]> git.proxmox.com Git - mirror_edk2.git/blame - MdeModulePkg/Core/PiSmmCore/HeapGuard.c
MdeModulePkg/PiSmmCore: fix mem alloc issues in heap guard
[mirror_edk2.git] / MdeModulePkg / Core / PiSmmCore / HeapGuard.c
CommitLineData
e63da9f0
JW
1/** @file\r
2 UEFI Heap Guard functions.\r
3\r
8b13bca9 4Copyright (c) 2017-2018, Intel Corporation. All rights reserved.<BR>\r
e63da9f0
JW
5This program and the accompanying materials\r
6are licensed and made available under the terms and conditions of the BSD License\r
7which accompanies this distribution. The full text of the license may be found at\r
8http://opensource.org/licenses/bsd-license.php\r
9\r
10THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "HeapGuard.h"\r
16\r
17//\r
18// Global to avoid infinite reentrance of memory allocation when updating\r
19// page table attributes, which may need allocating pages for new PDE/PTE.\r
20//\r
21GLOBAL_REMOVE_IF_UNREFERENCED BOOLEAN mOnGuarding = FALSE;\r
22\r
23//\r
24// Pointer to table tracking the Guarded memory with bitmap, in which '1'\r
25// is used to indicate memory guarded. '0' might be free memory or Guard\r
26// page itself, depending on status of memory adjacent to it.\r
27//\r
28GLOBAL_REMOVE_IF_UNREFERENCED UINT64 mGuardedMemoryMap = 0;\r
29\r
30//\r
31// Current depth level of map table pointed by mGuardedMemoryMap.\r
32// mMapLevel must be initialized at least by 1. It will be automatically\r
33// updated according to the address of memory just tracked.\r
34//\r
35GLOBAL_REMOVE_IF_UNREFERENCED UINTN mMapLevel = 1;\r
36\r
37//\r
38// Shift and mask for each level of map table\r
39//\r
40GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH]\r
41 = GUARDED_HEAP_MAP_TABLE_DEPTH_SHIFTS;\r
42GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH]\r
43 = GUARDED_HEAP_MAP_TABLE_DEPTH_MASKS;\r
44\r
45//\r
46// SMM memory attribute protocol\r
47//\r
48EDKII_SMM_MEMORY_ATTRIBUTE_PROTOCOL *mSmmMemoryAttribute = NULL;\r
49\r
50/**\r
51 Set corresponding bits in bitmap table to 1 according to the address.\r
52\r
53 @param[in] Address Start address to set for.\r
54 @param[in] BitNumber Number of bits to set.\r
55 @param[in] BitMap Pointer to bitmap which covers the Address.\r
56\r
57 @return VOID\r
58**/\r
59STATIC\r
60VOID\r
61SetBits (\r
62 IN EFI_PHYSICAL_ADDRESS Address,\r
63 IN UINTN BitNumber,\r
64 IN UINT64 *BitMap\r
65 )\r
66{\r
67 UINTN Lsbs;\r
68 UINTN Qwords;\r
69 UINTN Msbs;\r
70 UINTN StartBit;\r
71 UINTN EndBit;\r
72\r
73 StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);\r
74 EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
75\r
76 if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {\r
77 Msbs = (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) %\r
78 GUARDED_HEAP_MAP_ENTRY_BITS;\r
79 Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
80 Qwords = (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS;\r
81 } else {\r
82 Msbs = BitNumber;\r
83 Lsbs = 0;\r
84 Qwords = 0;\r
85 }\r
86\r
87 if (Msbs > 0) {\r
88 *BitMap |= LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit);\r
89 BitMap += 1;\r
90 }\r
91\r
92 if (Qwords > 0) {\r
93 SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES,\r
94 (UINT64)-1);\r
95 BitMap += Qwords;\r
96 }\r
97\r
98 if (Lsbs > 0) {\r
99 *BitMap |= (LShiftU64 (1, Lsbs) - 1);\r
100 }\r
101}\r
102\r
103/**\r
104 Set corresponding bits in bitmap table to 0 according to the address.\r
105\r
106 @param[in] Address Start address to set for.\r
107 @param[in] BitNumber Number of bits to set.\r
108 @param[in] BitMap Pointer to bitmap which covers the Address.\r
109\r
110 @return VOID.\r
111**/\r
112STATIC\r
113VOID\r
114ClearBits (\r
115 IN EFI_PHYSICAL_ADDRESS Address,\r
116 IN UINTN BitNumber,\r
117 IN UINT64 *BitMap\r
118 )\r
119{\r
120 UINTN Lsbs;\r
121 UINTN Qwords;\r
122 UINTN Msbs;\r
123 UINTN StartBit;\r
124 UINTN EndBit;\r
125\r
126 StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);\r
127 EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
128\r
129 if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {\r
130 Msbs = (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) %\r
131 GUARDED_HEAP_MAP_ENTRY_BITS;\r
132 Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
133 Qwords = (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS;\r
134 } else {\r
135 Msbs = BitNumber;\r
136 Lsbs = 0;\r
137 Qwords = 0;\r
138 }\r
139\r
140 if (Msbs > 0) {\r
141 *BitMap &= ~LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit);\r
142 BitMap += 1;\r
143 }\r
144\r
145 if (Qwords > 0) {\r
146 SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES, 0);\r
147 BitMap += Qwords;\r
148 }\r
149\r
150 if (Lsbs > 0) {\r
151 *BitMap &= ~(LShiftU64 (1, Lsbs) - 1);\r
152 }\r
153}\r
154\r
155/**\r
156 Get corresponding bits in bitmap table according to the address.\r
157\r
158 The value of bit 0 corresponds to the status of memory at given Address.\r
159 No more than 64 bits can be retrieved in one call.\r
160\r
161 @param[in] Address Start address to retrieve bits for.\r
162 @param[in] BitNumber Number of bits to get.\r
163 @param[in] BitMap Pointer to bitmap which covers the Address.\r
164\r
165 @return An integer containing the bits information.\r
166**/\r
167STATIC\r
168UINT64\r
169GetBits (\r
170 IN EFI_PHYSICAL_ADDRESS Address,\r
171 IN UINTN BitNumber,\r
172 IN UINT64 *BitMap\r
173 )\r
174{\r
175 UINTN StartBit;\r
176 UINTN EndBit;\r
177 UINTN Lsbs;\r
178 UINTN Msbs;\r
179 UINT64 Result;\r
180\r
181 ASSERT (BitNumber <= GUARDED_HEAP_MAP_ENTRY_BITS);\r
182\r
183 StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);\r
184 EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
185\r
186 if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {\r
187 Msbs = GUARDED_HEAP_MAP_ENTRY_BITS - StartBit;\r
188 Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
189 } else {\r
190 Msbs = BitNumber;\r
191 Lsbs = 0;\r
192 }\r
193\r
194 Result = RShiftU64 ((*BitMap), StartBit) & (LShiftU64 (1, Msbs) - 1);\r
195 if (Lsbs > 0) {\r
196 BitMap += 1;\r
197 Result |= LShiftU64 ((*BitMap) & (LShiftU64 (1, Lsbs) - 1), Msbs);\r
198 }\r
199\r
200 return Result;\r
201}\r
202\r
203/**\r
204 Helper function to allocate pages without Guard for internal uses.\r
205\r
206 @param[in] Pages Page number.\r
207\r
208 @return Address of memory allocated.\r
209**/\r
210VOID *\r
211PageAlloc (\r
212 IN UINTN Pages\r
213 )\r
214{\r
215 EFI_STATUS Status;\r
216 EFI_PHYSICAL_ADDRESS Memory;\r
217\r
218 Status = SmmInternalAllocatePages (AllocateAnyPages, EfiRuntimeServicesData,\r
219 Pages, &Memory, FALSE);\r
220 if (EFI_ERROR (Status)) {\r
221 Memory = 0;\r
222 }\r
223\r
224 return (VOID *)(UINTN)Memory;\r
225}\r
226\r
227/**\r
228 Locate the pointer of bitmap from the guarded memory bitmap tables, which\r
229 covers the given Address.\r
230\r
231 @param[in] Address Start address to search the bitmap for.\r
232 @param[in] AllocMapUnit Flag to indicate memory allocation for the table.\r
233 @param[out] BitMap Pointer to bitmap which covers the Address.\r
234\r
235 @return The bit number from given Address to the end of current map table.\r
236**/\r
237UINTN\r
238FindGuardedMemoryMap (\r
239 IN EFI_PHYSICAL_ADDRESS Address,\r
240 IN BOOLEAN AllocMapUnit,\r
241 OUT UINT64 **BitMap\r
242 )\r
243{\r
244 UINTN Level;\r
245 UINT64 *GuardMap;\r
246 UINT64 MapMemory;\r
247 UINTN Index;\r
248 UINTN Size;\r
249 UINTN BitsToUnitEnd;\r
250\r
251 //\r
252 // Adjust current map table depth according to the address to access\r
253 //\r
12957e56
JW
254 while (AllocMapUnit &&\r
255 mMapLevel < GUARDED_HEAP_MAP_TABLE_DEPTH &&\r
e63da9f0
JW
256 RShiftU64 (\r
257 Address,\r
258 mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1]\r
259 ) != 0) {\r
260\r
261 if (mGuardedMemoryMap != 0) {\r
262 Size = (mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1] + 1)\r
263 * GUARDED_HEAP_MAP_ENTRY_BYTES;\r
264 MapMemory = (UINT64)(UINTN)PageAlloc (EFI_SIZE_TO_PAGES (Size));\r
265 ASSERT (MapMemory != 0);\r
266\r
267 SetMem ((VOID *)(UINTN)MapMemory, Size, 0);\r
268\r
269 *(UINT64 *)(UINTN)MapMemory = mGuardedMemoryMap;\r
270 mGuardedMemoryMap = MapMemory;\r
271 }\r
272\r
273 mMapLevel++;\r
274\r
275 }\r
276\r
277 GuardMap = &mGuardedMemoryMap;\r
278 for (Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;\r
279 Level < GUARDED_HEAP_MAP_TABLE_DEPTH;\r
280 ++Level) {\r
281\r
282 if (*GuardMap == 0) {\r
283 if (!AllocMapUnit) {\r
284 GuardMap = NULL;\r
285 break;\r
286 }\r
287\r
288 Size = (mLevelMask[Level] + 1) * GUARDED_HEAP_MAP_ENTRY_BYTES;\r
289 MapMemory = (UINT64)(UINTN)PageAlloc (EFI_SIZE_TO_PAGES (Size));\r
290 ASSERT (MapMemory != 0);\r
291\r
292 SetMem ((VOID *)(UINTN)MapMemory, Size, 0);\r
293 *GuardMap = MapMemory;\r
294 }\r
295\r
296 Index = (UINTN)RShiftU64 (Address, mLevelShift[Level]);\r
297 Index &= mLevelMask[Level];\r
298 GuardMap = (UINT64 *)(UINTN)((*GuardMap) + Index * sizeof (UINT64));\r
299\r
300 }\r
301\r
302 BitsToUnitEnd = GUARDED_HEAP_MAP_BITS - GUARDED_HEAP_MAP_BIT_INDEX (Address);\r
303 *BitMap = GuardMap;\r
304\r
305 return BitsToUnitEnd;\r
306}\r
307\r
308/**\r
309 Set corresponding bits in bitmap table to 1 according to given memory range.\r
310\r
311 @param[in] Address Memory address to guard from.\r
312 @param[in] NumberOfPages Number of pages to guard.\r
313\r
314 @return VOID\r
315**/\r
316VOID\r
317EFIAPI\r
318SetGuardedMemoryBits (\r
319 IN EFI_PHYSICAL_ADDRESS Address,\r
320 IN UINTN NumberOfPages\r
321 )\r
322{\r
323 UINT64 *BitMap;\r
324 UINTN Bits;\r
325 UINTN BitsToUnitEnd;\r
326\r
327 while (NumberOfPages > 0) {\r
328 BitsToUnitEnd = FindGuardedMemoryMap (Address, TRUE, &BitMap);\r
329 ASSERT (BitMap != NULL);\r
330\r
331 if (NumberOfPages > BitsToUnitEnd) {\r
332 // Cross map unit\r
333 Bits = BitsToUnitEnd;\r
334 } else {\r
335 Bits = NumberOfPages;\r
336 }\r
337\r
338 SetBits (Address, Bits, BitMap);\r
339\r
340 NumberOfPages -= Bits;\r
341 Address += EFI_PAGES_TO_SIZE (Bits);\r
342 }\r
343}\r
344\r
345/**\r
346 Clear corresponding bits in bitmap table according to given memory range.\r
347\r
348 @param[in] Address Memory address to unset from.\r
349 @param[in] NumberOfPages Number of pages to unset guard.\r
350\r
351 @return VOID\r
352**/\r
353VOID\r
354EFIAPI\r
355ClearGuardedMemoryBits (\r
356 IN EFI_PHYSICAL_ADDRESS Address,\r
357 IN UINTN NumberOfPages\r
358 )\r
359{\r
360 UINT64 *BitMap;\r
361 UINTN Bits;\r
362 UINTN BitsToUnitEnd;\r
363\r
364 while (NumberOfPages > 0) {\r
365 BitsToUnitEnd = FindGuardedMemoryMap (Address, TRUE, &BitMap);\r
366 ASSERT (BitMap != NULL);\r
367\r
368 if (NumberOfPages > BitsToUnitEnd) {\r
369 // Cross map unit\r
370 Bits = BitsToUnitEnd;\r
371 } else {\r
372 Bits = NumberOfPages;\r
373 }\r
374\r
375 ClearBits (Address, Bits, BitMap);\r
376\r
377 NumberOfPages -= Bits;\r
378 Address += EFI_PAGES_TO_SIZE (Bits);\r
379 }\r
380}\r
381\r
382/**\r
383 Retrieve corresponding bits in bitmap table according to given memory range.\r
384\r
385 @param[in] Address Memory address to retrieve from.\r
386 @param[in] NumberOfPages Number of pages to retrieve.\r
387\r
388 @return An integer containing the guarded memory bitmap.\r
389**/\r
390UINTN\r
391GetGuardedMemoryBits (\r
392 IN EFI_PHYSICAL_ADDRESS Address,\r
393 IN UINTN NumberOfPages\r
394 )\r
395{\r
396 UINT64 *BitMap;\r
397 UINTN Bits;\r
398 UINTN Result;\r
399 UINTN Shift;\r
400 UINTN BitsToUnitEnd;\r
401\r
402 ASSERT (NumberOfPages <= GUARDED_HEAP_MAP_ENTRY_BITS);\r
403\r
404 Result = 0;\r
405 Shift = 0;\r
406 while (NumberOfPages > 0) {\r
407 BitsToUnitEnd = FindGuardedMemoryMap (Address, FALSE, &BitMap);\r
408\r
409 if (NumberOfPages > BitsToUnitEnd) {\r
410 // Cross map unit\r
411 Bits = BitsToUnitEnd;\r
412 } else {\r
413 Bits = NumberOfPages;\r
414 }\r
415\r
416 if (BitMap != NULL) {\r
417 Result |= LShiftU64 (GetBits (Address, Bits, BitMap), Shift);\r
418 }\r
419\r
420 Shift += Bits;\r
421 NumberOfPages -= Bits;\r
422 Address += EFI_PAGES_TO_SIZE (Bits);\r
423 }\r
424\r
425 return Result;\r
426}\r
427\r
428/**\r
429 Get bit value in bitmap table for the given address.\r
430\r
431 @param[in] Address The address to retrieve for.\r
432\r
433 @return 1 or 0.\r
434**/\r
435UINTN\r
436EFIAPI\r
437GetGuardMapBit (\r
438 IN EFI_PHYSICAL_ADDRESS Address\r
439 )\r
440{\r
441 UINT64 *GuardMap;\r
442\r
443 FindGuardedMemoryMap (Address, FALSE, &GuardMap);\r
444 if (GuardMap != NULL) {\r
445 if (RShiftU64 (*GuardMap,\r
446 GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address)) & 1) {\r
447 return 1;\r
448 }\r
449 }\r
450\r
451 return 0;\r
452}\r
453\r
454/**\r
455 Set the bit in bitmap table for the given address.\r
456\r
457 @param[in] Address The address to set for.\r
458\r
459 @return VOID.\r
460**/\r
461VOID\r
462EFIAPI\r
463SetGuardMapBit (\r
464 IN EFI_PHYSICAL_ADDRESS Address\r
465 )\r
466{\r
467 UINT64 *GuardMap;\r
468 UINT64 BitMask;\r
469\r
470 FindGuardedMemoryMap (Address, TRUE, &GuardMap);\r
471 if (GuardMap != NULL) {\r
472 BitMask = LShiftU64 (1, GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address));\r
473 *GuardMap |= BitMask;\r
474 }\r
475}\r
476\r
477/**\r
478 Clear the bit in bitmap table for the given address.\r
479\r
480 @param[in] Address The address to clear for.\r
481\r
482 @return VOID.\r
483**/\r
484VOID\r
485EFIAPI\r
486ClearGuardMapBit (\r
487 IN EFI_PHYSICAL_ADDRESS Address\r
488 )\r
489{\r
490 UINT64 *GuardMap;\r
491 UINT64 BitMask;\r
492\r
493 FindGuardedMemoryMap (Address, TRUE, &GuardMap);\r
494 if (GuardMap != NULL) {\r
495 BitMask = LShiftU64 (1, GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address));\r
496 *GuardMap &= ~BitMask;\r
497 }\r
498}\r
499\r
500/**\r
501 Check to see if the page at the given address is a Guard page or not.\r
502\r
503 @param[in] Address The address to check for.\r
504\r
505 @return TRUE The page at Address is a Guard page.\r
506 @return FALSE The page at Address is not a Guard page.\r
507**/\r
508BOOLEAN\r
509EFIAPI\r
510IsGuardPage (\r
511 IN EFI_PHYSICAL_ADDRESS Address\r
512)\r
513{\r
514 UINTN BitMap;\r
515\r
516 //\r
517 // There must be at least one guarded page before and/or after given\r
518 // address if it's a Guard page. The bitmap pattern should be one of\r
519 // 001, 100 and 101\r
520 //\r
521 BitMap = GetGuardedMemoryBits (Address - EFI_PAGE_SIZE, 3);\r
522 return ((BitMap == BIT0) || (BitMap == BIT2) || (BitMap == (BIT2 | BIT0)));\r
523}\r
524\r
525/**\r
526 Check to see if the page at the given address is a head Guard page or not.\r
527\r
528 @param[in] Address The address to check for.\r
529\r
530 @return TRUE The page at Address is a head Guard page.\r
531 @return FALSE The page at Address is not a head Guard page.\r
532**/\r
533BOOLEAN\r
534EFIAPI\r
535IsHeadGuard (\r
536 IN EFI_PHYSICAL_ADDRESS Address\r
537 )\r
538{\r
539 return (GetGuardedMemoryBits (Address, 2) == BIT1);\r
540}\r
541\r
542/**\r
543 Check to see if the page at the given address is a tail Guard page or not.\r
544\r
545 @param[in] Address The address to check for.\r
546\r
547 @return TRUE The page at Address is a tail Guard page.\r
548 @return FALSE The page at Address is not a tail Guard page.\r
549**/\r
550BOOLEAN\r
551EFIAPI\r
552IsTailGuard (\r
553 IN EFI_PHYSICAL_ADDRESS Address\r
554 )\r
555{\r
556 return (GetGuardedMemoryBits (Address - EFI_PAGE_SIZE, 2) == BIT0);\r
557}\r
558\r
559/**\r
560 Check to see if the page at the given address is guarded or not.\r
561\r
562 @param[in] Address The address to check for.\r
563\r
564 @return TRUE The page at Address is guarded.\r
565 @return FALSE The page at Address is not guarded.\r
566**/\r
567BOOLEAN\r
568EFIAPI\r
569IsMemoryGuarded (\r
570 IN EFI_PHYSICAL_ADDRESS Address\r
571 )\r
572{\r
573 return (GetGuardMapBit (Address) == 1);\r
574}\r
575\r
576/**\r
577 Set the page at the given address to be a Guard page.\r
578\r
579 This is done by changing the page table attribute to be NOT PRSENT.\r
580\r
581 @param[in] BaseAddress Page address to Guard at.\r
582\r
583 @return VOID.\r
584**/\r
585VOID\r
586EFIAPI\r
587SetGuardPage (\r
588 IN EFI_PHYSICAL_ADDRESS BaseAddress\r
589 )\r
590{\r
591 if (mSmmMemoryAttribute != NULL) {\r
592 mOnGuarding = TRUE;\r
593 mSmmMemoryAttribute->SetMemoryAttributes (\r
594 mSmmMemoryAttribute,\r
595 BaseAddress,\r
596 EFI_PAGE_SIZE,\r
597 EFI_MEMORY_RP\r
598 );\r
599 mOnGuarding = FALSE;\r
600 }\r
601}\r
602\r
603/**\r
604 Unset the Guard page at the given address to the normal memory.\r
605\r
606 This is done by changing the page table attribute to be PRSENT.\r
607\r
608 @param[in] BaseAddress Page address to Guard at.\r
609\r
610 @return VOID.\r
611**/\r
612VOID\r
613EFIAPI\r
614UnsetGuardPage (\r
615 IN EFI_PHYSICAL_ADDRESS BaseAddress\r
616 )\r
617{\r
618 if (mSmmMemoryAttribute != NULL) {\r
619 mOnGuarding = TRUE;\r
620 mSmmMemoryAttribute->ClearMemoryAttributes (\r
621 mSmmMemoryAttribute,\r
622 BaseAddress,\r
623 EFI_PAGE_SIZE,\r
624 EFI_MEMORY_RP\r
625 );\r
626 mOnGuarding = FALSE;\r
627 }\r
628}\r
629\r
630/**\r
631 Check to see if the memory at the given address should be guarded or not.\r
632\r
633 @param[in] MemoryType Memory type to check.\r
634 @param[in] AllocateType Allocation type to check.\r
635 @param[in] PageOrPool Indicate a page allocation or pool allocation.\r
636\r
637\r
638 @return TRUE The given type of memory should be guarded.\r
639 @return FALSE The given type of memory should not be guarded.\r
640**/\r
641BOOLEAN\r
642IsMemoryTypeToGuard (\r
643 IN EFI_MEMORY_TYPE MemoryType,\r
644 IN EFI_ALLOCATE_TYPE AllocateType,\r
645 IN UINT8 PageOrPool\r
646 )\r
647{\r
648 UINT64 TestBit;\r
649 UINT64 ConfigBit;\r
650\r
651 if ((PcdGet8 (PcdHeapGuardPropertyMask) & PageOrPool) == 0\r
652 || mOnGuarding\r
653 || AllocateType == AllocateAddress) {\r
654 return FALSE;\r
655 }\r
656\r
657 ConfigBit = 0;\r
658 if ((PageOrPool & GUARD_HEAP_TYPE_POOL) != 0) {\r
659 ConfigBit |= PcdGet64 (PcdHeapGuardPoolType);\r
660 }\r
661\r
662 if ((PageOrPool & GUARD_HEAP_TYPE_PAGE) != 0) {\r
663 ConfigBit |= PcdGet64 (PcdHeapGuardPageType);\r
664 }\r
665\r
666 if (MemoryType == EfiRuntimeServicesData ||\r
667 MemoryType == EfiRuntimeServicesCode) {\r
668 TestBit = LShiftU64 (1, MemoryType);\r
669 } else if (MemoryType == EfiMaxMemoryType) {\r
670 TestBit = (UINT64)-1;\r
671 } else {\r
672 TestBit = 0;\r
673 }\r
674\r
675 return ((ConfigBit & TestBit) != 0);\r
676}\r
677\r
678/**\r
679 Check to see if the pool at the given address should be guarded or not.\r
680\r
681 @param[in] MemoryType Pool type to check.\r
682\r
683\r
684 @return TRUE The given type of pool should be guarded.\r
685 @return FALSE The given type of pool should not be guarded.\r
686**/\r
687BOOLEAN\r
688IsPoolTypeToGuard (\r
689 IN EFI_MEMORY_TYPE MemoryType\r
690 )\r
691{\r
692 return IsMemoryTypeToGuard (MemoryType, AllocateAnyPages,\r
693 GUARD_HEAP_TYPE_POOL);\r
694}\r
695\r
696/**\r
697 Check to see if the page at the given address should be guarded or not.\r
698\r
699 @param[in] MemoryType Page type to check.\r
700 @param[in] AllocateType Allocation type to check.\r
701\r
702 @return TRUE The given type of page should be guarded.\r
703 @return FALSE The given type of page should not be guarded.\r
704**/\r
705BOOLEAN\r
706IsPageTypeToGuard (\r
707 IN EFI_MEMORY_TYPE MemoryType,\r
708 IN EFI_ALLOCATE_TYPE AllocateType\r
709 )\r
710{\r
711 return IsMemoryTypeToGuard (MemoryType, AllocateType, GUARD_HEAP_TYPE_PAGE);\r
712}\r
713\r
714/**\r
715 Check to see if the heap guard is enabled for page and/or pool allocation.\r
716\r
717 @return TRUE/FALSE.\r
718**/\r
719BOOLEAN\r
720IsHeapGuardEnabled (\r
721 VOID\r
722 )\r
723{\r
724 return IsMemoryTypeToGuard (EfiMaxMemoryType, AllocateAnyPages,\r
725 GUARD_HEAP_TYPE_POOL|GUARD_HEAP_TYPE_PAGE);\r
726}\r
727\r
728/**\r
729 Set head Guard and tail Guard for the given memory range.\r
730\r
731 @param[in] Memory Base address of memory to set guard for.\r
732 @param[in] NumberOfPages Memory size in pages.\r
733\r
734 @return VOID.\r
735**/\r
736VOID\r
737SetGuardForMemory (\r
738 IN EFI_PHYSICAL_ADDRESS Memory,\r
739 IN UINTN NumberOfPages\r
740 )\r
741{\r
742 EFI_PHYSICAL_ADDRESS GuardPage;\r
743\r
744 //\r
745 // Set tail Guard\r
746 //\r
747 GuardPage = Memory + EFI_PAGES_TO_SIZE (NumberOfPages);\r
748 if (!IsGuardPage (GuardPage)) {\r
749 SetGuardPage (GuardPage);\r
750 }\r
751\r
752 // Set head Guard\r
753 GuardPage = Memory - EFI_PAGES_TO_SIZE (1);\r
754 if (!IsGuardPage (GuardPage)) {\r
755 SetGuardPage (GuardPage);\r
756 }\r
757\r
758 //\r
759 // Mark the memory range as Guarded\r
760 //\r
761 SetGuardedMemoryBits (Memory, NumberOfPages);\r
762}\r
763\r
764/**\r
765 Unset head Guard and tail Guard for the given memory range.\r
766\r
767 @param[in] Memory Base address of memory to unset guard for.\r
768 @param[in] NumberOfPages Memory size in pages.\r
769\r
770 @return VOID.\r
771**/\r
772VOID\r
773UnsetGuardForMemory (\r
774 IN EFI_PHYSICAL_ADDRESS Memory,\r
775 IN UINTN NumberOfPages\r
776 )\r
777{\r
778 EFI_PHYSICAL_ADDRESS GuardPage;\r
38d870fc 779 UINT64 GuardBitmap;\r
e63da9f0
JW
780\r
781 if (NumberOfPages == 0) {\r
782 return;\r
783 }\r
784\r
785 //\r
786 // Head Guard must be one page before, if any.\r
787 //\r
38d870fc
JW
788 // MSB-> 1 0 <-LSB\r
789 // -------------------\r
790 // Head Guard -> 0 1 -> Don't free Head Guard (shared Guard)\r
791 // Head Guard -> 0 0 -> Free Head Guard either (not shared Guard)\r
792 // 1 X -> Don't free first page (need a new Guard)\r
793 // (it'll be turned into a Guard page later)\r
794 // -------------------\r
795 // Start -> -1 -2\r
796 //\r
e63da9f0 797 GuardPage = Memory - EFI_PAGES_TO_SIZE (1);\r
38d870fc
JW
798 GuardBitmap = GetGuardedMemoryBits (Memory - EFI_PAGES_TO_SIZE (2), 2);\r
799 if ((GuardBitmap & BIT1) == 0) {\r
800 //\r
801 // Head Guard exists.\r
802 //\r
803 if ((GuardBitmap & BIT0) == 0) {\r
e63da9f0
JW
804 //\r
805 // If the head Guard is not a tail Guard of adjacent memory block,\r
806 // unset it.\r
807 //\r
808 UnsetGuardPage (GuardPage);\r
809 }\r
38d870fc 810 } else {\r
e63da9f0
JW
811 //\r
812 // Pages before memory to free are still in Guard. It's a partial free\r
813 // case. Turn first page of memory block to free into a new Guard.\r
814 //\r
815 SetGuardPage (Memory);\r
816 }\r
817\r
818 //\r
819 // Tail Guard must be the page after this memory block to free, if any.\r
820 //\r
38d870fc
JW
821 // MSB-> 1 0 <-LSB\r
822 // --------------------\r
823 // 1 0 <- Tail Guard -> Don't free Tail Guard (shared Guard)\r
824 // 0 0 <- Tail Guard -> Free Tail Guard either (not shared Guard)\r
825 // X 1 -> Don't free last page (need a new Guard)\r
826 // (it'll be turned into a Guard page later)\r
827 // --------------------\r
828 // +1 +0 <- End\r
829 //\r
e63da9f0 830 GuardPage = Memory + EFI_PAGES_TO_SIZE (NumberOfPages);\r
38d870fc
JW
831 GuardBitmap = GetGuardedMemoryBits (GuardPage, 2);\r
832 if ((GuardBitmap & BIT0) == 0) {\r
833 //\r
834 // Tail Guard exists.\r
835 //\r
836 if ((GuardBitmap & BIT1) == 0) {\r
e63da9f0
JW
837 //\r
838 // If the tail Guard is not a head Guard of adjacent memory block,\r
839 // free it; otherwise, keep it.\r
840 //\r
841 UnsetGuardPage (GuardPage);\r
842 }\r
38d870fc 843 } else {\r
e63da9f0
JW
844 //\r
845 // Pages after memory to free are still in Guard. It's a partial free\r
846 // case. We need to keep one page to be a head Guard.\r
847 //\r
848 SetGuardPage (GuardPage - EFI_PAGES_TO_SIZE (1));\r
849 }\r
850\r
851 //\r
852 // No matter what, we just clear the mark of the Guarded memory.\r
853 //\r
854 ClearGuardedMemoryBits(Memory, NumberOfPages);\r
855}\r
856\r
857/**\r
858 Adjust address of free memory according to existing and/or required Guard.\r
859\r
860 This function will check if there're existing Guard pages of adjacent\r
861 memory blocks, and try to use it as the Guard page of the memory to be\r
862 allocated.\r
863\r
864 @param[in] Start Start address of free memory block.\r
865 @param[in] Size Size of free memory block.\r
866 @param[in] SizeRequested Size of memory to allocate.\r
867\r
868 @return The end address of memory block found.\r
869 @return 0 if no enough space for the required size of memory and its Guard.\r
870**/\r
871UINT64\r
872AdjustMemoryS (\r
873 IN UINT64 Start,\r
874 IN UINT64 Size,\r
875 IN UINT64 SizeRequested\r
876 )\r
877{\r
878 UINT64 Target;\r
879\r
c44218e5
JW
880 //\r
881 // UEFI spec requires that allocated pool must be 8-byte aligned. If it's\r
882 // indicated to put the pool near the Tail Guard, we need extra bytes to\r
883 // make sure alignment of the returned pool address.\r
884 //\r
885 if ((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) == 0) {\r
886 SizeRequested = ALIGN_VALUE(SizeRequested, 8);\r
887 }\r
888\r
e63da9f0 889 Target = Start + Size - SizeRequested;\r
12957e56
JW
890 ASSERT (Target >= Start);\r
891 if (Target == 0) {\r
892 return 0;\r
893 }\r
e63da9f0 894\r
e63da9f0
JW
895 if (!IsGuardPage (Start + Size)) {\r
896 // No Guard at tail to share. One more page is needed.\r
897 Target -= EFI_PAGES_TO_SIZE (1);\r
898 }\r
899\r
900 // Out of range?\r
901 if (Target < Start) {\r
902 return 0;\r
903 }\r
904\r
905 // At the edge?\r
906 if (Target == Start) {\r
907 if (!IsGuardPage (Target - EFI_PAGES_TO_SIZE (1))) {\r
908 // No enough space for a new head Guard if no Guard at head to share.\r
909 return 0;\r
910 }\r
911 }\r
912\r
913 // OK, we have enough pages for memory and its Guards. Return the End of the\r
914 // free space.\r
915 return Target + SizeRequested - 1;\r
916}\r
917\r
918/**\r
919 Adjust the start address and number of pages to free according to Guard.\r
920\r
921 The purpose of this function is to keep the shared Guard page with adjacent\r
922 memory block if it's still in guard, or free it if no more sharing. Another\r
923 is to reserve pages as Guard pages in partial page free situation.\r
924\r
925 @param[in,out] Memory Base address of memory to free.\r
926 @param[in,out] NumberOfPages Size of memory to free.\r
927\r
928 @return VOID.\r
929**/\r
930VOID\r
931AdjustMemoryF (\r
932 IN OUT EFI_PHYSICAL_ADDRESS *Memory,\r
933 IN OUT UINTN *NumberOfPages\r
934 )\r
935{\r
936 EFI_PHYSICAL_ADDRESS Start;\r
937 EFI_PHYSICAL_ADDRESS MemoryToTest;\r
938 UINTN PagesToFree;\r
38d870fc 939 UINT64 GuardBitmap;\r
e63da9f0
JW
940\r
941 if (Memory == NULL || NumberOfPages == NULL || *NumberOfPages == 0) {\r
942 return;\r
943 }\r
944\r
945 Start = *Memory;\r
946 PagesToFree = *NumberOfPages;\r
947\r
948 //\r
949 // Head Guard must be one page before, if any.\r
950 //\r
38d870fc
JW
951 // MSB-> 1 0 <-LSB\r
952 // -------------------\r
953 // Head Guard -> 0 1 -> Don't free Head Guard (shared Guard)\r
954 // Head Guard -> 0 0 -> Free Head Guard either (not shared Guard)\r
955 // 1 X -> Don't free first page (need a new Guard)\r
956 // (it'll be turned into a Guard page later)\r
957 // -------------------\r
958 // Start -> -1 -2\r
959 //\r
960 MemoryToTest = Start - EFI_PAGES_TO_SIZE (2);\r
961 GuardBitmap = GetGuardedMemoryBits (MemoryToTest, 2);\r
962 if ((GuardBitmap & BIT1) == 0) {\r
963 //\r
964 // Head Guard exists.\r
965 //\r
966 if ((GuardBitmap & BIT0) == 0) {\r
e63da9f0
JW
967 //\r
968 // If the head Guard is not a tail Guard of adjacent memory block,\r
969 // free it; otherwise, keep it.\r
970 //\r
971 Start -= EFI_PAGES_TO_SIZE (1);\r
972 PagesToFree += 1;\r
973 }\r
38d870fc 974 } else {\r
e63da9f0 975 //\r
38d870fc
JW
976 // No Head Guard, and pages before memory to free are still in Guard. It's a\r
977 // partial free case. We need to keep one page to be a tail Guard.\r
e63da9f0
JW
978 //\r
979 Start += EFI_PAGES_TO_SIZE (1);\r
980 PagesToFree -= 1;\r
981 }\r
982\r
983 //\r
984 // Tail Guard must be the page after this memory block to free, if any.\r
985 //\r
38d870fc
JW
986 // MSB-> 1 0 <-LSB\r
987 // --------------------\r
988 // 1 0 <- Tail Guard -> Don't free Tail Guard (shared Guard)\r
989 // 0 0 <- Tail Guard -> Free Tail Guard either (not shared Guard)\r
990 // X 1 -> Don't free last page (need a new Guard)\r
991 // (it'll be turned into a Guard page later)\r
992 // --------------------\r
993 // +1 +0 <- End\r
994 //\r
e63da9f0 995 MemoryToTest = Start + EFI_PAGES_TO_SIZE (PagesToFree);\r
38d870fc
JW
996 GuardBitmap = GetGuardedMemoryBits (MemoryToTest, 2);\r
997 if ((GuardBitmap & BIT0) == 0) {\r
998 //\r
999 // Tail Guard exists.\r
1000 //\r
1001 if ((GuardBitmap & BIT1) == 0) {\r
e63da9f0
JW
1002 //\r
1003 // If the tail Guard is not a head Guard of adjacent memory block,\r
1004 // free it; otherwise, keep it.\r
1005 //\r
1006 PagesToFree += 1;\r
1007 }\r
38d870fc 1008 } else if (PagesToFree > 0) {\r
e63da9f0 1009 //\r
38d870fc
JW
1010 // No Tail Guard, and pages after memory to free are still in Guard. It's a\r
1011 // partial free case. We need to keep one page to be a head Guard.\r
e63da9f0
JW
1012 //\r
1013 PagesToFree -= 1;\r
1014 }\r
1015\r
1016 *Memory = Start;\r
1017 *NumberOfPages = PagesToFree;\r
1018}\r
1019\r
1020/**\r
1021 Adjust the base and number of pages to really allocate according to Guard.\r
1022\r
1023 @param[in,out] Memory Base address of free memory.\r
1024 @param[in,out] NumberOfPages Size of memory to allocate.\r
1025\r
1026 @return VOID.\r
1027**/\r
1028VOID\r
1029AdjustMemoryA (\r
1030 IN OUT EFI_PHYSICAL_ADDRESS *Memory,\r
1031 IN OUT UINTN *NumberOfPages\r
1032 )\r
1033{\r
1034 //\r
1035 // FindFreePages() has already taken the Guard into account. It's safe to\r
1036 // adjust the start address and/or number of pages here, to make sure that\r
1037 // the Guards are also "allocated".\r
1038 //\r
1039 if (!IsGuardPage (*Memory + EFI_PAGES_TO_SIZE (*NumberOfPages))) {\r
1040 // No tail Guard, add one.\r
1041 *NumberOfPages += 1;\r
1042 }\r
1043\r
1044 if (!IsGuardPage (*Memory - EFI_PAGE_SIZE)) {\r
1045 // No head Guard, add one.\r
1046 *Memory -= EFI_PAGE_SIZE;\r
1047 *NumberOfPages += 1;\r
1048 }\r
1049}\r
1050\r
1051/**\r
1052 Adjust the pool head position to make sure the Guard page is adjavent to\r
1053 pool tail or pool head.\r
1054\r
1055 @param[in] Memory Base address of memory allocated.\r
1056 @param[in] NoPages Number of pages actually allocated.\r
1057 @param[in] Size Size of memory requested.\r
1058 (plus pool head/tail overhead)\r
1059\r
1060 @return Address of pool head\r
1061**/\r
1062VOID *\r
1063AdjustPoolHeadA (\r
1064 IN EFI_PHYSICAL_ADDRESS Memory,\r
1065 IN UINTN NoPages,\r
1066 IN UINTN Size\r
1067 )\r
1068{\r
c44218e5 1069 if (Memory == 0 || (PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) != 0) {\r
e63da9f0
JW
1070 //\r
1071 // Pool head is put near the head Guard\r
1072 //\r
1073 return (VOID *)(UINTN)Memory;\r
1074 }\r
1075\r
1076 //\r
1077 // Pool head is put near the tail Guard\r
1078 //\r
c44218e5 1079 Size = ALIGN_VALUE (Size, 8);\r
e63da9f0
JW
1080 return (VOID *)(UINTN)(Memory + EFI_PAGES_TO_SIZE (NoPages) - Size);\r
1081}\r
1082\r
1083/**\r
1084 Get the page base address according to pool head address.\r
1085\r
1086 @param[in] Memory Head address of pool to free.\r
1087\r
1088 @return Address of pool head.\r
1089**/\r
1090VOID *\r
1091AdjustPoolHeadF (\r
1092 IN EFI_PHYSICAL_ADDRESS Memory\r
1093 )\r
1094{\r
c44218e5 1095 if (Memory == 0 || (PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) != 0) {\r
e63da9f0
JW
1096 //\r
1097 // Pool head is put near the head Guard\r
1098 //\r
1099 return (VOID *)(UINTN)Memory;\r
1100 }\r
1101\r
1102 //\r
1103 // Pool head is put near the tail Guard\r
1104 //\r
1105 return (VOID *)(UINTN)(Memory & ~EFI_PAGE_MASK);\r
1106}\r
1107\r
1108/**\r
1109 Helper function of memory allocation with Guard pages.\r
1110\r
1111 @param FreePageList The free page node.\r
1112 @param NumberOfPages Number of pages to be allocated.\r
1113 @param MaxAddress Request to allocate memory below this address.\r
1114 @param MemoryType Type of memory requested.\r
1115\r
1116 @return Memory address of allocated pages.\r
1117**/\r
1118UINTN\r
1119InternalAllocMaxAddressWithGuard (\r
1120 IN OUT LIST_ENTRY *FreePageList,\r
1121 IN UINTN NumberOfPages,\r
1122 IN UINTN MaxAddress,\r
1123 IN EFI_MEMORY_TYPE MemoryType\r
1124\r
1125 )\r
1126{\r
1127 LIST_ENTRY *Node;\r
1128 FREE_PAGE_LIST *Pages;\r
1129 UINTN PagesToAlloc;\r
1130 UINTN HeadGuard;\r
1131 UINTN TailGuard;\r
1132 UINTN Address;\r
1133\r
1134 for (Node = FreePageList->BackLink; Node != FreePageList;\r
1135 Node = Node->BackLink) {\r
1136 Pages = BASE_CR (Node, FREE_PAGE_LIST, Link);\r
1137 if (Pages->NumberOfPages >= NumberOfPages &&\r
1138 (UINTN)Pages + EFI_PAGES_TO_SIZE (NumberOfPages) - 1 <= MaxAddress) {\r
1139\r
1140 //\r
1141 // We may need 1 or 2 more pages for Guard. Check it out.\r
1142 //\r
1143 PagesToAlloc = NumberOfPages;\r
1144 TailGuard = (UINTN)Pages + EFI_PAGES_TO_SIZE (Pages->NumberOfPages);\r
1145 if (!IsGuardPage (TailGuard)) {\r
1146 //\r
1147 // Add one if no Guard at the end of current free memory block.\r
1148 //\r
1149 PagesToAlloc += 1;\r
1150 TailGuard = 0;\r
1151 }\r
1152\r
1153 HeadGuard = (UINTN)Pages +\r
1154 EFI_PAGES_TO_SIZE (Pages->NumberOfPages - PagesToAlloc) -\r
1155 EFI_PAGE_SIZE;\r
1156 if (!IsGuardPage (HeadGuard)) {\r
1157 //\r
1158 // Add one if no Guard at the page before the address to allocate\r
1159 //\r
1160 PagesToAlloc += 1;\r
1161 HeadGuard = 0;\r
1162 }\r
1163\r
1164 if (Pages->NumberOfPages < PagesToAlloc) {\r
1165 // Not enough space to allocate memory with Guards? Try next block.\r
1166 continue;\r
1167 }\r
1168\r
1169 Address = InternalAllocPagesOnOneNode (Pages, PagesToAlloc, MaxAddress);\r
1170 ConvertSmmMemoryMapEntry(MemoryType, Address, PagesToAlloc, FALSE);\r
1171 CoreFreeMemoryMapStack();\r
1172 if (HeadGuard == 0) {\r
1173 // Don't pass the Guard page to user.\r
1174 Address += EFI_PAGE_SIZE;\r
1175 }\r
1176 SetGuardForMemory (Address, NumberOfPages);\r
1177 return Address;\r
1178 }\r
1179 }\r
1180\r
1181 return (UINTN)(-1);\r
1182}\r
1183\r
1184/**\r
1185 Helper function of memory free with Guard pages.\r
1186\r
1187 @param[in] Memory Base address of memory being freed.\r
1188 @param[in] NumberOfPages The number of pages to free.\r
1189 @param[in] AddRegion If this memory is new added region.\r
1190\r
1191 @retval EFI_NOT_FOUND Could not find the entry that covers the range.\r
1192 @retval EFI_INVALID_PARAMETER Address not aligned, Address is zero or NumberOfPages is zero.\r
1193 @return EFI_SUCCESS Pages successfully freed.\r
1194**/\r
1195EFI_STATUS\r
1196SmmInternalFreePagesExWithGuard (\r
1197 IN EFI_PHYSICAL_ADDRESS Memory,\r
1198 IN UINTN NumberOfPages,\r
1199 IN BOOLEAN AddRegion\r
1200 )\r
1201{\r
1202 EFI_PHYSICAL_ADDRESS MemoryToFree;\r
1203 UINTN PagesToFree;\r
1204\r
7823611c
JW
1205 if (((Memory & EFI_PAGE_MASK) != 0) || (Memory == 0) || (NumberOfPages == 0)) {\r
1206 return EFI_INVALID_PARAMETER;\r
1207 }\r
1208\r
e63da9f0
JW
1209 MemoryToFree = Memory;\r
1210 PagesToFree = NumberOfPages;\r
1211\r
1212 AdjustMemoryF (&MemoryToFree, &PagesToFree);\r
1213 UnsetGuardForMemory (Memory, NumberOfPages);\r
38d870fc
JW
1214 if (PagesToFree == 0) {\r
1215 return EFI_SUCCESS;\r
1216 }\r
e63da9f0
JW
1217\r
1218 return SmmInternalFreePagesEx (MemoryToFree, PagesToFree, AddRegion);\r
1219}\r
1220\r
1221/**\r
1222 Set all Guard pages which cannot be set during the non-SMM mode time.\r
1223**/\r
1224VOID\r
1225SetAllGuardPages (\r
1226 VOID\r
1227 )\r
1228{\r
1229 UINTN Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1230 UINTN Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1231 UINTN Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1232 UINT64 Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1233 UINT64 Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1234 UINT64 TableEntry;\r
1235 UINT64 Address;\r
1236 UINT64 GuardPage;\r
1237 INTN Level;\r
1238 UINTN Index;\r
1239 BOOLEAN OnGuarding;\r
1240\r
c6c50165
JW
1241 if (mGuardedMemoryMap == 0 ||\r
1242 mMapLevel == 0 ||\r
1243 mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {\r
e63da9f0
JW
1244 return;\r
1245 }\r
1246\r
1247 CopyMem (Entries, mLevelMask, sizeof (Entries));\r
1248 CopyMem (Shifts, mLevelShift, sizeof (Shifts));\r
1249\r
1250 SetMem (Tables, sizeof(Tables), 0);\r
1251 SetMem (Addresses, sizeof(Addresses), 0);\r
1252 SetMem (Indices, sizeof(Indices), 0);\r
1253\r
1254 Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;\r
1255 Tables[Level] = mGuardedMemoryMap;\r
1256 Address = 0;\r
1257 OnGuarding = FALSE;\r
1258\r
1259 DEBUG_CODE (\r
1260 DumpGuardedMemoryBitmap ();\r
1261 );\r
1262\r
1263 while (TRUE) {\r
1264 if (Indices[Level] > Entries[Level]) {\r
1265 Tables[Level] = 0;\r
1266 Level -= 1;\r
1267 } else {\r
1268\r
1269 TableEntry = ((UINT64 *)(UINTN)(Tables[Level]))[Indices[Level]];\r
1270 Address = Addresses[Level];\r
1271\r
1272 if (TableEntry == 0) {\r
1273\r
1274 OnGuarding = FALSE;\r
1275\r
1276 } else if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {\r
1277\r
1278 Level += 1;\r
1279 Tables[Level] = TableEntry;\r
1280 Addresses[Level] = Address;\r
1281 Indices[Level] = 0;\r
1282\r
1283 continue;\r
1284\r
1285 } else {\r
1286\r
1287 Index = 0;\r
1288 while (Index < GUARDED_HEAP_MAP_ENTRY_BITS) {\r
1289 if ((TableEntry & 1) == 1) {\r
1290 if (OnGuarding) {\r
1291 GuardPage = 0;\r
1292 } else {\r
1293 GuardPage = Address - EFI_PAGE_SIZE;\r
1294 }\r
1295 OnGuarding = TRUE;\r
1296 } else {\r
1297 if (OnGuarding) {\r
1298 GuardPage = Address;\r
1299 } else {\r
1300 GuardPage = 0;\r
1301 }\r
1302 OnGuarding = FALSE;\r
1303 }\r
1304\r
1305 if (GuardPage != 0) {\r
1306 SetGuardPage (GuardPage);\r
1307 }\r
1308\r
1309 if (TableEntry == 0) {\r
1310 break;\r
1311 }\r
1312\r
1313 TableEntry = RShiftU64 (TableEntry, 1);\r
1314 Address += EFI_PAGE_SIZE;\r
1315 Index += 1;\r
1316 }\r
1317 }\r
1318 }\r
1319\r
1320 if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {\r
1321 break;\r
1322 }\r
1323\r
1324 Indices[Level] += 1;\r
1325 Address = (Level == 0) ? 0 : Addresses[Level - 1];\r
1326 Addresses[Level] = Address | LShiftU64(Indices[Level], Shifts[Level]);\r
1327\r
1328 }\r
1329}\r
1330\r
1331/**\r
1332 Hook function used to set all Guard pages after entering SMM mode.\r
1333**/\r
1334VOID\r
1335SmmEntryPointMemoryManagementHook (\r
1336 VOID\r
1337 )\r
1338{\r
1339 EFI_STATUS Status;\r
1340\r
1341 if (mSmmMemoryAttribute == NULL) {\r
1342 Status = SmmLocateProtocol (\r
1343 &gEdkiiSmmMemoryAttributeProtocolGuid,\r
1344 NULL,\r
1345 (VOID **)&mSmmMemoryAttribute\r
1346 );\r
1347 if (!EFI_ERROR(Status)) {\r
1348 SetAllGuardPages ();\r
1349 }\r
1350 }\r
1351}\r
1352\r
1353/**\r
1354 Helper function to convert a UINT64 value in binary to a string.\r
1355\r
1356 @param[in] Value Value of a UINT64 integer.\r
1357 @param[out] BinString String buffer to contain the conversion result.\r
1358\r
1359 @return VOID.\r
1360**/\r
1361VOID\r
1362Uint64ToBinString (\r
1363 IN UINT64 Value,\r
1364 OUT CHAR8 *BinString\r
1365 )\r
1366{\r
1367 UINTN Index;\r
1368\r
1369 if (BinString == NULL) {\r
1370 return;\r
1371 }\r
1372\r
1373 for (Index = 64; Index > 0; --Index) {\r
1374 BinString[Index - 1] = '0' + (Value & 1);\r
1375 Value = RShiftU64 (Value, 1);\r
1376 }\r
1377 BinString[64] = '\0';\r
1378}\r
1379\r
1380/**\r
1381 Dump the guarded memory bit map.\r
1382**/\r
1383VOID\r
1384EFIAPI\r
1385DumpGuardedMemoryBitmap (\r
1386 VOID\r
1387 )\r
1388{\r
1389 UINTN Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1390 UINTN Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1391 UINTN Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1392 UINT64 Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1393 UINT64 Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1394 UINT64 TableEntry;\r
1395 UINT64 Address;\r
1396 INTN Level;\r
1397 UINTN RepeatZero;\r
1398 CHAR8 String[GUARDED_HEAP_MAP_ENTRY_BITS + 1];\r
1399 CHAR8 *Ruler1;\r
1400 CHAR8 *Ruler2;\r
1401\r
c6c50165
JW
1402 if (mGuardedMemoryMap == 0 ||\r
1403 mMapLevel == 0 ||\r
1404 mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {\r
e63da9f0
JW
1405 return;\r
1406 }\r
1407\r
1408 Ruler1 = " 3 2 1 0";\r
1409 Ruler2 = "FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210";\r
1410\r
1411 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "============================="\r
1412 " Guarded Memory Bitmap "\r
1413 "==============================\r\n"));\r
1414 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, " %a\r\n", Ruler1));\r
1415 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, " %a\r\n", Ruler2));\r
1416\r
1417 CopyMem (Entries, mLevelMask, sizeof (Entries));\r
1418 CopyMem (Shifts, mLevelShift, sizeof (Shifts));\r
1419\r
1420 SetMem (Indices, sizeof(Indices), 0);\r
1421 SetMem (Tables, sizeof(Tables), 0);\r
1422 SetMem (Addresses, sizeof(Addresses), 0);\r
1423\r
1424 Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;\r
1425 Tables[Level] = mGuardedMemoryMap;\r
1426 Address = 0;\r
1427 RepeatZero = 0;\r
1428\r
1429 while (TRUE) {\r
1430 if (Indices[Level] > Entries[Level]) {\r
1431\r
1432 Tables[Level] = 0;\r
1433 Level -= 1;\r
1434 RepeatZero = 0;\r
1435\r
1436 DEBUG ((\r
1437 HEAP_GUARD_DEBUG_LEVEL,\r
1438 "========================================="\r
1439 "=========================================\r\n"\r
1440 ));\r
1441\r
1442 } else {\r
1443\r
1444 TableEntry = ((UINT64 *)(UINTN)Tables[Level])[Indices[Level]];\r
1445 Address = Addresses[Level];\r
1446\r
1447 if (TableEntry == 0) {\r
1448\r
1449 if (Level == GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {\r
1450 if (RepeatZero == 0) {\r
1451 Uint64ToBinString(TableEntry, String);\r
1452 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String));\r
1453 } else if (RepeatZero == 1) {\r
1454 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "... : ...\r\n"));\r
1455 }\r
1456 RepeatZero += 1;\r
1457 }\r
1458\r
1459 } else if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {\r
1460\r
1461 Level += 1;\r
1462 Tables[Level] = TableEntry;\r
1463 Addresses[Level] = Address;\r
1464 Indices[Level] = 0;\r
1465 RepeatZero = 0;\r
1466\r
1467 continue;\r
1468\r
1469 } else {\r
1470\r
1471 RepeatZero = 0;\r
1472 Uint64ToBinString(TableEntry, String);\r
1473 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String));\r
1474\r
1475 }\r
1476 }\r
1477\r
1478 if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {\r
1479 break;\r
1480 }\r
1481\r
1482 Indices[Level] += 1;\r
1483 Address = (Level == 0) ? 0 : Addresses[Level - 1];\r
1484 Addresses[Level] = Address | LShiftU64(Indices[Level], Shifts[Level]);\r
1485\r
1486 }\r
1487}\r
1488\r
1489/**\r
1490 Debug function used to verify if the Guard page is well set or not.\r
1491\r
1492 @param[in] BaseAddress Address of memory to check.\r
1493 @param[in] NumberOfPages Size of memory in pages.\r
1494\r
1495 @return TRUE The head Guard and tail Guard are both well set.\r
1496 @return FALSE The head Guard and/or tail Guard are not well set.\r
1497**/\r
1498BOOLEAN\r
1499VerifyMemoryGuard (\r
1500 IN EFI_PHYSICAL_ADDRESS BaseAddress,\r
1501 IN UINTN NumberOfPages\r
1502 )\r
1503{\r
1504 EFI_STATUS Status;\r
1505 UINT64 Attribute;\r
1506 EFI_PHYSICAL_ADDRESS Address;\r
1507\r
1508 if (mSmmMemoryAttribute == NULL) {\r
1509 return TRUE;\r
1510 }\r
1511\r
1512 Attribute = 0;\r
1513 Address = BaseAddress - EFI_PAGE_SIZE;\r
1514 Status = mSmmMemoryAttribute->GetMemoryAttributes (\r
1515 mSmmMemoryAttribute,\r
1516 Address,\r
1517 EFI_PAGE_SIZE,\r
1518 &Attribute\r
1519 );\r
1520 if (EFI_ERROR (Status) || (Attribute & EFI_MEMORY_RP) == 0) {\r
1521 DEBUG ((DEBUG_ERROR, "Head Guard is not set at: %016lx (%016lX)!!!\r\n",\r
1522 Address, Attribute));\r
1523 DumpGuardedMemoryBitmap ();\r
1524 return FALSE;\r
1525 }\r
1526\r
1527 Attribute = 0;\r
1528 Address = BaseAddress + EFI_PAGES_TO_SIZE (NumberOfPages);\r
1529 Status = mSmmMemoryAttribute->GetMemoryAttributes (\r
1530 mSmmMemoryAttribute,\r
1531 Address,\r
1532 EFI_PAGE_SIZE,\r
1533 &Attribute\r
1534 );\r
1535 if (EFI_ERROR (Status) || (Attribute & EFI_MEMORY_RP) == 0) {\r
1536 DEBUG ((DEBUG_ERROR, "Tail Guard is not set at: %016lx (%016lX)!!!\r\n",\r
1537 Address, Attribute));\r
1538 DumpGuardedMemoryBitmap ();\r
1539 return FALSE;\r
1540 }\r
1541\r
1542 return TRUE;\r
1543}\r
1544\r