Commit | Line | Data |
---|---|---|
36ff6d80 SB |
1 | /* Copyright 2013 Google Inc. All Rights Reserved.\r |
2 | \r | |
3 | Distributed under MIT license.\r | |
4 | See file LICENSE for detail or copy at https://opensource.org/licenses/MIT\r | |
5 | */\r | |
6 | \r | |
7 | /* Utilities for building Huffman decoding tables. */\r | |
8 | \r | |
9 | #include "./huffman.h"\r | |
10 | \r | |
841b2590 | 11 | //#include <string.h> /* memcpy, memset */\r |
36ff6d80 SB |
12 | \r |
13 | #include "../common/constants.h"\r | |
14 | #include "../common/types.h"\r | |
15 | #include "./port.h"\r | |
16 | \r | |
17 | #if defined(__cplusplus) || defined(c_plusplus)\r | |
18 | extern "C" {\r | |
19 | #endif\r | |
20 | \r | |
21 | #define BROTLI_REVERSE_BITS_MAX 8\r | |
22 | \r | |
23 | #ifdef BROTLI_RBIT\r | |
24 | #define BROTLI_REVERSE_BITS_BASE (32 - BROTLI_REVERSE_BITS_MAX)\r | |
25 | #else\r | |
26 | #define BROTLI_REVERSE_BITS_BASE 0\r | |
27 | static uint8_t kReverseBits[1 << BROTLI_REVERSE_BITS_MAX] = {\r | |
28 | 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0,\r | |
29 | 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,\r | |
30 | 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8,\r | |
31 | 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,\r | |
32 | 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4,\r | |
33 | 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,\r | |
34 | 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC,\r | |
35 | 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,\r | |
36 | 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2,\r | |
37 | 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,\r | |
38 | 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA,\r | |
39 | 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,\r | |
40 | 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6,\r | |
41 | 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,\r | |
42 | 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE,\r | |
43 | 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,\r | |
44 | 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1,\r | |
45 | 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,\r | |
46 | 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9,\r | |
47 | 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,\r | |
48 | 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5,\r | |
49 | 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,\r | |
50 | 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED,\r | |
51 | 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,\r | |
52 | 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3,\r | |
53 | 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,\r | |
54 | 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB,\r | |
55 | 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,\r | |
56 | 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7,\r | |
57 | 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,\r | |
58 | 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF,\r | |
59 | 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF\r | |
60 | };\r | |
61 | #endif /* BROTLI_RBIT */\r | |
62 | \r | |
63 | #define BROTLI_REVERSE_BITS_LOWEST \\r | |
64 | (1U << (BROTLI_REVERSE_BITS_MAX - 1 + BROTLI_REVERSE_BITS_BASE))\r | |
65 | \r | |
66 | /* Returns reverse(num >> BROTLI_REVERSE_BITS_BASE, BROTLI_REVERSE_BITS_MAX),\r | |
67 | where reverse(value, len) is the bit-wise reversal of the len least\r | |
68 | significant bits of value. */\r | |
69 | static BROTLI_INLINE uint32_t BrotliReverseBits(uint32_t num) {\r | |
70 | #ifdef BROTLI_RBIT\r | |
71 | return BROTLI_RBIT(num);\r | |
72 | #else\r | |
73 | return kReverseBits[num];\r | |
74 | #endif\r | |
75 | }\r | |
76 | \r | |
77 | /* Stores code in table[0], table[step], table[2*step], ..., table[end] */\r | |
78 | /* Assumes that end is an integer multiple of step */\r | |
79 | static BROTLI_INLINE void ReplicateValue(HuffmanCode* table,\r | |
80 | int step, int end,\r | |
81 | HuffmanCode code) {\r | |
82 | do {\r | |
83 | end -= step;\r | |
84 | table[end] = code;\r | |
85 | } while (end > 0);\r | |
86 | }\r | |
87 | \r | |
88 | /* Returns the table width of the next 2nd level table. count is the histogram\r | |
89 | of bit lengths for the remaining symbols, len is the code length of the next\r | |
90 | processed symbol */\r | |
91 | static BROTLI_INLINE int NextTableBitSize(const uint16_t* const count,\r | |
92 | int len, int root_bits) {\r | |
93 | int left = 1 << (len - root_bits);\r | |
94 | while (len < BROTLI_HUFFMAN_MAX_CODE_LENGTH) {\r | |
95 | left -= count[len];\r | |
96 | if (left <= 0) break;\r | |
97 | ++len;\r | |
98 | left <<= 1;\r | |
99 | }\r | |
100 | return len - root_bits;\r | |
101 | }\r | |
102 | \r | |
103 | void BrotliBuildCodeLengthsHuffmanTable(HuffmanCode* table,\r | |
104 | const uint8_t* const code_lengths,\r | |
105 | uint16_t* count) {\r | |
106 | HuffmanCode code; /* current table entry */\r | |
107 | int symbol; /* symbol index in original or sorted table */\r | |
108 | uint32_t key; /* prefix code */\r | |
109 | uint32_t key_step; /* prefix code addend */\r | |
110 | int step; /* step size to replicate values in current table */\r | |
111 | int table_size; /* size of current table */\r | |
112 | int sorted[BROTLI_CODE_LENGTH_CODES]; /* symbols sorted by code length */\r | |
113 | /* offsets in sorted table for each length */\r | |
114 | int offset[BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH + 1];\r | |
115 | int bits;\r | |
116 | int bits_count;\r | |
117 | BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH <=\r | |
118 | BROTLI_REVERSE_BITS_MAX);\r | |
119 | \r | |
120 | /* generate offsets into sorted symbol table by code length */\r | |
121 | symbol = -1;\r | |
122 | bits = 1;\r | |
123 | BROTLI_REPEAT(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH, {\r | |
124 | symbol += count[bits];\r | |
125 | offset[bits] = symbol;\r | |
126 | bits++;\r | |
127 | });\r | |
128 | /* Symbols with code length 0 are placed after all other symbols. */\r | |
129 | offset[0] = BROTLI_CODE_LENGTH_CODES - 1;\r | |
130 | \r | |
131 | /* sort symbols by length, by symbol order within each length */\r | |
132 | symbol = BROTLI_CODE_LENGTH_CODES;\r | |
133 | do {\r | |
134 | BROTLI_REPEAT(6, {\r | |
135 | symbol--;\r | |
136 | sorted[offset[code_lengths[symbol]]--] = symbol;\r | |
137 | });\r | |
138 | } while (symbol != 0);\r | |
139 | \r | |
140 | table_size = 1 << BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH;\r | |
141 | \r | |
142 | /* Special case: all symbols but one have 0 code length. */\r | |
143 | if (offset[0] == 0) {\r | |
144 | code.bits = 0;\r | |
145 | code.value = (uint16_t)sorted[0];\r | |
146 | for (key = 0; key < (uint32_t)table_size; ++key) {\r | |
147 | table[key] = code;\r | |
148 | }\r | |
149 | return;\r | |
150 | }\r | |
151 | \r | |
152 | /* fill in table */\r | |
153 | key = 0;\r | |
154 | key_step = BROTLI_REVERSE_BITS_LOWEST;\r | |
155 | symbol = 0;\r | |
156 | bits = 1;\r | |
157 | step = 2;\r | |
158 | do {\r | |
159 | code.bits = (uint8_t)bits;\r | |
160 | for (bits_count = count[bits]; bits_count != 0; --bits_count) {\r | |
161 | code.value = (uint16_t)sorted[symbol++];\r | |
162 | ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code);\r | |
163 | key += key_step;\r | |
164 | }\r | |
165 | step <<= 1;\r | |
166 | key_step >>= 1;\r | |
167 | } while (++bits <= BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH);\r | |
168 | }\r | |
169 | \r | |
170 | uint32_t BrotliBuildHuffmanTable(HuffmanCode* root_table,\r | |
171 | int root_bits,\r | |
172 | const uint16_t* const symbol_lists,\r | |
173 | uint16_t* count) {\r | |
174 | HuffmanCode code; /* current table entry */\r | |
175 | HuffmanCode* table; /* next available space in table */\r | |
176 | int len; /* current code length */\r | |
177 | int symbol; /* symbol index in original or sorted table */\r | |
178 | uint32_t key; /* prefix code */\r | |
179 | uint32_t key_step; /* prefix code addend */\r | |
180 | uint32_t sub_key; /* 2nd level table prefix code */\r | |
181 | uint32_t sub_key_step; /* 2nd level table prefix code addend */\r | |
182 | int step; /* step size to replicate values in current table */\r | |
183 | int table_bits; /* key length of current table */\r | |
184 | int table_size; /* size of current table */\r | |
185 | int total_size; /* sum of root table size and 2nd level table sizes */\r | |
186 | int max_length = -1;\r | |
187 | int bits;\r | |
188 | int bits_count;\r | |
189 | \r | |
190 | BROTLI_DCHECK(root_bits <= BROTLI_REVERSE_BITS_MAX);\r | |
191 | BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH - root_bits <=\r | |
192 | BROTLI_REVERSE_BITS_MAX);\r | |
193 | \r | |
194 | while (symbol_lists[max_length] == 0xFFFF) max_length--;\r | |
195 | max_length += BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1;\r | |
196 | \r | |
197 | table = root_table;\r | |
198 | table_bits = root_bits;\r | |
199 | table_size = 1 << table_bits;\r | |
200 | total_size = table_size;\r | |
201 | \r | |
202 | /* fill in root table */\r | |
203 | /* let's reduce the table size to a smaller size if possible, and */\r | |
204 | /* create the repetitions by memcpy if possible in the coming loop */\r | |
205 | if (table_bits > max_length) {\r | |
206 | table_bits = max_length;\r | |
207 | table_size = 1 << table_bits;\r | |
208 | }\r | |
209 | key = 0;\r | |
210 | key_step = BROTLI_REVERSE_BITS_LOWEST;\r | |
211 | bits = 1;\r | |
212 | step = 2;\r | |
213 | do {\r | |
214 | code.bits = (uint8_t)bits;\r | |
215 | symbol = bits - (BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1);\r | |
216 | for (bits_count = count[bits]; bits_count != 0; --bits_count) {\r | |
217 | symbol = symbol_lists[symbol];\r | |
218 | code.value = (uint16_t)symbol;\r | |
219 | ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code);\r | |
220 | key += key_step;\r | |
221 | }\r | |
222 | step <<= 1;\r | |
223 | key_step >>= 1;\r | |
224 | } while (++bits <= table_bits);\r | |
225 | \r | |
226 | /* if root_bits != table_bits we only created one fraction of the */\r | |
227 | /* table, and we need to replicate it now. */\r | |
228 | while (total_size != table_size) {\r | |
229 | memcpy(&table[table_size], &table[0],\r | |
230 | (size_t)table_size * sizeof(table[0]));\r | |
231 | table_size <<= 1;\r | |
232 | }\r | |
233 | \r | |
234 | /* fill in 2nd level tables and add pointers to root table */\r | |
235 | key_step = BROTLI_REVERSE_BITS_LOWEST >> (root_bits - 1);\r | |
236 | sub_key = (BROTLI_REVERSE_BITS_LOWEST << 1);\r | |
237 | sub_key_step = BROTLI_REVERSE_BITS_LOWEST;\r | |
238 | for (len = root_bits + 1, step = 2; len <= max_length; ++len) {\r | |
239 | symbol = len - (BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1);\r | |
240 | for (; count[len] != 0; --count[len]) {\r | |
241 | if (sub_key == (BROTLI_REVERSE_BITS_LOWEST << 1U)) {\r | |
242 | table += table_size;\r | |
243 | table_bits = NextTableBitSize(count, len, root_bits);\r | |
244 | table_size = 1 << table_bits;\r | |
245 | total_size += table_size;\r | |
246 | sub_key = BrotliReverseBits(key);\r | |
247 | key += key_step;\r | |
248 | root_table[sub_key].bits = (uint8_t)(table_bits + root_bits);\r | |
249 | root_table[sub_key].value =\r | |
250 | (uint16_t)(((size_t)(table - root_table)) - sub_key);\r | |
251 | sub_key = 0;\r | |
252 | }\r | |
253 | code.bits = (uint8_t)(len - root_bits);\r | |
254 | symbol = symbol_lists[symbol];\r | |
255 | code.value = (uint16_t)symbol;\r | |
256 | ReplicateValue(\r | |
257 | &table[BrotliReverseBits(sub_key)], step, table_size, code);\r | |
258 | sub_key += sub_key_step;\r | |
259 | }\r | |
260 | step <<= 1;\r | |
261 | sub_key_step >>= 1;\r | |
262 | }\r | |
263 | return (uint32_t)total_size;\r | |
264 | }\r | |
265 | \r | |
266 | uint32_t BrotliBuildSimpleHuffmanTable(HuffmanCode* table,\r | |
267 | int root_bits,\r | |
268 | uint16_t* val,\r | |
269 | uint32_t num_symbols) {\r | |
270 | uint32_t table_size = 1;\r | |
271 | const uint32_t goal_size = 1U << root_bits;\r | |
272 | switch (num_symbols) {\r | |
273 | case 0:\r | |
274 | table[0].bits = 0;\r | |
275 | table[0].value = val[0];\r | |
276 | break;\r | |
277 | case 1:\r | |
278 | table[0].bits = 1;\r | |
279 | table[1].bits = 1;\r | |
280 | if (val[1] > val[0]) {\r | |
281 | table[0].value = val[0];\r | |
282 | table[1].value = val[1];\r | |
283 | } else {\r | |
284 | table[0].value = val[1];\r | |
285 | table[1].value = val[0];\r | |
286 | }\r | |
287 | table_size = 2;\r | |
288 | break;\r | |
289 | case 2:\r | |
290 | table[0].bits = 1;\r | |
291 | table[0].value = val[0];\r | |
292 | table[2].bits = 1;\r | |
293 | table[2].value = val[0];\r | |
294 | if (val[2] > val[1]) {\r | |
295 | table[1].value = val[1];\r | |
296 | table[3].value = val[2];\r | |
297 | } else {\r | |
298 | table[1].value = val[2];\r | |
299 | table[3].value = val[1];\r | |
300 | }\r | |
301 | table[1].bits = 2;\r | |
302 | table[3].bits = 2;\r | |
303 | table_size = 4;\r | |
304 | break;\r | |
305 | case 3: {\r | |
306 | int i, k;\r | |
307 | for (i = 0; i < 3; ++i) {\r | |
308 | for (k = i + 1; k < 4; ++k) {\r | |
309 | if (val[k] < val[i]) {\r | |
310 | uint16_t t = val[k];\r | |
311 | val[k] = val[i];\r | |
312 | val[i] = t;\r | |
313 | }\r | |
314 | }\r | |
315 | }\r | |
316 | for (i = 0; i < 4; ++i) {\r | |
317 | table[i].bits = 2;\r | |
318 | }\r | |
319 | table[0].value = val[0];\r | |
320 | table[2].value = val[1];\r | |
321 | table[1].value = val[2];\r | |
322 | table[3].value = val[3];\r | |
323 | table_size = 4;\r | |
324 | break;\r | |
325 | }\r | |
326 | case 4: {\r | |
327 | int i;\r | |
328 | if (val[3] < val[2]) {\r | |
329 | uint16_t t = val[3];\r | |
330 | val[3] = val[2];\r | |
331 | val[2] = t;\r | |
332 | }\r | |
333 | for (i = 0; i < 7; ++i) {\r | |
334 | table[i].value = val[0];\r | |
335 | table[i].bits = (uint8_t)(1 + (i & 1));\r | |
336 | }\r | |
337 | table[1].value = val[1];\r | |
338 | table[3].value = val[2];\r | |
339 | table[5].value = val[1];\r | |
340 | table[7].value = val[3];\r | |
341 | table[3].bits = 3;\r | |
342 | table[7].bits = 3;\r | |
343 | table_size = 8;\r | |
344 | break;\r | |
345 | }\r | |
346 | }\r | |
347 | while (table_size != goal_size) {\r | |
348 | memcpy(&table[table_size], &table[0],\r | |
349 | (size_t)table_size * sizeof(table[0]));\r | |
350 | table_size <<= 1;\r | |
351 | }\r | |
352 | return goal_size;\r | |
353 | }\r | |
354 | \r | |
355 | #if defined(__cplusplus) || defined(c_plusplus)\r | |
356 | } /* extern "C" */\r | |
357 | #endif\r |