]> git.proxmox.com Git - mirror_edk2.git/blame - MdeModulePkg/Universal/EbcDxe/Ipf/EbcSupport.c
MdeModulePkg/EbcDxe: use EfiBootServicesCode memory for thunks
[mirror_edk2.git] / MdeModulePkg / Universal / EbcDxe / Ipf / EbcSupport.c
CommitLineData
fb0b259e 1/** @file\r
53c71d09 2 This module contains EBC support routines that are customized based on\r
3 the target processor.\r
4\r
3bbe68a3 5Copyright (c) 2006 - 2012, Intel Corporation. All rights reserved.<BR>\r
e5eed7d3 6This program and the accompanying materials\r
fb0b259e 7are licensed and made available under the terms and conditions of the BSD License\r
8which accompanies this distribution. The full text of the license may be found at\r
9http://opensource.org/licenses/bsd-license.php\r
10\r
11THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
12WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
13\r
14**/\r
53c71d09 15\r
16#include "EbcInt.h"\r
17#include "EbcExecute.h"\r
18#include "EbcSupport.h"\r
6f0a3cd2 19#include "EbcDebuggerHook.h"\r
53c71d09 20\r
8e3bc754 21/**\r
22 Given raw bytes of Itanium based code, format them into a bundle and\r
23 write them out.\r
24\r
25 @param MemPtr pointer to memory location to write the bundles\r
26 to.\r
27 @param Template 5-bit template.\r
28 @param Slot0 Instruction slot 0 data for the bundle.\r
29 @param Slot1 Instruction slot 1 data for the bundle.\r
30 @param Slot2 Instruction slot 2 data for the bundle.\r
31\r
32 @retval EFI_INVALID_PARAMETER Pointer is not aligned\r
33 @retval EFI_INVALID_PARAMETER No more than 5 bits in template\r
34 @retval EFI_INVALID_PARAMETER More than 41 bits used in code\r
35 @retval EFI_SUCCESS All data is written.\r
36\r
37**/\r
53c71d09 38EFI_STATUS\r
39WriteBundle (\r
40 IN VOID *MemPtr,\r
41 IN UINT8 Template,\r
42 IN UINT64 Slot0,\r
43 IN UINT64 Slot1,\r
44 IN UINT64 Slot2\r
45 );\r
46\r
8e3bc754 47/**\r
48 Pushes a 64 bit unsigned value to the VM stack.\r
49\r
50 @param VmPtr The pointer to current VM context.\r
51 @param Arg The value to be pushed.\r
52\r
53**/\r
53c71d09 54VOID\r
55PushU64 (\r
8e3bc754 56 IN VM_CONTEXT *VmPtr,\r
57 IN UINT64 Arg\r
53c71d09 58 )\r
59{\r
60 //\r
61 // Advance the VM stack down, and then copy the argument to the stack.\r
62 // Hope it's aligned.\r
63 //\r
1ccdbf2a 64 VmPtr->Gpr[0] -= sizeof (UINT64);\r
65 *(UINT64 *) VmPtr->Gpr[0] = Arg;\r
53c71d09 66}\r
67\r
8e3bc754 68/**\r
69 Begin executing an EBC image. The address of the entry point is passed\r
70 in via a processor register, so we'll need to make a call to get the\r
71 value.\r
72\r
73 This is a thunk function. Microsoft x64 compiler only provide fast_call\r
74 calling convention, so the first four arguments are passed by rcx, rdx,\r
75 r8, and r9, while other arguments are passed in stack.\r
76\r
77 @param Arg1 The 1st argument.\r
78 @param ... The variable arguments list.\r
79\r
80 @return The value returned by the EBC application we're going to run.\r
81\r
82**/\r
53c71d09 83UINT64\r
8091267c 84EFIAPI\r
53c71d09 85EbcInterpret (\r
86 UINT64 Arg1,\r
87 ...\r
88 )\r
89{\r
90 //\r
91 // Create a new VM context on the stack\r
92 //\r
93 VM_CONTEXT VmContext;\r
94 UINTN Addr;\r
95 EFI_STATUS Status;\r
96 UINTN StackIndex;\r
97 VA_LIST List;\r
98 UINT64 Arg2;\r
99 UINT64 Arg3;\r
100 UINT64 Arg4;\r
101 UINT64 Arg5;\r
102 UINT64 Arg6;\r
103 UINT64 Arg7;\r
104 UINT64 Arg8;\r
105 UINT64 Arg9;\r
106 UINT64 Arg10;\r
107 UINT64 Arg11;\r
108 UINT64 Arg12;\r
109 UINT64 Arg13;\r
110 UINT64 Arg14;\r
111 UINT64 Arg15;\r
112 UINT64 Arg16;\r
113 //\r
114 // Get the EBC entry point from the processor register. Make sure you don't\r
115 // call any functions before this or you could mess up the register the\r
116 // entry point is passed in.\r
117 //\r
118 Addr = EbcLLGetEbcEntryPoint ();\r
119 //\r
120 // Need the args off the stack.\r
121 //\r
122 VA_START (List, Arg1);\r
123 Arg2 = VA_ARG (List, UINT64);\r
124 Arg3 = VA_ARG (List, UINT64);\r
125 Arg4 = VA_ARG (List, UINT64);\r
126 Arg5 = VA_ARG (List, UINT64);\r
127 Arg6 = VA_ARG (List, UINT64);\r
128 Arg7 = VA_ARG (List, UINT64);\r
129 Arg8 = VA_ARG (List, UINT64);\r
130 Arg9 = VA_ARG (List, UINT64);\r
131 Arg10 = VA_ARG (List, UINT64);\r
132 Arg11 = VA_ARG (List, UINT64);\r
133 Arg12 = VA_ARG (List, UINT64);\r
134 Arg13 = VA_ARG (List, UINT64);\r
135 Arg14 = VA_ARG (List, UINT64);\r
136 Arg15 = VA_ARG (List, UINT64);\r
137 Arg16 = VA_ARG (List, UINT64);\r
3bbe68a3 138 VA_END (List);\r
53c71d09 139 //\r
140 // Now clear out our context\r
141 //\r
142 ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));\r
143 //\r
144 // Set the VM instruction pointer to the correct location in memory.\r
145 //\r
146 VmContext.Ip = (VMIP) Addr;\r
147 //\r
148 // Initialize the stack pointer for the EBC. Get the current system stack\r
149 // pointer and adjust it down by the max needed for the interpreter.\r
150 //\r
151 //\r
152 // NOTE: Eventually we should have the interpreter allocate memory\r
153 // for stack space which it will use during its execution. This\r
154 // would likely improve performance because the interpreter would\r
155 // no longer be required to test each memory access and adjust\r
156 // those reading from the stack gap.\r
157 //\r
158 // For IPF, the stack looks like (assuming 10 args passed)\r
159 // arg10\r
160 // arg9 (Bottom of high stack)\r
161 // [ stack gap for interpreter execution ]\r
162 // [ magic value for detection of stack corruption ]\r
163 // arg8 (Top of low stack)\r
164 // arg7....\r
165 // arg1\r
166 // [ 64-bit return address ]\r
167 // [ ebc stack ]\r
168 // If the EBC accesses memory in the stack gap, then we assume that it's\r
169 // actually trying to access args9 and greater. Therefore we need to\r
170 // adjust memory accesses in this region to point above the stack gap.\r
171 //\r
172 //\r
173 // Now adjust the EBC stack pointer down to leave a gap for interpreter\r
174 // execution. Then stuff a magic value there.\r
175 //\r
fb0b259e 176\r
53c71d09 177 Status = GetEBCStack((EFI_HANDLE)(UINTN)-1, &VmContext.StackPool, &StackIndex);\r
178 if (EFI_ERROR(Status)) {\r
179 return Status;\r
180 }\r
181 VmContext.StackTop = (UINT8*)VmContext.StackPool + (STACK_REMAIN_SIZE);\r
1ccdbf2a 182 VmContext.Gpr[0] = (UINT64) ((UINT8*)VmContext.StackPool + STACK_POOL_SIZE);\r
183 VmContext.HighStackBottom = (UINTN) VmContext.Gpr[0];\r
184 VmContext.Gpr[0] -= sizeof (UINTN);\r
53c71d09 185\r
fb0b259e 186\r
53c71d09 187 PushU64 (&VmContext, (UINT64) VM_STACK_KEY_VALUE);\r
1ccdbf2a 188 VmContext.StackMagicPtr = (UINTN *) VmContext.Gpr[0];\r
189 VmContext.LowStackTop = (UINTN) VmContext.Gpr[0];\r
53c71d09 190 //\r
191 // Push the EBC arguments on the stack. Does not matter that they may not\r
192 // all be valid.\r
193 //\r
194 PushU64 (&VmContext, Arg16);\r
195 PushU64 (&VmContext, Arg15);\r
196 PushU64 (&VmContext, Arg14);\r
197 PushU64 (&VmContext, Arg13);\r
198 PushU64 (&VmContext, Arg12);\r
199 PushU64 (&VmContext, Arg11);\r
200 PushU64 (&VmContext, Arg10);\r
201 PushU64 (&VmContext, Arg9);\r
202 PushU64 (&VmContext, Arg8);\r
203 PushU64 (&VmContext, Arg7);\r
204 PushU64 (&VmContext, Arg6);\r
205 PushU64 (&VmContext, Arg5);\r
206 PushU64 (&VmContext, Arg4);\r
207 PushU64 (&VmContext, Arg3);\r
208 PushU64 (&VmContext, Arg2);\r
209 PushU64 (&VmContext, Arg1);\r
210 //\r
211 // Push a bogus return address on the EBC stack because the\r
212 // interpreter expects one there. For stack alignment purposes on IPF,\r
213 // EBC return addresses are always 16 bytes. Push a bogus value as well.\r
214 //\r
215 PushU64 (&VmContext, 0);\r
216 PushU64 (&VmContext, 0xDEADBEEFDEADBEEF);\r
1ccdbf2a 217 VmContext.StackRetAddr = (UINT64) VmContext.Gpr[0];\r
6f0a3cd2 218\r
53c71d09 219 //\r
220 // Begin executing the EBC code\r
221 //\r
6f0a3cd2 222 EbcDebuggerHookEbcInterpret (&VmContext);\r
53c71d09 223 EbcExecute (&VmContext);\r
6f0a3cd2 224\r
53c71d09 225 //\r
6f0a3cd2 226 // Return the value in Gpr[7] unless there was an error\r
53c71d09 227 //\r
228 ReturnEBCStack(StackIndex);\r
1ccdbf2a 229 return (UINT64) VmContext.Gpr[7];\r
53c71d09 230}\r
231\r
53c71d09 232\r
fb0b259e 233/**\r
53c71d09 234 Begin executing an EBC image. The address of the entry point is passed\r
235 in via a processor register, so we'll need to make a call to get the\r
236 value.\r
53c71d09 237\r
8e3bc754 238 @param ImageHandle image handle for the EBC application we're executing\r
239 @param SystemTable standard system table passed into an driver's entry\r
240 point\r
53c71d09 241\r
fb0b259e 242 @return The value returned by the EBC application we're going to run.\r
53c71d09 243\r
fb0b259e 244**/\r
fb0b259e 245UINT64\r
fa97cbf4 246EFIAPI\r
fb0b259e 247ExecuteEbcImageEntryPoint (\r
248 IN EFI_HANDLE ImageHandle,\r
249 IN EFI_SYSTEM_TABLE *SystemTable\r
250 )\r
53c71d09 251{\r
252 //\r
253 // Create a new VM context on the stack\r
254 //\r
255 VM_CONTEXT VmContext;\r
256 UINTN Addr;\r
257 EFI_STATUS Status;\r
258 UINTN StackIndex;\r
259\r
260 //\r
261 // Get the EBC entry point from the processor register. Make sure you don't\r
262 // call any functions before this or you could mess up the register the\r
263 // entry point is passed in.\r
264 //\r
265 Addr = EbcLLGetEbcEntryPoint ();\r
266\r
267 //\r
268 // Now clear out our context\r
269 //\r
270 ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));\r
271\r
272 //\r
273 // Save the image handle so we can track the thunks created for this image\r
274 //\r
275 VmContext.ImageHandle = ImageHandle;\r
276 VmContext.SystemTable = SystemTable;\r
277\r
278 //\r
279 // Set the VM instruction pointer to the correct location in memory.\r
280 //\r
281 VmContext.Ip = (VMIP) Addr;\r
282\r
283 //\r
284 // Get the stack pointer. This is the bottom of the upper stack.\r
285 //\r
fb0b259e 286\r
53c71d09 287 Status = GetEBCStack(ImageHandle, &VmContext.StackPool, &StackIndex);\r
288 if (EFI_ERROR(Status)) {\r
289 return Status;\r
290 }\r
291 VmContext.StackTop = (UINT8*)VmContext.StackPool + (STACK_REMAIN_SIZE);\r
1ccdbf2a 292 VmContext.Gpr[0] = (UINT64) ((UINT8*)VmContext.StackPool + STACK_POOL_SIZE);\r
293 VmContext.HighStackBottom = (UINTN) VmContext.Gpr[0];\r
294 VmContext.Gpr[0] -= sizeof (UINTN);\r
53c71d09 295\r
fb0b259e 296\r
53c71d09 297 //\r
298 // Allocate stack space for the interpreter. Then put a magic value\r
299 // at the bottom so we can detect stack corruption.\r
300 //\r
301 PushU64 (&VmContext, (UINT64) VM_STACK_KEY_VALUE);\r
1ccdbf2a 302 VmContext.StackMagicPtr = (UINTN *) (UINTN) VmContext.Gpr[0];\r
53c71d09 303\r
304 //\r
305 // When we thunk to external native code, we copy the last 8 qwords from\r
306 // the EBC stack into the processor registers, and adjust the stack pointer\r
307 // up. If the caller is not passing 8 parameters, then we've moved the\r
308 // stack pointer up into the stack gap. If this happens, then the caller\r
309 // can mess up the stack gap contents (in particular our magic value).\r
310 // Therefore, leave another gap below the magic value. Pick 10 qwords down,\r
311 // just as a starting point.\r
312 //\r
1ccdbf2a 313 VmContext.Gpr[0] -= 10 * sizeof (UINT64);\r
53c71d09 314\r
315 //\r
316 // Align the stack pointer such that after pushing the system table,\r
317 // image handle, and return address on the stack, it's aligned on a 16-byte\r
318 // boundary as required for IPF.\r
319 //\r
1ccdbf2a 320 VmContext.Gpr[0] &= (INT64)~0x0f;\r
321 VmContext.LowStackTop = (UINTN) VmContext.Gpr[0];\r
53c71d09 322 //\r
323 // Simply copy the image handle and system table onto the EBC stack.\r
324 // Greatly simplifies things by not having to spill the args\r
325 //\r
326 PushU64 (&VmContext, (UINT64) SystemTable);\r
327 PushU64 (&VmContext, (UINT64) ImageHandle);\r
328\r
329 //\r
330 // Interpreter assumes 64-bit return address is pushed on the stack.\r
331 // IPF does not do this so pad the stack accordingly. Also, a\r
332 // "return address" is 16 bytes as required for IPF stack alignments.\r
333 //\r
334 PushU64 (&VmContext, (UINT64) 0);\r
335 PushU64 (&VmContext, (UINT64) 0x1234567887654321);\r
1ccdbf2a 336 VmContext.StackRetAddr = (UINT64) VmContext.Gpr[0];\r
53c71d09 337\r
338 //\r
339 // Begin executing the EBC code\r
340 //\r
6f0a3cd2 341 EbcDebuggerHookExecuteEbcImageEntryPoint (&VmContext);\r
53c71d09 342 EbcExecute (&VmContext);\r
343\r
344 //\r
6f0a3cd2 345 // Return the value in Gpr[7] unless there was an error\r
53c71d09 346 //\r
347 ReturnEBCStack(StackIndex);\r
1ccdbf2a 348 return (UINT64) VmContext.Gpr[7];\r
53c71d09 349}\r
350\r
fb0b259e 351\r
352/**\r
353 Create thunks for an EBC image entry point, or an EBC protocol service.\r
354\r
8e3bc754 355 @param ImageHandle Image handle for the EBC image. If not null, then\r
356 we're creating a thunk for an image entry point.\r
357 @param EbcEntryPoint Address of the EBC code that the thunk is to call\r
358 @param Thunk Returned thunk we create here\r
359 @param Flags Flags indicating options for creating the thunk\r
fb0b259e 360\r
8e3bc754 361 @retval EFI_SUCCESS The thunk was created successfully.\r
362 @retval EFI_INVALID_PARAMETER The parameter of EbcEntryPoint is not 16-bit\r
363 aligned.\r
364 @retval EFI_OUT_OF_RESOURCES There is not enough memory to created the EBC\r
365 Thunk.\r
366 @retval EFI_BUFFER_TOO_SMALL EBC_THUNK_SIZE is not larger enough.\r
fb0b259e 367\r
368**/\r
53c71d09 369EFI_STATUS\r
370EbcCreateThunks (\r
f45af90b 371 IN EFI_HANDLE ImageHandle,\r
372 IN VOID *EbcEntryPoint,\r
373 OUT VOID **Thunk,\r
374 IN UINT32 Flags\r
53c71d09 375 )\r
53c71d09 376{\r
377 UINT8 *Ptr;\r
378 UINT8 *ThunkBase;\r
379 UINT64 Addr;\r
380 UINT64 Code[3]; // Code in a bundle\r
381 UINT64 RegNum; // register number for MOVL\r
8e3bc754 382 UINT64 BitI; // bits of MOVL immediate data\r
383 UINT64 BitIc; // bits of MOVL immediate data\r
384 UINT64 BitImm5c; // bits of MOVL immediate data\r
385 UINT64 BitImm9d; // bits of MOVL immediate data\r
386 UINT64 BitImm7b; // bits of MOVL immediate data\r
53c71d09 387 UINT64 Br; // branch register for loading and jumping\r
388 UINT64 *Data64Ptr;\r
389 UINT32 ThunkSize;\r
390 UINT32 Size;\r
391\r
392 //\r
393 // Check alignment of pointer to EBC code, which must always be aligned\r
394 // on a 2-byte boundary.\r
395 //\r
396 if ((UINT32) (UINTN) EbcEntryPoint & 0x01) {\r
397 return EFI_INVALID_PARAMETER;\r
398 }\r
399 //\r
400 // Allocate memory for the thunk. Make the (most likely incorrect) assumption\r
401 // that the returned buffer is not aligned, so round up to the next\r
402 // alignment size.\r
403 //\r
404 Size = EBC_THUNK_SIZE + EBC_THUNK_ALIGNMENT - 1;\r
405 ThunkSize = Size;\r
16dc5b68 406 Ptr = EbcAllocatePoolForThunk (Size);\r
53c71d09 407\r
408 if (Ptr == NULL) {\r
409 return EFI_OUT_OF_RESOURCES;\r
410 }\r
411 //\r
412 // Save the start address of the buffer.\r
413 //\r
414 ThunkBase = Ptr;\r
415\r
416 //\r
417 // Make sure it's aligned for code execution. If not, then\r
418 // round up.\r
419 //\r
420 if ((UINT32) (UINTN) Ptr & (EBC_THUNK_ALIGNMENT - 1)) {\r
421 Ptr = (UINT8 *) (((UINTN) Ptr + (EBC_THUNK_ALIGNMENT - 1)) &~ (UINT64) (EBC_THUNK_ALIGNMENT - 1));\r
422 }\r
423 //\r
424 // Return the pointer to the thunk to the caller to user as the\r
425 // image entry point.\r
426 //\r
427 *Thunk = (VOID *) Ptr;\r
428\r
429 //\r
430 // Clear out the thunk entry\r
431 // ZeroMem(Ptr, Size);\r
432 //\r
433 // For IPF, when you do a call via a function pointer, the function pointer\r
434 // actually points to a function descriptor which consists of a 64-bit\r
435 // address of the function, followed by a 64-bit gp for the function being\r
436 // called. See the the Software Conventions and Runtime Architecture Guide\r
437 // for details.\r
438 // So first off in our thunk, create a descriptor for our actual thunk code.\r
439 // This means we need to create a pointer to the thunk code (which follows\r
440 // the descriptor we're going to create), followed by the gp of the Vm\r
441 // interpret function we're going to eventually execute.\r
442 //\r
443 Data64Ptr = (UINT64 *) Ptr;\r
444\r
445 //\r
446 // Write the function's entry point (which is our thunk code that follows\r
447 // this descriptor we're creating).\r
448 //\r
449 *Data64Ptr = (UINT64) (Data64Ptr + 2);\r
450 //\r
451 // Get the gp from the descriptor for EbcInterpret and stuff it in our thunk\r
452 // descriptor.\r
453 //\r
454 *(Data64Ptr + 1) = *(UINT64 *) ((UINT64 *) (UINTN) EbcInterpret + 1);\r
455 //\r
456 // Advance our thunk data pointer past the descriptor. Since the\r
457 // descriptor consists of 16 bytes, the pointer is still aligned for\r
458 // IPF code execution (on 16-byte boundary).\r
459 //\r
460 Ptr += sizeof (UINT64) * 2;\r
461\r
462 //\r
463 // *************************** MAGIC BUNDLE ********************************\r
464 //\r
465 // Write magic code bundle for: movl r8 = 0xca112ebcca112ebc to help the VM\r
466 // to recognize it is a thunk.\r
467 //\r
468 Addr = (UINT64) 0xCA112EBCCA112EBC;\r
469\r
470 //\r
471 // Now generate the code bytes. First is nop.m 0x0\r
472 //\r
473 Code[0] = OPCODE_NOP;\r
474\r
475 //\r
476 // Next is simply Addr[62:22] (41 bits) of the address\r
477 //\r
478 Code[1] = RShiftU64 (Addr, 22) & 0x1ffffffffff;\r
479\r
480 //\r
481 // Extract bits from the address for insertion into the instruction\r
482 // i = Addr[63:63]\r
483 //\r
8e3bc754 484 BitI = RShiftU64 (Addr, 63) & 0x01;\r
53c71d09 485 //\r
486 // ic = Addr[21:21]\r
487 //\r
8e3bc754 488 BitIc = RShiftU64 (Addr, 21) & 0x01;\r
53c71d09 489 //\r
490 // imm5c = Addr[20:16] for 5 bits\r
491 //\r
8e3bc754 492 BitImm5c = RShiftU64 (Addr, 16) & 0x1F;\r
53c71d09 493 //\r
494 // imm9d = Addr[15:7] for 9 bits\r
495 //\r
8e3bc754 496 BitImm9d = RShiftU64 (Addr, 7) & 0x1FF;\r
53c71d09 497 //\r
498 // imm7b = Addr[6:0] for 7 bits\r
499 //\r
8e3bc754 500 BitImm7b = Addr & 0x7F;\r
53c71d09 501\r
502 //\r
503 // The EBC entry point will be put into r8, so r8 can be used here\r
504 // temporary. R8 is general register and is auto-serialized.\r
505 //\r
506 RegNum = 8;\r
507\r
508 //\r
509 // Next is jumbled data, including opcode and rest of address\r
510 //\r
8e3bc754 511 Code[2] = LShiftU64 (BitImm7b, 13);\r
53c71d09 512 Code[2] = Code[2] | LShiftU64 (0x00, 20); // vc\r
8e3bc754 513 Code[2] = Code[2] | LShiftU64 (BitIc, 21);\r
514 Code[2] = Code[2] | LShiftU64 (BitImm5c, 22);\r
515 Code[2] = Code[2] | LShiftU64 (BitImm9d, 27);\r
516 Code[2] = Code[2] | LShiftU64 (BitI, 36);\r
53c71d09 517 Code[2] = Code[2] | LShiftU64 ((UINT64)MOVL_OPCODE, 37);\r
518 Code[2] = Code[2] | LShiftU64 ((RegNum & 0x7F), 6);\r
519\r
520 WriteBundle ((VOID *) Ptr, 0x05, Code[0], Code[1], Code[2]);\r
521\r
522 //\r
523 // *************************** FIRST BUNDLE ********************************\r
524 //\r
525 // Write code bundle for: movl r8 = EBC_ENTRY_POINT so we pass\r
526 // the ebc entry point in to the interpreter function via a processor\r
527 // register.\r
528 // Note -- we could easily change this to pass in a pointer to a structure\r
529 // that contained, among other things, the EBC image's entry point. But\r
530 // for now pass it directly.\r
531 //\r
532 Ptr += 16;\r
533 Addr = (UINT64) EbcEntryPoint;\r
534\r
535 //\r
536 // Now generate the code bytes. First is nop.m 0x0\r
537 //\r
538 Code[0] = OPCODE_NOP;\r
539\r
540 //\r
541 // Next is simply Addr[62:22] (41 bits) of the address\r
542 //\r
543 Code[1] = RShiftU64 (Addr, 22) & 0x1ffffffffff;\r
544\r
545 //\r
546 // Extract bits from the address for insertion into the instruction\r
547 // i = Addr[63:63]\r
548 //\r
8e3bc754 549 BitI = RShiftU64 (Addr, 63) & 0x01;\r
53c71d09 550 //\r
551 // ic = Addr[21:21]\r
552 //\r
8e3bc754 553 BitIc = RShiftU64 (Addr, 21) & 0x01;\r
53c71d09 554 //\r
555 // imm5c = Addr[20:16] for 5 bits\r
556 //\r
8e3bc754 557 BitImm5c = RShiftU64 (Addr, 16) & 0x1F;\r
53c71d09 558 //\r
559 // imm9d = Addr[15:7] for 9 bits\r
560 //\r
8e3bc754 561 BitImm9d = RShiftU64 (Addr, 7) & 0x1FF;\r
53c71d09 562 //\r
563 // imm7b = Addr[6:0] for 7 bits\r
564 //\r
8e3bc754 565 BitImm7b = Addr & 0x7F;\r
53c71d09 566\r
567 //\r
568 // Put the EBC entry point in r8, which is the location of the return value\r
569 // for functions.\r
570 //\r
571 RegNum = 8;\r
572\r
573 //\r
574 // Next is jumbled data, including opcode and rest of address\r
575 //\r
8e3bc754 576 Code[2] = LShiftU64 (BitImm7b, 13);\r
53c71d09 577 Code[2] = Code[2] | LShiftU64 (0x00, 20); // vc\r
8e3bc754 578 Code[2] = Code[2] | LShiftU64 (BitIc, 21);\r
579 Code[2] = Code[2] | LShiftU64 (BitImm5c, 22);\r
580 Code[2] = Code[2] | LShiftU64 (BitImm9d, 27);\r
581 Code[2] = Code[2] | LShiftU64 (BitI, 36);\r
53c71d09 582 Code[2] = Code[2] | LShiftU64 ((UINT64)MOVL_OPCODE, 37);\r
583 Code[2] = Code[2] | LShiftU64 ((RegNum & 0x7F), 6);\r
584\r
585 WriteBundle ((VOID *) Ptr, 0x05, Code[0], Code[1], Code[2]);\r
586\r
587 //\r
588 // *************************** NEXT BUNDLE *********************************\r
589 //\r
590 // Write code bundle for:\r
591 // movl rx = offset_of(EbcInterpret|ExecuteEbcImageEntryPoint)\r
592 //\r
593 // Advance pointer to next bundle, then compute the offset from this bundle\r
594 // to the address of the entry point of the interpreter.\r
595 //\r
596 Ptr += 16;\r
366219ab 597 if ((Flags & FLAG_THUNK_ENTRY_POINT) != 0) {\r
53c71d09 598 Addr = (UINT64) ExecuteEbcImageEntryPoint;\r
599 } else {\r
600 Addr = (UINT64) EbcInterpret;\r
601 }\r
602 //\r
603 // Indirection on Itanium-based systems\r
604 //\r
605 Addr = *(UINT64 *) Addr;\r
606\r
607 //\r
608 // Now write the code to load the offset into a register\r
609 //\r
610 Code[0] = OPCODE_NOP;\r
611\r
612 //\r
613 // Next is simply Addr[62:22] (41 bits) of the address\r
614 //\r
615 Code[1] = RShiftU64 (Addr, 22) & 0x1ffffffffff;\r
616\r
617 //\r
618 // Extract bits from the address for insertion into the instruction\r
619 // i = Addr[63:63]\r
620 //\r
8e3bc754 621 BitI = RShiftU64 (Addr, 63) & 0x01;\r
53c71d09 622 //\r
623 // ic = Addr[21:21]\r
624 //\r
8e3bc754 625 BitIc = RShiftU64 (Addr, 21) & 0x01;\r
53c71d09 626 //\r
627 // imm5c = Addr[20:16] for 5 bits\r
628 //\r
8e3bc754 629 BitImm5c = RShiftU64 (Addr, 16) & 0x1F;\r
53c71d09 630 //\r
631 // imm9d = Addr[15:7] for 9 bits\r
632 //\r
8e3bc754 633 BitImm9d = RShiftU64 (Addr, 7) & 0x1FF;\r
53c71d09 634 //\r
635 // imm7b = Addr[6:0] for 7 bits\r
636 //\r
8e3bc754 637 BitImm7b = Addr & 0x7F;\r
53c71d09 638\r
639 //\r
640 // Put it in r31, a scratch register\r
641 //\r
642 RegNum = 31;\r
643\r
644 //\r
645 // Next is jumbled data, including opcode and rest of address\r
646 //\r
8e3bc754 647 Code[2] = LShiftU64(BitImm7b, 13);\r
53c71d09 648 Code[2] = Code[2] | LShiftU64 (0x00, 20); // vc\r
8e3bc754 649 Code[2] = Code[2] | LShiftU64 (BitIc, 21);\r
650 Code[2] = Code[2] | LShiftU64 (BitImm5c, 22);\r
651 Code[2] = Code[2] | LShiftU64 (BitImm9d, 27);\r
652 Code[2] = Code[2] | LShiftU64 (BitI, 36);\r
53c71d09 653 Code[2] = Code[2] | LShiftU64 ((UINT64)MOVL_OPCODE, 37);\r
654 Code[2] = Code[2] | LShiftU64 ((RegNum & 0x7F), 6);\r
655\r
656 WriteBundle ((VOID *) Ptr, 0x05, Code[0], Code[1], Code[2]);\r
657\r
658 //\r
659 // *************************** NEXT BUNDLE *********************************\r
660 //\r
661 // Load branch register with EbcInterpret() function offset from the bundle\r
662 // address: mov b6 = RegNum\r
663 //\r
664 // See volume 3 page 4-29 of the Arch. Software Developer's Manual.\r
665 //\r
666 // Advance pointer to next bundle\r
667 //\r
668 Ptr += 16;\r
669 Code[0] = OPCODE_NOP;\r
670 Code[1] = OPCODE_NOP;\r
671 Code[2] = OPCODE_MOV_BX_RX;\r
672\r
673 //\r
674 // Pick a branch register to use. Then fill in the bits for the branch\r
675 // register and user register (same user register as previous bundle).\r
676 //\r
677 Br = 6;\r
678 Code[2] |= LShiftU64 (Br, 6);\r
679 Code[2] |= LShiftU64 (RegNum, 13);\r
680 WriteBundle ((VOID *) Ptr, 0x0d, Code[0], Code[1], Code[2]);\r
681\r
682 //\r
683 // *************************** NEXT BUNDLE *********************************\r
684 //\r
685 // Now do the branch: (p0) br.cond.sptk.few b6\r
686 //\r
687 // Advance pointer to next bundle.\r
688 // Fill in the bits for the branch register (same reg as previous bundle)\r
689 //\r
690 Ptr += 16;\r
691 Code[0] = OPCODE_NOP;\r
692 Code[1] = OPCODE_NOP;\r
693 Code[2] = OPCODE_BR_COND_SPTK_FEW;\r
694 Code[2] |= LShiftU64 (Br, 13);\r
695 WriteBundle ((VOID *) Ptr, 0x1d, Code[0], Code[1], Code[2]);\r
696\r
697 //\r
698 // Add the thunk to our list of allocated thunks so we can do some cleanup\r
699 // when the image is unloaded. Do this last since the Add function flushes\r
700 // the instruction cache for us.\r
701 //\r
702 EbcAddImageThunk (ImageHandle, (VOID *) ThunkBase, ThunkSize);\r
703\r
704 //\r
705 // Done\r
706 //\r
707 return EFI_SUCCESS;\r
708}\r
709\r
fb0b259e 710\r
711/**\r
712 Given raw bytes of Itanium based code, format them into a bundle and\r
713 write them out.\r
714\r
8e3bc754 715 @param MemPtr pointer to memory location to write the bundles\r
716 to.\r
717 @param Template 5-bit template.\r
718 @param Slot0 Instruction slot 0 data for the bundle.\r
719 @param Slot1 Instruction slot 1 data for the bundle.\r
720 @param Slot2 Instruction slot 2 data for the bundle.\r
fb0b259e 721\r
722 @retval EFI_INVALID_PARAMETER Pointer is not aligned\r
8e3bc754 723 @retval EFI_INVALID_PARAMETER No more than 5 bits in template\r
724 @retval EFI_INVALID_PARAMETER More than 41 bits used in code\r
fb0b259e 725 @retval EFI_SUCCESS All data is written.\r
726\r
727**/\r
53c71d09 728EFI_STATUS\r
729WriteBundle (\r
730 IN VOID *MemPtr,\r
731 IN UINT8 Template,\r
732 IN UINT64 Slot0,\r
733 IN UINT64 Slot1,\r
734 IN UINT64 Slot2\r
735 )\r
53c71d09 736{\r
737 UINT8 *BPtr;\r
738 UINT32 Index;\r
739 UINT64 Low64;\r
740 UINT64 High64;\r
741\r
742 //\r
743 // Verify pointer is aligned\r
744 //\r
745 if ((UINT64) MemPtr & 0xF) {\r
746 return EFI_INVALID_PARAMETER;\r
747 }\r
748 //\r
749 // Verify no more than 5 bits in template\r
750 //\r
366219ab 751 if ((Template &~0x1F) != 0) {\r
53c71d09 752 return EFI_INVALID_PARAMETER;\r
753 }\r
754 //\r
755 // Verify max of 41 bits used in code\r
756 //\r
366219ab 757 if (((Slot0 | Slot1 | Slot2) &~0x1ffffffffff) != 0) {\r
53c71d09 758 return EFI_INVALID_PARAMETER;\r
759 }\r
760\r
761 Low64 = LShiftU64 (Slot1, 46);\r
762 Low64 = Low64 | LShiftU64 (Slot0, 5) | Template;\r
763\r
764 High64 = RShiftU64 (Slot1, 18);\r
765 High64 = High64 | LShiftU64 (Slot2, 23);\r
766\r
767 //\r
768 // Now write it all out\r
769 //\r
770 BPtr = (UINT8 *) MemPtr;\r
771 for (Index = 0; Index < 8; Index++) {\r
772 *BPtr = (UINT8) Low64;\r
773 Low64 = RShiftU64 (Low64, 8);\r
774 BPtr++;\r
775 }\r
776\r
777 for (Index = 0; Index < 8; Index++) {\r
778 *BPtr = (UINT8) High64;\r
779 High64 = RShiftU64 (High64, 8);\r
780 BPtr++;\r
781 }\r
782\r
783 return EFI_SUCCESS;\r
784}\r
785\r
53c71d09 786\r
fb0b259e 787/**\r
788 This function is called to execute an EBC CALLEX instruction.\r
53c71d09 789 The function check the callee's content to see whether it is common native\r
790 code or a thunk to another piece of EBC code.\r
791 If the callee is common native code, use EbcLLCAllEXASM to manipulate,\r
792 otherwise, set the VM->IP to target EBC code directly to avoid another VM\r
793 be startup which cost time and stack space.\r
53c71d09 794\r
8e3bc754 795 @param VmPtr Pointer to a VM context.\r
796 @param FuncAddr Callee's address\r
797 @param NewStackPointer New stack pointer after the call\r
798 @param FramePtr New frame pointer after the call\r
799 @param Size The size of call instruction\r
53c71d09 800\r
fb0b259e 801**/\r
802VOID\r
803EbcLLCALLEX (\r
804 IN VM_CONTEXT *VmPtr,\r
805 IN UINTN FuncAddr,\r
806 IN UINTN NewStackPointer,\r
807 IN VOID *FramePtr,\r
808 IN UINT8 Size\r
809 )\r
53c71d09 810{\r
811 UINTN IsThunk;\r
812 UINTN TargetEbcAddr;\r
813 UINTN CodeOne18;\r
814 UINTN CodeOne23;\r
815 UINTN CodeTwoI;\r
816 UINTN CodeTwoIc;\r
817 UINTN CodeTwo7b;\r
818 UINTN CodeTwo5c;\r
819 UINTN CodeTwo9d;\r
820 UINTN CalleeAddr;\r
821\r
822 IsThunk = 1;\r
823 TargetEbcAddr = 0;\r
824\r
825 //\r
826 // FuncAddr points to the descriptor of the target instructions.\r
827 //\r
828 CalleeAddr = *((UINT64 *)FuncAddr);\r
829\r
830 //\r
831 // Processor specific code to check whether the callee is a thunk to EBC.\r
832 //\r
833 if (*((UINT64 *)CalleeAddr) != 0xBCCA000100000005) {\r
834 IsThunk = 0;\r
835 goto Action;\r
836 }\r
837 if (*((UINT64 *)CalleeAddr + 1) != 0x697623C1004A112E) {\r
838 IsThunk = 0;\r
839 goto Action;\r
840 }\r
841\r
842 CodeOne18 = RShiftU64 (*((UINT64 *)CalleeAddr + 2), 46) & 0x3FFFF;\r
843 CodeOne23 = (*((UINT64 *)CalleeAddr + 3)) & 0x7FFFFF;\r
844 CodeTwoI = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 59) & 0x1;\r
845 CodeTwoIc = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 44) & 0x1;\r
846 CodeTwo7b = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 36) & 0x7F;\r
847 CodeTwo5c = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 45) & 0x1F;\r
848 CodeTwo9d = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 50) & 0x1FF;\r
849\r
850 TargetEbcAddr = CodeTwo7b;\r
851 TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeTwo9d, 7);\r
852 TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeTwo5c, 16);\r
853 TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeTwoIc, 21);\r
854 TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeOne18, 22);\r
855 TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeOne23, 40);\r
856 TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeTwoI, 63);\r
857\r
858Action:\r
859 if (IsThunk == 1){\r
860 //\r
861 // The callee is a thunk to EBC, adjust the stack pointer down 16 bytes and\r
862 // put our return address and frame pointer on the VM stack.\r
863 // Then set the VM's IP to new EBC code.\r
864 //\r
1ccdbf2a 865 VmPtr->Gpr[0] -= 8;\r
866 VmWriteMemN (VmPtr, (UINTN) VmPtr->Gpr[0], (UINTN) FramePtr);\r
867 VmPtr->FramePtr = (VOID *) (UINTN) VmPtr->Gpr[0];\r
868 VmPtr->Gpr[0] -= 8;\r
869 VmWriteMem64 (VmPtr, (UINTN) VmPtr->Gpr[0], (UINT64) (VmPtr->Ip + Size));\r
53c71d09 870\r
871 VmPtr->Ip = (VMIP) (UINTN) TargetEbcAddr;\r
872 } else {\r
873 //\r
fa97cbf4
JY
874 // The callee is not a thunk to EBC, call native code,\r
875 // and get return value.\r
53c71d09 876 //\r
fa97cbf4 877 VmPtr->Gpr[7] = EbcLLCALLEXNative (FuncAddr, NewStackPointer, FramePtr);\r
53c71d09 878\r
879 //\r
fa97cbf4 880 // Advance the IP.\r
53c71d09 881 //\r
53c71d09 882 VmPtr->Ip += Size;\r
883 }\r
884}\r