Commit | Line | Data |
---|---|---|
504214c4 | 1 | /** @file\r |
28a00297 | 2 | \r |
504214c4 LG |
3 | UEFI Memory page management functions.\r |
4 | \r | |
5 | Copyright (c) 2007 - 2008, Intel Corporation \r | |
28a00297 | 6 | All rights reserved. This program and the accompanying materials \r |
7 | are licensed and made available under the terms and conditions of the BSD License \r | |
8 | which accompanies this distribution. The full text of the license may be found at \r | |
9 | http://opensource.org/licenses/bsd-license.php \r | |
10 | \r | |
11 | THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, \r | |
12 | WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. \r | |
13 | \r | |
504214c4 | 14 | **/\r |
28a00297 | 15 | \r |
16 | #include <DxeMain.h>\r | |
17 | \r | |
18 | #define EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT (EFI_PAGE_SIZE)\r | |
19 | \r | |
20 | //\r | |
21 | // Entry for tracking the memory regions for each memory type to help cooalese like memory types\r | |
22 | //\r | |
23 | typedef struct {\r | |
24 | EFI_PHYSICAL_ADDRESS BaseAddress;\r | |
25 | EFI_PHYSICAL_ADDRESS MaximumAddress;\r | |
26 | UINT64 CurrentNumberOfPages;\r | |
b74350e9 | 27 | UINT64 NumberOfPages;\r |
28a00297 | 28 | UINTN InformationIndex;\r |
b74350e9 | 29 | BOOLEAN Special;\r |
30 | BOOLEAN Runtime;\r | |
28a00297 | 31 | } EFI_MEMORY_TYPE_STAISTICS;\r |
32 | \r | |
33 | //\r | |
34 | // MemoryMap - The current memory map\r | |
35 | //\r | |
36 | UINTN mMemoryMapKey = 0;\r | |
37 | \r | |
38 | //\r | |
39 | // mMapStack - space to use as temp storage to build new map descriptors\r | |
40 | // mMapDepth - depth of new descriptor stack\r | |
41 | //\r | |
42 | \r | |
43 | #define MAX_MAP_DEPTH 6\r | |
44 | UINTN mMapDepth = 0;\r | |
45 | MEMORY_MAP mMapStack[MAX_MAP_DEPTH];\r | |
46 | UINTN mFreeMapStack = 0;\r | |
47 | //\r | |
48 | // This list maintain the free memory map list\r | |
49 | //\r | |
50 | LIST_ENTRY mFreeMemoryMapEntryList = INITIALIZE_LIST_HEAD_VARIABLE (mFreeMemoryMapEntryList);\r | |
51 | BOOLEAN mMemoryTypeInformationInitialized = FALSE;\r | |
52 | \r | |
53 | EFI_MEMORY_TYPE_STAISTICS mMemoryTypeStatistics[EfiMaxMemoryType + 1] = {\r | |
b74350e9 | 54 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiReservedMemoryType\r |
55 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderCode\r | |
56 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderData\r | |
57 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesCode\r | |
58 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesData\r | |
59 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesCode\r | |
60 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesData\r | |
61 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiConventionalMemory\r | |
62 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiUnusableMemory\r | |
63 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIReclaimMemory\r | |
64 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIMemoryNVS\r | |
65 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIO\r | |
66 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIOPortSpace\r | |
67 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiPalCode\r | |
68 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE } // EfiMaxMemoryType\r | |
28a00297 | 69 | };\r |
70 | \r | |
71 | EFI_PHYSICAL_ADDRESS mDefaultMaximumAddress = EFI_MAX_ADDRESS;\r | |
72 | \r | |
73 | EFI_MEMORY_TYPE_INFORMATION gMemoryTypeInformation[EfiMaxMemoryType + 1] = {\r | |
74 | { EfiReservedMemoryType, 0 },\r | |
75 | { EfiLoaderCode, 0 },\r | |
76 | { EfiLoaderData, 0 },\r | |
77 | { EfiBootServicesCode, 0 },\r | |
78 | { EfiBootServicesData, 0 },\r | |
79 | { EfiRuntimeServicesCode, 0 },\r | |
80 | { EfiRuntimeServicesData, 0 },\r | |
81 | { EfiConventionalMemory, 0 },\r | |
82 | { EfiUnusableMemory, 0 },\r | |
83 | { EfiACPIReclaimMemory, 0 },\r | |
84 | { EfiACPIMemoryNVS, 0 },\r | |
85 | { EfiMemoryMappedIO, 0 },\r | |
86 | { EfiMemoryMappedIOPortSpace, 0 },\r | |
87 | { EfiPalCode, 0 },\r | |
88 | { EfiMaxMemoryType, 0 }\r | |
89 | };\r | |
90 | \r | |
91 | //\r | |
92 | // Internal prototypes\r | |
93 | //\r | |
162ed594 | 94 | /**\r |
95 | Find untested but initialized memory regions in GCD map and convert them to be DXE allocatable.\r | |
96 | \r | |
97 | **/\r | |
28a00297 | 98 | STATIC\r |
99 | VOID \r | |
100 | PromoteMemoryResource (\r | |
101 | VOID\r | |
162ed594 | 102 | );\r |
103 | \r | |
104 | /**\r | |
105 | Internal function. Adds a ranges to the memory map.\r | |
106 | The range must not already exist in the map.\r | |
107 | \r | |
108 | @param Type The type of memory range to add \r | |
109 | @param Start The starting address in the memory range Must be \r | |
110 | paged aligned \r | |
111 | @param End The last address in the range Must be the last \r | |
112 | byte of a page \r | |
113 | @param Attribute The attributes of the memory range to add \r | |
28a00297 | 114 | \r |
162ed594 | 115 | @return None. The range is added to the memory map\r |
116 | \r | |
117 | **/\r | |
28a00297 | 118 | STATIC\r |
119 | VOID\r | |
120 | CoreAddRange (\r | |
121 | IN EFI_MEMORY_TYPE Type,\r | |
122 | IN EFI_PHYSICAL_ADDRESS Start,\r | |
123 | IN EFI_PHYSICAL_ADDRESS End,\r | |
124 | IN UINT64 Attribute\r | |
125 | );\r | |
126 | \r | |
162ed594 | 127 | /**\r |
128 | Internal function. Moves any memory descriptors that are on the\r | |
129 | temporary descriptor stack to heap.\r | |
130 | \r | |
131 | **/\r | |
28a00297 | 132 | STATIC\r |
133 | VOID\r | |
134 | CoreFreeMemoryMapStack (\r | |
135 | VOID\r | |
136 | );\r | |
137 | \r | |
162ed594 | 138 | /**\r |
139 | Internal function. Converts a memory range to the specified type.\r | |
140 | The range must exist in the memory map.\r | |
141 | \r | |
142 | @param Start The first address of the range Must be page \r | |
143 | aligned \r | |
144 | @param NumberOfPages The number of pages to convert \r | |
145 | @param NewType The new type for the memory range \r | |
146 | \r | |
147 | @retval EFI_INVALID_PARAMETER Invalid parameter \r | |
148 | @retval EFI_NOT_FOUND Could not find a descriptor cover the specified \r | |
149 | range or convertion not allowed. \r | |
150 | @retval EFI_SUCCESS Successfully converts the memory range to the \r | |
151 | specified type.\r | |
152 | \r | |
153 | **/\r | |
28a00297 | 154 | STATIC\r |
155 | EFI_STATUS\r | |
156 | CoreConvertPages (\r | |
157 | IN UINT64 Start,\r | |
158 | IN UINT64 NumberOfPages,\r | |
159 | IN EFI_MEMORY_TYPE NewType\r | |
160 | );\r | |
161 | \r | |
162ed594 | 162 | /**\r |
163 | Internal function. Removes a descriptor entry.\r | |
164 | \r | |
165 | @param Entry The entry to remove\r | |
166 | \r | |
167 | **/\r | |
28a00297 | 168 | STATIC\r |
169 | VOID\r | |
170 | RemoveMemoryMapEntry (\r | |
171 | MEMORY_MAP *Entry\r | |
172 | );\r | |
173 | \r | |
162ed594 | 174 | /**\r |
175 | Internal function. Deque a descriptor entry from the mFreeMemoryMapEntryList.\r | |
176 | If the list is emtry, then allocate a new page to refuel the list.\r | |
177 | Please Note this algorithm to allocate the memory map descriptor has a property\r | |
178 | that the memory allocated for memory entries always grows, and will never really be freed\r | |
179 | For example, if the current boot uses 2000 memory map entries at the maximum point, but\r | |
180 | ends up with only 50 at the time the OS is booted, then the memory associated with the 1950\r | |
181 | memory map entries is still allocated from EfiBootServicesMemory.\r | |
182 | \r | |
183 | \r | |
184 | @return The Memory map descriptor dequed from the mFreeMemoryMapEntryList\r | |
185 | \r | |
186 | **/\r | |
28a00297 | 187 | STATIC\r |
188 | MEMORY_MAP *\r | |
189 | AllocateMemoryMapEntry (\r | |
190 | VOID\r | |
191 | );\r | |
192 | \r | |
162ed594 | 193 | \r |
194 | /**\r | |
195 | Enter critical section by gaining lock on gMemoryLock.\r | |
196 | \r | |
197 | **/\r | |
28a00297 | 198 | VOID\r |
199 | CoreAcquireMemoryLock (\r | |
200 | VOID\r | |
201 | )\r | |
28a00297 | 202 | {\r |
203 | CoreAcquireLock (&gMemoryLock);\r | |
204 | }\r | |
205 | \r | |
206 | \r | |
162ed594 | 207 | \r |
208 | /**\r | |
209 | Exit critical section by releasing lock on gMemoryLock.\r | |
210 | \r | |
211 | **/\r | |
28a00297 | 212 | VOID\r |
213 | CoreReleaseMemoryLock (\r | |
214 | VOID\r | |
215 | )\r | |
28a00297 | 216 | {\r |
217 | CoreReleaseLock (&gMemoryLock);\r | |
218 | }\r | |
219 | \r | |
162ed594 | 220 | \r |
221 | /**\r | |
222 | Find untested but initialized memory regions in GCD map and convert them to be DXE allocatable.\r | |
223 | \r | |
224 | **/\r | |
28a00297 | 225 | STATIC\r |
226 | VOID\r | |
227 | PromoteMemoryResource (\r | |
228 | VOID\r | |
229 | )\r | |
28a00297 | 230 | {\r |
231 | LIST_ENTRY *Link;\r | |
232 | EFI_GCD_MAP_ENTRY *Entry;\r | |
233 | \r | |
162ed594 | 234 | DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "Promote the memory resource\n"));\r |
28a00297 | 235 | \r |
236 | CoreAcquireGcdMemoryLock ();\r | |
237 | \r | |
238 | Link = mGcdMemorySpaceMap.ForwardLink;\r | |
239 | while (Link != &mGcdMemorySpaceMap) {\r | |
240 | \r | |
241 | Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r | |
242 | \r | |
243 | if (Entry->GcdMemoryType == EfiGcdMemoryTypeReserved &&\r | |
244 | Entry->EndAddress < EFI_MAX_ADDRESS &&\r | |
245 | (Entry->Capabilities & (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED)) ==\r | |
246 | (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED)) {\r | |
247 | //\r | |
248 | // Update the GCD map\r | |
249 | //\r | |
250 | Entry->GcdMemoryType = EfiGcdMemoryTypeSystemMemory;\r | |
251 | Entry->Capabilities |= EFI_MEMORY_TESTED;\r | |
252 | Entry->ImageHandle = gDxeCoreImageHandle;\r | |
253 | Entry->DeviceHandle = NULL;\r | |
254 | \r | |
255 | //\r | |
256 | // Add to allocable system memory resource\r | |
257 | // \r | |
258 | \r | |
259 | CoreAddRange (\r | |
260 | EfiConventionalMemory, \r | |
261 | Entry->BaseAddress, \r | |
262 | Entry->EndAddress, \r | |
263 | Entry->Capabilities & ~(EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED | EFI_MEMORY_RUNTIME)\r | |
264 | );\r | |
265 | CoreFreeMemoryMapStack ();\r | |
266 | \r | |
267 | }\r | |
268 | \r | |
269 | Link = Link->ForwardLink;\r | |
270 | }\r | |
271 | \r | |
272 | CoreReleaseGcdMemoryLock ();\r | |
273 | \r | |
274 | return;\r | |
275 | }\r | |
276 | \r | |
28a00297 | 277 | \r |
162ed594 | 278 | /**\r |
28a00297 | 279 | Called to initialize the memory map and add descriptors to\r |
280 | the current descriptor list.\r | |
28a00297 | 281 | The first descriptor that is added must be general usable\r |
282 | memory as the addition allocates heap.\r | |
283 | \r | |
162ed594 | 284 | @param Type The type of memory to add \r |
285 | @param Start The starting address in the memory range Must be \r | |
286 | page aligned \r | |
287 | @param NumberOfPages The number of pages in the range \r | |
288 | @param Attribute Attributes of the memory to add \r | |
28a00297 | 289 | \r |
162ed594 | 290 | @return None. The range is added to the memory map\r |
28a00297 | 291 | \r |
162ed594 | 292 | **/\r |
293 | VOID\r | |
294 | CoreAddMemoryDescriptor (\r | |
295 | IN EFI_MEMORY_TYPE Type,\r | |
296 | IN EFI_PHYSICAL_ADDRESS Start,\r | |
297 | IN UINT64 NumberOfPages,\r | |
298 | IN UINT64 Attribute\r | |
299 | )\r | |
28a00297 | 300 | {\r |
301 | EFI_PHYSICAL_ADDRESS End;\r | |
302 | EFI_STATUS Status;\r | |
303 | UINTN Index;\r | |
304 | UINTN FreeIndex;\r | |
305 | \r | |
306 | if ((Start & EFI_PAGE_MASK) != 0) {\r | |
307 | return;\r | |
308 | }\r | |
309 | \r | |
310 | if (Type >= EfiMaxMemoryType && Type <= 0x7fffffff) {\r | |
311 | return;\r | |
312 | }\r | |
313 | \r | |
314 | CoreAcquireMemoryLock ();\r | |
315 | End = Start + LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT) - 1;\r | |
316 | CoreAddRange (Type, Start, End, Attribute);\r | |
317 | CoreFreeMemoryMapStack ();\r | |
318 | CoreReleaseMemoryLock ();\r | |
319 | \r | |
320 | //\r | |
321 | // Check to see if the statistics for the different memory types have already been established\r | |
322 | //\r | |
323 | if (mMemoryTypeInformationInitialized) {\r | |
324 | return;\r | |
325 | }\r | |
326 | \r | |
327 | //\r | |
328 | // Loop through each memory type in the order specified by the gMemoryTypeInformation[] array\r | |
329 | //\r | |
330 | for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r | |
331 | //\r | |
332 | // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r | |
333 | //\r | |
334 | Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);\r | |
335 | if (Type < 0 || Type > EfiMaxMemoryType) {\r | |
336 | continue;\r | |
337 | }\r | |
338 | \r | |
339 | if (gMemoryTypeInformation[Index].NumberOfPages != 0) {\r | |
340 | //\r | |
341 | // Allocate pages for the current memory type from the top of available memory\r | |
342 | //\r | |
343 | Status = CoreAllocatePages (\r | |
344 | AllocateAnyPages,\r | |
345 | Type,\r | |
346 | gMemoryTypeInformation[Index].NumberOfPages,\r | |
347 | &mMemoryTypeStatistics[Type].BaseAddress\r | |
348 | );\r | |
349 | if (EFI_ERROR (Status)) {\r | |
350 | //\r | |
351 | // If an error occurs allocating the pages for the current memory type, then \r | |
352 | // free all the pages allocates for the previous memory types and return. This\r | |
353 | // operation with be retied when/if more memory is added to the system\r | |
354 | //\r | |
355 | for (FreeIndex = 0; FreeIndex < Index; FreeIndex++) {\r | |
356 | //\r | |
357 | // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r | |
358 | //\r | |
359 | Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[FreeIndex].Type);\r | |
360 | if (Type < 0 || Type > EfiMaxMemoryType) {\r | |
361 | continue;\r | |
362 | }\r | |
363 | \r | |
364 | if (gMemoryTypeInformation[FreeIndex].NumberOfPages != 0) {\r | |
365 | CoreFreePages (\r | |
366 | mMemoryTypeStatistics[Type].BaseAddress, \r | |
367 | gMemoryTypeInformation[FreeIndex].NumberOfPages\r | |
368 | );\r | |
369 | mMemoryTypeStatistics[Type].BaseAddress = 0;\r | |
370 | mMemoryTypeStatistics[Type].MaximumAddress = EFI_MAX_ADDRESS;\r | |
371 | }\r | |
372 | }\r | |
373 | return;\r | |
374 | }\r | |
375 | \r | |
376 | //\r | |
377 | // Compute the address at the top of the current statistics\r | |
378 | //\r | |
379 | mMemoryTypeStatistics[Type].MaximumAddress = \r | |
380 | mMemoryTypeStatistics[Type].BaseAddress + \r | |
381 | LShiftU64 (gMemoryTypeInformation[Index].NumberOfPages, EFI_PAGE_SHIFT) - 1;\r | |
382 | \r | |
383 | //\r | |
384 | // If the current base address is the lowest address so far, then update the default \r | |
385 | // maximum address\r | |
386 | //\r | |
387 | if (mMemoryTypeStatistics[Type].BaseAddress < mDefaultMaximumAddress) {\r | |
388 | mDefaultMaximumAddress = mMemoryTypeStatistics[Type].BaseAddress - 1;\r | |
389 | }\r | |
390 | }\r | |
391 | }\r | |
392 | \r | |
393 | //\r | |
394 | // There was enough system memory for all the the memory types were allocated. So,\r | |
395 | // those memory areas can be freed for future allocations, and all future memory\r | |
396 | // allocations can occur within their respective bins\r | |
397 | //\r | |
398 | for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r | |
399 | //\r | |
400 | // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r | |
401 | //\r | |
402 | Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);\r | |
403 | if (Type < 0 || Type > EfiMaxMemoryType) {\r | |
404 | continue;\r | |
405 | }\r | |
406 | \r | |
407 | if (gMemoryTypeInformation[Index].NumberOfPages != 0) {\r | |
408 | CoreFreePages (\r | |
409 | mMemoryTypeStatistics[Type].BaseAddress, \r | |
410 | gMemoryTypeInformation[Index].NumberOfPages\r | |
411 | );\r | |
b74350e9 | 412 | mMemoryTypeStatistics[Type].NumberOfPages = gMemoryTypeInformation[Index].NumberOfPages;\r |
28a00297 | 413 | gMemoryTypeInformation[Index].NumberOfPages = 0;\r |
414 | }\r | |
415 | }\r | |
416 | \r | |
417 | //\r | |
418 | // If the number of pages reserved for a memory type is 0, then all allocations for that type\r | |
419 | // should be in the default range.\r | |
420 | //\r | |
421 | for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {\r | |
422 | for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r | |
423 | if (Type == (EFI_MEMORY_TYPE)gMemoryTypeInformation[Index].Type) {\r | |
424 | mMemoryTypeStatistics[Type].InformationIndex = Index;\r | |
425 | }\r | |
426 | }\r | |
427 | mMemoryTypeStatistics[Type].CurrentNumberOfPages = 0;\r | |
428 | if (mMemoryTypeStatistics[Type].MaximumAddress == EFI_MAX_ADDRESS) {\r | |
429 | mMemoryTypeStatistics[Type].MaximumAddress = mDefaultMaximumAddress;\r | |
430 | }\r | |
431 | }\r | |
432 | \r | |
433 | mMemoryTypeInformationInitialized = TRUE;\r | |
434 | }\r | |
435 | \r | |
436 | \r | |
162ed594 | 437 | \r |
438 | /**\r | |
439 | Internal function. Adds a ranges to the memory map.\r | |
440 | The range must not already exist in the map.\r | |
441 | \r | |
442 | @param Type The type of memory range to add \r | |
443 | @param Start The starting address in the memory range Must be \r | |
444 | paged aligned \r | |
445 | @param End The last address in the range Must be the last \r | |
446 | byte of a page \r | |
447 | @param Attribute The attributes of the memory range to add \r | |
448 | \r | |
449 | @return None. The range is added to the memory map\r | |
450 | \r | |
451 | **/\r | |
28a00297 | 452 | STATIC\r |
453 | VOID\r | |
454 | CoreAddRange (\r | |
455 | IN EFI_MEMORY_TYPE Type,\r | |
456 | IN EFI_PHYSICAL_ADDRESS Start,\r | |
457 | IN EFI_PHYSICAL_ADDRESS End,\r | |
458 | IN UINT64 Attribute\r | |
459 | )\r | |
28a00297 | 460 | {\r |
461 | LIST_ENTRY *Link;\r | |
462 | MEMORY_MAP *Entry;\r | |
463 | \r | |
464 | ASSERT ((Start & EFI_PAGE_MASK) == 0);\r | |
465 | ASSERT (End > Start) ;\r | |
466 | \r | |
467 | ASSERT_LOCKED (&gMemoryLock);\r | |
468 | \r | |
162ed594 | 469 | DEBUG ((DEBUG_PAGE, "AddRange: %lx-%lx to %d\n", Start, End, Type));\r |
28a00297 | 470 | \r |
471 | //\r | |
472 | // Memory map being altered so updated key\r | |
473 | //\r | |
474 | mMemoryMapKey += 1;\r | |
475 | \r | |
476 | //\r | |
477 | // UEFI 2.0 added an event group for notificaiton on memory map changes.\r | |
478 | // So we need to signal this Event Group every time the memory map changes.\r | |
479 | // If we are in EFI 1.10 compatability mode no event groups will be \r | |
480 | // found and nothing will happen we we call this function. These events\r | |
481 | // will get signaled but since a lock is held around the call to this \r | |
482 | // function the notificaiton events will only be called after this funciton\r | |
483 | // returns and the lock is released.\r | |
484 | //\r | |
485 | CoreNotifySignalList (&gEfiEventMemoryMapChangeGuid);\r | |
486 | \r | |
487 | //\r | |
488 | // Look for adjoining memory descriptor\r | |
489 | //\r | |
490 | \r | |
491 | // Two memory descriptors can only be merged if they have the same Type\r | |
492 | // and the same Attribute\r | |
493 | //\r | |
494 | \r | |
495 | Link = gMemoryMap.ForwardLink;\r | |
496 | while (Link != &gMemoryMap) {\r | |
497 | Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
498 | Link = Link->ForwardLink;\r | |
499 | \r | |
500 | if (Entry->Type != Type) {\r | |
501 | continue;\r | |
502 | }\r | |
503 | \r | |
504 | if (Entry->Attribute != Attribute) {\r | |
505 | continue;\r | |
506 | }\r | |
507 | \r | |
508 | if (Entry->End + 1 == Start) {\r | |
509 | \r | |
510 | Start = Entry->Start;\r | |
511 | RemoveMemoryMapEntry (Entry);\r | |
512 | \r | |
513 | } else if (Entry->Start == End + 1) {\r | |
514 | \r | |
515 | End = Entry->End;\r | |
516 | RemoveMemoryMapEntry (Entry);\r | |
517 | }\r | |
518 | }\r | |
519 | \r | |
520 | //\r | |
521 | // Add descriptor \r | |
522 | //\r | |
523 | \r | |
524 | mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;\r | |
525 | mMapStack[mMapDepth].FromPages = FALSE;\r | |
526 | mMapStack[mMapDepth].Type = Type;\r | |
527 | mMapStack[mMapDepth].Start = Start;\r | |
528 | mMapStack[mMapDepth].End = End;\r | |
529 | mMapStack[mMapDepth].VirtualStart = 0;\r | |
530 | mMapStack[mMapDepth].Attribute = Attribute;\r | |
531 | InsertTailList (&gMemoryMap, &mMapStack[mMapDepth].Link);\r | |
532 | \r | |
533 | mMapDepth += 1;\r | |
534 | ASSERT (mMapDepth < MAX_MAP_DEPTH);\r | |
535 | \r | |
536 | return ;\r | |
537 | }\r | |
538 | \r | |
162ed594 | 539 | \r |
540 | /**\r | |
541 | Internal function. Moves any memory descriptors that are on the\r | |
542 | temporary descriptor stack to heap.\r | |
543 | \r | |
544 | **/\r | |
28a00297 | 545 | STATIC\r |
546 | VOID\r | |
547 | CoreFreeMemoryMapStack (\r | |
548 | VOID\r | |
549 | )\r | |
28a00297 | 550 | {\r |
551 | MEMORY_MAP *Entry;\r | |
552 | MEMORY_MAP *Entry2;\r | |
553 | LIST_ENTRY *Link2;\r | |
554 | \r | |
555 | ASSERT_LOCKED (&gMemoryLock);\r | |
556 | \r | |
557 | //\r | |
558 | // If already freeing the map stack, then return\r | |
559 | //\r | |
71f68914 | 560 | if (mFreeMapStack != 0) {\r |
28a00297 | 561 | return ;\r |
562 | }\r | |
563 | \r | |
564 | //\r | |
565 | // Move the temporary memory descriptor stack into pool\r | |
566 | //\r | |
567 | mFreeMapStack += 1;\r | |
568 | \r | |
71f68914 | 569 | while (mMapDepth != 0) {\r |
28a00297 | 570 | //\r |
571 | // Deque an memory map entry from mFreeMemoryMapEntryList \r | |
572 | //\r | |
573 | Entry = AllocateMemoryMapEntry ();\r | |
574 | \r | |
575 | ASSERT (Entry);\r | |
576 | \r | |
577 | //\r | |
578 | // Update to proper entry\r | |
579 | //\r | |
580 | mMapDepth -= 1;\r | |
581 | \r | |
582 | if (mMapStack[mMapDepth].Link.ForwardLink != NULL) {\r | |
583 | \r | |
584 | //\r | |
585 | // Move this entry to general memory\r | |
586 | //\r | |
587 | RemoveEntryList (&mMapStack[mMapDepth].Link);\r | |
588 | mMapStack[mMapDepth].Link.ForwardLink = NULL;\r | |
589 | \r | |
590 | CopyMem (Entry , &mMapStack[mMapDepth], sizeof (MEMORY_MAP));\r | |
591 | Entry->FromPages = TRUE;\r | |
592 | \r | |
593 | //\r | |
594 | // Find insertion location\r | |
595 | //\r | |
596 | for (Link2 = gMemoryMap.ForwardLink; Link2 != &gMemoryMap; Link2 = Link2->ForwardLink) {\r | |
597 | Entry2 = CR (Link2, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
598 | if (Entry2->FromPages && Entry2->Start > Entry->Start) {\r | |
599 | break;\r | |
600 | }\r | |
601 | }\r | |
602 | \r | |
603 | InsertTailList (Link2, &Entry->Link);\r | |
604 | \r | |
605 | } else {\r | |
606 | // \r | |
607 | // This item of mMapStack[mMapDepth] has already been dequeued from gMemoryMap list,\r | |
608 | // so here no need to move it to memory.\r | |
609 | //\r | |
610 | InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);\r | |
611 | }\r | |
612 | }\r | |
613 | \r | |
614 | mFreeMapStack -= 1;\r | |
615 | }\r | |
616 | \r | |
162ed594 | 617 | \r |
618 | /**\r | |
619 | Internal function. Removes a descriptor entry.\r | |
620 | \r | |
621 | @param Entry The entry to remove\r | |
622 | \r | |
623 | **/\r | |
28a00297 | 624 | STATIC\r |
625 | VOID\r | |
626 | RemoveMemoryMapEntry (\r | |
627 | MEMORY_MAP *Entry\r | |
628 | )\r | |
28a00297 | 629 | {\r |
630 | RemoveEntryList (&Entry->Link);\r | |
631 | Entry->Link.ForwardLink = NULL;\r | |
632 | \r | |
633 | if (Entry->FromPages) {\r | |
162ed594 | 634 | //\r |
635 | // Insert the free memory map descriptor to the end of mFreeMemoryMapEntryList\r | |
636 | //\r | |
28a00297 | 637 | InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);\r |
638 | }\r | |
639 | }\r | |
640 | \r | |
28a00297 | 641 | \r |
162ed594 | 642 | /**\r |
28a00297 | 643 | Internal function. Deque a descriptor entry from the mFreeMemoryMapEntryList.\r |
162ed594 | 644 | If the list is emtry, then allocate a new page to refuel the list.\r |
28a00297 | 645 | Please Note this algorithm to allocate the memory map descriptor has a property\r |
162ed594 | 646 | that the memory allocated for memory entries always grows, and will never really be freed\r |
28a00297 | 647 | For example, if the current boot uses 2000 memory map entries at the maximum point, but\r |
162ed594 | 648 | ends up with only 50 at the time the OS is booted, then the memory associated with the 1950\r |
649 | memory map entries is still allocated from EfiBootServicesMemory.\r | |
28a00297 | 650 | \r |
28a00297 | 651 | \r |
162ed594 | 652 | @return The Memory map descriptor dequed from the mFreeMemoryMapEntryList\r |
28a00297 | 653 | \r |
162ed594 | 654 | **/\r |
655 | STATIC\r | |
656 | MEMORY_MAP *\r | |
657 | AllocateMemoryMapEntry (\r | |
658 | VOID\r | |
659 | )\r | |
28a00297 | 660 | {\r |
661 | MEMORY_MAP* FreeDescriptorEntries;\r | |
662 | MEMORY_MAP* Entry;\r | |
663 | UINTN Index;\r | |
664 | \r | |
665 | if (IsListEmpty (&mFreeMemoryMapEntryList)) {\r | |
666 | // \r | |
667 | // The list is empty, to allocate one page to refuel the list\r | |
668 | //\r | |
669 | FreeDescriptorEntries = CoreAllocatePoolPages (EfiBootServicesData, EFI_SIZE_TO_PAGES(DEFAULT_PAGE_ALLOCATION), DEFAULT_PAGE_ALLOCATION);\r | |
670 | if(FreeDescriptorEntries != NULL) {\r | |
671 | //\r | |
672 | // Enque the free memmory map entries into the list\r | |
673 | //\r | |
674 | for (Index = 0; Index< DEFAULT_PAGE_ALLOCATION / sizeof(MEMORY_MAP); Index++) {\r | |
675 | FreeDescriptorEntries[Index].Signature = MEMORY_MAP_SIGNATURE;\r | |
676 | InsertTailList (&mFreeMemoryMapEntryList, &FreeDescriptorEntries[Index].Link);\r | |
677 | } \r | |
678 | } else {\r | |
679 | return NULL;\r | |
680 | }\r | |
681 | }\r | |
682 | //\r | |
683 | // dequeue the first descriptor from the list\r | |
684 | //\r | |
685 | Entry = CR (mFreeMemoryMapEntryList.ForwardLink, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
686 | RemoveEntryList (&Entry->Link);\r | |
687 | \r | |
688 | return Entry;\r | |
689 | } \r | |
690 | \r | |
162ed594 | 691 | \r |
692 | /**\r | |
693 | Internal function. Converts a memory range to the specified type.\r | |
694 | The range must exist in the memory map.\r | |
695 | \r | |
696 | @param Start The first address of the range Must be page \r | |
697 | aligned \r | |
698 | @param NumberOfPages The number of pages to convert \r | |
699 | @param NewType The new type for the memory range \r | |
700 | \r | |
701 | @retval EFI_INVALID_PARAMETER Invalid parameter \r | |
702 | @retval EFI_NOT_FOUND Could not find a descriptor cover the specified \r | |
703 | range or convertion not allowed. \r | |
704 | @retval EFI_SUCCESS Successfully converts the memory range to the \r | |
705 | specified type.\r | |
706 | \r | |
707 | **/\r | |
28a00297 | 708 | STATIC\r |
709 | EFI_STATUS\r | |
710 | CoreConvertPages (\r | |
711 | IN UINT64 Start,\r | |
712 | IN UINT64 NumberOfPages,\r | |
713 | IN EFI_MEMORY_TYPE NewType\r | |
714 | )\r | |
28a00297 | 715 | {\r |
716 | \r | |
717 | UINT64 NumberOfBytes;\r | |
718 | UINT64 End;\r | |
719 | UINT64 RangeEnd;\r | |
720 | UINT64 Attribute;\r | |
721 | LIST_ENTRY *Link;\r | |
722 | MEMORY_MAP *Entry;\r | |
723 | \r | |
724 | Entry = NULL;\r | |
725 | NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);\r | |
726 | End = Start + NumberOfBytes - 1;\r | |
727 | \r | |
728 | ASSERT (NumberOfPages);\r | |
729 | ASSERT ((Start & EFI_PAGE_MASK) == 0);\r | |
730 | ASSERT (End > Start) ;\r | |
731 | ASSERT_LOCKED (&gMemoryLock);\r | |
732 | \r | |
71f68914 | 733 | if (NumberOfPages == 0 || ((Start & EFI_PAGE_MASK) != 0) || (Start > (Start + NumberOfBytes))) {\r |
28a00297 | 734 | return EFI_INVALID_PARAMETER;\r |
735 | }\r | |
736 | \r | |
737 | //\r | |
738 | // Convert the entire range\r | |
739 | //\r | |
740 | \r | |
741 | while (Start < End) {\r | |
742 | \r | |
743 | //\r | |
744 | // Find the entry that the covers the range\r | |
745 | //\r | |
746 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
747 | Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
748 | \r | |
749 | if (Entry->Start <= Start && Entry->End > Start) {\r | |
750 | break;\r | |
751 | }\r | |
752 | }\r | |
753 | \r | |
754 | if (Link == &gMemoryMap) {\r | |
162ed594 | 755 | DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: failed to find range %lx - %lx\n", Start, End));\r |
28a00297 | 756 | return EFI_NOT_FOUND;\r |
757 | }\r | |
758 | \r | |
759 | //\r | |
760 | // Convert range to the end, or to the end of the descriptor\r | |
761 | // if that's all we've got\r | |
762 | //\r | |
763 | RangeEnd = End;\r | |
764 | if (Entry->End < End) {\r | |
765 | RangeEnd = Entry->End;\r | |
766 | }\r | |
767 | \r | |
162ed594 | 768 | DEBUG ((DEBUG_PAGE, "ConvertRange: %lx-%lx to %d\n", Start, RangeEnd, NewType));\r |
28a00297 | 769 | \r |
770 | //\r | |
771 | // Debug code - verify conversion is allowed\r | |
772 | //\r | |
773 | if (!(NewType == EfiConventionalMemory ? 1 : 0) ^ (Entry->Type == EfiConventionalMemory ? 1 : 0)) {\r | |
162ed594 | 774 | DEBUG ((DEBUG_ERROR , "ConvertPages: Incompatible memory types\n"));\r |
28a00297 | 775 | return EFI_NOT_FOUND;\r |
776 | } \r | |
777 | \r | |
778 | //\r | |
779 | // Update counters for the number of pages allocated to each memory type\r | |
780 | //\r | |
781 | if (Entry->Type >= 0 && Entry->Type < EfiMaxMemoryType) {\r | |
782 | if (Start >= mMemoryTypeStatistics[Entry->Type].BaseAddress && \r | |
783 | Start <= mMemoryTypeStatistics[Entry->Type].MaximumAddress) {\r | |
784 | if (NumberOfPages > mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages) {\r | |
785 | mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages = 0;\r | |
786 | } else {\r | |
787 | mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages -= NumberOfPages;\r | |
788 | }\r | |
789 | }\r | |
790 | }\r | |
791 | \r | |
792 | if (NewType >= 0 && NewType < EfiMaxMemoryType) {\r | |
793 | if (Start >= mMemoryTypeStatistics[NewType].BaseAddress && Start <= mMemoryTypeStatistics[NewType].MaximumAddress) {\r | |
794 | mMemoryTypeStatistics[NewType].CurrentNumberOfPages += NumberOfPages;\r | |
795 | if (mMemoryTypeStatistics[NewType].CurrentNumberOfPages > \r | |
796 | gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages) {\r | |
797 | gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages = (UINT32)mMemoryTypeStatistics[NewType].CurrentNumberOfPages;\r | |
798 | }\r | |
799 | }\r | |
800 | }\r | |
801 | \r | |
802 | //\r | |
803 | // Pull range out of descriptor\r | |
804 | //\r | |
805 | if (Entry->Start == Start) {\r | |
806 | \r | |
807 | //\r | |
808 | // Clip start\r | |
809 | //\r | |
810 | Entry->Start = RangeEnd + 1;\r | |
811 | \r | |
812 | } else if (Entry->End == RangeEnd) {\r | |
813 | \r | |
814 | //\r | |
815 | // Clip end\r | |
816 | //\r | |
817 | Entry->End = Start - 1;\r | |
818 | \r | |
819 | } else {\r | |
820 | \r | |
821 | //\r | |
822 | // Pull it out of the center, clip current\r | |
823 | //\r | |
824 | \r | |
825 | //\r | |
826 | // Add a new one\r | |
827 | //\r | |
828 | mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;\r | |
829 | mMapStack[mMapDepth].FromPages = FALSE;\r | |
830 | mMapStack[mMapDepth].Type = Entry->Type;\r | |
831 | mMapStack[mMapDepth].Start = RangeEnd+1;\r | |
832 | mMapStack[mMapDepth].End = Entry->End;\r | |
833 | \r | |
834 | //\r | |
835 | // Inherit Attribute from the Memory Descriptor that is being clipped\r | |
836 | //\r | |
837 | mMapStack[mMapDepth].Attribute = Entry->Attribute;\r | |
838 | \r | |
839 | Entry->End = Start - 1;\r | |
840 | ASSERT (Entry->Start < Entry->End);\r | |
841 | \r | |
842 | Entry = &mMapStack[mMapDepth];\r | |
843 | InsertTailList (&gMemoryMap, &Entry->Link);\r | |
844 | \r | |
845 | mMapDepth += 1;\r | |
846 | ASSERT (mMapDepth < MAX_MAP_DEPTH);\r | |
847 | }\r | |
848 | \r | |
849 | //\r | |
850 | // The new range inherits the same Attribute as the Entry \r | |
851 | //it is being cut out of\r | |
852 | //\r | |
853 | Attribute = Entry->Attribute;\r | |
854 | \r | |
855 | //\r | |
856 | // If the descriptor is empty, then remove it from the map\r | |
857 | //\r | |
858 | if (Entry->Start == Entry->End + 1) {\r | |
859 | RemoveMemoryMapEntry (Entry);\r | |
860 | Entry = NULL;\r | |
861 | }\r | |
862 | \r | |
863 | //\r | |
864 | // Add our new range in\r | |
865 | //\r | |
866 | CoreAddRange (NewType, Start, RangeEnd, Attribute);\r | |
867 | \r | |
868 | //\r | |
869 | // Move any map descriptor stack to general pool\r | |
870 | //\r | |
871 | CoreFreeMemoryMapStack ();\r | |
872 | \r | |
873 | //\r | |
874 | // Bump the starting address, and convert the next range\r | |
875 | //\r | |
876 | Start = RangeEnd + 1;\r | |
877 | }\r | |
878 | \r | |
879 | //\r | |
880 | // Converted the whole range, done\r | |
881 | //\r | |
882 | \r | |
883 | return EFI_SUCCESS;\r | |
884 | }\r | |
885 | \r | |
886 | \r | |
162ed594 | 887 | \r |
888 | /**\r | |
889 | Internal function. Finds a consecutive free page range below\r | |
890 | the requested address.\r | |
891 | \r | |
892 | @param MaxAddress The address that the range must be below \r | |
893 | @param NumberOfPages Number of pages needed \r | |
894 | @param NewType The type of memory the range is going to be \r | |
895 | turned into \r | |
896 | @param Alignment Bits to align with \r | |
897 | \r | |
898 | @return The base address of the range, or 0 if the range was not found\r | |
899 | \r | |
900 | **/\r | |
28a00297 | 901 | STATIC\r |
902 | UINT64\r | |
903 | CoreFindFreePagesI (\r | |
904 | IN UINT64 MaxAddress,\r | |
905 | IN UINT64 NumberOfPages,\r | |
906 | IN EFI_MEMORY_TYPE NewType,\r | |
907 | IN UINTN Alignment\r | |
908 | )\r | |
28a00297 | 909 | {\r |
910 | UINT64 NumberOfBytes;\r | |
911 | UINT64 Target;\r | |
912 | UINT64 DescStart;\r | |
913 | UINT64 DescEnd;\r | |
914 | UINT64 DescNumberOfBytes;\r | |
915 | LIST_ENTRY *Link;\r | |
916 | MEMORY_MAP *Entry;\r | |
917 | \r | |
918 | if ((MaxAddress < EFI_PAGE_MASK) ||(NumberOfPages == 0)) {\r | |
919 | return 0;\r | |
920 | }\r | |
921 | \r | |
922 | if ((MaxAddress & EFI_PAGE_MASK) != EFI_PAGE_MASK) {\r | |
923 | \r | |
924 | //\r | |
925 | // If MaxAddress is not aligned to the end of a page\r | |
926 | //\r | |
927 | \r | |
928 | //\r | |
929 | // Change MaxAddress to be 1 page lower\r | |
930 | //\r | |
931 | MaxAddress -= (EFI_PAGE_MASK + 1);\r | |
932 | \r | |
933 | //\r | |
934 | // Set MaxAddress to a page boundary\r | |
935 | //\r | |
936 | MaxAddress &= ~EFI_PAGE_MASK;\r | |
937 | \r | |
938 | //\r | |
939 | // Set MaxAddress to end of the page\r | |
940 | //\r | |
941 | MaxAddress |= EFI_PAGE_MASK;\r | |
942 | }\r | |
943 | \r | |
944 | NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);\r | |
945 | Target = 0;\r | |
946 | \r | |
947 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
948 | Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
949 | \r | |
950 | //\r | |
951 | // If it's not a free entry, don't bother with it\r | |
952 | //\r | |
953 | if (Entry->Type != EfiConventionalMemory) {\r | |
954 | continue;\r | |
955 | }\r | |
956 | \r | |
957 | DescStart = Entry->Start;\r | |
958 | DescEnd = Entry->End;\r | |
959 | \r | |
960 | //\r | |
961 | // If desc is past max allowed address, skip it\r | |
962 | //\r | |
963 | if (DescStart >= MaxAddress) {\r | |
964 | continue;\r | |
965 | }\r | |
966 | \r | |
967 | //\r | |
968 | // If desc ends past max allowed address, clip the end\r | |
969 | //\r | |
970 | if (DescEnd >= MaxAddress) {\r | |
971 | DescEnd = MaxAddress;\r | |
972 | }\r | |
973 | \r | |
974 | DescEnd = ((DescEnd + 1) & (~(Alignment - 1))) - 1;\r | |
975 | \r | |
976 | //\r | |
977 | // Compute the number of bytes we can used from this \r | |
978 | // descriptor, and see it's enough to satisfy the request\r | |
979 | //\r | |
980 | DescNumberOfBytes = DescEnd - DescStart + 1;\r | |
981 | \r | |
982 | if (DescNumberOfBytes >= NumberOfBytes) {\r | |
983 | \r | |
984 | //\r | |
985 | // If this is the best match so far remember it\r | |
986 | //\r | |
987 | if (DescEnd > Target) {\r | |
988 | Target = DescEnd;\r | |
989 | }\r | |
990 | }\r | |
991 | } \r | |
992 | \r | |
993 | //\r | |
994 | // If this is a grow down, adjust target to be the allocation base\r | |
995 | //\r | |
996 | Target -= NumberOfBytes - 1;\r | |
997 | \r | |
998 | //\r | |
999 | // If we didn't find a match, return 0\r | |
1000 | //\r | |
1001 | if ((Target & EFI_PAGE_MASK) != 0) {\r | |
1002 | return 0;\r | |
1003 | }\r | |
1004 | \r | |
1005 | return Target;\r | |
1006 | }\r | |
1007 | \r | |
162ed594 | 1008 | \r |
1009 | /**\r | |
1010 | Internal function. Finds a consecutive free page range below\r | |
1011 | the requested address\r | |
1012 | \r | |
1013 | @param MaxAddress The address that the range must be below \r | |
1014 | @param NoPages Number of pages needed \r | |
1015 | @param NewType The type of memory the range is going to be \r | |
1016 | turned into \r | |
1017 | @param Alignment Bits to align with \r | |
1018 | \r | |
1019 | @return The base address of the range, or 0 if the range was not found.\r | |
1020 | \r | |
1021 | **/\r | |
28a00297 | 1022 | STATIC\r |
1023 | UINT64\r | |
1024 | FindFreePages (\r | |
1025 | IN UINT64 MaxAddress,\r | |
1026 | IN UINT64 NoPages,\r | |
1027 | IN EFI_MEMORY_TYPE NewType,\r | |
1028 | IN UINTN Alignment\r | |
1029 | )\r | |
28a00297 | 1030 | {\r |
1031 | UINT64 NewMaxAddress;\r | |
1032 | UINT64 Start;\r | |
1033 | \r | |
1034 | NewMaxAddress = MaxAddress;\r | |
1035 | \r | |
1036 | if (NewType >= 0 && NewType < EfiMaxMemoryType && NewMaxAddress >= mMemoryTypeStatistics[NewType].MaximumAddress) {\r | |
1037 | NewMaxAddress = mMemoryTypeStatistics[NewType].MaximumAddress;\r | |
1038 | } else {\r | |
1039 | if (NewMaxAddress > mDefaultMaximumAddress) {\r | |
1040 | NewMaxAddress = mDefaultMaximumAddress;\r | |
1041 | }\r | |
1042 | }\r | |
1043 | \r | |
1044 | Start = CoreFindFreePagesI (NewMaxAddress, NoPages, NewType, Alignment);\r | |
71f68914 | 1045 | if (Start == 0) {\r |
28a00297 | 1046 | Start = CoreFindFreePagesI (MaxAddress, NoPages, NewType, Alignment);\r |
71f68914 | 1047 | if (Start == 0) {\r |
28a00297 | 1048 | //\r |
1049 | // Here means there may be no enough memory to use, so try to go through\r | |
1050 | // all the memory descript to promote the untested memory directly\r | |
1051 | //\r | |
1052 | PromoteMemoryResource ();\r | |
1053 | \r | |
1054 | //\r | |
1055 | // Allocate memory again after the memory resource re-arranged\r | |
1056 | //\r | |
1057 | Start = CoreFindFreePagesI (MaxAddress, NoPages, NewType, Alignment);\r | |
1058 | }\r | |
1059 | }\r | |
1060 | \r | |
1061 | return Start;\r | |
1062 | }\r | |
1063 | \r | |
1064 | \r | |
162ed594 | 1065 | \r |
1066 | /**\r | |
1067 | Allocates pages from the memory map.\r | |
1068 | \r | |
1069 | @param Type The type of allocation to perform \r | |
1070 | @param MemoryType The type of memory to turn the allocated pages \r | |
1071 | into \r | |
1072 | @param NumberOfPages The number of pages to allocate \r | |
1073 | @param Memory A pointer to receive the base allocated memory \r | |
1074 | address \r | |
1075 | \r | |
1076 | @return Status. On success, Memory is filled in with the base address allocated\r | |
1077 | @retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in \r | |
1078 | spec. \r | |
1079 | @retval EFI_NOT_FOUND Could not allocate pages match the requirement. \r | |
1080 | @retval EFI_OUT_OF_RESOURCES No enough pages to allocate. \r | |
1081 | @retval EFI_SUCCESS Pages successfully allocated.\r | |
1082 | \r | |
1083 | **/\r | |
28a00297 | 1084 | EFI_STATUS\r |
1085 | EFIAPI\r | |
1086 | CoreAllocatePages (\r | |
1087 | IN EFI_ALLOCATE_TYPE Type,\r | |
1088 | IN EFI_MEMORY_TYPE MemoryType,\r | |
1089 | IN UINTN NumberOfPages,\r | |
1090 | IN OUT EFI_PHYSICAL_ADDRESS *Memory\r | |
1091 | )\r | |
28a00297 | 1092 | {\r |
1093 | EFI_STATUS Status;\r | |
1094 | UINT64 Start;\r | |
1095 | UINT64 MaxAddress;\r | |
1096 | UINTN Alignment;\r | |
1097 | \r | |
1098 | if (Type < AllocateAnyPages || Type >= (UINTN) MaxAllocateType) {\r | |
1099 | return EFI_INVALID_PARAMETER;\r | |
1100 | }\r | |
1101 | \r | |
1102 | if ((MemoryType >= EfiMaxMemoryType && MemoryType <= 0x7fffffff) ||\r | |
1103 | MemoryType == EfiConventionalMemory) {\r | |
1104 | return EFI_INVALID_PARAMETER;\r | |
1105 | }\r | |
1106 | \r | |
1107 | Alignment = EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT;\r | |
1108 | \r | |
1109 | if (MemoryType == EfiACPIReclaimMemory ||\r | |
1110 | MemoryType == EfiACPIMemoryNVS ||\r | |
1111 | MemoryType == EfiRuntimeServicesCode ||\r | |
1112 | MemoryType == EfiRuntimeServicesData) {\r | |
1113 | \r | |
1114 | Alignment = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT;\r | |
1115 | }\r | |
1116 | \r | |
1117 | if (Type == AllocateAddress) {\r | |
1118 | if ((*Memory & (Alignment - 1)) != 0) {\r | |
1119 | return EFI_NOT_FOUND;\r | |
1120 | }\r | |
1121 | }\r | |
1122 | \r | |
1123 | NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;\r | |
1124 | NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);\r | |
1125 | \r | |
1126 | //\r | |
1127 | // If this is for below a particular address, then \r | |
1128 | //\r | |
1129 | Start = *Memory;\r | |
1130 | \r | |
1131 | //\r | |
1132 | // The max address is the max natively addressable address for the processor\r | |
1133 | //\r | |
1134 | MaxAddress = EFI_MAX_ADDRESS;\r | |
1135 | \r | |
1136 | if (Type == AllocateMaxAddress) {\r | |
1137 | MaxAddress = Start;\r | |
1138 | }\r | |
1139 | \r | |
1140 | CoreAcquireMemoryLock ();\r | |
1141 | \r | |
1142 | //\r | |
1143 | // If not a specific address, then find an address to allocate\r | |
1144 | //\r | |
1145 | if (Type != AllocateAddress) {\r | |
1146 | Start = FindFreePages (MaxAddress, NumberOfPages, MemoryType, Alignment);\r | |
1147 | if (Start == 0) {\r | |
1148 | Status = EFI_OUT_OF_RESOURCES;\r | |
1149 | goto Done;\r | |
1150 | }\r | |
1151 | }\r | |
1152 | \r | |
1153 | //\r | |
1154 | // Convert pages from FreeMemory to the requested type\r | |
1155 | //\r | |
1156 | Status = CoreConvertPages (Start, NumberOfPages, MemoryType);\r | |
1157 | \r | |
1158 | Done:\r | |
1159 | CoreReleaseMemoryLock ();\r | |
1160 | \r | |
1161 | if (!EFI_ERROR (Status)) {\r | |
1162 | *Memory = Start;\r | |
1163 | }\r | |
1164 | \r | |
1165 | return Status;\r | |
1166 | }\r | |
1167 | \r | |
1168 | \r | |
1169 | \r | |
1170 | \r | |
162ed594 | 1171 | \r |
1172 | /**\r | |
1173 | Frees previous allocated pages.\r | |
1174 | \r | |
1175 | @param Memory Base address of memory being freed \r | |
1176 | @param NumberOfPages The number of pages to free \r | |
1177 | \r | |
1178 | @retval EFI_NOT_FOUND Could not find the entry that covers the range \r | |
1179 | @retval EFI_INVALID_PARAMETER Address not aligned \r | |
1180 | @return EFI_SUCCESS -Pages successfully freed.\r | |
1181 | \r | |
1182 | **/\r | |
28a00297 | 1183 | EFI_STATUS \r |
1184 | EFIAPI\r | |
1185 | CoreFreePages (\r | |
1186 | IN EFI_PHYSICAL_ADDRESS Memory,\r | |
1187 | IN UINTN NumberOfPages\r | |
1188 | )\r | |
28a00297 | 1189 | {\r |
1190 | EFI_STATUS Status;\r | |
1191 | LIST_ENTRY *Link;\r | |
1192 | MEMORY_MAP *Entry;\r | |
1193 | UINTN Alignment;\r | |
1194 | \r | |
1195 | //\r | |
1196 | // Free the range\r | |
1197 | //\r | |
1198 | CoreAcquireMemoryLock ();\r | |
1199 | \r | |
1200 | //\r | |
1201 | // Find the entry that the covers the range\r | |
1202 | //\r | |
1203 | Entry = NULL;\r | |
1204 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
1205 | Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
1206 | if (Entry->Start <= Memory && Entry->End > Memory) {\r | |
1207 | break;\r | |
1208 | }\r | |
1209 | }\r | |
1210 | if (Link == &gMemoryMap) {\r | |
1211 | CoreReleaseMemoryLock ();\r | |
1212 | return EFI_NOT_FOUND;\r | |
1213 | }\r | |
1214 | \r | |
1215 | Alignment = EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT;\r | |
1216 | \r | |
1217 | if (Entry->Type == EfiACPIReclaimMemory ||\r | |
1218 | Entry->Type == EfiACPIMemoryNVS ||\r | |
1219 | Entry->Type == EfiRuntimeServicesCode ||\r | |
1220 | Entry->Type == EfiRuntimeServicesData) {\r | |
1221 | \r | |
1222 | Alignment = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT;\r | |
1223 | \r | |
1224 | }\r | |
1225 | \r | |
1226 | if ((Memory & (Alignment - 1)) != 0) {\r | |
1227 | CoreReleaseMemoryLock ();\r | |
1228 | return EFI_INVALID_PARAMETER;\r | |
1229 | }\r | |
1230 | \r | |
1231 | NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;\r | |
1232 | NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);\r | |
1233 | \r | |
1234 | Status = CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);\r | |
1235 | \r | |
1236 | CoreReleaseMemoryLock ();\r | |
1237 | \r | |
1238 | if (EFI_ERROR (Status)) {\r | |
1239 | return Status;\r | |
1240 | }\r | |
1241 | \r | |
1242 | //\r | |
1243 | // Destroy the contents\r | |
1244 | //\r | |
1245 | if (Memory < EFI_MAX_ADDRESS) {\r | |
1246 | DEBUG_CLEAR_MEMORY ((VOID *)(UINTN)Memory, NumberOfPages << EFI_PAGE_SHIFT);\r | |
1247 | }\r | |
1248 | \r | |
1249 | return Status;\r | |
1250 | }\r | |
1251 | \r | |
1252 | \r | |
1253 | \r | |
162ed594 | 1254 | \r |
1255 | /**\r | |
1256 | This function returns a copy of the current memory map. The map is an array of\r | |
1257 | memory descriptors, each of which describes a contiguous block of memory.\r | |
1258 | \r | |
1259 | @param MemoryMapSize A pointer to the size, in bytes, of the \r | |
1260 | MemoryMap buffer. On input, this is the size of \r | |
1261 | the buffer allocated by the caller. On output, \r | |
1262 | it is the size of the buffer returned by the \r | |
1263 | firmware if the buffer was large enough, or the \r | |
1264 | size of the buffer needed to contain the map if \r | |
1265 | the buffer was too small. \r | |
1266 | @param MemoryMap A pointer to the buffer in which firmware places \r | |
1267 | the current memory map. \r | |
1268 | @param MapKey A pointer to the location in which firmware \r | |
1269 | returns the key for the current memory map. \r | |
1270 | @param DescriptorSize A pointer to the location in which firmware \r | |
1271 | returns the size, in bytes, of an individual \r | |
1272 | EFI_MEMORY_DESCRIPTOR. \r | |
1273 | @param DescriptorVersion A pointer to the location in which firmware \r | |
1274 | returns the version number associated with the \r | |
1275 | EFI_MEMORY_DESCRIPTOR. \r | |
1276 | \r | |
1277 | @retval EFI_SUCCESS The memory map was returned in the MemoryMap \r | |
1278 | buffer. \r | |
1279 | @retval EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current \r | |
1280 | buffer size needed to hold the memory map is \r | |
1281 | returned in MemoryMapSize. \r | |
1282 | @retval EFI_INVALID_PARAMETER One of the parameters has an invalid value.\r | |
1283 | \r | |
1284 | **/\r | |
28a00297 | 1285 | EFI_STATUS\r |
1286 | EFIAPI\r | |
1287 | CoreGetMemoryMap (\r | |
1288 | IN OUT UINTN *MemoryMapSize,\r | |
1289 | IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,\r | |
1290 | OUT UINTN *MapKey,\r | |
1291 | OUT UINTN *DescriptorSize,\r | |
1292 | OUT UINT32 *DescriptorVersion\r | |
1293 | )\r | |
28a00297 | 1294 | {\r |
1295 | EFI_STATUS Status;\r | |
1296 | UINTN Size; \r | |
1297 | UINTN BufferSize; \r | |
1298 | UINTN NumberOfRuntimeEntries;\r | |
1299 | LIST_ENTRY *Link;\r | |
1300 | MEMORY_MAP *Entry; \r | |
1301 | EFI_GCD_MAP_ENTRY *GcdMapEntry; \r | |
b74350e9 | 1302 | EFI_MEMORY_TYPE Type;\r |
28a00297 | 1303 | \r |
1304 | //\r | |
1305 | // Make sure the parameters are valid\r | |
1306 | //\r | |
1307 | if (MemoryMapSize == NULL) {\r | |
1308 | return EFI_INVALID_PARAMETER;\r | |
1309 | }\r | |
1310 | \r | |
1311 | CoreAcquireGcdMemoryLock ();\r | |
1312 | \r | |
1313 | //\r | |
1314 | // Count the number of Reserved and MMIO entries that are marked for runtime use\r | |
1315 | //\r | |
1316 | NumberOfRuntimeEntries = 0;\r | |
1317 | for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {\r | |
1318 | GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r | |
1319 | if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||\r | |
1320 | (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo)) {\r | |
1321 | if ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) {\r | |
1322 | NumberOfRuntimeEntries++;\r | |
1323 | }\r | |
1324 | }\r | |
1325 | }\r | |
1326 | \r | |
1327 | Size = sizeof (EFI_MEMORY_DESCRIPTOR);\r | |
1328 | \r | |
1329 | //\r | |
1330 | // Make sure Size != sizeof(EFI_MEMORY_DESCRIPTOR). This will\r | |
1331 | // prevent people from having pointer math bugs in their code.\r | |
1332 | // now you have to use *DescriptorSize to make things work.\r | |
1333 | //\r | |
1334 | Size += sizeof(UINT64) - (Size % sizeof (UINT64));\r | |
1335 | \r | |
1336 | if (DescriptorSize != NULL) {\r | |
1337 | *DescriptorSize = Size;\r | |
1338 | }\r | |
1339 | \r | |
1340 | if (DescriptorVersion != NULL) {\r | |
1341 | *DescriptorVersion = EFI_MEMORY_DESCRIPTOR_VERSION;\r | |
1342 | }\r | |
1343 | \r | |
1344 | CoreAcquireMemoryLock ();\r | |
1345 | \r | |
1346 | //\r | |
1347 | // Compute the buffer size needed to fit the entire map\r | |
1348 | //\r | |
1349 | BufferSize = Size * NumberOfRuntimeEntries;\r | |
1350 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
1351 | BufferSize += Size;\r | |
1352 | }\r | |
1353 | \r | |
1354 | if (*MemoryMapSize < BufferSize) {\r | |
1355 | Status = EFI_BUFFER_TOO_SMALL;\r | |
1356 | goto Done;\r | |
1357 | }\r | |
1358 | \r | |
1359 | if (MemoryMap == NULL) {\r | |
1360 | Status = EFI_INVALID_PARAMETER;\r | |
1361 | goto Done;\r | |
1362 | }\r | |
1363 | \r | |
1364 | //\r | |
1365 | // Build the map\r | |
1366 | //\r | |
383c303c | 1367 | ZeroMem (MemoryMap, BufferSize);\r |
28a00297 | 1368 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r |
1369 | Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
1370 | ASSERT (Entry->VirtualStart == 0);\r | |
1371 | \r | |
b74350e9 | 1372 | //\r |
1373 | // Convert internal map into an EFI_MEMORY_DESCRIPTOR\r | |
1374 | //\r | |
28a00297 | 1375 | MemoryMap->Type = Entry->Type;\r |
1376 | MemoryMap->PhysicalStart = Entry->Start;\r | |
1377 | MemoryMap->VirtualStart = Entry->VirtualStart;\r | |
1378 | MemoryMap->NumberOfPages = RShiftU64 (Entry->End - Entry->Start + 1, EFI_PAGE_SHIFT);\r | |
b74350e9 | 1379 | //\r |
1380 | // If the memory type is EfiConventionalMemory, then determine if the range is part of a\r | |
1381 | // memory type bin and needs to be converted to the same memory type as the rest of the \r | |
1382 | // memory type bin in order to minimize EFI Memory Map changes across reboots. This \r | |
1383 | // improves the chances for a successful S4 resume in the presence of minor page allocation\r | |
1384 | // differences across reboots.\r | |
1385 | //\r | |
1386 | if (MemoryMap->Type == EfiConventionalMemory) {\r | |
1387 | for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {\r | |
1388 | if (mMemoryTypeStatistics[Type].Special &&\r | |
1389 | mMemoryTypeStatistics[Type].NumberOfPages > 0 &&\r | |
1390 | Entry->Start >= mMemoryTypeStatistics[Type].BaseAddress &&\r | |
1391 | Entry->End <= mMemoryTypeStatistics[Type].MaximumAddress ) {\r | |
1392 | MemoryMap->Type = Type;\r | |
1393 | }\r | |
1394 | }\r | |
1395 | }\r | |
1396 | MemoryMap->Attribute = Entry->Attribute;\r | |
1397 | if (mMemoryTypeStatistics[MemoryMap->Type].Runtime) {\r | |
1398 | MemoryMap->Attribute |= EFI_MEMORY_RUNTIME;\r | |
28a00297 | 1399 | }\r |
1400 | \r | |
1401 | MemoryMap = NextMemoryDescriptor (MemoryMap, Size);\r | |
1402 | }\r | |
1403 | \r | |
1404 | for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {\r | |
1405 | GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r | |
1406 | if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||\r | |
1407 | (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo)) {\r | |
1408 | if ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) {\r | |
1409 | \r | |
1410 | MemoryMap->PhysicalStart = GcdMapEntry->BaseAddress;\r | |
1411 | MemoryMap->VirtualStart = 0;\r | |
1412 | MemoryMap->NumberOfPages = RShiftU64 ((GcdMapEntry->EndAddress - GcdMapEntry->BaseAddress + 1), EFI_PAGE_SHIFT);\r | |
1413 | MemoryMap->Attribute = GcdMapEntry->Attributes & ~EFI_MEMORY_PORT_IO;\r | |
1414 | \r | |
1415 | if (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) {\r | |
1416 | MemoryMap->Type = EfiReservedMemoryType;\r | |
1417 | } else if (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) {\r | |
1418 | if ((GcdMapEntry->Attributes & EFI_MEMORY_PORT_IO) == EFI_MEMORY_PORT_IO) {\r | |
1419 | MemoryMap->Type = EfiMemoryMappedIOPortSpace;\r | |
1420 | } else {\r | |
1421 | MemoryMap->Type = EfiMemoryMappedIO;\r | |
1422 | }\r | |
1423 | }\r | |
1424 | \r | |
1425 | MemoryMap = NextMemoryDescriptor (MemoryMap, Size);\r | |
1426 | }\r | |
1427 | }\r | |
1428 | }\r | |
1429 | \r | |
1430 | Status = EFI_SUCCESS;\r | |
1431 | \r | |
1432 | Done:\r | |
1433 | \r | |
1434 | CoreReleaseMemoryLock ();\r | |
1435 | \r | |
1436 | CoreReleaseGcdMemoryLock ();\r | |
1437 | \r | |
1438 | // \r | |
1439 | // Update the map key finally \r | |
1440 | // \r | |
1441 | if (MapKey != NULL) {\r | |
1442 | *MapKey = mMemoryMapKey;\r | |
1443 | }\r | |
1444 | \r | |
1445 | *MemoryMapSize = BufferSize;\r | |
1446 | \r | |
1447 | return Status;\r | |
1448 | }\r | |
1449 | \r | |
28a00297 | 1450 | \r |
162ed594 | 1451 | /**\r |
28a00297 | 1452 | Internal function. Used by the pool functions to allocate pages\r |
1453 | to back pool allocation requests.\r | |
1454 | \r | |
162ed594 | 1455 | @param PoolType The type of memory for the new pool pages \r |
1456 | @param NumberOfPages No of pages to allocate \r | |
1457 | @param Alignment Bits to align. \r | |
28a00297 | 1458 | \r |
162ed594 | 1459 | @return The allocated memory, or NULL\r |
28a00297 | 1460 | \r |
162ed594 | 1461 | **/\r |
1462 | VOID *\r | |
1463 | CoreAllocatePoolPages (\r | |
1464 | IN EFI_MEMORY_TYPE PoolType,\r | |
1465 | IN UINTN NumberOfPages,\r | |
1466 | IN UINTN Alignment\r | |
1467 | )\r | |
28a00297 | 1468 | {\r |
1469 | UINT64 Start;\r | |
1470 | \r | |
1471 | //\r | |
1472 | // Find the pages to convert\r | |
1473 | //\r | |
1474 | Start = FindFreePages (EFI_MAX_ADDRESS, NumberOfPages, PoolType, Alignment);\r | |
1475 | \r | |
1476 | //\r | |
1477 | // Convert it to boot services data\r | |
1478 | //\r | |
1479 | if (Start == 0) {\r | |
162ed594 | 1480 | DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "AllocatePoolPages: failed to allocate %d pages\n", NumberOfPages));\r |
28a00297 | 1481 | } else {\r |
1482 | CoreConvertPages (Start, NumberOfPages, PoolType);\r | |
1483 | }\r | |
1484 | \r | |
1485 | return (VOID *)(UINTN)Start;\r | |
1486 | }\r | |
1487 | \r | |
162ed594 | 1488 | \r |
1489 | /**\r | |
1490 | Internal function. Frees pool pages allocated via AllocatePoolPages ()\r | |
1491 | \r | |
1492 | @param Memory The base address to free \r | |
1493 | @param NumberOfPages The number of pages to free\r | |
1494 | \r | |
1495 | **/\r | |
28a00297 | 1496 | VOID\r |
1497 | CoreFreePoolPages (\r | |
1498 | IN EFI_PHYSICAL_ADDRESS Memory,\r | |
1499 | IN UINTN NumberOfPages\r | |
1500 | )\r | |
28a00297 | 1501 | {\r |
1502 | CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);\r | |
1503 | }\r | |
1504 | \r | |
1505 | \r | |
28a00297 | 1506 | \r |
162ed594 | 1507 | /**\r |
1508 | Make sure the memory map is following all the construction rules,\r | |
28a00297 | 1509 | it is the last time to check memory map error before exit boot services.\r |
1510 | \r | |
162ed594 | 1511 | @param MapKey Memory map key \r |
28a00297 | 1512 | \r |
162ed594 | 1513 | @retval EFI_INVALID_PARAMETER Memory map not consistent with construction \r |
1514 | rules. \r | |
1515 | @retval EFI_SUCCESS Valid memory map.\r | |
28a00297 | 1516 | \r |
162ed594 | 1517 | **/\r |
1518 | EFI_STATUS\r | |
1519 | CoreTerminateMemoryMap (\r | |
1520 | IN UINTN MapKey\r | |
1521 | )\r | |
28a00297 | 1522 | {\r |
1523 | EFI_STATUS Status;\r | |
1524 | LIST_ENTRY *Link;\r | |
1525 | MEMORY_MAP *Entry;\r | |
1526 | \r | |
1527 | Status = EFI_SUCCESS;\r | |
1528 | \r | |
1529 | CoreAcquireMemoryLock ();\r | |
1530 | \r | |
1531 | if (MapKey == mMemoryMapKey) {\r | |
1532 | \r | |
1533 | //\r | |
1534 | // Make sure the memory map is following all the construction rules\r | |
1535 | // This is the last chance we will be able to display any messages on\r | |
1536 | // the console devices.\r | |
1537 | //\r | |
1538 | \r | |
1539 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
1540 | Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
1541 | if (Entry->Attribute & EFI_MEMORY_RUNTIME) { \r | |
1542 | if (Entry->Type == EfiACPIReclaimMemory || Entry->Type == EfiACPIMemoryNVS) {\r | |
162ed594 | 1543 | DEBUG((DEBUG_ERROR, "ExitBootServices: ACPI memory entry has RUNTIME attribute set.\n"));\r |
28a00297 | 1544 | CoreReleaseMemoryLock ();\r |
1545 | return EFI_INVALID_PARAMETER;\r | |
1546 | }\r | |
1547 | if (Entry->Start & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) {\r | |
162ed594 | 1548 | DEBUG((DEBUG_ERROR, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));\r |
28a00297 | 1549 | CoreReleaseMemoryLock ();\r |
1550 | return EFI_INVALID_PARAMETER;\r | |
1551 | }\r | |
1552 | if ((Entry->End + 1) & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) {\r | |
162ed594 | 1553 | DEBUG((DEBUG_ERROR, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));\r |
28a00297 | 1554 | CoreReleaseMemoryLock ();\r |
1555 | return EFI_INVALID_PARAMETER;\r | |
1556 | }\r | |
1557 | }\r | |
1558 | }\r | |
1559 | \r | |
1560 | //\r | |
1561 | // The map key they gave us matches what we expect. Fall through and\r | |
1562 | // return success. In an ideal world we would clear out all of\r | |
1563 | // EfiBootServicesCode and EfiBootServicesData. However this function\r | |
1564 | // is not the last one called by ExitBootServices(), so we have to\r | |
1565 | // preserve the memory contents.\r | |
1566 | //\r | |
1567 | } else {\r | |
1568 | Status = EFI_INVALID_PARAMETER;\r | |
1569 | }\r | |
1570 | \r | |
1571 | CoreReleaseMemoryLock ();\r | |
1572 | \r | |
1573 | return Status;\r | |
1574 | }\r | |
1575 | \r | |
1576 | \r | |
1577 | \r | |
1578 | \r | |
1579 | \r | |
1580 | \r | |
1581 | \r | |
1582 | \r | |
162ed594 | 1583 | \r |