinity has been divided out. The telltale sign is if there is a narrow region where the Remez method will not
converge.
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• Check you have enough accuracy in your calculations: remember that the Remez method works on the difference between the
approximation and the function being approximated: so you must have more digits of precision available than the precision of the
approximation being constructed. So for example at double precision, you shouldn't expect to be able to get better than a float
precision approximation.

• Try skewing the initial interpolated approximation to minimise the error before you begin the Remez steps.

• If the approximation won't converge or is ill-conditioned from one starting location, try starting from a different location.

• If a rational function won't converge, one can minimise a polynomial (which presents no problems), then rotate one term from
the numerator to the denominator and minimise again. In theory one can continue moving terms one at a time from numerator to
denominator, and then re-minimising, retaining the last set of control points at each stage.

• Try using a smaller interval. It may also be possible to optimise over one (small) interval, rescale the control points over a larger
interval, and then re-minimise.

• Keep absissa values small: use a change of variable to keep the abscissa over, say [0, b], for some smallish value b.
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M. Abramowitz and I. A. Stegun (Eds.) (1964) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables, National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C.

NIST Handbook of Mathematical Functions Edited by: Frank W. J. Olver, University of Maryland and National Institute of Standards
and Technology, Maryland, Daniel W. Lozier, National Institute of Standards and Technology, Maryland, Ronald F. Boisvert, Na-
tional Institute of Standards and Technology, Maryland, Charles W. Clark, National Institute of Standards and Technology, Maryland
and University of Maryland.

ISBN: 978-0521140638 (paperback), 9780521192255 (hardback), July 2010, Cambridge University Press.

NIST/SEMATECH e-Handbook of Statistical Methods

Mathematica Documentation: DiscreteDistributions The Wolfram Research Documentation Center is a collection of online reference
materials about Mathematica, CalculationCenter, and other Wolfram Research products.

Mathematica Documentation: ContinuousDistributions The Wolfram Research Documentation Center is a collection of online reference
materials about Mathematica, CalculationCenter, and other Wolfram Research products.

Statistical Distributions (Wiley Series in Probability & Statistics) (Paperback) by N.A.J. Hastings, Brian Peacock, Merran Evans,
ISBN: 0471371246, Wiley 2000.

Extreme Value Distributions, Theory and Applications Samuel Kotz & Saralees Nadarajah, ISBN 978-1-86094-224-2 & 1-86094-
224-5 Oct 2000, Chapter 1.2 discusses the various extreme value distributions.

pugh.pdf (application/pdf Object) Pugh Msc Thesis on the Lanczos approximation to the gamma function.

N1514, 03-0097, A Proposal to Add Mathematical Special Functions to the C++ Standard Library (version 2), Walter E. Brown

Calculators

We found (and used to create cross-check spot values - as far as their accuracy allowed).

The Wolfram Functions Site The Wolfram Functions Site - Providing the mathematical and scientific community with the world's
largest (and most authorititive) collection of formulas and graphics about mathematical functions.

100-decimal digit calculator provided some spot values.

http://www.adsciengineering.com/bpdcalc/ Binomial Probability Distribution Calculator.

Other Libraries

Cephes library by Shephen Moshier and his book:

Methods and programs for mathematical functions, Stephen L B Moshier, Ellis Horwood (1989) ISBN 0745802893 0470216093
provided inspiration.

CDFLIB Library of Fortran Routines for Cumulative Distribution functions.

DCFLIB C++ version.
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DCDFLIB C++ version DCDFLIB is a library of C++ routines, using double precision arithmetic, for evaluating cumulative prob-
ability density functions.

http://www.softintegration.com/docs/package/chnagstat/

NAG libraries.

MathCAD

JMSL Numerical Library (Java).

John F Hart, Computer Approximations, (1978) ISBN 0 088275 642-7.

William J Cody, Software Manual for the Elementary Functions, Prentice-Hall (1980) ISBN 0138220646.

Nico Temme, Special Functions, An Introduction to the Classical Functions of Mathematical Physics, Wiley, ISBN: 0471-11313-1
(1996) who also gave valueable advice.

Statistics Glossary, Valerie Easton and John H. McColl.

_R R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

For use of R, see:

Jim Albert, Bayesian Computation with R, ISBN 978-0-387-71384-7.

C++ Statistical Distributions in Boost - QuantNetwork forum discusses using Boost.Math in finance.

Quantnet Boost and computational finance. Robert Demming & Daniel J. Duffy, Introduction to the C++ Boost Libraries - Volume
I - Foundations and Volume II ISBN 978-94-91028-01-4, Advanced Libraries and Applications, ISBN 978-94-91028-02-1 (to be
published in 2011). discusses application of Boost.Math, especially in finance.
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History and What's New
Currently open bug reports can be viewed here.

All bug reports including closed ones can be viewed here.

Math-2.2.1

Patch release for Boost-1.58:

• Minor patch for Haiku support.

• Fix the decimal digit count for 128-bit floating point types.

• Fix a few documentation typos.

Math-2.2.0 (boost-1.58.0)

• Added two new special functions - trigamma and polygamma.

• Fixed namespace scope constants so they are constexpr on conforming compilers, see https://svn.boost.org/trac/boost/ticket/10901.

• Fixed various cases of spurious under/overflow in the incomplete beta and gamma functions, plus the elliptic integrals, with thanks
to Rocco Romeo.

• Fix 3-arg legendre_p and legendre_q functions to not call the policy based overload if the final argument is not actually a policy.

• Cleaned up some dead code in the incomplete beta function, see #10985.

• Fixed extreme-value pdf for large valued inputs, see #10938.

• Large update to the Elliptic integral code to use Carlson's latest algorithms - these should be more stable, more accurate and slightly
faster than before. Also added support for Carlson's RG integral.

• Added ellint_d, jacobi_zeta and heuman_lambda elliptic integrals.

• Switched documentation to use SVG rather than PNG graphs and equations - browsers seem to have finally caught up!

Math-2.1.0 (boost-1.57.0)

• Added Hyperexponential Distribution.

• Fix some spurious overflows in the incomplete gamma functions (with thanks to Rocco Romeo).

• Fix bug in derivative of incomplete beta when a = b = 0.5 - this also effects several non-central distributions, see 10480.

• Fixed some corner cases in round.

• Don't support 80-bit floats in cstdfloat.hpp if standard library support is broken.

Math-2.0.0 (Boost-1.56.0)

• Breaking change: moved a number of non-core headers that are predominantly used for internal maintenance into
libs/math/include_private. The headers effected are boost/math/tools/test_data.hpp, boost/math/tools/re-
mez.hpp, boost/math/constants/generate.hpp, boost/math/tools/solve.hpp, boost/math/tools/test.hpp.
You can continue to use these headers by adding libs/math/include_private to your compiler's include path.

• Breaking change: A number of distributions and special functions were returning the maximum finite value rather than raising
an overflow_error, this has now been fixed, which means these functions now behave as documented. However, since the default
behavior on raising an overflow_error is to throw a std::overflow_error exception, applications which have come to reply
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rely on these functions not throwing may experience exceptions where they did not before. The special functions involved are
gamma_p_inva, gamma_q_inva, ibeta_inva, ibetac_inva, ibeta_invb, ibetac_invb, gamma_p_inv, gamma_q_inv. The distributions
involved are Pareto Distribution, Beta Distribution, Geometric Distribution, Negative Binomial Distribution, Binomial Distribution,
Chi Squared Distribution, Gamma Distribution, Inverse chi squared Distribution, Inverse Gamma Distribution. See #10111.

• Fix round and trunc functions so they can be used with integer arguments, see #10066.

• Fix Halley iteration to handle zero derivative (with non-zero second derivative), see #10046.

Math-1.9.1

• Fix Geometric distribution use of Policies, see #9833.

• Fix corner cases in the negative binomial distribution, see #9834.

• Fix compilation failures on Mac OS.

Math-1.9.0

• Changed version number to new Boost.Math specific version now that we're in the modular Boost world.

• Added Bernoulli numbers, changed arbitrary precision tgamma/lgamma to use Sterling's approximation (from Nikhar Agrawal).

• Added first derivatives of the Bessel functions: cyl_bessel_j_prime, cyl_neumann_prime, cyl_bessel_i_prime, cyl_bessel_k_prime,
sph_bessel_prime and sph_neumann_prime (from Anton Bikineev).

• Fixed buggy Student's t example code, along with docs for testing sample means for equivalence.

• Documented max_iter parameter in root finding code better, see #9225.

• Add option to explicitly enable/disable use of __float128 in constants code, see #9240.

• Cleaned up handling of negative values in Bessel I0 and I1 code (removed dead code), see #9512.

• Fixed handling of very small values passed to tgamma and lgamma so they don't generate spurious overflows (thanks to Rocco
Romeo).

• #9672 PDF and CDF of a Laplace distribution throwing domain_error Random variate can now be infinite.

• Fixed several corner cases in rising_factorial, falling_factorial and tgamma_delta_ratio with thanks to Rocco Romeo.

• Fixed several corner cases in rising_factorial, falling_factorial and tgamma_delta_ratio (thanks to Rocco Romeo).

• Removed constant pow23_four_minus_pi  whose value did not match the name (and was unused by Boost.Math), see #9712.

Boost-1.55

• Suppress numerous warnings (mostly from GCC-4.8 and MSVC) #8384, #8855, #9107, #9109..

• Fixed PGI compilation issue #8333.

• Fixed PGI constant value initialization issue that caused erf to generate incorrect results #8621.

• Prevent macro expansion of some C99 macros that are also C++ functions #8732 and #8733..

• Fixed Student's T distribution to behave correctly with huge degrees of freedom (larger than the largest representable integer)
#8837.

• Make some core functions usable with long double even when the platform has no standard library long double support
#8940.
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• Fix error handling of distributions to catch invalid scale and location parameters when the random variable is infinite #9042 and
#9126.

• Add workaround for broken <tuple> in Intel C++ 14 #9087.

• Improve consistency of argument reduction in the elliptic integrals #9104.

• Fix bug in inverse incomplete beta that results in cancellation errors when the beta function is really an arcsine or Student's T
distribution.

• Fix issue in Bessel I and K function continued fractions that causes spurious over/underflow.

• Add improvement to non-central chi squared distribution quantile due to Thomas Luu.

Boost-1.54

• Major reorganization to incorporate other Boost.Math like Integer Utilities Integer Utilities (Greatest Common Divisor and Least
Common Multiple), quaternions and octonions. Making new chapter headings.

• Added many references to Boost.Multiprecision and cpp_dec_float_50 as an example of a User-defined Type (UDT).

• Added Clang to list of supported compilers.

• Fixed constants to use a thread-safe cache of computed values when used at arbitrary precision.

• Added finding zeros of Bessel functions cyl_bessel_j_zero, cyl_neumann_zero, airy_ai_zero and airy_bi_zero(by
Christopher Kormanyos).

• More accuracy improvements to the Bessel J and Y functions from Rocco Romeo.

• Fixed nasty cyclic dependency bug that caused some headers to not compile #7999.

• Fixed bug in tgamma that caused spurious overflow for arguments between 142.5 and 143.

• Fixed bug in raise_rounding_error that caused it to return an incorrect result when throwing an exception is turned off #7905.

• Added minimal __float128 support.

• Fixed bug in edge-cases of poisson quantile #8308.

• Adjusted heuristics used in Halley iteration to cope with inverting the incomplete beta in tricky regions where the derivative is
flatlining. Example is computing the quantile of the Fisher F distribution for probabilities smaller than machine epsilon. See
ticket #8314.

Boost-1.53

• Fixed issues #7325, #7415 and #7416, #7183, #7649, #7694, #4445, #7492, #7891, #7429.

• Fixed mistake in calculating pooled standard deviation in two-sample students t example #7402.

• Improve complex acos/asin/atan, see #7290, #7291.

• Improve accuracy in some corner cases of cyl_bessel_j and gamma_p/gamma_q thanks to suggestions from Rocco Romeo.

• Improve accuracy of Bessel J and Y for integer orders thanks to suggestions from Rocco Romeo.

Boost-1.52

• Corrected moments for small degrees of freedom #7177 (reported by Thomas Mang).

• Added Airy functions and Jacobi Elliptic functions.

844

Library Status

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/9042
https://svn.boost.org/trac/boost/ticket/9126
https://svn.boost.org/trac/boost/ticket/9087
https://svn.boost.org/trac/boost/ticket/9104
https://svn.boost.org/trac/boost/ticket/7999
https://svn.boost.org/trac/boost/ticket/7905
https://svn.boost.org/trac/boost/ticket/8308
https://svn.boost.org/trac/boost/ticket/8314
https://svn.boost.org/trac/boost/ticket/7325
https://svn.boost.org/trac/boost/ticket/7415
https://svn.boost.org/trac/boost/ticket/7416
https://svn.boost.org/trac/boost/ticket/7183
https://svn.boost.org/trac/boost/ticket/7649
https://svn.boost.org/trac/boost/ticket/7694
https://svn.boost.org/trac/boost/ticket/4445
https://svn.boost.org/trac/boost/ticket/7492
https://svn.boost.org/trac/boost/ticket/7891
https://svn.boost.org/trac/boost/ticket/7429
https://svn.boost.org/trac/boost/ticket/7402
https://svn.boost.org/trac/boost/ticket/7290
https://svn.boost.org/trac/boost/ticket/7291
https://svn.boost.org/trac/boost/ticket/7177
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


• Corrected failure to detect bad parameters in many distributions #6934 (reported by Florian Schoppmann) by adding a function
check_out_of_range to test many possible bad parameters. This test revealed several distributions where the checks for bad para-
meters were ineffective, and these have been rectified.

• Fixed issue in Hankel functions that causes incorrect values to be returned for x < 0 and ν odd, see #7135.

• Fixed issues #6517, #6362, #7053, #2693, #6937, #7099.

• Permitted infinite degrees of freedom #7259 implemented using the normal distribution (requested by Thomas Mang).

• Much enhanced accuracy for large degrees of freedom ν and/or large non-centrality δ by switching to use the Students t distribution
(or Normal distribution for infinite degrees of freedom) centered at delta, when δ / (4 * ν) < epsilon for the floating-point type in
use. #7259. It was found that the incomplete beta was suffering from serious cancellation errors when degrees of freedom was
very large. (That has now been fixed in our code, but any code based on Didonato and Morris's original papers (probably every
implementation out there actually) will have the same issue).

Boost-1.51

See Boost-1.52 - some items were added but not listed in time for the release.

Boost-1.50

• Promoted math constants to be 1st class citizens, including convenient access to the most widely used built-in float, double, long
double via three namespaces.

• Added the Owen's T function and Skew Normal distribution written by Benjamin Sobotta: see Owens T and skew_normal_distrib.

• Added Hankel functions cyl_hankel_1, cyl_hankel_2, sph_hankel_1 and sph_hankel_2.

• Corrected issue #6627 nonfinite_num_put formatting of 0.0 is incorrect based on a patch submitted by K R Walker.

• Changed constant initialization mechanism so that it is thread safe even for user-defined types, also so that user defined types get
the full precision of the constant, even when long double does not. So for example 128-bit rational approximations will work
with UDT's and do the right thing, even though long double may be only 64 or 80 bits.

• Fixed issue in bessel_jy which causes Y8.5(4π) to yield a NaN.

Boost-1.49

• Deprecated wrongly named twothirds math constant in favour of two_thirds (with underscore separator). (issue #6199).

• Refactored test data and some special function code to improve support for arbitary precision and/or expression-template-enabled
types.

• Added new faster zeta function evaluation method.

Fixed issues:

• Corrected CDF complement for Laplace distribution (issue #6151).

• Corrected branch cuts on the complex inverse trig functions, to handle signed zeros (issue #6171).

• Fixed bug in bessel_yn which caused incorrect overflow errors to be raised for negative n (issue #6367).

• Also fixed minor/cosmetic/configuration issues #6120, #6191, #5982, #6130, #6234, #6307, #6192.

Boost-1.48

• Added new series evaluation methods to the cyclic Bessel I, J, K and Y functions. Also taken great care to avoid spurious over
and underflow of these functions. Fixes issue #5560
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• Added an example of using Inverse Chi-Squared distribution for Bayesian statistics, provided by Thomas Mang.

• Added tests to use improved version of lexical_cast which handles C99 nonfinites without using globale facets.

• Corrected wrong out-of-bound uniform distribution CDF complement values #5733.

• Enabled long double support on OpenBSD (issue #6014).

• Changed nextafter and related functions to behave in the same way as other implementations - so that nextafter(+INF, 0) is a finite
value (issue #5832).

• Changed tuple include configuration to fix issue when using in conjunction with Boost.Tr1 (issue #5934).

• Changed class eps_tolerance to behave correctly when both ends of the range are zero (issue #6001).

• Fixed missing include guards on prime.hpp (issue #5927).

• Removed unused/undocumented constants from constants.hpp (issue #5982).

• Fixed missing std:: prefix in nonfinite_num_facets.hpp (issue #5914).

• Minor patches for Cray compiler compatibility.

Boost-1.47

• Added changesign function to sign.hpp to facilitate addition of nonfinite facets.

• Addition of nonfinite facets from Johan Rade, with tests, examples of use for C99 format infinity and NaN, and documentation.

• Added tests and documentation of changesign from Johan Rade.

Boost-1.46.1

• Fixed issues #5095, #5113.

Boost-1.46.0

• Added Wald, Inverse Gaussian and geometric distributions.

• Added information about configuration macros.

• Added support for mpreal as a real-numbered type.

Boost-1.45.0

• Added warnings about potential ambiguity with std random library in distribution and function names.

• Added inverse gamma distribution and inverse chi_square and scaled inverse chi_square.

• Editorial revision of documentation, and added FAQ.

Boost-1.44.0

• Fixed incorrect range and support for Rayleigh distribution.

• Fixed numerical error in the quantile of the Student's T distribution: the function was returning garbage values for non-integer
degrees of freedom between 2 and 3.

Boost-1.41.0

• Significantly improved performance for the incomplete gamma function and its inverse.
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Boost-1.40.0

• Added support for MPFR as a bignum type.

• Added some full specializations of the policy classes to reduce compile times.

• Added logistic and hypergeometric distributions, from Gautam Sewani's Google Summer of Code project.

• Added Laplace distribution submitted by Thijs van den Berg.

• Updated performance test code to include new distributions, and improved the performance of the non-central distributions.

• Added SSE2 optimised Lanczos approximation code, from Gautam Sewani's Google Summer of Code project.

• Fixed bug in cyl_bessel_i that used an incorrect approximation for ν = 0.5, also effects the non-central Chi Square Distribution
when ν = 3, see bug report #2877.

• Fixed minor bugs #2873.

Boost-1.38.0

• Added Johan Råde's optimised floating point classification routines.

• Fixed code so that it compiles in GCC's -pedantic mode (bug report #1451).

Boost-1.37.0

• Improved accuracy and testing of the inverse hypergeometric functions.

Boost-1.36.0

• Added Noncentral Chi Squared Distribution.

• Added Noncentral Beta Distribution.

• Added Noncentral F Distribution.

• Added Noncentral T Distribution.

• Added Exponential Integral Functions.

• Added Zeta Function.

• Added Rounding and Truncation functions.

• Added Compile time powers of runtime bases.

• Added SSE2 optimizations for Lanczos evaluation.

Boost-1.35.0: Post Review First Official Release

• Added Policy based framework that allows fine grained control over function behaviour.

• Breaking change: Changed default behaviour for domain, pole and overflow errors to throw an exception (based on review
feedback), this behaviour can be customised using Policy's.

• Breaking change: Changed exception thrown when an internal evaluation error occurs to boost::math::evaluation_error.

• Breaking change: Changed discrete quantiles to return an integer result: this is anything up to 20 times faster than finding the
true root, this behaviour can be customised using Policy's.
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• Polynomial/rational function evaluation is now customisable and hopefully faster than before.

• Added performance test program.

Milestone 4: Second Review Candidate (1st March 2007)

• Moved Xiaogang Zhang's Bessel Functions code into the library, and brought them into line with the rest of the code.

• Added C# "Distribution Explorer" demo application.

Milestone 3: First Review Candidate (31st Dec 2006)

• Implemented the main probability distribution and density functions.

• Implemented digamma.

• Added more factorial functions.

• Implemented the Hermite, Legendre and Laguerre polynomials plus the spherical harmonic functions from TR1.

• Moved Xiaogang Zhang's elliptic integral code into the library, and brought them into line with the rest of the code.

• Moved Hubert Holin's existing Boost.Math special functions into this library and brought them into line with the rest of the code.

Milestone 2: Released September 10th 2006

• Implement preview release of the statistical distributions.

• Added statistical distributions tutorial.

• Implemented root finding algorithms.

• Implemented the inverses of the incomplete gamma and beta functions.

• Rewrite erf/erfc as rational approximations (valid to 128-bit precision).

• Integrated the statistical results generated from the test data with Boost.Test: uses a database of expected results, indexed by test,
floating point type, platform, and compiler.

• Improved lgamma near 1 and 2 (rational approximations).

• Improved erf/erfc inverses (rational approximations).

• Implemented Rational function generation (the Remez method).

Milestone 1: Released March 31st 2006

• Implement gamma/beta/erf functions along with their incomplete counterparts.

• Generate high quality test data, against which future improvements can be judged.

• Provide tools for the evaluation of infinite series, continued fractions, and rational functions.

• Provide tools for testing against tabulated test data, and collecting statistics on error rates.

• Provide sufficient docs for people to be able to find their way around the library.

SVN Revisions:

Sandbox and trunk last synchonised at revision: .
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Known Issues, and TODO List
Predominantly this is a TODO list, or a list of possible future enhancements. Items labled "High Priority" effect the proper functioning
of the component, and should be fixed as soon as possible. Items labled "Medium Priority" are desirable enhancements, often per-
taining to the performance of the component, but do not effect it's accuracy or functionality. Items labled "Low Priority" should
probably be investigated at some point. Such classifications are obviously highly subjective.

If you don't see a component listed here, then we don't have any known issues with it.

Derivatives of Bessel functions (and their zeros)

Potentially, there could be native support for cyl_bessel_j_prime() and cyl_neumann_prime(). One could also imagine
supporting the zeros thereof, but they might be slower to calculate since root bracketing might be needed instead of Newton iteration
(for the lack of 2nd derivatives).

Since Boost.Math's Bessel functions are so excellent, the quick way to cyl_bessel_j_prime() and cyl_neumann_prime()
would be via relationship with cyl_bessel_j() and cyl_neumann().

tgamma

• Can the Lanczos approximation be optimized any further? (low priority)

Incomplete Beta

• Investigate Didonato and Morris' asymptotic expansion for large a and b (medium priority).

Inverse Gamma

• Investigate whether we can skip iteration altogether if the first approximation is good enough (Medium Priority).

Polynomials

• The Legendre and Laguerre Polynomials have surprisingly different error rates on different platforms, considering they are eval-
uated with only basic arithmetic operations. Maybe this is telling us something, or maybe not (Low Priority).

Elliptic Integrals

• [para Carlson's algorithms (mainly RJ) are somewhat prone to internal overflow/underflow when the arguments are very large or
small. The homogeneity relations:] [para RF(ka, kb, kc) = k-1/2 RF(a, b, c)] [para and] [para RJ(ka, kb, kc, kr) = k-3/2 RJ(a, b, c, r)]
[para could be used to sidestep trouble here: provided the problem domains can be accurately identified. (Medium Priority).]

• There are a several other integrals: Bulirsch's el functions that could be implemented using Carlson's integrals (Low Priority).

• The integrals K(k) and E(k) could be implemented using rational approximations (both for efficiency and accuracy), assuming
we can find them. (Medium Priority).

Owen's T Function

There is a problem area at arbitrary precision when a is very close to 1. However, note that the value for T(h, 1) is well known and
easy to compute, and if we replaced the ak terms in series T1, T2 or T4 by (ak - 1) then we would have the difference between T(h,
a) and T(h, 1). Unfortunately this doesn't improve the convergence of those series in that area. It certainly looks as though a new
series in terms of (1-a)k is both possible and desirable in this area, but it remains elusive at present.

Jocobi elliptic functions

These are useful in engineering applications - we have had a request to add these.
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Statistical distributions

• Student's t Perhaps switch to normal distribution as a better approximation for very large degrees of freedom?

Feature Requests

We have a request for the Lambert W function, see #11027.

The following table lists distributions that are found in other packages but which are not yet present here, the more frequently the
distribution is found, the higher the priority for implementing it:
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MatlabRegress+NISTMathematica 6RDistribution

X--XXGeometric

X---XMultinomial

--X-XTukey Lambda

-X-X-Half Normal / Fol-
ded Normal

-X-X-Chi

-X-X-Gumbel

X--X-Discrete Uniform

-X-X-Log Series

XX---Nakagami (general-
ised Chi)

X----Log Logistic

----XTukey (Studentized
range)

----XWilcoxon rank sum

----XWincoxon signed
rank

----XNon-central Beta

---X-Maxwell

---X-Beta-Binomial

---X-Beta-negative Bino-
mial

---X-Zipf

--X--Birnbaum-Saun-
ders / Fatigue Life

--X--Double Exponen-
tial

--X--Power Normal

--X--Power Lognormal

-X---Cosine

-X---Double Gamma

-X---Double Weibul
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MatlabRegress+NISTMathematica 6RDistribution

-X---Hyperbolic Secant

-X---Semicircular

-X---Bradford

-X---Birr / Fisk

-X---Reciprocal

-----Kolmogorov Distri-
bution

Also asked for more than once:

• Add support for interpolated distributions, possibly combine with numeric integration and differentiation.

• Add support for bivariate and multivariate distributions: most especially the normal.

• Add support for the log of the cdf and pdf: this is mainly a performance optimisation since we can avoid some special function
calls for some distributions by returning the log of the result.
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Credits and Acknowledgements
Hubert Holin started the Boost.Math library. The Quaternions, Octonions, inverse hyperbolic functions, and the sinus cardinal
functions are his.

Daryle Walker wrote the integer gcd and lcm functions.

John Maddock started the special functions, the beta, gamma, erf, polynomial, and factorial functions are his, as is the "Toolkit"
section, and many of the statistical distributions.

Paul A. Bristow threw down the challenge in A Proposal to add Mathematical Functions for Statistics to the C++ Standard Library
to add the key math functions, especially those essential for statistics. After JM accepted and solved the difficult problems, not only
numerically, but in full C++ template style, PAB implemented a few of the statistical distributions. PAB also tirelessly proof-read
everything that JM threw at him (so that all remaining editorial mistakes are his fault).

Xiaogang Zhang worked on the Bessel functions and elliptic integrals for his Google Summer of Code project 2006.

Bruno Lalande submitted the "compile time power of a runtime base" code.

Johan Råde wrote the optimised floating-point classification and manipulation code, and nonfinite facets to permit C99 output of
infinities and NaNs. (nonfinite facets were not added until Boost 1.47 but had been in use with Boost.Spirit). This library was based
on a suggestion from Robert Ramey, author of Boost.Serialization. Paul A. Bristow expressed the need for better handling of Input
& Output of NaN and infinity for the C++ Standard Library and suggested following the C99 format.

Antony Polukhin improved lexical cast avoiding stringstream so that it was no longer necessary to use a globale C99 facet to handle
nonfinites.

Håkan Ardö, Boris Gubenko, John Maddock, Markus Schöpflin and Olivier Verdier tested the floating-point library and Martin
Bonner, Peter Dimov and John Maddock provided valuable advice.

Gautam Sewani coded the logistic distribution as part of a Google Summer of Code project 2008.

M. A. (Thijs) van den Berg coded the Laplace distribution. (Thijs has also threatened to implement some multivariate distributions).

Thomas Mang requested the inverse gamma in chi squared distributions for Bayesian applications and helped in their implementation,
and provided a nice example of their use.

Professor Nico Temme for advice on the inverse incomplete beta function.

Victor Shoup for NTL, without which it would have much more difficult to produce high accuracy constants, and especially the
tables of accurate values for testing.

We are grateful to Joel Guzman for helping us stress-test his Boost.Quickbook program used to generate the html and pdf versions
of this document, adding several new features en route.

Plots of the functions and distributions were prepared in W3C standard Scalable Vector Graphic (SVG) format using a program
created by Jacob Voytko during a Google Summer of Code (2007). From 2012, the latest versions of all Internet Browsers have
support for rendering SVG (with varying quality). Older versions, especially (Microsoft Internet Explorer (before IE 9) lack native
SVG support but can be made to work with Adobe's free SVG viewer plugin). The SVG files can be converted to JPEG or PNG
using Inkscape.

We are also indebted to Matthias Schabel for managing the formal Boost-review of this library, and to all the reviewers - including
Guillaume Melquiond, Arnaldur Gylfason, John Phillips, Stephan Tolksdorf and Jeff Garland - for their many helpful comments.

Thanks to Mark Coleman and Georgi Boshnakov for spot test values from Wolfram Mathematica, and of course, to Eric Weisstein
for nurturing Wolfram MathWorld, an invaluable resource.

The Skew-normal distribution and Owen's t function were written by Benjamin Sobotta.
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We thank Thomas Mang for persuading us to allow t distributions to have infinite degrees of freedom and contributing to some long
discussions about how to improve accuracy for large non-centrality and/or large degrees of freedom.

Christopher Kormanyos wrote the e_float multiprecision library TOMS Algorithm 910: A Portable C++ Multiple-Precision System
for Special-Function Calculations which formed the basis for the Boost.Multiprecision library which now can be used to allow most
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Legendre (and Associated) Polynomials, 428
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legendre_q
Legendre (and Associated) Polynomials, 428

lgamma
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
Log Gamma, 375
Setting Polices at Namespace Scope, 780

lgammaf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

lgammal
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

llrint
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

llrintf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

llrintl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

llround
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
Rounding Functions, 49

llroundf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

llroundl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

lltrunc
Truncation Functions, 49

location
Cauchy-Lorentz Distribution, 239
Examples Where Root Finding Goes Wrong, 673
Extreme Value Distribution, 248
Find Location (Mean) Example, 195
Find Scale (Standard Deviation) Example, 197
Laplace Distribution, 297
Log Normal Distribution, 302
Logistic Distribution, 300
Normal (Gaussian) Distribution, 330
Skew Normal Distribution, 341

log1p
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
log1p, 523
Series Evaluation, 695

log1pf
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C99 C Functions, 557

log1pl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

log2
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
Compile Time Power of a Runtime Base, 529

log2f
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

log2l
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

logb
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logbl
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lrint
C99 and C++ TR1 C-style Functions, 37
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lrintl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

lround
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Rounding Functions, 49

lroundf
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lroundl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

ltrunc
Truncation Functions, 49

M
make_policy

Policy Class Reference, 781
mean

Distribution Construction Examples, 119
Find Location (Mean) Example, 195
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Find Scale (Standard Deviation) Example, 197
Geometric Distribution, 257
Inverse Gaussian (or Inverse Normal) Distribution, 293
Non-Member Properties, 208
Normal (Gaussian) Distribution, 330
Poisson Distribution, 335
Uniform Distribution, 353

median
Additional Implementation Notes, 805
Non-Member Properties, 208

mode
Gamma (and Erlang) Distribution, 255
History and What's New, 35, 847
Non-Member Properties, 208
Triangular Distribution, 349

msg
Calling User Defined Error Handlers, 752

multipolar
Octonion Creation Functions, 624
Quaternion Creation Functions, 596
Synopsis, 582, 607

N
nan

C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
Introduction, 58
Reference, 61, 63

nanf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

nanl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

nearbyint
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

nearbyintf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

nearbyintl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

newton_raphson_iterate
Root Finding With Derivatives: Newton-Raphson, Halley & Schröder, 652

nextafter
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
Finding the Next Representable Value in a Specific Direction (nextafter), 68
History and What's New, 34, 846

nextafterf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

nextafterl
C99 and C++ TR1 C-style Functions, 37
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C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

nexttoward
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

nexttowardf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

nexttowardl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

norm
Octonion Value Operations, 623
Quaternion Value Operations, 595
Setting Policies at Namespace or Translation Unit Scope, 747
Synopsis, 582, 607

O
octonion

Octonion Member Functions, 616
Octonion Specializations, 611
Template Class octonion, 609

owens_t
Owen's T function, 543

P
pdf

Arcsine Distribution, 217
Generic operations common to all distributions are non-member functions, 114
Non-Member Properties, 208

polygamma
Polygamma, 383

powm1
powm1, 528

prime
Prime Numbers, 370

Q
quantile

Complements are supported too - and when to use them, 116
Conceptual Requirements for Distribution Types, 733
Inverse Chi Squared Distribution, 286
Inverse Gamma Distribution, 290
Inverse Gaussian (or Inverse Normal) Distribution, 293
Negative Binomial Sales Quota Example., 171
Non-Member Properties, 208
Setting Policies at Namespace or Translation Unit Scope, 747
Skew Normal Distribution, 341, 343
Some Miscellaneous Examples of the Normal (Gaussian) Distribution, 180
Triangular Distribution, 349

quaternion
Quaternion Member Functions, 589
Quaternion Specializations, 585
Template Class quaternion, 584
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r

Negative Binomial Distribution, 305
range

Compilers, 17
Non-Member Properties, 208

remainder
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

remainderf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

remainderl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

remquo
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

remquof
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

remquol
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

riemann_zeta
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

riemann_zetaf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

riemann_zetal
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

rint
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

rintf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

rintl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

rising_factorial
Rising Factorial, 403

round
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
Conceptual Requirements for Real Number Types, 728
Rounding Functions, 49

roundf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
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roundl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

S
scalbln

C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

scalblnf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

scalblnl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

scalbn
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

scalbnf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

scalbnl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

scale
Additional Implementation Notes, 805
Cauchy-Lorentz Distribution, 239
Extreme Value Distribution, 248
Find mean and standard deviation example, 199
Find Scale (Standard Deviation) Example, 197
Gamma (and Erlang) Distribution, 255
Inverse Chi Squared Distribution, 286
Inverse Chi-Squared Distribution Bayes Example, 186
Inverse Gamma Distribution, 290
Inverse Gaussian (or Inverse Normal) Distribution, 293
Laplace Distribution, 297
Log Normal Distribution, 302
Logistic Distribution, 300
Normal (Gaussian) Distribution, 330
Pareto Distribution, 333
Skew Normal Distribution, 341
Weibull Distribution, 357

schroder_iterate
Root Finding With Derivatives: Newton-Raphson, Halley & Schröder, 652

semipolar
Quaternion Creation Functions, 596
Synopsis, 582

shape
Cauchy-Lorentz Distribution, 239
Gamma (and Erlang) Distribution, 255
Inverse Gamma Distribution, 290
Inverse Gaussian (or Inverse Normal) Distribution, 293
Pareto Distribution, 333
Skew Normal Distribution, 341
Weibull Distribution, 357

sign
Sign Manipulation Functions, 55
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signbit
Sign Manipulation Functions, 55

sinc_pi
sinc_pi, 533

sinhc_pi
sinhc_pi, 533

sin_pi
sin_pi, 523

size
Additional Implementation Notes, 805
Calculating confidence intervals on the mean with the Students-t distribution, 123
Graphing, Profiling, and Generating Test Data for Special Functions, 708
Polynomials, 702

skewness
Bernoulli Distribution, 223
Geometric Distribution, 257
Non-Member Properties, 208
Triangular Distribution, 349

spherical
Octonion Creation Functions, 624
Quaternion Creation Functions, 596
Synopsis, 607

spherical_harmonic
Spherical Harmonics, 438

spherical_harmonic_i
Spherical Harmonics, 438

spherical_harmonic_r
Spherical Harmonics, 438

sph_bessel
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
Spherical Bessel Functions of the First and Second Kinds, 463
TR1 C Functions Quick Reference, 562

sph_besself
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

sph_bessell
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

sph_bessel_prime
Derivatives of the Bessel Functions, 465

sph_legendre
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

sph_legendref
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

sph_legendrel
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

sph_neumann
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
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Spherical Bessel Functions of the First and Second Kinds, 463
TR1 C Functions Quick Reference, 562

sph_neumannf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

sph_neumannl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

sph_neumann_prime
Derivatives of the Bessel Functions, 465
History and What's New, 31, 843

sqrt1pm1
sqrt1pm1, 527

standard_deviation
Find Location (Mean) Example, 195
Find Scale (Standard Deviation) Example, 197
Non-Member Properties, 208
Normal (Gaussian) Distribution, 330

sum_series
Series Evaluation, 695

sup
Octonion Value Operations, 623
Quaternion Value Operations, 595
Synopsis, 582, 607

T
t

Calculating confidence intervals on the mean with the Students-t distribution, 123
T

Implementation, 815
Known Issues, and TODO List, 849
Polynomial and Rational Function Evaluation, 700
Skew Normal Distribution, 341

tangent_t2n
Tangent Numbers, 369

test
Relative Error and Testing, 706
Some Miscellaneous Examples of the Normal (Gaussian) Distribution, 180
Testing, 818

tgamma
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
Calling User Defined Error Handlers, 752
Changing the Policy on an Ad Hoc Basis for the Special Functions, 745
Errors In the Function tgamma(a,z), 388
Gamma, 372
Incomplete Gamma Functions, 388
Log Gamma, 375
Setting Polices at Namespace Scope, 780
Setting Policies at Namespace or Translation Unit Scope, 747

tgamma1pm1
Gamma, 372

tgammaf
C99 and C++ TR1 C-style Functions, 37
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C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

tgammal
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

tgamma_delta_ratio
Errors In the Function tgamma_delta_ratio(a, delta), 386
History and What's New, 31, 843
Ratios of Gamma Functions, 386

tgamma_lower
Errors In the Function tgamma_lower(a,z), 388
Incomplete Gamma Functions, 388

tgamma_ratio
Errors In the Function tgamma_ratio(a, b), 386
Ratios of Gamma Functions, 386

trigamma
Trigamma, 381

trunc
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
Conceptual Requirements for Real Number Types, 728
Truncation Functions, 49

truncf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

truncl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

U
unchecked_bernoulli_b2n

Bernoulli Numbers, 365
unreal

Octonion Member Functions, 616
Octonion Specializations, 611
Octonion Value Operations, 623
Quaternion Member Functions, 589
Quaternion Specializations, 585
Quaternion Value Operations, 595
Synopsis, 582, 607
Template Class octonion, 609
Template Class quaternion, 584

user_denorm_error
Calling User Defined Error Handlers, 752
Error Handling Policies, 767

user_domain_error
Calling User Defined Error Handlers, 752
Error Handling Policies, 767

user_evaluation_error
Calling User Defined Error Handlers, 752
Error Handling Policies, 767

user_indeterminate_result_error
Calling User Defined Error Handlers, 752
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Error Handling Policies, 767
user_overflow_error

Calling User Defined Error Handlers, 752
Compile Time Power of a Runtime Base, 529
Error Handling Policies, 767

user_pole_error
Calling User Defined Error Handlers, 752
Error Handling Policies, 767

user_rounding_error
Calling User Defined Error Handlers, 752
Error Handling Policies, 767

user_underflow_error
Calling User Defined Error Handlers, 752
Error Handling Policies, 767

V
value

Calculating the Representation Distance Between Two Floating Point Values (ULP) float_distance, 70
Chi Squared Distribution, 242
Generic operations common to all distributions are non-member functions, 114
History and What's New, 34, 846

variance
Beta Distribution, 226
Estimating the Required Sample Sizes for a Chi-Square Test for the Standard Deviation, 140
Geometric Distribution, 257
Inverse Chi-Squared Distribution Bayes Example, 186
Inverse Gamma Distribution, 290
Log Normal Distribution, 302
Logistic Distribution, 300
Non-Member Properties, 208
Triangular Distribution, 349
Uniform Distribution, 353

Z
zeta

Errors In the Function zeta(z), 514
Exponential Integral Ei, 520
Riemann Zeta Function, 514

Class Index
A
arcsine_distribution

Arcsine Distribution, 217

B
bernoulli_distribution

Bernoulli Distribution, 223
beta_distribution

Beta Distribution, 226
binomial_distribution

Binomial Distribution, 231

C
cauchy_distribution
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Cauchy-Lorentz Distribution, 239
chi_squared_distribution

Chi Squared Distribution, 242
construction_traits

Use With User-Defined Types, 96

D
default_policy

Policy Class Reference, 781

E
eps_tolerance

Termination Condition Functors, 651
equal_ceil

Termination Condition Functors, 651
equal_floor

Termination Condition Functors, 651
equal_nearest_integer

Termination Condition Functors, 651
exponential_distribution

Exponential Distribution, 246
extreme_value_distribution

Extreme Value Distribution, 248

F
fisher_f_distribution

F Distribution, 250

G
gamma_distribution

Gamma (and Erlang) Distribution, 255
gcd_evaluator

GCD Function Object, 634
geometric_distribution

Geometric Distribution, 257

H
hyperexponential_distribution

Hyperexponential Distribution, 265
hypergeometric_distribution

Hypergeometric Distribution, 282

I
inverse_chi_squared_distribution

Inverse Chi Squared Distribution, 286
inverse_gamma_distribution

Inverse Gamma Distribution, 290
inverse_gaussian_distribution

Inverse Gaussian (or Inverse Normal) Distribution, 293

L
laplace_distribution

Laplace Distribution, 297
lcm_evaluator

LCM Function Object, 635
log1p_series
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Series Evaluation, 695
logistic_distribution

Logistic Distribution, 300
lognormal_distribution

Log Normal Distribution, 302

M
max_factorial

Factorial, 400

N
negative_binomial_distribution

Negative Binomial Distribution, 305
nonfinite_num_get

Facets for Floating-Point Infinities and NaNs, 58
nonfinite_num_put

Facets for Floating-Point Infinities and NaNs, 58
non_central_beta_distribution

Noncentral Beta Distribution, 313
non_central_chi_squared_distribution

Noncentral Chi-Squared Distribution, 316
non_central_f_distribution

Noncentral F Distribution, 321
non_central_t_distribution

Noncentral T Distribution, 326
normalise

Policy Class Reference, 781
normal_distribution

Normal (Gaussian) Distribution, 330

O
octonion

Octonion Non-Member Operators, 620
Octonion Specializations, 611
Template Class octonion, 609

P
pareto_distribution

Pareto Distribution, 333
poisson_distribution

Poisson Distribution, 335
promote_args

Calling User Defined Error Handlers, 752
Implementation, 815
Setting Policies at Namespace or Translation Unit Scope, 747

Q
quaternion

Quaternion Non-Member Operators, 592
Quaternion Specializations, 585
Template Class quaternion, 584

R
rayleigh_distribution

Rayleigh Distribution, 338
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S
skew_normal_distribution

Skew Normal Distribution, 341
students_t_distribution

Students t Distribution, 345

T
triangular_distribution

Additional Implementation Notes, 805
Triangular Distribution, 349

U
uniform_distribution

Uniform Distribution, 353
upper_incomplete_gamma_fract

Graphing, Profiling, and Generating Test Data for Special Functions, 708

W
weibull_distribution

Weibull Distribution, 357

Typedef Index
A
arcsine

Arcsine Distribution, 217
assert_undefined_type

Policy Class Reference, 781

B
bernoulli

Bernoulli Distribution, 223
beta

Beta Distribution, 226
binomial

Binomial Distribution, 231

C
cauchy

Cauchy-Lorentz Distribution, 239
Find Location (Mean) Example, 195
Find mean and standard deviation example, 199
Setting Polices at Namespace Scope, 780
Setting Policies at Namespace or Translation Unit Scope, 747

chi_squared
Chi Squared Distribution, 242

D
denorm_error_type

Policy Class Reference, 781
discrete_quantile_type

Policy Class Reference, 781
domain_error_type

Policy Class Reference, 781
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double_t
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

E
evaluation_error_type

Policy Class Reference, 781
exponential

Exponential Distribution, 246
extreme_value

Extreme Value Distribution, 248

F
fisher_f

F Distribution, 250
Setting Policies for Distributions on an Ad Hoc Basis, 744

float_t
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

float_type
Finding Zeros of Bessel Functions of the First and Second Kinds, 449

forwarding_policy
Implementation, 815

G
gamma

Gamma (and Erlang) Distribution, 255
Inverse Gamma Distribution, 290
Setting Policies at Namespace or Translation Unit Scope, 747

geometric
Geometric Distribution, 257

H
hyperexponential

Hyperexponential Distribution, 265
hypergeometric

Hypergeometric Distribution, 282

I
indeterminate_result_error_type

Policy Class Reference, 781
inverse_chi_squared

Inverse Chi Squared Distribution, 286
inverse_gaussian

Inverse Gaussian (or Inverse Normal) Distribution, 293

L
laplace

Laplace Distribution, 297
logistic

Logistic Distribution, 300
lognormal

Log Normal Distribution, 302
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N
negative_binomial

Distribution Construction Examples, 119
Negative Binomial Distribution, 305

non_central_beta
Noncentral Beta Distribution, 313

non_central_chi_squared
Noncentral Chi-Squared Distribution, 316

non_central_f
Noncentral F Distribution, 321

non_central_t
Noncentral T Distribution, 326

normal
Geometric Distribution Examples, 161
Normal (Gaussian) Distribution, 330
Setting Policies at Namespace or Translation Unit Scope, 747
Skew Normal Distribution, 341

O
overflow_error_type

Policy Class Reference, 781

P
pareto

Pareto Distribution, 333
poisson

Poisson Distribution, 335
pole_error_type

Policy Class Reference, 781
policy_type

Arcsine Distribution, 217
Bernoulli Distribution, 223
Beta Distribution, 226
Binomial Distribution, 231
Cauchy-Lorentz Distribution, 239
Chi Squared Distribution, 242
Exponential Distribution, 246
Gamma (and Erlang) Distribution, 255
Geometric Distribution, 257
Hyperexponential Distribution, 265
Hypergeometric Distribution, 282
Inverse Chi Squared Distribution, 286
Inverse Gamma Distribution, 290
Inverse Gaussian (or Inverse Normal) Distribution, 293
Laplace Distribution, 297
Log Normal Distribution, 302
Logistic Distribution, 300
Negative Binomial Distribution, 305
Noncentral Beta Distribution, 313
Noncentral Chi-Squared Distribution, 316
Noncentral F Distribution, 321
Noncentral T Distribution, 326
Normal (Gaussian) Distribution, 330
Poisson Distribution, 335
Rayleigh Distribution, 338
Skew Normal Distribution, 341
Students t Distribution, 345
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Triangular Distribution, 349
Weibull Distribution, 357

precision_type
Policy Class Reference, 781

promote_double_type
Policy Class Reference, 781
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cyl_bessel_il, 549
cyl_bessel_j, 549
cyl_bessel_jf, 549
cyl_bessel_jl, 549
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cyl_bessel_k, 549
cyl_bessel_kf, 549
cyl_bessel_kl, 549
cyl_neumann, 549
cyl_neumannf, 549
cyl_neumannl, 549
double_t, 549
ellint_1, 549
ellint_1f, 549
ellint_1l, 549
ellint_2, 549
ellint_2f, 549
ellint_2l, 549
ellint_3, 549
ellint_3f, 549
ellint_3l, 549
erf, 549
erfc, 549
erfcf, 549
erfcl, 549
erff, 549
erfl, 549
exp2, 549
exp2f, 549
exp2l, 549
expint, 549
expintf, 549
expintl, 549
expm1, 549
expm1f, 549
expm1l, 549
fdim, 549
fdimf, 549
fdiml, 549
float_t, 549
fma, 549
fmaf, 549
fmal, 549
fmax, 549
fmaxf, 549
fmaxl, 549
fmin, 549
fminf, 549
fminl, 549
hermite, 549
hermitef, 549
hermitel, 549
hyperg, 549
hypergf, 549
hypergl, 549
hypot, 549
hypotf, 549
hypotl, 549
ilogb, 549
ilogbf, 549
ilogbl, 549
laguerre, 549
laguerref, 549
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laguerrel, 549
legendre, 549
legendref, 549
legendrel, 549
lgamma, 549
lgammaf, 549
lgammal, 549
llrint, 549
llrintf, 549
llrintl, 549
llround, 549
llroundf, 549
llroundl, 549
log1p, 549
log1pf, 549
log1pl, 549
log2, 549
log2f, 549
log2l, 549
logb, 549
logbf, 549
logbl, 549
lrint, 549
lrintf, 549
lrintl, 549
lround, 549
lroundf, 549
lroundl, 549
nan, 549
nanf, 549
nanl, 549
nearbyint, 549
nearbyintf, 549
nearbyintl, 549
nextafter, 549
nextafterf, 549
nextafterl, 549
nexttoward, 549
nexttowardf, 549
nexttowardl, 549
remainder, 549
remainderf, 549
remainderl, 549
remquo, 549
remquof, 549
remquol, 549
riemann_zeta, 549
riemann_zetaf, 549
riemann_zetal, 549
rint, 549
rintf, 549
rintl, 549
round, 549
roundf, 549
roundl, 549
scalbln, 549
scalblnf, 549
scalblnl, 549
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scalbn, 549
scalbnf, 549
scalbnl, 549
sph_bessel, 549
sph_besself, 549
sph_bessell, 549
sph_legendre, 549
sph_legendref, 549
sph_legendrel, 549
sph_neumann, 549
sph_neumannf, 549
sph_neumannl, 549
tgamma, 549
tgammaf, 549
tgammal, 549
trunc, 549
truncf, 549
truncl, 549

C99 C Functions
acosh, 557
acoshf, 557
acoshl, 557
asinh, 557
asinhf, 557
asinhl, 557
atanh, 557
atanhf, 557
atanhl, 557
cbrt, 557
cbrtf, 557
cbrtl, 557
copysign, 557
copysignf, 557
copysignl, 557
double_t, 557
erf, 557
erfc, 557
erfcf, 557
erfcl, 557
erff, 557
erfl, 557
expm1, 557
expm1f, 557
expm1l, 557
expression, 557
float_t, 557
fmax, 557
fmaxf, 557
fmaxl, 557
fmin, 557
fminf, 557
fminl, 557
hypot, 557
hypotf, 557
hypotl, 557
lgamma, 557
lgammaf, 557
lgammal, 557
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llround, 557
llroundf, 557
llroundl, 557
log1p, 557
log1pf, 557
log1pl, 557
lround, 557
lroundf, 557
lroundl, 557
nextafter, 557
nextafterf, 557
nextafterl, 557
nexttoward, 557
nexttowardf, 557
nexttowardl, 557
round, 557
roundf, 557
roundl, 557
tgamma, 557
tgammaf, 557
tgammal, 557
trunc, 557
truncf, 557
truncl, 557

called
Implementation, 817

Calling User Defined Error Handlers
BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS, 752
erf_inv, 752
msg, 752
promote_args, 752
tgamma, 752
user_denorm_error, 752
user_domain_error, 752
user_evaluation_error, 752
user_indeterminate_result_error, 752
user_overflow_error, 752
user_pole_error, 752
user_rounding_error, 752
user_underflow_error, 752

cauchy
Cauchy-Lorentz Distribution, 239
Find Location (Mean) Example, 195
Find mean and standard deviation example, 199
Setting Polices at Namespace Scope, 780
Setting Policies at Namespace or Translation Unit Scope, 747

Cauchy-Lorentz Distribution
cauchy, 239
cauchy_distribution, 239
location, 239
policy_type, 239
scale, 239
shape, 239
value_type, 239

cauchy_distribution
Cauchy-Lorentz Distribution, 239

cbrt
C99 and C++ TR1 C-style Functions, 37
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C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
cbrt, 526
Examples of Root-Finding (with and without derivatives), 655
Root-finding using Boost.Multiprecision, 663

cbrtf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

cbrtl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

cdf
Additional Implementation Notes, 810
Arcsine Distribution, 217
Binomial Coin-Flipping Example, 146
Discrete Quantile Policies, 774
Extras/Future Directions, 362
Generic operations common to all distributions are non-member functions, 114
Negative Binomial Sales Quota Example., 171
Non-Member Properties, 208

changesign
Sign Manipulation Functions, 55

Changing the Policy Defaults
BOOST_MATH_ASSERT_UNDEFINED_POLICY, 740
BOOST_MATH_DOMAIN_ERROR_POLICY, 740
BOOST_MATH_OVERFLOW_ERROR_POLICY, 740

Changing the Policy on an Ad Hoc Basis for the Special Functions
tgamma, 745

checked_narrowing_cast
Error Handling, 10

chf
Non-Member Properties, 208

Chi Squared Distribution
chi_squared, 242
chi_squared_distribution, 242
find_degrees_of_freedom, 242
gamma_p_inv, 242
gamma_q_inv, 242
policy_type, 242
value, 242
value_type, 242

chi_squared
Chi Squared Distribution, 242

chi_squared_distribution
Chi Squared Distribution, 242

Compile time GCD and LCM determination
constants, 637
expression, 637

Compile Time Power of a Runtime Base
BOOST_MATH_OVERFLOW_ERROR_POLICY, 529
expression, 529
log2, 529
user_overflow_error, 529

Compilers
range, 17

Complements are supported too - and when to use them
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constants, 116
expression, 116
quantile, 116

Computing the Fifth Root
expression, 662

comp_ellint_1
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

comp_ellint_1f
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

comp_ellint_1l
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

comp_ellint_2
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

comp_ellint_2f
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

comp_ellint_2l
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

comp_ellint_3
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

comp_ellint_3f
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

comp_ellint_3l
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

Conceptual Requirements for Distribution Types
expression, 733
quantile, 733

Conceptual Requirements for Real Number Types
constants, 728
expression, 728
iround, 728
itrunc, 728
Lanczos approximation, 728
ldexp, 728
round, 728
trunc, 728

confidence intervals on the mean with the Students-t distribution
expression, 123
size, 123
t, 123

conf_hyperg
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C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

conf_hypergf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

conf_hypergl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

conj
Octonion Value Operations, 623
Quaternion Value Operations, 595
Synopsis, 582, 607

constants
Additional Implementation Notes, 805
Binomial Distribution, 231
Binomial Quiz Example, 149
Boost.Math Macros, 22
Boost.Math Tuning, 22
Compile time GCD and LCM determination, 637
Complements are supported too - and when to use them, 116
Conceptual Requirements for Real Number Types, 728
Credits and Acknowledgements, 853
Defining New Constants, 104
Digamma, 379
Directory and File Structure, 6
Error Function Inverses, 425
Error Functions, 421
Exact-Width Floating-Point typedef s, 82
Exponential Distribution, 246
Exponential Integral Ei, 520
Extreme Value Distribution, 248
Factorial, 400
FAQs, 108, 111
Floating-Point Constant Macros, 87
Generalizing to Compute the nth root, 667
Greatest-width floating-point typedef, 86
History and What's New, 30-34, 842-846
Hyperexponential Distribution, 265
Hypergeometric Distribution, 282
Implementation, 817
Introduction, 93
Log Gamma, 375
Mathematical Constants, 92, 99
Minimax Approximations and the Remez Algorithm, 704
Prime Numbers, 370
Rayleigh Distribution, 338
Riemann Zeta Function, 514
Testing, 818
The Lanczos Approximation, 828
The Mathematical Constants, 99
The Remez Method, 832
Uniform Distribution, 353
Use in non-template code, 94
Use in template code, 94
Use With User-Defined Types, 96
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Using Boost.Math with High-Precision Floating-Point Libraries, 718
Using Boost.Multiprecision, 719
Using with GCC's __float128 datatype, 724
Weibull Distribution, 357

construction_traits
Use With User-Defined Types, 96

Continued Fraction Evaluation
continued_fraction_a, 697
continued_fraction_b, 697
expression, 697

continued_fraction_a
Continued Fraction Evaluation, 697

continued_fraction_b
Continued Fraction Evaluation, 697

conventions, 4
copysign

C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
Sign Manipulation Functions, 55

copysignf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

copysignl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

cos_pi
cos_pi, 523

Credits and Acknowledgements
constants, 853
expression, 853

cylindrical
Octonion Creation Functions, 624
Quaternion Creation Functions, 596
Synopsis, 582, 607

cylindrospherical
Quaternion Creation Functions, 596
Synopsis, 582

cyl_bessel_i
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
Modified Bessel Functions of the First and Second Kinds, 458
TR1 C Functions Quick Reference, 562

cyl_bessel_if
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

cyl_bessel_il
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

cyl_bessel_i_prime
Derivatives of the Bessel Functions, 465

cyl_bessel_j
Bessel Functions of the First and Second Kinds, 444
C99 and C++ TR1 C-style Functions, 37
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C99 and TR1 C Functions Overview, 549
Known Issues, and TODO List, 849
TR1 C Functions Quick Reference, 562

cyl_bessel_jf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

cyl_bessel_jl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

cyl_bessel_j_prime
Derivatives of the Bessel Functions, 465
Known Issues, and TODO List, 849

cyl_bessel_j_zero
Finding Zeros of Bessel Functions of the First and Second Kinds, 449

cyl_bessel_k
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
Modified Bessel Functions of the First and Second Kinds, 458
TR1 C Functions Quick Reference, 562

cyl_bessel_kf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

cyl_bessel_kl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

cyl_bessel_k_prime
Derivatives of the Bessel Functions, 465

cyl_neumann
Bessel Functions of the First and Second Kinds, 444
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
Known Issues, and TODO List, 849
TR1 C Functions Quick Reference, 562

cyl_neumannf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

cyl_neumannl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

cyl_neumann_prime
Derivatives of the Bessel Functions, 465
Known Issues, and TODO List, 849

cyl_neumann_zero
Finding Zeros of Bessel Functions of the First and Second Kinds, 449

D
default_policy

Policy Class Reference, 781
Defining New Constants

BOOST_DEFINE_MATH_CONSTANT, 104
BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC, 104
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BOOST_MATH_STD_USING, 104
constants, 104
get, 104
get_from_string, 104

denorm_error_type
Policy Class Reference, 781

Derivative of the Incomplete Beta Function
ibeta_derivative, 420

Derivative of the Incomplete Gamma Function
gamma_p_derivative, 398

Derivatives of the Bessel Functions
cyl_bessel_i_prime, 465
cyl_bessel_j_prime, 465
cyl_bessel_k_prime, 465
cyl_neumann_prime, 465
sph_bessel_prime, 465
sph_neumann_prime, 465

digamma
Digamma, 379

Digamma
constants, 379
digamma, 379
Lanczos approximation, 379

Directory and File Structure
constants, 6

Discrete Quantile Policies
cdf, 774

discrete_quantile_type
Policy Class Reference, 781

Distribution Algorithms
find_location, 360
find_scale, 360

Distribution Construction Examples
mean, 119
negative_binomial, 119

domain_error_type
Policy Class Reference, 781

Double Factorial
double_factorial, 401

double_factorial
Double Factorial, 401

double_t
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

E
ellint_1

C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
Elliptic Integrals of the First Kind - Legendre Form, 485
TR1 C Functions Quick Reference, 562

ellint_1f
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

ellint_1l
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C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

ellint_2
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
Elliptic Integrals of the Second Kind - Legendre Form, 487
TR1 C Functions Quick Reference, 562

ellint_2f
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

ellint_2l
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

ellint_3
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
Elliptic Integral D - Legendre Form, 492
Elliptic Integrals of the Third Kind - Legendre Form, 489
TR1 C Functions Quick Reference, 562

ellint_3f
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

ellint_3l
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

ellint_d
Elliptic Integral D - Legendre Form, 492

ellint_rc
Elliptic Integrals - Carlson Form, 480

ellint_rd
Elliptic Integrals - Carlson Form, 480

ellint_rf
Elliptic Integrals - Carlson Form, 480

ellint_rg
Elliptic Integrals - Carlson Form, 480

ellint_rj
Elliptic Integrals - Carlson Form, 480

Elliptic Integral D - Legendre Form
ellint_3, 492
ellint_d, 492

Elliptic Integral Overview
expression, 476

Elliptic Integrals - Carlson Form
ellint_rc, 480
ellint_rd, 480
ellint_rf, 480
ellint_rg, 480
ellint_rj, 480

Elliptic Integrals of the First Kind - Legendre Form
ellint_1, 485

Elliptic Integrals of the Second Kind - Legendre Form
ellint_2, 487

Elliptic Integrals of the Third Kind - Legendre Form
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ellint_3, 489
epsilon

Floating-point Comparison, 72
Locating Function Minima using Brent's algorithm, 676

eps_tolerance
Termination Condition Functors, 651

equal_ceil
Termination Condition Functors, 651

equal_floor
Termination Condition Functors, 651

equal_nearest_integer
Termination Condition Functors, 651

erf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
Error Functions, 421
Errors In the Function erf(z), 421

erfc
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
Error Functions, 421
Errors In the Function erfc(z), 421
Normal (Gaussian) Distribution, 330

erfcf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

erfcl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

erfc_inv
Error Function Inverses, 425

erff
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

erfl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

erf_inv
Calling User Defined Error Handlers, 752
Error Function Inverses, 425

Error Function Inverses
constants, 425
erfc_inv, 425
erf_inv, 425

Error Functions
constants, 421
erf, 421
erfc, 421

Error Handling
checked_narrowing_cast, 10

Error Handling Example
BOOST_MATH_DOMAIN_ERROR_POLICY, 192

908

Indexes

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


BOOST_MATH_OVERFLOW_ERROR_POLICY, 192
infinity, 192

Error Handling Policies
user_denorm_error, 767
user_domain_error, 767
user_evaluation_error, 767
user_indeterminate_result_error, 767
user_overflow_error, 767
user_pole_error, 767
user_rounding_error, 767
user_underflow_error, 767

Errors In the Function beta(a, b, x)
beta, 408

Errors In the Function betac(a,b,x)
betac, 408

Errors In the Function erf(z)
erf, 421

Errors In the Function erfc(z)
erfc, 421

Errors In the Function expint(n, z)
expint, 518

Errors In the Function expint(z)
expint, 520

Errors In the Function gamma_p(a,z)
gamma_p, 388

Errors In the Function gamma_q(a,z)
gamma_q, 388

Errors In the Function ibeta(a,b,x)
ibeta, 408

Errors In the Function ibetac(a,b,x)
ibetac, 408

Errors In the Function tgamma(a,z)
tgamma, 388

Errors In the Function tgamma_delta_ratio(a, delta)
tgamma_delta_ratio, 386

Errors In the Function tgamma_lower(a,z)
tgamma_lower, 388

Errors In the Function tgamma_ratio(a, b)
tgamma_ratio, 386

Errors In the Function zeta(z)
zeta, 514

Estimating the Required Sample Sizes for a Chi-Square Test for the Standard Deviation
variance, 140

evaluate_even_polynomial
Polynomial and Rational Function Evaluation, 700

evaluate_odd_polynomial
Polynomial and Rational Function Evaluation, 700

evaluate_polynomial
Polynomial and Rational Function Evaluation, 700

evaluate_rational
Polynomial and Rational Function Evaluation, 700

evaluation_error_type
Policy Class Reference, 781

Exact-Width Floating-Point typedef s
BOOST_FLOAT128_C, 82
BOOST_FLOAT16_C, 82
BOOST_FLOAT32_C, 82
BOOST_FLOAT64_C, 82
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BOOST_FLOAT80_C, 82
constants, 82

Examples
BOOST_FLOAT128_C, 88
BOOST_FLOAT32_C, 88
BOOST_FLOAT80_C, 88

Examples of Root-Finding (with and without derivatives)
cbrt, 655

Examples Where Root Finding Goes Wrong
infinity, 673
location, 673

exp2
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

exp2f
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

exp2l
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

expint
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
Errors In the Function expint(n, z), 518
Errors In the Function expint(z), 520
Exponential Integral Ei, 520
Exponential Integral En, 518
TR1 C Functions Quick Reference, 562

expintf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

expintl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

expm1
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
expm1, 525

expm1f
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

expm1l
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

exponential
Exponential Distribution, 246

Exponential Distribution
constants, 246
exponential, 246
exponential_distribution, 246
policy_type, 246
value_type, 246

Exponential Integral Ei
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constants, 520
expint, 520
zeta, 520

Exponential Integral En
expint, 518

exponential_distribution
Exponential Distribution, 246

expression
Arcsine Distribution, 217
C99 C Functions, 557
Calculating confidence intervals on the mean with the Students-t distribution, 123
Compile time GCD and LCM determination, 637
Compile Time Power of a Runtime Base, 529
Complements are supported too - and when to use them, 116
Computing the Fifth Root, 662
Conceptual Requirements for Distribution Types, 733
Conceptual Requirements for Real Number Types, 728
Continued Fraction Evaluation, 697
Credits and Acknowledgements, 853
Elliptic Integral Overview, 476
F Distribution, 250
Factorial, 400
FAQs, 108
Find Scale (Standard Deviation) Example, 197
Finding Zeros of Bessel Functions of the First and Second Kinds, 449
Gamma (and Erlang) Distribution, 255
Geometric Distribution Examples, 161
History and What's New, 33, 845
Hypergeometric Distribution, 282
Introduction, 93
Inverse Chi-Squared Distribution Bayes Example, 186
Jacobi Elliptic SN, CN and DN, 497
Locating Function Minima using Brent's algorithm, 675
Mathematically Undefined Function Policies, 773
Negative Binomial Sales Quota Example., 171
Non-Member Properties, 208
Noncentral Beta Distribution, 313
Overvew of the Jacobi Elliptic Functions, 497
Poisson Distribution, 335
Series Evaluation, 696
Skew Normal Distribution, 341
Testing, 818
The Incomplete Beta Function Inverses, 414
The Lanczos Approximation, 828
The Remez Method, 832
To Do, 603, 630
Triangular Distribution, 349
Use in template code, 94
Using With MPFR or GMP - High-Precision Floating-Point Library, 725
Using without expression templates for Boost.Test and others, 726

Extras/Future Directions
cdf, 362

Extreme Value Distribution
constants, 248
extreme_value, 248
extreme_value_distribution, 248
location, 248
scale, 248
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value_type, 248
extreme_value

Extreme Value Distribution, 248
extreme_value_distribution

Extreme Value Distribution, 248
e_float

Using e_float Library, 725

F
F Distribution

expression, 250
fisher_f, 250
fisher_f_distribution, 250
ibeta_derivative, 250
value_type, 250

Facets for Floating-Point Infinities and NaNs
nonfinite_num_get, 58
nonfinite_num_put, 58

Factorial
constants, 400
expression, 400
factorial, 400
max_factorial, 400

factorial
Factorial, 400

Falling Factorial
falling_factorial, 404

falling_factorial
Falling Factorial, 404

FAQs
BOOST_DEFINE_MATH_CONSTANT, 108
constants, 108, 111
expression, 108

fdim
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

fdimf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

fdiml
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

Find Location (Mean) Example
cauchy, 195
location, 195
mean, 195
standard_deviation, 195

Find mean and standard deviation example
cauchy, 199
scale, 199

Find Scale (Standard Deviation) Example
expression, 197
location, 197
mean, 197
scale, 197
standard_deviation, 197

Finding the Cubed Root With and Without Derivatives
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float_distance, 655
Finding the Next Greater Representable Value (float_next)

float_next, 69
Finding the Next Representable Value in a Specific Direction (nextafter)

nextafter, 68
Finding the Next Smaller Representable Value (float_prior)

float_prior, 69
Finding Zeros of Bessel Functions of the First and Second Kinds

cyl_bessel_j_zero, 449
cyl_neumann_zero, 449
expression, 449
float_type, 449

find_beta
Beta Distribution, 226

find_degrees_of_freedom
Chi Squared Distribution, 242
Noncentral Chi-Squared Distribution, 316
Students t Distribution, 345

find_location
Distribution Algorithms, 360

find_lower_bound_on_p
Binomial Distribution, 231
Geometric Distribution, 257
Negative Binomial Distribution, 305

find_non_centrality
Noncentral Chi-Squared Distribution, 316

find_scale
Distribution Algorithms, 360

find_upper_bound_on_p
Binomial Distribution, 231
Geometric Distribution, 257
Negative Binomial Distribution, 305

fisher_f
F Distribution, 250
Setting Policies for Distributions on an Ad Hoc Basis, 744

fisher_f_distribution
F Distribution, 250

Floating-Point Classification: Infinities and NaNs
fpclassify, 52
FP_INFINITE, 52
FP_NAN, 52
FP_NORMAL, 52
FP_SUBNORMAL, 52
FP_ZERO, 52
isfinite, 52
isinf, 52
isnan, 52
isnormal, 52

Floating-point Comparison
epsilon, 72

Floating-Point Constant Macros
BOOST_FLOAT128_C, 87
BOOST_FLOAT16_C, 87
BOOST_FLOAT32_C, 87
BOOST_FLOAT64_C, 87
BOOST_FLOAT80_C, 87
BOOST_FLOATMAX_C, 87
constants, 87
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float_advance
Advancing a Floating Point Value by a Specific Representation Distance (ULP) float_advance, 70

float_distance
Advancing a Floating Point Value by a Specific Representation Distance (ULP) float_advance, 70
Calculating the Representation Distance Between Two Floating Point Values (ULP) float_distance, 70
Finding the Cubed Root With and Without Derivatives, 655

float_next
Finding the Next Greater Representable Value (float_next), 69

float_prior
Finding the Next Smaller Representable Value (float_prior), 69

float_t
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

float_type
Finding Zeros of Bessel Functions of the First and Second Kinds, 449

fma
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

fmaf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

fmal
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

fmax
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

fmaxf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

fmaxl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

fmin
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

fminf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

fminl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

forwarding_policy
Implementation, 815

fpclassify
Floating-Point Classification: Infinities and NaNs, 52

FP_INFINITE
Floating-Point Classification: Infinities and NaNs, 52

FP_NAN
Floating-Point Classification: Infinities and NaNs, 52

FP_NORMAL
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Floating-Point Classification: Infinities and NaNs, 52
FP_SUBNORMAL

Floating-Point Classification: Infinities and NaNs, 52
FP_ZERO

Floating-Point Classification: Infinities and NaNs, 52

G
gamma

Gamma (and Erlang) Distribution, 255
Inverse Gamma Distribution, 290
Setting Policies at Namespace or Translation Unit Scope, 747

Gamma
Lanczos approximation, 372
tgamma, 372
tgamma1pm1, 372

Gamma (and Erlang) Distribution
expression, 255
gamma, 255
gamma_distribution, 255
gamma_p_inv, 255
gamma_q_inv, 255
mode, 255
policy_type, 255
scale, 255
shape, 255
value_type, 255

gamma_distribution
Gamma (and Erlang) Distribution, 255

gamma_p
Errors In the Function gamma_p(a,z), 388
Incomplete Gamma Function Inverses, 396
Incomplete Gamma Functions, 388

gamma_p_derivative
Derivative of the Incomplete Gamma Function, 398

gamma_p_inv
Chi Squared Distribution, 242
Gamma (and Erlang) Distribution, 255
Incomplete Gamma Function Inverses, 396

gamma_p_inva
Incomplete Gamma Function Inverses, 396

gamma_q
Errors In the Function gamma_q(a,z), 388
Incomplete Gamma Functions, 388

gamma_q_inv
Chi Squared Distribution, 242
Gamma (and Erlang) Distribution, 255
Incomplete Gamma Function Inverses, 396

gamma_q_inva
Incomplete Gamma Function Inverses, 396

gcd
Synopsis, 633

GCD Function Object
gcd_evaluator, 634
second_argument_type, 634

gcd_evaluator
GCD Function Object, 634

Generalizing to Compute the nth root
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constants, 667
Generic operations common to all distributions are non-member functions

cdf, 114
pdf, 114
value, 114

geometric
Geometric Distribution, 257

Geometric Distribution
find_lower_bound_on_p, 257
find_upper_bound_on_p, 257
geometric, 257
geometric_distribution, 257
mean, 257
policy_type, 257
skewness, 257
value_type, 257
variance, 257

Geometric Distribution Examples
BOOST_MATH_DISCRETE_QUANTILE_POLICY, 161
BOOST_MATH_OVERFLOW_ERROR_POLICY, 161
expression, 161
normal, 161

geometric_distribution
Geometric Distribution, 257

get
Defining New Constants, 104
Use With User-Defined Types, 96

get_from_string
Defining New Constants, 104

Graphing, Profiling, and Generating Test Data for Special Functions
size, 708
upper_incomplete_gamma_fract, 708
value_type, 708

Greatest-width floating-point typedef
BOOST_FLOAT128_C, 86
BOOST_FLOAT32_C, 86
BOOST_FLOAT64_C, 86
BOOST_FLOAT80_C, 86
BOOST_FLOATMAX_C, 86
constants, 86

H
halley_iterate

Root Finding With Derivatives: Newton-Raphson, Halley & Schröder, 652
hazard

Non-Member Properties, 208
hermite

C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
Hermite Polynomials, 436
TR1 C Functions Quick Reference, 562

Hermite Polynomials
hermite, 436
hermite_next, 436

hermitef
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
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TR1 C Functions Quick Reference, 562
hermitel

C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

hermite_next
Hermite Polynomials, 436

Heuman Lambda Function
heuman_lambda, 495

heuman_lambda
Heuman Lambda Function, 495

History and What's New
airy_bi_zero, 32, 844
constants, 30-34, 842-846
expression, 33, 845
Lanczos approximation, 35, 847
mode, 35, 847
nextafter, 34, 846
sph_neumann_prime, 31, 843
tgamma_delta_ratio, 31, 843
value, 34, 846

hyperexponential
Hyperexponential Distribution, 265

Hyperexponential Distribution
constants, 265
hyperexponential, 265
hyperexponential_distribution, 265
policy_type, 265
value_type, 265

hyperexponential_distribution
Hyperexponential Distribution, 265

hyperg
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

hypergeometric
Hypergeometric Distribution, 282

Hypergeometric Distribution
constants, 282
expression, 282
hypergeometric, 282
hypergeometric_distribution, 282
Lanczos approximation, 282
policy_type, 282
value_type, 282

hypergeometric_distribution
Hypergeometric Distribution, 282

hypergf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

hypergl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

hypot
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
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C99 C Functions, 557
hypot, 529

hypotf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

hypotl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

I
ibeta

Beta Distribution, 226
Errors In the Function ibeta(a,b,x), 408
Incomplete Beta Functions, 408

ibetac
Beta Distribution, 226
Errors In the Function ibetac(a,b,x), 408
Incomplete Beta Functions, 408
Students t Distribution, 345

ibetac_inv
Beta Distribution, 226
Negative Binomial Distribution, 305
The Incomplete Beta Function Inverses, 414

ibetac_inva
Negative Binomial Distribution, 305
The Incomplete Beta Function Inverses, 414

ibetac_invb
Negative Binomial Distribution, 305
The Incomplete Beta Function Inverses, 414

ibeta_derivative
Beta Distribution, 226
Binomial Distribution, 231
Derivative of the Incomplete Beta Function, 420
F Distribution, 250

ibeta_inv
Beta Distribution, 226
Negative Binomial Distribution, 305
The Incomplete Beta Function Inverses, 414

ibeta_inva
Beta Distribution, 226
Negative Binomial Distribution, 305
The Incomplete Beta Function Inverses, 414

ibeta_invb
Beta Distribution, 226
Negative Binomial Distribution, 305
The Incomplete Beta Function Inverses, 414

ilogb
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

ilogbf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

ilogbl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
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Implementation
BOOST_FPU_EXCEPTION_GUARD, 815
BOOST_MATH_STD_USING, 817
called, 817
constants, 817
forwarding_policy, 815
promote_args, 815
T, 815
value_type, 815

Implementation Notes
BOOST_DEFINE_MATH_CONSTANT, 805
BOOST_MATH_DOMAIN_ERROR_POLICY, 805
cdf, 810
constants, 805
infinity, 805
median, 805
scale, 805
size, 805
triangular_distribution, 805

Incomplete Beta Function Inverses
beta, 414
expression, 414
ibetac_inv, 414
ibetac_inva, 414
ibetac_invb, 414
ibeta_inv, 414
ibeta_inva, 414
ibeta_invb, 414

Incomplete Beta Functions
beta, 408
betac, 408
ibeta, 408
ibetac, 408

Incomplete Gamma Function Inverses
gamma_p, 396
gamma_p_inv, 396
gamma_p_inva, 396
gamma_q_inv, 396
gamma_q_inva, 396

Incomplete Gamma Functions
gamma_p, 388
gamma_q, 388
Lanczos approximation, 388
tgamma, 388
tgamma_lower, 388

indeterminate_result_error_type
Policy Class Reference, 781

infinity
Additional Implementation Notes, 805
Error Handling Example, 192
Examples Where Root Finding Goes Wrong, 673

Introduction
constants, 93
expression, 93
nan, 58

Inverse Chi Squared Distribution
inverse_chi_squared, 286
inverse_chi_squared_distribution, 286
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policy_type, 286
quantile, 286
scale, 286
value_type, 286

Inverse Chi-Squared Distribution Bayes Example
expression, 186
scale, 186
variance, 186

Inverse Gamma Distribution
gamma, 290
inverse_gamma_distribution, 290
kurtosis_excess, 290
policy_type, 290
quantile, 290
scale, 290
shape, 290
value_type, 290
variance, 290

Inverse Gaussian (or Inverse Normal) Distribution
inverse_gaussian, 293
inverse_gaussian_distribution, 293
mean, 293
policy_type, 293
quantile, 293
scale, 293
shape, 293
value_type, 293

inverse_chi_squared
Inverse Chi Squared Distribution, 286

inverse_chi_squared_distribution
Inverse Chi Squared Distribution, 286

inverse_gamma_distribution
Inverse Gamma Distribution, 290

inverse_gaussian
Inverse Gaussian (or Inverse Normal) Distribution, 293

inverse_gaussian_distribution
Inverse Gaussian (or Inverse Normal) Distribution, 293

iround
Conceptual Requirements for Real Number Types, 728
Rounding Functions, 49

isfinite
Floating-Point Classification: Infinities and NaNs, 52

isinf
Floating-Point Classification: Infinities and NaNs, 52

isnan
Floating-Point Classification: Infinities and NaNs, 52

isnormal
Floating-Point Classification: Infinities and NaNs, 52

Iteration Limits Policies
BOOST_MATH_MAX_ROOT_ITERATION_POLICY, 777
BOOST_MATH_MAX_SERIES_ITERATION_POLICY, 777

itrunc
Conceptual Requirements for Real Number Types, 728
Truncation Functions, 49

J
Jacobi Elliptic Function cd
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jacobi_cd, 501
Jacobi Elliptic Function cn

jacobi_cn, 502
Jacobi Elliptic Function cs

jacobi_cs, 503
Jacobi Elliptic Function dc

jacobi_dc, 504
Jacobi Elliptic Function dn

jacobi_dn, 505
Jacobi Elliptic Function ds

jacobi_ds, 506
Jacobi Elliptic Function nc

jacobi_nc, 507
Jacobi Elliptic Function nd

jacobi_nd, 508
Jacobi Elliptic Function ns

jacobi_ns, 509
Jacobi Elliptic Function sc

jacobi_sc, 510
Jacobi Elliptic Function sd

jacobi_sd, 511
Jacobi Elliptic Function sn

jacobi_sn, 512
Jacobi Elliptic SN, CN and DN

expression, 497
jacobi_elliptic, 497

Jacobi Zeta Function
jacobi_zeta, 494

jacobi_cd
Jacobi Elliptic Function cd, 501

jacobi_cn
Jacobi Elliptic Function cn, 502

jacobi_cs
Jacobi Elliptic Function cs, 503

jacobi_dc
Jacobi Elliptic Function dc, 504

jacobi_dn
Jacobi Elliptic Function dn, 505

jacobi_ds
Jacobi Elliptic Function ds, 506

jacobi_elliptic
Jacobi Elliptic SN, CN and DN, 497

jacobi_nc
Jacobi Elliptic Function nc, 507

jacobi_nd
Jacobi Elliptic Function nd, 508

jacobi_ns
Jacobi Elliptic Function ns, 509

jacobi_sc
Jacobi Elliptic Function sc, 510

jacobi_sd
Jacobi Elliptic Function sd, 511

jacobi_sn
Jacobi Elliptic Function sn, 512

jacobi_zeta
Jacobi Zeta Function, 494
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K
kahan_sum_series

Series Evaluation, 695
Known Issues, and TODO List

cyl_bessel_j, 849
cyl_bessel_j_prime, 849
cyl_neumann, 849
cyl_neumann_prime, 849
Lanczos approximation, 849
T, 849

kurtosis
Non-Member Properties, 208

kurtosis_excess
Inverse Gamma Distribution, 290
Non-Member Properties, 208

L
l

Legendre (and Associated) Polynomials, 428
l1

Octonion Value Operations, 623
Quaternion Value Operations, 595
Synopsis, 582, 607

laguerre
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
Laguerre (and Associated) Polynomials, 433
TR1 C Functions Quick Reference, 562

Laguerre (and Associated) Polynomials
laguerre, 433
laguerre_next, 433

laguerref
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

laguerrel
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

laguerre_next
Laguerre (and Associated) Polynomials, 433

Lanczos approximation
Beta, 406
Conceptual Requirements for Real Number Types, 728
Digamma, 379
Gamma, 372
History and What's New, 35, 847
Hypergeometric Distribution, 282
Incomplete Gamma Functions, 388
Known Issues, and TODO List, 849
Log Gamma, 375
Negative Binomial Distribution, 313
Performance Tuning Macros, 790
References, 839
The Lanczos Approximation, 828, 831
Using NTL Library, 726
Using With MPFR or GMP - High-Precision Floating-Point Library, 725
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Lanczos Approximation
constants, 828
expression, 828
Lanczos approximation, 828, 831

laplace
Laplace Distribution, 297

Laplace Distribution
laplace, 297
laplace_distribution, 297
location, 297
policy_type, 297
scale, 297
value_type, 297

laplace_distribution
Laplace Distribution, 297

lcm
Synopsis, 633

LCM Function Object
lcm_evaluator, 635
second_argument_type, 635

lcm_evaluator
LCM Function Object, 635

ldexp
Conceptual Requirements for Real Number Types, 728

legendre
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

Legendre (and Associated) Polynomials
l, 428
legendre_next, 428
legendre_p, 428
legendre_q, 428

legendref
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

legendrel
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

legendre_next
Legendre (and Associated) Polynomials, 428

legendre_p
Legendre (and Associated) Polynomials, 428

legendre_q
Legendre (and Associated) Polynomials, 428

lgamma
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
Log Gamma, 375
Setting Polices at Namespace Scope, 780

lgammaf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

lgammal
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C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

llrint
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

llrintf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

llrintl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

llround
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
Rounding Functions, 49

llroundf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

llroundl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

lltrunc
Truncation Functions, 49

Locating Function Minima using Brent's algorithm
brent_find_minima, 675
epsilon, 676
expression, 675

location
Cauchy-Lorentz Distribution, 239
Examples Where Root Finding Goes Wrong, 673
Extreme Value Distribution, 248
Find Location (Mean) Example, 195
Find Scale (Standard Deviation) Example, 197
Laplace Distribution, 297
Log Normal Distribution, 302
Logistic Distribution, 300
Normal (Gaussian) Distribution, 330
Skew Normal Distribution, 341

Log Gamma
constants, 375
Lanczos approximation, 375
lgamma, 375
tgamma, 375

Log Normal Distribution
location, 302
lognormal, 302
lognormal_distribution, 302
policy_type, 302
scale, 302
value_type, 302
variance, 302

log1p
BOOST_HAS_LOG1P, 523
C99 and C++ TR1 C-style Functions, 37
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C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
log1p, 523
Series Evaluation, 695

log1pf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

log1pl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

log1p_series
Series Evaluation, 695

log2
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
Compile Time Power of a Runtime Base, 529

log2f
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

log2l
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

logb
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

logbf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

logbl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

logistic
Logistic Distribution, 300

Logistic Distribution
location, 300
logistic, 300
logistic_distribution, 300
policy_type, 300
scale, 300
value_type, 300
variance, 300

logistic_distribution
Logistic Distribution, 300

lognormal
Log Normal Distribution, 302

lognormal_distribution
Log Normal Distribution, 302

lrint
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

lrintf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

lrintl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
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lround
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
Rounding Functions, 49

lroundf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

lroundl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

ltrunc
Truncation Functions, 49

M
make_policy

Policy Class Reference, 781
Mathematical Constants

constants, 92, 99
Mathematically Undefined Function Policies

BOOST_MATH_ASSERT_UNDEFINED_POLICY, 773
expression, 773

max_factorial
Factorial, 400

mean
Distribution Construction Examples, 119
Find Location (Mean) Example, 195
Find Scale (Standard Deviation) Example, 197
Geometric Distribution, 257
Inverse Gaussian (or Inverse Normal) Distribution, 293
Non-Member Properties, 208
Normal (Gaussian) Distribution, 330
Poisson Distribution, 335
Uniform Distribution, 353

median
Additional Implementation Notes, 805
Non-Member Properties, 208

Minimax Approximations and the Remez Algorithm
constants, 704

mode
Gamma (and Erlang) Distribution, 255
History and What's New, 35, 847
Non-Member Properties, 208
Triangular Distribution, 349

Modified Bessel Functions of the First and Second Kinds
cyl_bessel_i, 458
cyl_bessel_k, 458

msg
Calling User Defined Error Handlers, 752

multipolar
Octonion Creation Functions, 624
Quaternion Creation Functions, 596
Synopsis, 582, 607
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N
Namespaces

students_t, 7
nan

C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
Introduction, 58
Reference, 61, 63

nanf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

nanl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

navigation, 3
nearbyint

C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

nearbyintf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

nearbyintl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

Negative Binomial Distribution
find_lower_bound_on_p, 305
find_upper_bound_on_p, 305
ibetac_inv, 305
ibetac_inva, 305
ibetac_invb, 305
ibeta_inv, 305
ibeta_inva, 305
ibeta_invb, 305
Lanczos approximation, 313
negative_binomial, 305
negative_binomial_distribution, 305
policy_type, 305
r, 305
value_type, 305

Negative Binomial Sales Quota Example.
BOOST_MATH_DISCRETE_QUANTILE_POLICY, 171
BOOST_MATH_OVERFLOW_ERROR_POLICY, 171
cdf, 171
expression, 171
quantile, 171

negative_binomial
Distribution Construction Examples, 119
Negative Binomial Distribution, 305

negative_binomial_distribution
Negative Binomial Distribution, 305

newton_raphson_iterate
Root Finding With Derivatives: Newton-Raphson, Halley & Schröder, 652

nextafter
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
Finding the Next Representable Value in a Specific Direction (nextafter), 68
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History and What's New, 34, 846
nextafterf

C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

nextafterl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

nexttoward
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

nexttowardf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

nexttowardl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

Non-Member Properties
cdf, 208
chf, 208
expression, 208
hazard, 208
kurtosis, 208
kurtosis_excess, 208
mean, 208
median, 208
mode, 208
pdf, 208
quantile, 208
range, 208
skewness, 208
standard_deviation, 208
variance, 208

Noncentral Beta Distribution
beta, 313
expression, 313
non_central_beta, 313
non_central_beta_distribution, 313
policy_type, 313
value_type, 313

Noncentral Chi-Squared Distribution
find_degrees_of_freedom, 316
find_non_centrality, 316
non_central_chi_squared, 316
non_central_chi_squared_distribution, 316
policy_type, 316
value_type, 316

Noncentral F Distribution
non_central_f, 321
non_central_f_distribution, 321
policy_type, 321
value_type, 321

Noncentral T Distribution
non_central_t, 326
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non_central_t_distribution, 326
policy_type, 326
value_type, 326

nonfinite_num_get
Facets for Floating-Point Infinities and NaNs, 58

nonfinite_num_put
Facets for Floating-Point Infinities and NaNs, 58

non_central_beta
Noncentral Beta Distribution, 313

non_central_beta_distribution
Noncentral Beta Distribution, 313

non_central_chi_squared
Noncentral Chi-Squared Distribution, 316

non_central_chi_squared_distribution
Noncentral Chi-Squared Distribution, 316

non_central_f
Noncentral F Distribution, 321

non_central_f_distribution
Noncentral F Distribution, 321

non_central_t
Noncentral T Distribution, 326

non_central_t_distribution
Noncentral T Distribution, 326

norm
Octonion Value Operations, 623
Quaternion Value Operations, 595
Setting Policies at Namespace or Translation Unit Scope, 747
Synopsis, 582, 607

normal
Geometric Distribution Examples, 161
Normal (Gaussian) Distribution, 330
Setting Policies at Namespace or Translation Unit Scope, 747
Skew Normal Distribution, 341

Normal (Gaussian) Distribution
erfc, 330
location, 330
mean, 330
normal, 330
normal_distribution, 330
policy_type, 330
scale, 330
standard_deviation, 330
value_type, 330

normalise
Policy Class Reference, 781

normal_distribution
Normal (Gaussian) Distribution, 330

O
octonion

Octonion Member Functions, 616
Octonion Non-Member Operators, 620
Octonion Specializations, 611
Template Class octonion, 609

Octonion Creation Functions
cylindrical, 624
multipolar, 624
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spherical, 624
Octonion Member Functions

octonion, 616
unreal, 616

Octonion Member Typedefs
value_type, 615

Octonion Non-Member Operators
octonion, 620

Octonion Specializations
octonion, 611
unreal, 611
value_type, 611

Octonion Value Operations
conj, 623
l1, 623
norm, 623
sup, 623
unreal, 623

overflow_error_type
Policy Class Reference, 781

Overvew of the Jacobi Elliptic Functions
expression, 497

Owen's T function
owens_t, 543

owens_t
Owen's T function, 543

P
pareto

Pareto Distribution, 333
Pareto Distribution

pareto, 333
pareto_distribution, 333
scale, 333
shape, 333
value_type, 333

pareto_distribution
Pareto Distribution, 333

pdf
Arcsine Distribution, 217
Generic operations common to all distributions are non-member functions, 114
Non-Member Properties, 208

Performance Tuning Macros
BOOST_MATH_INT_TABLE_TYPE, 790
BOOST_MATH_MAX_POLY_ORDER, 790
BOOST_MATH_POLY_METHOD, 790
BOOST_MATH_PROMOTE_DOUBLE_POLICY, 790
BOOST_MATH_RATIONAL_METHOD, 790
Lanczos approximation, 790

poisson
Poisson Distribution, 335

Poisson Distribution
expression, 335
mean, 335
poisson, 335
poisson_distribution, 335
policy_type, 335

930

Indexes

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


value_type, 335
poisson_distribution

Poisson Distribution, 335
pole_error_type

Policy Class Reference, 781
Policy Class Reference

assert_undefined_type, 781
default_policy, 781
denorm_error_type, 781
discrete_quantile_type, 781
domain_error_type, 781
evaluation_error_type, 781
indeterminate_result_error_type, 781
make_policy, 781
normalise, 781
overflow_error_type, 781
pole_error_type, 781
precision_type, 781
promote_double_type, 781
promote_float_type, 781
rounding_error_type, 781
underflow_error_type, 781

policy_type
Arcsine Distribution, 217
Bernoulli Distribution, 223
Beta Distribution, 226
Binomial Distribution, 231
Cauchy-Lorentz Distribution, 239
Chi Squared Distribution, 242
Exponential Distribution, 246
Gamma (and Erlang) Distribution, 255
Geometric Distribution, 257
Hyperexponential Distribution, 265
Hypergeometric Distribution, 282
Inverse Chi Squared Distribution, 286
Inverse Gamma Distribution, 290
Inverse Gaussian (or Inverse Normal) Distribution, 293
Laplace Distribution, 297
Log Normal Distribution, 302
Logistic Distribution, 300
Negative Binomial Distribution, 305
Noncentral Beta Distribution, 313
Noncentral Chi-Squared Distribution, 316
Noncentral F Distribution, 321
Noncentral T Distribution, 326
Normal (Gaussian) Distribution, 330
Poisson Distribution, 335
Rayleigh Distribution, 338
Skew Normal Distribution, 341
Students t Distribution, 345
Triangular Distribution, 349
Weibull Distribution, 357

polygamma
Polygamma, 383

Polygamma
polygamma, 383

Polynomial and Rational Function Evaluation
evaluate_even_polynomial, 700
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evaluate_odd_polynomial, 700
evaluate_polynomial, 700
evaluate_rational, 700
T, 700

Polynomials
size, 702
value_type, 702

powm1
powm1, 528

precision_type
Policy Class Reference, 781

prime
Prime Numbers, 370

Prime Numbers
constants, 370
prime, 370

promote_args
Calling User Defined Error Handlers, 752
Implementation, 815
Setting Policies at Namespace or Translation Unit Scope, 747

promote_double_type
Policy Class Reference, 781

promote_float_type
Policy Class Reference, 781

Q
quantile

Complements are supported too - and when to use them, 116
Conceptual Requirements for Distribution Types, 733
Inverse Chi Squared Distribution, 286
Inverse Gamma Distribution, 290
Inverse Gaussian (or Inverse Normal) Distribution, 293
Negative Binomial Sales Quota Example., 171
Non-Member Properties, 208
Setting Policies at Namespace or Translation Unit Scope, 747
Skew Normal Distribution, 341, 343
Some Miscellaneous Examples of the Normal (Gaussian) Distribution, 180
Triangular Distribution, 349

quaternion
Quaternion Member Functions, 589
Quaternion Non-Member Operators, 592
Quaternion Specializations, 585
Template Class quaternion, 584

Quaternion Creation Functions
cylindrical, 596
cylindrospherical, 596
multipolar, 596
semipolar, 596
spherical, 596

Quaternion Member Functions
quaternion, 589
unreal, 589

Quaternion Member Typedefs
value_type, 588

Quaternion Non-Member Operators
quaternion, 592

Quaternion Specializations
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quaternion, 585
unreal, 585
value_type, 585

Quaternion Value Operations
conj, 595
l1, 595
norm, 595
sup, 595
unreal, 595

R
r

Negative Binomial Distribution, 305
range

Compilers, 17
Non-Member Properties, 208

Ratios of Gamma Functions
tgamma_delta_ratio, 386
tgamma_ratio, 386

rayleigh
Rayleigh Distribution, 338

Rayleigh Distribution
constants, 338
policy_type, 338
rayleigh, 338
rayleigh_distribution, 338
value_type, 338

rayleigh_distribution
Rayleigh Distribution, 338

Reference
nan, 61, 63

References
Lanczos approximation, 839

Relative Error and Testing
test, 706

remainder
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

remainderf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

remainderl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

Remez Method
constants, 832
expression, 832

remquo
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

remquof
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

remquol
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

Representation Distance Between Two Floating Point Values (ULP) float_distance

933

Indexes

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


float_distance, 70
value, 70

Riemann Zeta Function
constants, 514
zeta, 514

riemann_zeta
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

riemann_zetaf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

riemann_zetal
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

rint
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

rintf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

rintl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

Rising Factorial
rising_factorial, 403

rising_factorial
Rising Factorial, 403

Root Finding With Derivatives: Newton-Raphson, Halley & Schröder
halley_iterate, 652
newton_raphson_iterate, 652
schroder_iterate, 652

Root-finding using Boost.Multiprecision
cbrt, 663

round
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
Conceptual Requirements for Real Number Types, 728
Rounding Functions, 49

roundf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

Rounding Functions
iround, 49
llround, 49
lround, 49
round, 49

rounding_error_type
Policy Class Reference, 781

roundl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
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S
scalbln

C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

scalblnf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

scalblnl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

scalbn
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

scalbnf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

scalbnl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549

scale
Additional Implementation Notes, 805
Cauchy-Lorentz Distribution, 239
Extreme Value Distribution, 248
Find mean and standard deviation example, 199
Find Scale (Standard Deviation) Example, 197
Gamma (and Erlang) Distribution, 255
Inverse Chi Squared Distribution, 286
Inverse Chi-Squared Distribution Bayes Example, 186
Inverse Gamma Distribution, 290
Inverse Gaussian (or Inverse Normal) Distribution, 293
Laplace Distribution, 297
Log Normal Distribution, 302
Logistic Distribution, 300
Normal (Gaussian) Distribution, 330
Pareto Distribution, 333
Skew Normal Distribution, 341
Weibull Distribution, 357

schroder_iterate
Root Finding With Derivatives: Newton-Raphson, Halley & Schröder, 652

second_argument_type
GCD Function Object, 634
LCM Function Object, 635

semipolar
Quaternion Creation Functions, 596
Synopsis, 582

Series Evaluation
expression, 696
kahan_sum_series, 695
log1p, 695
log1p_series, 695
sum_series, 695

Setting Polices at Namespace Scope
BOOST_MATH_DECLARE_DISTRIBUTIONS, 780
BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS, 780
cauchy, 780
lgamma, 780
tgamma, 780
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Setting Policies at Namespace or Translation Unit Scope
BOOST_MATH_DECLARE_DISTRIBUTIONS, 747
BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS, 747
cauchy, 747
gamma, 747
norm, 747
normal, 747
promote_args, 747
quantile, 747
tgamma, 747

Setting Policies for Distributions on an Ad Hoc Basis
fisher_f, 744

shape
Cauchy-Lorentz Distribution, 239
Gamma (and Erlang) Distribution, 255
Inverse Gamma Distribution, 290
Inverse Gaussian (or Inverse Normal) Distribution, 293
Pareto Distribution, 333
Skew Normal Distribution, 341
Weibull Distribution, 357

sign
Sign Manipulation Functions, 55

Sign Manipulation Functions
changesign, 55
copysign, 55
sign, 55
signbit, 55

signbit
Sign Manipulation Functions, 55

sinc_pi
sinc_pi, 533

sinhc_pi
sinhc_pi, 533

sin_pi
sin_pi, 523

size
Additional Implementation Notes, 805
Calculating confidence intervals on the mean with the Students-t distribution, 123
Graphing, Profiling, and Generating Test Data for Special Functions, 708
Polynomials, 702

Skew Normal Distribution
expression, 341
location, 341
normal, 341
policy_type, 341
quantile, 341, 343
scale, 341
shape, 341
skew_normal_distribution, 341
T, 341
value_type, 341

skewness
Bernoulli Distribution, 223
Geometric Distribution, 257
Non-Member Properties, 208
Triangular Distribution, 349

skew_normal_distribution
Skew Normal Distribution, 341
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Some Miscellaneous Examples of the Normal (Gaussian) Distribution
quantile, 180
test, 180

spherical
Octonion Creation Functions, 624
Quaternion Creation Functions, 596
Synopsis, 607

Spherical Bessel Functions of the First and Second Kinds
sph_bessel, 463
sph_neumann, 463

Spherical Harmonics
spherical_harmonic, 438
spherical_harmonic_i, 438
spherical_harmonic_r, 438

spherical_harmonic
Spherical Harmonics, 438

spherical_harmonic_i
Spherical Harmonics, 438

spherical_harmonic_r
Spherical Harmonics, 438

sph_bessel
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
Spherical Bessel Functions of the First and Second Kinds, 463
TR1 C Functions Quick Reference, 562

sph_besself
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

sph_bessell
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

sph_bessel_prime
Derivatives of the Bessel Functions, 465

sph_legendre
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

sph_legendref
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

sph_legendrel
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

sph_neumann
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
Spherical Bessel Functions of the First and Second Kinds, 463
TR1 C Functions Quick Reference, 562

sph_neumannf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

sph_neumannl
C99 and C++ TR1 C-style Functions, 37
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C99 and TR1 C Functions Overview, 549
TR1 C Functions Quick Reference, 562

sph_neumann_prime
Derivatives of the Bessel Functions, 465
History and What's New, 31, 843

sqrt1pm1
sqrt1pm1, 527

standard_deviation
Find Location (Mean) Example, 195
Find Scale (Standard Deviation) Example, 197
Non-Member Properties, 208
Normal (Gaussian) Distribution, 330

Students t Distribution
find_degrees_of_freedom, 345
ibetac, 345
policy_type, 345
students_t, 345
students_t_distribution, 345
value_type, 345

students_t
Namespaces, 7
Students t Distribution, 345

students_t_distribution
Students t Distribution, 345

sum_series
Series Evaluation, 695

sup
Octonion Value Operations, 623
Quaternion Value Operations, 595
Synopsis, 582, 607

Supported/Tested Compilers
BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS, 17

Synopsis
conj, 582, 607
cylindrical, 582, 607
cylindrospherical, 582
gcd, 633
l1, 582, 607
lcm, 633
multipolar, 582, 607
norm, 582, 607
semipolar, 582
spherical, 607
sup, 582, 607
unreal, 582, 607

T
t

Calculating confidence intervals on the mean with the Students-t distribution, 123
T

Implementation, 815
Known Issues, and TODO List, 849
Polynomial and Rational Function Evaluation, 700
Skew Normal Distribution, 341

Tangent Numbers
tangent_t2n, 369

tangent_t2n
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Tangent Numbers, 369
Template Class octonion

octonion, 609
unreal, 609
value_type, 609

Template Class quaternion
quaternion, 584
unreal, 584
value_type, 584

Termination Condition Functors
eps_tolerance, 651
equal_ceil, 651
equal_floor, 651
equal_nearest_integer, 651

test
Relative Error and Testing, 706
Some Miscellaneous Examples of the Normal (Gaussian) Distribution, 180
Testing, 818

Testing
BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS, 818
BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS, 818
BOOST_MATH_NO_REAL_CONCEPT_TESTS, 818
constants, 818
expression, 818
test, 818
value_type, 818

tgamma
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
Calling User Defined Error Handlers, 752
Changing the Policy on an Ad Hoc Basis for the Special Functions, 745
Errors In the Function tgamma(a,z), 388
Gamma, 372
Incomplete Gamma Functions, 388
Log Gamma, 375
Setting Polices at Namespace Scope, 780
Setting Policies at Namespace or Translation Unit Scope, 747

tgamma1pm1
Gamma, 372

tgammaf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

tgammal
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

tgamma_delta_ratio
Errors In the Function tgamma_delta_ratio(a, delta), 386
History and What's New, 31, 843
Ratios of Gamma Functions, 386

tgamma_lower
Errors In the Function tgamma_lower(a,z), 388
Incomplete Gamma Functions, 388

tgamma_ratio
Errors In the Function tgamma_ratio(a, b), 386
Ratios of Gamma Functions, 386
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To Do
expression, 603, 630

TR1 C Functions Quick Reference
assoc_laguerre, 562
assoc_laguerref, 562
assoc_laguerrel, 562
assoc_legendre, 562
assoc_legendref, 562
assoc_legendrel, 562
beta, 562
betaf, 562
betal, 562
comp_ellint_1, 562
comp_ellint_1f, 562
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conf_hyperg, 562
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legendre, 562
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legendref, 562
legendrel, 562
riemann_zeta, 562
riemann_zetaf, 562
riemann_zetal, 562
sph_bessel, 562
sph_besself, 562
sph_bessell, 562
sph_legendre, 562
sph_legendref, 562
sph_legendrel, 562
sph_neumann, 562
sph_neumannf, 562
sph_neumannl, 562

triangular
Triangular Distribution, 349

Triangular Distribution
c, 349
expression, 349
mode, 349
policy_type, 349
quantile, 349
skewness, 349
triangular, 349
triangular_distribution, 349
value_type, 349
variance, 349

triangular_distribution
Additional Implementation Notes, 805
Triangular Distribution, 349

trigamma
Trigamma, 381

Trigamma
trigamma, 381

trunc
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557
Conceptual Requirements for Real Number Types, 728
Truncation Functions, 49

Truncation Functions
itrunc, 49
lltrunc, 49
ltrunc, 49
trunc, 49

truncf
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

truncl
C99 and C++ TR1 C-style Functions, 37
C99 and TR1 C Functions Overview, 549
C99 C Functions, 557

U
unchecked_bernoulli_b2n

Bernoulli Numbers, 365
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underflow_error_type
Policy Class Reference, 781

uniform
Uniform Distribution, 353

Uniform Distribution
constants, 353
mean, 353
uniform, 353
uniform_distribution, 353
value_type, 353
variance, 353

uniform_distribution
Uniform Distribution, 353

unreal
Octonion Member Functions, 616
Octonion Specializations, 611
Octonion Value Operations, 623
Quaternion Member Functions, 589
Quaternion Specializations, 585
Quaternion Value Operations, 595
Synopsis, 582, 607
Template Class octonion, 609
Template Class quaternion, 584

upper_incomplete_gamma_fract
Graphing, Profiling, and Generating Test Data for Special Functions, 708

Use in non-template code
constants, 94

Use in template code
constants, 94
expression, 94

Use With User-Defined Types
constants, 96
construction_traits, 96
get, 96

user_denorm_error
Calling User Defined Error Handlers, 752
Error Handling Policies, 767

user_domain_error
Calling User Defined Error Handlers, 752
Error Handling Policies, 767

user_evaluation_error
Calling User Defined Error Handlers, 752
Error Handling Policies, 767

user_indeterminate_result_error
Calling User Defined Error Handlers, 752
Error Handling Policies, 767

user_overflow_error
Calling User Defined Error Handlers, 752
Compile Time Power of a Runtime Base, 529
Error Handling Policies, 767

user_pole_error
Calling User Defined Error Handlers, 752
Error Handling Policies, 767

user_rounding_error
Calling User Defined Error Handlers, 752
Error Handling Policies, 767

user_underflow_error
Calling User Defined Error Handlers, 752
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Error Handling Policies, 767
Using Boost.Math with High-Precision Floating-Point Libraries

constants, 718
Using Boost.Multiprecision

constants, 719
Using e_float Library

e_float, 725
Using Macros to Change the Policy Defaults

BOOST_MATH_ASSERT_UNDEFINED_POLICY, 778
BOOST_MATH_DENORM_ERROR_POLICY, 778
BOOST_MATH_DIGITS10_POLICY, 778
BOOST_MATH_DISCRETE_QUANTILE_POLICY, 778
BOOST_MATH_DOMAIN_ERROR_POLICY, 778
BOOST_MATH_EVALUATION_ERROR_POLICY, 778
BOOST_MATH_INDETERMINATE_RESULT_ERROR_POLICY, 778
BOOST_MATH_MAX_ROOT_ITERATION_POLICY, 778
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BOOST_MATH_POLE_ERROR_POLICY, 778
BOOST_MATH_PROMOTE_DOUBLE_POLICY, 778
BOOST_MATH_PROMOTE_FLOAT_POLICY, 778
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Using NTL Library
Lanczos approximation, 726

Using with GCC's __float128 datatype
constants, 724

Using With MPFR or GMP - High-Precision Floating-Point Library
expression, 725
Lanczos approximation, 725

Using without expression templates for Boost.Test and others
expression, 726

V
value

Calculating the Representation Distance Between Two Floating Point Values (ULP) float_distance, 70
Chi Squared Distribution, 242
Generic operations common to all distributions are non-member functions, 114
History and What's New, 34, 846

value_type
Arcsine Distribution, 217
Bernoulli Distribution, 223
Beta Distribution, 226
Binomial Distribution, 231
Cauchy-Lorentz Distribution, 239
Chi Squared Distribution, 242
Exponential Distribution, 246
Extreme Value Distribution, 248
F Distribution, 250
Gamma (and Erlang) Distribution, 255
Geometric Distribution, 257
Graphing, Profiling, and Generating Test Data for Special Functions, 708
Hyperexponential Distribution, 265
Hypergeometric Distribution, 282
Implementation, 815
Inverse Chi Squared Distribution, 286
Inverse Gamma Distribution, 290
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Inverse Gaussian (or Inverse Normal) Distribution, 293
Laplace Distribution, 297
Log Normal Distribution, 302
Logistic Distribution, 300
Negative Binomial Distribution, 305
Noncentral Beta Distribution, 313
Noncentral Chi-Squared Distribution, 316
Noncentral F Distribution, 321
Noncentral T Distribution, 326
Normal (Gaussian) Distribution, 330
Octonion Member Typedefs, 615
Octonion Specializations, 611
Pareto Distribution, 333
Poisson Distribution, 335
Polynomials, 702
Quaternion Member Typedefs, 588
Quaternion Specializations, 585
Rayleigh Distribution, 338
Skew Normal Distribution, 341
Students t Distribution, 345
Template Class octonion, 609
Template Class quaternion, 584
Testing, 818
Triangular Distribution, 349
Uniform Distribution, 353
Weibull Distribution, 357

variance
Beta Distribution, 226
Estimating the Required Sample Sizes for a Chi-Square Test for the Standard Deviation, 140
Geometric Distribution, 257
Inverse Chi-Squared Distribution Bayes Example, 186
Inverse Gamma Distribution, 290
Log Normal Distribution, 302
Logistic Distribution, 300
Non-Member Properties, 208
Triangular Distribution, 349
Uniform Distribution, 353

W
weibull

Weibull Distribution, 357
Weibull Distribution

constants, 357
policy_type, 357
scale, 357
shape, 357
value_type, 357
weibull, 357
weibull_distribution, 357

weibull_distribution
Weibull Distribution, 357

Z
zeta

Errors In the Function zeta(z), 514
Exponential Integral Ei, 520
Riemann Zeta Function, 514
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