]> git.proxmox.com Git - mirror_edk2.git/blame - MdeModulePkg/Core/Dxe/Mem/HeapGuard.c
MdeModulePkg/Core: fix mem alloc issues in heap guard
[mirror_edk2.git] / MdeModulePkg / Core / Dxe / Mem / HeapGuard.c
CommitLineData
e63da9f0
JW
1/** @file\r
2 UEFI Heap Guard functions.\r
3\r
8b13bca9 4Copyright (c) 2017-2018, Intel Corporation. All rights reserved.<BR>\r
e63da9f0
JW
5This program and the accompanying materials\r
6are licensed and made available under the terms and conditions of the BSD License\r
7which accompanies this distribution. The full text of the license may be found at\r
8http://opensource.org/licenses/bsd-license.php\r
9\r
10THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "DxeMain.h"\r
16#include "Imem.h"\r
17#include "HeapGuard.h"\r
18\r
19//\r
20// Global to avoid infinite reentrance of memory allocation when updating\r
21// page table attributes, which may need allocate pages for new PDE/PTE.\r
22//\r
23GLOBAL_REMOVE_IF_UNREFERENCED BOOLEAN mOnGuarding = FALSE;\r
24\r
25//\r
26// Pointer to table tracking the Guarded memory with bitmap, in which '1'\r
27// is used to indicate memory guarded. '0' might be free memory or Guard\r
28// page itself, depending on status of memory adjacent to it.\r
29//\r
30GLOBAL_REMOVE_IF_UNREFERENCED UINT64 mGuardedMemoryMap = 0;\r
31\r
32//\r
33// Current depth level of map table pointed by mGuardedMemoryMap.\r
34// mMapLevel must be initialized at least by 1. It will be automatically\r
35// updated according to the address of memory just tracked.\r
36//\r
37GLOBAL_REMOVE_IF_UNREFERENCED UINTN mMapLevel = 1;\r
38\r
39//\r
40// Shift and mask for each level of map table\r
41//\r
42GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH]\r
43 = GUARDED_HEAP_MAP_TABLE_DEPTH_SHIFTS;\r
44GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH]\r
45 = GUARDED_HEAP_MAP_TABLE_DEPTH_MASKS;\r
46\r
47/**\r
48 Set corresponding bits in bitmap table to 1 according to the address.\r
49\r
50 @param[in] Address Start address to set for.\r
51 @param[in] BitNumber Number of bits to set.\r
52 @param[in] BitMap Pointer to bitmap which covers the Address.\r
53\r
54 @return VOID.\r
55**/\r
56STATIC\r
57VOID\r
58SetBits (\r
59 IN EFI_PHYSICAL_ADDRESS Address,\r
60 IN UINTN BitNumber,\r
61 IN UINT64 *BitMap\r
62 )\r
63{\r
64 UINTN Lsbs;\r
65 UINTN Qwords;\r
66 UINTN Msbs;\r
67 UINTN StartBit;\r
68 UINTN EndBit;\r
69\r
70 StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);\r
71 EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
72\r
73 if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {\r
74 Msbs = (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) %\r
75 GUARDED_HEAP_MAP_ENTRY_BITS;\r
76 Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
77 Qwords = (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS;\r
78 } else {\r
79 Msbs = BitNumber;\r
80 Lsbs = 0;\r
81 Qwords = 0;\r
82 }\r
83\r
84 if (Msbs > 0) {\r
85 *BitMap |= LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit);\r
86 BitMap += 1;\r
87 }\r
88\r
89 if (Qwords > 0) {\r
90 SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES,\r
91 (UINT64)-1);\r
92 BitMap += Qwords;\r
93 }\r
94\r
95 if (Lsbs > 0) {\r
96 *BitMap |= (LShiftU64 (1, Lsbs) - 1);\r
97 }\r
98}\r
99\r
100/**\r
101 Set corresponding bits in bitmap table to 0 according to the address.\r
102\r
103 @param[in] Address Start address to set for.\r
104 @param[in] BitNumber Number of bits to set.\r
105 @param[in] BitMap Pointer to bitmap which covers the Address.\r
106\r
107 @return VOID.\r
108**/\r
109STATIC\r
110VOID\r
111ClearBits (\r
112 IN EFI_PHYSICAL_ADDRESS Address,\r
113 IN UINTN BitNumber,\r
114 IN UINT64 *BitMap\r
115 )\r
116{\r
117 UINTN Lsbs;\r
118 UINTN Qwords;\r
119 UINTN Msbs;\r
120 UINTN StartBit;\r
121 UINTN EndBit;\r
122\r
123 StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);\r
124 EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
125\r
126 if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {\r
127 Msbs = (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) %\r
128 GUARDED_HEAP_MAP_ENTRY_BITS;\r
129 Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
130 Qwords = (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS;\r
131 } else {\r
132 Msbs = BitNumber;\r
133 Lsbs = 0;\r
134 Qwords = 0;\r
135 }\r
136\r
137 if (Msbs > 0) {\r
138 *BitMap &= ~LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit);\r
139 BitMap += 1;\r
140 }\r
141\r
142 if (Qwords > 0) {\r
143 SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES, 0);\r
144 BitMap += Qwords;\r
145 }\r
146\r
147 if (Lsbs > 0) {\r
148 *BitMap &= ~(LShiftU64 (1, Lsbs) - 1);\r
149 }\r
150}\r
151\r
152/**\r
153 Get corresponding bits in bitmap table according to the address.\r
154\r
155 The value of bit 0 corresponds to the status of memory at given Address.\r
156 No more than 64 bits can be retrieved in one call.\r
157\r
158 @param[in] Address Start address to retrieve bits for.\r
159 @param[in] BitNumber Number of bits to get.\r
160 @param[in] BitMap Pointer to bitmap which covers the Address.\r
161\r
162 @return An integer containing the bits information.\r
163**/\r
164STATIC\r
165UINT64\r
166GetBits (\r
167 IN EFI_PHYSICAL_ADDRESS Address,\r
168 IN UINTN BitNumber,\r
169 IN UINT64 *BitMap\r
170 )\r
171{\r
172 UINTN StartBit;\r
173 UINTN EndBit;\r
174 UINTN Lsbs;\r
175 UINTN Msbs;\r
176 UINT64 Result;\r
177\r
178 ASSERT (BitNumber <= GUARDED_HEAP_MAP_ENTRY_BITS);\r
179\r
180 StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);\r
181 EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
182\r
183 if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {\r
184 Msbs = GUARDED_HEAP_MAP_ENTRY_BITS - StartBit;\r
185 Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
186 } else {\r
187 Msbs = BitNumber;\r
188 Lsbs = 0;\r
189 }\r
190\r
191 Result = RShiftU64 ((*BitMap), StartBit) & (LShiftU64 (1, Msbs) - 1);\r
192 if (Lsbs > 0) {\r
193 BitMap += 1;\r
194 Result |= LShiftU64 ((*BitMap) & (LShiftU64 (1, Lsbs) - 1), Msbs);\r
195 }\r
196\r
197 return Result;\r
198}\r
199\r
200/**\r
201 Locate the pointer of bitmap from the guarded memory bitmap tables, which\r
202 covers the given Address.\r
203\r
204 @param[in] Address Start address to search the bitmap for.\r
205 @param[in] AllocMapUnit Flag to indicate memory allocation for the table.\r
206 @param[out] BitMap Pointer to bitmap which covers the Address.\r
207\r
208 @return The bit number from given Address to the end of current map table.\r
209**/\r
210UINTN\r
211FindGuardedMemoryMap (\r
212 IN EFI_PHYSICAL_ADDRESS Address,\r
213 IN BOOLEAN AllocMapUnit,\r
214 OUT UINT64 **BitMap\r
215 )\r
216{\r
217 UINTN Level;\r
218 UINT64 *GuardMap;\r
219 UINT64 MapMemory;\r
220 UINTN Index;\r
221 UINTN Size;\r
222 UINTN BitsToUnitEnd;\r
223 EFI_STATUS Status;\r
224\r
225 //\r
226 // Adjust current map table depth according to the address to access\r
227 //\r
dd12683e
JW
228 while (AllocMapUnit &&\r
229 mMapLevel < GUARDED_HEAP_MAP_TABLE_DEPTH &&\r
e63da9f0
JW
230 RShiftU64 (\r
231 Address,\r
232 mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1]\r
233 ) != 0) {\r
234\r
235 if (mGuardedMemoryMap != 0) {\r
236 Size = (mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1] + 1)\r
237 * GUARDED_HEAP_MAP_ENTRY_BYTES;\r
238 Status = CoreInternalAllocatePages (\r
239 AllocateAnyPages,\r
240 EfiBootServicesData,\r
241 EFI_SIZE_TO_PAGES (Size),\r
242 &MapMemory,\r
243 FALSE\r
244 );\r
245 ASSERT_EFI_ERROR (Status);\r
246 ASSERT (MapMemory != 0);\r
247\r
248 SetMem ((VOID *)(UINTN)MapMemory, Size, 0);\r
249\r
250 *(UINT64 *)(UINTN)MapMemory = mGuardedMemoryMap;\r
251 mGuardedMemoryMap = MapMemory;\r
252 }\r
253\r
254 mMapLevel++;\r
255\r
256 }\r
257\r
258 GuardMap = &mGuardedMemoryMap;\r
259 for (Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;\r
260 Level < GUARDED_HEAP_MAP_TABLE_DEPTH;\r
261 ++Level) {\r
262\r
263 if (*GuardMap == 0) {\r
264 if (!AllocMapUnit) {\r
265 GuardMap = NULL;\r
266 break;\r
267 }\r
268\r
269 Size = (mLevelMask[Level] + 1) * GUARDED_HEAP_MAP_ENTRY_BYTES;\r
270 Status = CoreInternalAllocatePages (\r
271 AllocateAnyPages,\r
272 EfiBootServicesData,\r
273 EFI_SIZE_TO_PAGES (Size),\r
274 &MapMemory,\r
275 FALSE\r
276 );\r
277 ASSERT_EFI_ERROR (Status);\r
278 ASSERT (MapMemory != 0);\r
279\r
280 SetMem ((VOID *)(UINTN)MapMemory, Size, 0);\r
281 *GuardMap = MapMemory;\r
282 }\r
283\r
284 Index = (UINTN)RShiftU64 (Address, mLevelShift[Level]);\r
285 Index &= mLevelMask[Level];\r
286 GuardMap = (UINT64 *)(UINTN)((*GuardMap) + Index * sizeof (UINT64));\r
287\r
288 }\r
289\r
290 BitsToUnitEnd = GUARDED_HEAP_MAP_BITS - GUARDED_HEAP_MAP_BIT_INDEX (Address);\r
291 *BitMap = GuardMap;\r
292\r
293 return BitsToUnitEnd;\r
294}\r
295\r
296/**\r
297 Set corresponding bits in bitmap table to 1 according to given memory range.\r
298\r
299 @param[in] Address Memory address to guard from.\r
300 @param[in] NumberOfPages Number of pages to guard.\r
301\r
302 @return VOID.\r
303**/\r
304VOID\r
305EFIAPI\r
306SetGuardedMemoryBits (\r
307 IN EFI_PHYSICAL_ADDRESS Address,\r
308 IN UINTN NumberOfPages\r
309 )\r
310{\r
311 UINT64 *BitMap;\r
312 UINTN Bits;\r
313 UINTN BitsToUnitEnd;\r
314\r
315 while (NumberOfPages > 0) {\r
316 BitsToUnitEnd = FindGuardedMemoryMap (Address, TRUE, &BitMap);\r
317 ASSERT (BitMap != NULL);\r
318\r
319 if (NumberOfPages > BitsToUnitEnd) {\r
320 // Cross map unit\r
321 Bits = BitsToUnitEnd;\r
322 } else {\r
323 Bits = NumberOfPages;\r
324 }\r
325\r
326 SetBits (Address, Bits, BitMap);\r
327\r
328 NumberOfPages -= Bits;\r
329 Address += EFI_PAGES_TO_SIZE (Bits);\r
330 }\r
331}\r
332\r
333/**\r
334 Clear corresponding bits in bitmap table according to given memory range.\r
335\r
336 @param[in] Address Memory address to unset from.\r
337 @param[in] NumberOfPages Number of pages to unset guard.\r
338\r
339 @return VOID.\r
340**/\r
341VOID\r
342EFIAPI\r
343ClearGuardedMemoryBits (\r
344 IN EFI_PHYSICAL_ADDRESS Address,\r
345 IN UINTN NumberOfPages\r
346 )\r
347{\r
348 UINT64 *BitMap;\r
349 UINTN Bits;\r
350 UINTN BitsToUnitEnd;\r
351\r
352 while (NumberOfPages > 0) {\r
353 BitsToUnitEnd = FindGuardedMemoryMap (Address, TRUE, &BitMap);\r
354 ASSERT (BitMap != NULL);\r
355\r
356 if (NumberOfPages > BitsToUnitEnd) {\r
357 // Cross map unit\r
358 Bits = BitsToUnitEnd;\r
359 } else {\r
360 Bits = NumberOfPages;\r
361 }\r
362\r
363 ClearBits (Address, Bits, BitMap);\r
364\r
365 NumberOfPages -= Bits;\r
366 Address += EFI_PAGES_TO_SIZE (Bits);\r
367 }\r
368}\r
369\r
370/**\r
371 Retrieve corresponding bits in bitmap table according to given memory range.\r
372\r
373 @param[in] Address Memory address to retrieve from.\r
374 @param[in] NumberOfPages Number of pages to retrieve.\r
375\r
376 @return An integer containing the guarded memory bitmap.\r
377**/\r
378UINTN\r
379GetGuardedMemoryBits (\r
380 IN EFI_PHYSICAL_ADDRESS Address,\r
381 IN UINTN NumberOfPages\r
382 )\r
383{\r
384 UINT64 *BitMap;\r
385 UINTN Bits;\r
386 UINTN Result;\r
387 UINTN Shift;\r
388 UINTN BitsToUnitEnd;\r
389\r
390 ASSERT (NumberOfPages <= GUARDED_HEAP_MAP_ENTRY_BITS);\r
391\r
392 Result = 0;\r
393 Shift = 0;\r
394 while (NumberOfPages > 0) {\r
395 BitsToUnitEnd = FindGuardedMemoryMap (Address, FALSE, &BitMap);\r
396\r
397 if (NumberOfPages > BitsToUnitEnd) {\r
398 // Cross map unit\r
399 Bits = BitsToUnitEnd;\r
400 } else {\r
401 Bits = NumberOfPages;\r
402 }\r
403\r
404 if (BitMap != NULL) {\r
405 Result |= LShiftU64 (GetBits (Address, Bits, BitMap), Shift);\r
406 }\r
407\r
408 Shift += Bits;\r
409 NumberOfPages -= Bits;\r
410 Address += EFI_PAGES_TO_SIZE (Bits);\r
411 }\r
412\r
413 return Result;\r
414}\r
415\r
416/**\r
417 Get bit value in bitmap table for the given address.\r
418\r
419 @param[in] Address The address to retrieve for.\r
420\r
421 @return 1 or 0.\r
422**/\r
423UINTN\r
424EFIAPI\r
425GetGuardMapBit (\r
426 IN EFI_PHYSICAL_ADDRESS Address\r
427 )\r
428{\r
429 UINT64 *GuardMap;\r
430\r
431 FindGuardedMemoryMap (Address, FALSE, &GuardMap);\r
432 if (GuardMap != NULL) {\r
433 if (RShiftU64 (*GuardMap,\r
434 GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address)) & 1) {\r
435 return 1;\r
436 }\r
437 }\r
438\r
439 return 0;\r
440}\r
441\r
442/**\r
443 Set the bit in bitmap table for the given address.\r
444\r
445 @param[in] Address The address to set for.\r
446\r
447 @return VOID.\r
448**/\r
449VOID\r
450EFIAPI\r
451SetGuardMapBit (\r
452 IN EFI_PHYSICAL_ADDRESS Address\r
453 )\r
454{\r
455 UINT64 *GuardMap;\r
456 UINT64 BitMask;\r
457\r
458 FindGuardedMemoryMap (Address, TRUE, &GuardMap);\r
459 if (GuardMap != NULL) {\r
460 BitMask = LShiftU64 (1, GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address));\r
461 *GuardMap |= BitMask;\r
462 }\r
463}\r
464\r
465/**\r
466 Clear the bit in bitmap table for the given address.\r
467\r
468 @param[in] Address The address to clear for.\r
469\r
470 @return VOID.\r
471**/\r
472VOID\r
473EFIAPI\r
474ClearGuardMapBit (\r
475 IN EFI_PHYSICAL_ADDRESS Address\r
476 )\r
477{\r
478 UINT64 *GuardMap;\r
479 UINT64 BitMask;\r
480\r
481 FindGuardedMemoryMap (Address, TRUE, &GuardMap);\r
482 if (GuardMap != NULL) {\r
483 BitMask = LShiftU64 (1, GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address));\r
484 *GuardMap &= ~BitMask;\r
485 }\r
486}\r
487\r
488/**\r
489 Check to see if the page at the given address is a Guard page or not.\r
490\r
491 @param[in] Address The address to check for.\r
492\r
493 @return TRUE The page at Address is a Guard page.\r
494 @return FALSE The page at Address is not a Guard page.\r
495**/\r
496BOOLEAN\r
497EFIAPI\r
498IsGuardPage (\r
499 IN EFI_PHYSICAL_ADDRESS Address\r
500 )\r
501{\r
502 UINTN BitMap;\r
503\r
504 //\r
505 // There must be at least one guarded page before and/or after given\r
506 // address if it's a Guard page. The bitmap pattern should be one of\r
507 // 001, 100 and 101\r
508 //\r
509 BitMap = GetGuardedMemoryBits (Address - EFI_PAGE_SIZE, 3);\r
510 return ((BitMap == BIT0) || (BitMap == BIT2) || (BitMap == (BIT2 | BIT0)));\r
511}\r
512\r
513/**\r
514 Check to see if the page at the given address is a head Guard page or not.\r
515\r
516 @param[in] Address The address to check for\r
517\r
518 @return TRUE The page at Address is a head Guard page\r
519 @return FALSE The page at Address is not a head Guard page\r
520**/\r
521BOOLEAN\r
522EFIAPI\r
523IsHeadGuard (\r
524 IN EFI_PHYSICAL_ADDRESS Address\r
525 )\r
526{\r
527 return (GetGuardedMemoryBits (Address, 2) == BIT1);\r
528}\r
529\r
530/**\r
531 Check to see if the page at the given address is a tail Guard page or not.\r
532\r
533 @param[in] Address The address to check for.\r
534\r
535 @return TRUE The page at Address is a tail Guard page.\r
536 @return FALSE The page at Address is not a tail Guard page.\r
537**/\r
538BOOLEAN\r
539EFIAPI\r
540IsTailGuard (\r
541 IN EFI_PHYSICAL_ADDRESS Address\r
542 )\r
543{\r
544 return (GetGuardedMemoryBits (Address - EFI_PAGE_SIZE, 2) == BIT0);\r
545}\r
546\r
547/**\r
548 Check to see if the page at the given address is guarded or not.\r
549\r
550 @param[in] Address The address to check for.\r
551\r
552 @return TRUE The page at Address is guarded.\r
553 @return FALSE The page at Address is not guarded.\r
554**/\r
555BOOLEAN\r
556EFIAPI\r
557IsMemoryGuarded (\r
558 IN EFI_PHYSICAL_ADDRESS Address\r
559 )\r
560{\r
561 return (GetGuardMapBit (Address) == 1);\r
562}\r
563\r
564/**\r
565 Set the page at the given address to be a Guard page.\r
566\r
567 This is done by changing the page table attribute to be NOT PRSENT.\r
568\r
569 @param[in] BaseAddress Page address to Guard at\r
570\r
571 @return VOID\r
572**/\r
573VOID\r
574EFIAPI\r
575SetGuardPage (\r
576 IN EFI_PHYSICAL_ADDRESS BaseAddress\r
577 )\r
578{\r
579 //\r
580 // Set flag to make sure allocating memory without GUARD for page table\r
581 // operation; otherwise infinite loops could be caused.\r
582 //\r
583 mOnGuarding = TRUE;\r
584 //\r
585 // Note: This might overwrite other attributes needed by other features,\r
c44218e5 586 // such as NX memory protection.\r
e63da9f0
JW
587 //\r
588 gCpu->SetMemoryAttributes (gCpu, BaseAddress, EFI_PAGE_SIZE, EFI_MEMORY_RP);\r
589 mOnGuarding = FALSE;\r
590}\r
591\r
592/**\r
593 Unset the Guard page at the given address to the normal memory.\r
594\r
595 This is done by changing the page table attribute to be PRSENT.\r
596\r
597 @param[in] BaseAddress Page address to Guard at.\r
598\r
599 @return VOID.\r
600**/\r
601VOID\r
602EFIAPI\r
603UnsetGuardPage (\r
604 IN EFI_PHYSICAL_ADDRESS BaseAddress\r
605 )\r
606{\r
c44218e5
JW
607 UINT64 Attributes;\r
608\r
609 //\r
610 // Once the Guard page is unset, it will be freed back to memory pool. NX\r
611 // memory protection must be restored for this page if NX is enabled for free\r
612 // memory.\r
613 //\r
614 Attributes = 0;\r
615 if ((PcdGet64 (PcdDxeNxMemoryProtectionPolicy) & (1 << EfiConventionalMemory)) != 0) {\r
616 Attributes |= EFI_MEMORY_XP;\r
617 }\r
618\r
e63da9f0
JW
619 //\r
620 // Set flag to make sure allocating memory without GUARD for page table\r
621 // operation; otherwise infinite loops could be caused.\r
622 //\r
623 mOnGuarding = TRUE;\r
624 //\r
625 // Note: This might overwrite other attributes needed by other features,\r
626 // such as memory protection (NX). Please make sure they are not enabled\r
627 // at the same time.\r
628 //\r
c44218e5 629 gCpu->SetMemoryAttributes (gCpu, BaseAddress, EFI_PAGE_SIZE, Attributes);\r
e63da9f0
JW
630 mOnGuarding = FALSE;\r
631}\r
632\r
633/**\r
634 Check to see if the memory at the given address should be guarded or not.\r
635\r
636 @param[in] MemoryType Memory type to check.\r
637 @param[in] AllocateType Allocation type to check.\r
638 @param[in] PageOrPool Indicate a page allocation or pool allocation.\r
639\r
640\r
641 @return TRUE The given type of memory should be guarded.\r
642 @return FALSE The given type of memory should not be guarded.\r
643**/\r
644BOOLEAN\r
645IsMemoryTypeToGuard (\r
646 IN EFI_MEMORY_TYPE MemoryType,\r
647 IN EFI_ALLOCATE_TYPE AllocateType,\r
648 IN UINT8 PageOrPool\r
649 )\r
650{\r
651 UINT64 TestBit;\r
652 UINT64 ConfigBit;\r
653 BOOLEAN InSmm;\r
654\r
655 if (gCpu == NULL || AllocateType == AllocateAddress) {\r
656 return FALSE;\r
657 }\r
658\r
659 InSmm = FALSE;\r
660 if (gSmmBase2 != NULL) {\r
661 gSmmBase2->InSmm (gSmmBase2, &InSmm);\r
662 }\r
663\r
664 if (InSmm) {\r
665 return FALSE;\r
666 }\r
667\r
668 if ((PcdGet8 (PcdHeapGuardPropertyMask) & PageOrPool) == 0) {\r
669 return FALSE;\r
670 }\r
671\r
672 if (PageOrPool == GUARD_HEAP_TYPE_POOL) {\r
673 ConfigBit = PcdGet64 (PcdHeapGuardPoolType);\r
674 } else if (PageOrPool == GUARD_HEAP_TYPE_PAGE) {\r
675 ConfigBit = PcdGet64 (PcdHeapGuardPageType);\r
676 } else {\r
677 ConfigBit = (UINT64)-1;\r
678 }\r
679\r
680 if ((UINT32)MemoryType >= MEMORY_TYPE_OS_RESERVED_MIN) {\r
681 TestBit = BIT63;\r
682 } else if ((UINT32) MemoryType >= MEMORY_TYPE_OEM_RESERVED_MIN) {\r
683 TestBit = BIT62;\r
684 } else if (MemoryType < EfiMaxMemoryType) {\r
685 TestBit = LShiftU64 (1, MemoryType);\r
686 } else if (MemoryType == EfiMaxMemoryType) {\r
687 TestBit = (UINT64)-1;\r
688 } else {\r
689 TestBit = 0;\r
690 }\r
691\r
692 return ((ConfigBit & TestBit) != 0);\r
693}\r
694\r
695/**\r
696 Check to see if the pool at the given address should be guarded or not.\r
697\r
698 @param[in] MemoryType Pool type to check.\r
699\r
700\r
701 @return TRUE The given type of pool should be guarded.\r
702 @return FALSE The given type of pool should not be guarded.\r
703**/\r
704BOOLEAN\r
705IsPoolTypeToGuard (\r
706 IN EFI_MEMORY_TYPE MemoryType\r
707 )\r
708{\r
709 return IsMemoryTypeToGuard (MemoryType, AllocateAnyPages,\r
710 GUARD_HEAP_TYPE_POOL);\r
711}\r
712\r
713/**\r
714 Check to see if the page at the given address should be guarded or not.\r
715\r
716 @param[in] MemoryType Page type to check.\r
717 @param[in] AllocateType Allocation type to check.\r
718\r
719 @return TRUE The given type of page should be guarded.\r
720 @return FALSE The given type of page should not be guarded.\r
721**/\r
722BOOLEAN\r
723IsPageTypeToGuard (\r
724 IN EFI_MEMORY_TYPE MemoryType,\r
725 IN EFI_ALLOCATE_TYPE AllocateType\r
726 )\r
727{\r
728 return IsMemoryTypeToGuard (MemoryType, AllocateType, GUARD_HEAP_TYPE_PAGE);\r
729}\r
730\r
a6a0a597
JW
731/**\r
732 Check to see if the heap guard is enabled for page and/or pool allocation.\r
733\r
734 @return TRUE/FALSE.\r
735**/\r
736BOOLEAN\r
737IsHeapGuardEnabled (\r
738 VOID\r
739 )\r
740{\r
741 return IsMemoryTypeToGuard (EfiMaxMemoryType, AllocateAnyPages,\r
742 GUARD_HEAP_TYPE_POOL|GUARD_HEAP_TYPE_PAGE);\r
743}\r
744\r
e63da9f0
JW
745/**\r
746 Set head Guard and tail Guard for the given memory range.\r
747\r
748 @param[in] Memory Base address of memory to set guard for.\r
749 @param[in] NumberOfPages Memory size in pages.\r
750\r
751 @return VOID\r
752**/\r
753VOID\r
754SetGuardForMemory (\r
755 IN EFI_PHYSICAL_ADDRESS Memory,\r
756 IN UINTN NumberOfPages\r
757 )\r
758{\r
759 EFI_PHYSICAL_ADDRESS GuardPage;\r
760\r
761 //\r
762 // Set tail Guard\r
763 //\r
764 GuardPage = Memory + EFI_PAGES_TO_SIZE (NumberOfPages);\r
765 if (!IsGuardPage (GuardPage)) {\r
766 SetGuardPage (GuardPage);\r
767 }\r
768\r
769 // Set head Guard\r
770 GuardPage = Memory - EFI_PAGES_TO_SIZE (1);\r
771 if (!IsGuardPage (GuardPage)) {\r
772 SetGuardPage (GuardPage);\r
773 }\r
774\r
775 //\r
776 // Mark the memory range as Guarded\r
777 //\r
778 SetGuardedMemoryBits (Memory, NumberOfPages);\r
779}\r
780\r
781/**\r
782 Unset head Guard and tail Guard for the given memory range.\r
783\r
784 @param[in] Memory Base address of memory to unset guard for.\r
785 @param[in] NumberOfPages Memory size in pages.\r
786\r
787 @return VOID\r
788**/\r
789VOID\r
790UnsetGuardForMemory (\r
791 IN EFI_PHYSICAL_ADDRESS Memory,\r
792 IN UINTN NumberOfPages\r
793 )\r
794{\r
795 EFI_PHYSICAL_ADDRESS GuardPage;\r
6cf0a677 796 UINT64 GuardBitmap;\r
e63da9f0
JW
797\r
798 if (NumberOfPages == 0) {\r
799 return;\r
800 }\r
801\r
802 //\r
803 // Head Guard must be one page before, if any.\r
804 //\r
6cf0a677
JW
805 // MSB-> 1 0 <-LSB\r
806 // -------------------\r
807 // Head Guard -> 0 1 -> Don't free Head Guard (shared Guard)\r
808 // Head Guard -> 0 0 -> Free Head Guard either (not shared Guard)\r
809 // 1 X -> Don't free first page (need a new Guard)\r
810 // (it'll be turned into a Guard page later)\r
811 // -------------------\r
812 // Start -> -1 -2\r
813 //\r
e63da9f0 814 GuardPage = Memory - EFI_PAGES_TO_SIZE (1);\r
6cf0a677
JW
815 GuardBitmap = GetGuardedMemoryBits (Memory - EFI_PAGES_TO_SIZE (2), 2);\r
816 if ((GuardBitmap & BIT1) == 0) {\r
817 //\r
818 // Head Guard exists.\r
819 //\r
820 if ((GuardBitmap & BIT0) == 0) {\r
e63da9f0
JW
821 //\r
822 // If the head Guard is not a tail Guard of adjacent memory block,\r
823 // unset it.\r
824 //\r
825 UnsetGuardPage (GuardPage);\r
826 }\r
6cf0a677 827 } else {\r
e63da9f0
JW
828 //\r
829 // Pages before memory to free are still in Guard. It's a partial free\r
830 // case. Turn first page of memory block to free into a new Guard.\r
831 //\r
832 SetGuardPage (Memory);\r
833 }\r
834\r
835 //\r
836 // Tail Guard must be the page after this memory block to free, if any.\r
837 //\r
6cf0a677
JW
838 // MSB-> 1 0 <-LSB\r
839 // --------------------\r
840 // 1 0 <- Tail Guard -> Don't free Tail Guard (shared Guard)\r
841 // 0 0 <- Tail Guard -> Free Tail Guard either (not shared Guard)\r
842 // X 1 -> Don't free last page (need a new Guard)\r
843 // (it'll be turned into a Guard page later)\r
844 // --------------------\r
845 // +1 +0 <- End\r
846 //\r
e63da9f0 847 GuardPage = Memory + EFI_PAGES_TO_SIZE (NumberOfPages);\r
6cf0a677
JW
848 GuardBitmap = GetGuardedMemoryBits (GuardPage, 2);\r
849 if ((GuardBitmap & BIT0) == 0) {\r
850 //\r
851 // Tail Guard exists.\r
852 //\r
853 if ((GuardBitmap & BIT1) == 0) {\r
e63da9f0
JW
854 //\r
855 // If the tail Guard is not a head Guard of adjacent memory block,\r
856 // free it; otherwise, keep it.\r
857 //\r
858 UnsetGuardPage (GuardPage);\r
859 }\r
6cf0a677 860 } else {\r
e63da9f0
JW
861 //\r
862 // Pages after memory to free are still in Guard. It's a partial free\r
863 // case. We need to keep one page to be a head Guard.\r
864 //\r
865 SetGuardPage (GuardPage - EFI_PAGES_TO_SIZE (1));\r
866 }\r
867\r
868 //\r
869 // No matter what, we just clear the mark of the Guarded memory.\r
870 //\r
871 ClearGuardedMemoryBits(Memory, NumberOfPages);\r
872}\r
873\r
874/**\r
875 Adjust address of free memory according to existing and/or required Guard.\r
876\r
877 This function will check if there're existing Guard pages of adjacent\r
878 memory blocks, and try to use it as the Guard page of the memory to be\r
879 allocated.\r
880\r
881 @param[in] Start Start address of free memory block.\r
882 @param[in] Size Size of free memory block.\r
883 @param[in] SizeRequested Size of memory to allocate.\r
884\r
885 @return The end address of memory block found.\r
886 @return 0 if no enough space for the required size of memory and its Guard.\r
887**/\r
888UINT64\r
889AdjustMemoryS (\r
890 IN UINT64 Start,\r
891 IN UINT64 Size,\r
892 IN UINT64 SizeRequested\r
893 )\r
894{\r
895 UINT64 Target;\r
896\r
c44218e5
JW
897 //\r
898 // UEFI spec requires that allocated pool must be 8-byte aligned. If it's\r
899 // indicated to put the pool near the Tail Guard, we need extra bytes to\r
900 // make sure alignment of the returned pool address.\r
901 //\r
902 if ((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) == 0) {\r
903 SizeRequested = ALIGN_VALUE(SizeRequested, 8);\r
904 }\r
905\r
e63da9f0 906 Target = Start + Size - SizeRequested;\r
dd12683e
JW
907 ASSERT (Target >= Start);\r
908 if (Target == 0) {\r
909 return 0;\r
910 }\r
e63da9f0 911\r
e63da9f0
JW
912 if (!IsGuardPage (Start + Size)) {\r
913 // No Guard at tail to share. One more page is needed.\r
914 Target -= EFI_PAGES_TO_SIZE (1);\r
915 }\r
916\r
917 // Out of range?\r
918 if (Target < Start) {\r
919 return 0;\r
920 }\r
921\r
922 // At the edge?\r
923 if (Target == Start) {\r
924 if (!IsGuardPage (Target - EFI_PAGES_TO_SIZE (1))) {\r
925 // No enough space for a new head Guard if no Guard at head to share.\r
926 return 0;\r
927 }\r
928 }\r
929\r
930 // OK, we have enough pages for memory and its Guards. Return the End of the\r
931 // free space.\r
932 return Target + SizeRequested - 1;\r
933}\r
934\r
935/**\r
936 Adjust the start address and number of pages to free according to Guard.\r
937\r
938 The purpose of this function is to keep the shared Guard page with adjacent\r
939 memory block if it's still in guard, or free it if no more sharing. Another\r
940 is to reserve pages as Guard pages in partial page free situation.\r
941\r
942 @param[in,out] Memory Base address of memory to free.\r
943 @param[in,out] NumberOfPages Size of memory to free.\r
944\r
945 @return VOID.\r
946**/\r
947VOID\r
948AdjustMemoryF (\r
949 IN OUT EFI_PHYSICAL_ADDRESS *Memory,\r
950 IN OUT UINTN *NumberOfPages\r
951 )\r
952{\r
953 EFI_PHYSICAL_ADDRESS Start;\r
954 EFI_PHYSICAL_ADDRESS MemoryToTest;\r
955 UINTN PagesToFree;\r
6cf0a677 956 UINT64 GuardBitmap;\r
e63da9f0
JW
957\r
958 if (Memory == NULL || NumberOfPages == NULL || *NumberOfPages == 0) {\r
959 return;\r
960 }\r
961\r
962 Start = *Memory;\r
963 PagesToFree = *NumberOfPages;\r
964\r
965 //\r
966 // Head Guard must be one page before, if any.\r
967 //\r
6cf0a677
JW
968 // MSB-> 1 0 <-LSB\r
969 // -------------------\r
970 // Head Guard -> 0 1 -> Don't free Head Guard (shared Guard)\r
971 // Head Guard -> 0 0 -> Free Head Guard either (not shared Guard)\r
972 // 1 X -> Don't free first page (need a new Guard)\r
973 // (it'll be turned into a Guard page later)\r
974 // -------------------\r
975 // Start -> -1 -2\r
976 //\r
977 MemoryToTest = Start - EFI_PAGES_TO_SIZE (2);\r
978 GuardBitmap = GetGuardedMemoryBits (MemoryToTest, 2);\r
979 if ((GuardBitmap & BIT1) == 0) {\r
980 //\r
981 // Head Guard exists.\r
982 //\r
983 if ((GuardBitmap & BIT0) == 0) {\r
e63da9f0
JW
984 //\r
985 // If the head Guard is not a tail Guard of adjacent memory block,\r
986 // free it; otherwise, keep it.\r
987 //\r
988 Start -= EFI_PAGES_TO_SIZE (1);\r
989 PagesToFree += 1;\r
990 }\r
6cf0a677 991 } else {\r
e63da9f0 992 //\r
6cf0a677
JW
993 // No Head Guard, and pages before memory to free are still in Guard. It's a\r
994 // partial free case. We need to keep one page to be a tail Guard.\r
e63da9f0
JW
995 //\r
996 Start += EFI_PAGES_TO_SIZE (1);\r
997 PagesToFree -= 1;\r
998 }\r
999\r
1000 //\r
1001 // Tail Guard must be the page after this memory block to free, if any.\r
1002 //\r
6cf0a677
JW
1003 // MSB-> 1 0 <-LSB\r
1004 // --------------------\r
1005 // 1 0 <- Tail Guard -> Don't free Tail Guard (shared Guard)\r
1006 // 0 0 <- Tail Guard -> Free Tail Guard either (not shared Guard)\r
1007 // X 1 -> Don't free last page (need a new Guard)\r
1008 // (it'll be turned into a Guard page later)\r
1009 // --------------------\r
1010 // +1 +0 <- End\r
1011 //\r
e63da9f0 1012 MemoryToTest = Start + EFI_PAGES_TO_SIZE (PagesToFree);\r
6cf0a677
JW
1013 GuardBitmap = GetGuardedMemoryBits (MemoryToTest, 2);\r
1014 if ((GuardBitmap & BIT0) == 0) {\r
1015 //\r
1016 // Tail Guard exists.\r
1017 //\r
1018 if ((GuardBitmap & BIT1) == 0) {\r
e63da9f0
JW
1019 //\r
1020 // If the tail Guard is not a head Guard of adjacent memory block,\r
1021 // free it; otherwise, keep it.\r
1022 //\r
1023 PagesToFree += 1;\r
1024 }\r
6cf0a677 1025 } else if (PagesToFree > 0) {\r
e63da9f0 1026 //\r
6cf0a677
JW
1027 // No Tail Guard, and pages after memory to free are still in Guard. It's a\r
1028 // partial free case. We need to keep one page to be a head Guard.\r
e63da9f0
JW
1029 //\r
1030 PagesToFree -= 1;\r
1031 }\r
1032\r
1033 *Memory = Start;\r
1034 *NumberOfPages = PagesToFree;\r
1035}\r
1036\r
1037/**\r
1038 Adjust the base and number of pages to really allocate according to Guard.\r
1039\r
1040 @param[in,out] Memory Base address of free memory.\r
1041 @param[in,out] NumberOfPages Size of memory to allocate.\r
1042\r
1043 @return VOID.\r
1044**/\r
1045VOID\r
1046AdjustMemoryA (\r
1047 IN OUT EFI_PHYSICAL_ADDRESS *Memory,\r
1048 IN OUT UINTN *NumberOfPages\r
1049 )\r
1050{\r
1051 //\r
1052 // FindFreePages() has already taken the Guard into account. It's safe to\r
1053 // adjust the start address and/or number of pages here, to make sure that\r
1054 // the Guards are also "allocated".\r
1055 //\r
1056 if (!IsGuardPage (*Memory + EFI_PAGES_TO_SIZE (*NumberOfPages))) {\r
1057 // No tail Guard, add one.\r
1058 *NumberOfPages += 1;\r
1059 }\r
1060\r
1061 if (!IsGuardPage (*Memory - EFI_PAGE_SIZE)) {\r
1062 // No head Guard, add one.\r
1063 *Memory -= EFI_PAGE_SIZE;\r
1064 *NumberOfPages += 1;\r
1065 }\r
1066}\r
1067\r
1068/**\r
1069 Adjust the pool head position to make sure the Guard page is adjavent to\r
1070 pool tail or pool head.\r
1071\r
1072 @param[in] Memory Base address of memory allocated.\r
1073 @param[in] NoPages Number of pages actually allocated.\r
1074 @param[in] Size Size of memory requested.\r
1075 (plus pool head/tail overhead)\r
1076\r
1077 @return Address of pool head.\r
1078**/\r
1079VOID *\r
1080AdjustPoolHeadA (\r
1081 IN EFI_PHYSICAL_ADDRESS Memory,\r
1082 IN UINTN NoPages,\r
1083 IN UINTN Size\r
1084 )\r
1085{\r
c44218e5 1086 if (Memory == 0 || (PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) != 0) {\r
e63da9f0
JW
1087 //\r
1088 // Pool head is put near the head Guard\r
1089 //\r
1090 return (VOID *)(UINTN)Memory;\r
1091 }\r
1092\r
1093 //\r
1094 // Pool head is put near the tail Guard\r
1095 //\r
c44218e5 1096 Size = ALIGN_VALUE (Size, 8);\r
e63da9f0
JW
1097 return (VOID *)(UINTN)(Memory + EFI_PAGES_TO_SIZE (NoPages) - Size);\r
1098}\r
1099\r
1100/**\r
1101 Get the page base address according to pool head address.\r
1102\r
1103 @param[in] Memory Head address of pool to free.\r
1104\r
1105 @return Address of pool head.\r
1106**/\r
1107VOID *\r
1108AdjustPoolHeadF (\r
1109 IN EFI_PHYSICAL_ADDRESS Memory\r
1110 )\r
1111{\r
c44218e5 1112 if (Memory == 0 || (PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) != 0) {\r
e63da9f0
JW
1113 //\r
1114 // Pool head is put near the head Guard\r
1115 //\r
1116 return (VOID *)(UINTN)Memory;\r
1117 }\r
1118\r
1119 //\r
1120 // Pool head is put near the tail Guard\r
1121 //\r
1122 return (VOID *)(UINTN)(Memory & ~EFI_PAGE_MASK);\r
1123}\r
1124\r
1125/**\r
1126 Allocate or free guarded memory.\r
1127\r
1128 @param[in] Start Start address of memory to allocate or free.\r
1129 @param[in] NumberOfPages Memory size in pages.\r
1130 @param[in] NewType Memory type to convert to.\r
1131\r
1132 @return VOID.\r
1133**/\r
1134EFI_STATUS\r
1135CoreConvertPagesWithGuard (\r
1136 IN UINT64 Start,\r
1137 IN UINTN NumberOfPages,\r
1138 IN EFI_MEMORY_TYPE NewType\r
1139 )\r
1140{\r
425d2569
JW
1141 UINT64 OldStart;\r
1142 UINTN OldPages;\r
1143\r
e63da9f0 1144 if (NewType == EfiConventionalMemory) {\r
425d2569
JW
1145 OldStart = Start;\r
1146 OldPages = NumberOfPages;\r
1147\r
e63da9f0 1148 AdjustMemoryF (&Start, &NumberOfPages);\r
425d2569
JW
1149 //\r
1150 // It's safe to unset Guard page inside memory lock because there should\r
1151 // be no memory allocation occurred in updating memory page attribute at\r
1152 // this point. And unsetting Guard page before free will prevent Guard\r
1153 // page just freed back to pool from being allocated right away before\r
1154 // marking it usable (from non-present to present).\r
1155 //\r
1156 UnsetGuardForMemory (OldStart, OldPages);\r
1263ecf2
JW
1157 if (NumberOfPages == 0) {\r
1158 return EFI_SUCCESS;\r
1159 }\r
e63da9f0
JW
1160 } else {\r
1161 AdjustMemoryA (&Start, &NumberOfPages);\r
1162 }\r
1163\r
6cf0a677 1164 return CoreConvertPages (Start, NumberOfPages, NewType);\r
e63da9f0
JW
1165}\r
1166\r
1167/**\r
1168 Helper function to convert a UINT64 value in binary to a string.\r
1169\r
1170 @param[in] Value Value of a UINT64 integer.\r
1171 @param[out] BinString String buffer to contain the conversion result.\r
1172\r
1173 @return VOID.\r
1174**/\r
1175VOID\r
1176Uint64ToBinString (\r
1177 IN UINT64 Value,\r
1178 OUT CHAR8 *BinString\r
1179 )\r
1180{\r
1181 UINTN Index;\r
1182\r
1183 if (BinString == NULL) {\r
1184 return;\r
1185 }\r
1186\r
1187 for (Index = 64; Index > 0; --Index) {\r
1188 BinString[Index - 1] = '0' + (Value & 1);\r
1189 Value = RShiftU64 (Value, 1);\r
1190 }\r
1191 BinString[64] = '\0';\r
1192}\r
1193\r
1194/**\r
1195 Dump the guarded memory bit map.\r
1196**/\r
1197VOID\r
1198EFIAPI\r
1199DumpGuardedMemoryBitmap (\r
1200 VOID\r
1201 )\r
1202{\r
1203 UINTN Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1204 UINTN Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1205 UINTN Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1206 UINT64 Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1207 UINT64 Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1208 UINT64 TableEntry;\r
1209 UINT64 Address;\r
1210 INTN Level;\r
1211 UINTN RepeatZero;\r
1212 CHAR8 String[GUARDED_HEAP_MAP_ENTRY_BITS + 1];\r
1213 CHAR8 *Ruler1;\r
1214 CHAR8 *Ruler2;\r
1215\r
c6c50165
JW
1216 if (mGuardedMemoryMap == 0 ||\r
1217 mMapLevel == 0 ||\r
1218 mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {\r
e63da9f0
JW
1219 return;\r
1220 }\r
1221\r
1222 Ruler1 = " 3 2 1 0";\r
1223 Ruler2 = "FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210";\r
1224\r
1225 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "============================="\r
1226 " Guarded Memory Bitmap "\r
1227 "==============================\r\n"));\r
1228 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, " %a\r\n", Ruler1));\r
1229 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, " %a\r\n", Ruler2));\r
1230\r
1231 CopyMem (Entries, mLevelMask, sizeof (Entries));\r
1232 CopyMem (Shifts, mLevelShift, sizeof (Shifts));\r
1233\r
1234 SetMem (Indices, sizeof(Indices), 0);\r
1235 SetMem (Tables, sizeof(Tables), 0);\r
1236 SetMem (Addresses, sizeof(Addresses), 0);\r
1237\r
1238 Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;\r
1239 Tables[Level] = mGuardedMemoryMap;\r
1240 Address = 0;\r
1241 RepeatZero = 0;\r
1242\r
1243 while (TRUE) {\r
1244 if (Indices[Level] > Entries[Level]) {\r
1245\r
1246 Tables[Level] = 0;\r
1247 Level -= 1;\r
1248 RepeatZero = 0;\r
1249\r
1250 DEBUG ((\r
1251 HEAP_GUARD_DEBUG_LEVEL,\r
1252 "========================================="\r
1253 "=========================================\r\n"\r
1254 ));\r
1255\r
1256 } else {\r
1257\r
1258 TableEntry = ((UINT64 *)(UINTN)Tables[Level])[Indices[Level]];\r
1259 Address = Addresses[Level];\r
1260\r
1261 if (TableEntry == 0) {\r
1262\r
1263 if (Level == GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {\r
1264 if (RepeatZero == 0) {\r
1265 Uint64ToBinString(TableEntry, String);\r
1266 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String));\r
1267 } else if (RepeatZero == 1) {\r
1268 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "... : ...\r\n"));\r
1269 }\r
1270 RepeatZero += 1;\r
1271 }\r
1272\r
1273 } else if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {\r
1274\r
1275 Level += 1;\r
1276 Tables[Level] = TableEntry;\r
1277 Addresses[Level] = Address;\r
1278 Indices[Level] = 0;\r
1279 RepeatZero = 0;\r
1280\r
1281 continue;\r
1282\r
1283 } else {\r
1284\r
1285 RepeatZero = 0;\r
1286 Uint64ToBinString(TableEntry, String);\r
1287 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String));\r
1288\r
1289 }\r
1290 }\r
1291\r
1292 if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {\r
1293 break;\r
1294 }\r
1295\r
1296 Indices[Level] += 1;\r
1297 Address = (Level == 0) ? 0 : Addresses[Level - 1];\r
1298 Addresses[Level] = Address | LShiftU64(Indices[Level], Shifts[Level]);\r
1299\r
1300 }\r
1301}\r
1302\r