Commit | Line | Data |
---|---|---|
504214c4 | 1 | /** @file\r |
504214c4 LG |
2 | UEFI Memory page management functions.\r |
3 | \r | |
38c7df98 | 4 | Copyright (c) 2007 - 2010, Intel Corporation. <BR>\r |
23c98c94 | 5 | All rights reserved. This program and the accompanying materials\r |
6 | are licensed and made available under the terms and conditions of the BSD License\r | |
7 | which accompanies this distribution. The full text of the license may be found at\r | |
8 | http://opensource.org/licenses/bsd-license.php\r | |
9 | \r | |
10 | THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r | |
11 | WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r | |
28a00297 | 12 | \r |
504214c4 | 13 | **/\r |
28a00297 | 14 | \r |
9c4ac31c | 15 | #include "DxeMain.h"\r |
ec90508b | 16 | #include "Imem.h"\r |
28a00297 | 17 | \r |
18 | #define EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT (EFI_PAGE_SIZE)\r | |
19 | \r | |
20 | //\r | |
d45fd260 | 21 | // Entry for tracking the memory regions for each memory type to coalesce similar memory types\r |
28a00297 | 22 | //\r |
23 | typedef struct {\r | |
24 | EFI_PHYSICAL_ADDRESS BaseAddress;\r | |
25 | EFI_PHYSICAL_ADDRESS MaximumAddress;\r | |
26 | UINT64 CurrentNumberOfPages;\r | |
b74350e9 | 27 | UINT64 NumberOfPages;\r |
28a00297 | 28 | UINTN InformationIndex;\r |
b74350e9 | 29 | BOOLEAN Special;\r |
30 | BOOLEAN Runtime;\r | |
28a00297 | 31 | } EFI_MEMORY_TYPE_STAISTICS;\r |
32 | \r | |
33 | //\r | |
34 | // MemoryMap - The current memory map\r | |
35 | //\r | |
36 | UINTN mMemoryMapKey = 0;\r | |
37 | \r | |
28a00297 | 38 | #define MAX_MAP_DEPTH 6\r |
dc8d93ca | 39 | \r |
40 | ///\r | |
41 | /// mMapDepth - depth of new descriptor stack\r | |
42 | ///\r | |
28a00297 | 43 | UINTN mMapDepth = 0;\r |
dc8d93ca | 44 | ///\r |
45 | /// mMapStack - space to use as temp storage to build new map descriptors\r | |
46 | ///\r | |
28a00297 | 47 | MEMORY_MAP mMapStack[MAX_MAP_DEPTH];\r |
48 | UINTN mFreeMapStack = 0;\r | |
dc8d93ca | 49 | ///\r |
50 | /// This list maintain the free memory map list\r | |
51 | ///\r | |
e94a9ff7 | 52 | LIST_ENTRY mFreeMemoryMapEntryList = INITIALIZE_LIST_HEAD_VARIABLE (mFreeMemoryMapEntryList);\r |
53 | BOOLEAN mMemoryTypeInformationInitialized = FALSE;\r | |
28a00297 | 54 | \r |
55 | EFI_MEMORY_TYPE_STAISTICS mMemoryTypeStatistics[EfiMaxMemoryType + 1] = {\r | |
f3f2e05d | 56 | { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiReservedMemoryType\r |
57 | { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderCode\r | |
58 | { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderData\r | |
59 | { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesCode\r | |
60 | { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesData\r | |
61 | { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesCode\r | |
62 | { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesData\r | |
63 | { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiConventionalMemory\r | |
64 | { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiUnusableMemory\r | |
65 | { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIReclaimMemory\r | |
66 | { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIMemoryNVS\r | |
67 | { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIO\r | |
68 | { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIOPortSpace\r | |
69 | { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiPalCode\r | |
70 | { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE } // EfiMaxMemoryType\r | |
28a00297 | 71 | };\r |
72 | \r | |
f3f2e05d | 73 | EFI_PHYSICAL_ADDRESS mDefaultMaximumAddress = MAX_ADDRESS;\r |
28a00297 | 74 | \r |
75 | EFI_MEMORY_TYPE_INFORMATION gMemoryTypeInformation[EfiMaxMemoryType + 1] = {\r | |
76 | { EfiReservedMemoryType, 0 },\r | |
77 | { EfiLoaderCode, 0 },\r | |
78 | { EfiLoaderData, 0 },\r | |
79 | { EfiBootServicesCode, 0 },\r | |
80 | { EfiBootServicesData, 0 },\r | |
81 | { EfiRuntimeServicesCode, 0 },\r | |
82 | { EfiRuntimeServicesData, 0 },\r | |
83 | { EfiConventionalMemory, 0 },\r | |
84 | { EfiUnusableMemory, 0 },\r | |
85 | { EfiACPIReclaimMemory, 0 },\r | |
86 | { EfiACPIMemoryNVS, 0 },\r | |
87 | { EfiMemoryMappedIO, 0 },\r | |
88 | { EfiMemoryMappedIOPortSpace, 0 },\r | |
89 | { EfiPalCode, 0 },\r | |
90 | { EfiMaxMemoryType, 0 }\r | |
91 | };\r | |
54ea99a7 | 92 | //\r |
93 | // Only used when load module at fixed address feature is enabled. True means the memory is alreay successfully allocated\r | |
94 | // and ready to load the module in to specified address.or else, the memory is not ready and module will be loaded at a \r | |
95 | // address assigned by DXE core.\r | |
96 | //\r | |
97 | GLOBAL_REMOVE_IF_UNREFERENCED BOOLEAN gLoadFixedAddressCodeMemoryReady = FALSE;\r | |
d9177625 | 98 | \r |
162ed594 | 99 | /**\r |
d9177625 | 100 | Enter critical section by gaining lock on gMemoryLock.\r |
162ed594 | 101 | \r |
102 | **/\r | |
23c98c94 | 103 | VOID\r |
d9177625 | 104 | CoreAcquireMemoryLock (\r |
105 | VOID\r | |
106 | )\r | |
107 | {\r | |
108 | CoreAcquireLock (&gMemoryLock);\r | |
109 | }\r | |
110 | \r | |
111 | \r | |
112 | \r | |
113 | /**\r | |
114 | Exit critical section by releasing lock on gMemoryLock.\r | |
115 | \r | |
116 | **/\r | |
117 | VOID\r | |
118 | CoreReleaseMemoryLock (\r | |
28a00297 | 119 | VOID\r |
d9177625 | 120 | )\r |
121 | {\r | |
122 | CoreReleaseLock (&gMemoryLock);\r | |
123 | }\r | |
124 | \r | |
125 | \r | |
126 | \r | |
127 | \r | |
128 | /**\r | |
129 | Internal function. Removes a descriptor entry.\r | |
130 | \r | |
131 | @param Entry The entry to remove\r | |
132 | \r | |
133 | **/\r | |
134 | VOID\r | |
135 | RemoveMemoryMapEntry (\r | |
136 | IN OUT MEMORY_MAP *Entry\r | |
137 | )\r | |
138 | {\r | |
139 | RemoveEntryList (&Entry->Link);\r | |
140 | Entry->Link.ForwardLink = NULL;\r | |
141 | \r | |
142 | if (Entry->FromPages) {\r | |
143 | //\r | |
144 | // Insert the free memory map descriptor to the end of mFreeMemoryMapEntryList\r | |
145 | //\r | |
146 | InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);\r | |
147 | }\r | |
148 | }\r | |
162ed594 | 149 | \r |
150 | /**\r | |
151 | Internal function. Adds a ranges to the memory map.\r | |
152 | The range must not already exist in the map.\r | |
153 | \r | |
022c6d45 | 154 | @param Type The type of memory range to add\r |
155 | @param Start The starting address in the memory range Must be\r | |
156 | paged aligned\r | |
157 | @param End The last address in the range Must be the last\r | |
158 | byte of a page\r | |
159 | @param Attribute The attributes of the memory range to add\r | |
28a00297 | 160 | \r |
162ed594 | 161 | **/\r |
28a00297 | 162 | VOID\r |
163 | CoreAddRange (\r | |
164 | IN EFI_MEMORY_TYPE Type,\r | |
165 | IN EFI_PHYSICAL_ADDRESS Start,\r | |
166 | IN EFI_PHYSICAL_ADDRESS End,\r | |
167 | IN UINT64 Attribute\r | |
d9177625 | 168 | )\r |
169 | {\r | |
170 | LIST_ENTRY *Link;\r | |
171 | MEMORY_MAP *Entry;\r | |
28a00297 | 172 | \r |
d9177625 | 173 | ASSERT ((Start & EFI_PAGE_MASK) == 0);\r |
174 | ASSERT (End > Start) ;\r | |
162ed594 | 175 | \r |
d9177625 | 176 | ASSERT_LOCKED (&gMemoryLock);\r |
28a00297 | 177 | \r |
d9177625 | 178 | DEBUG ((DEBUG_PAGE, "AddRange: %lx-%lx to %d\n", Start, End, Type));\r |
162ed594 | 179 | \r |
d9177625 | 180 | //\r |
181 | // Memory map being altered so updated key\r | |
182 | //\r | |
183 | mMemoryMapKey += 1;\r | |
162ed594 | 184 | \r |
d9177625 | 185 | //\r |
186 | // UEFI 2.0 added an event group for notificaiton on memory map changes.\r | |
187 | // So we need to signal this Event Group every time the memory map changes.\r | |
188 | // If we are in EFI 1.10 compatability mode no event groups will be\r | |
189 | // found and nothing will happen we we call this function. These events\r | |
190 | // will get signaled but since a lock is held around the call to this\r | |
191 | // function the notificaiton events will only be called after this funciton\r | |
192 | // returns and the lock is released.\r | |
193 | //\r | |
194 | CoreNotifySignalList (&gEfiEventMemoryMapChangeGuid);\r | |
162ed594 | 195 | \r |
d9177625 | 196 | //\r |
197 | // Look for adjoining memory descriptor\r | |
198 | //\r | |
28a00297 | 199 | \r |
d9177625 | 200 | // Two memory descriptors can only be merged if they have the same Type\r |
201 | // and the same Attribute\r | |
202 | //\r | |
162ed594 | 203 | \r |
d9177625 | 204 | Link = gMemoryMap.ForwardLink;\r |
205 | while (Link != &gMemoryMap) {\r | |
206 | Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
207 | Link = Link->ForwardLink;\r | |
162ed594 | 208 | \r |
d9177625 | 209 | if (Entry->Type != Type) {\r |
210 | continue;\r | |
211 | }\r | |
212 | \r | |
213 | if (Entry->Attribute != Attribute) {\r | |
214 | continue;\r | |
215 | }\r | |
216 | \r | |
217 | if (Entry->End + 1 == Start) {\r | |
218 | \r | |
219 | Start = Entry->Start;\r | |
220 | RemoveMemoryMapEntry (Entry);\r | |
221 | \r | |
222 | } else if (Entry->Start == End + 1) {\r | |
223 | \r | |
224 | End = Entry->End;\r | |
225 | RemoveMemoryMapEntry (Entry);\r | |
226 | }\r | |
227 | }\r | |
228 | \r | |
229 | //\r | |
230 | // Add descriptor\r | |
231 | //\r | |
232 | \r | |
233 | mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;\r | |
234 | mMapStack[mMapDepth].FromPages = FALSE;\r | |
235 | mMapStack[mMapDepth].Type = Type;\r | |
236 | mMapStack[mMapDepth].Start = Start;\r | |
237 | mMapStack[mMapDepth].End = End;\r | |
238 | mMapStack[mMapDepth].VirtualStart = 0;\r | |
239 | mMapStack[mMapDepth].Attribute = Attribute;\r | |
240 | InsertTailList (&gMemoryMap, &mMapStack[mMapDepth].Link);\r | |
241 | \r | |
242 | mMapDepth += 1;\r | |
243 | ASSERT (mMapDepth < MAX_MAP_DEPTH);\r | |
244 | \r | |
245 | return ;\r | |
246 | }\r | |
022c6d45 | 247 | \r |
162ed594 | 248 | /**\r |
249 | Internal function. Deque a descriptor entry from the mFreeMemoryMapEntryList.\r | |
250 | If the list is emtry, then allocate a new page to refuel the list.\r | |
251 | Please Note this algorithm to allocate the memory map descriptor has a property\r | |
252 | that the memory allocated for memory entries always grows, and will never really be freed\r | |
253 | For example, if the current boot uses 2000 memory map entries at the maximum point, but\r | |
254 | ends up with only 50 at the time the OS is booted, then the memory associated with the 1950\r | |
255 | memory map entries is still allocated from EfiBootServicesMemory.\r | |
256 | \r | |
257 | \r | |
258 | @return The Memory map descriptor dequed from the mFreeMemoryMapEntryList\r | |
259 | \r | |
260 | **/\r | |
28a00297 | 261 | MEMORY_MAP *\r |
262 | AllocateMemoryMapEntry (\r | |
263 | VOID\r | |
d9177625 | 264 | )\r |
265 | {\r | |
266 | MEMORY_MAP* FreeDescriptorEntries;\r | |
267 | MEMORY_MAP* Entry;\r | |
268 | UINTN Index;\r | |
269 | \r | |
270 | if (IsListEmpty (&mFreeMemoryMapEntryList)) {\r | |
271 | //\r | |
272 | // The list is empty, to allocate one page to refuel the list\r | |
273 | //\r | |
274 | FreeDescriptorEntries = CoreAllocatePoolPages (EfiBootServicesData, EFI_SIZE_TO_PAGES(DEFAULT_PAGE_ALLOCATION), DEFAULT_PAGE_ALLOCATION);\r | |
275 | if(FreeDescriptorEntries != NULL) {\r | |
276 | //\r | |
277 | // Enque the free memmory map entries into the list\r | |
278 | //\r | |
279 | for (Index = 0; Index< DEFAULT_PAGE_ALLOCATION / sizeof(MEMORY_MAP); Index++) {\r | |
280 | FreeDescriptorEntries[Index].Signature = MEMORY_MAP_SIGNATURE;\r | |
281 | InsertTailList (&mFreeMemoryMapEntryList, &FreeDescriptorEntries[Index].Link);\r | |
282 | }\r | |
283 | } else {\r | |
284 | return NULL;\r | |
285 | }\r | |
286 | }\r | |
287 | //\r | |
288 | // dequeue the first descriptor from the list\r | |
289 | //\r | |
290 | Entry = CR (mFreeMemoryMapEntryList.ForwardLink, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
291 | RemoveEntryList (&Entry->Link);\r | |
292 | \r | |
293 | return Entry;\r | |
294 | }\r | |
022c6d45 | 295 | \r |
162ed594 | 296 | \r |
297 | /**\r | |
d9177625 | 298 | Internal function. Moves any memory descriptors that are on the\r |
299 | temporary descriptor stack to heap.\r | |
162ed594 | 300 | \r |
301 | **/\r | |
28a00297 | 302 | VOID\r |
d9177625 | 303 | CoreFreeMemoryMapStack (\r |
28a00297 | 304 | VOID\r |
305 | )\r | |
28a00297 | 306 | {\r |
d9177625 | 307 | MEMORY_MAP *Entry;\r |
308 | MEMORY_MAP *Entry2;\r | |
309 | LIST_ENTRY *Link2;\r | |
28a00297 | 310 | \r |
d9177625 | 311 | ASSERT_LOCKED (&gMemoryLock);\r |
28a00297 | 312 | \r |
d9177625 | 313 | //\r |
314 | // If already freeing the map stack, then return\r | |
315 | //\r | |
316 | if (mFreeMapStack != 0) {\r | |
317 | return ;\r | |
318 | }\r | |
162ed594 | 319 | \r |
d9177625 | 320 | //\r |
321 | // Move the temporary memory descriptor stack into pool\r | |
322 | //\r | |
323 | mFreeMapStack += 1;\r | |
162ed594 | 324 | \r |
d9177625 | 325 | while (mMapDepth != 0) {\r |
326 | //\r | |
327 | // Deque an memory map entry from mFreeMemoryMapEntryList\r | |
328 | //\r | |
329 | Entry = AllocateMemoryMapEntry ();\r | |
330 | \r | |
331 | ASSERT (Entry);\r | |
332 | \r | |
333 | //\r | |
334 | // Update to proper entry\r | |
335 | //\r | |
336 | mMapDepth -= 1;\r | |
337 | \r | |
338 | if (mMapStack[mMapDepth].Link.ForwardLink != NULL) {\r | |
339 | \r | |
340 | //\r | |
341 | // Move this entry to general memory\r | |
342 | //\r | |
343 | RemoveEntryList (&mMapStack[mMapDepth].Link);\r | |
344 | mMapStack[mMapDepth].Link.ForwardLink = NULL;\r | |
345 | \r | |
346 | CopyMem (Entry , &mMapStack[mMapDepth], sizeof (MEMORY_MAP));\r | |
347 | Entry->FromPages = TRUE;\r | |
348 | \r | |
349 | //\r | |
350 | // Find insertion location\r | |
351 | //\r | |
352 | for (Link2 = gMemoryMap.ForwardLink; Link2 != &gMemoryMap; Link2 = Link2->ForwardLink) {\r | |
353 | Entry2 = CR (Link2, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
354 | if (Entry2->FromPages && Entry2->Start > Entry->Start) {\r | |
355 | break;\r | |
356 | }\r | |
357 | }\r | |
358 | \r | |
359 | InsertTailList (Link2, &Entry->Link);\r | |
360 | \r | |
361 | } else {\r | |
362 | //\r | |
363 | // This item of mMapStack[mMapDepth] has already been dequeued from gMemoryMap list,\r | |
364 | // so here no need to move it to memory.\r | |
365 | //\r | |
366 | InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);\r | |
367 | }\r | |
368 | }\r | |
28a00297 | 369 | \r |
d9177625 | 370 | mFreeMapStack -= 1;\r |
371 | }\r | |
162ed594 | 372 | \r |
373 | /**\r | |
374 | Find untested but initialized memory regions in GCD map and convert them to be DXE allocatable.\r | |
375 | \r | |
376 | **/\r | |
28a00297 | 377 | VOID\r |
378 | PromoteMemoryResource (\r | |
379 | VOID\r | |
380 | )\r | |
28a00297 | 381 | {\r |
382 | LIST_ENTRY *Link;\r | |
383 | EFI_GCD_MAP_ENTRY *Entry;\r | |
384 | \r | |
d45fd260 | 385 | DEBUG ((DEBUG_PAGE, "Promote the memory resource\n"));\r |
022c6d45 | 386 | \r |
28a00297 | 387 | CoreAcquireGcdMemoryLock ();\r |
022c6d45 | 388 | \r |
28a00297 | 389 | Link = mGcdMemorySpaceMap.ForwardLink;\r |
390 | while (Link != &mGcdMemorySpaceMap) {\r | |
391 | \r | |
392 | Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r | |
393 | \r | |
394 | if (Entry->GcdMemoryType == EfiGcdMemoryTypeReserved &&\r | |
f3f2e05d | 395 | Entry->EndAddress < MAX_ADDRESS &&\r |
28a00297 | 396 | (Entry->Capabilities & (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED)) ==\r |
397 | (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED)) {\r | |
398 | //\r | |
399 | // Update the GCD map\r | |
400 | //\r | |
401 | Entry->GcdMemoryType = EfiGcdMemoryTypeSystemMemory;\r | |
402 | Entry->Capabilities |= EFI_MEMORY_TESTED;\r | |
403 | Entry->ImageHandle = gDxeCoreImageHandle;\r | |
404 | Entry->DeviceHandle = NULL;\r | |
405 | \r | |
406 | //\r | |
407 | // Add to allocable system memory resource\r | |
022c6d45 | 408 | //\r |
28a00297 | 409 | \r |
410 | CoreAddRange (\r | |
022c6d45 | 411 | EfiConventionalMemory,\r |
412 | Entry->BaseAddress,\r | |
413 | Entry->EndAddress,\r | |
28a00297 | 414 | Entry->Capabilities & ~(EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED | EFI_MEMORY_RUNTIME)\r |
415 | );\r | |
416 | CoreFreeMemoryMapStack ();\r | |
022c6d45 | 417 | \r |
28a00297 | 418 | }\r |
419 | \r | |
420 | Link = Link->ForwardLink;\r | |
421 | }\r | |
022c6d45 | 422 | \r |
28a00297 | 423 | CoreReleaseGcdMemoryLock ();\r |
022c6d45 | 424 | \r |
28a00297 | 425 | return;\r |
426 | }\r | |
54ea99a7 | 427 | /**\r |
428 | This function try to allocate Runtime code & Boot time code memory range. If LMFA enabled, 2 patchable PCD \r | |
429 | PcdLoadFixAddressRuntimeCodePageNumber & PcdLoadFixAddressBootTimeCodePageNumber which are set by tools will record the \r | |
430 | size of boot time and runtime code.\r | |
28a00297 | 431 | \r |
54ea99a7 | 432 | **/\r |
433 | VOID\r | |
434 | CoreLoadingFixedAddressHook (\r | |
435 | VOID\r | |
436 | )\r | |
437 | {\r | |
438 | UINT32 RuntimeCodePageNumber;\r | |
439 | UINT32 BootTimeCodePageNumber;\r | |
440 | EFI_PHYSICAL_ADDRESS RuntimeCodeBase;\r | |
441 | EFI_PHYSICAL_ADDRESS BootTimeCodeBase;\r | |
442 | EFI_STATUS Status;\r | |
443 | \r | |
444 | //\r | |
445 | // Make sure these 2 areas are not initialzied.\r | |
446 | //\r | |
447 | if (!gLoadFixedAddressCodeMemoryReady) { \r | |
448 | RuntimeCodePageNumber = PcdGet32(PcdLoadFixAddressRuntimeCodePageNumber);\r | |
449 | BootTimeCodePageNumber= PcdGet32(PcdLoadFixAddressBootTimeCodePageNumber);\r | |
450 | RuntimeCodeBase = (EFI_PHYSICAL_ADDRESS)(gLoadModuleAtFixAddressConfigurationTable.DxeCodeTopAddress - EFI_PAGES_TO_SIZE (RuntimeCodePageNumber));\r | |
451 | BootTimeCodeBase = (EFI_PHYSICAL_ADDRESS)(RuntimeCodeBase - EFI_PAGES_TO_SIZE (BootTimeCodePageNumber));\r | |
452 | //\r | |
453 | // Try to allocate runtime memory.\r | |
454 | //\r | |
455 | Status = CoreAllocatePages (\r | |
456 | AllocateAddress,\r | |
457 | EfiRuntimeServicesCode,\r | |
458 | RuntimeCodePageNumber,\r | |
459 | &RuntimeCodeBase\r | |
460 | );\r | |
461 | if (EFI_ERROR(Status)) {\r | |
462 | //\r | |
463 | // Runtime memory allocation failed \r | |
464 | //\r | |
465 | return;\r | |
466 | }\r | |
467 | //\r | |
468 | // Try to allocate boot memory.\r | |
469 | //\r | |
470 | Status = CoreAllocatePages (\r | |
471 | AllocateAddress,\r | |
472 | EfiBootServicesCode,\r | |
473 | BootTimeCodePageNumber,\r | |
474 | &BootTimeCodeBase\r | |
475 | );\r | |
476 | if (EFI_ERROR(Status)) {\r | |
477 | //\r | |
478 | // boot memory allocation failed. Free Runtime code range and will try the allocation again when \r | |
479 | // new memory range is installed.\r | |
480 | //\r | |
481 | CoreFreePages (\r | |
482 | RuntimeCodeBase,\r | |
483 | RuntimeCodePageNumber\r | |
484 | );\r | |
485 | return;\r | |
486 | }\r | |
487 | gLoadFixedAddressCodeMemoryReady = TRUE;\r | |
488 | } \r | |
489 | return;\r | |
490 | } \r | |
28a00297 | 491 | \r |
162ed594 | 492 | /**\r |
28a00297 | 493 | Called to initialize the memory map and add descriptors to\r |
494 | the current descriptor list.\r | |
28a00297 | 495 | The first descriptor that is added must be general usable\r |
496 | memory as the addition allocates heap.\r | |
497 | \r | |
022c6d45 | 498 | @param Type The type of memory to add\r |
499 | @param Start The starting address in the memory range Must be\r | |
500 | page aligned\r | |
501 | @param NumberOfPages The number of pages in the range\r | |
502 | @param Attribute Attributes of the memory to add\r | |
28a00297 | 503 | \r |
162ed594 | 504 | @return None. The range is added to the memory map\r |
28a00297 | 505 | \r |
162ed594 | 506 | **/\r |
507 | VOID\r | |
508 | CoreAddMemoryDescriptor (\r | |
509 | IN EFI_MEMORY_TYPE Type,\r | |
510 | IN EFI_PHYSICAL_ADDRESS Start,\r | |
511 | IN UINT64 NumberOfPages,\r | |
512 | IN UINT64 Attribute\r | |
513 | )\r | |
28a00297 | 514 | {\r |
515 | EFI_PHYSICAL_ADDRESS End;\r | |
516 | EFI_STATUS Status;\r | |
517 | UINTN Index;\r | |
518 | UINTN FreeIndex;\r | |
54ea99a7 | 519 | \r |
28a00297 | 520 | if ((Start & EFI_PAGE_MASK) != 0) {\r |
521 | return;\r | |
522 | }\r | |
523 | \r | |
524 | if (Type >= EfiMaxMemoryType && Type <= 0x7fffffff) {\r | |
525 | return;\r | |
526 | }\r | |
28a00297 | 527 | CoreAcquireMemoryLock ();\r |
528 | End = Start + LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT) - 1;\r | |
529 | CoreAddRange (Type, Start, End, Attribute);\r | |
530 | CoreFreeMemoryMapStack ();\r | |
531 | CoreReleaseMemoryLock ();\r | |
532 | \r | |
54ea99a7 | 533 | //\r |
534 | // If Loading Module At Fixed Address feature is enabled. try to allocate memory with Runtime code & Boot time code type\r | |
535 | //\r | |
852081fc | 536 | if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0) {\r |
54ea99a7 | 537 | CoreLoadingFixedAddressHook();\r |
538 | }\r | |
539 | \r | |
28a00297 | 540 | //\r |
541 | // Check to see if the statistics for the different memory types have already been established\r | |
542 | //\r | |
543 | if (mMemoryTypeInformationInitialized) {\r | |
544 | return;\r | |
545 | }\r | |
546 | \r | |
54ea99a7 | 547 | \r |
28a00297 | 548 | //\r |
549 | // Loop through each memory type in the order specified by the gMemoryTypeInformation[] array\r | |
550 | //\r | |
551 | for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r | |
552 | //\r | |
553 | // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r | |
554 | //\r | |
555 | Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);\r | |
556 | if (Type < 0 || Type > EfiMaxMemoryType) {\r | |
557 | continue;\r | |
558 | }\r | |
28a00297 | 559 | if (gMemoryTypeInformation[Index].NumberOfPages != 0) {\r |
560 | //\r | |
561 | // Allocate pages for the current memory type from the top of available memory\r | |
562 | //\r | |
563 | Status = CoreAllocatePages (\r | |
564 | AllocateAnyPages,\r | |
565 | Type,\r | |
566 | gMemoryTypeInformation[Index].NumberOfPages,\r | |
567 | &mMemoryTypeStatistics[Type].BaseAddress\r | |
568 | );\r | |
569 | if (EFI_ERROR (Status)) {\r | |
570 | //\r | |
022c6d45 | 571 | // If an error occurs allocating the pages for the current memory type, then\r |
28a00297 | 572 | // free all the pages allocates for the previous memory types and return. This\r |
573 | // operation with be retied when/if more memory is added to the system\r | |
574 | //\r | |
575 | for (FreeIndex = 0; FreeIndex < Index; FreeIndex++) {\r | |
576 | //\r | |
577 | // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r | |
578 | //\r | |
579 | Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[FreeIndex].Type);\r | |
580 | if (Type < 0 || Type > EfiMaxMemoryType) {\r | |
581 | continue;\r | |
582 | }\r | |
583 | \r | |
584 | if (gMemoryTypeInformation[FreeIndex].NumberOfPages != 0) {\r | |
585 | CoreFreePages (\r | |
022c6d45 | 586 | mMemoryTypeStatistics[Type].BaseAddress,\r |
28a00297 | 587 | gMemoryTypeInformation[FreeIndex].NumberOfPages\r |
588 | );\r | |
589 | mMemoryTypeStatistics[Type].BaseAddress = 0;\r | |
f3f2e05d | 590 | mMemoryTypeStatistics[Type].MaximumAddress = MAX_ADDRESS;\r |
28a00297 | 591 | }\r |
592 | }\r | |
593 | return;\r | |
594 | }\r | |
595 | \r | |
596 | //\r | |
597 | // Compute the address at the top of the current statistics\r | |
598 | //\r | |
022c6d45 | 599 | mMemoryTypeStatistics[Type].MaximumAddress =\r |
600 | mMemoryTypeStatistics[Type].BaseAddress +\r | |
28a00297 | 601 | LShiftU64 (gMemoryTypeInformation[Index].NumberOfPages, EFI_PAGE_SHIFT) - 1;\r |
602 | \r | |
603 | //\r | |
022c6d45 | 604 | // If the current base address is the lowest address so far, then update the default\r |
28a00297 | 605 | // maximum address\r |
606 | //\r | |
607 | if (mMemoryTypeStatistics[Type].BaseAddress < mDefaultMaximumAddress) {\r | |
608 | mDefaultMaximumAddress = mMemoryTypeStatistics[Type].BaseAddress - 1;\r | |
609 | }\r | |
610 | }\r | |
611 | }\r | |
612 | \r | |
613 | //\r | |
614 | // There was enough system memory for all the the memory types were allocated. So,\r | |
615 | // those memory areas can be freed for future allocations, and all future memory\r | |
616 | // allocations can occur within their respective bins\r | |
617 | //\r | |
618 | for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r | |
619 | //\r | |
620 | // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r | |
621 | //\r | |
622 | Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);\r | |
623 | if (Type < 0 || Type > EfiMaxMemoryType) {\r | |
624 | continue;\r | |
625 | }\r | |
28a00297 | 626 | if (gMemoryTypeInformation[Index].NumberOfPages != 0) {\r |
627 | CoreFreePages (\r | |
022c6d45 | 628 | mMemoryTypeStatistics[Type].BaseAddress,\r |
28a00297 | 629 | gMemoryTypeInformation[Index].NumberOfPages\r |
630 | );\r | |
b74350e9 | 631 | mMemoryTypeStatistics[Type].NumberOfPages = gMemoryTypeInformation[Index].NumberOfPages;\r |
28a00297 | 632 | gMemoryTypeInformation[Index].NumberOfPages = 0;\r |
633 | }\r | |
634 | }\r | |
635 | \r | |
636 | //\r | |
637 | // If the number of pages reserved for a memory type is 0, then all allocations for that type\r | |
638 | // should be in the default range.\r | |
639 | //\r | |
640 | for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {\r | |
641 | for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r | |
642 | if (Type == (EFI_MEMORY_TYPE)gMemoryTypeInformation[Index].Type) {\r | |
643 | mMemoryTypeStatistics[Type].InformationIndex = Index;\r | |
644 | }\r | |
645 | }\r | |
646 | mMemoryTypeStatistics[Type].CurrentNumberOfPages = 0;\r | |
f3f2e05d | 647 | if (mMemoryTypeStatistics[Type].MaximumAddress == MAX_ADDRESS) {\r |
28a00297 | 648 | mMemoryTypeStatistics[Type].MaximumAddress = mDefaultMaximumAddress;\r |
649 | }\r | |
650 | }\r | |
651 | \r | |
652 | mMemoryTypeInformationInitialized = TRUE;\r | |
653 | }\r | |
654 | \r | |
655 | \r | |
162ed594 | 656 | /**\r |
657 | Internal function. Converts a memory range to the specified type.\r | |
658 | The range must exist in the memory map.\r | |
659 | \r | |
022c6d45 | 660 | @param Start The first address of the range Must be page\r |
661 | aligned\r | |
662 | @param NumberOfPages The number of pages to convert\r | |
663 | @param NewType The new type for the memory range\r | |
162ed594 | 664 | \r |
022c6d45 | 665 | @retval EFI_INVALID_PARAMETER Invalid parameter\r |
666 | @retval EFI_NOT_FOUND Could not find a descriptor cover the specified\r | |
667 | range or convertion not allowed.\r | |
668 | @retval EFI_SUCCESS Successfully converts the memory range to the\r | |
162ed594 | 669 | specified type.\r |
670 | \r | |
671 | **/\r | |
28a00297 | 672 | EFI_STATUS\r |
673 | CoreConvertPages (\r | |
674 | IN UINT64 Start,\r | |
675 | IN UINT64 NumberOfPages,\r | |
676 | IN EFI_MEMORY_TYPE NewType\r | |
677 | )\r | |
28a00297 | 678 | {\r |
679 | \r | |
680 | UINT64 NumberOfBytes;\r | |
681 | UINT64 End;\r | |
682 | UINT64 RangeEnd;\r | |
683 | UINT64 Attribute;\r | |
684 | LIST_ENTRY *Link;\r | |
685 | MEMORY_MAP *Entry;\r | |
686 | \r | |
687 | Entry = NULL;\r | |
688 | NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);\r | |
689 | End = Start + NumberOfBytes - 1;\r | |
690 | \r | |
691 | ASSERT (NumberOfPages);\r | |
692 | ASSERT ((Start & EFI_PAGE_MASK) == 0);\r | |
693 | ASSERT (End > Start) ;\r | |
694 | ASSERT_LOCKED (&gMemoryLock);\r | |
695 | \r | |
71f68914 | 696 | if (NumberOfPages == 0 || ((Start & EFI_PAGE_MASK) != 0) || (Start > (Start + NumberOfBytes))) {\r |
28a00297 | 697 | return EFI_INVALID_PARAMETER;\r |
698 | }\r | |
699 | \r | |
700 | //\r | |
701 | // Convert the entire range\r | |
702 | //\r | |
703 | \r | |
704 | while (Start < End) {\r | |
705 | \r | |
706 | //\r | |
707 | // Find the entry that the covers the range\r | |
708 | //\r | |
709 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
710 | Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
711 | \r | |
712 | if (Entry->Start <= Start && Entry->End > Start) {\r | |
713 | break;\r | |
714 | }\r | |
715 | }\r | |
716 | \r | |
717 | if (Link == &gMemoryMap) {\r | |
162ed594 | 718 | DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: failed to find range %lx - %lx\n", Start, End));\r |
28a00297 | 719 | return EFI_NOT_FOUND;\r |
720 | }\r | |
721 | \r | |
722 | //\r | |
723 | // Convert range to the end, or to the end of the descriptor\r | |
724 | // if that's all we've got\r | |
725 | //\r | |
726 | RangeEnd = End;\r | |
525aded9 | 727 | \r |
728 | ASSERT (Entry != NULL);\r | |
28a00297 | 729 | if (Entry->End < End) {\r |
730 | RangeEnd = Entry->End;\r | |
731 | }\r | |
732 | \r | |
162ed594 | 733 | DEBUG ((DEBUG_PAGE, "ConvertRange: %lx-%lx to %d\n", Start, RangeEnd, NewType));\r |
28a00297 | 734 | \r |
735 | //\r | |
736 | // Debug code - verify conversion is allowed\r | |
737 | //\r | |
738 | if (!(NewType == EfiConventionalMemory ? 1 : 0) ^ (Entry->Type == EfiConventionalMemory ? 1 : 0)) {\r | |
d45fd260 | 739 | DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: Incompatible memory types\n"));\r |
28a00297 | 740 | return EFI_NOT_FOUND;\r |
022c6d45 | 741 | }\r |
28a00297 | 742 | \r |
743 | //\r | |
744 | // Update counters for the number of pages allocated to each memory type\r | |
745 | //\r | |
746 | if (Entry->Type >= 0 && Entry->Type < EfiMaxMemoryType) {\r | |
022c6d45 | 747 | if (Start >= mMemoryTypeStatistics[Entry->Type].BaseAddress &&\r |
28a00297 | 748 | Start <= mMemoryTypeStatistics[Entry->Type].MaximumAddress) {\r |
749 | if (NumberOfPages > mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages) {\r | |
750 | mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages = 0;\r | |
751 | } else {\r | |
752 | mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages -= NumberOfPages;\r | |
753 | }\r | |
754 | }\r | |
755 | }\r | |
756 | \r | |
757 | if (NewType >= 0 && NewType < EfiMaxMemoryType) {\r | |
758 | if (Start >= mMemoryTypeStatistics[NewType].BaseAddress && Start <= mMemoryTypeStatistics[NewType].MaximumAddress) {\r | |
759 | mMemoryTypeStatistics[NewType].CurrentNumberOfPages += NumberOfPages;\r | |
022c6d45 | 760 | if (mMemoryTypeStatistics[NewType].CurrentNumberOfPages >\r |
28a00297 | 761 | gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages) {\r |
762 | gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages = (UINT32)mMemoryTypeStatistics[NewType].CurrentNumberOfPages;\r | |
763 | }\r | |
764 | }\r | |
765 | }\r | |
766 | \r | |
767 | //\r | |
768 | // Pull range out of descriptor\r | |
769 | //\r | |
770 | if (Entry->Start == Start) {\r | |
022c6d45 | 771 | \r |
28a00297 | 772 | //\r |
773 | // Clip start\r | |
774 | //\r | |
775 | Entry->Start = RangeEnd + 1;\r | |
776 | \r | |
777 | } else if (Entry->End == RangeEnd) {\r | |
022c6d45 | 778 | \r |
28a00297 | 779 | //\r |
780 | // Clip end\r | |
781 | //\r | |
782 | Entry->End = Start - 1;\r | |
783 | \r | |
784 | } else {\r | |
785 | \r | |
786 | //\r | |
787 | // Pull it out of the center, clip current\r | |
788 | //\r | |
022c6d45 | 789 | \r |
28a00297 | 790 | //\r |
791 | // Add a new one\r | |
792 | //\r | |
793 | mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;\r | |
794 | mMapStack[mMapDepth].FromPages = FALSE;\r | |
795 | mMapStack[mMapDepth].Type = Entry->Type;\r | |
796 | mMapStack[mMapDepth].Start = RangeEnd+1;\r | |
797 | mMapStack[mMapDepth].End = Entry->End;\r | |
798 | \r | |
799 | //\r | |
800 | // Inherit Attribute from the Memory Descriptor that is being clipped\r | |
801 | //\r | |
802 | mMapStack[mMapDepth].Attribute = Entry->Attribute;\r | |
803 | \r | |
804 | Entry->End = Start - 1;\r | |
805 | ASSERT (Entry->Start < Entry->End);\r | |
806 | \r | |
807 | Entry = &mMapStack[mMapDepth];\r | |
808 | InsertTailList (&gMemoryMap, &Entry->Link);\r | |
809 | \r | |
810 | mMapDepth += 1;\r | |
811 | ASSERT (mMapDepth < MAX_MAP_DEPTH);\r | |
812 | }\r | |
813 | \r | |
814 | //\r | |
022c6d45 | 815 | // The new range inherits the same Attribute as the Entry\r |
28a00297 | 816 | //it is being cut out of\r |
817 | //\r | |
818 | Attribute = Entry->Attribute;\r | |
819 | \r | |
820 | //\r | |
821 | // If the descriptor is empty, then remove it from the map\r | |
822 | //\r | |
823 | if (Entry->Start == Entry->End + 1) {\r | |
824 | RemoveMemoryMapEntry (Entry);\r | |
825 | Entry = NULL;\r | |
826 | }\r | |
022c6d45 | 827 | \r |
28a00297 | 828 | //\r |
829 | // Add our new range in\r | |
830 | //\r | |
831 | CoreAddRange (NewType, Start, RangeEnd, Attribute);\r | |
38c7df98 | 832 | if (NewType == EfiConventionalMemory) {\r |
b295dfd4 | 833 | DEBUG_CLEAR_MEMORY ((VOID *)(UINTN) Start, (UINTN) (RangeEnd - Start + 1));\r |
38c7df98 | 834 | }\r |
28a00297 | 835 | \r |
836 | //\r | |
837 | // Move any map descriptor stack to general pool\r | |
838 | //\r | |
839 | CoreFreeMemoryMapStack ();\r | |
840 | \r | |
841 | //\r | |
842 | // Bump the starting address, and convert the next range\r | |
843 | //\r | |
844 | Start = RangeEnd + 1;\r | |
845 | }\r | |
846 | \r | |
847 | //\r | |
848 | // Converted the whole range, done\r | |
849 | //\r | |
850 | \r | |
851 | return EFI_SUCCESS;\r | |
852 | }\r | |
853 | \r | |
854 | \r | |
162ed594 | 855 | \r |
856 | /**\r | |
857 | Internal function. Finds a consecutive free page range below\r | |
858 | the requested address.\r | |
859 | \r | |
022c6d45 | 860 | @param MaxAddress The address that the range must be below\r |
861 | @param NumberOfPages Number of pages needed\r | |
862 | @param NewType The type of memory the range is going to be\r | |
863 | turned into\r | |
864 | @param Alignment Bits to align with\r | |
162ed594 | 865 | \r |
866 | @return The base address of the range, or 0 if the range was not found\r | |
867 | \r | |
868 | **/\r | |
28a00297 | 869 | UINT64\r |
870 | CoreFindFreePagesI (\r | |
871 | IN UINT64 MaxAddress,\r | |
872 | IN UINT64 NumberOfPages,\r | |
873 | IN EFI_MEMORY_TYPE NewType,\r | |
874 | IN UINTN Alignment\r | |
875 | )\r | |
28a00297 | 876 | {\r |
877 | UINT64 NumberOfBytes;\r | |
878 | UINT64 Target;\r | |
879 | UINT64 DescStart;\r | |
880 | UINT64 DescEnd;\r | |
881 | UINT64 DescNumberOfBytes;\r | |
882 | LIST_ENTRY *Link;\r | |
883 | MEMORY_MAP *Entry;\r | |
884 | \r | |
885 | if ((MaxAddress < EFI_PAGE_MASK) ||(NumberOfPages == 0)) {\r | |
886 | return 0;\r | |
887 | }\r | |
888 | \r | |
889 | if ((MaxAddress & EFI_PAGE_MASK) != EFI_PAGE_MASK) {\r | |
022c6d45 | 890 | \r |
28a00297 | 891 | //\r |
892 | // If MaxAddress is not aligned to the end of a page\r | |
893 | //\r | |
022c6d45 | 894 | \r |
28a00297 | 895 | //\r |
896 | // Change MaxAddress to be 1 page lower\r | |
897 | //\r | |
898 | MaxAddress -= (EFI_PAGE_MASK + 1);\r | |
022c6d45 | 899 | \r |
28a00297 | 900 | //\r |
901 | // Set MaxAddress to a page boundary\r | |
902 | //\r | |
903 | MaxAddress &= ~EFI_PAGE_MASK;\r | |
022c6d45 | 904 | \r |
28a00297 | 905 | //\r |
906 | // Set MaxAddress to end of the page\r | |
907 | //\r | |
908 | MaxAddress |= EFI_PAGE_MASK;\r | |
909 | }\r | |
910 | \r | |
911 | NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);\r | |
912 | Target = 0;\r | |
913 | \r | |
914 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
915 | Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
022c6d45 | 916 | \r |
28a00297 | 917 | //\r |
918 | // If it's not a free entry, don't bother with it\r | |
919 | //\r | |
920 | if (Entry->Type != EfiConventionalMemory) {\r | |
921 | continue;\r | |
922 | }\r | |
923 | \r | |
924 | DescStart = Entry->Start;\r | |
925 | DescEnd = Entry->End;\r | |
926 | \r | |
927 | //\r | |
928 | // If desc is past max allowed address, skip it\r | |
929 | //\r | |
930 | if (DescStart >= MaxAddress) {\r | |
931 | continue;\r | |
932 | }\r | |
933 | \r | |
934 | //\r | |
935 | // If desc ends past max allowed address, clip the end\r | |
936 | //\r | |
937 | if (DescEnd >= MaxAddress) {\r | |
938 | DescEnd = MaxAddress;\r | |
939 | }\r | |
940 | \r | |
941 | DescEnd = ((DescEnd + 1) & (~(Alignment - 1))) - 1;\r | |
942 | \r | |
943 | //\r | |
022c6d45 | 944 | // Compute the number of bytes we can used from this\r |
28a00297 | 945 | // descriptor, and see it's enough to satisfy the request\r |
946 | //\r | |
947 | DescNumberOfBytes = DescEnd - DescStart + 1;\r | |
948 | \r | |
949 | if (DescNumberOfBytes >= NumberOfBytes) {\r | |
950 | \r | |
951 | //\r | |
952 | // If this is the best match so far remember it\r | |
953 | //\r | |
954 | if (DescEnd > Target) {\r | |
955 | Target = DescEnd;\r | |
956 | }\r | |
957 | }\r | |
022c6d45 | 958 | }\r |
28a00297 | 959 | \r |
960 | //\r | |
961 | // If this is a grow down, adjust target to be the allocation base\r | |
962 | //\r | |
963 | Target -= NumberOfBytes - 1;\r | |
964 | \r | |
965 | //\r | |
966 | // If we didn't find a match, return 0\r | |
967 | //\r | |
968 | if ((Target & EFI_PAGE_MASK) != 0) {\r | |
969 | return 0;\r | |
970 | }\r | |
971 | \r | |
972 | return Target;\r | |
973 | }\r | |
974 | \r | |
162ed594 | 975 | \r |
976 | /**\r | |
977 | Internal function. Finds a consecutive free page range below\r | |
978 | the requested address\r | |
979 | \r | |
022c6d45 | 980 | @param MaxAddress The address that the range must be below\r |
981 | @param NoPages Number of pages needed\r | |
982 | @param NewType The type of memory the range is going to be\r | |
983 | turned into\r | |
984 | @param Alignment Bits to align with\r | |
162ed594 | 985 | \r |
986 | @return The base address of the range, or 0 if the range was not found.\r | |
987 | \r | |
988 | **/\r | |
28a00297 | 989 | UINT64\r |
990 | FindFreePages (\r | |
991 | IN UINT64 MaxAddress,\r | |
992 | IN UINT64 NoPages,\r | |
993 | IN EFI_MEMORY_TYPE NewType,\r | |
994 | IN UINTN Alignment\r | |
995 | )\r | |
28a00297 | 996 | {\r |
997 | UINT64 NewMaxAddress;\r | |
998 | UINT64 Start;\r | |
999 | \r | |
1000 | NewMaxAddress = MaxAddress;\r | |
1001 | \r | |
1002 | if (NewType >= 0 && NewType < EfiMaxMemoryType && NewMaxAddress >= mMemoryTypeStatistics[NewType].MaximumAddress) {\r | |
1003 | NewMaxAddress = mMemoryTypeStatistics[NewType].MaximumAddress;\r | |
1004 | } else {\r | |
1005 | if (NewMaxAddress > mDefaultMaximumAddress) {\r | |
1006 | NewMaxAddress = mDefaultMaximumAddress;\r | |
1007 | }\r | |
1008 | }\r | |
1009 | \r | |
1010 | Start = CoreFindFreePagesI (NewMaxAddress, NoPages, NewType, Alignment);\r | |
71f68914 | 1011 | if (Start == 0) {\r |
28a00297 | 1012 | Start = CoreFindFreePagesI (MaxAddress, NoPages, NewType, Alignment);\r |
71f68914 | 1013 | if (Start == 0) {\r |
28a00297 | 1014 | //\r |
1015 | // Here means there may be no enough memory to use, so try to go through\r | |
1016 | // all the memory descript to promote the untested memory directly\r | |
1017 | //\r | |
1018 | PromoteMemoryResource ();\r | |
1019 | \r | |
1020 | //\r | |
1021 | // Allocate memory again after the memory resource re-arranged\r | |
1022 | //\r | |
1023 | Start = CoreFindFreePagesI (MaxAddress, NoPages, NewType, Alignment);\r | |
1024 | }\r | |
1025 | }\r | |
1026 | \r | |
1027 | return Start;\r | |
1028 | }\r | |
1029 | \r | |
1030 | \r | |
162ed594 | 1031 | \r |
1032 | /**\r | |
1033 | Allocates pages from the memory map.\r | |
1034 | \r | |
022c6d45 | 1035 | @param Type The type of allocation to perform\r |
1036 | @param MemoryType The type of memory to turn the allocated pages\r | |
1037 | into\r | |
1038 | @param NumberOfPages The number of pages to allocate\r | |
1039 | @param Memory A pointer to receive the base allocated memory\r | |
1040 | address\r | |
162ed594 | 1041 | \r |
1042 | @return Status. On success, Memory is filled in with the base address allocated\r | |
022c6d45 | 1043 | @retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in\r |
1044 | spec.\r | |
1045 | @retval EFI_NOT_FOUND Could not allocate pages match the requirement.\r | |
1046 | @retval EFI_OUT_OF_RESOURCES No enough pages to allocate.\r | |
162ed594 | 1047 | @retval EFI_SUCCESS Pages successfully allocated.\r |
1048 | \r | |
1049 | **/\r | |
28a00297 | 1050 | EFI_STATUS\r |
1051 | EFIAPI\r | |
1052 | CoreAllocatePages (\r | |
1053 | IN EFI_ALLOCATE_TYPE Type,\r | |
1054 | IN EFI_MEMORY_TYPE MemoryType,\r | |
1055 | IN UINTN NumberOfPages,\r | |
1056 | IN OUT EFI_PHYSICAL_ADDRESS *Memory\r | |
1057 | )\r | |
28a00297 | 1058 | {\r |
1059 | EFI_STATUS Status;\r | |
1060 | UINT64 Start;\r | |
1061 | UINT64 MaxAddress;\r | |
1062 | UINTN Alignment;\r | |
1063 | \r | |
1064 | if (Type < AllocateAnyPages || Type >= (UINTN) MaxAllocateType) {\r | |
1065 | return EFI_INVALID_PARAMETER;\r | |
1066 | }\r | |
1067 | \r | |
1068 | if ((MemoryType >= EfiMaxMemoryType && MemoryType <= 0x7fffffff) ||\r | |
1069 | MemoryType == EfiConventionalMemory) {\r | |
1070 | return EFI_INVALID_PARAMETER;\r | |
1071 | }\r | |
1072 | \r | |
1073 | Alignment = EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT;\r | |
1074 | \r | |
1075 | if (MemoryType == EfiACPIReclaimMemory ||\r | |
1076 | MemoryType == EfiACPIMemoryNVS ||\r | |
1077 | MemoryType == EfiRuntimeServicesCode ||\r | |
1078 | MemoryType == EfiRuntimeServicesData) {\r | |
1079 | \r | |
1080 | Alignment = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT;\r | |
1081 | }\r | |
1082 | \r | |
1083 | if (Type == AllocateAddress) {\r | |
1084 | if ((*Memory & (Alignment - 1)) != 0) {\r | |
1085 | return EFI_NOT_FOUND;\r | |
1086 | }\r | |
1087 | }\r | |
1088 | \r | |
1089 | NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;\r | |
1090 | NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);\r | |
1091 | \r | |
1092 | //\r | |
022c6d45 | 1093 | // If this is for below a particular address, then\r |
28a00297 | 1094 | //\r |
1095 | Start = *Memory;\r | |
022c6d45 | 1096 | \r |
28a00297 | 1097 | //\r |
1098 | // The max address is the max natively addressable address for the processor\r | |
1099 | //\r | |
f3f2e05d | 1100 | MaxAddress = MAX_ADDRESS;\r |
022c6d45 | 1101 | \r |
28a00297 | 1102 | if (Type == AllocateMaxAddress) {\r |
1103 | MaxAddress = Start;\r | |
1104 | }\r | |
1105 | \r | |
1106 | CoreAcquireMemoryLock ();\r | |
022c6d45 | 1107 | \r |
28a00297 | 1108 | //\r |
1109 | // If not a specific address, then find an address to allocate\r | |
1110 | //\r | |
1111 | if (Type != AllocateAddress) {\r | |
1112 | Start = FindFreePages (MaxAddress, NumberOfPages, MemoryType, Alignment);\r | |
1113 | if (Start == 0) {\r | |
1114 | Status = EFI_OUT_OF_RESOURCES;\r | |
1115 | goto Done;\r | |
1116 | }\r | |
1117 | }\r | |
1118 | \r | |
1119 | //\r | |
1120 | // Convert pages from FreeMemory to the requested type\r | |
1121 | //\r | |
1122 | Status = CoreConvertPages (Start, NumberOfPages, MemoryType);\r | |
1123 | \r | |
1124 | Done:\r | |
1125 | CoreReleaseMemoryLock ();\r | |
1126 | \r | |
1127 | if (!EFI_ERROR (Status)) {\r | |
1128 | *Memory = Start;\r | |
1129 | }\r | |
1130 | \r | |
1131 | return Status;\r | |
1132 | }\r | |
1133 | \r | |
1134 | \r | |
162ed594 | 1135 | /**\r |
1136 | Frees previous allocated pages.\r | |
1137 | \r | |
022c6d45 | 1138 | @param Memory Base address of memory being freed\r |
1139 | @param NumberOfPages The number of pages to free\r | |
162ed594 | 1140 | \r |
022c6d45 | 1141 | @retval EFI_NOT_FOUND Could not find the entry that covers the range\r |
1142 | @retval EFI_INVALID_PARAMETER Address not aligned\r | |
162ed594 | 1143 | @return EFI_SUCCESS -Pages successfully freed.\r |
1144 | \r | |
1145 | **/\r | |
022c6d45 | 1146 | EFI_STATUS\r |
28a00297 | 1147 | EFIAPI\r |
1148 | CoreFreePages (\r | |
1149 | IN EFI_PHYSICAL_ADDRESS Memory,\r | |
1150 | IN UINTN NumberOfPages\r | |
1151 | )\r | |
28a00297 | 1152 | {\r |
1153 | EFI_STATUS Status;\r | |
1154 | LIST_ENTRY *Link;\r | |
1155 | MEMORY_MAP *Entry;\r | |
1156 | UINTN Alignment;\r | |
1157 | \r | |
1158 | //\r | |
1159 | // Free the range\r | |
1160 | //\r | |
1161 | CoreAcquireMemoryLock ();\r | |
1162 | \r | |
1163 | //\r | |
1164 | // Find the entry that the covers the range\r | |
1165 | //\r | |
1166 | Entry = NULL;\r | |
1167 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
1168 | Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
1169 | if (Entry->Start <= Memory && Entry->End > Memory) {\r | |
1170 | break;\r | |
1171 | }\r | |
1172 | }\r | |
1173 | if (Link == &gMemoryMap) {\r | |
a5ca8fa7 | 1174 | Status = EFI_NOT_FOUND;\r |
1175 | goto Done;\r | |
28a00297 | 1176 | }\r |
1177 | \r | |
1178 | Alignment = EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT;\r | |
1179 | \r | |
525aded9 | 1180 | ASSERT (Entry != NULL);\r |
28a00297 | 1181 | if (Entry->Type == EfiACPIReclaimMemory ||\r |
1182 | Entry->Type == EfiACPIMemoryNVS ||\r | |
1183 | Entry->Type == EfiRuntimeServicesCode ||\r | |
1184 | Entry->Type == EfiRuntimeServicesData) {\r | |
1185 | \r | |
1186 | Alignment = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT;\r | |
1187 | \r | |
1188 | }\r | |
1189 | \r | |
1190 | if ((Memory & (Alignment - 1)) != 0) {\r | |
a5ca8fa7 | 1191 | Status = EFI_INVALID_PARAMETER;\r |
1192 | goto Done;\r | |
28a00297 | 1193 | }\r |
1194 | \r | |
1195 | NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;\r | |
1196 | NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);\r | |
1197 | \r | |
1198 | Status = CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);\r | |
1199 | \r | |
28a00297 | 1200 | if (EFI_ERROR (Status)) {\r |
a5ca8fa7 | 1201 | goto Done;\r |
28a00297 | 1202 | }\r |
1203 | \r | |
a5ca8fa7 | 1204 | Done:\r |
1205 | CoreReleaseMemoryLock ();\r | |
28a00297 | 1206 | return Status;\r |
1207 | }\r | |
1208 | \r | |
1209 | \r | |
162ed594 | 1210 | /**\r |
1211 | This function returns a copy of the current memory map. The map is an array of\r | |
1212 | memory descriptors, each of which describes a contiguous block of memory.\r | |
1213 | \r | |
022c6d45 | 1214 | @param MemoryMapSize A pointer to the size, in bytes, of the\r |
1215 | MemoryMap buffer. On input, this is the size of\r | |
1216 | the buffer allocated by the caller. On output,\r | |
1217 | it is the size of the buffer returned by the\r | |
1218 | firmware if the buffer was large enough, or the\r | |
1219 | size of the buffer needed to contain the map if\r | |
1220 | the buffer was too small.\r | |
1221 | @param MemoryMap A pointer to the buffer in which firmware places\r | |
1222 | the current memory map.\r | |
1223 | @param MapKey A pointer to the location in which firmware\r | |
1224 | returns the key for the current memory map.\r | |
1225 | @param DescriptorSize A pointer to the location in which firmware\r | |
1226 | returns the size, in bytes, of an individual\r | |
1227 | EFI_MEMORY_DESCRIPTOR.\r | |
1228 | @param DescriptorVersion A pointer to the location in which firmware\r | |
1229 | returns the version number associated with the\r | |
1230 | EFI_MEMORY_DESCRIPTOR.\r | |
1231 | \r | |
1232 | @retval EFI_SUCCESS The memory map was returned in the MemoryMap\r | |
1233 | buffer.\r | |
1234 | @retval EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current\r | |
1235 | buffer size needed to hold the memory map is\r | |
1236 | returned in MemoryMapSize.\r | |
162ed594 | 1237 | @retval EFI_INVALID_PARAMETER One of the parameters has an invalid value.\r |
1238 | \r | |
1239 | **/\r | |
28a00297 | 1240 | EFI_STATUS\r |
1241 | EFIAPI\r | |
1242 | CoreGetMemoryMap (\r | |
1243 | IN OUT UINTN *MemoryMapSize,\r | |
1244 | IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,\r | |
1245 | OUT UINTN *MapKey,\r | |
1246 | OUT UINTN *DescriptorSize,\r | |
1247 | OUT UINT32 *DescriptorVersion\r | |
1248 | )\r | |
28a00297 | 1249 | {\r |
1250 | EFI_STATUS Status;\r | |
022c6d45 | 1251 | UINTN Size;\r |
1252 | UINTN BufferSize;\r | |
28a00297 | 1253 | UINTN NumberOfRuntimeEntries;\r |
1254 | LIST_ENTRY *Link;\r | |
022c6d45 | 1255 | MEMORY_MAP *Entry;\r |
1256 | EFI_GCD_MAP_ENTRY *GcdMapEntry;\r | |
b74350e9 | 1257 | EFI_MEMORY_TYPE Type;\r |
28a00297 | 1258 | \r |
1259 | //\r | |
1260 | // Make sure the parameters are valid\r | |
1261 | //\r | |
1262 | if (MemoryMapSize == NULL) {\r | |
1263 | return EFI_INVALID_PARAMETER;\r | |
1264 | }\r | |
022c6d45 | 1265 | \r |
28a00297 | 1266 | CoreAcquireGcdMemoryLock ();\r |
022c6d45 | 1267 | \r |
28a00297 | 1268 | //\r |
1269 | // Count the number of Reserved and MMIO entries that are marked for runtime use\r | |
1270 | //\r | |
1271 | NumberOfRuntimeEntries = 0;\r | |
1272 | for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {\r | |
1273 | GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r | |
1274 | if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||\r | |
1275 | (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo)) {\r | |
1276 | if ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) {\r | |
1277 | NumberOfRuntimeEntries++;\r | |
1278 | }\r | |
1279 | }\r | |
1280 | }\r | |
1281 | \r | |
1282 | Size = sizeof (EFI_MEMORY_DESCRIPTOR);\r | |
1283 | \r | |
1284 | //\r | |
1285 | // Make sure Size != sizeof(EFI_MEMORY_DESCRIPTOR). This will\r | |
1286 | // prevent people from having pointer math bugs in their code.\r | |
1287 | // now you have to use *DescriptorSize to make things work.\r | |
1288 | //\r | |
1289 | Size += sizeof(UINT64) - (Size % sizeof (UINT64));\r | |
1290 | \r | |
1291 | if (DescriptorSize != NULL) {\r | |
1292 | *DescriptorSize = Size;\r | |
1293 | }\r | |
022c6d45 | 1294 | \r |
28a00297 | 1295 | if (DescriptorVersion != NULL) {\r |
1296 | *DescriptorVersion = EFI_MEMORY_DESCRIPTOR_VERSION;\r | |
1297 | }\r | |
1298 | \r | |
1299 | CoreAcquireMemoryLock ();\r | |
1300 | \r | |
1301 | //\r | |
1302 | // Compute the buffer size needed to fit the entire map\r | |
1303 | //\r | |
1304 | BufferSize = Size * NumberOfRuntimeEntries;\r | |
1305 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
1306 | BufferSize += Size;\r | |
1307 | }\r | |
1308 | \r | |
1309 | if (*MemoryMapSize < BufferSize) {\r | |
1310 | Status = EFI_BUFFER_TOO_SMALL;\r | |
1311 | goto Done;\r | |
1312 | }\r | |
1313 | \r | |
1314 | if (MemoryMap == NULL) {\r | |
1315 | Status = EFI_INVALID_PARAMETER;\r | |
1316 | goto Done;\r | |
1317 | }\r | |
1318 | \r | |
1319 | //\r | |
1320 | // Build the map\r | |
1321 | //\r | |
383c303c | 1322 | ZeroMem (MemoryMap, BufferSize);\r |
28a00297 | 1323 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r |
1324 | Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
1325 | ASSERT (Entry->VirtualStart == 0);\r | |
1326 | \r | |
b74350e9 | 1327 | //\r |
1328 | // Convert internal map into an EFI_MEMORY_DESCRIPTOR\r | |
1329 | //\r | |
28a00297 | 1330 | MemoryMap->Type = Entry->Type;\r |
1331 | MemoryMap->PhysicalStart = Entry->Start;\r | |
1332 | MemoryMap->VirtualStart = Entry->VirtualStart;\r | |
1333 | MemoryMap->NumberOfPages = RShiftU64 (Entry->End - Entry->Start + 1, EFI_PAGE_SHIFT);\r | |
b74350e9 | 1334 | //\r |
1335 | // If the memory type is EfiConventionalMemory, then determine if the range is part of a\r | |
022c6d45 | 1336 | // memory type bin and needs to be converted to the same memory type as the rest of the\r |
1337 | // memory type bin in order to minimize EFI Memory Map changes across reboots. This\r | |
b74350e9 | 1338 | // improves the chances for a successful S4 resume in the presence of minor page allocation\r |
1339 | // differences across reboots.\r | |
1340 | //\r | |
1341 | if (MemoryMap->Type == EfiConventionalMemory) {\r | |
1342 | for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {\r | |
1343 | if (mMemoryTypeStatistics[Type].Special &&\r | |
1344 | mMemoryTypeStatistics[Type].NumberOfPages > 0 &&\r | |
1345 | Entry->Start >= mMemoryTypeStatistics[Type].BaseAddress &&\r | |
e94a9ff7 | 1346 | Entry->End <= mMemoryTypeStatistics[Type].MaximumAddress) {\r |
b74350e9 | 1347 | MemoryMap->Type = Type;\r |
1348 | }\r | |
1349 | }\r | |
1350 | }\r | |
1351 | MemoryMap->Attribute = Entry->Attribute;\r | |
1352 | if (mMemoryTypeStatistics[MemoryMap->Type].Runtime) {\r | |
1353 | MemoryMap->Attribute |= EFI_MEMORY_RUNTIME;\r | |
28a00297 | 1354 | }\r |
022c6d45 | 1355 | \r |
43025b29 | 1356 | MemoryMap = NEXT_MEMORY_DESCRIPTOR (MemoryMap, Size);\r |
28a00297 | 1357 | }\r |
1358 | \r | |
1359 | for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {\r | |
1360 | GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r | |
1361 | if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||\r | |
1362 | (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo)) {\r | |
1363 | if ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) {\r | |
dc8d93ca | 1364 | // \r |
1365 | // Create EFI_MEMORY_DESCRIPTOR for every Reserved and MMIO GCD entries\r | |
1366 | // that are marked for runtime use\r | |
1367 | //\r | |
28a00297 | 1368 | MemoryMap->PhysicalStart = GcdMapEntry->BaseAddress;\r |
1369 | MemoryMap->VirtualStart = 0;\r | |
1370 | MemoryMap->NumberOfPages = RShiftU64 ((GcdMapEntry->EndAddress - GcdMapEntry->BaseAddress + 1), EFI_PAGE_SHIFT);\r | |
1371 | MemoryMap->Attribute = GcdMapEntry->Attributes & ~EFI_MEMORY_PORT_IO;\r | |
1372 | \r | |
1373 | if (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) {\r | |
1374 | MemoryMap->Type = EfiReservedMemoryType;\r | |
1375 | } else if (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) {\r | |
1376 | if ((GcdMapEntry->Attributes & EFI_MEMORY_PORT_IO) == EFI_MEMORY_PORT_IO) {\r | |
1377 | MemoryMap->Type = EfiMemoryMappedIOPortSpace;\r | |
1378 | } else {\r | |
1379 | MemoryMap->Type = EfiMemoryMappedIO;\r | |
1380 | }\r | |
1381 | }\r | |
1382 | \r | |
43025b29 | 1383 | MemoryMap = NEXT_MEMORY_DESCRIPTOR (MemoryMap, Size);\r |
28a00297 | 1384 | }\r |
1385 | }\r | |
1386 | }\r | |
022c6d45 | 1387 | \r |
28a00297 | 1388 | Status = EFI_SUCCESS;\r |
1389 | \r | |
1390 | Done:\r | |
1391 | \r | |
1392 | CoreReleaseMemoryLock ();\r | |
022c6d45 | 1393 | \r |
28a00297 | 1394 | CoreReleaseGcdMemoryLock ();\r |
022c6d45 | 1395 | \r |
1396 | //\r | |
1397 | // Update the map key finally\r | |
1398 | //\r | |
28a00297 | 1399 | if (MapKey != NULL) {\r |
1400 | *MapKey = mMemoryMapKey;\r | |
1401 | }\r | |
022c6d45 | 1402 | \r |
28a00297 | 1403 | *MemoryMapSize = BufferSize;\r |
022c6d45 | 1404 | \r |
28a00297 | 1405 | return Status;\r |
1406 | }\r | |
1407 | \r | |
28a00297 | 1408 | \r |
162ed594 | 1409 | /**\r |
28a00297 | 1410 | Internal function. Used by the pool functions to allocate pages\r |
1411 | to back pool allocation requests.\r | |
1412 | \r | |
022c6d45 | 1413 | @param PoolType The type of memory for the new pool pages\r |
1414 | @param NumberOfPages No of pages to allocate\r | |
1415 | @param Alignment Bits to align.\r | |
28a00297 | 1416 | \r |
162ed594 | 1417 | @return The allocated memory, or NULL\r |
28a00297 | 1418 | \r |
162ed594 | 1419 | **/\r |
1420 | VOID *\r | |
1421 | CoreAllocatePoolPages (\r | |
1422 | IN EFI_MEMORY_TYPE PoolType,\r | |
1423 | IN UINTN NumberOfPages,\r | |
1424 | IN UINTN Alignment\r | |
1425 | )\r | |
28a00297 | 1426 | {\r |
1427 | UINT64 Start;\r | |
1428 | \r | |
1429 | //\r | |
1430 | // Find the pages to convert\r | |
1431 | //\r | |
f3f2e05d | 1432 | Start = FindFreePages (MAX_ADDRESS, NumberOfPages, PoolType, Alignment);\r |
28a00297 | 1433 | \r |
1434 | //\r | |
1435 | // Convert it to boot services data\r | |
1436 | //\r | |
1437 | if (Start == 0) {\r | |
7df7393f | 1438 | DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "AllocatePoolPages: failed to allocate %d pages\n", (UINT32)NumberOfPages));\r |
28a00297 | 1439 | } else {\r |
1440 | CoreConvertPages (Start, NumberOfPages, PoolType);\r | |
1441 | }\r | |
1442 | \r | |
e94a9ff7 | 1443 | return (VOID *)(UINTN) Start;\r |
28a00297 | 1444 | }\r |
1445 | \r | |
162ed594 | 1446 | \r |
1447 | /**\r | |
1448 | Internal function. Frees pool pages allocated via AllocatePoolPages ()\r | |
1449 | \r | |
022c6d45 | 1450 | @param Memory The base address to free\r |
162ed594 | 1451 | @param NumberOfPages The number of pages to free\r |
1452 | \r | |
1453 | **/\r | |
28a00297 | 1454 | VOID\r |
1455 | CoreFreePoolPages (\r | |
1456 | IN EFI_PHYSICAL_ADDRESS Memory,\r | |
1457 | IN UINTN NumberOfPages\r | |
1458 | )\r | |
28a00297 | 1459 | {\r |
1460 | CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);\r | |
1461 | }\r | |
1462 | \r | |
1463 | \r | |
28a00297 | 1464 | \r |
162ed594 | 1465 | /**\r |
1466 | Make sure the memory map is following all the construction rules,\r | |
28a00297 | 1467 | it is the last time to check memory map error before exit boot services.\r |
1468 | \r | |
022c6d45 | 1469 | @param MapKey Memory map key\r |
28a00297 | 1470 | \r |
022c6d45 | 1471 | @retval EFI_INVALID_PARAMETER Memory map not consistent with construction\r |
1472 | rules.\r | |
162ed594 | 1473 | @retval EFI_SUCCESS Valid memory map.\r |
28a00297 | 1474 | \r |
162ed594 | 1475 | **/\r |
1476 | EFI_STATUS\r | |
1477 | CoreTerminateMemoryMap (\r | |
1478 | IN UINTN MapKey\r | |
1479 | )\r | |
28a00297 | 1480 | {\r |
1481 | EFI_STATUS Status;\r | |
1482 | LIST_ENTRY *Link;\r | |
1483 | MEMORY_MAP *Entry;\r | |
1484 | \r | |
1485 | Status = EFI_SUCCESS;\r | |
1486 | \r | |
1487 | CoreAcquireMemoryLock ();\r | |
1488 | \r | |
1489 | if (MapKey == mMemoryMapKey) {\r | |
1490 | \r | |
1491 | //\r | |
1492 | // Make sure the memory map is following all the construction rules\r | |
1493 | // This is the last chance we will be able to display any messages on\r | |
1494 | // the console devices.\r | |
1495 | //\r | |
1496 | \r | |
1497 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
1498 | Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
6e536468 | 1499 | if ((Entry->Attribute & EFI_MEMORY_RUNTIME) != 0) {\r |
28a00297 | 1500 | if (Entry->Type == EfiACPIReclaimMemory || Entry->Type == EfiACPIMemoryNVS) {\r |
d45fd260 | 1501 | DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: ACPI memory entry has RUNTIME attribute set.\n"));\r |
1502 | Status = EFI_INVALID_PARAMETER;\r | |
1503 | goto Done;\r | |
28a00297 | 1504 | }\r |
6e536468 | 1505 | if ((Entry->Start & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) != 0) {\r |
d45fd260 | 1506 | DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));\r |
1507 | Status = EFI_INVALID_PARAMETER;\r | |
1508 | goto Done;\r | |
28a00297 | 1509 | }\r |
6e536468 | 1510 | if (((Entry->End + 1) & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) != 0) {\r |
d45fd260 | 1511 | DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));\r |
1512 | Status = EFI_INVALID_PARAMETER;\r | |
1513 | goto Done;\r | |
28a00297 | 1514 | }\r |
1515 | }\r | |
1516 | }\r | |
1517 | \r | |
1518 | //\r | |
1519 | // The map key they gave us matches what we expect. Fall through and\r | |
1520 | // return success. In an ideal world we would clear out all of\r | |
1521 | // EfiBootServicesCode and EfiBootServicesData. However this function\r | |
1522 | // is not the last one called by ExitBootServices(), so we have to\r | |
1523 | // preserve the memory contents.\r | |
1524 | //\r | |
1525 | } else {\r | |
1526 | Status = EFI_INVALID_PARAMETER;\r | |
1527 | }\r | |
1528 | \r | |
d45fd260 | 1529 | Done:\r |
28a00297 | 1530 | CoreReleaseMemoryLock ();\r |
1531 | \r | |
1532 | return Status;\r | |
1533 | }\r | |
1534 | \r | |
1535 | \r | |
1536 | \r | |
1537 | \r | |
1538 | \r | |
1539 | \r | |
1540 | \r | |
1541 | \r | |
162ed594 | 1542 | \r |