;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Copyright(c) 2011-2015 Intel Corporation All rights reserved. ; ; Redistribution and use in source and binary forms, with or without ; modification, are permitted provided that the following conditions ; are met: ; * Redistributions of source code must retain the above copyright ; notice, this list of conditions and the following disclaimer. ; * Redistributions in binary form must reproduce the above copyright ; notice, this list of conditions and the following disclaimer in ; the documentation and/or other materials provided with the ; distribution. ; * Neither the name of Intel Corporation nor the names of its ; contributors may be used to endorse or promote products derived ; from this software without specific prior written permission. ; ; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Function API: ; UINT16 crc16_t10dif_01( ; UINT16 init_crc, //initial CRC value, 16 bits ; const unsigned char *buf, //buffer pointer to calculate CRC on ; UINT64 len //buffer length in bytes (64-bit data) ; ); ; ; Authors: ; Erdinc Ozturk ; Vinodh Gopal ; James Guilford ; ; Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction" ; URL: http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf %include "reg_sizes.asm" %define fetch_dist 1024 [bits 64] default rel section .text %ifidn __OUTPUT_FORMAT__, win64 %xdefine arg1 rcx %xdefine arg2 rdx %xdefine arg3 r8 %xdefine arg1_low32 ecx %else %xdefine arg1 rdi %xdefine arg2 rsi %xdefine arg3 rdx %xdefine arg1_low32 edi %endif %ifidn __OUTPUT_FORMAT__, win64 %define XMM_SAVE 16*2 %define VARIABLE_OFFSET 16*10+8 %else %define VARIABLE_OFFSET 16*2+8 %endif align 16 global crc16_t10dif_01:function crc16_t10dif_01: ; adjust the 16-bit initial_crc value, scale it to 32 bits shl arg1_low32, 16 ; After this point, code flow is exactly same as a 32-bit CRC. ; The only difference is before returning eax, we will shift it right 16 bits, to scale back to 16 bits. sub rsp, VARIABLE_OFFSET %ifidn __OUTPUT_FORMAT__, win64 ; push the xmm registers into the stack to maintain movdqa [rsp+16*2],xmm6 movdqa [rsp+16*3],xmm7 movdqa [rsp+16*4],xmm8 movdqa [rsp+16*5],xmm9 movdqa [rsp+16*6],xmm10 movdqa [rsp+16*7],xmm11 movdqa [rsp+16*8],xmm12 movdqa [rsp+16*9],xmm13 %endif ; check if smaller than 256 cmp arg3, 256 ; for sizes less than 256, we can't fold 128B at a time... jl _less_than_256 ; load the initial crc value movd xmm10, arg1_low32 ; initial crc ; crc value does not need to be byte-reflected, but it needs to be moved to the high part of the register. ; because data will be byte-reflected and will align with initial crc at correct place. pslldq xmm10, 12 movdqa xmm11, [SHUF_MASK] ; receive the initial 128B data, xor the initial crc value movdqu xmm0, [arg2+16*0] movdqu xmm1, [arg2+16*1] movdqu xmm2, [arg2+16*2] movdqu xmm3, [arg2+16*3] movdqu xmm4, [arg2+16*4] movdqu xmm5, [arg2+16*5] movdqu xmm6, [arg2+16*6] movdqu xmm7, [arg2+16*7] pshufb xmm0, xmm11 ; XOR the initial_crc value pxor xmm0, xmm10 pshufb xmm1, xmm11 pshufb xmm2, xmm11 pshufb xmm3, xmm11 pshufb xmm4, xmm11 pshufb xmm5, xmm11 pshufb xmm6, xmm11 pshufb xmm7, xmm11 movdqa xmm10, [rk3] ;xmm10 has rk3 and rk4 ;imm value of pclmulqdq instruction will determine which constant to use ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; we subtract 256 instead of 128 to save one instruction from the loop sub arg3, 256 ; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The _fold_128_B_loop ; loop will fold 128B at a time until we have 128+y Bytes of buffer ; fold 128B at a time. This section of the code folds 8 xmm registers in parallel _fold_128_B_loop: ; update the buffer pointer add arg2, 128 ; buf += 128; prefetchnta [arg2+fetch_dist+0] movdqu xmm9, [arg2+16*0] movdqu xmm12, [arg2+16*1] pshufb xmm9, xmm11 pshufb xmm12, xmm11 movdqa xmm8, xmm0 movdqa xmm13, xmm1 pclmulqdq xmm0, xmm10, 0x0 pclmulqdq xmm8, xmm10 , 0x11 pclmulqdq xmm1, xmm10, 0x0 pclmulqdq xmm13, xmm10 , 0x11 pxor xmm0, xmm9 xorps xmm0, xmm8 pxor xmm1, xmm12 xorps xmm1, xmm13 prefetchnta [arg2+fetch_dist+32] movdqu xmm9, [arg2+16*2] movdqu xmm12, [arg2+16*3] pshufb xmm9, xmm11 pshufb xmm12, xmm11 movdqa xmm8, xmm2 movdqa xmm13, xmm3 pclmulqdq xmm2, xmm10, 0x0 pclmulqdq xmm8, xmm10 , 0x11 pclmulqdq xmm3, xmm10, 0x0 pclmulqdq xmm13, xmm10 , 0x11 pxor xmm2, xmm9 xorps xmm2, xmm8 pxor xmm3, xmm12 xorps xmm3, xmm13 prefetchnta [arg2+fetch_dist+64] movdqu xmm9, [arg2+16*4] movdqu xmm12, [arg2+16*5] pshufb xmm9, xmm11 pshufb xmm12, xmm11 movdqa xmm8, xmm4 movdqa xmm13, xmm5 pclmulqdq xmm4, xmm10, 0x0 pclmulqdq xmm8, xmm10 , 0x11 pclmulqdq xmm5, xmm10, 0x0 pclmulqdq xmm13, xmm10 , 0x11 pxor xmm4, xmm9 xorps xmm4, xmm8 pxor xmm5, xmm12 xorps xmm5, xmm13 prefetchnta [arg2+fetch_dist+96] movdqu xmm9, [arg2+16*6] movdqu xmm12, [arg2+16*7] pshufb xmm9, xmm11 pshufb xmm12, xmm11 movdqa xmm8, xmm6 movdqa xmm13, xmm7 pclmulqdq xmm6, xmm10, 0x0 pclmulqdq xmm8, xmm10 , 0x11 pclmulqdq xmm7, xmm10, 0x0 pclmulqdq xmm13, xmm10 , 0x11 pxor xmm6, xmm9 xorps xmm6, xmm8 pxor xmm7, xmm12 xorps xmm7, xmm13 sub arg3, 128 ; check if there is another 128B in the buffer to be able to fold jge _fold_128_B_loop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; add arg2, 128 ; at this point, the buffer pointer is pointing at the last y Bytes of the buffer ; fold the 8 xmm registers to 1 xmm register with different constants movdqa xmm10, [rk9] movdqa xmm8, xmm0 pclmulqdq xmm0, xmm10, 0x11 pclmulqdq xmm8, xmm10, 0x0 pxor xmm7, xmm8 xorps xmm7, xmm0 movdqa xmm10, [rk11] movdqa xmm8, xmm1 pclmulqdq xmm1, xmm10, 0x11 pclmulqdq xmm8, xmm10, 0x0 pxor xmm7, xmm8 xorps xmm7, xmm1 movdqa xmm10, [rk13] movdqa xmm8, xmm2 pclmulqdq xmm2, xmm10, 0x11 pclmulqdq xmm8, xmm10, 0x0 pxor xmm7, xmm8 pxor xmm7, xmm2 movdqa xmm10, [rk15] movdqa xmm8, xmm3 pclmulqdq xmm3, xmm10, 0x11 pclmulqdq xmm8, xmm10, 0x0 pxor xmm7, xmm8 xorps xmm7, xmm3 movdqa xmm10, [rk17] movdqa xmm8, xmm4 pclmulqdq xmm4, xmm10, 0x11 pclmulqdq xmm8, xmm10, 0x0 pxor xmm7, xmm8 pxor xmm7, xmm4 movdqa xmm10, [rk19] movdqa xmm8, xmm5 pclmulqdq xmm5, xmm10, 0x11 pclmulqdq xmm8, xmm10, 0x0 pxor xmm7, xmm8 xorps xmm7, xmm5 movdqa xmm10, [rk1] ;xmm10 has rk1 and rk2 ;imm value of pclmulqdq instruction will determine which constant to use movdqa xmm8, xmm6 pclmulqdq xmm6, xmm10, 0x11 pclmulqdq xmm8, xmm10, 0x0 pxor xmm7, xmm8 pxor xmm7, xmm6 ; instead of 128, we add 112 to the loop counter to save 1 instruction from the loop ; instead of a cmp instruction, we use the negative flag with the jl instruction add arg3, 128-16 jl _final_reduction_for_128 ; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory ; we can fold 16 bytes at a time if y>=16 ; continue folding 16B at a time _16B_reduction_loop: movdqa xmm8, xmm7 pclmulqdq xmm7, xmm10, 0x11 pclmulqdq xmm8, xmm10, 0x0 pxor xmm7, xmm8 movdqu xmm0, [arg2] pshufb xmm0, xmm11 pxor xmm7, xmm0 add arg2, 16 sub arg3, 16 ; instead of a cmp instruction, we utilize the flags with the jge instruction ; equivalent of: cmp arg3, 16-16 ; check if there is any more 16B in the buffer to be able to fold jge _16B_reduction_loop ;now we have 16+z bytes left to reduce, where 0<= z < 16. ;first, we reduce the data in the xmm7 register _final_reduction_for_128: ; check if any more data to fold. If not, compute the CRC of the final 128 bits add arg3, 16 je _128_done ; here we are getting data that is less than 16 bytes. ; since we know that there was data before the pointer, we can offset the input pointer before the actual point, to receive exactly 16 bytes. ; after that the registers need to be adjusted. _get_last_two_xmms: movdqa xmm2, xmm7 movdqu xmm1, [arg2 - 16 + arg3] pshufb xmm1, xmm11 ; get rid of the extra data that was loaded before ; load the shift constant lea rax, [pshufb_shf_table + 16] sub rax, arg3 movdqu xmm0, [rax] ; shift xmm2 to the left by arg3 bytes pshufb xmm2, xmm0 ; shift xmm7 to the right by 16-arg3 bytes pxor xmm0, [mask1] pshufb xmm7, xmm0 pblendvb xmm1, xmm2 ;xmm0 is implicit ; fold 16 Bytes movdqa xmm2, xmm1 movdqa xmm8, xmm7 pclmulqdq xmm7, xmm10, 0x11 pclmulqdq xmm8, xmm10, 0x0 pxor xmm7, xmm8 pxor xmm7, xmm2 _128_done: ; compute crc of a 128-bit value movdqa xmm10, [rk5] ; rk5 and rk6 in xmm10 movdqa xmm0, xmm7 ;64b fold pclmulqdq xmm7, xmm10, 0x1 pslldq xmm0, 8 pxor xmm7, xmm0 ;32b fold movdqa xmm0, xmm7 pand xmm0, [mask2] psrldq xmm7, 12 pclmulqdq xmm7, xmm10, 0x10 pxor xmm7, xmm0 ;barrett reduction _barrett: movdqa xmm10, [rk7] ; rk7 and rk8 in xmm10 movdqa xmm0, xmm7 pclmulqdq xmm7, xmm10, 0x01 pslldq xmm7, 4 pclmulqdq xmm7, xmm10, 0x11 pslldq xmm7, 4 pxor xmm7, xmm0 pextrd eax, xmm7,1 _cleanup: ; scale the result back to 16 bits shr eax, 16 %ifidn __OUTPUT_FORMAT__, win64 movdqa xmm6, [rsp+16*2] movdqa xmm7, [rsp+16*3] movdqa xmm8, [rsp+16*4] movdqa xmm9, [rsp+16*5] movdqa xmm10, [rsp+16*6] movdqa xmm11, [rsp+16*7] movdqa xmm12, [rsp+16*8] movdqa xmm13, [rsp+16*9] %endif add rsp, VARIABLE_OFFSET ret ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; align 16 _less_than_256: ; check if there is enough buffer to be able to fold 16B at a time cmp arg3, 32 jl _less_than_32 movdqa xmm11, [SHUF_MASK] ; if there is, load the constants movdqa xmm10, [rk1] ; rk1 and rk2 in xmm10 movd xmm0, arg1_low32 ; get the initial crc value pslldq xmm0, 12 ; align it to its correct place movdqu xmm7, [arg2] ; load the plaintext pshufb xmm7, xmm11 ; byte-reflect the plaintext pxor xmm7, xmm0 ; update the buffer pointer add arg2, 16 ; update the counter. subtract 32 instead of 16 to save one instruction from the loop sub arg3, 32 jmp _16B_reduction_loop align 16 _less_than_32: ; mov initial crc to the return value. this is necessary for zero-length buffers. mov eax, arg1_low32 test arg3, arg3 je _cleanup movdqa xmm11, [SHUF_MASK] movd xmm0, arg1_low32 ; get the initial crc value pslldq xmm0, 12 ; align it to its correct place cmp arg3, 16 je _exact_16_left jl _less_than_16_left movdqu xmm7, [arg2] ; load the plaintext pshufb xmm7, xmm11 ; byte-reflect the plaintext pxor xmm7, xmm0 ; xor the initial crc value add arg2, 16 sub arg3, 16 movdqa xmm10, [rk1] ; rk1 and rk2 in xmm10 jmp _get_last_two_xmms align 16 _less_than_16_left: ; use stack space to load data less than 16 bytes, zero-out the 16B in memory first. pxor xmm1, xmm1 mov r11, rsp movdqa [r11], xmm1 cmp arg3, 4 jl _only_less_than_4 ; backup the counter value mov r9, arg3 cmp arg3, 8 jl _less_than_8_left ; load 8 Bytes mov rax, [arg2] mov [r11], rax add r11, 8 sub arg3, 8 add arg2, 8 _less_than_8_left: cmp arg3, 4 jl _less_than_4_left ; load 4 Bytes mov eax, [arg2] mov [r11], eax add r11, 4 sub arg3, 4 add arg2, 4 _less_than_4_left: cmp arg3, 2 jl _less_than_2_left ; load 2 Bytes mov ax, [arg2] mov [r11], ax add r11, 2 sub arg3, 2 add arg2, 2 _less_than_2_left: cmp arg3, 1 jl _zero_left ; load 1 Byte mov al, [arg2] mov [r11], al _zero_left: movdqa xmm7, [rsp] pshufb xmm7, xmm11 pxor xmm7, xmm0 ; xor the initial crc value lea rax, [pshufb_shf_table + 16] sub rax, r9 movdqu xmm0, [rax] pxor xmm0, [mask1] pshufb xmm7, xmm0 jmp _128_done align 16 _exact_16_left: movdqu xmm7, [arg2] pshufb xmm7, xmm11 pxor xmm7, xmm0 ; xor the initial crc value jmp _128_done _only_less_than_4: cmp arg3, 3 jl _only_less_than_3 ; load 3 Bytes mov al, [arg2] mov [r11], al mov al, [arg2+1] mov [r11+1], al mov al, [arg2+2] mov [r11+2], al movdqa xmm7, [rsp] pshufb xmm7, xmm11 pxor xmm7, xmm0 ; xor the initial crc value psrldq xmm7, 5 jmp _barrett _only_less_than_3: cmp arg3, 2 jl _only_less_than_2 ; load 2 Bytes mov al, [arg2] mov [r11], al mov al, [arg2+1] mov [r11+1], al movdqa xmm7, [rsp] pshufb xmm7, xmm11 pxor xmm7, xmm0 ; xor the initial crc value psrldq xmm7, 6 jmp _barrett _only_less_than_2: ; load 1 Byte mov al, [arg2] mov [r11], al movdqa xmm7, [rsp] pshufb xmm7, xmm11 pxor xmm7, xmm0 ; xor the initial crc value psrldq xmm7, 7 jmp _barrett section .data ; precomputed constants ; these constants are precomputed from the poly: 0x8bb70000 (0x8bb7 scaled to 32 bits) align 16 ; Q = 0x18BB70000 ; rk1 = 2^(32*3) mod Q << 32 ; rk2 = 2^(32*5) mod Q << 32 ; rk3 = 2^(32*15) mod Q << 32 ; rk4 = 2^(32*17) mod Q << 32 ; rk5 = 2^(32*3) mod Q << 32 ; rk6 = 2^(32*2) mod Q << 32 ; rk7 = floor(2^64/Q) ; rk8 = Q rk1: DQ 0x2d56000000000000 rk2: DQ 0x06df000000000000 rk3: DQ 0x9d9d000000000000 rk4: DQ 0x7cf5000000000000 rk5: DQ 0x2d56000000000000 rk6: DQ 0x1368000000000000 rk7: DQ 0x00000001f65a57f8 rk8: DQ 0x000000018bb70000 rk9: DQ 0xceae000000000000 rk10: DQ 0xbfd6000000000000 rk11: DQ 0x1e16000000000000 rk12: DQ 0x713c000000000000 rk13: DQ 0xf7f9000000000000 rk14: DQ 0x80a6000000000000 rk15: DQ 0x044c000000000000 rk16: DQ 0xe658000000000000 rk17: DQ 0xad18000000000000 rk18: DQ 0xa497000000000000 rk19: DQ 0x6ee3000000000000 rk20: DQ 0xe7b5000000000000 mask1: dq 0x8080808080808080, 0x8080808080808080 mask2: dq 0xFFFFFFFFFFFFFFFF, 0x00000000FFFFFFFF SHUF_MASK: dq 0x08090A0B0C0D0E0F, 0x0001020304050607 pshufb_shf_table: ; use these values for shift constants for the pshufb instruction ; different alignments result in values as shown: ; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1 ; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2 ; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3 ; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4 ; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5 ; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6 ; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7 ; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8 ; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9 ; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10 ; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11 ; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12 ; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13 ; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14 ; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15 dq 0x8786858483828100, 0x8f8e8d8c8b8a8988 dq 0x0706050403020100, 0x000e0d0c0b0a0908 ;;; func core, ver, snum slversion crc16_t10dif_01, 01, 06, 0010