]> git.proxmox.com Git - mirror_edk2.git/blame - MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c
MdeModulePkg/DxeIplPeim: Relocate operation of PageMapLevel5Entry++
[mirror_edk2.git] / MdeModulePkg / Core / DxeIplPeim / X64 / VirtualMemory.c
CommitLineData
f3b33289 1/** @file\r
d1102dba 2 x64 Virtual Memory Management Services in the form of an IA-32 driver.\r
f3b33289 3 Used to establish a 1:1 Virtual to Physical Mapping that is required to\r
4 enter Long Mode (x64 64-bit mode).\r
5\r
d1102dba 6 While we make a 1:1 mapping (identity mapping) for all physical pages\r
4140a663 7 we still need to use the MTRR's to ensure that the cachability attributes\r
f3b33289 8 for all memory regions is correct.\r
9\r
10 The basic idea is to use 2MB page table entries where ever possible. If\r
11 more granularity of cachability is required then 4K page tables are used.\r
12\r
13 References:\r
4140a663 14 1) IA-32 Intel(R) Architecture Software Developer's Manual Volume 1:Basic Architecture, Intel\r
15 2) IA-32 Intel(R) Architecture Software Developer's Manual Volume 2:Instruction Set Reference, Intel\r
16 3) IA-32 Intel(R) Architecture Software Developer's Manual Volume 3:System Programmer's Guide, Intel\r
f3b33289 17\r
b3527ded 18Copyright (c) 2006 - 2019, Intel Corporation. All rights reserved.<BR>\r
5997daf7
LD
19Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>\r
20\r
9d510e61 21SPDX-License-Identifier: BSD-2-Clause-Patent\r
f3b33289 22\r
d1102dba 23**/\r
f3b33289 24\r
b3527ded 25#include <Register/Intel/Cpuid.h>\r
f3b33289 26#include "DxeIpl.h"\r
27#include "VirtualMemory.h"\r
28\r
2ac1730b
JW
29//\r
30// Global variable to keep track current available memory used as page table.\r
31//\r
32PAGE_TABLE_POOL *mPageTablePool = NULL;\r
33\r
9189ec20 34/**\r
382aeac2 35 Clear legacy memory located at the first 4K-page, if available.\r
9189ec20 36\r
382aeac2
DB
37 This function traverses the whole HOB list to check if memory from 0 to 4095\r
38 exists and has not been allocated, and then clear it if so.\r
9189ec20 39\r
382aeac2 40 @param HobStart The start of HobList passed to DxeCore.\r
9189ec20
JW
41\r
42**/\r
43VOID\r
44ClearFirst4KPage (\r
45 IN VOID *HobStart\r
46 )\r
47{\r
48 EFI_PEI_HOB_POINTERS RscHob;\r
49 EFI_PEI_HOB_POINTERS MemHob;\r
50 BOOLEAN DoClear;\r
51\r
52 RscHob.Raw = HobStart;\r
53 MemHob.Raw = HobStart;\r
54 DoClear = FALSE;\r
55\r
56 //\r
57 // Check if page 0 exists and free\r
58 //\r
59 while ((RscHob.Raw = GetNextHob (EFI_HOB_TYPE_RESOURCE_DESCRIPTOR,\r
60 RscHob.Raw)) != NULL) {\r
61 if (RscHob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&\r
62 RscHob.ResourceDescriptor->PhysicalStart == 0) {\r
63 DoClear = TRUE;\r
64 //\r
65 // Make sure memory at 0-4095 has not been allocated.\r
66 //\r
67 while ((MemHob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION,\r
68 MemHob.Raw)) != NULL) {\r
69 if (MemHob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress\r
70 < EFI_PAGE_SIZE) {\r
71 DoClear = FALSE;\r
72 break;\r
73 }\r
74 MemHob.Raw = GET_NEXT_HOB (MemHob);\r
75 }\r
76 break;\r
77 }\r
78 RscHob.Raw = GET_NEXT_HOB (RscHob);\r
79 }\r
80\r
81 if (DoClear) {\r
82 DEBUG ((DEBUG_INFO, "Clearing first 4K-page!\r\n"));\r
83 SetMem (NULL, EFI_PAGE_SIZE, 0);\r
84 }\r
85\r
86 return;\r
87}\r
88\r
382aeac2
DB
89/**\r
90 Return configure status of NULL pointer detection feature.\r
91\r
92 @return TRUE NULL pointer detection feature is enabled\r
93 @return FALSE NULL pointer detection feature is disabled\r
94\r
95**/\r
9189ec20
JW
96BOOLEAN\r
97IsNullDetectionEnabled (\r
98 VOID\r
99 )\r
100{\r
101 return ((PcdGet8 (PcdNullPointerDetectionPropertyMask) & BIT0) != 0);\r
102}\r
5997daf7 103\r
52679261
JW
104/**\r
105 The function will check if Execute Disable Bit is available.\r
106\r
107 @retval TRUE Execute Disable Bit is available.\r
108 @retval FALSE Execute Disable Bit is not available.\r
109\r
110**/\r
111BOOLEAN\r
112IsExecuteDisableBitAvailable (\r
113 VOID\r
114 )\r
115{\r
116 UINT32 RegEax;\r
117 UINT32 RegEdx;\r
118 BOOLEAN Available;\r
119\r
120 Available = FALSE;\r
121 AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);\r
122 if (RegEax >= 0x80000001) {\r
123 AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);\r
124 if ((RegEdx & BIT20) != 0) {\r
125 //\r
126 // Bit 20: Execute Disable Bit available.\r
127 //\r
128 Available = TRUE;\r
129 }\r
130 }\r
131\r
132 return Available;\r
133}\r
134\r
135/**\r
136 Check if Execute Disable Bit (IA32_EFER.NXE) should be enabled or not.\r
137\r
138 @retval TRUE IA32_EFER.NXE should be enabled.\r
139 @retval FALSE IA32_EFER.NXE should not be enabled.\r
140\r
141**/\r
142BOOLEAN\r
143IsEnableNonExecNeeded (\r
144 VOID\r
145 )\r
146{\r
147 if (!IsExecuteDisableBitAvailable ()) {\r
148 return FALSE;\r
149 }\r
150\r
151 //\r
152 // XD flag (BIT63) in page table entry is only valid if IA32_EFER.NXE is set.\r
153 // Features controlled by Following PCDs need this feature to be enabled.\r
154 //\r
155 return (PcdGetBool (PcdSetNxForStack) ||\r
156 PcdGet64 (PcdDxeNxMemoryProtectionPolicy) != 0 ||\r
157 PcdGet32 (PcdImageProtectionPolicy) != 0);\r
158}\r
159\r
5630cdfe
SZ
160/**\r
161 Enable Execute Disable Bit.\r
162\r
163**/\r
164VOID\r
165EnableExecuteDisableBit (\r
166 VOID\r
167 )\r
168{\r
169 UINT64 MsrRegisters;\r
170\r
171 MsrRegisters = AsmReadMsr64 (0xC0000080);\r
172 MsrRegisters |= BIT11;\r
173 AsmWriteMsr64 (0xC0000080, MsrRegisters);\r
174}\r
175\r
50255363
JW
176/**\r
177 The function will check if page table entry should be splitted to smaller\r
178 granularity.\r
179\r
9db7e9fd
JW
180 @param Address Physical memory address.\r
181 @param Size Size of the given physical memory.\r
182 @param StackBase Base address of stack.\r
183 @param StackSize Size of stack.\r
184\r
50255363
JW
185 @retval TRUE Page table should be split.\r
186 @retval FALSE Page table should not be split.\r
187**/\r
188BOOLEAN\r
189ToSplitPageTable (\r
190 IN EFI_PHYSICAL_ADDRESS Address,\r
191 IN UINTN Size,\r
192 IN EFI_PHYSICAL_ADDRESS StackBase,\r
193 IN UINTN StackSize\r
194 )\r
195{\r
196 if (IsNullDetectionEnabled () && Address == 0) {\r
197 return TRUE;\r
198 }\r
199\r
200 if (PcdGetBool (PcdCpuStackGuard)) {\r
201 if (StackBase >= Address && StackBase < (Address + Size)) {\r
202 return TRUE;\r
203 }\r
204 }\r
205\r
206 if (PcdGetBool (PcdSetNxForStack)) {\r
207 if ((Address < StackBase + StackSize) && ((Address + Size) > StackBase)) {\r
208 return TRUE;\r
209 }\r
210 }\r
211\r
212 return FALSE;\r
213}\r
2ac1730b
JW
214/**\r
215 Initialize a buffer pool for page table use only.\r
216\r
217 To reduce the potential split operation on page table, the pages reserved for\r
218 page table should be allocated in the times of PAGE_TABLE_POOL_UNIT_PAGES and\r
219 at the boundary of PAGE_TABLE_POOL_ALIGNMENT. So the page pool is always\r
220 initialized with number of pages greater than or equal to the given PoolPages.\r
221\r
222 Once the pages in the pool are used up, this method should be called again to\r
223 reserve at least another PAGE_TABLE_POOL_UNIT_PAGES. But usually this won't\r
224 happen in practice.\r
225\r
226 @param PoolPages The least page number of the pool to be created.\r
227\r
228 @retval TRUE The pool is initialized successfully.\r
229 @retval FALSE The memory is out of resource.\r
230**/\r
231BOOLEAN\r
232InitializePageTablePool (\r
233 IN UINTN PoolPages\r
234 )\r
235{\r
236 VOID *Buffer;\r
237\r
238 //\r
239 // Always reserve at least PAGE_TABLE_POOL_UNIT_PAGES, including one page for\r
240 // header.\r
241 //\r
242 PoolPages += 1; // Add one page for header.\r
243 PoolPages = ((PoolPages - 1) / PAGE_TABLE_POOL_UNIT_PAGES + 1) *\r
244 PAGE_TABLE_POOL_UNIT_PAGES;\r
245 Buffer = AllocateAlignedPages (PoolPages, PAGE_TABLE_POOL_ALIGNMENT);\r
246 if (Buffer == NULL) {\r
247 DEBUG ((DEBUG_ERROR, "ERROR: Out of aligned pages\r\n"));\r
248 return FALSE;\r
249 }\r
250\r
251 //\r
252 // Link all pools into a list for easier track later.\r
253 //\r
254 if (mPageTablePool == NULL) {\r
255 mPageTablePool = Buffer;\r
256 mPageTablePool->NextPool = mPageTablePool;\r
257 } else {\r
258 ((PAGE_TABLE_POOL *)Buffer)->NextPool = mPageTablePool->NextPool;\r
259 mPageTablePool->NextPool = Buffer;\r
260 mPageTablePool = Buffer;\r
261 }\r
262\r
263 //\r
264 // Reserve one page for pool header.\r
265 //\r
266 mPageTablePool->FreePages = PoolPages - 1;\r
267 mPageTablePool->Offset = EFI_PAGES_TO_SIZE (1);\r
268\r
269 return TRUE;\r
270}\r
271\r
272/**\r
273 This API provides a way to allocate memory for page table.\r
274\r
275 This API can be called more than once to allocate memory for page tables.\r
276\r
277 Allocates the number of 4KB pages and returns a pointer to the allocated\r
278 buffer. The buffer returned is aligned on a 4KB boundary.\r
279\r
280 If Pages is 0, then NULL is returned.\r
281 If there is not enough memory remaining to satisfy the request, then NULL is\r
282 returned.\r
283\r
284 @param Pages The number of 4 KB pages to allocate.\r
285\r
286 @return A pointer to the allocated buffer or NULL if allocation fails.\r
287\r
288**/\r
289VOID *\r
290AllocatePageTableMemory (\r
291 IN UINTN Pages\r
292 )\r
293{\r
294 VOID *Buffer;\r
295\r
296 if (Pages == 0) {\r
297 return NULL;\r
298 }\r
299\r
300 //\r
301 // Renew the pool if necessary.\r
302 //\r
303 if (mPageTablePool == NULL ||\r
304 Pages > mPageTablePool->FreePages) {\r
305 if (!InitializePageTablePool (Pages)) {\r
306 return NULL;\r
307 }\r
308 }\r
309\r
310 Buffer = (UINT8 *)mPageTablePool + mPageTablePool->Offset;\r
311\r
312 mPageTablePool->Offset += EFI_PAGES_TO_SIZE (Pages);\r
313 mPageTablePool->FreePages -= Pages;\r
314\r
315 return Buffer;\r
316}\r
317\r
5630cdfe
SZ
318/**\r
319 Split 2M page to 4K.\r
320\r
321 @param[in] PhysicalAddress Start physical address the 2M page covered.\r
322 @param[in, out] PageEntry2M Pointer to 2M page entry.\r
323 @param[in] StackBase Stack base address.\r
324 @param[in] StackSize Stack size.\r
325\r
326**/\r
327VOID\r
328Split2MPageTo4K (\r
329 IN EFI_PHYSICAL_ADDRESS PhysicalAddress,\r
330 IN OUT UINT64 *PageEntry2M,\r
331 IN EFI_PHYSICAL_ADDRESS StackBase,\r
332 IN UINTN StackSize\r
333 )\r
334{\r
335 EFI_PHYSICAL_ADDRESS PhysicalAddress4K;\r
336 UINTN IndexOfPageTableEntries;\r
337 PAGE_TABLE_4K_ENTRY *PageTableEntry;\r
5997daf7
LD
338 UINT64 AddressEncMask;\r
339\r
340 //\r
341 // Make sure AddressEncMask is contained to smallest supported address field\r
342 //\r
343 AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;\r
5630cdfe 344\r
2ac1730b 345 PageTableEntry = AllocatePageTableMemory (1);\r
36829e67 346 ASSERT (PageTableEntry != NULL);\r
5997daf7 347\r
5630cdfe
SZ
348 //\r
349 // Fill in 2M page entry.\r
350 //\r
5997daf7 351 *PageEntry2M = (UINT64) (UINTN) PageTableEntry | AddressEncMask | IA32_PG_P | IA32_PG_RW;\r
5630cdfe
SZ
352\r
353 PhysicalAddress4K = PhysicalAddress;\r
354 for (IndexOfPageTableEntries = 0; IndexOfPageTableEntries < 512; IndexOfPageTableEntries++, PageTableEntry++, PhysicalAddress4K += SIZE_4KB) {\r
355 //\r
356 // Fill in the Page Table entries\r
357 //\r
5997daf7 358 PageTableEntry->Uint64 = (UINT64) PhysicalAddress4K | AddressEncMask;\r
5630cdfe 359 PageTableEntry->Bits.ReadWrite = 1;\r
9189ec20 360\r
50255363
JW
361 if ((IsNullDetectionEnabled () && PhysicalAddress4K == 0) ||\r
362 (PcdGetBool (PcdCpuStackGuard) && PhysicalAddress4K == StackBase)) {\r
9189ec20
JW
363 PageTableEntry->Bits.Present = 0;\r
364 } else {\r
365 PageTableEntry->Bits.Present = 1;\r
366 }\r
367\r
368 if (PcdGetBool (PcdSetNxForStack)\r
369 && (PhysicalAddress4K >= StackBase)\r
370 && (PhysicalAddress4K < StackBase + StackSize)) {\r
5630cdfe
SZ
371 //\r
372 // Set Nx bit for stack.\r
373 //\r
374 PageTableEntry->Bits.Nx = 1;\r
375 }\r
376 }\r
377}\r
378\r
379/**\r
380 Split 1G page to 2M.\r
381\r
382 @param[in] PhysicalAddress Start physical address the 1G page covered.\r
383 @param[in, out] PageEntry1G Pointer to 1G page entry.\r
384 @param[in] StackBase Stack base address.\r
385 @param[in] StackSize Stack size.\r
386\r
387**/\r
388VOID\r
389Split1GPageTo2M (\r
390 IN EFI_PHYSICAL_ADDRESS PhysicalAddress,\r
391 IN OUT UINT64 *PageEntry1G,\r
392 IN EFI_PHYSICAL_ADDRESS StackBase,\r
393 IN UINTN StackSize\r
394 )\r
395{\r
396 EFI_PHYSICAL_ADDRESS PhysicalAddress2M;\r
397 UINTN IndexOfPageDirectoryEntries;\r
398 PAGE_TABLE_ENTRY *PageDirectoryEntry;\r
5997daf7
LD
399 UINT64 AddressEncMask;\r
400\r
401 //\r
402 // Make sure AddressEncMask is contained to smallest supported address field\r
403 //\r
404 AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;\r
5630cdfe 405\r
2ac1730b 406 PageDirectoryEntry = AllocatePageTableMemory (1);\r
36829e67 407 ASSERT (PageDirectoryEntry != NULL);\r
5997daf7 408\r
5630cdfe
SZ
409 //\r
410 // Fill in 1G page entry.\r
411 //\r
5997daf7 412 *PageEntry1G = (UINT64) (UINTN) PageDirectoryEntry | AddressEncMask | IA32_PG_P | IA32_PG_RW;\r
5630cdfe
SZ
413\r
414 PhysicalAddress2M = PhysicalAddress;\r
415 for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PhysicalAddress2M += SIZE_2MB) {\r
50255363 416 if (ToSplitPageTable (PhysicalAddress2M, SIZE_2MB, StackBase, StackSize)) {\r
5630cdfe 417 //\r
9189ec20 418 // Need to split this 2M page that covers NULL or stack range.\r
5630cdfe
SZ
419 //\r
420 Split2MPageTo4K (PhysicalAddress2M, (UINT64 *) PageDirectoryEntry, StackBase, StackSize);\r
421 } else {\r
422 //\r
423 // Fill in the Page Directory entries\r
424 //\r
5997daf7 425 PageDirectoryEntry->Uint64 = (UINT64) PhysicalAddress2M | AddressEncMask;\r
5630cdfe
SZ
426 PageDirectoryEntry->Bits.ReadWrite = 1;\r
427 PageDirectoryEntry->Bits.Present = 1;\r
428 PageDirectoryEntry->Bits.MustBe1 = 1;\r
429 }\r
430 }\r
431}\r
432\r
2ac1730b
JW
433/**\r
434 Set one page of page table pool memory to be read-only.\r
435\r
436 @param[in] PageTableBase Base address of page table (CR3).\r
437 @param[in] Address Start address of a page to be set as read-only.\r
438 @param[in] Level4Paging Level 4 paging flag.\r
439\r
440**/\r
441VOID\r
442SetPageTablePoolReadOnly (\r
443 IN UINTN PageTableBase,\r
444 IN EFI_PHYSICAL_ADDRESS Address,\r
445 IN BOOLEAN Level4Paging\r
446 )\r
447{\r
448 UINTN Index;\r
449 UINTN EntryIndex;\r
450 UINT64 AddressEncMask;\r
451 EFI_PHYSICAL_ADDRESS PhysicalAddress;\r
452 UINT64 *PageTable;\r
453 UINT64 *NewPageTable;\r
454 UINT64 PageAttr;\r
455 UINT64 LevelSize[5];\r
456 UINT64 LevelMask[5];\r
457 UINTN LevelShift[5];\r
458 UINTN Level;\r
459 UINT64 PoolUnitSize;\r
460\r
461 ASSERT (PageTableBase != 0);\r
462\r
463 //\r
464 // Since the page table is always from page table pool, which is always\r
465 // located at the boundary of PcdPageTablePoolAlignment, we just need to\r
466 // set the whole pool unit to be read-only.\r
467 //\r
468 Address = Address & PAGE_TABLE_POOL_ALIGN_MASK;\r
469\r
470 LevelShift[1] = PAGING_L1_ADDRESS_SHIFT;\r
471 LevelShift[2] = PAGING_L2_ADDRESS_SHIFT;\r
472 LevelShift[3] = PAGING_L3_ADDRESS_SHIFT;\r
473 LevelShift[4] = PAGING_L4_ADDRESS_SHIFT;\r
474\r
475 LevelMask[1] = PAGING_4K_ADDRESS_MASK_64;\r
476 LevelMask[2] = PAGING_2M_ADDRESS_MASK_64;\r
477 LevelMask[3] = PAGING_1G_ADDRESS_MASK_64;\r
478 LevelMask[4] = PAGING_1G_ADDRESS_MASK_64;\r
479\r
480 LevelSize[1] = SIZE_4KB;\r
481 LevelSize[2] = SIZE_2MB;\r
482 LevelSize[3] = SIZE_1GB;\r
483 LevelSize[4] = SIZE_512GB;\r
484\r
485 AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) &\r
486 PAGING_1G_ADDRESS_MASK_64;\r
487 PageTable = (UINT64 *)(UINTN)PageTableBase;\r
488 PoolUnitSize = PAGE_TABLE_POOL_UNIT_SIZE;\r
489\r
490 for (Level = (Level4Paging) ? 4 : 3; Level > 0; --Level) {\r
491 Index = ((UINTN)RShiftU64 (Address, LevelShift[Level]));\r
492 Index &= PAGING_PAE_INDEX_MASK;\r
493\r
494 PageAttr = PageTable[Index];\r
495 if ((PageAttr & IA32_PG_PS) == 0) {\r
496 //\r
497 // Go to next level of table.\r
498 //\r
499 PageTable = (UINT64 *)(UINTN)(PageAttr & ~AddressEncMask &\r
500 PAGING_4K_ADDRESS_MASK_64);\r
501 continue;\r
502 }\r
503\r
504 if (PoolUnitSize >= LevelSize[Level]) {\r
505 //\r
506 // Clear R/W bit if current page granularity is not larger than pool unit\r
507 // size.\r
508 //\r
509 if ((PageAttr & IA32_PG_RW) != 0) {\r
510 while (PoolUnitSize > 0) {\r
511 //\r
512 // PAGE_TABLE_POOL_UNIT_SIZE and PAGE_TABLE_POOL_ALIGNMENT are fit in\r
513 // one page (2MB). Then we don't need to update attributes for pages\r
514 // crossing page directory. ASSERT below is for that purpose.\r
515 //\r
516 ASSERT (Index < EFI_PAGE_SIZE/sizeof (UINT64));\r
517\r
518 PageTable[Index] &= ~(UINT64)IA32_PG_RW;\r
519 PoolUnitSize -= LevelSize[Level];\r
520\r
521 ++Index;\r
522 }\r
523 }\r
524\r
525 break;\r
526\r
527 } else {\r
528 //\r
529 // The smaller granularity of page must be needed.\r
530 //\r
41b4600c
JW
531 ASSERT (Level > 1);\r
532\r
2ac1730b
JW
533 NewPageTable = AllocatePageTableMemory (1);\r
534 ASSERT (NewPageTable != NULL);\r
535\r
536 PhysicalAddress = PageAttr & LevelMask[Level];\r
537 for (EntryIndex = 0;\r
538 EntryIndex < EFI_PAGE_SIZE/sizeof (UINT64);\r
539 ++EntryIndex) {\r
540 NewPageTable[EntryIndex] = PhysicalAddress | AddressEncMask |\r
541 IA32_PG_P | IA32_PG_RW;\r
41b4600c 542 if (Level > 2) {\r
2ac1730b
JW
543 NewPageTable[EntryIndex] |= IA32_PG_PS;\r
544 }\r
41b4600c 545 PhysicalAddress += LevelSize[Level - 1];\r
2ac1730b
JW
546 }\r
547\r
548 PageTable[Index] = (UINT64)(UINTN)NewPageTable | AddressEncMask |\r
549 IA32_PG_P | IA32_PG_RW;\r
550 PageTable = NewPageTable;\r
551 }\r
552 }\r
553}\r
554\r
555/**\r
556 Prevent the memory pages used for page table from been overwritten.\r
557\r
558 @param[in] PageTableBase Base address of page table (CR3).\r
559 @param[in] Level4Paging Level 4 paging flag.\r
560\r
561**/\r
562VOID\r
563EnablePageTableProtection (\r
564 IN UINTN PageTableBase,\r
565 IN BOOLEAN Level4Paging\r
566 )\r
567{\r
568 PAGE_TABLE_POOL *HeadPool;\r
569 PAGE_TABLE_POOL *Pool;\r
570 UINT64 PoolSize;\r
571 EFI_PHYSICAL_ADDRESS Address;\r
572\r
573 if (mPageTablePool == NULL) {\r
574 return;\r
575 }\r
576\r
577 //\r
578 // Disable write protection, because we need to mark page table to be write\r
579 // protected.\r
580 //\r
581 AsmWriteCr0 (AsmReadCr0() & ~CR0_WP);\r
582\r
583 //\r
584 // SetPageTablePoolReadOnly might update mPageTablePool. It's safer to\r
585 // remember original one in advance.\r
586 //\r
587 HeadPool = mPageTablePool;\r
588 Pool = HeadPool;\r
589 do {\r
590 Address = (EFI_PHYSICAL_ADDRESS)(UINTN)Pool;\r
591 PoolSize = Pool->Offset + EFI_PAGES_TO_SIZE (Pool->FreePages);\r
592\r
593 //\r
594 // The size of one pool must be multiple of PAGE_TABLE_POOL_UNIT_SIZE, which\r
595 // is one of page size of the processor (2MB by default). Let's apply the\r
596 // protection to them one by one.\r
597 //\r
598 while (PoolSize > 0) {\r
599 SetPageTablePoolReadOnly(PageTableBase, Address, Level4Paging);\r
600 Address += PAGE_TABLE_POOL_UNIT_SIZE;\r
601 PoolSize -= PAGE_TABLE_POOL_UNIT_SIZE;\r
602 }\r
603\r
604 Pool = Pool->NextPool;\r
605 } while (Pool != HeadPool);\r
606\r
607 //\r
608 // Enable write protection, after page table attribute updated.\r
609 //\r
610 AsmWriteCr0 (AsmReadCr0() | CR0_WP);\r
611}\r
612\r
f3b33289 613/**\r
614 Allocates and fills in the Page Directory and Page Table Entries to\r
615 establish a 1:1 Virtual to Physical mapping.\r
616\r
5630cdfe
SZ
617 @param[in] StackBase Stack base address.\r
618 @param[in] StackSize Stack size.\r
f3b33289 619\r
48557c65 620 @return The address of 4 level page map.\r
f3b33289 621\r
622**/\r
623UINTN\r
624CreateIdentityMappingPageTables (\r
5630cdfe
SZ
625 IN EFI_PHYSICAL_ADDRESS StackBase,\r
626 IN UINTN StackSize\r
f3b33289 627 )\r
d1102dba 628{\r
c56b6566 629 UINT32 RegEax;\r
b3527ded 630 CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_ECX EcxFlags;\r
c56b6566 631 UINT32 RegEdx;\r
f3b33289 632 UINT8 PhysicalAddressBits;\r
633 EFI_PHYSICAL_ADDRESS PageAddress;\r
b3527ded 634 UINTN IndexOfPml5Entries;\r
f3b33289 635 UINTN IndexOfPml4Entries;\r
636 UINTN IndexOfPdpEntries;\r
637 UINTN IndexOfPageDirectoryEntries;\r
b3527ded 638 UINT32 NumberOfPml5EntriesNeeded;\r
4140a663 639 UINT32 NumberOfPml4EntriesNeeded;\r
640 UINT32 NumberOfPdpEntriesNeeded;\r
b3527ded 641 PAGE_MAP_AND_DIRECTORY_POINTER *PageMapLevel5Entry;\r
f3b33289 642 PAGE_MAP_AND_DIRECTORY_POINTER *PageMapLevel4Entry;\r
643 PAGE_MAP_AND_DIRECTORY_POINTER *PageMap;\r
644 PAGE_MAP_AND_DIRECTORY_POINTER *PageDirectoryPointerEntry;\r
645 PAGE_TABLE_ENTRY *PageDirectoryEntry;\r
646 UINTN TotalPagesNum;\r
647 UINTN BigPageAddress;\r
648 VOID *Hob;\r
b3527ded 649 BOOLEAN Page5LevelSupport;\r
c56b6566
JY
650 BOOLEAN Page1GSupport;\r
651 PAGE_TABLE_1G_ENTRY *PageDirectory1GEntry;\r
5997daf7 652 UINT64 AddressEncMask;\r
b3527ded 653 IA32_CR4 Cr4;\r
5997daf7
LD
654\r
655 //\r
656 // Make sure AddressEncMask is contained to smallest supported address field\r
657 //\r
658 AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;\r
c56b6566
JY
659\r
660 Page1GSupport = FALSE;\r
378175d2
JY
661 if (PcdGetBool(PcdUse1GPageTable)) {\r
662 AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);\r
663 if (RegEax >= 0x80000001) {\r
664 AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);\r
665 if ((RegEdx & BIT26) != 0) {\r
666 Page1GSupport = TRUE;\r
667 }\r
c56b6566
JY
668 }\r
669 }\r
f3b33289 670\r
671 //\r
c56b6566 672 // Get physical address bits supported.\r
f3b33289 673 //\r
f3b33289 674 Hob = GetFirstHob (EFI_HOB_TYPE_CPU);\r
675 if (Hob != NULL) {\r
48557c65 676 PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace;\r
c56b6566
JY
677 } else {\r
678 AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);\r
679 if (RegEax >= 0x80000008) {\r
680 AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);\r
681 PhysicalAddressBits = (UINT8) RegEax;\r
682 } else {\r
683 PhysicalAddressBits = 36;\r
684 }\r
f3b33289 685 }\r
686\r
b3527ded
RN
687 Page5LevelSupport = FALSE;\r
688 if (PcdGetBool (PcdUse5LevelPageTable)) {\r
689 AsmCpuidEx (\r
690 CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS, CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO, NULL,\r
691 &EcxFlags.Uint32, NULL, NULL\r
692 );\r
693 if (EcxFlags.Bits.FiveLevelPage != 0) {\r
694 Page5LevelSupport = TRUE;\r
695 }\r
696 }\r
697\r
698 DEBUG ((DEBUG_INFO, "AddressBits=%u 5LevelPaging=%u 1GPage=%u\n", PhysicalAddressBits, Page5LevelSupport, Page1GSupport));\r
699\r
4140a663 700 //\r
b3527ded
RN
701 // IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses\r
702 // when 5-Level Paging is disabled,\r
703 // due to either unsupported by HW, or disabled by PCD.\r
4140a663 704 //\r
705 ASSERT (PhysicalAddressBits <= 52);\r
b3527ded 706 if (!Page5LevelSupport && PhysicalAddressBits > 48) {\r
4140a663 707 PhysicalAddressBits = 48;\r
708 }\r
709\r
f3b33289 710 //\r
711 // Calculate the table entries needed.\r
712 //\r
b3527ded
RN
713 NumberOfPml5EntriesNeeded = 1;\r
714 if (PhysicalAddressBits > 48) {\r
715 NumberOfPml5EntriesNeeded = (UINT32) LShiftU64 (1, PhysicalAddressBits - 48);\r
716 PhysicalAddressBits = 48;\r
717 }\r
718\r
719 NumberOfPml4EntriesNeeded = 1;\r
720 if (PhysicalAddressBits > 39) {\r
721 NumberOfPml4EntriesNeeded = (UINT32) LShiftU64 (1, PhysicalAddressBits - 39);\r
722 PhysicalAddressBits = 39;\r
f3b33289 723 }\r
724\r
b3527ded
RN
725 NumberOfPdpEntriesNeeded = 1;\r
726 ASSERT (PhysicalAddressBits > 30);\r
727 NumberOfPdpEntriesNeeded = (UINT32) LShiftU64 (1, PhysicalAddressBits - 30);\r
728\r
f3b33289 729 //\r
d1102dba 730 // Pre-allocate big pages to avoid later allocations.\r
f3b33289 731 //\r
c56b6566 732 if (!Page1GSupport) {\r
b3527ded 733 TotalPagesNum = ((NumberOfPdpEntriesNeeded + 1) * NumberOfPml4EntriesNeeded + 1) * NumberOfPml5EntriesNeeded + 1;\r
c56b6566 734 } else {\r
b3527ded
RN
735 TotalPagesNum = (NumberOfPml4EntriesNeeded + 1) * NumberOfPml5EntriesNeeded + 1;\r
736 }\r
737\r
738 //\r
739 // Substract the one page occupied by PML5 entries if 5-Level Paging is disabled.\r
740 //\r
741 if (!Page5LevelSupport) {\r
742 TotalPagesNum--;\r
c56b6566 743 }\r
b3527ded
RN
744\r
745 DEBUG ((DEBUG_INFO, "Pml5=%u Pml4=%u Pdp=%u TotalPage=%Lu\n",\r
746 NumberOfPml5EntriesNeeded, NumberOfPml4EntriesNeeded,\r
747 NumberOfPdpEntriesNeeded, (UINT64)TotalPagesNum));\r
748\r
2ac1730b 749 BigPageAddress = (UINTN) AllocatePageTableMemory (TotalPagesNum);\r
f3b33289 750 ASSERT (BigPageAddress != 0);\r
751\r
752 //\r
753 // By architecture only one PageMapLevel4 exists - so lets allocate storage for it.\r
754 //\r
755 PageMap = (VOID *) BigPageAddress;\r
b3527ded 756 if (Page5LevelSupport) {\r
f3b33289 757 //\r
b3527ded 758 // By architecture only one PageMapLevel5 exists - so lets allocate storage for it.\r
f3b33289 759 //\r
b3527ded
RN
760 PageMapLevel5Entry = PageMap;\r
761 BigPageAddress += SIZE_4KB;\r
762 }\r
763 PageAddress = 0;\r
f3b33289 764\r
b3527ded
RN
765 for ( IndexOfPml5Entries = 0\r
766 ; IndexOfPml5Entries < NumberOfPml5EntriesNeeded\r
46f8a689 767 ; IndexOfPml5Entries++) {\r
f3b33289 768 //\r
b3527ded
RN
769 // Each PML5 entry points to a page of PML4 entires.\r
770 // So lets allocate space for them and fill them in in the IndexOfPml4Entries loop.\r
771 // When 5-Level Paging is disabled, below allocation happens only once.\r
f3b33289 772 //\r
b3527ded
RN
773 PageMapLevel4Entry = (VOID *) BigPageAddress;\r
774 BigPageAddress += SIZE_4KB;\r
f3b33289 775\r
b3527ded
RN
776 if (Page5LevelSupport) {\r
777 //\r
778 // Make a PML5 Entry\r
779 //\r
780 PageMapLevel5Entry->Uint64 = (UINT64) (UINTN) PageMapLevel4Entry | AddressEncMask;\r
781 PageMapLevel5Entry->Bits.ReadWrite = 1;\r
782 PageMapLevel5Entry->Bits.Present = 1;\r
46f8a689 783 PageMapLevel5Entry++;\r
b3527ded 784 }\r
d1102dba 785\r
b3527ded
RN
786 for ( IndexOfPml4Entries = 0\r
787 ; IndexOfPml4Entries < (NumberOfPml5EntriesNeeded == 1 ? NumberOfPml4EntriesNeeded : 512)\r
788 ; IndexOfPml4Entries++, PageMapLevel4Entry++) {\r
789 //\r
790 // Each PML4 entry points to a page of Page Directory Pointer entires.\r
791 // So lets allocate space for them and fill them in in the IndexOfPdpEntries loop.\r
792 //\r
793 PageDirectoryPointerEntry = (VOID *) BigPageAddress;\r
794 BigPageAddress += SIZE_4KB;\r
c56b6566 795\r
b3527ded
RN
796 //\r
797 // Make a PML4 Entry\r
798 //\r
799 PageMapLevel4Entry->Uint64 = (UINT64)(UINTN)PageDirectoryPointerEntry | AddressEncMask;\r
800 PageMapLevel4Entry->Bits.ReadWrite = 1;\r
801 PageMapLevel4Entry->Bits.Present = 1;\r
c56b6566 802\r
b3527ded
RN
803 if (Page1GSupport) {\r
804 PageDirectory1GEntry = (VOID *) PageDirectoryPointerEntry;\r
805\r
806 for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectory1GEntry++, PageAddress += SIZE_1GB) {\r
807 if (ToSplitPageTable (PageAddress, SIZE_1GB, StackBase, StackSize)) {\r
808 Split1GPageTo2M (PageAddress, (UINT64 *) PageDirectory1GEntry, StackBase, StackSize);\r
5630cdfe
SZ
809 } else {\r
810 //\r
811 // Fill in the Page Directory entries\r
812 //\r
b3527ded
RN
813 PageDirectory1GEntry->Uint64 = (UINT64)PageAddress | AddressEncMask;\r
814 PageDirectory1GEntry->Bits.ReadWrite = 1;\r
815 PageDirectory1GEntry->Bits.Present = 1;\r
816 PageDirectory1GEntry->Bits.MustBe1 = 1;\r
5630cdfe 817 }\r
c56b6566 818 }\r
b3527ded
RN
819 } else {\r
820 for ( IndexOfPdpEntries = 0\r
821 ; IndexOfPdpEntries < (NumberOfPml4EntriesNeeded == 1 ? NumberOfPdpEntriesNeeded : 512)\r
822 ; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {\r
823 //\r
824 // Each Directory Pointer entries points to a page of Page Directory entires.\r
825 // So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop.\r
826 //\r
827 PageDirectoryEntry = (VOID *) BigPageAddress;\r
828 BigPageAddress += SIZE_4KB;\r
f3b33289 829\r
b3527ded
RN
830 //\r
831 // Fill in a Page Directory Pointer Entries\r
832 //\r
833 PageDirectoryPointerEntry->Uint64 = (UINT64)(UINTN)PageDirectoryEntry | AddressEncMask;\r
834 PageDirectoryPointerEntry->Bits.ReadWrite = 1;\r
835 PageDirectoryPointerEntry->Bits.Present = 1;\r
836\r
837 for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PageAddress += SIZE_2MB) {\r
838 if (ToSplitPageTable (PageAddress, SIZE_2MB, StackBase, StackSize)) {\r
839 //\r
840 // Need to split this 2M page that covers NULL or stack range.\r
841 //\r
842 Split2MPageTo4K (PageAddress, (UINT64 *) PageDirectoryEntry, StackBase, StackSize);\r
843 } else {\r
844 //\r
845 // Fill in the Page Directory entries\r
846 //\r
847 PageDirectoryEntry->Uint64 = (UINT64)PageAddress | AddressEncMask;\r
848 PageDirectoryEntry->Bits.ReadWrite = 1;\r
849 PageDirectoryEntry->Bits.Present = 1;\r
850 PageDirectoryEntry->Bits.MustBe1 = 1;\r
851 }\r
852 }\r
853 }\r
854\r
855 //\r
856 // Fill with null entry for unused PDPTE\r
857 //\r
858 ZeroMem (PageDirectoryPointerEntry, (512 - IndexOfPdpEntries) * sizeof(PAGE_MAP_AND_DIRECTORY_POINTER));\r
f3b33289 859 }\r
860 }\r
b3527ded
RN
861\r
862 //\r
863 // For the PML4 entries we are not using fill in a null entry.\r
864 //\r
865 ZeroMem (PageMapLevel4Entry, (512 - IndexOfPml4Entries) * sizeof (PAGE_MAP_AND_DIRECTORY_POINTER));\r
f3b33289 866 }\r
867\r
b3527ded
RN
868 if (Page5LevelSupport) {\r
869 Cr4.UintN = AsmReadCr4 ();\r
870 Cr4.Bits.LA57 = 1;\r
871 AsmWriteCr4 (Cr4.UintN);\r
872 //\r
873 // For the PML5 entries we are not using fill in a null entry.\r
874 //\r
875 ZeroMem (PageMapLevel5Entry, (512 - IndexOfPml5Entries) * sizeof (PAGE_MAP_AND_DIRECTORY_POINTER));\r
f3b33289 876 }\r
877\r
2ac1730b
JW
878 //\r
879 // Protect the page table by marking the memory used for page table to be\r
880 // read-only.\r
881 //\r
882 EnablePageTableProtection ((UINTN)PageMap, TRUE);\r
883\r
52679261
JW
884 //\r
885 // Set IA32_EFER.NXE if necessary.\r
886 //\r
887 if (IsEnableNonExecNeeded ()) {\r
5630cdfe
SZ
888 EnableExecuteDisableBit ();\r
889 }\r
890\r
f3b33289 891 return (UINTN)PageMap;\r
892}\r
893\r