]> git.proxmox.com Git - mirror_edk2.git/blame - ArmVirtPkg/PrePi/AArch64/ModuleEntryPoint.S
ArmVirtPkg/PrePi: clear frame pointer in startup code
[mirror_edk2.git] / ArmVirtPkg / PrePi / AArch64 / ModuleEntryPoint.S
CommitLineData
f9a9d2dc
AB
1//\r
2// Copyright (c) 2011-2013, ARM Limited. All rights reserved.\r
dfc28388 3// Copyright (c) 2015-2016, Linaro Limited. All rights reserved.\r
f9a9d2dc
AB
4//\r
5// This program and the accompanying materials\r
6// are licensed and made available under the terms and conditions of the BSD License\r
7// which accompanies this distribution. The full text of the license may be found at\r
8// http://opensource.org/licenses/bsd-license.php\r
9//\r
10// THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11// WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12//\r
13//\r
14\r
15#include <AsmMacroIoLibV8.h>\r
f9a9d2dc 16\r
dfc28388 17ASM_FUNC(_ModuleEntryPoint)\r
f9a9d2dc
AB
18 //\r
19 // We are built as a ET_DYN PIE executable, so we need to process all\r
20 // relative relocations regardless of whether or not we are executing from\r
21 // the same offset we were linked at. This is only possible if we are\r
22 // running from RAM.\r
23 //\r
24 adr x8, __reloc_base\r
25 adr x9, __reloc_start\r
26 adr x10, __reloc_end\r
27\r
28.Lreloc_loop:\r
29 cmp x9, x10\r
30 bhs .Lreloc_done\r
31\r
32 //\r
33 // AArch64 uses the ELF64 RELA format, which means each entry in the\r
34 // relocation table consists of\r
35 //\r
36 // UINT64 offset : the relative offset of the value that needs to\r
37 // be relocated\r
38 // UINT64 info : relocation type and symbol index (the latter is\r
39 // not used for R_AARCH64_RELATIVE relocations)\r
40 // UINT64 addend : value to be added to the value being relocated\r
41 //\r
42 ldp x11, x12, [x9], #24 // read offset into x11 and info into x12\r
43 cmp x12, #0x403 // check info == R_AARCH64_RELATIVE?\r
44 bne .Lreloc_loop // not a relative relocation? then skip\r
45\r
46 ldr x12, [x9, #-8] // read addend into x12\r
47 add x12, x12, x8 // add reloc base to addend to get relocated value\r
48 str x12, [x11, x8] // write relocated value at offset\r
49 b .Lreloc_loop\r
50.Lreloc_done:\r
51\r
83270956 52 bl ASM_PFX(DiscoverDramFromDt)\r
f9a9d2dc
AB
53\r
54 // Get ID of this CPU in Multicore system\r
55 bl ASM_PFX(ArmReadMpidr)\r
56 // Keep a copy of the MpId register value\r
298f8361 57 mov x20, x0\r
f9a9d2dc
AB
58\r
59// Check if we can install the stack at the top of the System Memory or if we need\r
60// to install the stacks at the bottom of the Firmware Device (case the FD is located\r
61// at the top of the DRAM)\r
62_SetupStackPosition:\r
63 // Compute Top of System Memory\r
64 ldr x1, PcdGet64 (PcdSystemMemoryBase)\r
65 ldr x2, PcdGet64 (PcdSystemMemorySize)\r
66 sub x2, x2, #1\r
67 add x1, x1, x2 // x1 = SystemMemoryTop = PcdSystemMemoryBase + PcdSystemMemorySize\r
68\r
69 // Calculate Top of the Firmware Device\r
70 ldr x2, PcdGet64 (PcdFdBaseAddress)\r
dfc28388 71 MOV32 (w3, FixedPcdGet32 (PcdFdSize) - 1)\r
f9a9d2dc
AB
72 add x3, x3, x2 // x3 = FdTop = PcdFdBaseAddress + PcdFdSize\r
73\r
74 // UEFI Memory Size (stacks are allocated in this region)\r
dfc28388 75 MOV32 (x4, FixedPcdGet32(PcdSystemMemoryUefiRegionSize))\r
f9a9d2dc
AB
76\r
77 //\r
78 // Reserve the memory for the UEFI region (contain stacks on its top)\r
79 //\r
80\r
81 // Calculate how much space there is between the top of the Firmware and the Top of the System Memory\r
82 subs x0, x1, x3 // x0 = SystemMemoryTop - FdTop\r
83 b.mi _SetupStack // Jump if negative (FdTop > SystemMemoryTop). Case when the PrePi is in XIP memory outside of the DRAM\r
84 cmp x0, x4\r
85 b.ge _SetupStack\r
86\r
87 // Case the top of stacks is the FdBaseAddress\r
88 mov x1, x2\r
89\r
90_SetupStack:\r
91 // x1 contains the top of the stack (and the UEFI Memory)\r
92\r
93 // Because the 'push' instruction is equivalent to 'stmdb' (decrement before), we need to increment\r
94 // one to the top of the stack. We check if incrementing one does not overflow (case of DRAM at the\r
95 // top of the memory space)\r
298f8361 96 adds x21, x1, #1\r
f9a9d2dc
AB
97 b.cs _SetupOverflowStack\r
98\r
99_SetupAlignedStack:\r
298f8361 100 mov x1, x21\r
f9a9d2dc
AB
101 b _GetBaseUefiMemory\r
102\r
103_SetupOverflowStack:\r
104 // Case memory at the top of the address space. Ensure the top of the stack is EFI_PAGE_SIZE\r
105 // aligned (4KB)\r
dfc28388 106 and x1, x1, ~EFI_PAGE_MASK\r
f9a9d2dc
AB
107\r
108_GetBaseUefiMemory:\r
109 // Calculate the Base of the UEFI Memory\r
298f8361 110 sub x21, x1, x4\r
f9a9d2dc
AB
111\r
112_GetStackBase:\r
113 // r1 = The top of the Mpcore Stacks\r
523509ae
AB
114 mov sp, x1\r
115\r
f9a9d2dc 116 // Stack for the primary core = PrimaryCoreStack\r
dfc28388 117 MOV32 (x2, FixedPcdGet32(PcdCPUCorePrimaryStackSize))\r
298f8361 118 sub x22, x1, x2\r
f9a9d2dc 119\r
298f8361
AB
120 mov x0, x20\r
121 mov x1, x21\r
122 mov x2, x22\r
f9a9d2dc 123\r
81c6f1df
AB
124 // Set the frame pointer to NULL so any backtraces terminate here\r
125 mov x29, xzr\r
126\r
f9a9d2dc
AB
127 // Jump to PrePiCore C code\r
128 // x0 = MpId\r
129 // x1 = UefiMemoryBase\r
130 // x2 = StacksBase\r
16a9fe2c 131 bl ASM_PFX(CEntryPoint)\r
f9a9d2dc
AB
132\r
133_NeverReturn:\r
134 b _NeverReturn\r
83270956
AB
135\r
136// VOID\r
137// DiscoverDramFromDt (\r
138// VOID *DeviceTreeBaseAddress, // passed by loader in x0\r
139// VOID *ImageBase // passed by FDF trampoline in x1\r
140// );\r
141ASM_PFX(DiscoverDramFromDt):\r
142 //\r
143 // If we are booting from RAM using the Linux kernel boot protocol, x0 will\r
144 // point to the DTB image in memory. Otherwise, use the default value defined\r
145 // by the platform.\r
146 //\r
147 cbnz x0, 0f\r
148 ldr x0, PcdGet64 (PcdDeviceTreeInitialBaseAddress)\r
149\r
1500:mov x29, x30 // preserve LR\r
151 mov x28, x0 // preserve DTB pointer\r
152 mov x27, x1 // preserve base of image pointer\r
153\r
154 //\r
155 // The base of the runtime image has been preserved in x1. Check whether\r
156 // the expected magic number can be found in the header.\r
157 //\r
158 ldr w8, .LArm64LinuxMagic\r
159 ldr w9, [x1, #0x38]\r
160 cmp w8, w9\r
161 bne .Lout\r
162\r
163 //\r
164 //\r
165 // OK, so far so good. We have confirmed that we likely have a DTB and are\r
166 // booting via the arm64 Linux boot protocol. Update the base-of-image PCD\r
167 // to the actual relocated value, and add the shift of PcdFdBaseAddress to\r
168 // PcdFvBaseAddress as well\r
169 //\r
170 adr x8, PcdGet64 (PcdFdBaseAddress)\r
171 adr x9, PcdGet64 (PcdFvBaseAddress)\r
172 ldr x6, [x8]\r
173 ldr x7, [x9]\r
174 sub x7, x7, x6\r
175 add x7, x7, x1\r
176 str x1, [x8]\r
177 str x7, [x9]\r
178\r
179 //\r
180 // Discover the memory size and offset from the DTB, and record in the\r
181 // respective PCDs. This will also return false if a corrupt DTB is\r
182 // encountered. Since we are calling a C function, use the window at the\r
183 // beginning of the FD image as a temp stack.\r
184 //\r
185 adr x1, PcdGet64 (PcdSystemMemoryBase)\r
186 adr x2, PcdGet64 (PcdSystemMemorySize)\r
187 mov sp, x7\r
188 bl FindMemnode\r
189 cbz x0, .Lout\r
190\r
191 //\r
192 // Copy the DTB to the slack space right after the 64 byte arm64/Linux style\r
193 // image header at the base of this image (defined in the FDF), and record the\r
194 // pointer in PcdDeviceTreeInitialBaseAddress.\r
195 //\r
196 adr x8, PcdGet64 (PcdDeviceTreeInitialBaseAddress)\r
197 add x27, x27, #0x40\r
198 str x27, [x8]\r
199\r
200 mov x0, x27\r
201 mov x1, x28\r
202 bl CopyFdt\r
203\r
204.Lout:\r
205 ret x29\r
206\r
207.LArm64LinuxMagic:\r
208 .byte 0x41, 0x52, 0x4d, 0x64\r