Commit | Line | Data |
---|---|---|
504214c4 | 1 | /** @file\r |
504214c4 LG |
2 | UEFI Memory page management functions.\r |
3 | \r | |
23c98c94 | 4 | Copyright (c) 2007 - 2008, Intel Corporation. <BR>\r |
5 | All rights reserved. This program and the accompanying materials\r | |
6 | are licensed and made available under the terms and conditions of the BSD License\r | |
7 | which accompanies this distribution. The full text of the license may be found at\r | |
8 | http://opensource.org/licenses/bsd-license.php\r | |
9 | \r | |
10 | THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r | |
11 | WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r | |
28a00297 | 12 | \r |
504214c4 | 13 | **/\r |
28a00297 | 14 | \r |
9c4ac31c | 15 | #include "DxeMain.h"\r |
ec90508b | 16 | #include "Imem.h"\r |
28a00297 | 17 | \r |
18 | #define EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT (EFI_PAGE_SIZE)\r | |
19 | \r | |
20 | //\r | |
d45fd260 | 21 | // Entry for tracking the memory regions for each memory type to coalesce similar memory types\r |
28a00297 | 22 | //\r |
23 | typedef struct {\r | |
24 | EFI_PHYSICAL_ADDRESS BaseAddress;\r | |
25 | EFI_PHYSICAL_ADDRESS MaximumAddress;\r | |
26 | UINT64 CurrentNumberOfPages;\r | |
b74350e9 | 27 | UINT64 NumberOfPages;\r |
28a00297 | 28 | UINTN InformationIndex;\r |
b74350e9 | 29 | BOOLEAN Special;\r |
30 | BOOLEAN Runtime;\r | |
28a00297 | 31 | } EFI_MEMORY_TYPE_STAISTICS;\r |
32 | \r | |
33 | //\r | |
34 | // MemoryMap - The current memory map\r | |
35 | //\r | |
36 | UINTN mMemoryMapKey = 0;\r | |
37 | \r | |
38 | //\r | |
39 | // mMapStack - space to use as temp storage to build new map descriptors\r | |
40 | // mMapDepth - depth of new descriptor stack\r | |
41 | //\r | |
42 | \r | |
43 | #define MAX_MAP_DEPTH 6\r | |
44 | UINTN mMapDepth = 0;\r | |
45 | MEMORY_MAP mMapStack[MAX_MAP_DEPTH];\r | |
46 | UINTN mFreeMapStack = 0;\r | |
47 | //\r | |
48 | // This list maintain the free memory map list\r | |
49 | //\r | |
e94a9ff7 | 50 | LIST_ENTRY mFreeMemoryMapEntryList = INITIALIZE_LIST_HEAD_VARIABLE (mFreeMemoryMapEntryList);\r |
51 | BOOLEAN mMemoryTypeInformationInitialized = FALSE;\r | |
28a00297 | 52 | \r |
53 | EFI_MEMORY_TYPE_STAISTICS mMemoryTypeStatistics[EfiMaxMemoryType + 1] = {\r | |
b74350e9 | 54 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiReservedMemoryType\r |
55 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderCode\r | |
56 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderData\r | |
57 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesCode\r | |
58 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesData\r | |
59 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesCode\r | |
60 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesData\r | |
61 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiConventionalMemory\r | |
62 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiUnusableMemory\r | |
63 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIReclaimMemory\r | |
64 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIMemoryNVS\r | |
65 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIO\r | |
66 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIOPortSpace\r | |
67 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiPalCode\r | |
68 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE } // EfiMaxMemoryType\r | |
28a00297 | 69 | };\r |
70 | \r | |
71 | EFI_PHYSICAL_ADDRESS mDefaultMaximumAddress = EFI_MAX_ADDRESS;\r | |
72 | \r | |
73 | EFI_MEMORY_TYPE_INFORMATION gMemoryTypeInformation[EfiMaxMemoryType + 1] = {\r | |
74 | { EfiReservedMemoryType, 0 },\r | |
75 | { EfiLoaderCode, 0 },\r | |
76 | { EfiLoaderData, 0 },\r | |
77 | { EfiBootServicesCode, 0 },\r | |
78 | { EfiBootServicesData, 0 },\r | |
79 | { EfiRuntimeServicesCode, 0 },\r | |
80 | { EfiRuntimeServicesData, 0 },\r | |
81 | { EfiConventionalMemory, 0 },\r | |
82 | { EfiUnusableMemory, 0 },\r | |
83 | { EfiACPIReclaimMemory, 0 },\r | |
84 | { EfiACPIMemoryNVS, 0 },\r | |
85 | { EfiMemoryMappedIO, 0 },\r | |
86 | { EfiMemoryMappedIOPortSpace, 0 },\r | |
87 | { EfiPalCode, 0 },\r | |
88 | { EfiMaxMemoryType, 0 }\r | |
89 | };\r | |
90 | \r | |
d9177625 | 91 | \r |
162ed594 | 92 | /**\r |
d9177625 | 93 | Enter critical section by gaining lock on gMemoryLock.\r |
162ed594 | 94 | \r |
95 | **/\r | |
23c98c94 | 96 | VOID\r |
d9177625 | 97 | CoreAcquireMemoryLock (\r |
98 | VOID\r | |
99 | )\r | |
100 | {\r | |
101 | CoreAcquireLock (&gMemoryLock);\r | |
102 | }\r | |
103 | \r | |
104 | \r | |
105 | \r | |
106 | /**\r | |
107 | Exit critical section by releasing lock on gMemoryLock.\r | |
108 | \r | |
109 | **/\r | |
110 | VOID\r | |
111 | CoreReleaseMemoryLock (\r | |
28a00297 | 112 | VOID\r |
d9177625 | 113 | )\r |
114 | {\r | |
115 | CoreReleaseLock (&gMemoryLock);\r | |
116 | }\r | |
117 | \r | |
118 | \r | |
119 | \r | |
120 | \r | |
121 | /**\r | |
122 | Internal function. Removes a descriptor entry.\r | |
123 | \r | |
124 | @param Entry The entry to remove\r | |
125 | \r | |
126 | **/\r | |
127 | VOID\r | |
128 | RemoveMemoryMapEntry (\r | |
129 | IN OUT MEMORY_MAP *Entry\r | |
130 | )\r | |
131 | {\r | |
132 | RemoveEntryList (&Entry->Link);\r | |
133 | Entry->Link.ForwardLink = NULL;\r | |
134 | \r | |
135 | if (Entry->FromPages) {\r | |
136 | //\r | |
137 | // Insert the free memory map descriptor to the end of mFreeMemoryMapEntryList\r | |
138 | //\r | |
139 | InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);\r | |
140 | }\r | |
141 | }\r | |
162ed594 | 142 | \r |
143 | /**\r | |
144 | Internal function. Adds a ranges to the memory map.\r | |
145 | The range must not already exist in the map.\r | |
146 | \r | |
022c6d45 | 147 | @param Type The type of memory range to add\r |
148 | @param Start The starting address in the memory range Must be\r | |
149 | paged aligned\r | |
150 | @param End The last address in the range Must be the last\r | |
151 | byte of a page\r | |
152 | @param Attribute The attributes of the memory range to add\r | |
28a00297 | 153 | \r |
162ed594 | 154 | **/\r |
28a00297 | 155 | VOID\r |
156 | CoreAddRange (\r | |
157 | IN EFI_MEMORY_TYPE Type,\r | |
158 | IN EFI_PHYSICAL_ADDRESS Start,\r | |
159 | IN EFI_PHYSICAL_ADDRESS End,\r | |
160 | IN UINT64 Attribute\r | |
d9177625 | 161 | )\r |
162 | {\r | |
163 | LIST_ENTRY *Link;\r | |
164 | MEMORY_MAP *Entry;\r | |
28a00297 | 165 | \r |
d9177625 | 166 | ASSERT ((Start & EFI_PAGE_MASK) == 0);\r |
167 | ASSERT (End > Start) ;\r | |
162ed594 | 168 | \r |
d9177625 | 169 | ASSERT_LOCKED (&gMemoryLock);\r |
28a00297 | 170 | \r |
d9177625 | 171 | DEBUG ((DEBUG_PAGE, "AddRange: %lx-%lx to %d\n", Start, End, Type));\r |
162ed594 | 172 | \r |
d9177625 | 173 | //\r |
174 | // Memory map being altered so updated key\r | |
175 | //\r | |
176 | mMemoryMapKey += 1;\r | |
162ed594 | 177 | \r |
d9177625 | 178 | //\r |
179 | // UEFI 2.0 added an event group for notificaiton on memory map changes.\r | |
180 | // So we need to signal this Event Group every time the memory map changes.\r | |
181 | // If we are in EFI 1.10 compatability mode no event groups will be\r | |
182 | // found and nothing will happen we we call this function. These events\r | |
183 | // will get signaled but since a lock is held around the call to this\r | |
184 | // function the notificaiton events will only be called after this funciton\r | |
185 | // returns and the lock is released.\r | |
186 | //\r | |
187 | CoreNotifySignalList (&gEfiEventMemoryMapChangeGuid);\r | |
162ed594 | 188 | \r |
d9177625 | 189 | //\r |
190 | // Look for adjoining memory descriptor\r | |
191 | //\r | |
28a00297 | 192 | \r |
d9177625 | 193 | // Two memory descriptors can only be merged if they have the same Type\r |
194 | // and the same Attribute\r | |
195 | //\r | |
162ed594 | 196 | \r |
d9177625 | 197 | Link = gMemoryMap.ForwardLink;\r |
198 | while (Link != &gMemoryMap) {\r | |
199 | Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
200 | Link = Link->ForwardLink;\r | |
162ed594 | 201 | \r |
d9177625 | 202 | if (Entry->Type != Type) {\r |
203 | continue;\r | |
204 | }\r | |
205 | \r | |
206 | if (Entry->Attribute != Attribute) {\r | |
207 | continue;\r | |
208 | }\r | |
209 | \r | |
210 | if (Entry->End + 1 == Start) {\r | |
211 | \r | |
212 | Start = Entry->Start;\r | |
213 | RemoveMemoryMapEntry (Entry);\r | |
214 | \r | |
215 | } else if (Entry->Start == End + 1) {\r | |
216 | \r | |
217 | End = Entry->End;\r | |
218 | RemoveMemoryMapEntry (Entry);\r | |
219 | }\r | |
220 | }\r | |
221 | \r | |
222 | //\r | |
223 | // Add descriptor\r | |
224 | //\r | |
225 | \r | |
226 | mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;\r | |
227 | mMapStack[mMapDepth].FromPages = FALSE;\r | |
228 | mMapStack[mMapDepth].Type = Type;\r | |
229 | mMapStack[mMapDepth].Start = Start;\r | |
230 | mMapStack[mMapDepth].End = End;\r | |
231 | mMapStack[mMapDepth].VirtualStart = 0;\r | |
232 | mMapStack[mMapDepth].Attribute = Attribute;\r | |
233 | InsertTailList (&gMemoryMap, &mMapStack[mMapDepth].Link);\r | |
234 | \r | |
235 | mMapDepth += 1;\r | |
236 | ASSERT (mMapDepth < MAX_MAP_DEPTH);\r | |
237 | \r | |
238 | return ;\r | |
239 | }\r | |
022c6d45 | 240 | \r |
162ed594 | 241 | /**\r |
242 | Internal function. Deque a descriptor entry from the mFreeMemoryMapEntryList.\r | |
243 | If the list is emtry, then allocate a new page to refuel the list.\r | |
244 | Please Note this algorithm to allocate the memory map descriptor has a property\r | |
245 | that the memory allocated for memory entries always grows, and will never really be freed\r | |
246 | For example, if the current boot uses 2000 memory map entries at the maximum point, but\r | |
247 | ends up with only 50 at the time the OS is booted, then the memory associated with the 1950\r | |
248 | memory map entries is still allocated from EfiBootServicesMemory.\r | |
249 | \r | |
250 | \r | |
251 | @return The Memory map descriptor dequed from the mFreeMemoryMapEntryList\r | |
252 | \r | |
253 | **/\r | |
28a00297 | 254 | MEMORY_MAP *\r |
255 | AllocateMemoryMapEntry (\r | |
256 | VOID\r | |
d9177625 | 257 | )\r |
258 | {\r | |
259 | MEMORY_MAP* FreeDescriptorEntries;\r | |
260 | MEMORY_MAP* Entry;\r | |
261 | UINTN Index;\r | |
262 | \r | |
263 | if (IsListEmpty (&mFreeMemoryMapEntryList)) {\r | |
264 | //\r | |
265 | // The list is empty, to allocate one page to refuel the list\r | |
266 | //\r | |
267 | FreeDescriptorEntries = CoreAllocatePoolPages (EfiBootServicesData, EFI_SIZE_TO_PAGES(DEFAULT_PAGE_ALLOCATION), DEFAULT_PAGE_ALLOCATION);\r | |
268 | if(FreeDescriptorEntries != NULL) {\r | |
269 | //\r | |
270 | // Enque the free memmory map entries into the list\r | |
271 | //\r | |
272 | for (Index = 0; Index< DEFAULT_PAGE_ALLOCATION / sizeof(MEMORY_MAP); Index++) {\r | |
273 | FreeDescriptorEntries[Index].Signature = MEMORY_MAP_SIGNATURE;\r | |
274 | InsertTailList (&mFreeMemoryMapEntryList, &FreeDescriptorEntries[Index].Link);\r | |
275 | }\r | |
276 | } else {\r | |
277 | return NULL;\r | |
278 | }\r | |
279 | }\r | |
280 | //\r | |
281 | // dequeue the first descriptor from the list\r | |
282 | //\r | |
283 | Entry = CR (mFreeMemoryMapEntryList.ForwardLink, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
284 | RemoveEntryList (&Entry->Link);\r | |
285 | \r | |
286 | return Entry;\r | |
287 | }\r | |
022c6d45 | 288 | \r |
162ed594 | 289 | \r |
290 | /**\r | |
d9177625 | 291 | Internal function. Moves any memory descriptors that are on the\r |
292 | temporary descriptor stack to heap.\r | |
162ed594 | 293 | \r |
294 | **/\r | |
28a00297 | 295 | VOID\r |
d9177625 | 296 | CoreFreeMemoryMapStack (\r |
28a00297 | 297 | VOID\r |
298 | )\r | |
28a00297 | 299 | {\r |
d9177625 | 300 | MEMORY_MAP *Entry;\r |
301 | MEMORY_MAP *Entry2;\r | |
302 | LIST_ENTRY *Link2;\r | |
28a00297 | 303 | \r |
d9177625 | 304 | ASSERT_LOCKED (&gMemoryLock);\r |
28a00297 | 305 | \r |
d9177625 | 306 | //\r |
307 | // If already freeing the map stack, then return\r | |
308 | //\r | |
309 | if (mFreeMapStack != 0) {\r | |
310 | return ;\r | |
311 | }\r | |
162ed594 | 312 | \r |
d9177625 | 313 | //\r |
314 | // Move the temporary memory descriptor stack into pool\r | |
315 | //\r | |
316 | mFreeMapStack += 1;\r | |
162ed594 | 317 | \r |
d9177625 | 318 | while (mMapDepth != 0) {\r |
319 | //\r | |
320 | // Deque an memory map entry from mFreeMemoryMapEntryList\r | |
321 | //\r | |
322 | Entry = AllocateMemoryMapEntry ();\r | |
323 | \r | |
324 | ASSERT (Entry);\r | |
325 | \r | |
326 | //\r | |
327 | // Update to proper entry\r | |
328 | //\r | |
329 | mMapDepth -= 1;\r | |
330 | \r | |
331 | if (mMapStack[mMapDepth].Link.ForwardLink != NULL) {\r | |
332 | \r | |
333 | //\r | |
334 | // Move this entry to general memory\r | |
335 | //\r | |
336 | RemoveEntryList (&mMapStack[mMapDepth].Link);\r | |
337 | mMapStack[mMapDepth].Link.ForwardLink = NULL;\r | |
338 | \r | |
339 | CopyMem (Entry , &mMapStack[mMapDepth], sizeof (MEMORY_MAP));\r | |
340 | Entry->FromPages = TRUE;\r | |
341 | \r | |
342 | //\r | |
343 | // Find insertion location\r | |
344 | //\r | |
345 | for (Link2 = gMemoryMap.ForwardLink; Link2 != &gMemoryMap; Link2 = Link2->ForwardLink) {\r | |
346 | Entry2 = CR (Link2, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
347 | if (Entry2->FromPages && Entry2->Start > Entry->Start) {\r | |
348 | break;\r | |
349 | }\r | |
350 | }\r | |
351 | \r | |
352 | InsertTailList (Link2, &Entry->Link);\r | |
353 | \r | |
354 | } else {\r | |
355 | //\r | |
356 | // This item of mMapStack[mMapDepth] has already been dequeued from gMemoryMap list,\r | |
357 | // so here no need to move it to memory.\r | |
358 | //\r | |
359 | InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);\r | |
360 | }\r | |
361 | }\r | |
28a00297 | 362 | \r |
d9177625 | 363 | mFreeMapStack -= 1;\r |
364 | }\r | |
162ed594 | 365 | \r |
366 | /**\r | |
367 | Find untested but initialized memory regions in GCD map and convert them to be DXE allocatable.\r | |
368 | \r | |
369 | **/\r | |
28a00297 | 370 | VOID\r |
371 | PromoteMemoryResource (\r | |
372 | VOID\r | |
373 | )\r | |
28a00297 | 374 | {\r |
375 | LIST_ENTRY *Link;\r | |
376 | EFI_GCD_MAP_ENTRY *Entry;\r | |
377 | \r | |
d45fd260 | 378 | DEBUG ((DEBUG_PAGE, "Promote the memory resource\n"));\r |
022c6d45 | 379 | \r |
28a00297 | 380 | CoreAcquireGcdMemoryLock ();\r |
022c6d45 | 381 | \r |
28a00297 | 382 | Link = mGcdMemorySpaceMap.ForwardLink;\r |
383 | while (Link != &mGcdMemorySpaceMap) {\r | |
384 | \r | |
385 | Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r | |
386 | \r | |
387 | if (Entry->GcdMemoryType == EfiGcdMemoryTypeReserved &&\r | |
388 | Entry->EndAddress < EFI_MAX_ADDRESS &&\r | |
389 | (Entry->Capabilities & (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED)) ==\r | |
390 | (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED)) {\r | |
391 | //\r | |
392 | // Update the GCD map\r | |
393 | //\r | |
394 | Entry->GcdMemoryType = EfiGcdMemoryTypeSystemMemory;\r | |
395 | Entry->Capabilities |= EFI_MEMORY_TESTED;\r | |
396 | Entry->ImageHandle = gDxeCoreImageHandle;\r | |
397 | Entry->DeviceHandle = NULL;\r | |
398 | \r | |
399 | //\r | |
400 | // Add to allocable system memory resource\r | |
022c6d45 | 401 | //\r |
28a00297 | 402 | \r |
403 | CoreAddRange (\r | |
022c6d45 | 404 | EfiConventionalMemory,\r |
405 | Entry->BaseAddress,\r | |
406 | Entry->EndAddress,\r | |
28a00297 | 407 | Entry->Capabilities & ~(EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED | EFI_MEMORY_RUNTIME)\r |
408 | );\r | |
409 | CoreFreeMemoryMapStack ();\r | |
022c6d45 | 410 | \r |
28a00297 | 411 | }\r |
412 | \r | |
413 | Link = Link->ForwardLink;\r | |
414 | }\r | |
022c6d45 | 415 | \r |
28a00297 | 416 | CoreReleaseGcdMemoryLock ();\r |
022c6d45 | 417 | \r |
28a00297 | 418 | return;\r |
419 | }\r | |
420 | \r | |
28a00297 | 421 | \r |
162ed594 | 422 | /**\r |
28a00297 | 423 | Called to initialize the memory map and add descriptors to\r |
424 | the current descriptor list.\r | |
28a00297 | 425 | The first descriptor that is added must be general usable\r |
426 | memory as the addition allocates heap.\r | |
427 | \r | |
022c6d45 | 428 | @param Type The type of memory to add\r |
429 | @param Start The starting address in the memory range Must be\r | |
430 | page aligned\r | |
431 | @param NumberOfPages The number of pages in the range\r | |
432 | @param Attribute Attributes of the memory to add\r | |
28a00297 | 433 | \r |
162ed594 | 434 | @return None. The range is added to the memory map\r |
28a00297 | 435 | \r |
162ed594 | 436 | **/\r |
437 | VOID\r | |
438 | CoreAddMemoryDescriptor (\r | |
439 | IN EFI_MEMORY_TYPE Type,\r | |
440 | IN EFI_PHYSICAL_ADDRESS Start,\r | |
441 | IN UINT64 NumberOfPages,\r | |
442 | IN UINT64 Attribute\r | |
443 | )\r | |
28a00297 | 444 | {\r |
445 | EFI_PHYSICAL_ADDRESS End;\r | |
446 | EFI_STATUS Status;\r | |
447 | UINTN Index;\r | |
448 | UINTN FreeIndex;\r | |
449 | \r | |
450 | if ((Start & EFI_PAGE_MASK) != 0) {\r | |
451 | return;\r | |
452 | }\r | |
453 | \r | |
454 | if (Type >= EfiMaxMemoryType && Type <= 0x7fffffff) {\r | |
455 | return;\r | |
456 | }\r | |
022c6d45 | 457 | \r |
28a00297 | 458 | CoreAcquireMemoryLock ();\r |
459 | End = Start + LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT) - 1;\r | |
460 | CoreAddRange (Type, Start, End, Attribute);\r | |
461 | CoreFreeMemoryMapStack ();\r | |
462 | CoreReleaseMemoryLock ();\r | |
463 | \r | |
464 | //\r | |
465 | // Check to see if the statistics for the different memory types have already been established\r | |
466 | //\r | |
467 | if (mMemoryTypeInformationInitialized) {\r | |
468 | return;\r | |
469 | }\r | |
470 | \r | |
471 | //\r | |
472 | // Loop through each memory type in the order specified by the gMemoryTypeInformation[] array\r | |
473 | //\r | |
474 | for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r | |
475 | //\r | |
476 | // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r | |
477 | //\r | |
478 | Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);\r | |
479 | if (Type < 0 || Type > EfiMaxMemoryType) {\r | |
480 | continue;\r | |
481 | }\r | |
482 | \r | |
483 | if (gMemoryTypeInformation[Index].NumberOfPages != 0) {\r | |
484 | //\r | |
485 | // Allocate pages for the current memory type from the top of available memory\r | |
486 | //\r | |
487 | Status = CoreAllocatePages (\r | |
488 | AllocateAnyPages,\r | |
489 | Type,\r | |
490 | gMemoryTypeInformation[Index].NumberOfPages,\r | |
491 | &mMemoryTypeStatistics[Type].BaseAddress\r | |
492 | );\r | |
493 | if (EFI_ERROR (Status)) {\r | |
494 | //\r | |
022c6d45 | 495 | // If an error occurs allocating the pages for the current memory type, then\r |
28a00297 | 496 | // free all the pages allocates for the previous memory types and return. This\r |
497 | // operation with be retied when/if more memory is added to the system\r | |
498 | //\r | |
499 | for (FreeIndex = 0; FreeIndex < Index; FreeIndex++) {\r | |
500 | //\r | |
501 | // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r | |
502 | //\r | |
503 | Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[FreeIndex].Type);\r | |
504 | if (Type < 0 || Type > EfiMaxMemoryType) {\r | |
505 | continue;\r | |
506 | }\r | |
507 | \r | |
508 | if (gMemoryTypeInformation[FreeIndex].NumberOfPages != 0) {\r | |
509 | CoreFreePages (\r | |
022c6d45 | 510 | mMemoryTypeStatistics[Type].BaseAddress,\r |
28a00297 | 511 | gMemoryTypeInformation[FreeIndex].NumberOfPages\r |
512 | );\r | |
513 | mMemoryTypeStatistics[Type].BaseAddress = 0;\r | |
514 | mMemoryTypeStatistics[Type].MaximumAddress = EFI_MAX_ADDRESS;\r | |
515 | }\r | |
516 | }\r | |
517 | return;\r | |
518 | }\r | |
519 | \r | |
520 | //\r | |
521 | // Compute the address at the top of the current statistics\r | |
522 | //\r | |
022c6d45 | 523 | mMemoryTypeStatistics[Type].MaximumAddress =\r |
524 | mMemoryTypeStatistics[Type].BaseAddress +\r | |
28a00297 | 525 | LShiftU64 (gMemoryTypeInformation[Index].NumberOfPages, EFI_PAGE_SHIFT) - 1;\r |
526 | \r | |
527 | //\r | |
022c6d45 | 528 | // If the current base address is the lowest address so far, then update the default\r |
28a00297 | 529 | // maximum address\r |
530 | //\r | |
531 | if (mMemoryTypeStatistics[Type].BaseAddress < mDefaultMaximumAddress) {\r | |
532 | mDefaultMaximumAddress = mMemoryTypeStatistics[Type].BaseAddress - 1;\r | |
533 | }\r | |
534 | }\r | |
535 | }\r | |
536 | \r | |
537 | //\r | |
538 | // There was enough system memory for all the the memory types were allocated. So,\r | |
539 | // those memory areas can be freed for future allocations, and all future memory\r | |
540 | // allocations can occur within their respective bins\r | |
541 | //\r | |
542 | for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r | |
543 | //\r | |
544 | // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r | |
545 | //\r | |
546 | Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);\r | |
547 | if (Type < 0 || Type > EfiMaxMemoryType) {\r | |
548 | continue;\r | |
549 | }\r | |
550 | \r | |
551 | if (gMemoryTypeInformation[Index].NumberOfPages != 0) {\r | |
552 | CoreFreePages (\r | |
022c6d45 | 553 | mMemoryTypeStatistics[Type].BaseAddress,\r |
28a00297 | 554 | gMemoryTypeInformation[Index].NumberOfPages\r |
555 | );\r | |
b74350e9 | 556 | mMemoryTypeStatistics[Type].NumberOfPages = gMemoryTypeInformation[Index].NumberOfPages;\r |
28a00297 | 557 | gMemoryTypeInformation[Index].NumberOfPages = 0;\r |
558 | }\r | |
559 | }\r | |
560 | \r | |
561 | //\r | |
562 | // If the number of pages reserved for a memory type is 0, then all allocations for that type\r | |
563 | // should be in the default range.\r | |
564 | //\r | |
565 | for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {\r | |
566 | for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r | |
567 | if (Type == (EFI_MEMORY_TYPE)gMemoryTypeInformation[Index].Type) {\r | |
568 | mMemoryTypeStatistics[Type].InformationIndex = Index;\r | |
569 | }\r | |
570 | }\r | |
571 | mMemoryTypeStatistics[Type].CurrentNumberOfPages = 0;\r | |
572 | if (mMemoryTypeStatistics[Type].MaximumAddress == EFI_MAX_ADDRESS) {\r | |
573 | mMemoryTypeStatistics[Type].MaximumAddress = mDefaultMaximumAddress;\r | |
574 | }\r | |
575 | }\r | |
576 | \r | |
577 | mMemoryTypeInformationInitialized = TRUE;\r | |
578 | }\r | |
579 | \r | |
580 | \r | |
162ed594 | 581 | /**\r |
582 | Internal function. Converts a memory range to the specified type.\r | |
583 | The range must exist in the memory map.\r | |
584 | \r | |
022c6d45 | 585 | @param Start The first address of the range Must be page\r |
586 | aligned\r | |
587 | @param NumberOfPages The number of pages to convert\r | |
588 | @param NewType The new type for the memory range\r | |
162ed594 | 589 | \r |
022c6d45 | 590 | @retval EFI_INVALID_PARAMETER Invalid parameter\r |
591 | @retval EFI_NOT_FOUND Could not find a descriptor cover the specified\r | |
592 | range or convertion not allowed.\r | |
593 | @retval EFI_SUCCESS Successfully converts the memory range to the\r | |
162ed594 | 594 | specified type.\r |
595 | \r | |
596 | **/\r | |
28a00297 | 597 | EFI_STATUS\r |
598 | CoreConvertPages (\r | |
599 | IN UINT64 Start,\r | |
600 | IN UINT64 NumberOfPages,\r | |
601 | IN EFI_MEMORY_TYPE NewType\r | |
602 | )\r | |
28a00297 | 603 | {\r |
604 | \r | |
605 | UINT64 NumberOfBytes;\r | |
606 | UINT64 End;\r | |
607 | UINT64 RangeEnd;\r | |
608 | UINT64 Attribute;\r | |
609 | LIST_ENTRY *Link;\r | |
610 | MEMORY_MAP *Entry;\r | |
611 | \r | |
612 | Entry = NULL;\r | |
613 | NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);\r | |
614 | End = Start + NumberOfBytes - 1;\r | |
615 | \r | |
616 | ASSERT (NumberOfPages);\r | |
617 | ASSERT ((Start & EFI_PAGE_MASK) == 0);\r | |
618 | ASSERT (End > Start) ;\r | |
619 | ASSERT_LOCKED (&gMemoryLock);\r | |
620 | \r | |
71f68914 | 621 | if (NumberOfPages == 0 || ((Start & EFI_PAGE_MASK) != 0) || (Start > (Start + NumberOfBytes))) {\r |
28a00297 | 622 | return EFI_INVALID_PARAMETER;\r |
623 | }\r | |
624 | \r | |
625 | //\r | |
626 | // Convert the entire range\r | |
627 | //\r | |
628 | \r | |
629 | while (Start < End) {\r | |
630 | \r | |
631 | //\r | |
632 | // Find the entry that the covers the range\r | |
633 | //\r | |
634 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
635 | Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
636 | \r | |
637 | if (Entry->Start <= Start && Entry->End > Start) {\r | |
638 | break;\r | |
639 | }\r | |
640 | }\r | |
641 | \r | |
642 | if (Link == &gMemoryMap) {\r | |
162ed594 | 643 | DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: failed to find range %lx - %lx\n", Start, End));\r |
28a00297 | 644 | return EFI_NOT_FOUND;\r |
645 | }\r | |
646 | \r | |
647 | //\r | |
648 | // Convert range to the end, or to the end of the descriptor\r | |
649 | // if that's all we've got\r | |
650 | //\r | |
651 | RangeEnd = End;\r | |
652 | if (Entry->End < End) {\r | |
653 | RangeEnd = Entry->End;\r | |
654 | }\r | |
655 | \r | |
162ed594 | 656 | DEBUG ((DEBUG_PAGE, "ConvertRange: %lx-%lx to %d\n", Start, RangeEnd, NewType));\r |
28a00297 | 657 | \r |
658 | //\r | |
659 | // Debug code - verify conversion is allowed\r | |
660 | //\r | |
661 | if (!(NewType == EfiConventionalMemory ? 1 : 0) ^ (Entry->Type == EfiConventionalMemory ? 1 : 0)) {\r | |
d45fd260 | 662 | DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: Incompatible memory types\n"));\r |
28a00297 | 663 | return EFI_NOT_FOUND;\r |
022c6d45 | 664 | }\r |
28a00297 | 665 | \r |
666 | //\r | |
667 | // Update counters for the number of pages allocated to each memory type\r | |
668 | //\r | |
669 | if (Entry->Type >= 0 && Entry->Type < EfiMaxMemoryType) {\r | |
022c6d45 | 670 | if (Start >= mMemoryTypeStatistics[Entry->Type].BaseAddress &&\r |
28a00297 | 671 | Start <= mMemoryTypeStatistics[Entry->Type].MaximumAddress) {\r |
672 | if (NumberOfPages > mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages) {\r | |
673 | mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages = 0;\r | |
674 | } else {\r | |
675 | mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages -= NumberOfPages;\r | |
676 | }\r | |
677 | }\r | |
678 | }\r | |
679 | \r | |
680 | if (NewType >= 0 && NewType < EfiMaxMemoryType) {\r | |
681 | if (Start >= mMemoryTypeStatistics[NewType].BaseAddress && Start <= mMemoryTypeStatistics[NewType].MaximumAddress) {\r | |
682 | mMemoryTypeStatistics[NewType].CurrentNumberOfPages += NumberOfPages;\r | |
022c6d45 | 683 | if (mMemoryTypeStatistics[NewType].CurrentNumberOfPages >\r |
28a00297 | 684 | gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages) {\r |
685 | gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages = (UINT32)mMemoryTypeStatistics[NewType].CurrentNumberOfPages;\r | |
686 | }\r | |
687 | }\r | |
688 | }\r | |
689 | \r | |
690 | //\r | |
691 | // Pull range out of descriptor\r | |
692 | //\r | |
693 | if (Entry->Start == Start) {\r | |
022c6d45 | 694 | \r |
28a00297 | 695 | //\r |
696 | // Clip start\r | |
697 | //\r | |
698 | Entry->Start = RangeEnd + 1;\r | |
699 | \r | |
700 | } else if (Entry->End == RangeEnd) {\r | |
022c6d45 | 701 | \r |
28a00297 | 702 | //\r |
703 | // Clip end\r | |
704 | //\r | |
705 | Entry->End = Start - 1;\r | |
706 | \r | |
707 | } else {\r | |
708 | \r | |
709 | //\r | |
710 | // Pull it out of the center, clip current\r | |
711 | //\r | |
022c6d45 | 712 | \r |
28a00297 | 713 | //\r |
714 | // Add a new one\r | |
715 | //\r | |
716 | mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;\r | |
717 | mMapStack[mMapDepth].FromPages = FALSE;\r | |
718 | mMapStack[mMapDepth].Type = Entry->Type;\r | |
719 | mMapStack[mMapDepth].Start = RangeEnd+1;\r | |
720 | mMapStack[mMapDepth].End = Entry->End;\r | |
721 | \r | |
722 | //\r | |
723 | // Inherit Attribute from the Memory Descriptor that is being clipped\r | |
724 | //\r | |
725 | mMapStack[mMapDepth].Attribute = Entry->Attribute;\r | |
726 | \r | |
727 | Entry->End = Start - 1;\r | |
728 | ASSERT (Entry->Start < Entry->End);\r | |
729 | \r | |
730 | Entry = &mMapStack[mMapDepth];\r | |
731 | InsertTailList (&gMemoryMap, &Entry->Link);\r | |
732 | \r | |
733 | mMapDepth += 1;\r | |
734 | ASSERT (mMapDepth < MAX_MAP_DEPTH);\r | |
735 | }\r | |
736 | \r | |
737 | //\r | |
022c6d45 | 738 | // The new range inherits the same Attribute as the Entry\r |
28a00297 | 739 | //it is being cut out of\r |
740 | //\r | |
741 | Attribute = Entry->Attribute;\r | |
742 | \r | |
743 | //\r | |
744 | // If the descriptor is empty, then remove it from the map\r | |
745 | //\r | |
746 | if (Entry->Start == Entry->End + 1) {\r | |
747 | RemoveMemoryMapEntry (Entry);\r | |
748 | Entry = NULL;\r | |
749 | }\r | |
022c6d45 | 750 | \r |
28a00297 | 751 | //\r |
752 | // Add our new range in\r | |
753 | //\r | |
754 | CoreAddRange (NewType, Start, RangeEnd, Attribute);\r | |
755 | \r | |
756 | //\r | |
757 | // Move any map descriptor stack to general pool\r | |
758 | //\r | |
759 | CoreFreeMemoryMapStack ();\r | |
760 | \r | |
761 | //\r | |
762 | // Bump the starting address, and convert the next range\r | |
763 | //\r | |
764 | Start = RangeEnd + 1;\r | |
765 | }\r | |
766 | \r | |
767 | //\r | |
768 | // Converted the whole range, done\r | |
769 | //\r | |
770 | \r | |
771 | return EFI_SUCCESS;\r | |
772 | }\r | |
773 | \r | |
774 | \r | |
162ed594 | 775 | \r |
776 | /**\r | |
777 | Internal function. Finds a consecutive free page range below\r | |
778 | the requested address.\r | |
779 | \r | |
022c6d45 | 780 | @param MaxAddress The address that the range must be below\r |
781 | @param NumberOfPages Number of pages needed\r | |
782 | @param NewType The type of memory the range is going to be\r | |
783 | turned into\r | |
784 | @param Alignment Bits to align with\r | |
162ed594 | 785 | \r |
786 | @return The base address of the range, or 0 if the range was not found\r | |
787 | \r | |
788 | **/\r | |
28a00297 | 789 | UINT64\r |
790 | CoreFindFreePagesI (\r | |
791 | IN UINT64 MaxAddress,\r | |
792 | IN UINT64 NumberOfPages,\r | |
793 | IN EFI_MEMORY_TYPE NewType,\r | |
794 | IN UINTN Alignment\r | |
795 | )\r | |
28a00297 | 796 | {\r |
797 | UINT64 NumberOfBytes;\r | |
798 | UINT64 Target;\r | |
799 | UINT64 DescStart;\r | |
800 | UINT64 DescEnd;\r | |
801 | UINT64 DescNumberOfBytes;\r | |
802 | LIST_ENTRY *Link;\r | |
803 | MEMORY_MAP *Entry;\r | |
804 | \r | |
805 | if ((MaxAddress < EFI_PAGE_MASK) ||(NumberOfPages == 0)) {\r | |
806 | return 0;\r | |
807 | }\r | |
808 | \r | |
809 | if ((MaxAddress & EFI_PAGE_MASK) != EFI_PAGE_MASK) {\r | |
022c6d45 | 810 | \r |
28a00297 | 811 | //\r |
812 | // If MaxAddress is not aligned to the end of a page\r | |
813 | //\r | |
022c6d45 | 814 | \r |
28a00297 | 815 | //\r |
816 | // Change MaxAddress to be 1 page lower\r | |
817 | //\r | |
818 | MaxAddress -= (EFI_PAGE_MASK + 1);\r | |
022c6d45 | 819 | \r |
28a00297 | 820 | //\r |
821 | // Set MaxAddress to a page boundary\r | |
822 | //\r | |
823 | MaxAddress &= ~EFI_PAGE_MASK;\r | |
022c6d45 | 824 | \r |
28a00297 | 825 | //\r |
826 | // Set MaxAddress to end of the page\r | |
827 | //\r | |
828 | MaxAddress |= EFI_PAGE_MASK;\r | |
829 | }\r | |
830 | \r | |
831 | NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);\r | |
832 | Target = 0;\r | |
833 | \r | |
834 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
835 | Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
022c6d45 | 836 | \r |
28a00297 | 837 | //\r |
838 | // If it's not a free entry, don't bother with it\r | |
839 | //\r | |
840 | if (Entry->Type != EfiConventionalMemory) {\r | |
841 | continue;\r | |
842 | }\r | |
843 | \r | |
844 | DescStart = Entry->Start;\r | |
845 | DescEnd = Entry->End;\r | |
846 | \r | |
847 | //\r | |
848 | // If desc is past max allowed address, skip it\r | |
849 | //\r | |
850 | if (DescStart >= MaxAddress) {\r | |
851 | continue;\r | |
852 | }\r | |
853 | \r | |
854 | //\r | |
855 | // If desc ends past max allowed address, clip the end\r | |
856 | //\r | |
857 | if (DescEnd >= MaxAddress) {\r | |
858 | DescEnd = MaxAddress;\r | |
859 | }\r | |
860 | \r | |
861 | DescEnd = ((DescEnd + 1) & (~(Alignment - 1))) - 1;\r | |
862 | \r | |
863 | //\r | |
022c6d45 | 864 | // Compute the number of bytes we can used from this\r |
28a00297 | 865 | // descriptor, and see it's enough to satisfy the request\r |
866 | //\r | |
867 | DescNumberOfBytes = DescEnd - DescStart + 1;\r | |
868 | \r | |
869 | if (DescNumberOfBytes >= NumberOfBytes) {\r | |
870 | \r | |
871 | //\r | |
872 | // If this is the best match so far remember it\r | |
873 | //\r | |
874 | if (DescEnd > Target) {\r | |
875 | Target = DescEnd;\r | |
876 | }\r | |
877 | }\r | |
022c6d45 | 878 | }\r |
28a00297 | 879 | \r |
880 | //\r | |
881 | // If this is a grow down, adjust target to be the allocation base\r | |
882 | //\r | |
883 | Target -= NumberOfBytes - 1;\r | |
884 | \r | |
885 | //\r | |
886 | // If we didn't find a match, return 0\r | |
887 | //\r | |
888 | if ((Target & EFI_PAGE_MASK) != 0) {\r | |
889 | return 0;\r | |
890 | }\r | |
891 | \r | |
892 | return Target;\r | |
893 | }\r | |
894 | \r | |
162ed594 | 895 | \r |
896 | /**\r | |
897 | Internal function. Finds a consecutive free page range below\r | |
898 | the requested address\r | |
899 | \r | |
022c6d45 | 900 | @param MaxAddress The address that the range must be below\r |
901 | @param NoPages Number of pages needed\r | |
902 | @param NewType The type of memory the range is going to be\r | |
903 | turned into\r | |
904 | @param Alignment Bits to align with\r | |
162ed594 | 905 | \r |
906 | @return The base address of the range, or 0 if the range was not found.\r | |
907 | \r | |
908 | **/\r | |
28a00297 | 909 | UINT64\r |
910 | FindFreePages (\r | |
911 | IN UINT64 MaxAddress,\r | |
912 | IN UINT64 NoPages,\r | |
913 | IN EFI_MEMORY_TYPE NewType,\r | |
914 | IN UINTN Alignment\r | |
915 | )\r | |
28a00297 | 916 | {\r |
917 | UINT64 NewMaxAddress;\r | |
918 | UINT64 Start;\r | |
919 | \r | |
920 | NewMaxAddress = MaxAddress;\r | |
921 | \r | |
922 | if (NewType >= 0 && NewType < EfiMaxMemoryType && NewMaxAddress >= mMemoryTypeStatistics[NewType].MaximumAddress) {\r | |
923 | NewMaxAddress = mMemoryTypeStatistics[NewType].MaximumAddress;\r | |
924 | } else {\r | |
925 | if (NewMaxAddress > mDefaultMaximumAddress) {\r | |
926 | NewMaxAddress = mDefaultMaximumAddress;\r | |
927 | }\r | |
928 | }\r | |
929 | \r | |
930 | Start = CoreFindFreePagesI (NewMaxAddress, NoPages, NewType, Alignment);\r | |
71f68914 | 931 | if (Start == 0) {\r |
28a00297 | 932 | Start = CoreFindFreePagesI (MaxAddress, NoPages, NewType, Alignment);\r |
71f68914 | 933 | if (Start == 0) {\r |
28a00297 | 934 | //\r |
935 | // Here means there may be no enough memory to use, so try to go through\r | |
936 | // all the memory descript to promote the untested memory directly\r | |
937 | //\r | |
938 | PromoteMemoryResource ();\r | |
939 | \r | |
940 | //\r | |
941 | // Allocate memory again after the memory resource re-arranged\r | |
942 | //\r | |
943 | Start = CoreFindFreePagesI (MaxAddress, NoPages, NewType, Alignment);\r | |
944 | }\r | |
945 | }\r | |
946 | \r | |
947 | return Start;\r | |
948 | }\r | |
949 | \r | |
950 | \r | |
162ed594 | 951 | \r |
952 | /**\r | |
953 | Allocates pages from the memory map.\r | |
954 | \r | |
022c6d45 | 955 | @param Type The type of allocation to perform\r |
956 | @param MemoryType The type of memory to turn the allocated pages\r | |
957 | into\r | |
958 | @param NumberOfPages The number of pages to allocate\r | |
959 | @param Memory A pointer to receive the base allocated memory\r | |
960 | address\r | |
162ed594 | 961 | \r |
962 | @return Status. On success, Memory is filled in with the base address allocated\r | |
022c6d45 | 963 | @retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in\r |
964 | spec.\r | |
965 | @retval EFI_NOT_FOUND Could not allocate pages match the requirement.\r | |
966 | @retval EFI_OUT_OF_RESOURCES No enough pages to allocate.\r | |
162ed594 | 967 | @retval EFI_SUCCESS Pages successfully allocated.\r |
968 | \r | |
969 | **/\r | |
28a00297 | 970 | EFI_STATUS\r |
971 | EFIAPI\r | |
972 | CoreAllocatePages (\r | |
973 | IN EFI_ALLOCATE_TYPE Type,\r | |
974 | IN EFI_MEMORY_TYPE MemoryType,\r | |
975 | IN UINTN NumberOfPages,\r | |
976 | IN OUT EFI_PHYSICAL_ADDRESS *Memory\r | |
977 | )\r | |
28a00297 | 978 | {\r |
979 | EFI_STATUS Status;\r | |
980 | UINT64 Start;\r | |
981 | UINT64 MaxAddress;\r | |
982 | UINTN Alignment;\r | |
983 | \r | |
984 | if (Type < AllocateAnyPages || Type >= (UINTN) MaxAllocateType) {\r | |
985 | return EFI_INVALID_PARAMETER;\r | |
986 | }\r | |
987 | \r | |
988 | if ((MemoryType >= EfiMaxMemoryType && MemoryType <= 0x7fffffff) ||\r | |
989 | MemoryType == EfiConventionalMemory) {\r | |
990 | return EFI_INVALID_PARAMETER;\r | |
991 | }\r | |
992 | \r | |
993 | Alignment = EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT;\r | |
994 | \r | |
995 | if (MemoryType == EfiACPIReclaimMemory ||\r | |
996 | MemoryType == EfiACPIMemoryNVS ||\r | |
997 | MemoryType == EfiRuntimeServicesCode ||\r | |
998 | MemoryType == EfiRuntimeServicesData) {\r | |
999 | \r | |
1000 | Alignment = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT;\r | |
1001 | }\r | |
1002 | \r | |
1003 | if (Type == AllocateAddress) {\r | |
1004 | if ((*Memory & (Alignment - 1)) != 0) {\r | |
1005 | return EFI_NOT_FOUND;\r | |
1006 | }\r | |
1007 | }\r | |
1008 | \r | |
1009 | NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;\r | |
1010 | NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);\r | |
1011 | \r | |
1012 | //\r | |
022c6d45 | 1013 | // If this is for below a particular address, then\r |
28a00297 | 1014 | //\r |
1015 | Start = *Memory;\r | |
022c6d45 | 1016 | \r |
28a00297 | 1017 | //\r |
1018 | // The max address is the max natively addressable address for the processor\r | |
1019 | //\r | |
1020 | MaxAddress = EFI_MAX_ADDRESS;\r | |
022c6d45 | 1021 | \r |
28a00297 | 1022 | if (Type == AllocateMaxAddress) {\r |
1023 | MaxAddress = Start;\r | |
1024 | }\r | |
1025 | \r | |
1026 | CoreAcquireMemoryLock ();\r | |
022c6d45 | 1027 | \r |
28a00297 | 1028 | //\r |
1029 | // If not a specific address, then find an address to allocate\r | |
1030 | //\r | |
1031 | if (Type != AllocateAddress) {\r | |
1032 | Start = FindFreePages (MaxAddress, NumberOfPages, MemoryType, Alignment);\r | |
1033 | if (Start == 0) {\r | |
1034 | Status = EFI_OUT_OF_RESOURCES;\r | |
1035 | goto Done;\r | |
1036 | }\r | |
1037 | }\r | |
1038 | \r | |
1039 | //\r | |
1040 | // Convert pages from FreeMemory to the requested type\r | |
1041 | //\r | |
1042 | Status = CoreConvertPages (Start, NumberOfPages, MemoryType);\r | |
1043 | \r | |
1044 | Done:\r | |
1045 | CoreReleaseMemoryLock ();\r | |
1046 | \r | |
1047 | if (!EFI_ERROR (Status)) {\r | |
1048 | *Memory = Start;\r | |
1049 | }\r | |
1050 | \r | |
1051 | return Status;\r | |
1052 | }\r | |
1053 | \r | |
1054 | \r | |
162ed594 | 1055 | /**\r |
1056 | Frees previous allocated pages.\r | |
1057 | \r | |
022c6d45 | 1058 | @param Memory Base address of memory being freed\r |
1059 | @param NumberOfPages The number of pages to free\r | |
162ed594 | 1060 | \r |
022c6d45 | 1061 | @retval EFI_NOT_FOUND Could not find the entry that covers the range\r |
1062 | @retval EFI_INVALID_PARAMETER Address not aligned\r | |
162ed594 | 1063 | @return EFI_SUCCESS -Pages successfully freed.\r |
1064 | \r | |
1065 | **/\r | |
022c6d45 | 1066 | EFI_STATUS\r |
28a00297 | 1067 | EFIAPI\r |
1068 | CoreFreePages (\r | |
1069 | IN EFI_PHYSICAL_ADDRESS Memory,\r | |
1070 | IN UINTN NumberOfPages\r | |
1071 | )\r | |
28a00297 | 1072 | {\r |
1073 | EFI_STATUS Status;\r | |
1074 | LIST_ENTRY *Link;\r | |
1075 | MEMORY_MAP *Entry;\r | |
1076 | UINTN Alignment;\r | |
1077 | \r | |
1078 | //\r | |
1079 | // Free the range\r | |
1080 | //\r | |
1081 | CoreAcquireMemoryLock ();\r | |
1082 | \r | |
1083 | //\r | |
1084 | // Find the entry that the covers the range\r | |
1085 | //\r | |
1086 | Entry = NULL;\r | |
1087 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
1088 | Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
1089 | if (Entry->Start <= Memory && Entry->End > Memory) {\r | |
1090 | break;\r | |
1091 | }\r | |
1092 | }\r | |
1093 | if (Link == &gMemoryMap) {\r | |
1094 | CoreReleaseMemoryLock ();\r | |
1095 | return EFI_NOT_FOUND;\r | |
1096 | }\r | |
1097 | \r | |
1098 | Alignment = EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT;\r | |
1099 | \r | |
1100 | if (Entry->Type == EfiACPIReclaimMemory ||\r | |
1101 | Entry->Type == EfiACPIMemoryNVS ||\r | |
1102 | Entry->Type == EfiRuntimeServicesCode ||\r | |
1103 | Entry->Type == EfiRuntimeServicesData) {\r | |
1104 | \r | |
1105 | Alignment = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT;\r | |
1106 | \r | |
1107 | }\r | |
1108 | \r | |
1109 | if ((Memory & (Alignment - 1)) != 0) {\r | |
1110 | CoreReleaseMemoryLock ();\r | |
1111 | return EFI_INVALID_PARAMETER;\r | |
1112 | }\r | |
1113 | \r | |
1114 | NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;\r | |
1115 | NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);\r | |
1116 | \r | |
1117 | Status = CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);\r | |
1118 | \r | |
1119 | CoreReleaseMemoryLock ();\r | |
1120 | \r | |
1121 | if (EFI_ERROR (Status)) {\r | |
1122 | return Status;\r | |
1123 | }\r | |
1124 | \r | |
1125 | //\r | |
1126 | // Destroy the contents\r | |
1127 | //\r | |
1128 | if (Memory < EFI_MAX_ADDRESS) {\r | |
1129 | DEBUG_CLEAR_MEMORY ((VOID *)(UINTN)Memory, NumberOfPages << EFI_PAGE_SHIFT);\r | |
1130 | }\r | |
022c6d45 | 1131 | \r |
28a00297 | 1132 | return Status;\r |
1133 | }\r | |
1134 | \r | |
1135 | \r | |
162ed594 | 1136 | /**\r |
1137 | This function returns a copy of the current memory map. The map is an array of\r | |
1138 | memory descriptors, each of which describes a contiguous block of memory.\r | |
1139 | \r | |
022c6d45 | 1140 | @param MemoryMapSize A pointer to the size, in bytes, of the\r |
1141 | MemoryMap buffer. On input, this is the size of\r | |
1142 | the buffer allocated by the caller. On output,\r | |
1143 | it is the size of the buffer returned by the\r | |
1144 | firmware if the buffer was large enough, or the\r | |
1145 | size of the buffer needed to contain the map if\r | |
1146 | the buffer was too small.\r | |
1147 | @param MemoryMap A pointer to the buffer in which firmware places\r | |
1148 | the current memory map.\r | |
1149 | @param MapKey A pointer to the location in which firmware\r | |
1150 | returns the key for the current memory map.\r | |
1151 | @param DescriptorSize A pointer to the location in which firmware\r | |
1152 | returns the size, in bytes, of an individual\r | |
1153 | EFI_MEMORY_DESCRIPTOR.\r | |
1154 | @param DescriptorVersion A pointer to the location in which firmware\r | |
1155 | returns the version number associated with the\r | |
1156 | EFI_MEMORY_DESCRIPTOR.\r | |
1157 | \r | |
1158 | @retval EFI_SUCCESS The memory map was returned in the MemoryMap\r | |
1159 | buffer.\r | |
1160 | @retval EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current\r | |
1161 | buffer size needed to hold the memory map is\r | |
1162 | returned in MemoryMapSize.\r | |
162ed594 | 1163 | @retval EFI_INVALID_PARAMETER One of the parameters has an invalid value.\r |
1164 | \r | |
1165 | **/\r | |
28a00297 | 1166 | EFI_STATUS\r |
1167 | EFIAPI\r | |
1168 | CoreGetMemoryMap (\r | |
1169 | IN OUT UINTN *MemoryMapSize,\r | |
1170 | IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,\r | |
1171 | OUT UINTN *MapKey,\r | |
1172 | OUT UINTN *DescriptorSize,\r | |
1173 | OUT UINT32 *DescriptorVersion\r | |
1174 | )\r | |
28a00297 | 1175 | {\r |
1176 | EFI_STATUS Status;\r | |
022c6d45 | 1177 | UINTN Size;\r |
1178 | UINTN BufferSize;\r | |
28a00297 | 1179 | UINTN NumberOfRuntimeEntries;\r |
1180 | LIST_ENTRY *Link;\r | |
022c6d45 | 1181 | MEMORY_MAP *Entry;\r |
1182 | EFI_GCD_MAP_ENTRY *GcdMapEntry;\r | |
b74350e9 | 1183 | EFI_MEMORY_TYPE Type;\r |
28a00297 | 1184 | \r |
1185 | //\r | |
1186 | // Make sure the parameters are valid\r | |
1187 | //\r | |
1188 | if (MemoryMapSize == NULL) {\r | |
1189 | return EFI_INVALID_PARAMETER;\r | |
1190 | }\r | |
022c6d45 | 1191 | \r |
28a00297 | 1192 | CoreAcquireGcdMemoryLock ();\r |
022c6d45 | 1193 | \r |
28a00297 | 1194 | //\r |
1195 | // Count the number of Reserved and MMIO entries that are marked for runtime use\r | |
1196 | //\r | |
1197 | NumberOfRuntimeEntries = 0;\r | |
1198 | for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {\r | |
1199 | GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r | |
1200 | if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||\r | |
1201 | (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo)) {\r | |
1202 | if ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) {\r | |
1203 | NumberOfRuntimeEntries++;\r | |
1204 | }\r | |
1205 | }\r | |
1206 | }\r | |
1207 | \r | |
1208 | Size = sizeof (EFI_MEMORY_DESCRIPTOR);\r | |
1209 | \r | |
1210 | //\r | |
1211 | // Make sure Size != sizeof(EFI_MEMORY_DESCRIPTOR). This will\r | |
1212 | // prevent people from having pointer math bugs in their code.\r | |
1213 | // now you have to use *DescriptorSize to make things work.\r | |
1214 | //\r | |
1215 | Size += sizeof(UINT64) - (Size % sizeof (UINT64));\r | |
1216 | \r | |
1217 | if (DescriptorSize != NULL) {\r | |
1218 | *DescriptorSize = Size;\r | |
1219 | }\r | |
022c6d45 | 1220 | \r |
28a00297 | 1221 | if (DescriptorVersion != NULL) {\r |
1222 | *DescriptorVersion = EFI_MEMORY_DESCRIPTOR_VERSION;\r | |
1223 | }\r | |
1224 | \r | |
1225 | CoreAcquireMemoryLock ();\r | |
1226 | \r | |
1227 | //\r | |
1228 | // Compute the buffer size needed to fit the entire map\r | |
1229 | //\r | |
1230 | BufferSize = Size * NumberOfRuntimeEntries;\r | |
1231 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
1232 | BufferSize += Size;\r | |
1233 | }\r | |
1234 | \r | |
1235 | if (*MemoryMapSize < BufferSize) {\r | |
1236 | Status = EFI_BUFFER_TOO_SMALL;\r | |
1237 | goto Done;\r | |
1238 | }\r | |
1239 | \r | |
1240 | if (MemoryMap == NULL) {\r | |
1241 | Status = EFI_INVALID_PARAMETER;\r | |
1242 | goto Done;\r | |
1243 | }\r | |
1244 | \r | |
1245 | //\r | |
1246 | // Build the map\r | |
1247 | //\r | |
383c303c | 1248 | ZeroMem (MemoryMap, BufferSize);\r |
28a00297 | 1249 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r |
1250 | Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
1251 | ASSERT (Entry->VirtualStart == 0);\r | |
1252 | \r | |
b74350e9 | 1253 | //\r |
1254 | // Convert internal map into an EFI_MEMORY_DESCRIPTOR\r | |
1255 | //\r | |
28a00297 | 1256 | MemoryMap->Type = Entry->Type;\r |
1257 | MemoryMap->PhysicalStart = Entry->Start;\r | |
1258 | MemoryMap->VirtualStart = Entry->VirtualStart;\r | |
1259 | MemoryMap->NumberOfPages = RShiftU64 (Entry->End - Entry->Start + 1, EFI_PAGE_SHIFT);\r | |
b74350e9 | 1260 | //\r |
1261 | // If the memory type is EfiConventionalMemory, then determine if the range is part of a\r | |
022c6d45 | 1262 | // memory type bin and needs to be converted to the same memory type as the rest of the\r |
1263 | // memory type bin in order to minimize EFI Memory Map changes across reboots. This\r | |
b74350e9 | 1264 | // improves the chances for a successful S4 resume in the presence of minor page allocation\r |
1265 | // differences across reboots.\r | |
1266 | //\r | |
1267 | if (MemoryMap->Type == EfiConventionalMemory) {\r | |
1268 | for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {\r | |
1269 | if (mMemoryTypeStatistics[Type].Special &&\r | |
1270 | mMemoryTypeStatistics[Type].NumberOfPages > 0 &&\r | |
1271 | Entry->Start >= mMemoryTypeStatistics[Type].BaseAddress &&\r | |
e94a9ff7 | 1272 | Entry->End <= mMemoryTypeStatistics[Type].MaximumAddress) {\r |
b74350e9 | 1273 | MemoryMap->Type = Type;\r |
1274 | }\r | |
1275 | }\r | |
1276 | }\r | |
1277 | MemoryMap->Attribute = Entry->Attribute;\r | |
1278 | if (mMemoryTypeStatistics[MemoryMap->Type].Runtime) {\r | |
1279 | MemoryMap->Attribute |= EFI_MEMORY_RUNTIME;\r | |
28a00297 | 1280 | }\r |
022c6d45 | 1281 | \r |
28a00297 | 1282 | MemoryMap = NextMemoryDescriptor (MemoryMap, Size);\r |
1283 | }\r | |
1284 | \r | |
1285 | for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {\r | |
1286 | GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r | |
1287 | if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||\r | |
1288 | (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo)) {\r | |
1289 | if ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) {\r | |
022c6d45 | 1290 | \r |
28a00297 | 1291 | MemoryMap->PhysicalStart = GcdMapEntry->BaseAddress;\r |
1292 | MemoryMap->VirtualStart = 0;\r | |
1293 | MemoryMap->NumberOfPages = RShiftU64 ((GcdMapEntry->EndAddress - GcdMapEntry->BaseAddress + 1), EFI_PAGE_SHIFT);\r | |
1294 | MemoryMap->Attribute = GcdMapEntry->Attributes & ~EFI_MEMORY_PORT_IO;\r | |
1295 | \r | |
1296 | if (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) {\r | |
1297 | MemoryMap->Type = EfiReservedMemoryType;\r | |
1298 | } else if (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) {\r | |
1299 | if ((GcdMapEntry->Attributes & EFI_MEMORY_PORT_IO) == EFI_MEMORY_PORT_IO) {\r | |
1300 | MemoryMap->Type = EfiMemoryMappedIOPortSpace;\r | |
1301 | } else {\r | |
1302 | MemoryMap->Type = EfiMemoryMappedIO;\r | |
1303 | }\r | |
1304 | }\r | |
1305 | \r | |
1306 | MemoryMap = NextMemoryDescriptor (MemoryMap, Size);\r | |
1307 | }\r | |
1308 | }\r | |
1309 | }\r | |
022c6d45 | 1310 | \r |
28a00297 | 1311 | Status = EFI_SUCCESS;\r |
1312 | \r | |
1313 | Done:\r | |
1314 | \r | |
1315 | CoreReleaseMemoryLock ();\r | |
022c6d45 | 1316 | \r |
28a00297 | 1317 | CoreReleaseGcdMemoryLock ();\r |
022c6d45 | 1318 | \r |
1319 | //\r | |
1320 | // Update the map key finally\r | |
1321 | //\r | |
28a00297 | 1322 | if (MapKey != NULL) {\r |
1323 | *MapKey = mMemoryMapKey;\r | |
1324 | }\r | |
022c6d45 | 1325 | \r |
28a00297 | 1326 | *MemoryMapSize = BufferSize;\r |
022c6d45 | 1327 | \r |
28a00297 | 1328 | return Status;\r |
1329 | }\r | |
1330 | \r | |
28a00297 | 1331 | \r |
162ed594 | 1332 | /**\r |
28a00297 | 1333 | Internal function. Used by the pool functions to allocate pages\r |
1334 | to back pool allocation requests.\r | |
1335 | \r | |
022c6d45 | 1336 | @param PoolType The type of memory for the new pool pages\r |
1337 | @param NumberOfPages No of pages to allocate\r | |
1338 | @param Alignment Bits to align.\r | |
28a00297 | 1339 | \r |
162ed594 | 1340 | @return The allocated memory, or NULL\r |
28a00297 | 1341 | \r |
162ed594 | 1342 | **/\r |
1343 | VOID *\r | |
1344 | CoreAllocatePoolPages (\r | |
1345 | IN EFI_MEMORY_TYPE PoolType,\r | |
1346 | IN UINTN NumberOfPages,\r | |
1347 | IN UINTN Alignment\r | |
1348 | )\r | |
28a00297 | 1349 | {\r |
1350 | UINT64 Start;\r | |
1351 | \r | |
1352 | //\r | |
1353 | // Find the pages to convert\r | |
1354 | //\r | |
1355 | Start = FindFreePages (EFI_MAX_ADDRESS, NumberOfPages, PoolType, Alignment);\r | |
1356 | \r | |
1357 | //\r | |
1358 | // Convert it to boot services data\r | |
1359 | //\r | |
1360 | if (Start == 0) {\r | |
162ed594 | 1361 | DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "AllocatePoolPages: failed to allocate %d pages\n", NumberOfPages));\r |
28a00297 | 1362 | } else {\r |
1363 | CoreConvertPages (Start, NumberOfPages, PoolType);\r | |
1364 | }\r | |
1365 | \r | |
e94a9ff7 | 1366 | return (VOID *)(UINTN) Start;\r |
28a00297 | 1367 | }\r |
1368 | \r | |
162ed594 | 1369 | \r |
1370 | /**\r | |
1371 | Internal function. Frees pool pages allocated via AllocatePoolPages ()\r | |
1372 | \r | |
022c6d45 | 1373 | @param Memory The base address to free\r |
162ed594 | 1374 | @param NumberOfPages The number of pages to free\r |
1375 | \r | |
1376 | **/\r | |
28a00297 | 1377 | VOID\r |
1378 | CoreFreePoolPages (\r | |
1379 | IN EFI_PHYSICAL_ADDRESS Memory,\r | |
1380 | IN UINTN NumberOfPages\r | |
1381 | )\r | |
28a00297 | 1382 | {\r |
1383 | CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);\r | |
1384 | }\r | |
1385 | \r | |
1386 | \r | |
28a00297 | 1387 | \r |
162ed594 | 1388 | /**\r |
1389 | Make sure the memory map is following all the construction rules,\r | |
28a00297 | 1390 | it is the last time to check memory map error before exit boot services.\r |
1391 | \r | |
022c6d45 | 1392 | @param MapKey Memory map key\r |
28a00297 | 1393 | \r |
022c6d45 | 1394 | @retval EFI_INVALID_PARAMETER Memory map not consistent with construction\r |
1395 | rules.\r | |
162ed594 | 1396 | @retval EFI_SUCCESS Valid memory map.\r |
28a00297 | 1397 | \r |
162ed594 | 1398 | **/\r |
1399 | EFI_STATUS\r | |
1400 | CoreTerminateMemoryMap (\r | |
1401 | IN UINTN MapKey\r | |
1402 | )\r | |
28a00297 | 1403 | {\r |
1404 | EFI_STATUS Status;\r | |
1405 | LIST_ENTRY *Link;\r | |
1406 | MEMORY_MAP *Entry;\r | |
1407 | \r | |
1408 | Status = EFI_SUCCESS;\r | |
1409 | \r | |
1410 | CoreAcquireMemoryLock ();\r | |
1411 | \r | |
1412 | if (MapKey == mMemoryMapKey) {\r | |
1413 | \r | |
1414 | //\r | |
1415 | // Make sure the memory map is following all the construction rules\r | |
1416 | // This is the last chance we will be able to display any messages on\r | |
1417 | // the console devices.\r | |
1418 | //\r | |
1419 | \r | |
1420 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
1421 | Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
022c6d45 | 1422 | if (Entry->Attribute & EFI_MEMORY_RUNTIME) {\r |
28a00297 | 1423 | if (Entry->Type == EfiACPIReclaimMemory || Entry->Type == EfiACPIMemoryNVS) {\r |
d45fd260 | 1424 | DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: ACPI memory entry has RUNTIME attribute set.\n"));\r |
1425 | Status = EFI_INVALID_PARAMETER;\r | |
1426 | goto Done;\r | |
28a00297 | 1427 | }\r |
1428 | if (Entry->Start & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) {\r | |
d45fd260 | 1429 | DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));\r |
1430 | Status = EFI_INVALID_PARAMETER;\r | |
1431 | goto Done;\r | |
28a00297 | 1432 | }\r |
1433 | if ((Entry->End + 1) & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) {\r | |
d45fd260 | 1434 | DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));\r |
1435 | Status = EFI_INVALID_PARAMETER;\r | |
1436 | goto Done;\r | |
28a00297 | 1437 | }\r |
1438 | }\r | |
1439 | }\r | |
1440 | \r | |
1441 | //\r | |
1442 | // The map key they gave us matches what we expect. Fall through and\r | |
1443 | // return success. In an ideal world we would clear out all of\r | |
1444 | // EfiBootServicesCode and EfiBootServicesData. However this function\r | |
1445 | // is not the last one called by ExitBootServices(), so we have to\r | |
1446 | // preserve the memory contents.\r | |
1447 | //\r | |
1448 | } else {\r | |
1449 | Status = EFI_INVALID_PARAMETER;\r | |
1450 | }\r | |
1451 | \r | |
d45fd260 | 1452 | Done:\r |
28a00297 | 1453 | CoreReleaseMemoryLock ();\r |
1454 | \r | |
1455 | return Status;\r | |
1456 | }\r | |
1457 | \r | |
1458 | \r | |
1459 | \r | |
1460 | \r | |
1461 | \r | |
1462 | \r | |
1463 | \r | |
1464 | \r | |
162ed594 | 1465 | \r |