]> git.proxmox.com Git - mirror_edk2.git/blame - MdeModulePkg/Core/PiSmmCore/HeapGuard.c
MdeModulePkg HiiDataBaseDxe: Add the check for the memory allocation return
[mirror_edk2.git] / MdeModulePkg / Core / PiSmmCore / HeapGuard.c
CommitLineData
e63da9f0
JW
1/** @file\r
2 UEFI Heap Guard functions.\r
3\r
4Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>\r
5This program and the accompanying materials\r
6are licensed and made available under the terms and conditions of the BSD License\r
7which accompanies this distribution. The full text of the license may be found at\r
8http://opensource.org/licenses/bsd-license.php\r
9\r
10THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "HeapGuard.h"\r
16\r
17//\r
18// Global to avoid infinite reentrance of memory allocation when updating\r
19// page table attributes, which may need allocating pages for new PDE/PTE.\r
20//\r
21GLOBAL_REMOVE_IF_UNREFERENCED BOOLEAN mOnGuarding = FALSE;\r
22\r
23//\r
24// Pointer to table tracking the Guarded memory with bitmap, in which '1'\r
25// is used to indicate memory guarded. '0' might be free memory or Guard\r
26// page itself, depending on status of memory adjacent to it.\r
27//\r
28GLOBAL_REMOVE_IF_UNREFERENCED UINT64 mGuardedMemoryMap = 0;\r
29\r
30//\r
31// Current depth level of map table pointed by mGuardedMemoryMap.\r
32// mMapLevel must be initialized at least by 1. It will be automatically\r
33// updated according to the address of memory just tracked.\r
34//\r
35GLOBAL_REMOVE_IF_UNREFERENCED UINTN mMapLevel = 1;\r
36\r
37//\r
38// Shift and mask for each level of map table\r
39//\r
40GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH]\r
41 = GUARDED_HEAP_MAP_TABLE_DEPTH_SHIFTS;\r
42GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH]\r
43 = GUARDED_HEAP_MAP_TABLE_DEPTH_MASKS;\r
44\r
45//\r
46// SMM memory attribute protocol\r
47//\r
48EDKII_SMM_MEMORY_ATTRIBUTE_PROTOCOL *mSmmMemoryAttribute = NULL;\r
49\r
50/**\r
51 Set corresponding bits in bitmap table to 1 according to the address.\r
52\r
53 @param[in] Address Start address to set for.\r
54 @param[in] BitNumber Number of bits to set.\r
55 @param[in] BitMap Pointer to bitmap which covers the Address.\r
56\r
57 @return VOID\r
58**/\r
59STATIC\r
60VOID\r
61SetBits (\r
62 IN EFI_PHYSICAL_ADDRESS Address,\r
63 IN UINTN BitNumber,\r
64 IN UINT64 *BitMap\r
65 )\r
66{\r
67 UINTN Lsbs;\r
68 UINTN Qwords;\r
69 UINTN Msbs;\r
70 UINTN StartBit;\r
71 UINTN EndBit;\r
72\r
73 StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);\r
74 EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
75\r
76 if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {\r
77 Msbs = (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) %\r
78 GUARDED_HEAP_MAP_ENTRY_BITS;\r
79 Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
80 Qwords = (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS;\r
81 } else {\r
82 Msbs = BitNumber;\r
83 Lsbs = 0;\r
84 Qwords = 0;\r
85 }\r
86\r
87 if (Msbs > 0) {\r
88 *BitMap |= LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit);\r
89 BitMap += 1;\r
90 }\r
91\r
92 if (Qwords > 0) {\r
93 SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES,\r
94 (UINT64)-1);\r
95 BitMap += Qwords;\r
96 }\r
97\r
98 if (Lsbs > 0) {\r
99 *BitMap |= (LShiftU64 (1, Lsbs) - 1);\r
100 }\r
101}\r
102\r
103/**\r
104 Set corresponding bits in bitmap table to 0 according to the address.\r
105\r
106 @param[in] Address Start address to set for.\r
107 @param[in] BitNumber Number of bits to set.\r
108 @param[in] BitMap Pointer to bitmap which covers the Address.\r
109\r
110 @return VOID.\r
111**/\r
112STATIC\r
113VOID\r
114ClearBits (\r
115 IN EFI_PHYSICAL_ADDRESS Address,\r
116 IN UINTN BitNumber,\r
117 IN UINT64 *BitMap\r
118 )\r
119{\r
120 UINTN Lsbs;\r
121 UINTN Qwords;\r
122 UINTN Msbs;\r
123 UINTN StartBit;\r
124 UINTN EndBit;\r
125\r
126 StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);\r
127 EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
128\r
129 if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {\r
130 Msbs = (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) %\r
131 GUARDED_HEAP_MAP_ENTRY_BITS;\r
132 Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
133 Qwords = (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS;\r
134 } else {\r
135 Msbs = BitNumber;\r
136 Lsbs = 0;\r
137 Qwords = 0;\r
138 }\r
139\r
140 if (Msbs > 0) {\r
141 *BitMap &= ~LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit);\r
142 BitMap += 1;\r
143 }\r
144\r
145 if (Qwords > 0) {\r
146 SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES, 0);\r
147 BitMap += Qwords;\r
148 }\r
149\r
150 if (Lsbs > 0) {\r
151 *BitMap &= ~(LShiftU64 (1, Lsbs) - 1);\r
152 }\r
153}\r
154\r
155/**\r
156 Get corresponding bits in bitmap table according to the address.\r
157\r
158 The value of bit 0 corresponds to the status of memory at given Address.\r
159 No more than 64 bits can be retrieved in one call.\r
160\r
161 @param[in] Address Start address to retrieve bits for.\r
162 @param[in] BitNumber Number of bits to get.\r
163 @param[in] BitMap Pointer to bitmap which covers the Address.\r
164\r
165 @return An integer containing the bits information.\r
166**/\r
167STATIC\r
168UINT64\r
169GetBits (\r
170 IN EFI_PHYSICAL_ADDRESS Address,\r
171 IN UINTN BitNumber,\r
172 IN UINT64 *BitMap\r
173 )\r
174{\r
175 UINTN StartBit;\r
176 UINTN EndBit;\r
177 UINTN Lsbs;\r
178 UINTN Msbs;\r
179 UINT64 Result;\r
180\r
181 ASSERT (BitNumber <= GUARDED_HEAP_MAP_ENTRY_BITS);\r
182\r
183 StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);\r
184 EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
185\r
186 if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {\r
187 Msbs = GUARDED_HEAP_MAP_ENTRY_BITS - StartBit;\r
188 Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
189 } else {\r
190 Msbs = BitNumber;\r
191 Lsbs = 0;\r
192 }\r
193\r
194 Result = RShiftU64 ((*BitMap), StartBit) & (LShiftU64 (1, Msbs) - 1);\r
195 if (Lsbs > 0) {\r
196 BitMap += 1;\r
197 Result |= LShiftU64 ((*BitMap) & (LShiftU64 (1, Lsbs) - 1), Msbs);\r
198 }\r
199\r
200 return Result;\r
201}\r
202\r
203/**\r
204 Helper function to allocate pages without Guard for internal uses.\r
205\r
206 @param[in] Pages Page number.\r
207\r
208 @return Address of memory allocated.\r
209**/\r
210VOID *\r
211PageAlloc (\r
212 IN UINTN Pages\r
213 )\r
214{\r
215 EFI_STATUS Status;\r
216 EFI_PHYSICAL_ADDRESS Memory;\r
217\r
218 Status = SmmInternalAllocatePages (AllocateAnyPages, EfiRuntimeServicesData,\r
219 Pages, &Memory, FALSE);\r
220 if (EFI_ERROR (Status)) {\r
221 Memory = 0;\r
222 }\r
223\r
224 return (VOID *)(UINTN)Memory;\r
225}\r
226\r
227/**\r
228 Locate the pointer of bitmap from the guarded memory bitmap tables, which\r
229 covers the given Address.\r
230\r
231 @param[in] Address Start address to search the bitmap for.\r
232 @param[in] AllocMapUnit Flag to indicate memory allocation for the table.\r
233 @param[out] BitMap Pointer to bitmap which covers the Address.\r
234\r
235 @return The bit number from given Address to the end of current map table.\r
236**/\r
237UINTN\r
238FindGuardedMemoryMap (\r
239 IN EFI_PHYSICAL_ADDRESS Address,\r
240 IN BOOLEAN AllocMapUnit,\r
241 OUT UINT64 **BitMap\r
242 )\r
243{\r
244 UINTN Level;\r
245 UINT64 *GuardMap;\r
246 UINT64 MapMemory;\r
247 UINTN Index;\r
248 UINTN Size;\r
249 UINTN BitsToUnitEnd;\r
250\r
251 //\r
252 // Adjust current map table depth according to the address to access\r
253 //\r
254 while (mMapLevel < GUARDED_HEAP_MAP_TABLE_DEPTH\r
255 &&\r
256 RShiftU64 (\r
257 Address,\r
258 mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1]\r
259 ) != 0) {\r
260\r
261 if (mGuardedMemoryMap != 0) {\r
262 Size = (mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1] + 1)\r
263 * GUARDED_HEAP_MAP_ENTRY_BYTES;\r
264 MapMemory = (UINT64)(UINTN)PageAlloc (EFI_SIZE_TO_PAGES (Size));\r
265 ASSERT (MapMemory != 0);\r
266\r
267 SetMem ((VOID *)(UINTN)MapMemory, Size, 0);\r
268\r
269 *(UINT64 *)(UINTN)MapMemory = mGuardedMemoryMap;\r
270 mGuardedMemoryMap = MapMemory;\r
271 }\r
272\r
273 mMapLevel++;\r
274\r
275 }\r
276\r
277 GuardMap = &mGuardedMemoryMap;\r
278 for (Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;\r
279 Level < GUARDED_HEAP_MAP_TABLE_DEPTH;\r
280 ++Level) {\r
281\r
282 if (*GuardMap == 0) {\r
283 if (!AllocMapUnit) {\r
284 GuardMap = NULL;\r
285 break;\r
286 }\r
287\r
288 Size = (mLevelMask[Level] + 1) * GUARDED_HEAP_MAP_ENTRY_BYTES;\r
289 MapMemory = (UINT64)(UINTN)PageAlloc (EFI_SIZE_TO_PAGES (Size));\r
290 ASSERT (MapMemory != 0);\r
291\r
292 SetMem ((VOID *)(UINTN)MapMemory, Size, 0);\r
293 *GuardMap = MapMemory;\r
294 }\r
295\r
296 Index = (UINTN)RShiftU64 (Address, mLevelShift[Level]);\r
297 Index &= mLevelMask[Level];\r
298 GuardMap = (UINT64 *)(UINTN)((*GuardMap) + Index * sizeof (UINT64));\r
299\r
300 }\r
301\r
302 BitsToUnitEnd = GUARDED_HEAP_MAP_BITS - GUARDED_HEAP_MAP_BIT_INDEX (Address);\r
303 *BitMap = GuardMap;\r
304\r
305 return BitsToUnitEnd;\r
306}\r
307\r
308/**\r
309 Set corresponding bits in bitmap table to 1 according to given memory range.\r
310\r
311 @param[in] Address Memory address to guard from.\r
312 @param[in] NumberOfPages Number of pages to guard.\r
313\r
314 @return VOID\r
315**/\r
316VOID\r
317EFIAPI\r
318SetGuardedMemoryBits (\r
319 IN EFI_PHYSICAL_ADDRESS Address,\r
320 IN UINTN NumberOfPages\r
321 )\r
322{\r
323 UINT64 *BitMap;\r
324 UINTN Bits;\r
325 UINTN BitsToUnitEnd;\r
326\r
327 while (NumberOfPages > 0) {\r
328 BitsToUnitEnd = FindGuardedMemoryMap (Address, TRUE, &BitMap);\r
329 ASSERT (BitMap != NULL);\r
330\r
331 if (NumberOfPages > BitsToUnitEnd) {\r
332 // Cross map unit\r
333 Bits = BitsToUnitEnd;\r
334 } else {\r
335 Bits = NumberOfPages;\r
336 }\r
337\r
338 SetBits (Address, Bits, BitMap);\r
339\r
340 NumberOfPages -= Bits;\r
341 Address += EFI_PAGES_TO_SIZE (Bits);\r
342 }\r
343}\r
344\r
345/**\r
346 Clear corresponding bits in bitmap table according to given memory range.\r
347\r
348 @param[in] Address Memory address to unset from.\r
349 @param[in] NumberOfPages Number of pages to unset guard.\r
350\r
351 @return VOID\r
352**/\r
353VOID\r
354EFIAPI\r
355ClearGuardedMemoryBits (\r
356 IN EFI_PHYSICAL_ADDRESS Address,\r
357 IN UINTN NumberOfPages\r
358 )\r
359{\r
360 UINT64 *BitMap;\r
361 UINTN Bits;\r
362 UINTN BitsToUnitEnd;\r
363\r
364 while (NumberOfPages > 0) {\r
365 BitsToUnitEnd = FindGuardedMemoryMap (Address, TRUE, &BitMap);\r
366 ASSERT (BitMap != NULL);\r
367\r
368 if (NumberOfPages > BitsToUnitEnd) {\r
369 // Cross map unit\r
370 Bits = BitsToUnitEnd;\r
371 } else {\r
372 Bits = NumberOfPages;\r
373 }\r
374\r
375 ClearBits (Address, Bits, BitMap);\r
376\r
377 NumberOfPages -= Bits;\r
378 Address += EFI_PAGES_TO_SIZE (Bits);\r
379 }\r
380}\r
381\r
382/**\r
383 Retrieve corresponding bits in bitmap table according to given memory range.\r
384\r
385 @param[in] Address Memory address to retrieve from.\r
386 @param[in] NumberOfPages Number of pages to retrieve.\r
387\r
388 @return An integer containing the guarded memory bitmap.\r
389**/\r
390UINTN\r
391GetGuardedMemoryBits (\r
392 IN EFI_PHYSICAL_ADDRESS Address,\r
393 IN UINTN NumberOfPages\r
394 )\r
395{\r
396 UINT64 *BitMap;\r
397 UINTN Bits;\r
398 UINTN Result;\r
399 UINTN Shift;\r
400 UINTN BitsToUnitEnd;\r
401\r
402 ASSERT (NumberOfPages <= GUARDED_HEAP_MAP_ENTRY_BITS);\r
403\r
404 Result = 0;\r
405 Shift = 0;\r
406 while (NumberOfPages > 0) {\r
407 BitsToUnitEnd = FindGuardedMemoryMap (Address, FALSE, &BitMap);\r
408\r
409 if (NumberOfPages > BitsToUnitEnd) {\r
410 // Cross map unit\r
411 Bits = BitsToUnitEnd;\r
412 } else {\r
413 Bits = NumberOfPages;\r
414 }\r
415\r
416 if (BitMap != NULL) {\r
417 Result |= LShiftU64 (GetBits (Address, Bits, BitMap), Shift);\r
418 }\r
419\r
420 Shift += Bits;\r
421 NumberOfPages -= Bits;\r
422 Address += EFI_PAGES_TO_SIZE (Bits);\r
423 }\r
424\r
425 return Result;\r
426}\r
427\r
428/**\r
429 Get bit value in bitmap table for the given address.\r
430\r
431 @param[in] Address The address to retrieve for.\r
432\r
433 @return 1 or 0.\r
434**/\r
435UINTN\r
436EFIAPI\r
437GetGuardMapBit (\r
438 IN EFI_PHYSICAL_ADDRESS Address\r
439 )\r
440{\r
441 UINT64 *GuardMap;\r
442\r
443 FindGuardedMemoryMap (Address, FALSE, &GuardMap);\r
444 if (GuardMap != NULL) {\r
445 if (RShiftU64 (*GuardMap,\r
446 GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address)) & 1) {\r
447 return 1;\r
448 }\r
449 }\r
450\r
451 return 0;\r
452}\r
453\r
454/**\r
455 Set the bit in bitmap table for the given address.\r
456\r
457 @param[in] Address The address to set for.\r
458\r
459 @return VOID.\r
460**/\r
461VOID\r
462EFIAPI\r
463SetGuardMapBit (\r
464 IN EFI_PHYSICAL_ADDRESS Address\r
465 )\r
466{\r
467 UINT64 *GuardMap;\r
468 UINT64 BitMask;\r
469\r
470 FindGuardedMemoryMap (Address, TRUE, &GuardMap);\r
471 if (GuardMap != NULL) {\r
472 BitMask = LShiftU64 (1, GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address));\r
473 *GuardMap |= BitMask;\r
474 }\r
475}\r
476\r
477/**\r
478 Clear the bit in bitmap table for the given address.\r
479\r
480 @param[in] Address The address to clear for.\r
481\r
482 @return VOID.\r
483**/\r
484VOID\r
485EFIAPI\r
486ClearGuardMapBit (\r
487 IN EFI_PHYSICAL_ADDRESS Address\r
488 )\r
489{\r
490 UINT64 *GuardMap;\r
491 UINT64 BitMask;\r
492\r
493 FindGuardedMemoryMap (Address, TRUE, &GuardMap);\r
494 if (GuardMap != NULL) {\r
495 BitMask = LShiftU64 (1, GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address));\r
496 *GuardMap &= ~BitMask;\r
497 }\r
498}\r
499\r
500/**\r
501 Check to see if the page at the given address is a Guard page or not.\r
502\r
503 @param[in] Address The address to check for.\r
504\r
505 @return TRUE The page at Address is a Guard page.\r
506 @return FALSE The page at Address is not a Guard page.\r
507**/\r
508BOOLEAN\r
509EFIAPI\r
510IsGuardPage (\r
511 IN EFI_PHYSICAL_ADDRESS Address\r
512)\r
513{\r
514 UINTN BitMap;\r
515\r
516 //\r
517 // There must be at least one guarded page before and/or after given\r
518 // address if it's a Guard page. The bitmap pattern should be one of\r
519 // 001, 100 and 101\r
520 //\r
521 BitMap = GetGuardedMemoryBits (Address - EFI_PAGE_SIZE, 3);\r
522 return ((BitMap == BIT0) || (BitMap == BIT2) || (BitMap == (BIT2 | BIT0)));\r
523}\r
524\r
525/**\r
526 Check to see if the page at the given address is a head Guard page or not.\r
527\r
528 @param[in] Address The address to check for.\r
529\r
530 @return TRUE The page at Address is a head Guard page.\r
531 @return FALSE The page at Address is not a head Guard page.\r
532**/\r
533BOOLEAN\r
534EFIAPI\r
535IsHeadGuard (\r
536 IN EFI_PHYSICAL_ADDRESS Address\r
537 )\r
538{\r
539 return (GetGuardedMemoryBits (Address, 2) == BIT1);\r
540}\r
541\r
542/**\r
543 Check to see if the page at the given address is a tail Guard page or not.\r
544\r
545 @param[in] Address The address to check for.\r
546\r
547 @return TRUE The page at Address is a tail Guard page.\r
548 @return FALSE The page at Address is not a tail Guard page.\r
549**/\r
550BOOLEAN\r
551EFIAPI\r
552IsTailGuard (\r
553 IN EFI_PHYSICAL_ADDRESS Address\r
554 )\r
555{\r
556 return (GetGuardedMemoryBits (Address - EFI_PAGE_SIZE, 2) == BIT0);\r
557}\r
558\r
559/**\r
560 Check to see if the page at the given address is guarded or not.\r
561\r
562 @param[in] Address The address to check for.\r
563\r
564 @return TRUE The page at Address is guarded.\r
565 @return FALSE The page at Address is not guarded.\r
566**/\r
567BOOLEAN\r
568EFIAPI\r
569IsMemoryGuarded (\r
570 IN EFI_PHYSICAL_ADDRESS Address\r
571 )\r
572{\r
573 return (GetGuardMapBit (Address) == 1);\r
574}\r
575\r
576/**\r
577 Set the page at the given address to be a Guard page.\r
578\r
579 This is done by changing the page table attribute to be NOT PRSENT.\r
580\r
581 @param[in] BaseAddress Page address to Guard at.\r
582\r
583 @return VOID.\r
584**/\r
585VOID\r
586EFIAPI\r
587SetGuardPage (\r
588 IN EFI_PHYSICAL_ADDRESS BaseAddress\r
589 )\r
590{\r
591 if (mSmmMemoryAttribute != NULL) {\r
592 mOnGuarding = TRUE;\r
593 mSmmMemoryAttribute->SetMemoryAttributes (\r
594 mSmmMemoryAttribute,\r
595 BaseAddress,\r
596 EFI_PAGE_SIZE,\r
597 EFI_MEMORY_RP\r
598 );\r
599 mOnGuarding = FALSE;\r
600 }\r
601}\r
602\r
603/**\r
604 Unset the Guard page at the given address to the normal memory.\r
605\r
606 This is done by changing the page table attribute to be PRSENT.\r
607\r
608 @param[in] BaseAddress Page address to Guard at.\r
609\r
610 @return VOID.\r
611**/\r
612VOID\r
613EFIAPI\r
614UnsetGuardPage (\r
615 IN EFI_PHYSICAL_ADDRESS BaseAddress\r
616 )\r
617{\r
618 if (mSmmMemoryAttribute != NULL) {\r
619 mOnGuarding = TRUE;\r
620 mSmmMemoryAttribute->ClearMemoryAttributes (\r
621 mSmmMemoryAttribute,\r
622 BaseAddress,\r
623 EFI_PAGE_SIZE,\r
624 EFI_MEMORY_RP\r
625 );\r
626 mOnGuarding = FALSE;\r
627 }\r
628}\r
629\r
630/**\r
631 Check to see if the memory at the given address should be guarded or not.\r
632\r
633 @param[in] MemoryType Memory type to check.\r
634 @param[in] AllocateType Allocation type to check.\r
635 @param[in] PageOrPool Indicate a page allocation or pool allocation.\r
636\r
637\r
638 @return TRUE The given type of memory should be guarded.\r
639 @return FALSE The given type of memory should not be guarded.\r
640**/\r
641BOOLEAN\r
642IsMemoryTypeToGuard (\r
643 IN EFI_MEMORY_TYPE MemoryType,\r
644 IN EFI_ALLOCATE_TYPE AllocateType,\r
645 IN UINT8 PageOrPool\r
646 )\r
647{\r
648 UINT64 TestBit;\r
649 UINT64 ConfigBit;\r
650\r
651 if ((PcdGet8 (PcdHeapGuardPropertyMask) & PageOrPool) == 0\r
652 || mOnGuarding\r
653 || AllocateType == AllocateAddress) {\r
654 return FALSE;\r
655 }\r
656\r
657 ConfigBit = 0;\r
658 if ((PageOrPool & GUARD_HEAP_TYPE_POOL) != 0) {\r
659 ConfigBit |= PcdGet64 (PcdHeapGuardPoolType);\r
660 }\r
661\r
662 if ((PageOrPool & GUARD_HEAP_TYPE_PAGE) != 0) {\r
663 ConfigBit |= PcdGet64 (PcdHeapGuardPageType);\r
664 }\r
665\r
666 if (MemoryType == EfiRuntimeServicesData ||\r
667 MemoryType == EfiRuntimeServicesCode) {\r
668 TestBit = LShiftU64 (1, MemoryType);\r
669 } else if (MemoryType == EfiMaxMemoryType) {\r
670 TestBit = (UINT64)-1;\r
671 } else {\r
672 TestBit = 0;\r
673 }\r
674\r
675 return ((ConfigBit & TestBit) != 0);\r
676}\r
677\r
678/**\r
679 Check to see if the pool at the given address should be guarded or not.\r
680\r
681 @param[in] MemoryType Pool type to check.\r
682\r
683\r
684 @return TRUE The given type of pool should be guarded.\r
685 @return FALSE The given type of pool should not be guarded.\r
686**/\r
687BOOLEAN\r
688IsPoolTypeToGuard (\r
689 IN EFI_MEMORY_TYPE MemoryType\r
690 )\r
691{\r
692 return IsMemoryTypeToGuard (MemoryType, AllocateAnyPages,\r
693 GUARD_HEAP_TYPE_POOL);\r
694}\r
695\r
696/**\r
697 Check to see if the page at the given address should be guarded or not.\r
698\r
699 @param[in] MemoryType Page type to check.\r
700 @param[in] AllocateType Allocation type to check.\r
701\r
702 @return TRUE The given type of page should be guarded.\r
703 @return FALSE The given type of page should not be guarded.\r
704**/\r
705BOOLEAN\r
706IsPageTypeToGuard (\r
707 IN EFI_MEMORY_TYPE MemoryType,\r
708 IN EFI_ALLOCATE_TYPE AllocateType\r
709 )\r
710{\r
711 return IsMemoryTypeToGuard (MemoryType, AllocateType, GUARD_HEAP_TYPE_PAGE);\r
712}\r
713\r
714/**\r
715 Check to see if the heap guard is enabled for page and/or pool allocation.\r
716\r
717 @return TRUE/FALSE.\r
718**/\r
719BOOLEAN\r
720IsHeapGuardEnabled (\r
721 VOID\r
722 )\r
723{\r
724 return IsMemoryTypeToGuard (EfiMaxMemoryType, AllocateAnyPages,\r
725 GUARD_HEAP_TYPE_POOL|GUARD_HEAP_TYPE_PAGE);\r
726}\r
727\r
728/**\r
729 Set head Guard and tail Guard for the given memory range.\r
730\r
731 @param[in] Memory Base address of memory to set guard for.\r
732 @param[in] NumberOfPages Memory size in pages.\r
733\r
734 @return VOID.\r
735**/\r
736VOID\r
737SetGuardForMemory (\r
738 IN EFI_PHYSICAL_ADDRESS Memory,\r
739 IN UINTN NumberOfPages\r
740 )\r
741{\r
742 EFI_PHYSICAL_ADDRESS GuardPage;\r
743\r
744 //\r
745 // Set tail Guard\r
746 //\r
747 GuardPage = Memory + EFI_PAGES_TO_SIZE (NumberOfPages);\r
748 if (!IsGuardPage (GuardPage)) {\r
749 SetGuardPage (GuardPage);\r
750 }\r
751\r
752 // Set head Guard\r
753 GuardPage = Memory - EFI_PAGES_TO_SIZE (1);\r
754 if (!IsGuardPage (GuardPage)) {\r
755 SetGuardPage (GuardPage);\r
756 }\r
757\r
758 //\r
759 // Mark the memory range as Guarded\r
760 //\r
761 SetGuardedMemoryBits (Memory, NumberOfPages);\r
762}\r
763\r
764/**\r
765 Unset head Guard and tail Guard for the given memory range.\r
766\r
767 @param[in] Memory Base address of memory to unset guard for.\r
768 @param[in] NumberOfPages Memory size in pages.\r
769\r
770 @return VOID.\r
771**/\r
772VOID\r
773UnsetGuardForMemory (\r
774 IN EFI_PHYSICAL_ADDRESS Memory,\r
775 IN UINTN NumberOfPages\r
776 )\r
777{\r
778 EFI_PHYSICAL_ADDRESS GuardPage;\r
38d870fc 779 UINT64 GuardBitmap;\r
e63da9f0
JW
780\r
781 if (NumberOfPages == 0) {\r
782 return;\r
783 }\r
784\r
785 //\r
786 // Head Guard must be one page before, if any.\r
787 //\r
38d870fc
JW
788 // MSB-> 1 0 <-LSB\r
789 // -------------------\r
790 // Head Guard -> 0 1 -> Don't free Head Guard (shared Guard)\r
791 // Head Guard -> 0 0 -> Free Head Guard either (not shared Guard)\r
792 // 1 X -> Don't free first page (need a new Guard)\r
793 // (it'll be turned into a Guard page later)\r
794 // -------------------\r
795 // Start -> -1 -2\r
796 //\r
e63da9f0 797 GuardPage = Memory - EFI_PAGES_TO_SIZE (1);\r
38d870fc
JW
798 GuardBitmap = GetGuardedMemoryBits (Memory - EFI_PAGES_TO_SIZE (2), 2);\r
799 if ((GuardBitmap & BIT1) == 0) {\r
800 //\r
801 // Head Guard exists.\r
802 //\r
803 if ((GuardBitmap & BIT0) == 0) {\r
e63da9f0
JW
804 //\r
805 // If the head Guard is not a tail Guard of adjacent memory block,\r
806 // unset it.\r
807 //\r
808 UnsetGuardPage (GuardPage);\r
809 }\r
38d870fc 810 } else {\r
e63da9f0
JW
811 //\r
812 // Pages before memory to free are still in Guard. It's a partial free\r
813 // case. Turn first page of memory block to free into a new Guard.\r
814 //\r
815 SetGuardPage (Memory);\r
816 }\r
817\r
818 //\r
819 // Tail Guard must be the page after this memory block to free, if any.\r
820 //\r
38d870fc
JW
821 // MSB-> 1 0 <-LSB\r
822 // --------------------\r
823 // 1 0 <- Tail Guard -> Don't free Tail Guard (shared Guard)\r
824 // 0 0 <- Tail Guard -> Free Tail Guard either (not shared Guard)\r
825 // X 1 -> Don't free last page (need a new Guard)\r
826 // (it'll be turned into a Guard page later)\r
827 // --------------------\r
828 // +1 +0 <- End\r
829 //\r
e63da9f0 830 GuardPage = Memory + EFI_PAGES_TO_SIZE (NumberOfPages);\r
38d870fc
JW
831 GuardBitmap = GetGuardedMemoryBits (GuardPage, 2);\r
832 if ((GuardBitmap & BIT0) == 0) {\r
833 //\r
834 // Tail Guard exists.\r
835 //\r
836 if ((GuardBitmap & BIT1) == 0) {\r
e63da9f0
JW
837 //\r
838 // If the tail Guard is not a head Guard of adjacent memory block,\r
839 // free it; otherwise, keep it.\r
840 //\r
841 UnsetGuardPage (GuardPage);\r
842 }\r
38d870fc 843 } else {\r
e63da9f0
JW
844 //\r
845 // Pages after memory to free are still in Guard. It's a partial free\r
846 // case. We need to keep one page to be a head Guard.\r
847 //\r
848 SetGuardPage (GuardPage - EFI_PAGES_TO_SIZE (1));\r
849 }\r
850\r
851 //\r
852 // No matter what, we just clear the mark of the Guarded memory.\r
853 //\r
854 ClearGuardedMemoryBits(Memory, NumberOfPages);\r
855}\r
856\r
857/**\r
858 Adjust address of free memory according to existing and/or required Guard.\r
859\r
860 This function will check if there're existing Guard pages of adjacent\r
861 memory blocks, and try to use it as the Guard page of the memory to be\r
862 allocated.\r
863\r
864 @param[in] Start Start address of free memory block.\r
865 @param[in] Size Size of free memory block.\r
866 @param[in] SizeRequested Size of memory to allocate.\r
867\r
868 @return The end address of memory block found.\r
869 @return 0 if no enough space for the required size of memory and its Guard.\r
870**/\r
871UINT64\r
872AdjustMemoryS (\r
873 IN UINT64 Start,\r
874 IN UINT64 Size,\r
875 IN UINT64 SizeRequested\r
876 )\r
877{\r
878 UINT64 Target;\r
879\r
880 Target = Start + Size - SizeRequested;\r
881\r
882 //\r
883 // At least one more page needed for Guard page.\r
884 //\r
885 if (Size < (SizeRequested + EFI_PAGES_TO_SIZE (1))) {\r
886 return 0;\r
887 }\r
888\r
889 if (!IsGuardPage (Start + Size)) {\r
890 // No Guard at tail to share. One more page is needed.\r
891 Target -= EFI_PAGES_TO_SIZE (1);\r
892 }\r
893\r
894 // Out of range?\r
895 if (Target < Start) {\r
896 return 0;\r
897 }\r
898\r
899 // At the edge?\r
900 if (Target == Start) {\r
901 if (!IsGuardPage (Target - EFI_PAGES_TO_SIZE (1))) {\r
902 // No enough space for a new head Guard if no Guard at head to share.\r
903 return 0;\r
904 }\r
905 }\r
906\r
907 // OK, we have enough pages for memory and its Guards. Return the End of the\r
908 // free space.\r
909 return Target + SizeRequested - 1;\r
910}\r
911\r
912/**\r
913 Adjust the start address and number of pages to free according to Guard.\r
914\r
915 The purpose of this function is to keep the shared Guard page with adjacent\r
916 memory block if it's still in guard, or free it if no more sharing. Another\r
917 is to reserve pages as Guard pages in partial page free situation.\r
918\r
919 @param[in,out] Memory Base address of memory to free.\r
920 @param[in,out] NumberOfPages Size of memory to free.\r
921\r
922 @return VOID.\r
923**/\r
924VOID\r
925AdjustMemoryF (\r
926 IN OUT EFI_PHYSICAL_ADDRESS *Memory,\r
927 IN OUT UINTN *NumberOfPages\r
928 )\r
929{\r
930 EFI_PHYSICAL_ADDRESS Start;\r
931 EFI_PHYSICAL_ADDRESS MemoryToTest;\r
932 UINTN PagesToFree;\r
38d870fc 933 UINT64 GuardBitmap;\r
e63da9f0
JW
934\r
935 if (Memory == NULL || NumberOfPages == NULL || *NumberOfPages == 0) {\r
936 return;\r
937 }\r
938\r
939 Start = *Memory;\r
940 PagesToFree = *NumberOfPages;\r
941\r
942 //\r
943 // Head Guard must be one page before, if any.\r
944 //\r
38d870fc
JW
945 // MSB-> 1 0 <-LSB\r
946 // -------------------\r
947 // Head Guard -> 0 1 -> Don't free Head Guard (shared Guard)\r
948 // Head Guard -> 0 0 -> Free Head Guard either (not shared Guard)\r
949 // 1 X -> Don't free first page (need a new Guard)\r
950 // (it'll be turned into a Guard page later)\r
951 // -------------------\r
952 // Start -> -1 -2\r
953 //\r
954 MemoryToTest = Start - EFI_PAGES_TO_SIZE (2);\r
955 GuardBitmap = GetGuardedMemoryBits (MemoryToTest, 2);\r
956 if ((GuardBitmap & BIT1) == 0) {\r
957 //\r
958 // Head Guard exists.\r
959 //\r
960 if ((GuardBitmap & BIT0) == 0) {\r
e63da9f0
JW
961 //\r
962 // If the head Guard is not a tail Guard of adjacent memory block,\r
963 // free it; otherwise, keep it.\r
964 //\r
965 Start -= EFI_PAGES_TO_SIZE (1);\r
966 PagesToFree += 1;\r
967 }\r
38d870fc 968 } else {\r
e63da9f0 969 //\r
38d870fc
JW
970 // No Head Guard, and pages before memory to free are still in Guard. It's a\r
971 // partial free case. We need to keep one page to be a tail Guard.\r
e63da9f0
JW
972 //\r
973 Start += EFI_PAGES_TO_SIZE (1);\r
974 PagesToFree -= 1;\r
975 }\r
976\r
977 //\r
978 // Tail Guard must be the page after this memory block to free, if any.\r
979 //\r
38d870fc
JW
980 // MSB-> 1 0 <-LSB\r
981 // --------------------\r
982 // 1 0 <- Tail Guard -> Don't free Tail Guard (shared Guard)\r
983 // 0 0 <- Tail Guard -> Free Tail Guard either (not shared Guard)\r
984 // X 1 -> Don't free last page (need a new Guard)\r
985 // (it'll be turned into a Guard page later)\r
986 // --------------------\r
987 // +1 +0 <- End\r
988 //\r
e63da9f0 989 MemoryToTest = Start + EFI_PAGES_TO_SIZE (PagesToFree);\r
38d870fc
JW
990 GuardBitmap = GetGuardedMemoryBits (MemoryToTest, 2);\r
991 if ((GuardBitmap & BIT0) == 0) {\r
992 //\r
993 // Tail Guard exists.\r
994 //\r
995 if ((GuardBitmap & BIT1) == 0) {\r
e63da9f0
JW
996 //\r
997 // If the tail Guard is not a head Guard of adjacent memory block,\r
998 // free it; otherwise, keep it.\r
999 //\r
1000 PagesToFree += 1;\r
1001 }\r
38d870fc 1002 } else if (PagesToFree > 0) {\r
e63da9f0 1003 //\r
38d870fc
JW
1004 // No Tail Guard, and pages after memory to free are still in Guard. It's a\r
1005 // partial free case. We need to keep one page to be a head Guard.\r
e63da9f0
JW
1006 //\r
1007 PagesToFree -= 1;\r
1008 }\r
1009\r
1010 *Memory = Start;\r
1011 *NumberOfPages = PagesToFree;\r
1012}\r
1013\r
1014/**\r
1015 Adjust the base and number of pages to really allocate according to Guard.\r
1016\r
1017 @param[in,out] Memory Base address of free memory.\r
1018 @param[in,out] NumberOfPages Size of memory to allocate.\r
1019\r
1020 @return VOID.\r
1021**/\r
1022VOID\r
1023AdjustMemoryA (\r
1024 IN OUT EFI_PHYSICAL_ADDRESS *Memory,\r
1025 IN OUT UINTN *NumberOfPages\r
1026 )\r
1027{\r
1028 //\r
1029 // FindFreePages() has already taken the Guard into account. It's safe to\r
1030 // adjust the start address and/or number of pages here, to make sure that\r
1031 // the Guards are also "allocated".\r
1032 //\r
1033 if (!IsGuardPage (*Memory + EFI_PAGES_TO_SIZE (*NumberOfPages))) {\r
1034 // No tail Guard, add one.\r
1035 *NumberOfPages += 1;\r
1036 }\r
1037\r
1038 if (!IsGuardPage (*Memory - EFI_PAGE_SIZE)) {\r
1039 // No head Guard, add one.\r
1040 *Memory -= EFI_PAGE_SIZE;\r
1041 *NumberOfPages += 1;\r
1042 }\r
1043}\r
1044\r
1045/**\r
1046 Adjust the pool head position to make sure the Guard page is adjavent to\r
1047 pool tail or pool head.\r
1048\r
1049 @param[in] Memory Base address of memory allocated.\r
1050 @param[in] NoPages Number of pages actually allocated.\r
1051 @param[in] Size Size of memory requested.\r
1052 (plus pool head/tail overhead)\r
1053\r
1054 @return Address of pool head\r
1055**/\r
1056VOID *\r
1057AdjustPoolHeadA (\r
1058 IN EFI_PHYSICAL_ADDRESS Memory,\r
1059 IN UINTN NoPages,\r
1060 IN UINTN Size\r
1061 )\r
1062{\r
1063 if ((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) != 0) {\r
1064 //\r
1065 // Pool head is put near the head Guard\r
1066 //\r
1067 return (VOID *)(UINTN)Memory;\r
1068 }\r
1069\r
1070 //\r
1071 // Pool head is put near the tail Guard\r
1072 //\r
1073 return (VOID *)(UINTN)(Memory + EFI_PAGES_TO_SIZE (NoPages) - Size);\r
1074}\r
1075\r
1076/**\r
1077 Get the page base address according to pool head address.\r
1078\r
1079 @param[in] Memory Head address of pool to free.\r
1080\r
1081 @return Address of pool head.\r
1082**/\r
1083VOID *\r
1084AdjustPoolHeadF (\r
1085 IN EFI_PHYSICAL_ADDRESS Memory\r
1086 )\r
1087{\r
1088 if ((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) != 0) {\r
1089 //\r
1090 // Pool head is put near the head Guard\r
1091 //\r
1092 return (VOID *)(UINTN)Memory;\r
1093 }\r
1094\r
1095 //\r
1096 // Pool head is put near the tail Guard\r
1097 //\r
1098 return (VOID *)(UINTN)(Memory & ~EFI_PAGE_MASK);\r
1099}\r
1100\r
1101/**\r
1102 Helper function of memory allocation with Guard pages.\r
1103\r
1104 @param FreePageList The free page node.\r
1105 @param NumberOfPages Number of pages to be allocated.\r
1106 @param MaxAddress Request to allocate memory below this address.\r
1107 @param MemoryType Type of memory requested.\r
1108\r
1109 @return Memory address of allocated pages.\r
1110**/\r
1111UINTN\r
1112InternalAllocMaxAddressWithGuard (\r
1113 IN OUT LIST_ENTRY *FreePageList,\r
1114 IN UINTN NumberOfPages,\r
1115 IN UINTN MaxAddress,\r
1116 IN EFI_MEMORY_TYPE MemoryType\r
1117\r
1118 )\r
1119{\r
1120 LIST_ENTRY *Node;\r
1121 FREE_PAGE_LIST *Pages;\r
1122 UINTN PagesToAlloc;\r
1123 UINTN HeadGuard;\r
1124 UINTN TailGuard;\r
1125 UINTN Address;\r
1126\r
1127 for (Node = FreePageList->BackLink; Node != FreePageList;\r
1128 Node = Node->BackLink) {\r
1129 Pages = BASE_CR (Node, FREE_PAGE_LIST, Link);\r
1130 if (Pages->NumberOfPages >= NumberOfPages &&\r
1131 (UINTN)Pages + EFI_PAGES_TO_SIZE (NumberOfPages) - 1 <= MaxAddress) {\r
1132\r
1133 //\r
1134 // We may need 1 or 2 more pages for Guard. Check it out.\r
1135 //\r
1136 PagesToAlloc = NumberOfPages;\r
1137 TailGuard = (UINTN)Pages + EFI_PAGES_TO_SIZE (Pages->NumberOfPages);\r
1138 if (!IsGuardPage (TailGuard)) {\r
1139 //\r
1140 // Add one if no Guard at the end of current free memory block.\r
1141 //\r
1142 PagesToAlloc += 1;\r
1143 TailGuard = 0;\r
1144 }\r
1145\r
1146 HeadGuard = (UINTN)Pages +\r
1147 EFI_PAGES_TO_SIZE (Pages->NumberOfPages - PagesToAlloc) -\r
1148 EFI_PAGE_SIZE;\r
1149 if (!IsGuardPage (HeadGuard)) {\r
1150 //\r
1151 // Add one if no Guard at the page before the address to allocate\r
1152 //\r
1153 PagesToAlloc += 1;\r
1154 HeadGuard = 0;\r
1155 }\r
1156\r
1157 if (Pages->NumberOfPages < PagesToAlloc) {\r
1158 // Not enough space to allocate memory with Guards? Try next block.\r
1159 continue;\r
1160 }\r
1161\r
1162 Address = InternalAllocPagesOnOneNode (Pages, PagesToAlloc, MaxAddress);\r
1163 ConvertSmmMemoryMapEntry(MemoryType, Address, PagesToAlloc, FALSE);\r
1164 CoreFreeMemoryMapStack();\r
1165 if (HeadGuard == 0) {\r
1166 // Don't pass the Guard page to user.\r
1167 Address += EFI_PAGE_SIZE;\r
1168 }\r
1169 SetGuardForMemory (Address, NumberOfPages);\r
1170 return Address;\r
1171 }\r
1172 }\r
1173\r
1174 return (UINTN)(-1);\r
1175}\r
1176\r
1177/**\r
1178 Helper function of memory free with Guard pages.\r
1179\r
1180 @param[in] Memory Base address of memory being freed.\r
1181 @param[in] NumberOfPages The number of pages to free.\r
1182 @param[in] AddRegion If this memory is new added region.\r
1183\r
1184 @retval EFI_NOT_FOUND Could not find the entry that covers the range.\r
1185 @retval EFI_INVALID_PARAMETER Address not aligned, Address is zero or NumberOfPages is zero.\r
1186 @return EFI_SUCCESS Pages successfully freed.\r
1187**/\r
1188EFI_STATUS\r
1189SmmInternalFreePagesExWithGuard (\r
1190 IN EFI_PHYSICAL_ADDRESS Memory,\r
1191 IN UINTN NumberOfPages,\r
1192 IN BOOLEAN AddRegion\r
1193 )\r
1194{\r
1195 EFI_PHYSICAL_ADDRESS MemoryToFree;\r
1196 UINTN PagesToFree;\r
1197\r
1198 MemoryToFree = Memory;\r
1199 PagesToFree = NumberOfPages;\r
1200\r
1201 AdjustMemoryF (&MemoryToFree, &PagesToFree);\r
1202 UnsetGuardForMemory (Memory, NumberOfPages);\r
38d870fc
JW
1203 if (PagesToFree == 0) {\r
1204 return EFI_SUCCESS;\r
1205 }\r
e63da9f0
JW
1206\r
1207 return SmmInternalFreePagesEx (MemoryToFree, PagesToFree, AddRegion);\r
1208}\r
1209\r
1210/**\r
1211 Set all Guard pages which cannot be set during the non-SMM mode time.\r
1212**/\r
1213VOID\r
1214SetAllGuardPages (\r
1215 VOID\r
1216 )\r
1217{\r
1218 UINTN Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1219 UINTN Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1220 UINTN Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1221 UINT64 Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1222 UINT64 Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1223 UINT64 TableEntry;\r
1224 UINT64 Address;\r
1225 UINT64 GuardPage;\r
1226 INTN Level;\r
1227 UINTN Index;\r
1228 BOOLEAN OnGuarding;\r
1229\r
c6c50165
JW
1230 if (mGuardedMemoryMap == 0 ||\r
1231 mMapLevel == 0 ||\r
1232 mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {\r
e63da9f0
JW
1233 return;\r
1234 }\r
1235\r
1236 CopyMem (Entries, mLevelMask, sizeof (Entries));\r
1237 CopyMem (Shifts, mLevelShift, sizeof (Shifts));\r
1238\r
1239 SetMem (Tables, sizeof(Tables), 0);\r
1240 SetMem (Addresses, sizeof(Addresses), 0);\r
1241 SetMem (Indices, sizeof(Indices), 0);\r
1242\r
1243 Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;\r
1244 Tables[Level] = mGuardedMemoryMap;\r
1245 Address = 0;\r
1246 OnGuarding = FALSE;\r
1247\r
1248 DEBUG_CODE (\r
1249 DumpGuardedMemoryBitmap ();\r
1250 );\r
1251\r
1252 while (TRUE) {\r
1253 if (Indices[Level] > Entries[Level]) {\r
1254 Tables[Level] = 0;\r
1255 Level -= 1;\r
1256 } else {\r
1257\r
1258 TableEntry = ((UINT64 *)(UINTN)(Tables[Level]))[Indices[Level]];\r
1259 Address = Addresses[Level];\r
1260\r
1261 if (TableEntry == 0) {\r
1262\r
1263 OnGuarding = FALSE;\r
1264\r
1265 } else if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {\r
1266\r
1267 Level += 1;\r
1268 Tables[Level] = TableEntry;\r
1269 Addresses[Level] = Address;\r
1270 Indices[Level] = 0;\r
1271\r
1272 continue;\r
1273\r
1274 } else {\r
1275\r
1276 Index = 0;\r
1277 while (Index < GUARDED_HEAP_MAP_ENTRY_BITS) {\r
1278 if ((TableEntry & 1) == 1) {\r
1279 if (OnGuarding) {\r
1280 GuardPage = 0;\r
1281 } else {\r
1282 GuardPage = Address - EFI_PAGE_SIZE;\r
1283 }\r
1284 OnGuarding = TRUE;\r
1285 } else {\r
1286 if (OnGuarding) {\r
1287 GuardPage = Address;\r
1288 } else {\r
1289 GuardPage = 0;\r
1290 }\r
1291 OnGuarding = FALSE;\r
1292 }\r
1293\r
1294 if (GuardPage != 0) {\r
1295 SetGuardPage (GuardPage);\r
1296 }\r
1297\r
1298 if (TableEntry == 0) {\r
1299 break;\r
1300 }\r
1301\r
1302 TableEntry = RShiftU64 (TableEntry, 1);\r
1303 Address += EFI_PAGE_SIZE;\r
1304 Index += 1;\r
1305 }\r
1306 }\r
1307 }\r
1308\r
1309 if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {\r
1310 break;\r
1311 }\r
1312\r
1313 Indices[Level] += 1;\r
1314 Address = (Level == 0) ? 0 : Addresses[Level - 1];\r
1315 Addresses[Level] = Address | LShiftU64(Indices[Level], Shifts[Level]);\r
1316\r
1317 }\r
1318}\r
1319\r
1320/**\r
1321 Hook function used to set all Guard pages after entering SMM mode.\r
1322**/\r
1323VOID\r
1324SmmEntryPointMemoryManagementHook (\r
1325 VOID\r
1326 )\r
1327{\r
1328 EFI_STATUS Status;\r
1329\r
1330 if (mSmmMemoryAttribute == NULL) {\r
1331 Status = SmmLocateProtocol (\r
1332 &gEdkiiSmmMemoryAttributeProtocolGuid,\r
1333 NULL,\r
1334 (VOID **)&mSmmMemoryAttribute\r
1335 );\r
1336 if (!EFI_ERROR(Status)) {\r
1337 SetAllGuardPages ();\r
1338 }\r
1339 }\r
1340}\r
1341\r
1342/**\r
1343 Helper function to convert a UINT64 value in binary to a string.\r
1344\r
1345 @param[in] Value Value of a UINT64 integer.\r
1346 @param[out] BinString String buffer to contain the conversion result.\r
1347\r
1348 @return VOID.\r
1349**/\r
1350VOID\r
1351Uint64ToBinString (\r
1352 IN UINT64 Value,\r
1353 OUT CHAR8 *BinString\r
1354 )\r
1355{\r
1356 UINTN Index;\r
1357\r
1358 if (BinString == NULL) {\r
1359 return;\r
1360 }\r
1361\r
1362 for (Index = 64; Index > 0; --Index) {\r
1363 BinString[Index - 1] = '0' + (Value & 1);\r
1364 Value = RShiftU64 (Value, 1);\r
1365 }\r
1366 BinString[64] = '\0';\r
1367}\r
1368\r
1369/**\r
1370 Dump the guarded memory bit map.\r
1371**/\r
1372VOID\r
1373EFIAPI\r
1374DumpGuardedMemoryBitmap (\r
1375 VOID\r
1376 )\r
1377{\r
1378 UINTN Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1379 UINTN Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1380 UINTN Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1381 UINT64 Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1382 UINT64 Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1383 UINT64 TableEntry;\r
1384 UINT64 Address;\r
1385 INTN Level;\r
1386 UINTN RepeatZero;\r
1387 CHAR8 String[GUARDED_HEAP_MAP_ENTRY_BITS + 1];\r
1388 CHAR8 *Ruler1;\r
1389 CHAR8 *Ruler2;\r
1390\r
c6c50165
JW
1391 if (mGuardedMemoryMap == 0 ||\r
1392 mMapLevel == 0 ||\r
1393 mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {\r
e63da9f0
JW
1394 return;\r
1395 }\r
1396\r
1397 Ruler1 = " 3 2 1 0";\r
1398 Ruler2 = "FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210";\r
1399\r
1400 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "============================="\r
1401 " Guarded Memory Bitmap "\r
1402 "==============================\r\n"));\r
1403 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, " %a\r\n", Ruler1));\r
1404 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, " %a\r\n", Ruler2));\r
1405\r
1406 CopyMem (Entries, mLevelMask, sizeof (Entries));\r
1407 CopyMem (Shifts, mLevelShift, sizeof (Shifts));\r
1408\r
1409 SetMem (Indices, sizeof(Indices), 0);\r
1410 SetMem (Tables, sizeof(Tables), 0);\r
1411 SetMem (Addresses, sizeof(Addresses), 0);\r
1412\r
1413 Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;\r
1414 Tables[Level] = mGuardedMemoryMap;\r
1415 Address = 0;\r
1416 RepeatZero = 0;\r
1417\r
1418 while (TRUE) {\r
1419 if (Indices[Level] > Entries[Level]) {\r
1420\r
1421 Tables[Level] = 0;\r
1422 Level -= 1;\r
1423 RepeatZero = 0;\r
1424\r
1425 DEBUG ((\r
1426 HEAP_GUARD_DEBUG_LEVEL,\r
1427 "========================================="\r
1428 "=========================================\r\n"\r
1429 ));\r
1430\r
1431 } else {\r
1432\r
1433 TableEntry = ((UINT64 *)(UINTN)Tables[Level])[Indices[Level]];\r
1434 Address = Addresses[Level];\r
1435\r
1436 if (TableEntry == 0) {\r
1437\r
1438 if (Level == GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {\r
1439 if (RepeatZero == 0) {\r
1440 Uint64ToBinString(TableEntry, String);\r
1441 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String));\r
1442 } else if (RepeatZero == 1) {\r
1443 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "... : ...\r\n"));\r
1444 }\r
1445 RepeatZero += 1;\r
1446 }\r
1447\r
1448 } else if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {\r
1449\r
1450 Level += 1;\r
1451 Tables[Level] = TableEntry;\r
1452 Addresses[Level] = Address;\r
1453 Indices[Level] = 0;\r
1454 RepeatZero = 0;\r
1455\r
1456 continue;\r
1457\r
1458 } else {\r
1459\r
1460 RepeatZero = 0;\r
1461 Uint64ToBinString(TableEntry, String);\r
1462 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String));\r
1463\r
1464 }\r
1465 }\r
1466\r
1467 if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {\r
1468 break;\r
1469 }\r
1470\r
1471 Indices[Level] += 1;\r
1472 Address = (Level == 0) ? 0 : Addresses[Level - 1];\r
1473 Addresses[Level] = Address | LShiftU64(Indices[Level], Shifts[Level]);\r
1474\r
1475 }\r
1476}\r
1477\r
1478/**\r
1479 Debug function used to verify if the Guard page is well set or not.\r
1480\r
1481 @param[in] BaseAddress Address of memory to check.\r
1482 @param[in] NumberOfPages Size of memory in pages.\r
1483\r
1484 @return TRUE The head Guard and tail Guard are both well set.\r
1485 @return FALSE The head Guard and/or tail Guard are not well set.\r
1486**/\r
1487BOOLEAN\r
1488VerifyMemoryGuard (\r
1489 IN EFI_PHYSICAL_ADDRESS BaseAddress,\r
1490 IN UINTN NumberOfPages\r
1491 )\r
1492{\r
1493 EFI_STATUS Status;\r
1494 UINT64 Attribute;\r
1495 EFI_PHYSICAL_ADDRESS Address;\r
1496\r
1497 if (mSmmMemoryAttribute == NULL) {\r
1498 return TRUE;\r
1499 }\r
1500\r
1501 Attribute = 0;\r
1502 Address = BaseAddress - EFI_PAGE_SIZE;\r
1503 Status = mSmmMemoryAttribute->GetMemoryAttributes (\r
1504 mSmmMemoryAttribute,\r
1505 Address,\r
1506 EFI_PAGE_SIZE,\r
1507 &Attribute\r
1508 );\r
1509 if (EFI_ERROR (Status) || (Attribute & EFI_MEMORY_RP) == 0) {\r
1510 DEBUG ((DEBUG_ERROR, "Head Guard is not set at: %016lx (%016lX)!!!\r\n",\r
1511 Address, Attribute));\r
1512 DumpGuardedMemoryBitmap ();\r
1513 return FALSE;\r
1514 }\r
1515\r
1516 Attribute = 0;\r
1517 Address = BaseAddress + EFI_PAGES_TO_SIZE (NumberOfPages);\r
1518 Status = mSmmMemoryAttribute->GetMemoryAttributes (\r
1519 mSmmMemoryAttribute,\r
1520 Address,\r
1521 EFI_PAGE_SIZE,\r
1522 &Attribute\r
1523 );\r
1524 if (EFI_ERROR (Status) || (Attribute & EFI_MEMORY_RP) == 0) {\r
1525 DEBUG ((DEBUG_ERROR, "Tail Guard is not set at: %016lx (%016lX)!!!\r\n",\r
1526 Address, Attribute));\r
1527 DumpGuardedMemoryBitmap ();\r
1528 return FALSE;\r
1529 }\r
1530\r
1531 return TRUE;\r
1532}\r
1533\r