Commit | Line | Data |
---|---|---|
504214c4 | 1 | /** @file\r |
504214c4 LG |
2 | UEFI Memory page management functions.\r |
3 | \r | |
23c98c94 | 4 | Copyright (c) 2007 - 2008, Intel Corporation. <BR>\r |
5 | All rights reserved. This program and the accompanying materials\r | |
6 | are licensed and made available under the terms and conditions of the BSD License\r | |
7 | which accompanies this distribution. The full text of the license may be found at\r | |
8 | http://opensource.org/licenses/bsd-license.php\r | |
9 | \r | |
10 | THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r | |
11 | WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r | |
28a00297 | 12 | \r |
504214c4 | 13 | **/\r |
28a00297 | 14 | \r |
15 | #include <DxeMain.h>\r | |
16 | \r | |
17 | #define EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT (EFI_PAGE_SIZE)\r | |
18 | \r | |
19 | //\r | |
20 | // Entry for tracking the memory regions for each memory type to help cooalese like memory types\r | |
21 | //\r | |
22 | typedef struct {\r | |
23 | EFI_PHYSICAL_ADDRESS BaseAddress;\r | |
24 | EFI_PHYSICAL_ADDRESS MaximumAddress;\r | |
25 | UINT64 CurrentNumberOfPages;\r | |
b74350e9 | 26 | UINT64 NumberOfPages;\r |
28a00297 | 27 | UINTN InformationIndex;\r |
b74350e9 | 28 | BOOLEAN Special;\r |
29 | BOOLEAN Runtime;\r | |
28a00297 | 30 | } EFI_MEMORY_TYPE_STAISTICS;\r |
31 | \r | |
32 | //\r | |
33 | // MemoryMap - The current memory map\r | |
34 | //\r | |
35 | UINTN mMemoryMapKey = 0;\r | |
36 | \r | |
37 | //\r | |
38 | // mMapStack - space to use as temp storage to build new map descriptors\r | |
39 | // mMapDepth - depth of new descriptor stack\r | |
40 | //\r | |
41 | \r | |
42 | #define MAX_MAP_DEPTH 6\r | |
43 | UINTN mMapDepth = 0;\r | |
44 | MEMORY_MAP mMapStack[MAX_MAP_DEPTH];\r | |
45 | UINTN mFreeMapStack = 0;\r | |
46 | //\r | |
47 | // This list maintain the free memory map list\r | |
48 | //\r | |
49 | LIST_ENTRY mFreeMemoryMapEntryList = INITIALIZE_LIST_HEAD_VARIABLE (mFreeMemoryMapEntryList);\r | |
50 | BOOLEAN mMemoryTypeInformationInitialized = FALSE;\r | |
51 | \r | |
52 | EFI_MEMORY_TYPE_STAISTICS mMemoryTypeStatistics[EfiMaxMemoryType + 1] = {\r | |
b74350e9 | 53 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiReservedMemoryType\r |
54 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderCode\r | |
55 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderData\r | |
56 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesCode\r | |
57 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesData\r | |
58 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesCode\r | |
59 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesData\r | |
60 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiConventionalMemory\r | |
61 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiUnusableMemory\r | |
62 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIReclaimMemory\r | |
63 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIMemoryNVS\r | |
64 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIO\r | |
65 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIOPortSpace\r | |
66 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiPalCode\r | |
67 | { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE } // EfiMaxMemoryType\r | |
28a00297 | 68 | };\r |
69 | \r | |
70 | EFI_PHYSICAL_ADDRESS mDefaultMaximumAddress = EFI_MAX_ADDRESS;\r | |
71 | \r | |
72 | EFI_MEMORY_TYPE_INFORMATION gMemoryTypeInformation[EfiMaxMemoryType + 1] = {\r | |
73 | { EfiReservedMemoryType, 0 },\r | |
74 | { EfiLoaderCode, 0 },\r | |
75 | { EfiLoaderData, 0 },\r | |
76 | { EfiBootServicesCode, 0 },\r | |
77 | { EfiBootServicesData, 0 },\r | |
78 | { EfiRuntimeServicesCode, 0 },\r | |
79 | { EfiRuntimeServicesData, 0 },\r | |
80 | { EfiConventionalMemory, 0 },\r | |
81 | { EfiUnusableMemory, 0 },\r | |
82 | { EfiACPIReclaimMemory, 0 },\r | |
83 | { EfiACPIMemoryNVS, 0 },\r | |
84 | { EfiMemoryMappedIO, 0 },\r | |
85 | { EfiMemoryMappedIOPortSpace, 0 },\r | |
86 | { EfiPalCode, 0 },\r | |
87 | { EfiMaxMemoryType, 0 }\r | |
88 | };\r | |
89 | \r | |
90 | //\r | |
91 | // Internal prototypes\r | |
92 | //\r | |
162ed594 | 93 | /**\r |
94 | Find untested but initialized memory regions in GCD map and convert them to be DXE allocatable.\r | |
95 | \r | |
96 | **/\r | |
23c98c94 | 97 | VOID\r |
28a00297 | 98 | PromoteMemoryResource (\r |
99 | VOID\r | |
162ed594 | 100 | );\r |
101 | \r | |
102 | /**\r | |
103 | Internal function. Adds a ranges to the memory map.\r | |
104 | The range must not already exist in the map.\r | |
105 | \r | |
106 | @param Type The type of memory range to add \r | |
107 | @param Start The starting address in the memory range Must be \r | |
108 | paged aligned \r | |
109 | @param End The last address in the range Must be the last \r | |
110 | byte of a page \r | |
111 | @param Attribute The attributes of the memory range to add \r | |
28a00297 | 112 | \r |
162ed594 | 113 | @return None. The range is added to the memory map\r |
114 | \r | |
115 | **/\r | |
28a00297 | 116 | VOID\r |
117 | CoreAddRange (\r | |
118 | IN EFI_MEMORY_TYPE Type,\r | |
119 | IN EFI_PHYSICAL_ADDRESS Start,\r | |
120 | IN EFI_PHYSICAL_ADDRESS End,\r | |
121 | IN UINT64 Attribute\r | |
122 | );\r | |
123 | \r | |
162ed594 | 124 | /**\r |
125 | Internal function. Moves any memory descriptors that are on the\r | |
126 | temporary descriptor stack to heap.\r | |
127 | \r | |
128 | **/\r | |
28a00297 | 129 | VOID\r |
130 | CoreFreeMemoryMapStack (\r | |
131 | VOID\r | |
132 | );\r | |
133 | \r | |
162ed594 | 134 | /**\r |
135 | Internal function. Converts a memory range to the specified type.\r | |
136 | The range must exist in the memory map.\r | |
137 | \r | |
138 | @param Start The first address of the range Must be page \r | |
139 | aligned \r | |
140 | @param NumberOfPages The number of pages to convert \r | |
141 | @param NewType The new type for the memory range \r | |
142 | \r | |
143 | @retval EFI_INVALID_PARAMETER Invalid parameter \r | |
144 | @retval EFI_NOT_FOUND Could not find a descriptor cover the specified \r | |
145 | range or convertion not allowed. \r | |
146 | @retval EFI_SUCCESS Successfully converts the memory range to the \r | |
147 | specified type.\r | |
148 | \r | |
149 | **/\r | |
28a00297 | 150 | EFI_STATUS\r |
151 | CoreConvertPages (\r | |
152 | IN UINT64 Start,\r | |
153 | IN UINT64 NumberOfPages,\r | |
154 | IN EFI_MEMORY_TYPE NewType\r | |
155 | );\r | |
156 | \r | |
162ed594 | 157 | /**\r |
158 | Internal function. Removes a descriptor entry.\r | |
159 | \r | |
160 | @param Entry The entry to remove\r | |
161 | \r | |
162 | **/\r | |
28a00297 | 163 | VOID\r |
164 | RemoveMemoryMapEntry (\r | |
165 | MEMORY_MAP *Entry\r | |
166 | );\r | |
167 | \r | |
162ed594 | 168 | /**\r |
169 | Internal function. Deque a descriptor entry from the mFreeMemoryMapEntryList.\r | |
170 | If the list is emtry, then allocate a new page to refuel the list.\r | |
171 | Please Note this algorithm to allocate the memory map descriptor has a property\r | |
172 | that the memory allocated for memory entries always grows, and will never really be freed\r | |
173 | For example, if the current boot uses 2000 memory map entries at the maximum point, but\r | |
174 | ends up with only 50 at the time the OS is booted, then the memory associated with the 1950\r | |
175 | memory map entries is still allocated from EfiBootServicesMemory.\r | |
176 | \r | |
177 | \r | |
178 | @return The Memory map descriptor dequed from the mFreeMemoryMapEntryList\r | |
179 | \r | |
180 | **/\r | |
28a00297 | 181 | MEMORY_MAP *\r |
182 | AllocateMemoryMapEntry (\r | |
183 | VOID\r | |
184 | );\r | |
185 | \r | |
162ed594 | 186 | \r |
187 | /**\r | |
188 | Enter critical section by gaining lock on gMemoryLock.\r | |
189 | \r | |
190 | **/\r | |
28a00297 | 191 | VOID\r |
192 | CoreAcquireMemoryLock (\r | |
193 | VOID\r | |
194 | )\r | |
28a00297 | 195 | {\r |
196 | CoreAcquireLock (&gMemoryLock);\r | |
197 | }\r | |
198 | \r | |
199 | \r | |
162ed594 | 200 | \r |
201 | /**\r | |
202 | Exit critical section by releasing lock on gMemoryLock.\r | |
203 | \r | |
204 | **/\r | |
28a00297 | 205 | VOID\r |
206 | CoreReleaseMemoryLock (\r | |
207 | VOID\r | |
208 | )\r | |
28a00297 | 209 | {\r |
210 | CoreReleaseLock (&gMemoryLock);\r | |
211 | }\r | |
212 | \r | |
162ed594 | 213 | \r |
214 | /**\r | |
215 | Find untested but initialized memory regions in GCD map and convert them to be DXE allocatable.\r | |
216 | \r | |
217 | **/\r | |
28a00297 | 218 | VOID\r |
219 | PromoteMemoryResource (\r | |
220 | VOID\r | |
221 | )\r | |
28a00297 | 222 | {\r |
223 | LIST_ENTRY *Link;\r | |
224 | EFI_GCD_MAP_ENTRY *Entry;\r | |
225 | \r | |
162ed594 | 226 | DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "Promote the memory resource\n"));\r |
28a00297 | 227 | \r |
228 | CoreAcquireGcdMemoryLock ();\r | |
229 | \r | |
230 | Link = mGcdMemorySpaceMap.ForwardLink;\r | |
231 | while (Link != &mGcdMemorySpaceMap) {\r | |
232 | \r | |
233 | Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r | |
234 | \r | |
235 | if (Entry->GcdMemoryType == EfiGcdMemoryTypeReserved &&\r | |
236 | Entry->EndAddress < EFI_MAX_ADDRESS &&\r | |
237 | (Entry->Capabilities & (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED)) ==\r | |
238 | (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED)) {\r | |
239 | //\r | |
240 | // Update the GCD map\r | |
241 | //\r | |
242 | Entry->GcdMemoryType = EfiGcdMemoryTypeSystemMemory;\r | |
243 | Entry->Capabilities |= EFI_MEMORY_TESTED;\r | |
244 | Entry->ImageHandle = gDxeCoreImageHandle;\r | |
245 | Entry->DeviceHandle = NULL;\r | |
246 | \r | |
247 | //\r | |
248 | // Add to allocable system memory resource\r | |
249 | // \r | |
250 | \r | |
251 | CoreAddRange (\r | |
252 | EfiConventionalMemory, \r | |
253 | Entry->BaseAddress, \r | |
254 | Entry->EndAddress, \r | |
255 | Entry->Capabilities & ~(EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED | EFI_MEMORY_RUNTIME)\r | |
256 | );\r | |
257 | CoreFreeMemoryMapStack ();\r | |
258 | \r | |
259 | }\r | |
260 | \r | |
261 | Link = Link->ForwardLink;\r | |
262 | }\r | |
263 | \r | |
264 | CoreReleaseGcdMemoryLock ();\r | |
265 | \r | |
266 | return;\r | |
267 | }\r | |
268 | \r | |
28a00297 | 269 | \r |
162ed594 | 270 | /**\r |
28a00297 | 271 | Called to initialize the memory map and add descriptors to\r |
272 | the current descriptor list.\r | |
28a00297 | 273 | The first descriptor that is added must be general usable\r |
274 | memory as the addition allocates heap.\r | |
275 | \r | |
162ed594 | 276 | @param Type The type of memory to add \r |
277 | @param Start The starting address in the memory range Must be \r | |
278 | page aligned \r | |
279 | @param NumberOfPages The number of pages in the range \r | |
280 | @param Attribute Attributes of the memory to add \r | |
28a00297 | 281 | \r |
162ed594 | 282 | @return None. The range is added to the memory map\r |
28a00297 | 283 | \r |
162ed594 | 284 | **/\r |
285 | VOID\r | |
286 | CoreAddMemoryDescriptor (\r | |
287 | IN EFI_MEMORY_TYPE Type,\r | |
288 | IN EFI_PHYSICAL_ADDRESS Start,\r | |
289 | IN UINT64 NumberOfPages,\r | |
290 | IN UINT64 Attribute\r | |
291 | )\r | |
28a00297 | 292 | {\r |
293 | EFI_PHYSICAL_ADDRESS End;\r | |
294 | EFI_STATUS Status;\r | |
295 | UINTN Index;\r | |
296 | UINTN FreeIndex;\r | |
297 | \r | |
298 | if ((Start & EFI_PAGE_MASK) != 0) {\r | |
299 | return;\r | |
300 | }\r | |
301 | \r | |
302 | if (Type >= EfiMaxMemoryType && Type <= 0x7fffffff) {\r | |
303 | return;\r | |
304 | }\r | |
305 | \r | |
306 | CoreAcquireMemoryLock ();\r | |
307 | End = Start + LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT) - 1;\r | |
308 | CoreAddRange (Type, Start, End, Attribute);\r | |
309 | CoreFreeMemoryMapStack ();\r | |
310 | CoreReleaseMemoryLock ();\r | |
311 | \r | |
312 | //\r | |
313 | // Check to see if the statistics for the different memory types have already been established\r | |
314 | //\r | |
315 | if (mMemoryTypeInformationInitialized) {\r | |
316 | return;\r | |
317 | }\r | |
318 | \r | |
319 | //\r | |
320 | // Loop through each memory type in the order specified by the gMemoryTypeInformation[] array\r | |
321 | //\r | |
322 | for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r | |
323 | //\r | |
324 | // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r | |
325 | //\r | |
326 | Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);\r | |
327 | if (Type < 0 || Type > EfiMaxMemoryType) {\r | |
328 | continue;\r | |
329 | }\r | |
330 | \r | |
331 | if (gMemoryTypeInformation[Index].NumberOfPages != 0) {\r | |
332 | //\r | |
333 | // Allocate pages for the current memory type from the top of available memory\r | |
334 | //\r | |
335 | Status = CoreAllocatePages (\r | |
336 | AllocateAnyPages,\r | |
337 | Type,\r | |
338 | gMemoryTypeInformation[Index].NumberOfPages,\r | |
339 | &mMemoryTypeStatistics[Type].BaseAddress\r | |
340 | );\r | |
341 | if (EFI_ERROR (Status)) {\r | |
342 | //\r | |
343 | // If an error occurs allocating the pages for the current memory type, then \r | |
344 | // free all the pages allocates for the previous memory types and return. This\r | |
345 | // operation with be retied when/if more memory is added to the system\r | |
346 | //\r | |
347 | for (FreeIndex = 0; FreeIndex < Index; FreeIndex++) {\r | |
348 | //\r | |
349 | // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r | |
350 | //\r | |
351 | Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[FreeIndex].Type);\r | |
352 | if (Type < 0 || Type > EfiMaxMemoryType) {\r | |
353 | continue;\r | |
354 | }\r | |
355 | \r | |
356 | if (gMemoryTypeInformation[FreeIndex].NumberOfPages != 0) {\r | |
357 | CoreFreePages (\r | |
358 | mMemoryTypeStatistics[Type].BaseAddress, \r | |
359 | gMemoryTypeInformation[FreeIndex].NumberOfPages\r | |
360 | );\r | |
361 | mMemoryTypeStatistics[Type].BaseAddress = 0;\r | |
362 | mMemoryTypeStatistics[Type].MaximumAddress = EFI_MAX_ADDRESS;\r | |
363 | }\r | |
364 | }\r | |
365 | return;\r | |
366 | }\r | |
367 | \r | |
368 | //\r | |
369 | // Compute the address at the top of the current statistics\r | |
370 | //\r | |
371 | mMemoryTypeStatistics[Type].MaximumAddress = \r | |
372 | mMemoryTypeStatistics[Type].BaseAddress + \r | |
373 | LShiftU64 (gMemoryTypeInformation[Index].NumberOfPages, EFI_PAGE_SHIFT) - 1;\r | |
374 | \r | |
375 | //\r | |
376 | // If the current base address is the lowest address so far, then update the default \r | |
377 | // maximum address\r | |
378 | //\r | |
379 | if (mMemoryTypeStatistics[Type].BaseAddress < mDefaultMaximumAddress) {\r | |
380 | mDefaultMaximumAddress = mMemoryTypeStatistics[Type].BaseAddress - 1;\r | |
381 | }\r | |
382 | }\r | |
383 | }\r | |
384 | \r | |
385 | //\r | |
386 | // There was enough system memory for all the the memory types were allocated. So,\r | |
387 | // those memory areas can be freed for future allocations, and all future memory\r | |
388 | // allocations can occur within their respective bins\r | |
389 | //\r | |
390 | for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r | |
391 | //\r | |
392 | // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r | |
393 | //\r | |
394 | Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);\r | |
395 | if (Type < 0 || Type > EfiMaxMemoryType) {\r | |
396 | continue;\r | |
397 | }\r | |
398 | \r | |
399 | if (gMemoryTypeInformation[Index].NumberOfPages != 0) {\r | |
400 | CoreFreePages (\r | |
401 | mMemoryTypeStatistics[Type].BaseAddress, \r | |
402 | gMemoryTypeInformation[Index].NumberOfPages\r | |
403 | );\r | |
b74350e9 | 404 | mMemoryTypeStatistics[Type].NumberOfPages = gMemoryTypeInformation[Index].NumberOfPages;\r |
28a00297 | 405 | gMemoryTypeInformation[Index].NumberOfPages = 0;\r |
406 | }\r | |
407 | }\r | |
408 | \r | |
409 | //\r | |
410 | // If the number of pages reserved for a memory type is 0, then all allocations for that type\r | |
411 | // should be in the default range.\r | |
412 | //\r | |
413 | for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {\r | |
414 | for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r | |
415 | if (Type == (EFI_MEMORY_TYPE)gMemoryTypeInformation[Index].Type) {\r | |
416 | mMemoryTypeStatistics[Type].InformationIndex = Index;\r | |
417 | }\r | |
418 | }\r | |
419 | mMemoryTypeStatistics[Type].CurrentNumberOfPages = 0;\r | |
420 | if (mMemoryTypeStatistics[Type].MaximumAddress == EFI_MAX_ADDRESS) {\r | |
421 | mMemoryTypeStatistics[Type].MaximumAddress = mDefaultMaximumAddress;\r | |
422 | }\r | |
423 | }\r | |
424 | \r | |
425 | mMemoryTypeInformationInitialized = TRUE;\r | |
426 | }\r | |
427 | \r | |
428 | \r | |
162ed594 | 429 | \r |
430 | /**\r | |
431 | Internal function. Adds a ranges to the memory map.\r | |
432 | The range must not already exist in the map.\r | |
433 | \r | |
434 | @param Type The type of memory range to add \r | |
435 | @param Start The starting address in the memory range Must be \r | |
436 | paged aligned \r | |
437 | @param End The last address in the range Must be the last \r | |
438 | byte of a page \r | |
439 | @param Attribute The attributes of the memory range to add \r | |
440 | \r | |
441 | @return None. The range is added to the memory map\r | |
442 | \r | |
443 | **/\r | |
28a00297 | 444 | VOID\r |
445 | CoreAddRange (\r | |
446 | IN EFI_MEMORY_TYPE Type,\r | |
447 | IN EFI_PHYSICAL_ADDRESS Start,\r | |
448 | IN EFI_PHYSICAL_ADDRESS End,\r | |
449 | IN UINT64 Attribute\r | |
450 | )\r | |
28a00297 | 451 | {\r |
452 | LIST_ENTRY *Link;\r | |
453 | MEMORY_MAP *Entry;\r | |
454 | \r | |
455 | ASSERT ((Start & EFI_PAGE_MASK) == 0);\r | |
456 | ASSERT (End > Start) ;\r | |
457 | \r | |
458 | ASSERT_LOCKED (&gMemoryLock);\r | |
459 | \r | |
162ed594 | 460 | DEBUG ((DEBUG_PAGE, "AddRange: %lx-%lx to %d\n", Start, End, Type));\r |
28a00297 | 461 | \r |
462 | //\r | |
463 | // Memory map being altered so updated key\r | |
464 | //\r | |
465 | mMemoryMapKey += 1;\r | |
466 | \r | |
467 | //\r | |
468 | // UEFI 2.0 added an event group for notificaiton on memory map changes.\r | |
469 | // So we need to signal this Event Group every time the memory map changes.\r | |
470 | // If we are in EFI 1.10 compatability mode no event groups will be \r | |
471 | // found and nothing will happen we we call this function. These events\r | |
472 | // will get signaled but since a lock is held around the call to this \r | |
473 | // function the notificaiton events will only be called after this funciton\r | |
474 | // returns and the lock is released.\r | |
475 | //\r | |
476 | CoreNotifySignalList (&gEfiEventMemoryMapChangeGuid);\r | |
477 | \r | |
478 | //\r | |
479 | // Look for adjoining memory descriptor\r | |
480 | //\r | |
481 | \r | |
482 | // Two memory descriptors can only be merged if they have the same Type\r | |
483 | // and the same Attribute\r | |
484 | //\r | |
485 | \r | |
486 | Link = gMemoryMap.ForwardLink;\r | |
487 | while (Link != &gMemoryMap) {\r | |
488 | Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
489 | Link = Link->ForwardLink;\r | |
490 | \r | |
491 | if (Entry->Type != Type) {\r | |
492 | continue;\r | |
493 | }\r | |
494 | \r | |
495 | if (Entry->Attribute != Attribute) {\r | |
496 | continue;\r | |
497 | }\r | |
498 | \r | |
499 | if (Entry->End + 1 == Start) {\r | |
500 | \r | |
501 | Start = Entry->Start;\r | |
502 | RemoveMemoryMapEntry (Entry);\r | |
503 | \r | |
504 | } else if (Entry->Start == End + 1) {\r | |
505 | \r | |
506 | End = Entry->End;\r | |
507 | RemoveMemoryMapEntry (Entry);\r | |
508 | }\r | |
509 | }\r | |
510 | \r | |
511 | //\r | |
512 | // Add descriptor \r | |
513 | //\r | |
514 | \r | |
515 | mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;\r | |
516 | mMapStack[mMapDepth].FromPages = FALSE;\r | |
517 | mMapStack[mMapDepth].Type = Type;\r | |
518 | mMapStack[mMapDepth].Start = Start;\r | |
519 | mMapStack[mMapDepth].End = End;\r | |
520 | mMapStack[mMapDepth].VirtualStart = 0;\r | |
521 | mMapStack[mMapDepth].Attribute = Attribute;\r | |
522 | InsertTailList (&gMemoryMap, &mMapStack[mMapDepth].Link);\r | |
523 | \r | |
524 | mMapDepth += 1;\r | |
525 | ASSERT (mMapDepth < MAX_MAP_DEPTH);\r | |
526 | \r | |
527 | return ;\r | |
528 | }\r | |
529 | \r | |
162ed594 | 530 | \r |
531 | /**\r | |
532 | Internal function. Moves any memory descriptors that are on the\r | |
533 | temporary descriptor stack to heap.\r | |
534 | \r | |
535 | **/\r | |
28a00297 | 536 | VOID\r |
537 | CoreFreeMemoryMapStack (\r | |
538 | VOID\r | |
539 | )\r | |
28a00297 | 540 | {\r |
541 | MEMORY_MAP *Entry;\r | |
542 | MEMORY_MAP *Entry2;\r | |
543 | LIST_ENTRY *Link2;\r | |
544 | \r | |
545 | ASSERT_LOCKED (&gMemoryLock);\r | |
546 | \r | |
547 | //\r | |
548 | // If already freeing the map stack, then return\r | |
549 | //\r | |
71f68914 | 550 | if (mFreeMapStack != 0) {\r |
28a00297 | 551 | return ;\r |
552 | }\r | |
553 | \r | |
554 | //\r | |
555 | // Move the temporary memory descriptor stack into pool\r | |
556 | //\r | |
557 | mFreeMapStack += 1;\r | |
558 | \r | |
71f68914 | 559 | while (mMapDepth != 0) {\r |
28a00297 | 560 | //\r |
561 | // Deque an memory map entry from mFreeMemoryMapEntryList \r | |
562 | //\r | |
563 | Entry = AllocateMemoryMapEntry ();\r | |
564 | \r | |
565 | ASSERT (Entry);\r | |
566 | \r | |
567 | //\r | |
568 | // Update to proper entry\r | |
569 | //\r | |
570 | mMapDepth -= 1;\r | |
571 | \r | |
572 | if (mMapStack[mMapDepth].Link.ForwardLink != NULL) {\r | |
573 | \r | |
574 | //\r | |
575 | // Move this entry to general memory\r | |
576 | //\r | |
577 | RemoveEntryList (&mMapStack[mMapDepth].Link);\r | |
578 | mMapStack[mMapDepth].Link.ForwardLink = NULL;\r | |
579 | \r | |
580 | CopyMem (Entry , &mMapStack[mMapDepth], sizeof (MEMORY_MAP));\r | |
581 | Entry->FromPages = TRUE;\r | |
582 | \r | |
583 | //\r | |
584 | // Find insertion location\r | |
585 | //\r | |
586 | for (Link2 = gMemoryMap.ForwardLink; Link2 != &gMemoryMap; Link2 = Link2->ForwardLink) {\r | |
587 | Entry2 = CR (Link2, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
588 | if (Entry2->FromPages && Entry2->Start > Entry->Start) {\r | |
589 | break;\r | |
590 | }\r | |
591 | }\r | |
592 | \r | |
593 | InsertTailList (Link2, &Entry->Link);\r | |
594 | \r | |
595 | } else {\r | |
596 | // \r | |
597 | // This item of mMapStack[mMapDepth] has already been dequeued from gMemoryMap list,\r | |
598 | // so here no need to move it to memory.\r | |
599 | //\r | |
600 | InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);\r | |
601 | }\r | |
602 | }\r | |
603 | \r | |
604 | mFreeMapStack -= 1;\r | |
605 | }\r | |
606 | \r | |
162ed594 | 607 | \r |
608 | /**\r | |
609 | Internal function. Removes a descriptor entry.\r | |
610 | \r | |
611 | @param Entry The entry to remove\r | |
612 | \r | |
613 | **/\r | |
28a00297 | 614 | VOID\r |
615 | RemoveMemoryMapEntry (\r | |
616 | MEMORY_MAP *Entry\r | |
617 | )\r | |
28a00297 | 618 | {\r |
619 | RemoveEntryList (&Entry->Link);\r | |
620 | Entry->Link.ForwardLink = NULL;\r | |
621 | \r | |
622 | if (Entry->FromPages) {\r | |
162ed594 | 623 | //\r |
624 | // Insert the free memory map descriptor to the end of mFreeMemoryMapEntryList\r | |
625 | //\r | |
28a00297 | 626 | InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);\r |
627 | }\r | |
628 | }\r | |
629 | \r | |
28a00297 | 630 | \r |
162ed594 | 631 | /**\r |
28a00297 | 632 | Internal function. Deque a descriptor entry from the mFreeMemoryMapEntryList.\r |
162ed594 | 633 | If the list is emtry, then allocate a new page to refuel the list.\r |
28a00297 | 634 | Please Note this algorithm to allocate the memory map descriptor has a property\r |
162ed594 | 635 | that the memory allocated for memory entries always grows, and will never really be freed\r |
28a00297 | 636 | For example, if the current boot uses 2000 memory map entries at the maximum point, but\r |
162ed594 | 637 | ends up with only 50 at the time the OS is booted, then the memory associated with the 1950\r |
638 | memory map entries is still allocated from EfiBootServicesMemory.\r | |
28a00297 | 639 | \r |
28a00297 | 640 | \r |
162ed594 | 641 | @return The Memory map descriptor dequed from the mFreeMemoryMapEntryList\r |
28a00297 | 642 | \r |
162ed594 | 643 | **/\r |
162ed594 | 644 | MEMORY_MAP *\r |
645 | AllocateMemoryMapEntry (\r | |
646 | VOID\r | |
647 | )\r | |
28a00297 | 648 | {\r |
649 | MEMORY_MAP* FreeDescriptorEntries;\r | |
650 | MEMORY_MAP* Entry;\r | |
651 | UINTN Index;\r | |
652 | \r | |
653 | if (IsListEmpty (&mFreeMemoryMapEntryList)) {\r | |
654 | // \r | |
655 | // The list is empty, to allocate one page to refuel the list\r | |
656 | //\r | |
657 | FreeDescriptorEntries = CoreAllocatePoolPages (EfiBootServicesData, EFI_SIZE_TO_PAGES(DEFAULT_PAGE_ALLOCATION), DEFAULT_PAGE_ALLOCATION);\r | |
658 | if(FreeDescriptorEntries != NULL) {\r | |
659 | //\r | |
660 | // Enque the free memmory map entries into the list\r | |
661 | //\r | |
662 | for (Index = 0; Index< DEFAULT_PAGE_ALLOCATION / sizeof(MEMORY_MAP); Index++) {\r | |
663 | FreeDescriptorEntries[Index].Signature = MEMORY_MAP_SIGNATURE;\r | |
664 | InsertTailList (&mFreeMemoryMapEntryList, &FreeDescriptorEntries[Index].Link);\r | |
665 | } \r | |
666 | } else {\r | |
667 | return NULL;\r | |
668 | }\r | |
669 | }\r | |
670 | //\r | |
671 | // dequeue the first descriptor from the list\r | |
672 | //\r | |
673 | Entry = CR (mFreeMemoryMapEntryList.ForwardLink, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
674 | RemoveEntryList (&Entry->Link);\r | |
675 | \r | |
676 | return Entry;\r | |
677 | } \r | |
678 | \r | |
162ed594 | 679 | \r |
680 | /**\r | |
681 | Internal function. Converts a memory range to the specified type.\r | |
682 | The range must exist in the memory map.\r | |
683 | \r | |
684 | @param Start The first address of the range Must be page \r | |
685 | aligned \r | |
686 | @param NumberOfPages The number of pages to convert \r | |
687 | @param NewType The new type for the memory range \r | |
688 | \r | |
689 | @retval EFI_INVALID_PARAMETER Invalid parameter \r | |
690 | @retval EFI_NOT_FOUND Could not find a descriptor cover the specified \r | |
691 | range or convertion not allowed. \r | |
692 | @retval EFI_SUCCESS Successfully converts the memory range to the \r | |
693 | specified type.\r | |
694 | \r | |
695 | **/\r | |
28a00297 | 696 | EFI_STATUS\r |
697 | CoreConvertPages (\r | |
698 | IN UINT64 Start,\r | |
699 | IN UINT64 NumberOfPages,\r | |
700 | IN EFI_MEMORY_TYPE NewType\r | |
701 | )\r | |
28a00297 | 702 | {\r |
703 | \r | |
704 | UINT64 NumberOfBytes;\r | |
705 | UINT64 End;\r | |
706 | UINT64 RangeEnd;\r | |
707 | UINT64 Attribute;\r | |
708 | LIST_ENTRY *Link;\r | |
709 | MEMORY_MAP *Entry;\r | |
710 | \r | |
711 | Entry = NULL;\r | |
712 | NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);\r | |
713 | End = Start + NumberOfBytes - 1;\r | |
714 | \r | |
715 | ASSERT (NumberOfPages);\r | |
716 | ASSERT ((Start & EFI_PAGE_MASK) == 0);\r | |
717 | ASSERT (End > Start) ;\r | |
718 | ASSERT_LOCKED (&gMemoryLock);\r | |
719 | \r | |
71f68914 | 720 | if (NumberOfPages == 0 || ((Start & EFI_PAGE_MASK) != 0) || (Start > (Start + NumberOfBytes))) {\r |
28a00297 | 721 | return EFI_INVALID_PARAMETER;\r |
722 | }\r | |
723 | \r | |
724 | //\r | |
725 | // Convert the entire range\r | |
726 | //\r | |
727 | \r | |
728 | while (Start < End) {\r | |
729 | \r | |
730 | //\r | |
731 | // Find the entry that the covers the range\r | |
732 | //\r | |
733 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
734 | Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
735 | \r | |
736 | if (Entry->Start <= Start && Entry->End > Start) {\r | |
737 | break;\r | |
738 | }\r | |
739 | }\r | |
740 | \r | |
741 | if (Link == &gMemoryMap) {\r | |
162ed594 | 742 | DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: failed to find range %lx - %lx\n", Start, End));\r |
28a00297 | 743 | return EFI_NOT_FOUND;\r |
744 | }\r | |
745 | \r | |
746 | //\r | |
747 | // Convert range to the end, or to the end of the descriptor\r | |
748 | // if that's all we've got\r | |
749 | //\r | |
750 | RangeEnd = End;\r | |
751 | if (Entry->End < End) {\r | |
752 | RangeEnd = Entry->End;\r | |
753 | }\r | |
754 | \r | |
162ed594 | 755 | DEBUG ((DEBUG_PAGE, "ConvertRange: %lx-%lx to %d\n", Start, RangeEnd, NewType));\r |
28a00297 | 756 | \r |
757 | //\r | |
758 | // Debug code - verify conversion is allowed\r | |
759 | //\r | |
760 | if (!(NewType == EfiConventionalMemory ? 1 : 0) ^ (Entry->Type == EfiConventionalMemory ? 1 : 0)) {\r | |
162ed594 | 761 | DEBUG ((DEBUG_ERROR , "ConvertPages: Incompatible memory types\n"));\r |
28a00297 | 762 | return EFI_NOT_FOUND;\r |
763 | } \r | |
764 | \r | |
765 | //\r | |
766 | // Update counters for the number of pages allocated to each memory type\r | |
767 | //\r | |
768 | if (Entry->Type >= 0 && Entry->Type < EfiMaxMemoryType) {\r | |
769 | if (Start >= mMemoryTypeStatistics[Entry->Type].BaseAddress && \r | |
770 | Start <= mMemoryTypeStatistics[Entry->Type].MaximumAddress) {\r | |
771 | if (NumberOfPages > mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages) {\r | |
772 | mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages = 0;\r | |
773 | } else {\r | |
774 | mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages -= NumberOfPages;\r | |
775 | }\r | |
776 | }\r | |
777 | }\r | |
778 | \r | |
779 | if (NewType >= 0 && NewType < EfiMaxMemoryType) {\r | |
780 | if (Start >= mMemoryTypeStatistics[NewType].BaseAddress && Start <= mMemoryTypeStatistics[NewType].MaximumAddress) {\r | |
781 | mMemoryTypeStatistics[NewType].CurrentNumberOfPages += NumberOfPages;\r | |
782 | if (mMemoryTypeStatistics[NewType].CurrentNumberOfPages > \r | |
783 | gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages) {\r | |
784 | gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages = (UINT32)mMemoryTypeStatistics[NewType].CurrentNumberOfPages;\r | |
785 | }\r | |
786 | }\r | |
787 | }\r | |
788 | \r | |
789 | //\r | |
790 | // Pull range out of descriptor\r | |
791 | //\r | |
792 | if (Entry->Start == Start) {\r | |
793 | \r | |
794 | //\r | |
795 | // Clip start\r | |
796 | //\r | |
797 | Entry->Start = RangeEnd + 1;\r | |
798 | \r | |
799 | } else if (Entry->End == RangeEnd) {\r | |
800 | \r | |
801 | //\r | |
802 | // Clip end\r | |
803 | //\r | |
804 | Entry->End = Start - 1;\r | |
805 | \r | |
806 | } else {\r | |
807 | \r | |
808 | //\r | |
809 | // Pull it out of the center, clip current\r | |
810 | //\r | |
811 | \r | |
812 | //\r | |
813 | // Add a new one\r | |
814 | //\r | |
815 | mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;\r | |
816 | mMapStack[mMapDepth].FromPages = FALSE;\r | |
817 | mMapStack[mMapDepth].Type = Entry->Type;\r | |
818 | mMapStack[mMapDepth].Start = RangeEnd+1;\r | |
819 | mMapStack[mMapDepth].End = Entry->End;\r | |
820 | \r | |
821 | //\r | |
822 | // Inherit Attribute from the Memory Descriptor that is being clipped\r | |
823 | //\r | |
824 | mMapStack[mMapDepth].Attribute = Entry->Attribute;\r | |
825 | \r | |
826 | Entry->End = Start - 1;\r | |
827 | ASSERT (Entry->Start < Entry->End);\r | |
828 | \r | |
829 | Entry = &mMapStack[mMapDepth];\r | |
830 | InsertTailList (&gMemoryMap, &Entry->Link);\r | |
831 | \r | |
832 | mMapDepth += 1;\r | |
833 | ASSERT (mMapDepth < MAX_MAP_DEPTH);\r | |
834 | }\r | |
835 | \r | |
836 | //\r | |
837 | // The new range inherits the same Attribute as the Entry \r | |
838 | //it is being cut out of\r | |
839 | //\r | |
840 | Attribute = Entry->Attribute;\r | |
841 | \r | |
842 | //\r | |
843 | // If the descriptor is empty, then remove it from the map\r | |
844 | //\r | |
845 | if (Entry->Start == Entry->End + 1) {\r | |
846 | RemoveMemoryMapEntry (Entry);\r | |
847 | Entry = NULL;\r | |
848 | }\r | |
849 | \r | |
850 | //\r | |
851 | // Add our new range in\r | |
852 | //\r | |
853 | CoreAddRange (NewType, Start, RangeEnd, Attribute);\r | |
854 | \r | |
855 | //\r | |
856 | // Move any map descriptor stack to general pool\r | |
857 | //\r | |
858 | CoreFreeMemoryMapStack ();\r | |
859 | \r | |
860 | //\r | |
861 | // Bump the starting address, and convert the next range\r | |
862 | //\r | |
863 | Start = RangeEnd + 1;\r | |
864 | }\r | |
865 | \r | |
866 | //\r | |
867 | // Converted the whole range, done\r | |
868 | //\r | |
869 | \r | |
870 | return EFI_SUCCESS;\r | |
871 | }\r | |
872 | \r | |
873 | \r | |
162ed594 | 874 | \r |
875 | /**\r | |
876 | Internal function. Finds a consecutive free page range below\r | |
877 | the requested address.\r | |
878 | \r | |
879 | @param MaxAddress The address that the range must be below \r | |
880 | @param NumberOfPages Number of pages needed \r | |
881 | @param NewType The type of memory the range is going to be \r | |
882 | turned into \r | |
883 | @param Alignment Bits to align with \r | |
884 | \r | |
885 | @return The base address of the range, or 0 if the range was not found\r | |
886 | \r | |
887 | **/\r | |
28a00297 | 888 | UINT64\r |
889 | CoreFindFreePagesI (\r | |
890 | IN UINT64 MaxAddress,\r | |
891 | IN UINT64 NumberOfPages,\r | |
892 | IN EFI_MEMORY_TYPE NewType,\r | |
893 | IN UINTN Alignment\r | |
894 | )\r | |
28a00297 | 895 | {\r |
896 | UINT64 NumberOfBytes;\r | |
897 | UINT64 Target;\r | |
898 | UINT64 DescStart;\r | |
899 | UINT64 DescEnd;\r | |
900 | UINT64 DescNumberOfBytes;\r | |
901 | LIST_ENTRY *Link;\r | |
902 | MEMORY_MAP *Entry;\r | |
903 | \r | |
904 | if ((MaxAddress < EFI_PAGE_MASK) ||(NumberOfPages == 0)) {\r | |
905 | return 0;\r | |
906 | }\r | |
907 | \r | |
908 | if ((MaxAddress & EFI_PAGE_MASK) != EFI_PAGE_MASK) {\r | |
909 | \r | |
910 | //\r | |
911 | // If MaxAddress is not aligned to the end of a page\r | |
912 | //\r | |
913 | \r | |
914 | //\r | |
915 | // Change MaxAddress to be 1 page lower\r | |
916 | //\r | |
917 | MaxAddress -= (EFI_PAGE_MASK + 1);\r | |
918 | \r | |
919 | //\r | |
920 | // Set MaxAddress to a page boundary\r | |
921 | //\r | |
922 | MaxAddress &= ~EFI_PAGE_MASK;\r | |
923 | \r | |
924 | //\r | |
925 | // Set MaxAddress to end of the page\r | |
926 | //\r | |
927 | MaxAddress |= EFI_PAGE_MASK;\r | |
928 | }\r | |
929 | \r | |
930 | NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);\r | |
931 | Target = 0;\r | |
932 | \r | |
933 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
934 | Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
935 | \r | |
936 | //\r | |
937 | // If it's not a free entry, don't bother with it\r | |
938 | //\r | |
939 | if (Entry->Type != EfiConventionalMemory) {\r | |
940 | continue;\r | |
941 | }\r | |
942 | \r | |
943 | DescStart = Entry->Start;\r | |
944 | DescEnd = Entry->End;\r | |
945 | \r | |
946 | //\r | |
947 | // If desc is past max allowed address, skip it\r | |
948 | //\r | |
949 | if (DescStart >= MaxAddress) {\r | |
950 | continue;\r | |
951 | }\r | |
952 | \r | |
953 | //\r | |
954 | // If desc ends past max allowed address, clip the end\r | |
955 | //\r | |
956 | if (DescEnd >= MaxAddress) {\r | |
957 | DescEnd = MaxAddress;\r | |
958 | }\r | |
959 | \r | |
960 | DescEnd = ((DescEnd + 1) & (~(Alignment - 1))) - 1;\r | |
961 | \r | |
962 | //\r | |
963 | // Compute the number of bytes we can used from this \r | |
964 | // descriptor, and see it's enough to satisfy the request\r | |
965 | //\r | |
966 | DescNumberOfBytes = DescEnd - DescStart + 1;\r | |
967 | \r | |
968 | if (DescNumberOfBytes >= NumberOfBytes) {\r | |
969 | \r | |
970 | //\r | |
971 | // If this is the best match so far remember it\r | |
972 | //\r | |
973 | if (DescEnd > Target) {\r | |
974 | Target = DescEnd;\r | |
975 | }\r | |
976 | }\r | |
977 | } \r | |
978 | \r | |
979 | //\r | |
980 | // If this is a grow down, adjust target to be the allocation base\r | |
981 | //\r | |
982 | Target -= NumberOfBytes - 1;\r | |
983 | \r | |
984 | //\r | |
985 | // If we didn't find a match, return 0\r | |
986 | //\r | |
987 | if ((Target & EFI_PAGE_MASK) != 0) {\r | |
988 | return 0;\r | |
989 | }\r | |
990 | \r | |
991 | return Target;\r | |
992 | }\r | |
993 | \r | |
162ed594 | 994 | \r |
995 | /**\r | |
996 | Internal function. Finds a consecutive free page range below\r | |
997 | the requested address\r | |
998 | \r | |
999 | @param MaxAddress The address that the range must be below \r | |
1000 | @param NoPages Number of pages needed \r | |
1001 | @param NewType The type of memory the range is going to be \r | |
1002 | turned into \r | |
1003 | @param Alignment Bits to align with \r | |
1004 | \r | |
1005 | @return The base address of the range, or 0 if the range was not found.\r | |
1006 | \r | |
1007 | **/\r | |
28a00297 | 1008 | UINT64\r |
1009 | FindFreePages (\r | |
1010 | IN UINT64 MaxAddress,\r | |
1011 | IN UINT64 NoPages,\r | |
1012 | IN EFI_MEMORY_TYPE NewType,\r | |
1013 | IN UINTN Alignment\r | |
1014 | )\r | |
28a00297 | 1015 | {\r |
1016 | UINT64 NewMaxAddress;\r | |
1017 | UINT64 Start;\r | |
1018 | \r | |
1019 | NewMaxAddress = MaxAddress;\r | |
1020 | \r | |
1021 | if (NewType >= 0 && NewType < EfiMaxMemoryType && NewMaxAddress >= mMemoryTypeStatistics[NewType].MaximumAddress) {\r | |
1022 | NewMaxAddress = mMemoryTypeStatistics[NewType].MaximumAddress;\r | |
1023 | } else {\r | |
1024 | if (NewMaxAddress > mDefaultMaximumAddress) {\r | |
1025 | NewMaxAddress = mDefaultMaximumAddress;\r | |
1026 | }\r | |
1027 | }\r | |
1028 | \r | |
1029 | Start = CoreFindFreePagesI (NewMaxAddress, NoPages, NewType, Alignment);\r | |
71f68914 | 1030 | if (Start == 0) {\r |
28a00297 | 1031 | Start = CoreFindFreePagesI (MaxAddress, NoPages, NewType, Alignment);\r |
71f68914 | 1032 | if (Start == 0) {\r |
28a00297 | 1033 | //\r |
1034 | // Here means there may be no enough memory to use, so try to go through\r | |
1035 | // all the memory descript to promote the untested memory directly\r | |
1036 | //\r | |
1037 | PromoteMemoryResource ();\r | |
1038 | \r | |
1039 | //\r | |
1040 | // Allocate memory again after the memory resource re-arranged\r | |
1041 | //\r | |
1042 | Start = CoreFindFreePagesI (MaxAddress, NoPages, NewType, Alignment);\r | |
1043 | }\r | |
1044 | }\r | |
1045 | \r | |
1046 | return Start;\r | |
1047 | }\r | |
1048 | \r | |
1049 | \r | |
162ed594 | 1050 | \r |
1051 | /**\r | |
1052 | Allocates pages from the memory map.\r | |
1053 | \r | |
1054 | @param Type The type of allocation to perform \r | |
1055 | @param MemoryType The type of memory to turn the allocated pages \r | |
1056 | into \r | |
1057 | @param NumberOfPages The number of pages to allocate \r | |
1058 | @param Memory A pointer to receive the base allocated memory \r | |
1059 | address \r | |
1060 | \r | |
1061 | @return Status. On success, Memory is filled in with the base address allocated\r | |
1062 | @retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in \r | |
1063 | spec. \r | |
1064 | @retval EFI_NOT_FOUND Could not allocate pages match the requirement. \r | |
1065 | @retval EFI_OUT_OF_RESOURCES No enough pages to allocate. \r | |
1066 | @retval EFI_SUCCESS Pages successfully allocated.\r | |
1067 | \r | |
1068 | **/\r | |
28a00297 | 1069 | EFI_STATUS\r |
1070 | EFIAPI\r | |
1071 | CoreAllocatePages (\r | |
1072 | IN EFI_ALLOCATE_TYPE Type,\r | |
1073 | IN EFI_MEMORY_TYPE MemoryType,\r | |
1074 | IN UINTN NumberOfPages,\r | |
1075 | IN OUT EFI_PHYSICAL_ADDRESS *Memory\r | |
1076 | )\r | |
28a00297 | 1077 | {\r |
1078 | EFI_STATUS Status;\r | |
1079 | UINT64 Start;\r | |
1080 | UINT64 MaxAddress;\r | |
1081 | UINTN Alignment;\r | |
1082 | \r | |
1083 | if (Type < AllocateAnyPages || Type >= (UINTN) MaxAllocateType) {\r | |
1084 | return EFI_INVALID_PARAMETER;\r | |
1085 | }\r | |
1086 | \r | |
1087 | if ((MemoryType >= EfiMaxMemoryType && MemoryType <= 0x7fffffff) ||\r | |
1088 | MemoryType == EfiConventionalMemory) {\r | |
1089 | return EFI_INVALID_PARAMETER;\r | |
1090 | }\r | |
1091 | \r | |
1092 | Alignment = EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT;\r | |
1093 | \r | |
1094 | if (MemoryType == EfiACPIReclaimMemory ||\r | |
1095 | MemoryType == EfiACPIMemoryNVS ||\r | |
1096 | MemoryType == EfiRuntimeServicesCode ||\r | |
1097 | MemoryType == EfiRuntimeServicesData) {\r | |
1098 | \r | |
1099 | Alignment = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT;\r | |
1100 | }\r | |
1101 | \r | |
1102 | if (Type == AllocateAddress) {\r | |
1103 | if ((*Memory & (Alignment - 1)) != 0) {\r | |
1104 | return EFI_NOT_FOUND;\r | |
1105 | }\r | |
1106 | }\r | |
1107 | \r | |
1108 | NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;\r | |
1109 | NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);\r | |
1110 | \r | |
1111 | //\r | |
1112 | // If this is for below a particular address, then \r | |
1113 | //\r | |
1114 | Start = *Memory;\r | |
1115 | \r | |
1116 | //\r | |
1117 | // The max address is the max natively addressable address for the processor\r | |
1118 | //\r | |
1119 | MaxAddress = EFI_MAX_ADDRESS;\r | |
1120 | \r | |
1121 | if (Type == AllocateMaxAddress) {\r | |
1122 | MaxAddress = Start;\r | |
1123 | }\r | |
1124 | \r | |
1125 | CoreAcquireMemoryLock ();\r | |
1126 | \r | |
1127 | //\r | |
1128 | // If not a specific address, then find an address to allocate\r | |
1129 | //\r | |
1130 | if (Type != AllocateAddress) {\r | |
1131 | Start = FindFreePages (MaxAddress, NumberOfPages, MemoryType, Alignment);\r | |
1132 | if (Start == 0) {\r | |
1133 | Status = EFI_OUT_OF_RESOURCES;\r | |
1134 | goto Done;\r | |
1135 | }\r | |
1136 | }\r | |
1137 | \r | |
1138 | //\r | |
1139 | // Convert pages from FreeMemory to the requested type\r | |
1140 | //\r | |
1141 | Status = CoreConvertPages (Start, NumberOfPages, MemoryType);\r | |
1142 | \r | |
1143 | Done:\r | |
1144 | CoreReleaseMemoryLock ();\r | |
1145 | \r | |
1146 | if (!EFI_ERROR (Status)) {\r | |
1147 | *Memory = Start;\r | |
1148 | }\r | |
1149 | \r | |
1150 | return Status;\r | |
1151 | }\r | |
1152 | \r | |
1153 | \r | |
1154 | \r | |
1155 | \r | |
162ed594 | 1156 | \r |
1157 | /**\r | |
1158 | Frees previous allocated pages.\r | |
1159 | \r | |
1160 | @param Memory Base address of memory being freed \r | |
1161 | @param NumberOfPages The number of pages to free \r | |
1162 | \r | |
1163 | @retval EFI_NOT_FOUND Could not find the entry that covers the range \r | |
1164 | @retval EFI_INVALID_PARAMETER Address not aligned \r | |
1165 | @return EFI_SUCCESS -Pages successfully freed.\r | |
1166 | \r | |
1167 | **/\r | |
28a00297 | 1168 | EFI_STATUS \r |
1169 | EFIAPI\r | |
1170 | CoreFreePages (\r | |
1171 | IN EFI_PHYSICAL_ADDRESS Memory,\r | |
1172 | IN UINTN NumberOfPages\r | |
1173 | )\r | |
28a00297 | 1174 | {\r |
1175 | EFI_STATUS Status;\r | |
1176 | LIST_ENTRY *Link;\r | |
1177 | MEMORY_MAP *Entry;\r | |
1178 | UINTN Alignment;\r | |
1179 | \r | |
1180 | //\r | |
1181 | // Free the range\r | |
1182 | //\r | |
1183 | CoreAcquireMemoryLock ();\r | |
1184 | \r | |
1185 | //\r | |
1186 | // Find the entry that the covers the range\r | |
1187 | //\r | |
1188 | Entry = NULL;\r | |
1189 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
1190 | Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
1191 | if (Entry->Start <= Memory && Entry->End > Memory) {\r | |
1192 | break;\r | |
1193 | }\r | |
1194 | }\r | |
1195 | if (Link == &gMemoryMap) {\r | |
1196 | CoreReleaseMemoryLock ();\r | |
1197 | return EFI_NOT_FOUND;\r | |
1198 | }\r | |
1199 | \r | |
1200 | Alignment = EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT;\r | |
1201 | \r | |
1202 | if (Entry->Type == EfiACPIReclaimMemory ||\r | |
1203 | Entry->Type == EfiACPIMemoryNVS ||\r | |
1204 | Entry->Type == EfiRuntimeServicesCode ||\r | |
1205 | Entry->Type == EfiRuntimeServicesData) {\r | |
1206 | \r | |
1207 | Alignment = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT;\r | |
1208 | \r | |
1209 | }\r | |
1210 | \r | |
1211 | if ((Memory & (Alignment - 1)) != 0) {\r | |
1212 | CoreReleaseMemoryLock ();\r | |
1213 | return EFI_INVALID_PARAMETER;\r | |
1214 | }\r | |
1215 | \r | |
1216 | NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;\r | |
1217 | NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);\r | |
1218 | \r | |
1219 | Status = CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);\r | |
1220 | \r | |
1221 | CoreReleaseMemoryLock ();\r | |
1222 | \r | |
1223 | if (EFI_ERROR (Status)) {\r | |
1224 | return Status;\r | |
1225 | }\r | |
1226 | \r | |
1227 | //\r | |
1228 | // Destroy the contents\r | |
1229 | //\r | |
1230 | if (Memory < EFI_MAX_ADDRESS) {\r | |
1231 | DEBUG_CLEAR_MEMORY ((VOID *)(UINTN)Memory, NumberOfPages << EFI_PAGE_SHIFT);\r | |
1232 | }\r | |
1233 | \r | |
1234 | return Status;\r | |
1235 | }\r | |
1236 | \r | |
1237 | \r | |
1238 | \r | |
162ed594 | 1239 | \r |
1240 | /**\r | |
1241 | This function returns a copy of the current memory map. The map is an array of\r | |
1242 | memory descriptors, each of which describes a contiguous block of memory.\r | |
1243 | \r | |
1244 | @param MemoryMapSize A pointer to the size, in bytes, of the \r | |
1245 | MemoryMap buffer. On input, this is the size of \r | |
1246 | the buffer allocated by the caller. On output, \r | |
1247 | it is the size of the buffer returned by the \r | |
1248 | firmware if the buffer was large enough, or the \r | |
1249 | size of the buffer needed to contain the map if \r | |
1250 | the buffer was too small. \r | |
1251 | @param MemoryMap A pointer to the buffer in which firmware places \r | |
1252 | the current memory map. \r | |
1253 | @param MapKey A pointer to the location in which firmware \r | |
1254 | returns the key for the current memory map. \r | |
1255 | @param DescriptorSize A pointer to the location in which firmware \r | |
1256 | returns the size, in bytes, of an individual \r | |
1257 | EFI_MEMORY_DESCRIPTOR. \r | |
1258 | @param DescriptorVersion A pointer to the location in which firmware \r | |
1259 | returns the version number associated with the \r | |
1260 | EFI_MEMORY_DESCRIPTOR. \r | |
1261 | \r | |
1262 | @retval EFI_SUCCESS The memory map was returned in the MemoryMap \r | |
1263 | buffer. \r | |
1264 | @retval EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current \r | |
1265 | buffer size needed to hold the memory map is \r | |
1266 | returned in MemoryMapSize. \r | |
1267 | @retval EFI_INVALID_PARAMETER One of the parameters has an invalid value.\r | |
1268 | \r | |
1269 | **/\r | |
28a00297 | 1270 | EFI_STATUS\r |
1271 | EFIAPI\r | |
1272 | CoreGetMemoryMap (\r | |
1273 | IN OUT UINTN *MemoryMapSize,\r | |
1274 | IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,\r | |
1275 | OUT UINTN *MapKey,\r | |
1276 | OUT UINTN *DescriptorSize,\r | |
1277 | OUT UINT32 *DescriptorVersion\r | |
1278 | )\r | |
28a00297 | 1279 | {\r |
1280 | EFI_STATUS Status;\r | |
1281 | UINTN Size; \r | |
1282 | UINTN BufferSize; \r | |
1283 | UINTN NumberOfRuntimeEntries;\r | |
1284 | LIST_ENTRY *Link;\r | |
1285 | MEMORY_MAP *Entry; \r | |
1286 | EFI_GCD_MAP_ENTRY *GcdMapEntry; \r | |
b74350e9 | 1287 | EFI_MEMORY_TYPE Type;\r |
28a00297 | 1288 | \r |
1289 | //\r | |
1290 | // Make sure the parameters are valid\r | |
1291 | //\r | |
1292 | if (MemoryMapSize == NULL) {\r | |
1293 | return EFI_INVALID_PARAMETER;\r | |
1294 | }\r | |
1295 | \r | |
1296 | CoreAcquireGcdMemoryLock ();\r | |
1297 | \r | |
1298 | //\r | |
1299 | // Count the number of Reserved and MMIO entries that are marked for runtime use\r | |
1300 | //\r | |
1301 | NumberOfRuntimeEntries = 0;\r | |
1302 | for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {\r | |
1303 | GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r | |
1304 | if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||\r | |
1305 | (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo)) {\r | |
1306 | if ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) {\r | |
1307 | NumberOfRuntimeEntries++;\r | |
1308 | }\r | |
1309 | }\r | |
1310 | }\r | |
1311 | \r | |
1312 | Size = sizeof (EFI_MEMORY_DESCRIPTOR);\r | |
1313 | \r | |
1314 | //\r | |
1315 | // Make sure Size != sizeof(EFI_MEMORY_DESCRIPTOR). This will\r | |
1316 | // prevent people from having pointer math bugs in their code.\r | |
1317 | // now you have to use *DescriptorSize to make things work.\r | |
1318 | //\r | |
1319 | Size += sizeof(UINT64) - (Size % sizeof (UINT64));\r | |
1320 | \r | |
1321 | if (DescriptorSize != NULL) {\r | |
1322 | *DescriptorSize = Size;\r | |
1323 | }\r | |
1324 | \r | |
1325 | if (DescriptorVersion != NULL) {\r | |
1326 | *DescriptorVersion = EFI_MEMORY_DESCRIPTOR_VERSION;\r | |
1327 | }\r | |
1328 | \r | |
1329 | CoreAcquireMemoryLock ();\r | |
1330 | \r | |
1331 | //\r | |
1332 | // Compute the buffer size needed to fit the entire map\r | |
1333 | //\r | |
1334 | BufferSize = Size * NumberOfRuntimeEntries;\r | |
1335 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
1336 | BufferSize += Size;\r | |
1337 | }\r | |
1338 | \r | |
1339 | if (*MemoryMapSize < BufferSize) {\r | |
1340 | Status = EFI_BUFFER_TOO_SMALL;\r | |
1341 | goto Done;\r | |
1342 | }\r | |
1343 | \r | |
1344 | if (MemoryMap == NULL) {\r | |
1345 | Status = EFI_INVALID_PARAMETER;\r | |
1346 | goto Done;\r | |
1347 | }\r | |
1348 | \r | |
1349 | //\r | |
1350 | // Build the map\r | |
1351 | //\r | |
383c303c | 1352 | ZeroMem (MemoryMap, BufferSize);\r |
28a00297 | 1353 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r |
1354 | Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
1355 | ASSERT (Entry->VirtualStart == 0);\r | |
1356 | \r | |
b74350e9 | 1357 | //\r |
1358 | // Convert internal map into an EFI_MEMORY_DESCRIPTOR\r | |
1359 | //\r | |
28a00297 | 1360 | MemoryMap->Type = Entry->Type;\r |
1361 | MemoryMap->PhysicalStart = Entry->Start;\r | |
1362 | MemoryMap->VirtualStart = Entry->VirtualStart;\r | |
1363 | MemoryMap->NumberOfPages = RShiftU64 (Entry->End - Entry->Start + 1, EFI_PAGE_SHIFT);\r | |
b74350e9 | 1364 | //\r |
1365 | // If the memory type is EfiConventionalMemory, then determine if the range is part of a\r | |
1366 | // memory type bin and needs to be converted to the same memory type as the rest of the \r | |
1367 | // memory type bin in order to minimize EFI Memory Map changes across reboots. This \r | |
1368 | // improves the chances for a successful S4 resume in the presence of minor page allocation\r | |
1369 | // differences across reboots.\r | |
1370 | //\r | |
1371 | if (MemoryMap->Type == EfiConventionalMemory) {\r | |
1372 | for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {\r | |
1373 | if (mMemoryTypeStatistics[Type].Special &&\r | |
1374 | mMemoryTypeStatistics[Type].NumberOfPages > 0 &&\r | |
1375 | Entry->Start >= mMemoryTypeStatistics[Type].BaseAddress &&\r | |
1376 | Entry->End <= mMemoryTypeStatistics[Type].MaximumAddress ) {\r | |
1377 | MemoryMap->Type = Type;\r | |
1378 | }\r | |
1379 | }\r | |
1380 | }\r | |
1381 | MemoryMap->Attribute = Entry->Attribute;\r | |
1382 | if (mMemoryTypeStatistics[MemoryMap->Type].Runtime) {\r | |
1383 | MemoryMap->Attribute |= EFI_MEMORY_RUNTIME;\r | |
28a00297 | 1384 | }\r |
1385 | \r | |
1386 | MemoryMap = NextMemoryDescriptor (MemoryMap, Size);\r | |
1387 | }\r | |
1388 | \r | |
1389 | for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {\r | |
1390 | GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r | |
1391 | if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||\r | |
1392 | (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo)) {\r | |
1393 | if ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) {\r | |
1394 | \r | |
1395 | MemoryMap->PhysicalStart = GcdMapEntry->BaseAddress;\r | |
1396 | MemoryMap->VirtualStart = 0;\r | |
1397 | MemoryMap->NumberOfPages = RShiftU64 ((GcdMapEntry->EndAddress - GcdMapEntry->BaseAddress + 1), EFI_PAGE_SHIFT);\r | |
1398 | MemoryMap->Attribute = GcdMapEntry->Attributes & ~EFI_MEMORY_PORT_IO;\r | |
1399 | \r | |
1400 | if (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) {\r | |
1401 | MemoryMap->Type = EfiReservedMemoryType;\r | |
1402 | } else if (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) {\r | |
1403 | if ((GcdMapEntry->Attributes & EFI_MEMORY_PORT_IO) == EFI_MEMORY_PORT_IO) {\r | |
1404 | MemoryMap->Type = EfiMemoryMappedIOPortSpace;\r | |
1405 | } else {\r | |
1406 | MemoryMap->Type = EfiMemoryMappedIO;\r | |
1407 | }\r | |
1408 | }\r | |
1409 | \r | |
1410 | MemoryMap = NextMemoryDescriptor (MemoryMap, Size);\r | |
1411 | }\r | |
1412 | }\r | |
1413 | }\r | |
1414 | \r | |
1415 | Status = EFI_SUCCESS;\r | |
1416 | \r | |
1417 | Done:\r | |
1418 | \r | |
1419 | CoreReleaseMemoryLock ();\r | |
1420 | \r | |
1421 | CoreReleaseGcdMemoryLock ();\r | |
1422 | \r | |
1423 | // \r | |
1424 | // Update the map key finally \r | |
1425 | // \r | |
1426 | if (MapKey != NULL) {\r | |
1427 | *MapKey = mMemoryMapKey;\r | |
1428 | }\r | |
1429 | \r | |
1430 | *MemoryMapSize = BufferSize;\r | |
1431 | \r | |
1432 | return Status;\r | |
1433 | }\r | |
1434 | \r | |
28a00297 | 1435 | \r |
162ed594 | 1436 | /**\r |
28a00297 | 1437 | Internal function. Used by the pool functions to allocate pages\r |
1438 | to back pool allocation requests.\r | |
1439 | \r | |
162ed594 | 1440 | @param PoolType The type of memory for the new pool pages \r |
1441 | @param NumberOfPages No of pages to allocate \r | |
1442 | @param Alignment Bits to align. \r | |
28a00297 | 1443 | \r |
162ed594 | 1444 | @return The allocated memory, or NULL\r |
28a00297 | 1445 | \r |
162ed594 | 1446 | **/\r |
1447 | VOID *\r | |
1448 | CoreAllocatePoolPages (\r | |
1449 | IN EFI_MEMORY_TYPE PoolType,\r | |
1450 | IN UINTN NumberOfPages,\r | |
1451 | IN UINTN Alignment\r | |
1452 | )\r | |
28a00297 | 1453 | {\r |
1454 | UINT64 Start;\r | |
1455 | \r | |
1456 | //\r | |
1457 | // Find the pages to convert\r | |
1458 | //\r | |
1459 | Start = FindFreePages (EFI_MAX_ADDRESS, NumberOfPages, PoolType, Alignment);\r | |
1460 | \r | |
1461 | //\r | |
1462 | // Convert it to boot services data\r | |
1463 | //\r | |
1464 | if (Start == 0) {\r | |
162ed594 | 1465 | DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "AllocatePoolPages: failed to allocate %d pages\n", NumberOfPages));\r |
28a00297 | 1466 | } else {\r |
1467 | CoreConvertPages (Start, NumberOfPages, PoolType);\r | |
1468 | }\r | |
1469 | \r | |
1470 | return (VOID *)(UINTN)Start;\r | |
1471 | }\r | |
1472 | \r | |
162ed594 | 1473 | \r |
1474 | /**\r | |
1475 | Internal function. Frees pool pages allocated via AllocatePoolPages ()\r | |
1476 | \r | |
1477 | @param Memory The base address to free \r | |
1478 | @param NumberOfPages The number of pages to free\r | |
1479 | \r | |
1480 | **/\r | |
28a00297 | 1481 | VOID\r |
1482 | CoreFreePoolPages (\r | |
1483 | IN EFI_PHYSICAL_ADDRESS Memory,\r | |
1484 | IN UINTN NumberOfPages\r | |
1485 | )\r | |
28a00297 | 1486 | {\r |
1487 | CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);\r | |
1488 | }\r | |
1489 | \r | |
1490 | \r | |
28a00297 | 1491 | \r |
162ed594 | 1492 | /**\r |
1493 | Make sure the memory map is following all the construction rules,\r | |
28a00297 | 1494 | it is the last time to check memory map error before exit boot services.\r |
1495 | \r | |
162ed594 | 1496 | @param MapKey Memory map key \r |
28a00297 | 1497 | \r |
162ed594 | 1498 | @retval EFI_INVALID_PARAMETER Memory map not consistent with construction \r |
1499 | rules. \r | |
1500 | @retval EFI_SUCCESS Valid memory map.\r | |
28a00297 | 1501 | \r |
162ed594 | 1502 | **/\r |
1503 | EFI_STATUS\r | |
1504 | CoreTerminateMemoryMap (\r | |
1505 | IN UINTN MapKey\r | |
1506 | )\r | |
28a00297 | 1507 | {\r |
1508 | EFI_STATUS Status;\r | |
1509 | LIST_ENTRY *Link;\r | |
1510 | MEMORY_MAP *Entry;\r | |
1511 | \r | |
1512 | Status = EFI_SUCCESS;\r | |
1513 | \r | |
1514 | CoreAcquireMemoryLock ();\r | |
1515 | \r | |
1516 | if (MapKey == mMemoryMapKey) {\r | |
1517 | \r | |
1518 | //\r | |
1519 | // Make sure the memory map is following all the construction rules\r | |
1520 | // This is the last chance we will be able to display any messages on\r | |
1521 | // the console devices.\r | |
1522 | //\r | |
1523 | \r | |
1524 | for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r | |
1525 | Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r | |
1526 | if (Entry->Attribute & EFI_MEMORY_RUNTIME) { \r | |
1527 | if (Entry->Type == EfiACPIReclaimMemory || Entry->Type == EfiACPIMemoryNVS) {\r | |
162ed594 | 1528 | DEBUG((DEBUG_ERROR, "ExitBootServices: ACPI memory entry has RUNTIME attribute set.\n"));\r |
28a00297 | 1529 | CoreReleaseMemoryLock ();\r |
1530 | return EFI_INVALID_PARAMETER;\r | |
1531 | }\r | |
1532 | if (Entry->Start & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) {\r | |
162ed594 | 1533 | DEBUG((DEBUG_ERROR, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));\r |
28a00297 | 1534 | CoreReleaseMemoryLock ();\r |
1535 | return EFI_INVALID_PARAMETER;\r | |
1536 | }\r | |
1537 | if ((Entry->End + 1) & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) {\r | |
162ed594 | 1538 | DEBUG((DEBUG_ERROR, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));\r |
28a00297 | 1539 | CoreReleaseMemoryLock ();\r |
1540 | return EFI_INVALID_PARAMETER;\r | |
1541 | }\r | |
1542 | }\r | |
1543 | }\r | |
1544 | \r | |
1545 | //\r | |
1546 | // The map key they gave us matches what we expect. Fall through and\r | |
1547 | // return success. In an ideal world we would clear out all of\r | |
1548 | // EfiBootServicesCode and EfiBootServicesData. However this function\r | |
1549 | // is not the last one called by ExitBootServices(), so we have to\r | |
1550 | // preserve the memory contents.\r | |
1551 | //\r | |
1552 | } else {\r | |
1553 | Status = EFI_INVALID_PARAMETER;\r | |
1554 | }\r | |
1555 | \r | |
1556 | CoreReleaseMemoryLock ();\r | |
1557 | \r | |
1558 | return Status;\r | |
1559 | }\r | |
1560 | \r | |
1561 | \r | |
1562 | \r | |
1563 | \r | |
1564 | \r | |
1565 | \r | |
1566 | \r | |
1567 | \r | |
162ed594 | 1568 | \r |