]> git.proxmox.com Git - mirror_edk2.git/blame - MdePkg/Include/Library/BaseLib.h
Second set of changes based on a review of the code comments in the Include directory...
[mirror_edk2.git] / MdePkg / Include / Library / BaseLib.h
CommitLineData
ac644614 1/** @file\r
50a64e5b 2 Provides string functions, linked list functions, math functions, synchronization\r
1a2f870c 3 functions, and CPU architecture-specific functions.\r
ac644614 4\r
2fe241a2 5Copyright (c) 2006 - 2008, Intel Corporation<BR>\r
50a64e5b 6All rights reserved. This program and the accompanying materials\r
7are licensed and made available under the terms and conditions of the BSD License\r
8which accompanies this distribution. The full text of the license may be found at\r
9http://opensource.org/licenses/bsd-license.php\r
ac644614 10\r
50a64e5b 11THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
12WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
ac644614 13\r
14**/\r
15\r
16#ifndef __BASE_LIB__\r
17#define __BASE_LIB__\r
18\r
1106ffe1 19//\r
1a2f870c 20// Definitions for architecture-specific types\r
1106ffe1 21//\r
ac644614 22#if defined (MDE_CPU_IA32)\r
fc30687f 23///\r
1a2f870c 24/// IA-32 architecture context buffer used by SetJump() and LongJump()\r
fc30687f 25///\r
ac644614 26typedef struct {\r
27 UINT32 Ebx;\r
28 UINT32 Esi;\r
29 UINT32 Edi;\r
30 UINT32 Ebp;\r
31 UINT32 Esp;\r
32 UINT32 Eip;\r
33} BASE_LIBRARY_JUMP_BUFFER;\r
34\r
35#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4\r
36\r
aa4df547 37#endif // defined (MDE_CPU_IA32)\r
38\r
39#if defined (MDE_CPU_IPF)\r
ac644614 40\r
fc30687f 41///\r
1a2f870c 42/// Itanium architecture context buffer used by SetJump() and LongJump()\r
fc30687f 43///\r
ac644614 44typedef struct {\r
45 UINT64 F2[2];\r
46 UINT64 F3[2];\r
47 UINT64 F4[2];\r
48 UINT64 F5[2];\r
49 UINT64 F16[2];\r
50 UINT64 F17[2];\r
51 UINT64 F18[2];\r
52 UINT64 F19[2];\r
53 UINT64 F20[2];\r
54 UINT64 F21[2];\r
55 UINT64 F22[2];\r
56 UINT64 F23[2];\r
57 UINT64 F24[2];\r
58 UINT64 F25[2];\r
59 UINT64 F26[2];\r
60 UINT64 F27[2];\r
61 UINT64 F28[2];\r
62 UINT64 F29[2];\r
63 UINT64 F30[2];\r
64 UINT64 F31[2];\r
65 UINT64 R4;\r
66 UINT64 R5;\r
67 UINT64 R6;\r
68 UINT64 R7;\r
69 UINT64 SP;\r
70 UINT64 BR0;\r
71 UINT64 BR1;\r
72 UINT64 BR2;\r
73 UINT64 BR3;\r
74 UINT64 BR4;\r
75 UINT64 BR5;\r
76 UINT64 InitialUNAT;\r
77 UINT64 AfterSpillUNAT;\r
78 UINT64 PFS;\r
79 UINT64 BSP;\r
80 UINT64 Predicates;\r
81 UINT64 LoopCount;\r
82 UINT64 FPSR;\r
83} BASE_LIBRARY_JUMP_BUFFER;\r
84\r
85#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 0x10\r
86\r
aa4df547 87#endif // defined (MDE_CPU_IPF)\r
88\r
89#if defined (MDE_CPU_X64)\r
fc30687f 90///\r
1a2f870c 91/// x64 architecture context buffer used by SetJump() and LongJump()\r
fc30687f 92///\r
ac644614 93typedef struct {\r
94 UINT64 Rbx;\r
95 UINT64 Rsp;\r
96 UINT64 Rbp;\r
97 UINT64 Rdi;\r
98 UINT64 Rsi;\r
99 UINT64 R12;\r
100 UINT64 R13;\r
101 UINT64 R14;\r
102 UINT64 R15;\r
103 UINT64 Rip;\r
104} BASE_LIBRARY_JUMP_BUFFER;\r
105\r
106#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
107\r
aa4df547 108#endif // defined (MDE_CPU_X64)\r
109\r
110#if defined (MDE_CPU_EBC)\r
fc30687f 111///\r
112/// EBC context buffer used by SetJump() and LongJump()\r
113///\r
ac644614 114typedef struct {\r
115 UINT64 R0;\r
116 UINT64 R1;\r
117 UINT64 R2;\r
118 UINT64 R3;\r
119 UINT64 IP;\r
120} BASE_LIBRARY_JUMP_BUFFER;\r
121\r
122#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
123\r
aa4df547 124#endif // defined (MDE_CPU_EBC)\r
ac644614 125\r
126//\r
127// String Services\r
128//\r
129\r
130/**\r
131 Copies one Null-terminated Unicode string to another Null-terminated Unicode\r
132 string and returns the new Unicode string.\r
133\r
134 This function copies the contents of the Unicode string Source to the Unicode\r
135 string Destination, and returns Destination. If Source and Destination\r
136 overlap, then the results are undefined.\r
137\r
138 If Destination is NULL, then ASSERT().\r
139 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
140 If Source is NULL, then ASSERT().\r
141 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
142 If Source and Destination overlap, then ASSERT().\r
143 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
144 PcdMaximumUnicodeStringLength Unicode characters not including the\r
145 Null-terminator, then ASSERT().\r
146\r
147 @param Destination Pointer to a Null-terminated Unicode string.\r
148 @param Source Pointer to a Null-terminated Unicode string.\r
149\r
9aa049d9 150 @return Destination.\r
ac644614 151\r
152**/\r
153CHAR16 *\r
154EFIAPI\r
155StrCpy (\r
156 OUT CHAR16 *Destination,\r
157 IN CONST CHAR16 *Source\r
158 );\r
159\r
160\r
161/**\r
17f695ed 162 Copies up to a specified length from one Null-terminated Unicode string to \r
163 another Null-terminated Unicode string and returns the new Unicode string.\r
ac644614 164\r
165 This function copies the contents of the Unicode string Source to the Unicode\r
166 string Destination, and returns Destination. At most, Length Unicode\r
167 characters are copied from Source to Destination. If Length is 0, then\r
168 Destination is returned unmodified. If Length is greater that the number of\r
169 Unicode characters in Source, then Destination is padded with Null Unicode\r
170 characters. If Source and Destination overlap, then the results are\r
171 undefined.\r
172\r
173 If Length > 0 and Destination is NULL, then ASSERT().\r
174 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
175 If Length > 0 and Source is NULL, then ASSERT().\r
77f863ee 176 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 177 If Source and Destination overlap, then ASSERT().\r
50c247fd 178 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than \r
179 PcdMaximumUnicodeStringLength, then ASSERT().\r
ac644614 180 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
50c247fd 181 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
182 then ASSERT().\r
ac644614 183\r
184 @param Destination Pointer to a Null-terminated Unicode string.\r
185 @param Source Pointer to a Null-terminated Unicode string.\r
186 @param Length Maximum number of Unicode characters to copy.\r
187\r
9aa049d9 188 @return Destination.\r
ac644614 189\r
190**/\r
191CHAR16 *\r
192EFIAPI\r
193StrnCpy (\r
194 OUT CHAR16 *Destination,\r
195 IN CONST CHAR16 *Source,\r
196 IN UINTN Length\r
197 );\r
198\r
199\r
200/**\r
201 Returns the length of a Null-terminated Unicode string.\r
202\r
203 This function returns the number of Unicode characters in the Null-terminated\r
204 Unicode string specified by String.\r
205\r
206 If String is NULL, then ASSERT().\r
207 If String is not aligned on a 16-bit boundary, then ASSERT().\r
208 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
209 PcdMaximumUnicodeStringLength Unicode characters not including the\r
210 Null-terminator, then ASSERT().\r
211\r
212 @param String Pointer to a Null-terminated Unicode string.\r
213\r
214 @return The length of String.\r
215\r
216**/\r
217UINTN\r
218EFIAPI\r
219StrLen (\r
220 IN CONST CHAR16 *String\r
221 );\r
222\r
223\r
224/**\r
225 Returns the size of a Null-terminated Unicode string in bytes, including the\r
226 Null terminator.\r
227\r
17f695ed 228 This function returns the size, in bytes, of the Null-terminated Unicode string \r
229 specified by String.\r
ac644614 230\r
231 If String is NULL, then ASSERT().\r
232 If String is not aligned on a 16-bit boundary, then ASSERT().\r
233 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
234 PcdMaximumUnicodeStringLength Unicode characters not including the\r
235 Null-terminator, then ASSERT().\r
236\r
237 @param String Pointer to a Null-terminated Unicode string.\r
238\r
239 @return The size of String.\r
240\r
241**/\r
242UINTN\r
243EFIAPI\r
244StrSize (\r
245 IN CONST CHAR16 *String\r
246 );\r
247\r
248\r
249/**\r
250 Compares two Null-terminated Unicode strings, and returns the difference\r
251 between the first mismatched Unicode characters.\r
252\r
253 This function compares the Null-terminated Unicode string FirstString to the\r
254 Null-terminated Unicode string SecondString. If FirstString is identical to\r
255 SecondString, then 0 is returned. Otherwise, the value returned is the first\r
256 mismatched Unicode character in SecondString subtracted from the first\r
257 mismatched Unicode character in FirstString.\r
258\r
259 If FirstString is NULL, then ASSERT().\r
260 If FirstString is not aligned on a 16-bit boundary, then ASSERT().\r
261 If SecondString is NULL, then ASSERT().\r
262 If SecondString is not aligned on a 16-bit boundary, then ASSERT().\r
263 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more\r
264 than PcdMaximumUnicodeStringLength Unicode characters not including the\r
265 Null-terminator, then ASSERT().\r
266 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more\r
267 than PcdMaximumUnicodeStringLength Unicode characters not including the\r
268 Null-terminator, then ASSERT().\r
269\r
270 @param FirstString Pointer to a Null-terminated Unicode string.\r
271 @param SecondString Pointer to a Null-terminated Unicode string.\r
272\r
1106ffe1 273 @retval 0 FirstString is identical to SecondString.\r
274 @return others FirstString is not identical to SecondString.\r
ac644614 275\r
276**/\r
277INTN\r
278EFIAPI\r
279StrCmp (\r
280 IN CONST CHAR16 *FirstString,\r
281 IN CONST CHAR16 *SecondString\r
282 );\r
283\r
284\r
285/**\r
17f695ed 286 Compares up to a specified length the contents of two Null-terminated Unicode strings,\r
287 and returns the difference between the first mismatched Unicode characters.\r
288 \r
ac644614 289 This function compares the Null-terminated Unicode string FirstString to the\r
290 Null-terminated Unicode string SecondString. At most, Length Unicode\r
291 characters will be compared. If Length is 0, then 0 is returned. If\r
292 FirstString is identical to SecondString, then 0 is returned. Otherwise, the\r
293 value returned is the first mismatched Unicode character in SecondString\r
294 subtracted from the first mismatched Unicode character in FirstString.\r
295\r
296 If Length > 0 and FirstString is NULL, then ASSERT().\r
77f863ee 297 If Length > 0 and FirstString is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 298 If Length > 0 and SecondString is NULL, then ASSERT().\r
77f863ee 299 If Length > 0 and SecondString is not aligned on a 16-bit boundary, then ASSERT().\r
50c247fd 300 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than\r
301 PcdMaximumUnicodeStringLength, then ASSERT().\r
302 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more than\r
303 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
304 then ASSERT().\r
305 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more than\r
306 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
307 then ASSERT().\r
ac644614 308\r
309 @param FirstString Pointer to a Null-terminated Unicode string.\r
310 @param SecondString Pointer to a Null-terminated Unicode string.\r
311 @param Length Maximum number of Unicode characters to compare.\r
312\r
1106ffe1 313 @retval 0 FirstString is identical to SecondString.\r
314 @return others FirstString is not identical to SecondString.\r
ac644614 315\r
316**/\r
317INTN\r
318EFIAPI\r
319StrnCmp (\r
320 IN CONST CHAR16 *FirstString,\r
321 IN CONST CHAR16 *SecondString,\r
322 IN UINTN Length\r
323 );\r
324\r
325\r
326/**\r
327 Concatenates one Null-terminated Unicode string to another Null-terminated\r
328 Unicode string, and returns the concatenated Unicode string.\r
329\r
330 This function concatenates two Null-terminated Unicode strings. The contents\r
331 of Null-terminated Unicode string Source are concatenated to the end of\r
332 Null-terminated Unicode string Destination. The Null-terminated concatenated\r
333 Unicode String is returned. If Source and Destination overlap, then the\r
334 results are undefined.\r
335\r
336 If Destination is NULL, then ASSERT().\r
77f863ee 337 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 338 If Source is NULL, then ASSERT().\r
77f863ee 339 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 340 If Source and Destination overlap, then ASSERT().\r
341 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
342 than PcdMaximumUnicodeStringLength Unicode characters not including the\r
343 Null-terminator, then ASSERT().\r
344 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
345 PcdMaximumUnicodeStringLength Unicode characters not including the\r
346 Null-terminator, then ASSERT().\r
347 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination\r
348 and Source results in a Unicode string with more than\r
349 PcdMaximumUnicodeStringLength Unicode characters not including the\r
350 Null-terminator, then ASSERT().\r
351\r
352 @param Destination Pointer to a Null-terminated Unicode string.\r
353 @param Source Pointer to a Null-terminated Unicode string.\r
354\r
9aa049d9 355 @return Destination.\r
ac644614 356\r
357**/\r
358CHAR16 *\r
359EFIAPI\r
360StrCat (\r
361 IN OUT CHAR16 *Destination,\r
362 IN CONST CHAR16 *Source\r
363 );\r
364\r
365\r
366/**\r
17f695ed 367 Concatenates up to a specified length one Null-terminated Unicode to the end \r
368 of another Null-terminated Unicode string, and returns the concatenated \r
ac644614 369 Unicode string.\r
370\r
371 This function concatenates two Null-terminated Unicode strings. The contents\r
372 of Null-terminated Unicode string Source are concatenated to the end of\r
373 Null-terminated Unicode string Destination, and Destination is returned. At\r
374 most, Length Unicode characters are concatenated from Source to the end of\r
375 Destination, and Destination is always Null-terminated. If Length is 0, then\r
376 Destination is returned unmodified. If Source and Destination overlap, then\r
377 the results are undefined.\r
378\r
379 If Destination is NULL, then ASSERT().\r
380 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
381 If Length > 0 and Source is NULL, then ASSERT().\r
382 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
383 If Source and Destination overlap, then ASSERT().\r
50c247fd 384 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than \r
385 PcdMaximumUnicodeStringLength, then ASSERT().\r
ac644614 386 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
50c247fd 387 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 388 Null-terminator, then ASSERT().\r
389 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
50c247fd 390 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 391 Null-terminator, then ASSERT().\r
392 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination\r
50c247fd 393 and Source results in a Unicode string with more than PcdMaximumUnicodeStringLength\r
394 Unicode characters, not including the Null-terminator, then ASSERT().\r
ac644614 395\r
396 @param Destination Pointer to a Null-terminated Unicode string.\r
397 @param Source Pointer to a Null-terminated Unicode string.\r
398 @param Length Maximum number of Unicode characters to concatenate from\r
399 Source.\r
400\r
9aa049d9 401 @return Destination.\r
ac644614 402\r
403**/\r
404CHAR16 *\r
405EFIAPI\r
406StrnCat (\r
407 IN OUT CHAR16 *Destination,\r
408 IN CONST CHAR16 *Source,\r
409 IN UINTN Length\r
410 );\r
411\r
412/**\r
9aa049d9 413 Returns the first occurrence of a Null-terminated Unicode sub-string\r
ac644614 414 in a Null-terminated Unicode string.\r
415\r
416 This function scans the contents of the Null-terminated Unicode string\r
417 specified by String and returns the first occurrence of SearchString.\r
418 If SearchString is not found in String, then NULL is returned. If\r
419 the length of SearchString is zero, then String is\r
420 returned.\r
421\r
422 If String is NULL, then ASSERT().\r
423 If String is not aligned on a 16-bit boundary, then ASSERT().\r
424 If SearchString is NULL, then ASSERT().\r
425 If SearchString is not aligned on a 16-bit boundary, then ASSERT().\r
426\r
427 If PcdMaximumUnicodeStringLength is not zero, and SearchString\r
428 or String contains more than PcdMaximumUnicodeStringLength Unicode\r
429 characters not including the Null-terminator, then ASSERT().\r
430\r
17f695ed 431 @param String Pointer to a Null-terminated Unicode string.\r
432 @param SearchString Pointer to a Null-terminated Unicode string to search for.\r
ac644614 433\r
434 @retval NULL If the SearchString does not appear in String.\r
1106ffe1 435 @return others If there is a match.\r
ac644614 436\r
437**/\r
438CHAR16 *\r
439EFIAPI\r
440StrStr (\r
17f695ed 441 IN CONST CHAR16 *String,\r
442 IN CONST CHAR16 *SearchString\r
ac644614 443 );\r
444\r
445/**\r
446 Convert a Null-terminated Unicode decimal string to a value of\r
447 type UINTN.\r
448\r
449 This function returns a value of type UINTN by interpreting the contents\r
450 of the Unicode string specified by String as a decimal number. The format\r
451 of the input Unicode string String is:\r
452\r
453 [spaces] [decimal digits].\r
454\r
455 The valid decimal digit character is in the range [0-9]. The\r
456 function will ignore the pad space, which includes spaces or\r
457 tab characters, before [decimal digits]. The running zero in the\r
458 beginning of [decimal digits] will be ignored. Then, the function\r
459 stops at the first character that is a not a valid decimal character\r
460 or a Null-terminator, whichever one comes first.\r
461\r
462 If String is NULL, then ASSERT().\r
463 If String is not aligned in a 16-bit boundary, then ASSERT().\r
464 If String has only pad spaces, then 0 is returned.\r
465 If String has no pad spaces or valid decimal digits,\r
466 then 0 is returned.\r
467 If the number represented by String overflows according\r
468 to the range defined by UINTN, then ASSERT().\r
469\r
470 If PcdMaximumUnicodeStringLength is not zero, and String contains\r
471 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
472 the Null-terminator, then ASSERT().\r
473\r
17f695ed 474 @param String Pointer to a Null-terminated Unicode string.\r
ac644614 475\r
38bbd3d9 476 @retval Value translated from String.\r
ac644614 477\r
478**/\r
479UINTN\r
480EFIAPI\r
481StrDecimalToUintn (\r
17f695ed 482 IN CONST CHAR16 *String\r
ac644614 483 );\r
484\r
485/**\r
486 Convert a Null-terminated Unicode decimal string to a value of\r
487 type UINT64.\r
488\r
489 This function returns a value of type UINT64 by interpreting the contents\r
490 of the Unicode string specified by String as a decimal number. The format\r
491 of the input Unicode string String is:\r
492\r
493 [spaces] [decimal digits].\r
494\r
495 The valid decimal digit character is in the range [0-9]. The\r
496 function will ignore the pad space, which includes spaces or\r
497 tab characters, before [decimal digits]. The running zero in the\r
498 beginning of [decimal digits] will be ignored. Then, the function\r
499 stops at the first character that is a not a valid decimal character\r
500 or a Null-terminator, whichever one comes first.\r
501\r
502 If String is NULL, then ASSERT().\r
503 If String is not aligned in a 16-bit boundary, then ASSERT().\r
504 If String has only pad spaces, then 0 is returned.\r
505 If String has no pad spaces or valid decimal digits,\r
506 then 0 is returned.\r
507 If the number represented by String overflows according\r
508 to the range defined by UINT64, then ASSERT().\r
509\r
510 If PcdMaximumUnicodeStringLength is not zero, and String contains\r
511 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
512 the Null-terminator, then ASSERT().\r
513\r
17f695ed 514 @param String Pointer to a Null-terminated Unicode string.\r
ac644614 515\r
38bbd3d9 516 @retval Value translated from String.\r
ac644614 517\r
518**/\r
519UINT64\r
520EFIAPI\r
521StrDecimalToUint64 (\r
17f695ed 522 IN CONST CHAR16 *String\r
ac644614 523 );\r
524 \r
525\r
526/**\r
527 Convert a Null-terminated Unicode hexadecimal string to a value of type UINTN.\r
528\r
529 This function returns a value of type UINTN by interpreting the contents\r
530 of the Unicode string specified by String as a hexadecimal number.\r
531 The format of the input Unicode string String is:\r
532\r
533 [spaces][zeros][x][hexadecimal digits].\r
534\r
535 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
536 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
537 If "x" appears in the input string, it must be prefixed with at least one 0.\r
538 The function will ignore the pad space, which includes spaces or tab characters,\r
539 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
540 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
541 first valid hexadecimal digit. Then, the function stops at the first character that is\r
542 a not a valid hexadecimal character or NULL, whichever one comes first.\r
543\r
544 If String is NULL, then ASSERT().\r
545 If String is not aligned in a 16-bit boundary, then ASSERT().\r
546 If String has only pad spaces, then zero is returned.\r
547 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
548 then zero is returned.\r
549 If the number represented by String overflows according to the range defined by\r
550 UINTN, then ASSERT().\r
551\r
552 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
553 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
554 then ASSERT().\r
555\r
17f695ed 556 @param String Pointer to a Null-terminated Unicode string.\r
ac644614 557\r
38bbd3d9 558 @retval Value translated from String.\r
ac644614 559\r
560**/\r
561UINTN\r
562EFIAPI\r
563StrHexToUintn (\r
17f695ed 564 IN CONST CHAR16 *String\r
ac644614 565 );\r
566\r
567\r
568/**\r
569 Convert a Null-terminated Unicode hexadecimal string to a value of type UINT64.\r
570\r
571 This function returns a value of type UINT64 by interpreting the contents\r
572 of the Unicode string specified by String as a hexadecimal number.\r
573 The format of the input Unicode string String is\r
574\r
575 [spaces][zeros][x][hexadecimal digits].\r
576\r
577 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
578 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
579 If "x" appears in the input string, it must be prefixed with at least one 0.\r
580 The function will ignore the pad space, which includes spaces or tab characters,\r
581 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
582 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
583 first valid hexadecimal digit. Then, the function stops at the first character that is\r
584 a not a valid hexadecimal character or NULL, whichever one comes first.\r
585\r
586 If String is NULL, then ASSERT().\r
587 If String is not aligned in a 16-bit boundary, then ASSERT().\r
588 If String has only pad spaces, then zero is returned.\r
589 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
590 then zero is returned.\r
591 If the number represented by String overflows according to the range defined by\r
592 UINT64, then ASSERT().\r
593\r
594 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
595 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
596 then ASSERT().\r
597\r
17f695ed 598 @param String Pointer to a Null-terminated Unicode string.\r
ac644614 599\r
38bbd3d9 600 @retval Value translated from String.\r
ac644614 601\r
602**/\r
603UINT64\r
604EFIAPI\r
605StrHexToUint64 (\r
17f695ed 606 IN CONST CHAR16 *String\r
ac644614 607 );\r
608\r
ac644614 609/**\r
17f695ed 610 Convert a Null-terminated Unicode string to a Null-terminated\r
ac644614 611 ASCII string and returns the ASCII string.\r
612\r
613 This function converts the content of the Unicode string Source\r
614 to the ASCII string Destination by copying the lower 8 bits of\r
615 each Unicode character. It returns Destination.\r
616\r
617 If any Unicode characters in Source contain non-zero value in\r
618 the upper 8 bits, then ASSERT().\r
619\r
620 If Destination is NULL, then ASSERT().\r
621 If Source is NULL, then ASSERT().\r
622 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
623 If Source and Destination overlap, then ASSERT().\r
624\r
625 If PcdMaximumUnicodeStringLength is not zero, and Source contains\r
626 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
627 the Null-terminator, then ASSERT().\r
628\r
629 If PcdMaximumAsciiStringLength is not zero, and Source contains more\r
630 than PcdMaximumAsciiStringLength Unicode characters not including the\r
631 Null-terminator, then ASSERT().\r
632\r
633 @param Source Pointer to a Null-terminated Unicode string.\r
634 @param Destination Pointer to a Null-terminated ASCII string.\r
635\r
9aa049d9 636 @return Destination.\r
ac644614 637\r
638**/\r
639CHAR8 *\r
640EFIAPI\r
641UnicodeStrToAsciiStr (\r
17f695ed 642 IN CONST CHAR16 *Source,\r
643 OUT CHAR8 *Destination\r
ac644614 644 );\r
645\r
646\r
647/**\r
648 Copies one Null-terminated ASCII string to another Null-terminated ASCII\r
649 string and returns the new ASCII string.\r
650\r
651 This function copies the contents of the ASCII string Source to the ASCII\r
652 string Destination, and returns Destination. If Source and Destination\r
653 overlap, then the results are undefined.\r
654\r
655 If Destination is NULL, then ASSERT().\r
656 If Source is NULL, then ASSERT().\r
657 If Source and Destination overlap, then ASSERT().\r
658 If PcdMaximumAsciiStringLength is not zero and Source contains more than\r
659 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
660 then ASSERT().\r
661\r
662 @param Destination Pointer to a Null-terminated ASCII string.\r
663 @param Source Pointer to a Null-terminated ASCII string.\r
664\r
665 @return Destination\r
666\r
667**/\r
668CHAR8 *\r
669EFIAPI\r
670AsciiStrCpy (\r
671 OUT CHAR8 *Destination,\r
672 IN CONST CHAR8 *Source\r
673 );\r
674\r
675\r
676/**\r
17f695ed 677 Copies up to a specified length one Null-terminated ASCII string to another \r
678 Null-terminated ASCII string and returns the new ASCII string.\r
ac644614 679\r
680 This function copies the contents of the ASCII string Source to the ASCII\r
681 string Destination, and returns Destination. At most, Length ASCII characters\r
682 are copied from Source to Destination. If Length is 0, then Destination is\r
683 returned unmodified. If Length is greater that the number of ASCII characters\r
684 in Source, then Destination is padded with Null ASCII characters. If Source\r
685 and Destination overlap, then the results are undefined.\r
686\r
687 If Destination is NULL, then ASSERT().\r
688 If Source is NULL, then ASSERT().\r
689 If Source and Destination overlap, then ASSERT().\r
50c247fd 690 If PcdMaximumAsciiStringLength is not zero, and Length is greater than \r
691 PcdMaximumAsciiStringLength, then ASSERT().\r
ac644614 692 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
50c247fd 693 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 694 then ASSERT().\r
695\r
696 @param Destination Pointer to a Null-terminated ASCII string.\r
697 @param Source Pointer to a Null-terminated ASCII string.\r
698 @param Length Maximum number of ASCII characters to copy.\r
699\r
700 @return Destination\r
701\r
702**/\r
703CHAR8 *\r
704EFIAPI\r
705AsciiStrnCpy (\r
706 OUT CHAR8 *Destination,\r
707 IN CONST CHAR8 *Source,\r
708 IN UINTN Length\r
709 );\r
710\r
711\r
712/**\r
713 Returns the length of a Null-terminated ASCII string.\r
714\r
715 This function returns the number of ASCII characters in the Null-terminated\r
716 ASCII string specified by String.\r
717\r
718 If Length > 0 and Destination is NULL, then ASSERT().\r
719 If Length > 0 and Source is NULL, then ASSERT().\r
720 If PcdMaximumAsciiStringLength is not zero and String contains more than\r
721 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
722 then ASSERT().\r
723\r
724 @param String Pointer to a Null-terminated ASCII string.\r
725\r
726 @return The length of String.\r
727\r
728**/\r
729UINTN\r
730EFIAPI\r
731AsciiStrLen (\r
732 IN CONST CHAR8 *String\r
733 );\r
734\r
735\r
736/**\r
737 Returns the size of a Null-terminated ASCII string in bytes, including the\r
738 Null terminator.\r
739\r
740 This function returns the size, in bytes, of the Null-terminated ASCII string\r
741 specified by String.\r
742\r
743 If String is NULL, then ASSERT().\r
744 If PcdMaximumAsciiStringLength is not zero and String contains more than\r
745 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
746 then ASSERT().\r
747\r
748 @param String Pointer to a Null-terminated ASCII string.\r
749\r
750 @return The size of String.\r
751\r
752**/\r
753UINTN\r
754EFIAPI\r
755AsciiStrSize (\r
756 IN CONST CHAR8 *String\r
757 );\r
758\r
759\r
760/**\r
761 Compares two Null-terminated ASCII strings, and returns the difference\r
762 between the first mismatched ASCII characters.\r
763\r
764 This function compares the Null-terminated ASCII string FirstString to the\r
765 Null-terminated ASCII string SecondString. If FirstString is identical to\r
766 SecondString, then 0 is returned. Otherwise, the value returned is the first\r
767 mismatched ASCII character in SecondString subtracted from the first\r
768 mismatched ASCII character in FirstString.\r
769\r
770 If FirstString is NULL, then ASSERT().\r
771 If SecondString is NULL, then ASSERT().\r
772 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
773 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
774 then ASSERT().\r
775 If PcdMaximumAsciiStringLength is not zero and SecondString contains more\r
776 than PcdMaximumAsciiStringLength ASCII characters not including the\r
777 Null-terminator, then ASSERT().\r
778\r
779 @param FirstString Pointer to a Null-terminated ASCII string.\r
780 @param SecondString Pointer to a Null-terminated ASCII string.\r
781\r
17f695ed 782 @retval ==0 FirstString is identical to SecondString.\r
783 @retval !=0 FirstString is not identical to SecondString.\r
ac644614 784\r
785**/\r
786INTN\r
787EFIAPI\r
788AsciiStrCmp (\r
789 IN CONST CHAR8 *FirstString,\r
790 IN CONST CHAR8 *SecondString\r
791 );\r
792\r
793\r
794/**\r
795 Performs a case insensitive comparison of two Null-terminated ASCII strings,\r
796 and returns the difference between the first mismatched ASCII characters.\r
797\r
798 This function performs a case insensitive comparison of the Null-terminated\r
799 ASCII string FirstString to the Null-terminated ASCII string SecondString. If\r
800 FirstString is identical to SecondString, then 0 is returned. Otherwise, the\r
801 value returned is the first mismatched lower case ASCII character in\r
802 SecondString subtracted from the first mismatched lower case ASCII character\r
803 in FirstString.\r
804\r
805 If FirstString is NULL, then ASSERT().\r
806 If SecondString is NULL, then ASSERT().\r
807 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
808 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
809 then ASSERT().\r
810 If PcdMaximumAsciiStringLength is not zero and SecondString contains more\r
811 than PcdMaximumAsciiStringLength ASCII characters not including the\r
812 Null-terminator, then ASSERT().\r
813\r
814 @param FirstString Pointer to a Null-terminated ASCII string.\r
815 @param SecondString Pointer to a Null-terminated ASCII string.\r
816\r
17f695ed 817 @retval ==0 FirstString is identical to SecondString using case insensitive\r
1106ffe1 818 comparisons.\r
17f695ed 819 @retval !=0 FirstString is not identical to SecondString using case\r
1106ffe1 820 insensitive comparisons.\r
ac644614 821\r
822**/\r
823INTN\r
824EFIAPI\r
825AsciiStriCmp (\r
826 IN CONST CHAR8 *FirstString,\r
827 IN CONST CHAR8 *SecondString\r
828 );\r
829\r
830\r
831/**\r
832 Compares two Null-terminated ASCII strings with maximum lengths, and returns\r
833 the difference between the first mismatched ASCII characters.\r
834\r
835 This function compares the Null-terminated ASCII string FirstString to the\r
836 Null-terminated ASCII string SecondString. At most, Length ASCII characters\r
837 will be compared. If Length is 0, then 0 is returned. If FirstString is\r
838 identical to SecondString, then 0 is returned. Otherwise, the value returned\r
839 is the first mismatched ASCII character in SecondString subtracted from the\r
840 first mismatched ASCII character in FirstString.\r
841\r
842 If Length > 0 and FirstString is NULL, then ASSERT().\r
843 If Length > 0 and SecondString is NULL, then ASSERT().\r
50c247fd 844 If PcdMaximumAsciiStringLength is not zero, and Length is greater than \r
845 PcdMaximumAsciiStringLength, then ASSERT().\r
846 If PcdMaximumAsciiStringLength is not zero, and FirstString contains more than\r
847 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 848 then ASSERT().\r
50c247fd 849 If PcdMaximumAsciiStringLength is not zero, and SecondString contains more than\r
850 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 851 then ASSERT().\r
852\r
853 @param FirstString Pointer to a Null-terminated ASCII string.\r
854 @param SecondString Pointer to a Null-terminated ASCII string.\r
855 @param Length Maximum number of ASCII characters for compare.\r
856 \r
17f695ed 857 @retval ==0 FirstString is identical to SecondString.\r
858 @retval !=0 FirstString is not identical to SecondString.\r
ac644614 859\r
860**/\r
861INTN\r
862EFIAPI\r
863AsciiStrnCmp (\r
864 IN CONST CHAR8 *FirstString,\r
865 IN CONST CHAR8 *SecondString,\r
866 IN UINTN Length\r
867 );\r
868\r
869\r
870/**\r
871 Concatenates one Null-terminated ASCII string to another Null-terminated\r
872 ASCII string, and returns the concatenated ASCII string.\r
873\r
874 This function concatenates two Null-terminated ASCII strings. The contents of\r
875 Null-terminated ASCII string Source are concatenated to the end of Null-\r
876 terminated ASCII string Destination. The Null-terminated concatenated ASCII\r
877 String is returned.\r
878\r
879 If Destination is NULL, then ASSERT().\r
880 If Source is NULL, then ASSERT().\r
881 If PcdMaximumAsciiStringLength is not zero and Destination contains more than\r
882 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
883 then ASSERT().\r
884 If PcdMaximumAsciiStringLength is not zero and Source contains more than\r
885 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
886 then ASSERT().\r
887 If PcdMaximumAsciiStringLength is not zero and concatenating Destination and\r
888 Source results in a ASCII string with more than PcdMaximumAsciiStringLength\r
889 ASCII characters, then ASSERT().\r
890\r
891 @param Destination Pointer to a Null-terminated ASCII string.\r
892 @param Source Pointer to a Null-terminated ASCII string.\r
893\r
894 @return Destination\r
895\r
896**/\r
897CHAR8 *\r
898EFIAPI\r
899AsciiStrCat (\r
900 IN OUT CHAR8 *Destination,\r
901 IN CONST CHAR8 *Source\r
902 );\r
903\r
904\r
905/**\r
17f695ed 906 Concatenates up to a specified length one Null-terminated ASCII string to \r
907 the end of another Null-terminated ASCII string, and returns the \r
908 concatenated ASCII string.\r
ac644614 909\r
910 This function concatenates two Null-terminated ASCII strings. The contents\r
911 of Null-terminated ASCII string Source are concatenated to the end of Null-\r
912 terminated ASCII string Destination, and Destination is returned. At most,\r
913 Length ASCII characters are concatenated from Source to the end of\r
914 Destination, and Destination is always Null-terminated. If Length is 0, then\r
915 Destination is returned unmodified. If Source and Destination overlap, then\r
916 the results are undefined.\r
917\r
918 If Length > 0 and Destination is NULL, then ASSERT().\r
919 If Length > 0 and Source is NULL, then ASSERT().\r
920 If Source and Destination overlap, then ASSERT().\r
50c247fd 921 If PcdMaximumAsciiStringLength is not zero, and Length is greater than\r
922 PcdMaximumAsciiStringLength, then ASSERT().\r
ac644614 923 If PcdMaximumAsciiStringLength is not zero, and Destination contains more than\r
50c247fd 924 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 925 then ASSERT().\r
926 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
50c247fd 927 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 928 then ASSERT().\r
929 If PcdMaximumAsciiStringLength is not zero, and concatenating Destination and\r
930 Source results in a ASCII string with more than PcdMaximumAsciiStringLength\r
50c247fd 931 ASCII characters, not including the Null-terminator, then ASSERT().\r
ac644614 932\r
933 @param Destination Pointer to a Null-terminated ASCII string.\r
934 @param Source Pointer to a Null-terminated ASCII string.\r
935 @param Length Maximum number of ASCII characters to concatenate from\r
936 Source.\r
937\r
938 @return Destination\r
939\r
940**/\r
941CHAR8 *\r
942EFIAPI\r
943AsciiStrnCat (\r
944 IN OUT CHAR8 *Destination,\r
945 IN CONST CHAR8 *Source,\r
946 IN UINTN Length\r
947 );\r
948\r
949\r
950/**\r
9aa049d9 951 Returns the first occurrence of a Null-terminated ASCII sub-string\r
ac644614 952 in a Null-terminated ASCII string.\r
953\r
954 This function scans the contents of the ASCII string specified by String\r
955 and returns the first occurrence of SearchString. If SearchString is not\r
956 found in String, then NULL is returned. If the length of SearchString is zero,\r
957 then String is returned.\r
958\r
959 If String is NULL, then ASSERT().\r
960 If SearchString is NULL, then ASSERT().\r
961\r
962 If PcdMaximumAsciiStringLength is not zero, and SearchString or\r
963 String contains more than PcdMaximumAsciiStringLength Unicode characters\r
964 not including the Null-terminator, then ASSERT().\r
965\r
1106ffe1 966 @param String Pointer to a Null-terminated ASCII string.\r
967 @param SearchString Pointer to a Null-terminated ASCII string to search for.\r
ac644614 968\r
969 @retval NULL If the SearchString does not appear in String.\r
17f695ed 970 @retval others If there is a match return the first occurrence of SearchingString.\r
9aa049d9 971 If the length of SearchString is zero,return String.\r
ac644614 972\r
973**/\r
974CHAR8 *\r
975EFIAPI\r
976AsciiStrStr (\r
17f695ed 977 IN CONST CHAR8 *String,\r
978 IN CONST CHAR8 *SearchString\r
ac644614 979 );\r
980\r
981\r
982/**\r
983 Convert a Null-terminated ASCII decimal string to a value of type\r
984 UINTN.\r
985\r
986 This function returns a value of type UINTN by interpreting the contents\r
987 of the ASCII string String as a decimal number. The format of the input\r
988 ASCII string String is:\r
989\r
990 [spaces] [decimal digits].\r
991\r
992 The valid decimal digit character is in the range [0-9]. The function will\r
993 ignore the pad space, which includes spaces or tab characters, before the digits.\r
994 The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
995 function stops at the first character that is a not a valid decimal character or\r
996 Null-terminator, whichever on comes first.\r
997\r
998 If String has only pad spaces, then 0 is returned.\r
999 If String has no pad spaces or valid decimal digits, then 0 is returned.\r
1000 If the number represented by String overflows according to the range defined by\r
1001 UINTN, then ASSERT().\r
1002 If String is NULL, then ASSERT().\r
1003 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
1004 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1005 then ASSERT().\r
1006\r
17f695ed 1007 @param String Pointer to a Null-terminated ASCII string.\r
ac644614 1008\r
38bbd3d9 1009 @retval Value translated from String.\r
ac644614 1010\r
1011**/\r
1012UINTN\r
1013EFIAPI\r
1014AsciiStrDecimalToUintn (\r
1015 IN CONST CHAR8 *String\r
1016 );\r
1017\r
1018\r
1019/**\r
1020 Convert a Null-terminated ASCII decimal string to a value of type\r
1021 UINT64.\r
1022\r
1023 This function returns a value of type UINT64 by interpreting the contents\r
1024 of the ASCII string String as a decimal number. The format of the input\r
1025 ASCII string String is:\r
1026\r
1027 [spaces] [decimal digits].\r
1028\r
1029 The valid decimal digit character is in the range [0-9]. The function will\r
1030 ignore the pad space, which includes spaces or tab characters, before the digits.\r
1031 The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
1032 function stops at the first character that is a not a valid decimal character or\r
1033 Null-terminator, whichever on comes first.\r
1034\r
1035 If String has only pad spaces, then 0 is returned.\r
1036 If String has no pad spaces or valid decimal digits, then 0 is returned.\r
1037 If the number represented by String overflows according to the range defined by\r
1038 UINT64, then ASSERT().\r
1039 If String is NULL, then ASSERT().\r
1040 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
1041 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1042 then ASSERT().\r
1043\r
17f695ed 1044 @param String Pointer to a Null-terminated ASCII string.\r
ac644614 1045\r
38bbd3d9 1046 @retval Value translated from String.\r
ac644614 1047\r
1048**/\r
1049UINT64\r
1050EFIAPI\r
1051AsciiStrDecimalToUint64 (\r
17f695ed 1052 IN CONST CHAR8 *String\r
ac644614 1053 );\r
1054\r
1055\r
1056/**\r
1057 Convert a Null-terminated ASCII hexadecimal string to a value of type UINTN.\r
1058\r
1059 This function returns a value of type UINTN by interpreting the contents of\r
1060 the ASCII string String as a hexadecimal number. The format of the input ASCII\r
1061 string String is:\r
1062\r
1063 [spaces][zeros][x][hexadecimal digits].\r
1064\r
1065 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
1066 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
1067 appears in the input string, it must be prefixed with at least one 0. The function\r
1068 will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
1069 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
1070 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
1071 digit. Then, the function stops at the first character that is a not a valid\r
1072 hexadecimal character or Null-terminator, whichever on comes first.\r
1073\r
1074 If String has only pad spaces, then 0 is returned.\r
1075 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
1076 0 is returned.\r
1077\r
1078 If the number represented by String overflows according to the range defined by UINTN,\r
1079 then ASSERT().\r
1080 If String is NULL, then ASSERT().\r
1081 If PcdMaximumAsciiStringLength is not zero,\r
1082 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
1083 the Null-terminator, then ASSERT().\r
1084\r
17f695ed 1085 @param String Pointer to a Null-terminated ASCII string.\r
ac644614 1086\r
38bbd3d9 1087 @retval Value translated from String.\r
ac644614 1088\r
1089**/\r
1090UINTN\r
1091EFIAPI\r
1092AsciiStrHexToUintn (\r
17f695ed 1093 IN CONST CHAR8 *String\r
ac644614 1094 );\r
1095\r
1096\r
1097/**\r
1098 Convert a Null-terminated ASCII hexadecimal string to a value of type UINT64.\r
1099\r
1100 This function returns a value of type UINT64 by interpreting the contents of\r
1101 the ASCII string String as a hexadecimal number. The format of the input ASCII\r
1102 string String is:\r
1103\r
1104 [spaces][zeros][x][hexadecimal digits].\r
1105\r
1106 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
1107 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
1108 appears in the input string, it must be prefixed with at least one 0. The function\r
1109 will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
1110 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
1111 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
1112 digit. Then, the function stops at the first character that is a not a valid\r
1113 hexadecimal character or Null-terminator, whichever on comes first.\r
1114\r
1115 If String has only pad spaces, then 0 is returned.\r
1116 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
1117 0 is returned.\r
1118\r
1119 If the number represented by String overflows according to the range defined by UINT64,\r
1120 then ASSERT().\r
1121 If String is NULL, then ASSERT().\r
1122 If PcdMaximumAsciiStringLength is not zero,\r
1123 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
1124 the Null-terminator, then ASSERT().\r
1125\r
17f695ed 1126 @param String Pointer to a Null-terminated ASCII string.\r
ac644614 1127\r
38bbd3d9 1128 @retval Value translated from String.\r
ac644614 1129\r
1130**/\r
1131UINT64\r
1132EFIAPI\r
1133AsciiStrHexToUint64 (\r
17f695ed 1134 IN CONST CHAR8 *String\r
ac644614 1135 );\r
1136\r
1137\r
1138/**\r
1139 Convert one Null-terminated ASCII string to a Null-terminated\r
1140 Unicode string and returns the Unicode string.\r
1141\r
1142 This function converts the contents of the ASCII string Source to the Unicode\r
1143 string Destination, and returns Destination. The function terminates the\r
1144 Unicode string Destination by appending a Null-terminator character at the end.\r
1145 The caller is responsible to make sure Destination points to a buffer with size\r
1146 equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.\r
1147\r
1148 If Destination is NULL, then ASSERT().\r
1149 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1150 If Source is NULL, then ASSERT().\r
1151 If Source and Destination overlap, then ASSERT().\r
1152 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
1153 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1154 then ASSERT().\r
1155 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
1156 PcdMaximumUnicodeStringLength ASCII characters not including the\r
1157 Null-terminator, then ASSERT().\r
1158\r
1159 @param Source Pointer to a Null-terminated ASCII string.\r
1160 @param Destination Pointer to a Null-terminated Unicode string.\r
1161\r
9aa049d9 1162 @return Destination.\r
ac644614 1163\r
1164**/\r
1165CHAR16 *\r
1166EFIAPI\r
1167AsciiStrToUnicodeStr (\r
17f695ed 1168 IN CONST CHAR8 *Source,\r
1169 OUT CHAR16 *Destination\r
ac644614 1170 );\r
1171\r
1172\r
1173/**\r
1174 Converts an 8-bit value to an 8-bit BCD value.\r
1175\r
1176 Converts the 8-bit value specified by Value to BCD. The BCD value is\r
1177 returned.\r
1178\r
1179 If Value >= 100, then ASSERT().\r
1180\r
1181 @param Value The 8-bit value to convert to BCD. Range 0..99.\r
1182\r
9aa049d9 1183 @return The BCD value.\r
ac644614 1184\r
1185**/\r
1186UINT8\r
1187EFIAPI\r
1188DecimalToBcd8 (\r
1189 IN UINT8 Value\r
1190 );\r
1191\r
1192\r
1193/**\r
1194 Converts an 8-bit BCD value to an 8-bit value.\r
1195\r
1196 Converts the 8-bit BCD value specified by Value to an 8-bit value. The 8-bit\r
1197 value is returned.\r
1198\r
1199 If Value >= 0xA0, then ASSERT().\r
1200 If (Value & 0x0F) >= 0x0A, then ASSERT().\r
1201\r
1202 @param Value The 8-bit BCD value to convert to an 8-bit value.\r
1203\r
1204 @return The 8-bit value is returned.\r
1205\r
1206**/\r
1207UINT8\r
1208EFIAPI\r
1209BcdToDecimal8 (\r
1210 IN UINT8 Value\r
1211 );\r
1212\r
1213\r
1214//\r
1215// Linked List Functions and Macros\r
1216//\r
1217\r
1218/**\r
1219 Initializes the head node of a doubly linked list that is declared as a\r
1220 global variable in a module.\r
1221\r
1222 Initializes the forward and backward links of a new linked list. After\r
1223 initializing a linked list with this macro, the other linked list functions\r
1224 may be used to add and remove nodes from the linked list. This macro results\r
1225 in smaller executables by initializing the linked list in the data section,\r
1226 instead if calling the InitializeListHead() function to perform the\r
1227 equivalent operation.\r
1228\r
77f863ee 1229 @param ListHead The head note of a list to initialize.\r
ac644614 1230\r
1231**/\r
17f695ed 1232#define INITIALIZE_LIST_HEAD_VARIABLE(ListHead) {&(ListHead), &(ListHead)}\r
ac644614 1233\r
1234\r
1235/**\r
1236 Initializes the head node of a doubly linked list, and returns the pointer to\r
1237 the head node of the doubly linked list.\r
1238\r
1239 Initializes the forward and backward links of a new linked list. After\r
1240 initializing a linked list with this function, the other linked list\r
1241 functions may be used to add and remove nodes from the linked list. It is up\r
1242 to the caller of this function to allocate the memory for ListHead.\r
1243\r
1244 If ListHead is NULL, then ASSERT().\r
1245\r
1246 @param ListHead A pointer to the head node of a new doubly linked list.\r
1247\r
1248 @return ListHead\r
1249\r
1250**/\r
1251LIST_ENTRY *\r
1252EFIAPI\r
1253InitializeListHead (\r
aa0583c7 1254 IN OUT LIST_ENTRY *ListHead\r
ac644614 1255 );\r
1256\r
1257\r
1258/**\r
1259 Adds a node to the beginning of a doubly linked list, and returns the pointer\r
1260 to the head node of the doubly linked list.\r
1261\r
1262 Adds the node Entry at the beginning of the doubly linked list denoted by\r
1263 ListHead, and returns ListHead.\r
1264\r
1265 If ListHead is NULL, then ASSERT().\r
1266 If Entry is NULL, then ASSERT().\r
17f695ed 1267 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
1268 InitializeListHead(), then ASSERT().\r
ac644614 1269 If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number\r
1270 of nodes in ListHead, including the ListHead node, is greater than or\r
1271 equal to PcdMaximumLinkedListLength, then ASSERT().\r
1272\r
1273 @param ListHead A pointer to the head node of a doubly linked list.\r
1274 @param Entry A pointer to a node that is to be inserted at the beginning\r
1275 of a doubly linked list.\r
1276\r
1277 @return ListHead\r
1278\r
1279**/\r
1280LIST_ENTRY *\r
1281EFIAPI\r
1282InsertHeadList (\r
aa0583c7 1283 IN OUT LIST_ENTRY *ListHead,\r
1284 IN OUT LIST_ENTRY *Entry\r
ac644614 1285 );\r
1286\r
1287\r
1288/**\r
1289 Adds a node to the end of a doubly linked list, and returns the pointer to\r
1290 the head node of the doubly linked list.\r
1291\r
1292 Adds the node Entry to the end of the doubly linked list denoted by ListHead,\r
1293 and returns ListHead.\r
1294\r
1295 If ListHead is NULL, then ASSERT().\r
1296 If Entry is NULL, then ASSERT().\r
17f695ed 1297 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1298 InitializeListHead(), then ASSERT().\r
ac644614 1299 If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number\r
1300 of nodes in ListHead, including the ListHead node, is greater than or\r
1301 equal to PcdMaximumLinkedListLength, then ASSERT().\r
1302\r
1303 @param ListHead A pointer to the head node of a doubly linked list.\r
1304 @param Entry A pointer to a node that is to be added at the end of the\r
1305 doubly linked list.\r
1306\r
1307 @return ListHead\r
1308\r
1309**/\r
1310LIST_ENTRY *\r
1311EFIAPI\r
1312InsertTailList (\r
aa0583c7 1313 IN OUT LIST_ENTRY *ListHead,\r
1314 IN OUT LIST_ENTRY *Entry\r
ac644614 1315 );\r
1316\r
1317\r
1318/**\r
1319 Retrieves the first node of a doubly linked list.\r
1320\r
17f695ed 1321 Returns the first node of a doubly linked list. List must have been \r
1322 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
1323 If List is empty, then List is returned.\r
ac644614 1324\r
1325 If List is NULL, then ASSERT().\r
17f695ed 1326 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1327 InitializeListHead(), then ASSERT().\r
ac644614 1328 If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
1329 in List, including the List node, is greater than or equal to\r
1330 PcdMaximumLinkedListLength, then ASSERT().\r
1331\r
1332 @param List A pointer to the head node of a doubly linked list.\r
1333\r
1334 @return The first node of a doubly linked list.\r
1335 @retval NULL The list is empty.\r
1336\r
1337**/\r
1338LIST_ENTRY *\r
1339EFIAPI\r
1340GetFirstNode (\r
1341 IN CONST LIST_ENTRY *List\r
1342 );\r
1343\r
1344\r
1345/**\r
1346 Retrieves the next node of a doubly linked list.\r
1347\r
17f695ed 1348 Returns the node of a doubly linked list that follows Node. \r
1349 List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()\r
1350 or InitializeListHead(). If List is empty, then List is returned.\r
ac644614 1351\r
1352 If List is NULL, then ASSERT().\r
1353 If Node is NULL, then ASSERT().\r
17f695ed 1354 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1355 InitializeListHead(), then ASSERT().\r
ac644614 1356 If PcdMaximumLinkedListLenth is not zero, and List contains more than\r
1357 PcdMaximumLinkedListLenth nodes, then ASSERT().\r
1358 If Node is not a node in List, then ASSERT().\r
1359\r
1360 @param List A pointer to the head node of a doubly linked list.\r
1361 @param Node A pointer to a node in the doubly linked list.\r
1362\r
1363 @return Pointer to the next node if one exists. Otherwise a null value which\r
1364 is actually List is returned.\r
1365\r
1366**/\r
1367LIST_ENTRY *\r
1368EFIAPI\r
1369GetNextNode (\r
1370 IN CONST LIST_ENTRY *List,\r
1371 IN CONST LIST_ENTRY *Node\r
1372 );\r
1373\r
1374\r
1375/**\r
1376 Checks to see if a doubly linked list is empty or not.\r
1377\r
1378 Checks to see if the doubly linked list is empty. If the linked list contains\r
1379 zero nodes, this function returns TRUE. Otherwise, it returns FALSE.\r
1380\r
1381 If ListHead is NULL, then ASSERT().\r
17f695ed 1382 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1383 InitializeListHead(), then ASSERT().\r
ac644614 1384 If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
1385 in List, including the List node, is greater than or equal to\r
1386 PcdMaximumLinkedListLength, then ASSERT().\r
1387\r
1388 @param ListHead A pointer to the head node of a doubly linked list.\r
1389\r
1390 @retval TRUE The linked list is empty.\r
1391 @retval FALSE The linked list is not empty.\r
1392\r
1393**/\r
1394BOOLEAN\r
1395EFIAPI\r
1396IsListEmpty (\r
1397 IN CONST LIST_ENTRY *ListHead\r
1398 );\r
1399\r
1400\r
1401/**\r
aa0583c7 1402 Determines if a node in a doubly linked list is the head node of a the same\r
1403 doubly linked list. This function is typically used to terminate a loop that\r
1404 traverses all the nodes in a doubly linked list starting with the head node.\r
ac644614 1405\r
aa0583c7 1406 Returns TRUE if Node is equal to List. Returns FALSE if Node is one of the\r
1407 nodes in the doubly linked list specified by List. List must have been\r
17f695ed 1408 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
ac644614 1409\r
1410 If List is NULL, then ASSERT().\r
1411 If Node is NULL, then ASSERT().\r
17f695ed 1412 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(), \r
1413 then ASSERT().\r
ac644614 1414 If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
1415 in List, including the List node, is greater than or equal to\r
1416 PcdMaximumLinkedListLength, then ASSERT().\r
1417 If Node is not a node in List and Node is not equal to List, then ASSERT().\r
1418\r
1419 @param List A pointer to the head node of a doubly linked list.\r
1420 @param Node A pointer to a node in the doubly linked list.\r
1421\r
1422 @retval TRUE Node is one of the nodes in the doubly linked list.\r
1423 @retval FALSE Node is not one of the nodes in the doubly linked list.\r
1424\r
1425**/\r
1426BOOLEAN\r
1427EFIAPI\r
1428IsNull (\r
1429 IN CONST LIST_ENTRY *List,\r
1430 IN CONST LIST_ENTRY *Node\r
1431 );\r
1432\r
1433\r
1434/**\r
1435 Determines if a node the last node in a doubly linked list.\r
1436\r
1437 Returns TRUE if Node is the last node in the doubly linked list specified by\r
1438 List. Otherwise, FALSE is returned. List must have been initialized with\r
17f695ed 1439 INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
ac644614 1440\r
1441 If List is NULL, then ASSERT().\r
1442 If Node is NULL, then ASSERT().\r
17f695ed 1443 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
1444 InitializeListHead(), then ASSERT().\r
ac644614 1445 If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
1446 in List, including the List node, is greater than or equal to\r
1447 PcdMaximumLinkedListLength, then ASSERT().\r
1448 If Node is not a node in List, then ASSERT().\r
1449\r
1450 @param List A pointer to the head node of a doubly linked list.\r
1451 @param Node A pointer to a node in the doubly linked list.\r
1452\r
1453 @retval TRUE Node is the last node in the linked list.\r
1454 @retval FALSE Node is not the last node in the linked list.\r
1455\r
1456**/\r
1457BOOLEAN\r
1458EFIAPI\r
1459IsNodeAtEnd (\r
1460 IN CONST LIST_ENTRY *List,\r
1461 IN CONST LIST_ENTRY *Node\r
1462 );\r
1463\r
1464\r
1465/**\r
1466 Swaps the location of two nodes in a doubly linked list, and returns the\r
1467 first node after the swap.\r
1468\r
1469 If FirstEntry is identical to SecondEntry, then SecondEntry is returned.\r
1470 Otherwise, the location of the FirstEntry node is swapped with the location\r
1471 of the SecondEntry node in a doubly linked list. SecondEntry must be in the\r
1472 same double linked list as FirstEntry and that double linked list must have\r
17f695ed 1473 been initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(). \r
1474 SecondEntry is returned after the nodes are swapped.\r
ac644614 1475\r
1476 If FirstEntry is NULL, then ASSERT().\r
1477 If SecondEntry is NULL, then ASSERT().\r
1478 If SecondEntry and FirstEntry are not in the same linked list, then ASSERT().\r
1479 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
1480 linked list containing the FirstEntry and SecondEntry nodes, including\r
1481 the FirstEntry and SecondEntry nodes, is greater than or equal to\r
1482 PcdMaximumLinkedListLength, then ASSERT().\r
1483\r
1484 @param FirstEntry A pointer to a node in a linked list.\r
1485 @param SecondEntry A pointer to another node in the same linked list.\r
38bbd3d9 1486 \r
9aa049d9 1487 @return SecondEntry.\r
ac644614 1488\r
1489**/\r
1490LIST_ENTRY *\r
1491EFIAPI\r
1492SwapListEntries (\r
aa0583c7 1493 IN OUT LIST_ENTRY *FirstEntry,\r
1494 IN OUT LIST_ENTRY *SecondEntry\r
ac644614 1495 );\r
1496\r
1497\r
1498/**\r
1499 Removes a node from a doubly linked list, and returns the node that follows\r
1500 the removed node.\r
1501\r
1502 Removes the node Entry from a doubly linked list. It is up to the caller of\r
1503 this function to release the memory used by this node if that is required. On\r
1504 exit, the node following Entry in the doubly linked list is returned. If\r
1505 Entry is the only node in the linked list, then the head node of the linked\r
1506 list is returned.\r
1507\r
1508 If Entry is NULL, then ASSERT().\r
1509 If Entry is the head node of an empty list, then ASSERT().\r
1510 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
1511 linked list containing Entry, including the Entry node, is greater than\r
1512 or equal to PcdMaximumLinkedListLength, then ASSERT().\r
1513\r
9aa049d9 1514 @param Entry A pointer to a node in a linked list.\r
ac644614 1515\r
9aa049d9 1516 @return Entry.\r
ac644614 1517\r
1518**/\r
1519LIST_ENTRY *\r
1520EFIAPI\r
1521RemoveEntryList (\r
1522 IN CONST LIST_ENTRY *Entry\r
1523 );\r
1524\r
1525//\r
1526// Math Services\r
1527//\r
1528\r
1529/**\r
1530 Shifts a 64-bit integer left between 0 and 63 bits. The low bits are filled\r
1531 with zeros. The shifted value is returned.\r
1532\r
1533 This function shifts the 64-bit value Operand to the left by Count bits. The\r
1534 low Count bits are set to zero. The shifted value is returned.\r
1535\r
1536 If Count is greater than 63, then ASSERT().\r
1537\r
1538 @param Operand The 64-bit operand to shift left.\r
1539 @param Count The number of bits to shift left.\r
1540\r
9aa049d9 1541 @return Operand << Count.\r
ac644614 1542\r
1543**/\r
1544UINT64\r
1545EFIAPI\r
1546LShiftU64 (\r
1547 IN UINT64 Operand,\r
1548 IN UINTN Count\r
1549 );\r
1550\r
1551\r
1552/**\r
1553 Shifts a 64-bit integer right between 0 and 63 bits. This high bits are\r
1554 filled with zeros. The shifted value is returned.\r
1555\r
1556 This function shifts the 64-bit value Operand to the right by Count bits. The\r
1557 high Count bits are set to zero. The shifted value is returned.\r
1558\r
1559 If Count is greater than 63, then ASSERT().\r
1560\r
1561 @param Operand The 64-bit operand to shift right.\r
1562 @param Count The number of bits to shift right.\r
1563\r
1564 @return Operand >> Count\r
1565\r
1566**/\r
1567UINT64\r
1568EFIAPI\r
1569RShiftU64 (\r
1570 IN UINT64 Operand,\r
1571 IN UINTN Count\r
1572 );\r
1573\r
1574\r
1575/**\r
1576 Shifts a 64-bit integer right between 0 and 63 bits. The high bits are filled\r
1577 with original integer's bit 63. The shifted value is returned.\r
1578\r
1579 This function shifts the 64-bit value Operand to the right by Count bits. The\r
1580 high Count bits are set to bit 63 of Operand. The shifted value is returned.\r
1581\r
1582 If Count is greater than 63, then ASSERT().\r
1583\r
1584 @param Operand The 64-bit operand to shift right.\r
1585 @param Count The number of bits to shift right.\r
1586\r
1587 @return Operand >> Count\r
1588\r
1589**/\r
1590UINT64\r
1591EFIAPI\r
1592ARShiftU64 (\r
1593 IN UINT64 Operand,\r
1594 IN UINTN Count\r
1595 );\r
1596\r
1597\r
1598/**\r
1599 Rotates a 32-bit integer left between 0 and 31 bits, filling the low bits\r
1600 with the high bits that were rotated.\r
1601\r
1602 This function rotates the 32-bit value Operand to the left by Count bits. The\r
1603 low Count bits are fill with the high Count bits of Operand. The rotated\r
1604 value is returned.\r
1605\r
1606 If Count is greater than 31, then ASSERT().\r
1607\r
1608 @param Operand The 32-bit operand to rotate left.\r
1609 @param Count The number of bits to rotate left.\r
1610\r
17f695ed 1611 @return Operand << Count\r
ac644614 1612\r
1613**/\r
1614UINT32\r
1615EFIAPI\r
1616LRotU32 (\r
1617 IN UINT32 Operand,\r
1618 IN UINTN Count\r
1619 );\r
1620\r
1621\r
1622/**\r
1623 Rotates a 32-bit integer right between 0 and 31 bits, filling the high bits\r
1624 with the low bits that were rotated.\r
1625\r
1626 This function rotates the 32-bit value Operand to the right by Count bits.\r
1627 The high Count bits are fill with the low Count bits of Operand. The rotated\r
1628 value is returned.\r
1629\r
1630 If Count is greater than 31, then ASSERT().\r
1631\r
1632 @param Operand The 32-bit operand to rotate right.\r
1633 @param Count The number of bits to rotate right.\r
1634\r
2fe241a2 1635 @return Operand >> Count\r
ac644614 1636\r
1637**/\r
1638UINT32\r
1639EFIAPI\r
1640RRotU32 (\r
1641 IN UINT32 Operand,\r
1642 IN UINTN Count\r
1643 );\r
1644\r
1645\r
1646/**\r
1647 Rotates a 64-bit integer left between 0 and 63 bits, filling the low bits\r
1648 with the high bits that were rotated.\r
1649\r
1650 This function rotates the 64-bit value Operand to the left by Count bits. The\r
1651 low Count bits are fill with the high Count bits of Operand. The rotated\r
1652 value is returned.\r
1653\r
1654 If Count is greater than 63, then ASSERT().\r
1655\r
1656 @param Operand The 64-bit operand to rotate left.\r
1657 @param Count The number of bits to rotate left.\r
1658\r
17f695ed 1659 @return Operand << Count\r
ac644614 1660\r
1661**/\r
1662UINT64\r
1663EFIAPI\r
1664LRotU64 (\r
1665 IN UINT64 Operand,\r
1666 IN UINTN Count\r
1667 );\r
1668\r
1669\r
1670/**\r
1671 Rotates a 64-bit integer right between 0 and 63 bits, filling the high bits\r
1672 with the high low bits that were rotated.\r
1673\r
1674 This function rotates the 64-bit value Operand to the right by Count bits.\r
1675 The high Count bits are fill with the low Count bits of Operand. The rotated\r
1676 value is returned.\r
1677\r
1678 If Count is greater than 63, then ASSERT().\r
1679\r
1680 @param Operand The 64-bit operand to rotate right.\r
1681 @param Count The number of bits to rotate right.\r
1682\r
17f695ed 1683 @return Operand >> Count\r
ac644614 1684\r
1685**/\r
1686UINT64\r
1687EFIAPI\r
1688RRotU64 (\r
1689 IN UINT64 Operand,\r
1690 IN UINTN Count\r
1691 );\r
1692\r
1693\r
1694/**\r
1695 Returns the bit position of the lowest bit set in a 32-bit value.\r
1696\r
1697 This function computes the bit position of the lowest bit set in the 32-bit\r
1698 value specified by Operand. If Operand is zero, then -1 is returned.\r
1699 Otherwise, a value between 0 and 31 is returned.\r
1700\r
1701 @param Operand The 32-bit operand to evaluate.\r
1702\r
9aa049d9 1703 @retval 0..31 The lowest bit set in Operand was found.\r
17f695ed 1704 @retval -1 Operand is zero.\r
ac644614 1705\r
1706**/\r
1707INTN\r
1708EFIAPI\r
1709LowBitSet32 (\r
1710 IN UINT32 Operand\r
1711 );\r
1712\r
1713\r
1714/**\r
1715 Returns the bit position of the lowest bit set in a 64-bit value.\r
1716\r
1717 This function computes the bit position of the lowest bit set in the 64-bit\r
1718 value specified by Operand. If Operand is zero, then -1 is returned.\r
1719 Otherwise, a value between 0 and 63 is returned.\r
1720\r
1721 @param Operand The 64-bit operand to evaluate.\r
1722\r
9aa049d9 1723 @retval 0..63 The lowest bit set in Operand was found.\r
17f695ed 1724 @retval -1 Operand is zero.\r
1725\r
ac644614 1726\r
1727**/\r
1728INTN\r
1729EFIAPI\r
1730LowBitSet64 (\r
1731 IN UINT64 Operand\r
1732 );\r
1733\r
1734\r
1735/**\r
1736 Returns the bit position of the highest bit set in a 32-bit value. Equivalent\r
1737 to log2(x).\r
1738\r
1739 This function computes the bit position of the highest bit set in the 32-bit\r
1740 value specified by Operand. If Operand is zero, then -1 is returned.\r
1741 Otherwise, a value between 0 and 31 is returned.\r
1742\r
1743 @param Operand The 32-bit operand to evaluate.\r
1744\r
9aa049d9 1745 @retval 0..31 Position of the highest bit set in Operand if found.\r
17f695ed 1746 @retval -1 Operand is zero.\r
ac644614 1747\r
1748**/\r
1749INTN\r
1750EFIAPI\r
1751HighBitSet32 (\r
1752 IN UINT32 Operand\r
1753 );\r
1754\r
1755\r
1756/**\r
1757 Returns the bit position of the highest bit set in a 64-bit value. Equivalent\r
1758 to log2(x).\r
1759\r
1760 This function computes the bit position of the highest bit set in the 64-bit\r
1761 value specified by Operand. If Operand is zero, then -1 is returned.\r
1762 Otherwise, a value between 0 and 63 is returned.\r
1763\r
1764 @param Operand The 64-bit operand to evaluate.\r
1765\r
9aa049d9 1766 @retval 0..63 Position of the highest bit set in Operand if found.\r
17f695ed 1767 @retval -1 Operand is zero.\r
ac644614 1768\r
1769**/\r
1770INTN\r
1771EFIAPI\r
1772HighBitSet64 (\r
1773 IN UINT64 Operand\r
1774 );\r
1775\r
1776\r
1777/**\r
1778 Returns the value of the highest bit set in a 32-bit value. Equivalent to\r
17f695ed 1779 1 << log2(x).\r
ac644614 1780\r
1781 This function computes the value of the highest bit set in the 32-bit value\r
1782 specified by Operand. If Operand is zero, then zero is returned.\r
1783\r
1784 @param Operand The 32-bit operand to evaluate.\r
1785\r
1786 @return 1 << HighBitSet32(Operand)\r
1787 @retval 0 Operand is zero.\r
1788\r
1789**/\r
1790UINT32\r
1791EFIAPI\r
1792GetPowerOfTwo32 (\r
1793 IN UINT32 Operand\r
1794 );\r
1795\r
1796\r
1797/**\r
1798 Returns the value of the highest bit set in a 64-bit value. Equivalent to\r
17f695ed 1799 1 << log2(x).\r
ac644614 1800\r
1801 This function computes the value of the highest bit set in the 64-bit value\r
1802 specified by Operand. If Operand is zero, then zero is returned.\r
1803\r
1804 @param Operand The 64-bit operand to evaluate.\r
1805\r
1806 @return 1 << HighBitSet64(Operand)\r
1807 @retval 0 Operand is zero.\r
1808\r
1809**/\r
1810UINT64\r
1811EFIAPI\r
1812GetPowerOfTwo64 (\r
1813 IN UINT64 Operand\r
1814 );\r
1815\r
1816\r
1817/**\r
1818 Switches the endianess of a 16-bit integer.\r
1819\r
1820 This function swaps the bytes in a 16-bit unsigned value to switch the value\r
1821 from little endian to big endian or vice versa. The byte swapped value is\r
1822 returned.\r
1823\r
2a53dabf 1824 @param Value A 16-bit unsigned value.\r
ac644614 1825\r
efb23117 1826 @return The byte swapped Value.\r
ac644614 1827\r
1828**/\r
1829UINT16\r
1830EFIAPI\r
1831SwapBytes16 (\r
1832 IN UINT16 Value\r
1833 );\r
1834\r
1835\r
1836/**\r
1837 Switches the endianess of a 32-bit integer.\r
1838\r
1839 This function swaps the bytes in a 32-bit unsigned value to switch the value\r
1840 from little endian to big endian or vice versa. The byte swapped value is\r
1841 returned.\r
1842\r
2a53dabf 1843 @param Value A 32-bit unsigned value.\r
ac644614 1844\r
efb23117 1845 @return The byte swapped Value.\r
ac644614 1846\r
1847**/\r
1848UINT32\r
1849EFIAPI\r
1850SwapBytes32 (\r
1851 IN UINT32 Value\r
1852 );\r
1853\r
1854\r
1855/**\r
1856 Switches the endianess of a 64-bit integer.\r
1857\r
1858 This function swaps the bytes in a 64-bit unsigned value to switch the value\r
1859 from little endian to big endian or vice versa. The byte swapped value is\r
1860 returned.\r
1861\r
2a53dabf 1862 @param Value A 64-bit unsigned value.\r
ac644614 1863\r
efb23117 1864 @return The byte swapped Value.\r
ac644614 1865\r
1866**/\r
1867UINT64\r
1868EFIAPI\r
1869SwapBytes64 (\r
1870 IN UINT64 Value\r
1871 );\r
1872\r
1873\r
1874/**\r
1875 Multiples a 64-bit unsigned integer by a 32-bit unsigned integer and\r
1876 generates a 64-bit unsigned result.\r
1877\r
1878 This function multiples the 64-bit unsigned value Multiplicand by the 32-bit\r
1879 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
1880 bit unsigned result is returned.\r
1881\r
ac644614 1882 @param Multiplicand A 64-bit unsigned value.\r
1883 @param Multiplier A 32-bit unsigned value.\r
1884\r
1885 @return Multiplicand * Multiplier\r
1886\r
1887**/\r
1888UINT64\r
1889EFIAPI\r
1890MultU64x32 (\r
1891 IN UINT64 Multiplicand,\r
1892 IN UINT32 Multiplier\r
1893 );\r
1894\r
1895\r
1896/**\r
1897 Multiples a 64-bit unsigned integer by a 64-bit unsigned integer and\r
1898 generates a 64-bit unsigned result.\r
1899\r
1900 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit\r
1901 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
1902 bit unsigned result is returned.\r
1903\r
ac644614 1904 @param Multiplicand A 64-bit unsigned value.\r
1905 @param Multiplier A 64-bit unsigned value.\r
1906\r
1907 @return Multiplicand * Multiplier\r
1908\r
1909**/\r
1910UINT64\r
1911EFIAPI\r
1912MultU64x64 (\r
1913 IN UINT64 Multiplicand,\r
1914 IN UINT64 Multiplier\r
1915 );\r
1916\r
1917\r
1918/**\r
1919 Multiples a 64-bit signed integer by a 64-bit signed integer and generates a\r
1920 64-bit signed result.\r
1921\r
1922 This function multiples the 64-bit signed value Multiplicand by the 64-bit\r
1923 signed value Multiplier and generates a 64-bit signed result. This 64-bit\r
1924 signed result is returned.\r
1925\r
ac644614 1926 @param Multiplicand A 64-bit signed value.\r
1927 @param Multiplier A 64-bit signed value.\r
1928\r
1929 @return Multiplicand * Multiplier\r
1930\r
1931**/\r
1932INT64\r
1933EFIAPI\r
1934MultS64x64 (\r
1935 IN INT64 Multiplicand,\r
1936 IN INT64 Multiplier\r
1937 );\r
1938\r
1939\r
1940/**\r
1941 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
1942 a 64-bit unsigned result.\r
1943\r
1944 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
1945 unsigned value Divisor and generates a 64-bit unsigned quotient. This\r
1946 function returns the 64-bit unsigned quotient.\r
1947\r
1948 If Divisor is 0, then ASSERT().\r
1949\r
1950 @param Dividend A 64-bit unsigned value.\r
1951 @param Divisor A 32-bit unsigned value.\r
1952\r
1953 @return Dividend / Divisor\r
1954\r
1955**/\r
1956UINT64\r
1957EFIAPI\r
1958DivU64x32 (\r
1959 IN UINT64 Dividend,\r
1960 IN UINT32 Divisor\r
1961 );\r
1962\r
1963\r
1964/**\r
1965 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
1966 a 32-bit unsigned remainder.\r
1967\r
1968 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
1969 unsigned value Divisor and generates a 32-bit remainder. This function\r
1970 returns the 32-bit unsigned remainder.\r
1971\r
1972 If Divisor is 0, then ASSERT().\r
1973\r
1974 @param Dividend A 64-bit unsigned value.\r
1975 @param Divisor A 32-bit unsigned value.\r
1976\r
1977 @return Dividend % Divisor\r
1978\r
1979**/\r
1980UINT32\r
1981EFIAPI\r
1982ModU64x32 (\r
1983 IN UINT64 Dividend,\r
1984 IN UINT32 Divisor\r
1985 );\r
1986\r
1987\r
1988/**\r
1989 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
1990 a 64-bit unsigned result and an optional 32-bit unsigned remainder.\r
1991\r
1992 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
1993 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
1994 is not NULL, then the 32-bit unsigned remainder is returned in Remainder.\r
1995 This function returns the 64-bit unsigned quotient.\r
1996\r
1997 If Divisor is 0, then ASSERT().\r
1998\r
1999 @param Dividend A 64-bit unsigned value.\r
2000 @param Divisor A 32-bit unsigned value.\r
2001 @param Remainder A pointer to a 32-bit unsigned value. This parameter is\r
2002 optional and may be NULL.\r
2003\r
2004 @return Dividend / Divisor\r
2005\r
2006**/\r
2007UINT64\r
2008EFIAPI\r
2009DivU64x32Remainder (\r
2010 IN UINT64 Dividend,\r
2011 IN UINT32 Divisor,\r
2012 OUT UINT32 *Remainder OPTIONAL\r
2013 );\r
2014\r
2015\r
2016/**\r
2017 Divides a 64-bit unsigned integer by a 64-bit unsigned integer and generates\r
2018 a 64-bit unsigned result and an optional 64-bit unsigned remainder.\r
2019\r
2020 This function divides the 64-bit unsigned value Dividend by the 64-bit\r
2021 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
2022 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.\r
2023 This function returns the 64-bit unsigned quotient.\r
2024\r
2025 If Divisor is 0, then ASSERT().\r
2026\r
2027 @param Dividend A 64-bit unsigned value.\r
2028 @param Divisor A 64-bit unsigned value.\r
2029 @param Remainder A pointer to a 64-bit unsigned value. This parameter is\r
2030 optional and may be NULL.\r
2031\r
2032 @return Dividend / Divisor\r
2033\r
2034**/\r
2035UINT64\r
2036EFIAPI\r
2037DivU64x64Remainder (\r
2038 IN UINT64 Dividend,\r
2039 IN UINT64 Divisor,\r
2040 OUT UINT64 *Remainder OPTIONAL\r
2041 );\r
2042\r
2043\r
2044/**\r
2045 Divides a 64-bit signed integer by a 64-bit signed integer and generates a\r
2046 64-bit signed result and a optional 64-bit signed remainder.\r
2047\r
2048 This function divides the 64-bit signed value Dividend by the 64-bit signed\r
2049 value Divisor and generates a 64-bit signed quotient. If Remainder is not\r
2050 NULL, then the 64-bit signed remainder is returned in Remainder. This\r
2051 function returns the 64-bit signed quotient.\r
2052\r
9aa049d9 2053 It is the caller's responsibility to not call this function with a Divisor of 0.\r
17f695ed 2054 If Divisor is 0, then the quotient and remainder should be assumed to be \r
2055 the largest negative integer.\r
2056\r
ac644614 2057 If Divisor is 0, then ASSERT().\r
2058\r
2059 @param Dividend A 64-bit signed value.\r
2060 @param Divisor A 64-bit signed value.\r
2061 @param Remainder A pointer to a 64-bit signed value. This parameter is\r
2062 optional and may be NULL.\r
2063\r
2064 @return Dividend / Divisor\r
2065\r
2066**/\r
2067INT64\r
2068EFIAPI\r
2069DivS64x64Remainder (\r
2070 IN INT64 Dividend,\r
2071 IN INT64 Divisor,\r
2072 OUT INT64 *Remainder OPTIONAL\r
2073 );\r
2074\r
2075\r
2076/**\r
2077 Reads a 16-bit value from memory that may be unaligned.\r
2078\r
2079 This function returns the 16-bit value pointed to by Buffer. The function\r
2080 guarantees that the read operation does not produce an alignment fault.\r
2081\r
2082 If the Buffer is NULL, then ASSERT().\r
2083\r
5385a579 2084 @param Buffer Pointer to a 16-bit value that may be unaligned.\r
ac644614 2085\r
5385a579 2086 @return The 16-bit value read from Buffer.\r
ac644614 2087\r
2088**/\r
2089UINT16\r
2090EFIAPI\r
2091ReadUnaligned16 (\r
5385a579 2092 IN CONST UINT16 *Buffer\r
ac644614 2093 );\r
2094\r
2095\r
2096/**\r
2097 Writes a 16-bit value to memory that may be unaligned.\r
2098\r
2099 This function writes the 16-bit value specified by Value to Buffer. Value is\r
2100 returned. The function guarantees that the write operation does not produce\r
2101 an alignment fault.\r
2102\r
2103 If the Buffer is NULL, then ASSERT().\r
2104\r
5385a579 2105 @param Buffer Pointer to a 16-bit value that may be unaligned.\r
ac644614 2106 @param Value 16-bit value to write to Buffer.\r
2107\r
5385a579 2108 @return The 16-bit value to write to Buffer.\r
ac644614 2109\r
2110**/\r
2111UINT16\r
2112EFIAPI\r
2113WriteUnaligned16 (\r
5385a579 2114 OUT UINT16 *Buffer,\r
2115 IN UINT16 Value\r
ac644614 2116 );\r
2117\r
2118\r
2119/**\r
2120 Reads a 24-bit value from memory that may be unaligned.\r
2121\r
2122 This function returns the 24-bit value pointed to by Buffer. The function\r
2123 guarantees that the read operation does not produce an alignment fault.\r
2124\r
2125 If the Buffer is NULL, then ASSERT().\r
2126\r
2127 @param Buffer Pointer to a 24-bit value that may be unaligned.\r
2128\r
5385a579 2129 @return The 24-bit value read from Buffer.\r
ac644614 2130\r
2131**/\r
2132UINT32\r
2133EFIAPI\r
2134ReadUnaligned24 (\r
5385a579 2135 IN CONST UINT32 *Buffer\r
ac644614 2136 );\r
2137\r
2138\r
2139/**\r
2140 Writes a 24-bit value to memory that may be unaligned.\r
2141\r
2142 This function writes the 24-bit value specified by Value to Buffer. Value is\r
2143 returned. The function guarantees that the write operation does not produce\r
2144 an alignment fault.\r
2145\r
2146 If the Buffer is NULL, then ASSERT().\r
2147\r
2148 @param Buffer Pointer to a 24-bit value that may be unaligned.\r
2149 @param Value 24-bit value to write to Buffer.\r
2150\r
5385a579 2151 @return The 24-bit value to write to Buffer.\r
ac644614 2152\r
2153**/\r
2154UINT32\r
2155EFIAPI\r
2156WriteUnaligned24 (\r
5385a579 2157 OUT UINT32 *Buffer,\r
2158 IN UINT32 Value\r
ac644614 2159 );\r
2160\r
2161\r
2162/**\r
2163 Reads a 32-bit value from memory that may be unaligned.\r
2164\r
2165 This function returns the 32-bit value pointed to by Buffer. The function\r
2166 guarantees that the read operation does not produce an alignment fault.\r
2167\r
2168 If the Buffer is NULL, then ASSERT().\r
2169\r
5385a579 2170 @param Buffer Pointer to a 32-bit value that may be unaligned.\r
ac644614 2171\r
5385a579 2172 @return The 32-bit value read from Buffer.\r
ac644614 2173\r
2174**/\r
2175UINT32\r
2176EFIAPI\r
2177ReadUnaligned32 (\r
5385a579 2178 IN CONST UINT32 *Buffer\r
ac644614 2179 );\r
2180\r
2181\r
2182/**\r
2183 Writes a 32-bit value to memory that may be unaligned.\r
2184\r
2185 This function writes the 32-bit value specified by Value to Buffer. Value is\r
2186 returned. The function guarantees that the write operation does not produce\r
2187 an alignment fault.\r
2188\r
2189 If the Buffer is NULL, then ASSERT().\r
2190\r
5385a579 2191 @param Buffer Pointer to a 32-bit value that may be unaligned.\r
ac644614 2192 @param Value 32-bit value to write to Buffer.\r
2193\r
5385a579 2194 @return The 32-bit value to write to Buffer.\r
ac644614 2195\r
2196**/\r
2197UINT32\r
2198EFIAPI\r
2199WriteUnaligned32 (\r
5385a579 2200 OUT UINT32 *Buffer,\r
2201 IN UINT32 Value\r
ac644614 2202 );\r
2203\r
2204\r
2205/**\r
2206 Reads a 64-bit value from memory that may be unaligned.\r
2207\r
2208 This function returns the 64-bit value pointed to by Buffer. The function\r
2209 guarantees that the read operation does not produce an alignment fault.\r
2210\r
2211 If the Buffer is NULL, then ASSERT().\r
2212\r
5385a579 2213 @param Buffer Pointer to a 64-bit value that may be unaligned.\r
ac644614 2214\r
5385a579 2215 @return The 64-bit value read from Buffer.\r
ac644614 2216\r
2217**/\r
2218UINT64\r
2219EFIAPI\r
2220ReadUnaligned64 (\r
5385a579 2221 IN CONST UINT64 *Buffer\r
ac644614 2222 );\r
2223\r
2224\r
2225/**\r
2226 Writes a 64-bit value to memory that may be unaligned.\r
2227\r
2228 This function writes the 64-bit value specified by Value to Buffer. Value is\r
2229 returned. The function guarantees that the write operation does not produce\r
2230 an alignment fault.\r
2231\r
2232 If the Buffer is NULL, then ASSERT().\r
2233\r
5385a579 2234 @param Buffer Pointer to a 64-bit value that may be unaligned.\r
ac644614 2235 @param Value 64-bit value to write to Buffer.\r
2236\r
5385a579 2237 @return The 64-bit value to write to Buffer.\r
ac644614 2238\r
2239**/\r
2240UINT64\r
2241EFIAPI\r
2242WriteUnaligned64 (\r
5385a579 2243 OUT UINT64 *Buffer,\r
2244 IN UINT64 Value\r
ac644614 2245 );\r
2246\r
2247\r
2248//\r
2249// Bit Field Functions\r
2250//\r
2251\r
2252/**\r
2253 Returns a bit field from an 8-bit value.\r
2254\r
2255 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
2256\r
2257 If 8-bit operations are not supported, then ASSERT().\r
2258 If StartBit is greater than 7, then ASSERT().\r
2259 If EndBit is greater than 7, then ASSERT().\r
2260 If EndBit is less than StartBit, then ASSERT().\r
2261\r
2262 @param Operand Operand on which to perform the bitfield operation.\r
2263 @param StartBit The ordinal of the least significant bit in the bit field.\r
2264 Range 0..7.\r
2265 @param EndBit The ordinal of the most significant bit in the bit field.\r
2266 Range 0..7.\r
2267\r
2268 @return The bit field read.\r
2269\r
2270**/\r
2271UINT8\r
2272EFIAPI\r
2273BitFieldRead8 (\r
2274 IN UINT8 Operand,\r
2275 IN UINTN StartBit,\r
2276 IN UINTN EndBit\r
2277 );\r
2278\r
2279\r
2280/**\r
2281 Writes a bit field to an 8-bit value, and returns the result.\r
2282\r
2283 Writes Value to the bit field specified by the StartBit and the EndBit in\r
2284 Operand. All other bits in Operand are preserved. The new 8-bit value is\r
2285 returned.\r
2286\r
2287 If 8-bit operations are not supported, then ASSERT().\r
2288 If StartBit is greater than 7, then ASSERT().\r
2289 If EndBit is greater than 7, then ASSERT().\r
2290 If EndBit is less than StartBit, then ASSERT().\r
2291\r
2292 @param Operand Operand on which to perform the bitfield operation.\r
2293 @param StartBit The ordinal of the least significant bit in the bit field.\r
2294 Range 0..7.\r
2295 @param EndBit The ordinal of the most significant bit in the bit field.\r
2296 Range 0..7.\r
2297 @param Value New value of the bit field.\r
2298\r
2299 @return The new 8-bit value.\r
2300\r
2301**/\r
2302UINT8\r
2303EFIAPI\r
2304BitFieldWrite8 (\r
2305 IN UINT8 Operand,\r
2306 IN UINTN StartBit,\r
2307 IN UINTN EndBit,\r
2308 IN UINT8 Value\r
2309 );\r
2310\r
2311\r
2312/**\r
2313 Reads a bit field from an 8-bit value, performs a bitwise OR, and returns the\r
2314 result.\r
2315\r
62991af2 2316 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 2317 and EndBit in Operand and the value specified by OrData. All other bits in\r
2318 Operand are preserved. The new 8-bit value is returned.\r
2319\r
2320 If 8-bit operations are not supported, then ASSERT().\r
2321 If StartBit is greater than 7, then ASSERT().\r
2322 If EndBit is greater than 7, then ASSERT().\r
2323 If EndBit is less than StartBit, then ASSERT().\r
2324\r
2325 @param Operand Operand on which to perform the bitfield operation.\r
2326 @param StartBit The ordinal of the least significant bit in the bit field.\r
2327 Range 0..7.\r
2328 @param EndBit The ordinal of the most significant bit in the bit field.\r
2329 Range 0..7.\r
2330 @param OrData The value to OR with the read value from the value\r
2331\r
2332 @return The new 8-bit value.\r
2333\r
2334**/\r
2335UINT8\r
2336EFIAPI\r
2337BitFieldOr8 (\r
2338 IN UINT8 Operand,\r
2339 IN UINTN StartBit,\r
2340 IN UINTN EndBit,\r
2341 IN UINT8 OrData\r
2342 );\r
2343\r
2344\r
2345/**\r
2346 Reads a bit field from an 8-bit value, performs a bitwise AND, and returns\r
2347 the result.\r
2348\r
2349 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2350 in Operand and the value specified by AndData. All other bits in Operand are\r
2351 preserved. The new 8-bit value is returned.\r
2352\r
2353 If 8-bit operations are not supported, then ASSERT().\r
2354 If StartBit is greater than 7, then ASSERT().\r
2355 If EndBit is greater than 7, then ASSERT().\r
2356 If EndBit is less than StartBit, then ASSERT().\r
2357\r
2358 @param Operand Operand on which to perform the bitfield operation.\r
2359 @param StartBit The ordinal of the least significant bit in the bit field.\r
2360 Range 0..7.\r
2361 @param EndBit The ordinal of the most significant bit in the bit field.\r
2362 Range 0..7.\r
2363 @param AndData The value to AND with the read value from the value.\r
2364\r
2365 @return The new 8-bit value.\r
2366\r
2367**/\r
2368UINT8\r
2369EFIAPI\r
2370BitFieldAnd8 (\r
2371 IN UINT8 Operand,\r
2372 IN UINTN StartBit,\r
2373 IN UINTN EndBit,\r
2374 IN UINT8 AndData\r
2375 );\r
2376\r
2377\r
2378/**\r
2379 Reads a bit field from an 8-bit value, performs a bitwise AND followed by a\r
2380 bitwise OR, and returns the result.\r
2381\r
2382 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 2383 in Operand and the value specified by AndData, followed by a bitwise \r
2384 OR with value specified by OrData. All other bits in Operand are\r
ac644614 2385 preserved. The new 8-bit value is returned.\r
2386\r
2387 If 8-bit operations are not supported, then ASSERT().\r
2388 If StartBit is greater than 7, then ASSERT().\r
2389 If EndBit is greater than 7, then ASSERT().\r
2390 If EndBit is less than StartBit, then ASSERT().\r
2391\r
2392 @param Operand Operand on which to perform the bitfield operation.\r
2393 @param StartBit The ordinal of the least significant bit in the bit field.\r
2394 Range 0..7.\r
2395 @param EndBit The ordinal of the most significant bit in the bit field.\r
2396 Range 0..7.\r
2397 @param AndData The value to AND with the read value from the value.\r
2398 @param OrData The value to OR with the result of the AND operation.\r
2399\r
2400 @return The new 8-bit value.\r
2401\r
2402**/\r
2403UINT8\r
2404EFIAPI\r
2405BitFieldAndThenOr8 (\r
2406 IN UINT8 Operand,\r
2407 IN UINTN StartBit,\r
2408 IN UINTN EndBit,\r
2409 IN UINT8 AndData,\r
2410 IN UINT8 OrData\r
2411 );\r
2412\r
2413\r
2414/**\r
2415 Returns a bit field from a 16-bit value.\r
2416\r
2417 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
2418\r
2419 If 16-bit operations are not supported, then ASSERT().\r
2420 If StartBit is greater than 15, then ASSERT().\r
2421 If EndBit is greater than 15, then ASSERT().\r
2422 If EndBit is less than StartBit, then ASSERT().\r
2423\r
2424 @param Operand Operand on which to perform the bitfield operation.\r
2425 @param StartBit The ordinal of the least significant bit in the bit field.\r
2426 Range 0..15.\r
2427 @param EndBit The ordinal of the most significant bit in the bit field.\r
2428 Range 0..15.\r
2429\r
2430 @return The bit field read.\r
2431\r
2432**/\r
2433UINT16\r
2434EFIAPI\r
2435BitFieldRead16 (\r
2436 IN UINT16 Operand,\r
2437 IN UINTN StartBit,\r
2438 IN UINTN EndBit\r
2439 );\r
2440\r
2441\r
2442/**\r
2443 Writes a bit field to a 16-bit value, and returns the result.\r
2444\r
2445 Writes Value to the bit field specified by the StartBit and the EndBit in\r
2446 Operand. All other bits in Operand are preserved. The new 16-bit value is\r
2447 returned.\r
2448\r
2449 If 16-bit operations are not supported, then ASSERT().\r
2450 If StartBit is greater than 15, then ASSERT().\r
2451 If EndBit is greater than 15, then ASSERT().\r
2452 If EndBit is less than StartBit, then ASSERT().\r
2453\r
2454 @param Operand Operand on which to perform the bitfield operation.\r
2455 @param StartBit The ordinal of the least significant bit in the bit field.\r
2456 Range 0..15.\r
2457 @param EndBit The ordinal of the most significant bit in the bit field.\r
2458 Range 0..15.\r
2459 @param Value New value of the bit field.\r
2460\r
2461 @return The new 16-bit value.\r
2462\r
2463**/\r
2464UINT16\r
2465EFIAPI\r
2466BitFieldWrite16 (\r
2467 IN UINT16 Operand,\r
2468 IN UINTN StartBit,\r
2469 IN UINTN EndBit,\r
2470 IN UINT16 Value\r
2471 );\r
2472\r
2473\r
2474/**\r
2475 Reads a bit field from a 16-bit value, performs a bitwise OR, and returns the\r
2476 result.\r
2477\r
62991af2 2478 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 2479 and EndBit in Operand and the value specified by OrData. All other bits in\r
2480 Operand are preserved. The new 16-bit value is returned.\r
2481\r
2482 If 16-bit operations are not supported, then ASSERT().\r
2483 If StartBit is greater than 15, then ASSERT().\r
2484 If EndBit is greater than 15, then ASSERT().\r
2485 If EndBit is less than StartBit, then ASSERT().\r
2486\r
2487 @param Operand Operand on which to perform the bitfield operation.\r
2488 @param StartBit The ordinal of the least significant bit in the bit field.\r
2489 Range 0..15.\r
2490 @param EndBit The ordinal of the most significant bit in the bit field.\r
2491 Range 0..15.\r
2492 @param OrData The value to OR with the read value from the value\r
2493\r
2494 @return The new 16-bit value.\r
2495\r
2496**/\r
2497UINT16\r
2498EFIAPI\r
2499BitFieldOr16 (\r
2500 IN UINT16 Operand,\r
2501 IN UINTN StartBit,\r
2502 IN UINTN EndBit,\r
2503 IN UINT16 OrData\r
2504 );\r
2505\r
2506\r
2507/**\r
2508 Reads a bit field from a 16-bit value, performs a bitwise AND, and returns\r
2509 the result.\r
2510\r
2511 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2512 in Operand and the value specified by AndData. All other bits in Operand are\r
2513 preserved. The new 16-bit value is returned.\r
2514\r
2515 If 16-bit operations are not supported, then ASSERT().\r
2516 If StartBit is greater than 15, then ASSERT().\r
2517 If EndBit is greater than 15, then ASSERT().\r
2518 If EndBit is less than StartBit, then ASSERT().\r
2519\r
2520 @param Operand Operand on which to perform the bitfield operation.\r
2521 @param StartBit The ordinal of the least significant bit in the bit field.\r
2522 Range 0..15.\r
2523 @param EndBit The ordinal of the most significant bit in the bit field.\r
2524 Range 0..15.\r
2525 @param AndData The value to AND with the read value from the value\r
2526\r
2527 @return The new 16-bit value.\r
2528\r
2529**/\r
2530UINT16\r
2531EFIAPI\r
2532BitFieldAnd16 (\r
2533 IN UINT16 Operand,\r
2534 IN UINTN StartBit,\r
2535 IN UINTN EndBit,\r
2536 IN UINT16 AndData\r
2537 );\r
2538\r
2539\r
2540/**\r
2541 Reads a bit field from a 16-bit value, performs a bitwise AND followed by a\r
2542 bitwise OR, and returns the result.\r
2543\r
2544 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 2545 in Operand and the value specified by AndData, followed by a bitwise \r
2546 OR with value specified by OrData. All other bits in Operand are\r
ac644614 2547 preserved. The new 16-bit value is returned.\r
2548\r
2549 If 16-bit operations are not supported, then ASSERT().\r
2550 If StartBit is greater than 15, then ASSERT().\r
2551 If EndBit is greater than 15, then ASSERT().\r
2552 If EndBit is less than StartBit, then ASSERT().\r
2553\r
2554 @param Operand Operand on which to perform the bitfield operation.\r
2555 @param StartBit The ordinal of the least significant bit in the bit field.\r
2556 Range 0..15.\r
2557 @param EndBit The ordinal of the most significant bit in the bit field.\r
2558 Range 0..15.\r
2559 @param AndData The value to AND with the read value from the value.\r
2560 @param OrData The value to OR with the result of the AND operation.\r
2561\r
2562 @return The new 16-bit value.\r
2563\r
2564**/\r
2565UINT16\r
2566EFIAPI\r
2567BitFieldAndThenOr16 (\r
2568 IN UINT16 Operand,\r
2569 IN UINTN StartBit,\r
2570 IN UINTN EndBit,\r
2571 IN UINT16 AndData,\r
2572 IN UINT16 OrData\r
2573 );\r
2574\r
2575\r
2576/**\r
2577 Returns a bit field from a 32-bit value.\r
2578\r
2579 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
2580\r
2581 If 32-bit operations are not supported, then ASSERT().\r
2582 If StartBit is greater than 31, then ASSERT().\r
2583 If EndBit is greater than 31, then ASSERT().\r
2584 If EndBit is less than StartBit, then ASSERT().\r
2585\r
2586 @param Operand Operand on which to perform the bitfield operation.\r
2587 @param StartBit The ordinal of the least significant bit in the bit field.\r
2588 Range 0..31.\r
2589 @param EndBit The ordinal of the most significant bit in the bit field.\r
2590 Range 0..31.\r
2591\r
2592 @return The bit field read.\r
2593\r
2594**/\r
2595UINT32\r
2596EFIAPI\r
2597BitFieldRead32 (\r
2598 IN UINT32 Operand,\r
2599 IN UINTN StartBit,\r
2600 IN UINTN EndBit\r
2601 );\r
2602\r
2603\r
2604/**\r
2605 Writes a bit field to a 32-bit value, and returns the result.\r
2606\r
2607 Writes Value to the bit field specified by the StartBit and the EndBit in\r
2608 Operand. All other bits in Operand are preserved. The new 32-bit value is\r
2609 returned.\r
2610\r
2611 If 32-bit operations are not supported, then ASSERT().\r
2612 If StartBit is greater than 31, then ASSERT().\r
2613 If EndBit is greater than 31, then ASSERT().\r
2614 If EndBit is less than StartBit, then ASSERT().\r
2615\r
2616 @param Operand Operand on which to perform the bitfield operation.\r
2617 @param StartBit The ordinal of the least significant bit in the bit field.\r
2618 Range 0..31.\r
2619 @param EndBit The ordinal of the most significant bit in the bit field.\r
2620 Range 0..31.\r
2621 @param Value New value of the bit field.\r
2622\r
2623 @return The new 32-bit value.\r
2624\r
2625**/\r
2626UINT32\r
2627EFIAPI\r
2628BitFieldWrite32 (\r
2629 IN UINT32 Operand,\r
2630 IN UINTN StartBit,\r
2631 IN UINTN EndBit,\r
2632 IN UINT32 Value\r
2633 );\r
2634\r
2635\r
2636/**\r
2637 Reads a bit field from a 32-bit value, performs a bitwise OR, and returns the\r
2638 result.\r
2639\r
62991af2 2640 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 2641 and EndBit in Operand and the value specified by OrData. All other bits in\r
2642 Operand are preserved. The new 32-bit value is returned.\r
2643\r
2644 If 32-bit operations are not supported, then ASSERT().\r
2645 If StartBit is greater than 31, then ASSERT().\r
2646 If EndBit is greater than 31, then ASSERT().\r
2647 If EndBit is less than StartBit, then ASSERT().\r
2648\r
2649 @param Operand Operand on which to perform the bitfield operation.\r
2650 @param StartBit The ordinal of the least significant bit in the bit field.\r
2651 Range 0..31.\r
2652 @param EndBit The ordinal of the most significant bit in the bit field.\r
2653 Range 0..31.\r
2654 @param OrData The value to OR with the read value from the value\r
2655\r
2656 @return The new 32-bit value.\r
2657\r
2658**/\r
2659UINT32\r
2660EFIAPI\r
2661BitFieldOr32 (\r
2662 IN UINT32 Operand,\r
2663 IN UINTN StartBit,\r
2664 IN UINTN EndBit,\r
2665 IN UINT32 OrData\r
2666 );\r
2667\r
2668\r
2669/**\r
2670 Reads a bit field from a 32-bit value, performs a bitwise AND, and returns\r
2671 the result.\r
2672\r
2673 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2674 in Operand and the value specified by AndData. All other bits in Operand are\r
2675 preserved. The new 32-bit value is returned.\r
2676\r
2677 If 32-bit operations are not supported, then ASSERT().\r
2678 If StartBit is greater than 31, then ASSERT().\r
2679 If EndBit is greater than 31, then ASSERT().\r
2680 If EndBit is less than StartBit, then ASSERT().\r
2681\r
2682 @param Operand Operand on which to perform the bitfield operation.\r
2683 @param StartBit The ordinal of the least significant bit in the bit field.\r
2684 Range 0..31.\r
2685 @param EndBit The ordinal of the most significant bit in the bit field.\r
2686 Range 0..31.\r
2687 @param AndData The value to AND with the read value from the value\r
2688\r
2689 @return The new 32-bit value.\r
2690\r
2691**/\r
2692UINT32\r
2693EFIAPI\r
2694BitFieldAnd32 (\r
2695 IN UINT32 Operand,\r
2696 IN UINTN StartBit,\r
2697 IN UINTN EndBit,\r
2698 IN UINT32 AndData\r
2699 );\r
2700\r
2701\r
2702/**\r
2703 Reads a bit field from a 32-bit value, performs a bitwise AND followed by a\r
2704 bitwise OR, and returns the result.\r
2705\r
2706 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 2707 in Operand and the value specified by AndData, followed by a bitwise \r
2708 OR with value specified by OrData. All other bits in Operand are\r
ac644614 2709 preserved. The new 32-bit value is returned.\r
2710\r
2711 If 32-bit operations are not supported, then ASSERT().\r
2712 If StartBit is greater than 31, then ASSERT().\r
2713 If EndBit is greater than 31, then ASSERT().\r
2714 If EndBit is less than StartBit, then ASSERT().\r
2715\r
2716 @param Operand Operand on which to perform the bitfield operation.\r
2717 @param StartBit The ordinal of the least significant bit in the bit field.\r
2718 Range 0..31.\r
2719 @param EndBit The ordinal of the most significant bit in the bit field.\r
2720 Range 0..31.\r
2721 @param AndData The value to AND with the read value from the value.\r
2722 @param OrData The value to OR with the result of the AND operation.\r
2723\r
2724 @return The new 32-bit value.\r
2725\r
2726**/\r
2727UINT32\r
2728EFIAPI\r
2729BitFieldAndThenOr32 (\r
2730 IN UINT32 Operand,\r
2731 IN UINTN StartBit,\r
2732 IN UINTN EndBit,\r
2733 IN UINT32 AndData,\r
2734 IN UINT32 OrData\r
2735 );\r
2736\r
2737\r
2738/**\r
2739 Returns a bit field from a 64-bit value.\r
2740\r
2741 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
2742\r
2743 If 64-bit operations are not supported, then ASSERT().\r
2744 If StartBit is greater than 63, then ASSERT().\r
2745 If EndBit is greater than 63, then ASSERT().\r
2746 If EndBit is less than StartBit, then ASSERT().\r
2747\r
2748 @param Operand Operand on which to perform the bitfield operation.\r
2749 @param StartBit The ordinal of the least significant bit in the bit field.\r
2750 Range 0..63.\r
2751 @param EndBit The ordinal of the most significant bit in the bit field.\r
2752 Range 0..63.\r
2753\r
2754 @return The bit field read.\r
2755\r
2756**/\r
2757UINT64\r
2758EFIAPI\r
2759BitFieldRead64 (\r
2760 IN UINT64 Operand,\r
2761 IN UINTN StartBit,\r
2762 IN UINTN EndBit\r
2763 );\r
2764\r
2765\r
2766/**\r
2767 Writes a bit field to a 64-bit value, and returns the result.\r
2768\r
2769 Writes Value to the bit field specified by the StartBit and the EndBit in\r
2770 Operand. All other bits in Operand are preserved. The new 64-bit value is\r
2771 returned.\r
2772\r
2773 If 64-bit operations are not supported, then ASSERT().\r
2774 If StartBit is greater than 63, then ASSERT().\r
2775 If EndBit is greater than 63, then ASSERT().\r
2776 If EndBit is less than StartBit, then ASSERT().\r
2777\r
2778 @param Operand Operand on which to perform the bitfield operation.\r
2779 @param StartBit The ordinal of the least significant bit in the bit field.\r
2780 Range 0..63.\r
2781 @param EndBit The ordinal of the most significant bit in the bit field.\r
2782 Range 0..63.\r
2783 @param Value New value of the bit field.\r
2784\r
2785 @return The new 64-bit value.\r
2786\r
2787**/\r
2788UINT64\r
2789EFIAPI\r
2790BitFieldWrite64 (\r
2791 IN UINT64 Operand,\r
2792 IN UINTN StartBit,\r
2793 IN UINTN EndBit,\r
2794 IN UINT64 Value\r
2795 );\r
2796\r
2797\r
2798/**\r
2799 Reads a bit field from a 64-bit value, performs a bitwise OR, and returns the\r
2800 result.\r
2801\r
62991af2 2802 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 2803 and EndBit in Operand and the value specified by OrData. All other bits in\r
2804 Operand are preserved. The new 64-bit value is returned.\r
2805\r
2806 If 64-bit operations are not supported, then ASSERT().\r
2807 If StartBit is greater than 63, then ASSERT().\r
2808 If EndBit is greater than 63, then ASSERT().\r
2809 If EndBit is less than StartBit, then ASSERT().\r
2810\r
2811 @param Operand Operand on which to perform the bitfield operation.\r
2812 @param StartBit The ordinal of the least significant bit in the bit field.\r
2813 Range 0..63.\r
2814 @param EndBit The ordinal of the most significant bit in the bit field.\r
2815 Range 0..63.\r
2816 @param OrData The value to OR with the read value from the value\r
2817\r
2818 @return The new 64-bit value.\r
2819\r
2820**/\r
2821UINT64\r
2822EFIAPI\r
2823BitFieldOr64 (\r
2824 IN UINT64 Operand,\r
2825 IN UINTN StartBit,\r
2826 IN UINTN EndBit,\r
2827 IN UINT64 OrData\r
2828 );\r
2829\r
2830\r
2831/**\r
2832 Reads a bit field from a 64-bit value, performs a bitwise AND, and returns\r
2833 the result.\r
2834\r
2835 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2836 in Operand and the value specified by AndData. All other bits in Operand are\r
2837 preserved. The new 64-bit value is returned.\r
2838\r
2839 If 64-bit operations are not supported, then ASSERT().\r
2840 If StartBit is greater than 63, then ASSERT().\r
2841 If EndBit is greater than 63, then ASSERT().\r
2842 If EndBit is less than StartBit, then ASSERT().\r
2843\r
2844 @param Operand Operand on which to perform the bitfield operation.\r
2845 @param StartBit The ordinal of the least significant bit in the bit field.\r
2846 Range 0..63.\r
2847 @param EndBit The ordinal of the most significant bit in the bit field.\r
2848 Range 0..63.\r
2849 @param AndData The value to AND with the read value from the value\r
2850\r
2851 @return The new 64-bit value.\r
2852\r
2853**/\r
2854UINT64\r
2855EFIAPI\r
2856BitFieldAnd64 (\r
2857 IN UINT64 Operand,\r
2858 IN UINTN StartBit,\r
2859 IN UINTN EndBit,\r
2860 IN UINT64 AndData\r
2861 );\r
2862\r
2863\r
2864/**\r
2865 Reads a bit field from a 64-bit value, performs a bitwise AND followed by a\r
2866 bitwise OR, and returns the result.\r
2867\r
2868 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 2869 in Operand and the value specified by AndData, followed by a bitwise \r
2870 OR with value specified by OrData. All other bits in Operand are\r
ac644614 2871 preserved. The new 64-bit value is returned.\r
2872\r
2873 If 64-bit operations are not supported, then ASSERT().\r
2874 If StartBit is greater than 63, then ASSERT().\r
2875 If EndBit is greater than 63, then ASSERT().\r
2876 If EndBit is less than StartBit, then ASSERT().\r
2877\r
2878 @param Operand Operand on which to perform the bitfield operation.\r
2879 @param StartBit The ordinal of the least significant bit in the bit field.\r
2880 Range 0..63.\r
2881 @param EndBit The ordinal of the most significant bit in the bit field.\r
2882 Range 0..63.\r
2883 @param AndData The value to AND with the read value from the value.\r
2884 @param OrData The value to OR with the result of the AND operation.\r
2885\r
2886 @return The new 64-bit value.\r
2887\r
2888**/\r
2889UINT64\r
2890EFIAPI\r
2891BitFieldAndThenOr64 (\r
2892 IN UINT64 Operand,\r
2893 IN UINTN StartBit,\r
2894 IN UINTN EndBit,\r
2895 IN UINT64 AndData,\r
2896 IN UINT64 OrData\r
2897 );\r
2898\r
ac644614 2899//\r
2900// Base Library Checksum Functions\r
2901//\r
2902\r
2903/**\r
17f695ed 2904 Returns the sum of all elements in a buffer in unit of UINT8.\r
ac644614 2905 During calculation, the carry bits are dropped.\r
2906\r
2907 This function calculates the sum of all elements in a buffer\r
2908 in unit of UINT8. The carry bits in result of addition are dropped.\r
2909 The result is returned as UINT8. If Length is Zero, then Zero is\r
2910 returned.\r
2911\r
2912 If Buffer is NULL, then ASSERT().\r
2913 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
2914\r
1106ffe1 2915 @param Buffer Pointer to the buffer to carry out the sum operation.\r
17f695ed 2916 @param Length The size, in bytes, of Buffer.\r
ac644614 2917\r
2918 @return Sum The sum of Buffer with carry bits dropped during additions.\r
2919\r
2920**/\r
2921UINT8\r
2922EFIAPI\r
2923CalculateSum8 (\r
ee6c452c 2924 IN CONST UINT8 *Buffer,\r
2925 IN UINTN Length\r
ac644614 2926 );\r
2927\r
2928\r
2929/**\r
2930 Returns the two's complement checksum of all elements in a buffer\r
2931 of 8-bit values.\r
2932\r
2933 This function first calculates the sum of the 8-bit values in the\r
2934 buffer specified by Buffer and Length. The carry bits in the result\r
2935 of addition are dropped. Then, the two's complement of the sum is\r
2936 returned. If Length is 0, then 0 is returned.\r
2937\r
2938 If Buffer is NULL, then ASSERT().\r
2939 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
2940\r
1106ffe1 2941 @param Buffer Pointer to the buffer to carry out the checksum operation.\r
2942 @param Length The size, in bytes, of Buffer.\r
ac644614 2943\r
ee6c452c 2944 @return Checksum The 2's complement checksum of Buffer.\r
ac644614 2945\r
2946**/\r
2947UINT8\r
2948EFIAPI\r
2949CalculateCheckSum8 (\r
ee6c452c 2950 IN CONST UINT8 *Buffer,\r
2951 IN UINTN Length\r
ac644614 2952 );\r
2953\r
2954\r
2955/**\r
2956 Returns the sum of all elements in a buffer of 16-bit values. During\r
2957 calculation, the carry bits are dropped.\r
2958\r
2959 This function calculates the sum of the 16-bit values in the buffer\r
2960 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
2961 The 16-bit result is returned. If Length is 0, then 0 is returned.\r
2962\r
2963 If Buffer is NULL, then ASSERT().\r
2964 If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
2965 If Length is not aligned on a 16-bit boundary, then ASSERT().\r
2966 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
2967\r
1106ffe1 2968 @param Buffer Pointer to the buffer to carry out the sum operation.\r
2969 @param Length The size, in bytes, of Buffer.\r
ac644614 2970\r
2971 @return Sum The sum of Buffer with carry bits dropped during additions.\r
2972\r
2973**/\r
2974UINT16\r
2975EFIAPI\r
2976CalculateSum16 (\r
ee6c452c 2977 IN CONST UINT16 *Buffer,\r
2978 IN UINTN Length\r
ac644614 2979 );\r
2980\r
2981\r
2982/**\r
2983 Returns the two's complement checksum of all elements in a buffer of\r
2984 16-bit values.\r
2985\r
2986 This function first calculates the sum of the 16-bit values in the buffer\r
2987 specified by Buffer and Length. The carry bits in the result of addition\r
2988 are dropped. Then, the two's complement of the sum is returned. If Length\r
2989 is 0, then 0 is returned.\r
2990\r
2991 If Buffer is NULL, then ASSERT().\r
2992 If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
2993 If Length is not aligned on a 16-bit boundary, then ASSERT().\r
2994 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
2995\r
1106ffe1 2996 @param Buffer Pointer to the buffer to carry out the checksum operation.\r
2997 @param Length The size, in bytes, of Buffer.\r
ac644614 2998\r
ee6c452c 2999 @return Checksum The 2's complement checksum of Buffer.\r
ac644614 3000\r
3001**/\r
3002UINT16\r
3003EFIAPI\r
3004CalculateCheckSum16 (\r
ee6c452c 3005 IN CONST UINT16 *Buffer,\r
3006 IN UINTN Length\r
ac644614 3007 );\r
3008\r
3009\r
3010/**\r
17f695ed 3011 Returns the sum of all elements in a buffer of 32-bit values. During\r
ac644614 3012 calculation, the carry bits are dropped.\r
3013\r
3014 This function calculates the sum of the 32-bit values in the buffer\r
3015 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
17f695ed 3016 The 32-bit result is returned. If Length is 0, then 0 is returned.\r
ac644614 3017\r
3018 If Buffer is NULL, then ASSERT().\r
3019 If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
3020 If Length is not aligned on a 32-bit boundary, then ASSERT().\r
3021 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3022\r
1106ffe1 3023 @param Buffer Pointer to the buffer to carry out the sum operation.\r
3024 @param Length The size, in bytes, of Buffer.\r
ac644614 3025\r
3026 @return Sum The sum of Buffer with carry bits dropped during additions.\r
3027\r
3028**/\r
3029UINT32\r
3030EFIAPI\r
3031CalculateSum32 (\r
ee6c452c 3032 IN CONST UINT32 *Buffer,\r
3033 IN UINTN Length\r
ac644614 3034 );\r
3035\r
3036\r
3037/**\r
3038 Returns the two's complement checksum of all elements in a buffer of\r
3039 32-bit values.\r
3040\r
3041 This function first calculates the sum of the 32-bit values in the buffer\r
3042 specified by Buffer and Length. The carry bits in the result of addition\r
3043 are dropped. Then, the two's complement of the sum is returned. If Length\r
3044 is 0, then 0 is returned.\r
3045\r
3046 If Buffer is NULL, then ASSERT().\r
3047 If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
3048 If Length is not aligned on a 32-bit boundary, then ASSERT().\r
3049 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3050\r
1106ffe1 3051 @param Buffer Pointer to the buffer to carry out the checksum operation.\r
3052 @param Length The size, in bytes, of Buffer.\r
ac644614 3053\r
ee6c452c 3054 @return Checksum The 2's complement checksum of Buffer.\r
ac644614 3055\r
3056**/\r
3057UINT32\r
3058EFIAPI\r
3059CalculateCheckSum32 (\r
ee6c452c 3060 IN CONST UINT32 *Buffer,\r
3061 IN UINTN Length\r
ac644614 3062 );\r
3063\r
3064\r
3065/**\r
3066 Returns the sum of all elements in a buffer of 64-bit values. During\r
3067 calculation, the carry bits are dropped.\r
3068\r
3069 This function calculates the sum of the 64-bit values in the buffer\r
3070 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
3071 The 64-bit result is returned. If Length is 0, then 0 is returned.\r
3072\r
3073 If Buffer is NULL, then ASSERT().\r
3074 If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
3075 If Length is not aligned on a 64-bit boundary, then ASSERT().\r
3076 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3077\r
1106ffe1 3078 @param Buffer Pointer to the buffer to carry out the sum operation.\r
3079 @param Length The size, in bytes, of Buffer.\r
ac644614 3080\r
3081 @return Sum The sum of Buffer with carry bits dropped during additions.\r
3082\r
3083**/\r
3084UINT64\r
3085EFIAPI\r
3086CalculateSum64 (\r
ee6c452c 3087 IN CONST UINT64 *Buffer,\r
3088 IN UINTN Length\r
ac644614 3089 );\r
3090\r
3091\r
3092/**\r
3093 Returns the two's complement checksum of all elements in a buffer of\r
3094 64-bit values.\r
3095\r
3096 This function first calculates the sum of the 64-bit values in the buffer\r
3097 specified by Buffer and Length. The carry bits in the result of addition\r
3098 are dropped. Then, the two's complement of the sum is returned. If Length\r
3099 is 0, then 0 is returned.\r
3100\r
3101 If Buffer is NULL, then ASSERT().\r
3102 If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
3103 If Length is not aligned on a 64-bit boundary, then ASSERT().\r
3104 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3105\r
1106ffe1 3106 @param Buffer Pointer to the buffer to carry out the checksum operation.\r
3107 @param Length The size, in bytes, of Buffer.\r
ac644614 3108\r
ee6c452c 3109 @return Checksum The 2's complement checksum of Buffer.\r
ac644614 3110\r
3111**/\r
3112UINT64\r
3113EFIAPI\r
3114CalculateCheckSum64 (\r
ee6c452c 3115 IN CONST UINT64 *Buffer,\r
3116 IN UINTN Length\r
ac644614 3117 );\r
3118\r
3119\r
d75f9fc2 3120//\r
3121// Base Library CPU Functions\r
3122//\r
3123\r
3124/**\r
3125 Function entry point used when a stack switch is requested with SwitchStack()\r
3126\r
3127 @param Context1 Context1 parameter passed into SwitchStack().\r
3128 @param Context2 Context2 parameter passed into SwitchStack().\r
3129\r
3130**/\r
ac644614 3131typedef\r
3132VOID\r
9810cdd8 3133(EFIAPI *SWITCH_STACK_ENTRY_POINT)(\r
ac644614 3134 IN VOID *Context1, OPTIONAL\r
3135 IN VOID *Context2 OPTIONAL\r
3136 );\r
3137\r
3138\r
3139/**\r
3140 Used to serialize load and store operations.\r
3141\r
3142 All loads and stores that proceed calls to this function are guaranteed to be\r
3143 globally visible when this function returns.\r
3144\r
3145**/\r
3146VOID\r
3147EFIAPI\r
3148MemoryFence (\r
3149 VOID\r
3150 );\r
3151\r
3152\r
3153/**\r
3154 Saves the current CPU context that can be restored with a call to LongJump()\r
3155 and returns 0.\r
3156\r
3157 Saves the current CPU context in the buffer specified by JumpBuffer and\r
3158 returns 0. The initial call to SetJump() must always return 0. Subsequent\r
3159 calls to LongJump() cause a non-zero value to be returned by SetJump().\r
3160\r
3161 If JumpBuffer is NULL, then ASSERT().\r
1a2f870c 3162 For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
17f695ed 3163 \r
3164 NOTE: The structure BASE_LIBRARY_JUMP_BUFFER is CPU architecture specific.\r
3165 The same structure must never be used for more than one CPU architecture context.\r
3166 For example, a BASE_LIBRARY_JUMP_BUFFER allocated by an IA-32 module must never be used from an x64 module. \r
3167 SetJump()/LongJump() is not currently supported for the EBC processor type. \r
ac644614 3168\r
3169 @param JumpBuffer A pointer to CPU context buffer.\r
3170\r
3171 @retval 0 Indicates a return from SetJump().\r
3172\r
3173**/\r
3174UINTN\r
3175EFIAPI\r
3176SetJump (\r
3177 OUT BASE_LIBRARY_JUMP_BUFFER *JumpBuffer\r
3178 );\r
3179\r
3180\r
3181/**\r
3182 Restores the CPU context that was saved with SetJump().\r
3183\r
3184 Restores the CPU context from the buffer specified by JumpBuffer. This\r
3185 function never returns to the caller. Instead is resumes execution based on\r
3186 the state of JumpBuffer.\r
3187\r
3188 If JumpBuffer is NULL, then ASSERT().\r
1a2f870c 3189 For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
ac644614 3190 If Value is 0, then ASSERT().\r
3191\r
3192 @param JumpBuffer A pointer to CPU context buffer.\r
3193 @param Value The value to return when the SetJump() context is\r
3194 restored and must be non-zero.\r
3195\r
3196**/\r
3197VOID\r
3198EFIAPI\r
3199LongJump (\r
3200 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,\r
3201 IN UINTN Value\r
3202 );\r
3203\r
3204\r
3205/**\r
3206 Enables CPU interrupts.\r
3207\r
ac644614 3208**/\r
3209VOID\r
3210EFIAPI\r
3211EnableInterrupts (\r
3212 VOID\r
3213 );\r
3214\r
3215\r
3216/**\r
3217 Disables CPU interrupts.\r
3218\r
ac644614 3219**/\r
3220VOID\r
3221EFIAPI\r
3222DisableInterrupts (\r
3223 VOID\r
3224 );\r
3225\r
3226\r
3227/**\r
3228 Disables CPU interrupts and returns the interrupt state prior to the disable\r
3229 operation.\r
3230\r
ac644614 3231 @retval TRUE CPU interrupts were enabled on entry to this call.\r
3232 @retval FALSE CPU interrupts were disabled on entry to this call.\r
3233\r
3234**/\r
3235BOOLEAN\r
3236EFIAPI\r
3237SaveAndDisableInterrupts (\r
3238 VOID\r
3239 );\r
3240\r
3241\r
3242/**\r
3243 Enables CPU interrupts for the smallest window required to capture any\r
3244 pending interrupts.\r
3245\r
ac644614 3246**/\r
3247VOID\r
3248EFIAPI\r
3249EnableDisableInterrupts (\r
3250 VOID\r
3251 );\r
3252\r
3253\r
3254/**\r
3255 Retrieves the current CPU interrupt state.\r
3256\r
38bbd3d9 3257 Returns TRUE is interrupts are currently enabled. Otherwise\r
3258 returns FALSE.\r
ac644614 3259\r
3260 @retval TRUE CPU interrupts are enabled.\r
3261 @retval FALSE CPU interrupts are disabled.\r
3262\r
3263**/\r
3264BOOLEAN\r
3265EFIAPI\r
3266GetInterruptState (\r
3267 VOID\r
3268 );\r
3269\r
3270\r
3271/**\r
3272 Set the current CPU interrupt state.\r
3273\r
3274 Sets the current CPU interrupt state to the state specified by\r
3275 InterruptState. If InterruptState is TRUE, then interrupts are enabled. If\r
3276 InterruptState is FALSE, then interrupts are disabled. InterruptState is\r
3277 returned.\r
3278\r
3279 @param InterruptState TRUE if interrupts should enabled. FALSE if\r
3280 interrupts should be disabled.\r
3281\r
3282 @return InterruptState\r
3283\r
3284**/\r
3285BOOLEAN\r
3286EFIAPI\r
3287SetInterruptState (\r
3288 IN BOOLEAN InterruptState\r
3289 );\r
3290\r
3291\r
3292/**\r
3293 Requests CPU to pause for a short period of time.\r
3294\r
3295 Requests CPU to pause for a short period of time. Typically used in MP\r
3296 systems to prevent memory starvation while waiting for a spin lock.\r
3297\r
3298**/\r
3299VOID\r
3300EFIAPI\r
3301CpuPause (\r
3302 VOID\r
3303 );\r
3304\r
3305\r
3306/**\r
3307 Transfers control to a function starting with a new stack.\r
3308\r
3309 Transfers control to the function specified by EntryPoint using the\r
3310 new stack specified by NewStack and passing in the parameters specified\r
3311 by Context1 and Context2. Context1 and Context2 are optional and may\r
3312 be NULL. The function EntryPoint must never return. This function\r
3313 supports a variable number of arguments following the NewStack parameter.\r
1a2f870c 3314 These additional arguments are ignored on IA-32, x64, and EBC architectures.\r
3315 Itanium processors expect one additional parameter of type VOID * that specifies\r
ac644614 3316 the new backing store pointer.\r
3317\r
3318 If EntryPoint is NULL, then ASSERT().\r
3319 If NewStack is NULL, then ASSERT().\r
3320\r
3321 @param EntryPoint A pointer to function to call with the new stack.\r
3322 @param Context1 A pointer to the context to pass into the EntryPoint\r
3323 function.\r
3324 @param Context2 A pointer to the context to pass into the EntryPoint\r
3325 function.\r
3326 @param NewStack A pointer to the new stack to use for the EntryPoint\r
3327 function.\r
1a2f870c 3328 @param ... This variable argument list is ignored for IA-32, x64, and EBC architectures. \r
3329 For Itanium processors, this variable argument list is expected to contain \r
285010e7 3330 a single parameter of type VOID * that specifies the new backing \r
3331 store pointer.\r
42eedea9 3332\r
ac644614 3333\r
3334**/\r
3335VOID\r
3336EFIAPI\r
3337SwitchStack (\r
3338 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
3339 IN VOID *Context1, OPTIONAL\r
3340 IN VOID *Context2, OPTIONAL\r
3341 IN VOID *NewStack,\r
3342 ...\r
3343 );\r
3344\r
3345\r
3346/**\r
3347 Generates a breakpoint on the CPU.\r
3348\r
3349 Generates a breakpoint on the CPU. The breakpoint must be implemented such\r
3350 that code can resume normal execution after the breakpoint.\r
3351\r
3352**/\r
3353VOID\r
3354EFIAPI\r
3355CpuBreakpoint (\r
3356 VOID\r
3357 );\r
3358\r
3359\r
3360/**\r
3361 Executes an infinite loop.\r
3362\r
3363 Forces the CPU to execute an infinite loop. A debugger may be used to skip\r
3364 past the loop and the code that follows the loop must execute properly. This\r
3365 implies that the infinite loop must not cause the code that follow it to be\r
3366 optimized away.\r
3367\r
3368**/\r
3369VOID\r
3370EFIAPI\r
3371CpuDeadLoop (\r
3372 VOID\r
3373 );\r
2fe241a2 3374 \r
ac644614 3375#if defined (MDE_CPU_IPF)\r
3376\r
3377/**\r
3378 Flush a range of cache lines in the cache coherency domain of the calling\r
3379 CPU.\r
3380\r
cc39b88b 3381 Flushes the cache lines specified by Address and Length. If Address is not aligned \r
3382 on a cache line boundary, then entire cache line containing Address is flushed. \r
3383 If Address + Length is not aligned on a cache line boundary, then the entire cache \r
3384 line containing Address + Length - 1 is flushed. This function may choose to flush \r
3385 the entire cache if that is more efficient than flushing the specified range. If \r
3386 Length is 0, the no cache lines are flushed. Address is returned. \r
1a2f870c 3387 This function is only available on Itanium processors.\r
ac644614 3388\r
3389 If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT().\r
3390\r
3391 @param Address The base address of the instruction lines to invalidate. If\r
3392 the CPU is in a physical addressing mode, then Address is a\r
3393 physical address. If the CPU is in a virtual addressing mode,\r
3394 then Address is a virtual address.\r
3395\r
3396 @param Length The number of bytes to invalidate from the instruction cache.\r
3397\r
cc39b88b 3398 @return Address.\r
ac644614 3399\r
3400**/\r
3401VOID *\r
3402EFIAPI\r
cc39b88b 3403AsmFlushCacheRange (\r
ac644614 3404 IN VOID *Address,\r
3405 IN UINTN Length\r
3406 );\r
3407\r
3408\r
3409/**\r
3410 Executes a FC instruction\r
3411 Executes a FC instruction on the cache line specified by Address.\r
3412 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
1a2f870c 3413 An implementation may flush a larger region. This function is only available on Itanium processors.\r
ac644614 3414\r
ee6c452c 3415 @param Address The Address of cache line to be flushed.\r
ac644614 3416\r
3417 @return The address of FC instruction executed.\r
3418\r
3419**/\r
3420UINT64\r
3421EFIAPI\r
3422AsmFc (\r
3423 IN UINT64 Address\r
3424 );\r
3425\r
3426\r
3427/**\r
3428 Executes a FC.I instruction.\r
3429 Executes a FC.I instruction on the cache line specified by Address.\r
3430 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
1a2f870c 3431 An implementation may flush a larger region. This function is only available on Itanium processors.\r
ac644614 3432\r
ee6c452c 3433 @param Address The Address of cache line to be flushed.\r
ac644614 3434\r
3435 @return The address of FC.I instruction executed.\r
3436\r
3437**/\r
3438UINT64\r
3439EFIAPI\r
3440AsmFci (\r
3441 IN UINT64 Address\r
3442 );\r
3443\r
3444\r
3445/**\r
3446 Reads the current value of a Processor Identifier Register (CPUID).\r
17f695ed 3447 \r
3448 Reads and returns the current value of Processor Identifier Register specified by Index. \r
ac644614 3449 The Index of largest implemented CPUID (One less than the number of implemented CPUID\r
3450 registers) is determined by CPUID [3] bits {7:0}.\r
3451 No parameter checking is performed on Index. If the Index value is beyond the\r
3452 implemented CPUID register range, a Reserved Register/Field fault may occur. The caller\r
3453 must either guarantee that Index is valid, or the caller must set up fault handlers to\r
1a2f870c 3454 catch the faults. This function is only available on Itanium processors.\r
ac644614 3455\r
ee6c452c 3456 @param Index The 8-bit Processor Identifier Register index to read.\r
ac644614 3457\r
3458 @return The current value of Processor Identifier Register specified by Index.\r
3459\r
3460**/\r
3461UINT64\r
3462EFIAPI\r
3463AsmReadCpuid (\r
3464 IN UINT8 Index\r
3465 );\r
3466\r
3467\r
3468/**\r
3469 Reads the current value of 64-bit Processor Status Register (PSR).\r
1a2f870c 3470 This function is only available on Itanium processors.\r
ac644614 3471\r
3472 @return The current value of PSR.\r
3473\r
3474**/\r
3475UINT64\r
3476EFIAPI\r
3477AsmReadPsr (\r
3478 VOID\r
3479 );\r
3480\r
3481\r
3482/**\r
3483 Writes the current value of 64-bit Processor Status Register (PSR).\r
22388319 3484\r
ac644614 3485 No parameter checking is performed on Value. All bits of Value corresponding to\r
22388319 3486 reserved fields of PSR must be 0 or a Reserved Register/Field fault may occur.\r
3487 The caller must either guarantee that Value is valid, or the caller must set up\r
1a2f870c 3488 fault handlers to catch the faults. This function is only available on Itanium processors.\r
ac644614 3489\r
ee6c452c 3490 @param Value The 64-bit value to write to PSR.\r
ac644614 3491\r
3492 @return The 64-bit value written to the PSR.\r
3493\r
3494**/\r
3495UINT64\r
3496EFIAPI\r
3497AsmWritePsr (\r
3498 IN UINT64 Value\r
3499 );\r
3500\r
3501\r
3502/**\r
3503 Reads the current value of 64-bit Kernel Register #0 (KR0).\r
2fe241a2 3504 \r
3505 Reads and returns the current value of KR0. \r
1a2f870c 3506 This function is only available on Itanium processors.\r
ac644614 3507\r
3508 @return The current value of KR0.\r
3509\r
3510**/\r
3511UINT64\r
3512EFIAPI\r
3513AsmReadKr0 (\r
3514 VOID\r
3515 );\r
3516\r
3517\r
3518/**\r
3519 Reads the current value of 64-bit Kernel Register #1 (KR1).\r
2fe241a2 3520\r
3521 Reads and returns the current value of KR1. \r
1a2f870c 3522 This function is only available on Itanium processors.\r
ac644614 3523\r
3524 @return The current value of KR1.\r
3525\r
3526**/\r
3527UINT64\r
3528EFIAPI\r
3529AsmReadKr1 (\r
3530 VOID\r
3531 );\r
3532\r
3533\r
3534/**\r
3535 Reads the current value of 64-bit Kernel Register #2 (KR2).\r
2fe241a2 3536\r
3537 Reads and returns the current value of KR2. \r
1a2f870c 3538 This function is only available on Itanium processors.\r
ac644614 3539\r
3540 @return The current value of KR2.\r
3541\r
3542**/\r
3543UINT64\r
3544EFIAPI\r
3545AsmReadKr2 (\r
3546 VOID\r
3547 );\r
3548\r
3549\r
3550/**\r
3551 Reads the current value of 64-bit Kernel Register #3 (KR3).\r
2fe241a2 3552\r
3553 Reads and returns the current value of KR3. \r
1a2f870c 3554 This function is only available on Itanium processors.\r
ac644614 3555\r
3556 @return The current value of KR3.\r
3557\r
3558**/\r
3559UINT64\r
3560EFIAPI\r
3561AsmReadKr3 (\r
3562 VOID\r
3563 );\r
3564\r
3565\r
3566/**\r
3567 Reads the current value of 64-bit Kernel Register #4 (KR4).\r
ac644614 3568\r
2fe241a2 3569 Reads and returns the current value of KR4. \r
1a2f870c 3570 This function is only available on Itanium processors.\r
2fe241a2 3571 \r
ac644614 3572 @return The current value of KR4.\r
3573\r
3574**/\r
3575UINT64\r
3576EFIAPI\r
3577AsmReadKr4 (\r
3578 VOID\r
3579 );\r
3580\r
3581\r
3582/**\r
3583 Reads the current value of 64-bit Kernel Register #5 (KR5).\r
2fe241a2 3584\r
3585 Reads and returns the current value of KR5. \r
1a2f870c 3586 This function is only available on Itanium processors.\r
ac644614 3587\r
3588 @return The current value of KR5.\r
3589\r
3590**/\r
3591UINT64\r
3592EFIAPI\r
3593AsmReadKr5 (\r
3594 VOID\r
3595 );\r
3596\r
3597\r
3598/**\r
3599 Reads the current value of 64-bit Kernel Register #6 (KR6).\r
2fe241a2 3600\r
3601 Reads and returns the current value of KR6. \r
1a2f870c 3602 This function is only available on Itanium processors.\r
ac644614 3603\r
3604 @return The current value of KR6.\r
3605\r
3606**/\r
3607UINT64\r
3608EFIAPI\r
3609AsmReadKr6 (\r
3610 VOID\r
3611 );\r
3612\r
3613\r
3614/**\r
3615 Reads the current value of 64-bit Kernel Register #7 (KR7).\r
2fe241a2 3616\r
3617 Reads and returns the current value of KR7. \r
1a2f870c 3618 This function is only available on Itanium processors.\r
ac644614 3619\r
3620 @return The current value of KR7.\r
3621\r
3622**/\r
3623UINT64\r
3624EFIAPI\r
3625AsmReadKr7 (\r
3626 VOID\r
3627 );\r
3628\r
3629\r
3630/**\r
3631 Write the current value of 64-bit Kernel Register #0 (KR0).\r
2fe241a2 3632 \r
3633 Writes the current value of KR0. The 64-bit value written to \r
1a2f870c 3634 the KR0 is returned. This function is only available on Itanium processors.\r
ac644614 3635\r
ee6c452c 3636 @param Value The 64-bit value to write to KR0.\r
ac644614 3637\r
3638 @return The 64-bit value written to the KR0.\r
3639\r
3640**/\r
3641UINT64\r
3642EFIAPI\r
3643AsmWriteKr0 (\r
3644 IN UINT64 Value\r
3645 );\r
3646\r
3647\r
3648/**\r
3649 Write the current value of 64-bit Kernel Register #1 (KR1).\r
2fe241a2 3650\r
3651 Writes the current value of KR1. The 64-bit value written to \r
1a2f870c 3652 the KR1 is returned. This function is only available on Itanium processors.\r
ac644614 3653\r
ee6c452c 3654 @param Value The 64-bit value to write to KR1.\r
ac644614 3655\r
3656 @return The 64-bit value written to the KR1.\r
3657\r
3658**/\r
3659UINT64\r
3660EFIAPI\r
3661AsmWriteKr1 (\r
3662 IN UINT64 Value\r
3663 );\r
3664\r
3665\r
3666/**\r
3667 Write the current value of 64-bit Kernel Register #2 (KR2).\r
2fe241a2 3668\r
3669 Writes the current value of KR2. The 64-bit value written to \r
1a2f870c 3670 the KR2 is returned. This function is only available on Itanium processors.\r
ac644614 3671\r
ee6c452c 3672 @param Value The 64-bit value to write to KR2.\r
ac644614 3673\r
3674 @return The 64-bit value written to the KR2.\r
3675\r
3676**/\r
3677UINT64\r
3678EFIAPI\r
3679AsmWriteKr2 (\r
3680 IN UINT64 Value\r
3681 );\r
3682\r
3683\r
3684/**\r
3685 Write the current value of 64-bit Kernel Register #3 (KR3).\r
2fe241a2 3686\r
3687 Writes the current value of KR3. The 64-bit value written to \r
1a2f870c 3688 the KR3 is returned. This function is only available on Itanium processors.\r
ac644614 3689\r
ee6c452c 3690 @param Value The 64-bit value to write to KR3.\r
ac644614 3691\r
3692 @return The 64-bit value written to the KR3.\r
3693\r
3694**/\r
3695UINT64\r
3696EFIAPI\r
3697AsmWriteKr3 (\r
3698 IN UINT64 Value\r
3699 );\r
3700\r
3701\r
3702/**\r
3703 Write the current value of 64-bit Kernel Register #4 (KR4).\r
2fe241a2 3704\r
3705 Writes the current value of KR4. The 64-bit value written to \r
1a2f870c 3706 the KR4 is returned. This function is only available on Itanium processors.\r
ac644614 3707\r
ee6c452c 3708 @param Value The 64-bit value to write to KR4.\r
ac644614 3709\r
3710 @return The 64-bit value written to the KR4.\r
3711\r
3712**/\r
3713UINT64\r
3714EFIAPI\r
3715AsmWriteKr4 (\r
3716 IN UINT64 Value\r
3717 );\r
3718\r
3719\r
3720/**\r
3721 Write the current value of 64-bit Kernel Register #5 (KR5).\r
2fe241a2 3722\r
3723 Writes the current value of KR5. The 64-bit value written to \r
1a2f870c 3724 the KR5 is returned. This function is only available on Itanium processors.\r
ac644614 3725\r
ee6c452c 3726 @param Value The 64-bit value to write to KR5.\r
ac644614 3727\r
3728 @return The 64-bit value written to the KR5.\r
3729\r
3730**/\r
3731UINT64\r
3732EFIAPI\r
3733AsmWriteKr5 (\r
3734 IN UINT64 Value\r
3735 );\r
3736\r
3737\r
3738/**\r
3739 Write the current value of 64-bit Kernel Register #6 (KR6).\r
2fe241a2 3740\r
3741 Writes the current value of KR6. The 64-bit value written to \r
1a2f870c 3742 the KR6 is returned. This function is only available on Itanium processors.\r
ac644614 3743\r
ee6c452c 3744 @param Value The 64-bit value to write to KR6.\r
ac644614 3745\r
3746 @return The 64-bit value written to the KR6.\r
3747\r
3748**/\r
3749UINT64\r
3750EFIAPI\r
3751AsmWriteKr6 (\r
3752 IN UINT64 Value\r
3753 );\r
3754\r
3755\r
3756/**\r
3757 Write the current value of 64-bit Kernel Register #7 (KR7).\r
2fe241a2 3758\r
3759 Writes the current value of KR7. The 64-bit value written to \r
1a2f870c 3760 the KR7 is returned. This function is only available on Itanium processors.\r
ac644614 3761\r
ee6c452c 3762 @param Value The 64-bit value to write to KR7.\r
ac644614 3763\r
3764 @return The 64-bit value written to the KR7.\r
3765\r
3766**/\r
3767UINT64\r
3768EFIAPI\r
3769AsmWriteKr7 (\r
3770 IN UINT64 Value\r
3771 );\r
3772\r
3773\r
3774/**\r
3775 Reads the current value of Interval Timer Counter Register (ITC).\r
2fe241a2 3776 \r
3777 Reads and returns the current value of ITC.\r
1a2f870c 3778 This function is only available on Itanium processors.\r
ac644614 3779\r
3780 @return The current value of ITC.\r
3781\r
3782**/\r
3783UINT64\r
3784EFIAPI\r
3785AsmReadItc (\r
3786 VOID\r
3787 );\r
3788\r
3789\r
3790/**\r
3791 Reads the current value of Interval Timer Vector Register (ITV).\r
2fe241a2 3792 \r
3793 Reads and returns the current value of ITV. \r
1a2f870c 3794 This function is only available on Itanium processors.\r
ac644614 3795\r
3796 @return The current value of ITV.\r
3797\r
3798**/\r
3799UINT64\r
3800EFIAPI\r
3801AsmReadItv (\r
3802 VOID\r
3803 );\r
3804\r
3805\r
3806/**\r
3807 Reads the current value of Interval Timer Match Register (ITM).\r
2fe241a2 3808 \r
3809 Reads and returns the current value of ITM.\r
1a2f870c 3810 This function is only available on Itanium processors.\r
ac644614 3811\r
3812 @return The current value of ITM.\r
3813**/\r
3814UINT64\r
3815EFIAPI\r
3816AsmReadItm (\r
3817 VOID\r
3818 );\r
3819\r
3820\r
3821/**\r
3822 Writes the current value of 64-bit Interval Timer Counter Register (ITC).\r
2fe241a2 3823 \r
3824 Writes the current value of ITC. The 64-bit value written to the ITC is returned. \r
1a2f870c 3825 This function is only available on Itanium processors.\r
ac644614 3826\r
ee6c452c 3827 @param Value The 64-bit value to write to ITC.\r
ac644614 3828\r
3829 @return The 64-bit value written to the ITC.\r
3830\r
3831**/\r
3832UINT64\r
3833EFIAPI\r
3834AsmWriteItc (\r
3835 IN UINT64 Value\r
3836 );\r
3837\r
3838\r
3839/**\r
3840 Writes the current value of 64-bit Interval Timer Match Register (ITM).\r
2fe241a2 3841 \r
3842 Writes the current value of ITM. The 64-bit value written to the ITM is returned. \r
1a2f870c 3843 This function is only available on Itanium processors.\r
ac644614 3844\r
ee6c452c 3845 @param Value The 64-bit value to write to ITM.\r
ac644614 3846\r
3847 @return The 64-bit value written to the ITM.\r
3848\r
3849**/\r
3850UINT64\r
3851EFIAPI\r
3852AsmWriteItm (\r
3853 IN UINT64 Value\r
3854 );\r
3855\r
3856\r
3857/**\r
3858 Writes the current value of 64-bit Interval Timer Vector Register (ITV).\r
2fe241a2 3859 \r
3860 Writes the current value of ITV. The 64-bit value written to the ITV is returned. \r
ac644614 3861 No parameter checking is performed on Value. All bits of Value corresponding to\r
3862 reserved fields of ITV must be 0 or a Reserved Register/Field fault may occur.\r
3863 The caller must either guarantee that Value is valid, or the caller must set up\r
3864 fault handlers to catch the faults.\r
1a2f870c 3865 This function is only available on Itanium processors.\r
ac644614 3866\r
ee6c452c 3867 @param Value The 64-bit value to write to ITV.\r
ac644614 3868\r
3869 @return The 64-bit value written to the ITV.\r
3870\r
3871**/\r
3872UINT64\r
3873EFIAPI\r
3874AsmWriteItv (\r
3875 IN UINT64 Value\r
3876 );\r
3877\r
3878\r
3879/**\r
3880 Reads the current value of Default Control Register (DCR).\r
2fe241a2 3881 \r
1a2f870c 3882 Reads and returns the current value of DCR. This function is only available on Itanium processors.\r
ac644614 3883\r
3884 @return The current value of DCR.\r
3885\r
3886**/\r
3887UINT64\r
3888EFIAPI\r
3889AsmReadDcr (\r
3890 VOID\r
3891 );\r
3892\r
3893\r
3894/**\r
3895 Reads the current value of Interruption Vector Address Register (IVA).\r
2fe241a2 3896 \r
1a2f870c 3897 Reads and returns the current value of IVA. This function is only available on Itanium processors.\r
ac644614 3898\r
3899 @return The current value of IVA.\r
3900**/\r
3901UINT64\r
3902EFIAPI\r
3903AsmReadIva (\r
3904 VOID\r
3905 );\r
3906\r
3907\r
3908/**\r
3909 Reads the current value of Page Table Address Register (PTA).\r
2fe241a2 3910 \r
1a2f870c 3911 Reads and returns the current value of PTA. This function is only available on Itanium processors.\r
ac644614 3912\r
3913 @return The current value of PTA.\r
3914\r
3915**/\r
3916UINT64\r
3917EFIAPI\r
3918AsmReadPta (\r
3919 VOID\r
3920 );\r
3921\r
3922\r
3923/**\r
3924 Writes the current value of 64-bit Default Control Register (DCR).\r
2fe241a2 3925 \r
3926 Writes the current value of DCR. The 64-bit value written to the DCR is returned. \r
ac644614 3927 No parameter checking is performed on Value. All bits of Value corresponding to\r
3928 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
3929 The caller must either guarantee that Value is valid, or the caller must set up\r
3930 fault handlers to catch the faults.\r
1a2f870c 3931 This function is only available on Itanium processors.\r
ac644614 3932\r
ee6c452c 3933 @param Value The 64-bit value to write to DCR.\r
ac644614 3934\r
3935 @return The 64-bit value written to the DCR.\r
3936\r
3937**/\r
3938UINT64\r
3939EFIAPI\r
3940AsmWriteDcr (\r
3941 IN UINT64 Value\r
3942 );\r
3943\r
3944\r
3945/**\r
3946 Writes the current value of 64-bit Interruption Vector Address Register (IVA).\r
2fe241a2 3947 \r
3948 Writes the current value of IVA. The 64-bit value written to the IVA is returned. \r
ac644614 3949 The size of vector table is 32 K bytes and is 32 K bytes aligned\r
3950 the low 15 bits of Value is ignored when written.\r
1a2f870c 3951 This function is only available on Itanium processors.\r
ac644614 3952\r
ee6c452c 3953 @param Value The 64-bit value to write to IVA.\r
ac644614 3954\r
3955 @return The 64-bit value written to the IVA.\r
3956\r
3957**/\r
3958UINT64\r
3959EFIAPI\r
3960AsmWriteIva (\r
3961 IN UINT64 Value\r
3962 );\r
3963\r
3964\r
3965/**\r
3966 Writes the current value of 64-bit Page Table Address Register (PTA).\r
2fe241a2 3967 \r
3968 Writes the current value of PTA. The 64-bit value written to the PTA is returned. \r
ac644614 3969 No parameter checking is performed on Value. All bits of Value corresponding to\r
3970 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
3971 The caller must either guarantee that Value is valid, or the caller must set up\r
3972 fault handlers to catch the faults.\r
1a2f870c 3973 This function is only available on Itanium processors.\r
ac644614 3974\r
ee6c452c 3975 @param Value The 64-bit value to write to PTA.\r
ac644614 3976\r
3977 @return The 64-bit value written to the PTA.\r
3978**/\r
3979UINT64\r
3980EFIAPI\r
3981AsmWritePta (\r
3982 IN UINT64 Value\r
3983 );\r
3984\r
3985\r
3986/**\r
3987 Reads the current value of Local Interrupt ID Register (LID).\r
2fe241a2 3988 \r
1a2f870c 3989 Reads and returns the current value of LID. This function is only available on Itanium processors.\r
ac644614 3990\r
3991 @return The current value of LID.\r
3992\r
3993**/\r
3994UINT64\r
3995EFIAPI\r
3996AsmReadLid (\r
3997 VOID\r
3998 );\r
3999\r
4000\r
4001/**\r
4002 Reads the current value of External Interrupt Vector Register (IVR).\r
2fe241a2 4003 \r
1a2f870c 4004 Reads and returns the current value of IVR. This function is only available on Itanium processors. \r
ac644614 4005\r
4006 @return The current value of IVR.\r
4007\r
4008**/\r
4009UINT64\r
4010EFIAPI\r
4011AsmReadIvr (\r
4012 VOID\r
4013 );\r
4014\r
4015\r
4016/**\r
4017 Reads the current value of Task Priority Register (TPR).\r
2fe241a2 4018 \r
1a2f870c 4019 Reads and returns the current value of TPR. This function is only available on Itanium processors. \r
ac644614 4020\r
4021 @return The current value of TPR.\r
4022\r
4023**/\r
4024UINT64\r
4025EFIAPI\r
4026AsmReadTpr (\r
4027 VOID\r
4028 );\r
4029\r
4030\r
4031/**\r
4032 Reads the current value of External Interrupt Request Register #0 (IRR0).\r
2fe241a2 4033 \r
1a2f870c 4034 Reads and returns the current value of IRR0. This function is only available on Itanium processors. \r
ac644614 4035\r
4036 @return The current value of IRR0.\r
4037\r
4038**/\r
4039UINT64\r
4040EFIAPI\r
4041AsmReadIrr0 (\r
4042 VOID\r
4043 );\r
4044\r
4045\r
4046/**\r
4047 Reads the current value of External Interrupt Request Register #1 (IRR1).\r
2fe241a2 4048 \r
1a2f870c 4049 Reads and returns the current value of IRR1. This function is only available on Itanium processors. \r
ac644614 4050\r
4051 @return The current value of IRR1.\r
4052\r
4053**/\r
4054UINT64\r
4055EFIAPI\r
4056AsmReadIrr1 (\r
4057 VOID\r
4058 );\r
4059\r
4060\r
4061/**\r
4062 Reads the current value of External Interrupt Request Register #2 (IRR2).\r
2fe241a2 4063 \r
1a2f870c 4064 Reads and returns the current value of IRR2. This function is only available on Itanium processors.\r
ac644614 4065\r
4066 @return The current value of IRR2.\r
4067\r
4068**/\r
4069UINT64\r
4070EFIAPI\r
4071AsmReadIrr2 (\r
4072 VOID\r
4073 );\r
4074\r
4075\r
4076/**\r
4077 Reads the current value of External Interrupt Request Register #3 (IRR3).\r
2fe241a2 4078 \r
1a2f870c 4079 Reads and returns the current value of IRR3. This function is only available on Itanium processors. \r
ac644614 4080\r
4081 @return The current value of IRR3.\r
4082\r
4083**/\r
4084UINT64\r
4085EFIAPI\r
4086AsmReadIrr3 (\r
4087 VOID\r
4088 );\r
4089\r
4090\r
4091/**\r
4092 Reads the current value of Performance Monitor Vector Register (PMV).\r
2fe241a2 4093 \r
1a2f870c 4094 Reads and returns the current value of PMV. This function is only available on Itanium processors. \r
ac644614 4095\r
4096 @return The current value of PMV.\r
4097\r
4098**/\r
4099UINT64\r
4100EFIAPI\r
4101AsmReadPmv (\r
4102 VOID\r
4103 );\r
4104\r
4105\r
4106/**\r
4107 Reads the current value of Corrected Machine Check Vector Register (CMCV).\r
2fe241a2 4108 \r
1a2f870c 4109 Reads and returns the current value of CMCV. This function is only available on Itanium processors.\r
ac644614 4110\r
4111 @return The current value of CMCV.\r
4112\r
4113**/\r
4114UINT64\r
4115EFIAPI\r
4116AsmReadCmcv (\r
4117 VOID\r
4118 );\r
4119\r
4120\r
4121/**\r
4122 Reads the current value of Local Redirection Register #0 (LRR0).\r
2fe241a2 4123 \r
1a2f870c 4124 Reads and returns the current value of LRR0. This function is only available on Itanium processors. \r
ac644614 4125\r
4126 @return The current value of LRR0.\r
4127\r
4128**/\r
4129UINT64\r
4130EFIAPI\r
4131AsmReadLrr0 (\r
4132 VOID\r
4133 );\r
4134\r
4135\r
4136/**\r
4137 Reads the current value of Local Redirection Register #1 (LRR1).\r
2fe241a2 4138 \r
1a2f870c 4139 Reads and returns the current value of LRR1. This function is only available on Itanium processors.\r
ac644614 4140\r
4141 @return The current value of LRR1.\r
4142\r
4143**/\r
4144UINT64\r
4145EFIAPI\r
4146AsmReadLrr1 (\r
4147 VOID\r
4148 );\r
4149\r
4150\r
4151/**\r
4152 Writes the current value of 64-bit Page Local Interrupt ID Register (LID).\r
2fe241a2 4153 \r
4154 Writes the current value of LID. The 64-bit value written to the LID is returned. \r
ac644614 4155 No parameter checking is performed on Value. All bits of Value corresponding to\r
4156 reserved fields of LID must be 0 or a Reserved Register/Field fault may occur.\r
4157 The caller must either guarantee that Value is valid, or the caller must set up\r
4158 fault handlers to catch the faults.\r
1a2f870c 4159 This function is only available on Itanium processors.\r
ac644614 4160\r
ee6c452c 4161 @param Value The 64-bit value to write to LID.\r
ac644614 4162\r
4163 @return The 64-bit value written to the LID.\r
4164\r
4165**/\r
4166UINT64\r
4167EFIAPI\r
4168AsmWriteLid (\r
4169 IN UINT64 Value\r
4170 );\r
4171\r
4172\r
4173/**\r
4174 Writes the current value of 64-bit Task Priority Register (TPR).\r
2fe241a2 4175 \r
4176 Writes the current value of TPR. The 64-bit value written to the TPR is returned. \r
ac644614 4177 No parameter checking is performed on Value. All bits of Value corresponding to\r
4178 reserved fields of TPR must be 0 or a Reserved Register/Field fault may occur.\r
4179 The caller must either guarantee that Value is valid, or the caller must set up\r
4180 fault handlers to catch the faults.\r
1a2f870c 4181 This function is only available on Itanium processors.\r
ac644614 4182\r
ee6c452c 4183 @param Value The 64-bit value to write to TPR.\r
ac644614 4184\r
4185 @return The 64-bit value written to the TPR.\r
4186\r
4187**/\r
4188UINT64\r
4189EFIAPI\r
4190AsmWriteTpr (\r
4191 IN UINT64 Value\r
4192 );\r
4193\r
4194\r
4195/**\r
4196 Performs a write operation on End OF External Interrupt Register (EOI).\r
2fe241a2 4197 \r
1a2f870c 4198 Writes a value of 0 to the EOI Register. This function is only available on Itanium processors.\r
ac644614 4199\r
4200**/\r
4201VOID\r
4202EFIAPI\r
4203AsmWriteEoi (\r
4204 VOID\r
4205 );\r
4206\r
4207\r
4208/**\r
4209 Writes the current value of 64-bit Performance Monitor Vector Register (PMV).\r
2fe241a2 4210 \r
4211 Writes the current value of PMV. The 64-bit value written to the PMV is returned. \r
ac644614 4212 No parameter checking is performed on Value. All bits of Value corresponding\r
4213 to reserved fields of PMV must be 0 or a Reserved Register/Field fault may occur.\r
4214 The caller must either guarantee that Value is valid, or the caller must set up\r
4215 fault handlers to catch the faults.\r
1a2f870c 4216 This function is only available on Itanium processors.\r
ac644614 4217\r
ee6c452c 4218 @param Value The 64-bit value to write to PMV.\r
ac644614 4219\r
4220 @return The 64-bit value written to the PMV.\r
4221\r
4222**/\r
4223UINT64\r
4224EFIAPI\r
4225AsmWritePmv (\r
4226 IN UINT64 Value\r
4227 );\r
4228\r
4229\r
4230/**\r
4231 Writes the current value of 64-bit Corrected Machine Check Vector Register (CMCV).\r
2fe241a2 4232 \r
4233 Writes the current value of CMCV. The 64-bit value written to the CMCV is returned. \r
ac644614 4234 No parameter checking is performed on Value. All bits of Value corresponding\r
4235 to reserved fields of CMCV must be 0 or a Reserved Register/Field fault may occur.\r
4236 The caller must either guarantee that Value is valid, or the caller must set up\r
4237 fault handlers to catch the faults.\r
1a2f870c 4238 This function is only available on Itanium processors.\r
ac644614 4239\r
ee6c452c 4240 @param Value The 64-bit value to write to CMCV.\r
ac644614 4241\r
4242 @return The 64-bit value written to the CMCV.\r
4243\r
4244**/\r
4245UINT64\r
4246EFIAPI\r
4247AsmWriteCmcv (\r
4248 IN UINT64 Value\r
4249 );\r
4250\r
4251\r
4252/**\r
4253 Writes the current value of 64-bit Local Redirection Register #0 (LRR0).\r
2fe241a2 4254 \r
4255 Writes the current value of LRR0. The 64-bit value written to the LRR0 is returned. \r
ac644614 4256 No parameter checking is performed on Value. All bits of Value corresponding\r
4257 to reserved fields of LRR0 must be 0 or a Reserved Register/Field fault may occur.\r
4258 The caller must either guarantee that Value is valid, or the caller must set up\r
4259 fault handlers to catch the faults.\r
1a2f870c 4260 This function is only available on Itanium processors.\r
ac644614 4261\r
ee6c452c 4262 @param Value The 64-bit value to write to LRR0.\r
ac644614 4263\r
4264 @return The 64-bit value written to the LRR0.\r
4265\r
4266**/\r
4267UINT64\r
4268EFIAPI\r
4269AsmWriteLrr0 (\r
4270 IN UINT64 Value\r
4271 );\r
4272\r
4273\r
4274/**\r
4275 Writes the current value of 64-bit Local Redirection Register #1 (LRR1).\r
2fe241a2 4276 \r
4277 Writes the current value of LRR1. The 64-bit value written to the LRR1 is returned. \r
ac644614 4278 No parameter checking is performed on Value. All bits of Value corresponding\r
4279 to reserved fields of LRR1 must be 0 or a Reserved Register/Field fault may occur.\r
4280 The caller must either guarantee that Value is valid, or the caller must\r
4281 set up fault handlers to catch the faults.\r
1a2f870c 4282 This function is only available on Itanium processors.\r
ac644614 4283\r
ee6c452c 4284 @param Value The 64-bit value to write to LRR1.\r
ac644614 4285\r
4286 @return The 64-bit value written to the LRR1.\r
4287\r
4288**/\r
4289UINT64\r
4290EFIAPI\r
4291AsmWriteLrr1 (\r
4292 IN UINT64 Value\r
4293 );\r
4294\r
4295\r
4296/**\r
4297 Reads the current value of Instruction Breakpoint Register (IBR).\r
4298 \r
4299 The Instruction Breakpoint Registers are used in pairs. The even numbered\r
4300 registers contain breakpoint addresses, and the odd numbered registers contain\r
4301 breakpoint mask conditions. At least 4 instruction registers pairs are implemented\r
4302 on all processor models. Implemented registers are contiguous starting with\r
4303 register 0. No parameter checking is performed on Index, and if the Index value\r
4304 is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
4305 occur. The caller must either guarantee that Index is valid, or the caller must\r
4306 set up fault handlers to catch the faults.\r
1a2f870c 4307 This function is only available on Itanium processors.\r
ac644614 4308\r
ee6c452c 4309 @param Index The 8-bit Instruction Breakpoint Register index to read.\r
ac644614 4310\r
4311 @return The current value of Instruction Breakpoint Register specified by Index.\r
4312\r
4313**/\r
4314UINT64\r
4315EFIAPI\r
4316AsmReadIbr (\r
4317 IN UINT8 Index\r
4318 );\r
4319\r
4320\r
4321/**\r
4322 Reads the current value of Data Breakpoint Register (DBR).\r
4323\r
4324 The Data Breakpoint Registers are used in pairs. The even numbered registers\r
4325 contain breakpoint addresses, and odd numbered registers contain breakpoint\r
4326 mask conditions. At least 4 data registers pairs are implemented on all processor\r
4327 models. Implemented registers are contiguous starting with register 0.\r
4328 No parameter checking is performed on Index. If the Index value is beyond\r
4329 the implemented DBR register range, a Reserved Register/Field fault may occur.\r
4330 The caller must either guarantee that Index is valid, or the caller must set up\r
4331 fault handlers to catch the faults.\r
1a2f870c 4332 This function is only available on Itanium processors.\r
ac644614 4333\r
ee6c452c 4334 @param Index The 8-bit Data Breakpoint Register index to read.\r
ac644614 4335\r
4336 @return The current value of Data Breakpoint Register specified by Index.\r
4337\r
4338**/\r
4339UINT64\r
4340EFIAPI\r
4341AsmReadDbr (\r
4342 IN UINT8 Index\r
4343 );\r
4344\r
4345\r
4346/**\r
4347 Reads the current value of Performance Monitor Configuration Register (PMC).\r
4348\r
4349 All processor implementations provide at least 4 performance counters\r
4350 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter overflow\r
4351 status registers (PMC [0]... PMC [3]). Processor implementations may provide\r
4352 additional implementation-dependent PMC and PMD to increase the number of\r
4353 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD\r
4354 register set is implementation dependent. No parameter checking is performed\r
4355 on Index. If the Index value is beyond the implemented PMC register range,\r
4356 zero value will be returned.\r
1a2f870c 4357 This function is only available on Itanium processors.\r
ac644614 4358\r
ee6c452c 4359 @param Index The 8-bit Performance Monitor Configuration Register index to read.\r
ac644614 4360\r
2fe241a2 4361 @return The current value of Performance Monitor Configuration Register\r
4362 specified by Index.\r
ac644614 4363\r
4364**/\r
4365UINT64\r
4366EFIAPI\r
4367AsmReadPmc (\r
4368 IN UINT8 Index\r
4369 );\r
4370\r
4371\r
4372/**\r
4373 Reads the current value of Performance Monitor Data Register (PMD).\r
4374\r
4375 All processor implementations provide at least 4 performance counters\r
4376 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter\r
4377 overflow status registers (PMC [0]... PMC [3]). Processor implementations may\r
4378 provide additional implementation-dependent PMC and PMD to increase the number\r
4379 of 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD\r
4380 register set is implementation dependent. No parameter checking is performed\r
4381 on Index. If the Index value is beyond the implemented PMD register range,\r
4382 zero value will be returned.\r
1a2f870c 4383 This function is only available on Itanium processors.\r
ac644614 4384\r
ee6c452c 4385 @param Index The 8-bit Performance Monitor Data Register index to read.\r
ac644614 4386\r
4387 @return The current value of Performance Monitor Data Register specified by Index.\r
4388\r
4389**/\r
4390UINT64\r
4391EFIAPI\r
4392AsmReadPmd (\r
4393 IN UINT8 Index\r
4394 );\r
4395\r
4396\r
4397/**\r
4398 Writes the current value of 64-bit Instruction Breakpoint Register (IBR).\r
4399\r
4400 Writes current value of Instruction Breakpoint Register specified by Index.\r
4401 The Instruction Breakpoint Registers are used in pairs. The even numbered\r
4402 registers contain breakpoint addresses, and odd numbered registers contain\r
4403 breakpoint mask conditions. At least 4 instruction registers pairs are implemented\r
4404 on all processor models. Implemented registers are contiguous starting with\r
4405 register 0. No parameter checking is performed on Index. If the Index value\r
4406 is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
4407 occur. The caller must either guarantee that Index is valid, or the caller must\r
4408 set up fault handlers to catch the faults.\r
1a2f870c 4409 This function is only available on Itanium processors.\r
ac644614 4410\r
ee6c452c 4411 @param Index The 8-bit Instruction Breakpoint Register index to write.\r
4412 @param Value The 64-bit value to write to IBR.\r
ac644614 4413\r
4414 @return The 64-bit value written to the IBR.\r
4415\r
4416**/\r
4417UINT64\r
4418EFIAPI\r
4419AsmWriteIbr (\r
4420 IN UINT8 Index,\r
4421 IN UINT64 Value\r
4422 );\r
4423\r
4424\r
4425/**\r
4426 Writes the current value of 64-bit Data Breakpoint Register (DBR).\r
4427\r
4428 Writes current value of Data Breakpoint Register specified by Index.\r
4429 The Data Breakpoint Registers are used in pairs. The even numbered registers\r
4430 contain breakpoint addresses, and odd numbered registers contain breakpoint\r
4431 mask conditions. At least 4 data registers pairs are implemented on all processor\r
4432 models. Implemented registers are contiguous starting with register 0. No parameter\r
4433 checking is performed on Index. If the Index value is beyond the implemented\r
4434 DBR register range, a Reserved Register/Field fault may occur. The caller must\r
4435 either guarantee that Index is valid, or the caller must set up fault handlers to\r
4436 catch the faults.\r
1a2f870c 4437 This function is only available on Itanium processors.\r
ac644614 4438\r
ee6c452c 4439 @param Index The 8-bit Data Breakpoint Register index to write.\r
4440 @param Value The 64-bit value to write to DBR.\r
ac644614 4441\r
4442 @return The 64-bit value written to the DBR.\r
4443\r
4444**/\r
4445UINT64\r
4446EFIAPI\r
4447AsmWriteDbr (\r
4448 IN UINT8 Index,\r
4449 IN UINT64 Value\r
4450 );\r
4451\r
4452\r
4453/**\r
4454 Writes the current value of 64-bit Performance Monitor Configuration Register (PMC).\r
4455\r
4456 Writes current value of Performance Monitor Configuration Register specified by Index.\r
4457 All processor implementations provide at least 4 performance counters\r
4458 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter overflow status\r
4459 registers (PMC [0]... PMC [3]). Processor implementations may provide additional\r
4460 implementation-dependent PMC and PMD to increase the number of 'generic' performance\r
4461 counters (PMC/PMD pairs). The remainder of PMC and PMD register set is implementation\r
4462 dependent. No parameter checking is performed on Index. If the Index value is\r
4463 beyond the implemented PMC register range, the write is ignored.\r
1a2f870c 4464 This function is only available on Itanium processors.\r
ac644614 4465\r
ee6c452c 4466 @param Index The 8-bit Performance Monitor Configuration Register index to write.\r
4467 @param Value The 64-bit value to write to PMC.\r
ac644614 4468\r
4469 @return The 64-bit value written to the PMC.\r
4470\r
4471**/\r
4472UINT64\r
4473EFIAPI\r
4474AsmWritePmc (\r
4475 IN UINT8 Index,\r
4476 IN UINT64 Value\r
4477 );\r
4478\r
4479\r
4480/**\r
4481 Writes the current value of 64-bit Performance Monitor Data Register (PMD).\r
4482\r
4483 Writes current value of Performance Monitor Data Register specified by Index.\r
4484 All processor implementations provide at least 4 performance counters\r
4485 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter overflow\r
4486 status registers (PMC [0]... PMC [3]). Processor implementations may provide\r
4487 additional implementation-dependent PMC and PMD to increase the number of 'generic'\r
4488 performance counters (PMC/PMD pairs). The remainder of PMC and PMD register set\r
4489 is implementation dependent. No parameter checking is performed on Index. If the\r
4490 Index value is beyond the implemented PMD register range, the write is ignored.\r
1a2f870c 4491 This function is only available on Itanium processors.\r
ac644614 4492\r
ee6c452c 4493 @param Index The 8-bit Performance Monitor Data Register index to write.\r
4494 @param Value The 64-bit value to write to PMD.\r
ac644614 4495\r
4496 @return The 64-bit value written to the PMD.\r
4497\r
4498**/\r
4499UINT64\r
4500EFIAPI\r
4501AsmWritePmd (\r
4502 IN UINT8 Index,\r
4503 IN UINT64 Value\r
4504 );\r
4505\r
4506\r
4507/**\r
4508 Reads the current value of 64-bit Global Pointer (GP).\r
4509\r
4510 Reads and returns the current value of GP.\r
1a2f870c 4511 This function is only available on Itanium processors.\r
ac644614 4512\r
4513 @return The current value of GP.\r
4514\r
4515**/\r
4516UINT64\r
4517EFIAPI\r
4518AsmReadGp (\r
4519 VOID\r
4520 );\r
4521\r
4522\r
4523/**\r
4524 Write the current value of 64-bit Global Pointer (GP).\r
4525\r
4526 Writes the current value of GP. The 64-bit value written to the GP is returned.\r
4527 No parameter checking is performed on Value.\r
1a2f870c 4528 This function is only available on Itanium processors.\r
ac644614 4529\r
4530 @param Value The 64-bit value to write to GP.\r
4531\r
4532 @return The 64-bit value written to the GP.\r
4533\r
4534**/\r
4535UINT64\r
4536EFIAPI\r
4537AsmWriteGp (\r
4538 IN UINT64 Value\r
4539 );\r
4540\r
4541\r
4542/**\r
4543 Reads the current value of 64-bit Stack Pointer (SP).\r
4544\r
4545 Reads and returns the current value of SP.\r
1a2f870c 4546 This function is only available on Itanium processors.\r
ac644614 4547\r
4548 @return The current value of SP.\r
4549\r
4550**/\r
4551UINT64\r
4552EFIAPI\r
4553AsmReadSp (\r
4554 VOID\r
4555 );\r
4556\r
4557\r
aad6137d 4558///\r
4559/// Valid Index value for AsmReadControlRegister()\r
4560///\r
4561#define IPF_CONTROL_REGISTER_DCR 0\r
4562#define IPF_CONTROL_REGISTER_ITM 1\r
4563#define IPF_CONTROL_REGISTER_IVA 2\r
4564#define IPF_CONTROL_REGISTER_PTA 8\r
4565#define IPF_CONTROL_REGISTER_IPSR 16\r
4566#define IPF_CONTROL_REGISTER_ISR 17\r
4567#define IPF_CONTROL_REGISTER_IIP 19\r
4568#define IPF_CONTROL_REGISTER_IFA 20\r
4569#define IPF_CONTROL_REGISTER_ITIR 21\r
4570#define IPF_CONTROL_REGISTER_IIPA 22\r
4571#define IPF_CONTROL_REGISTER_IFS 23\r
4572#define IPF_CONTROL_REGISTER_IIM 24\r
4573#define IPF_CONTROL_REGISTER_IHA 25\r
4574#define IPF_CONTROL_REGISTER_LID 64\r
4575#define IPF_CONTROL_REGISTER_IVR 65\r
4576#define IPF_CONTROL_REGISTER_TPR 66\r
4577#define IPF_CONTROL_REGISTER_EOI 67\r
4578#define IPF_CONTROL_REGISTER_IRR0 68\r
4579#define IPF_CONTROL_REGISTER_IRR1 69\r
4580#define IPF_CONTROL_REGISTER_IRR2 70\r
4581#define IPF_CONTROL_REGISTER_IRR3 71\r
4582#define IPF_CONTROL_REGISTER_ITV 72\r
4583#define IPF_CONTROL_REGISTER_PMV 73\r
4584#define IPF_CONTROL_REGISTER_CMCV 74\r
4585#define IPF_CONTROL_REGISTER_LRR0 80\r
4586#define IPF_CONTROL_REGISTER_LRR1 81\r
4587\r
4588/**\r
4589 Reads a 64-bit control register.\r
4590\r
4591 Reads and returns the control register specified by Index. The valid Index valued are defined\r
4592 above in "Related Definitions".\r
1a2f870c 4593 If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only available on Itanium processors.\r
aad6137d 4594\r
4595 @param Index The index of the control register to read.\r
4596\r
4597 @return The control register specified by Index.\r
4598\r
4599**/\r
4600UINT64\r
4601EFIAPI\r
4602AsmReadControlRegister (\r
4603 IN UINT64 Index\r
4604 );\r
4605\r
4606\r
4607///\r
4608/// Valid Index value for AsmReadApplicationRegister()\r
4609///\r
4610#define IPF_APPLICATION_REGISTER_K0 0\r
4611#define IPF_APPLICATION_REGISTER_K1 1\r
4612#define IPF_APPLICATION_REGISTER_K2 2\r
4613#define IPF_APPLICATION_REGISTER_K3 3\r
4614#define IPF_APPLICATION_REGISTER_K4 4\r
4615#define IPF_APPLICATION_REGISTER_K5 5\r
4616#define IPF_APPLICATION_REGISTER_K6 6\r
4617#define IPF_APPLICATION_REGISTER_K7 7\r
4618#define IPF_APPLICATION_REGISTER_RSC 16\r
4619#define IPF_APPLICATION_REGISTER_BSP 17\r
4620#define IPF_APPLICATION_REGISTER_BSPSTORE 18\r
4621#define IPF_APPLICATION_REGISTER_RNAT 19\r
4622#define IPF_APPLICATION_REGISTER_FCR 21\r
4623#define IPF_APPLICATION_REGISTER_EFLAG 24\r
4624#define IPF_APPLICATION_REGISTER_CSD 25\r
4625#define IPF_APPLICATION_REGISTER_SSD 26\r
4626#define IPF_APPLICATION_REGISTER_CFLG 27\r
4627#define IPF_APPLICATION_REGISTER_FSR 28\r
4628#define IPF_APPLICATION_REGISTER_FIR 29\r
4629#define IPF_APPLICATION_REGISTER_FDR 30\r
4630#define IPF_APPLICATION_REGISTER_CCV 32\r
4631#define IPF_APPLICATION_REGISTER_UNAT 36\r
4632#define IPF_APPLICATION_REGISTER_FPSR 40\r
4633#define IPF_APPLICATION_REGISTER_ITC 44\r
4634#define IPF_APPLICATION_REGISTER_PFS 64\r
4635#define IPF_APPLICATION_REGISTER_LC 65\r
4636#define IPF_APPLICATION_REGISTER_EC 66\r
4637\r
4638/**\r
4639 Reads a 64-bit application register.\r
4640\r
4641 Reads and returns the application register specified by Index. The valid Index valued are defined\r
4642 above in "Related Definitions".\r
1a2f870c 4643 If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only available on Itanium processors.\r
aad6137d 4644\r
4645 @param Index The index of the application register to read.\r
4646\r
4647 @return The application register specified by Index.\r
4648\r
4649**/\r
4650UINT64\r
4651EFIAPI\r
4652AsmReadApplicationRegister (\r
4653 IN UINT64 Index\r
4654 );\r
4655\r
4656\r
59e0bb0c 4657/**\r
4658 Reads the current value of a Machine Specific Register (MSR).\r
4659\r
4660 Reads and returns the current value of the Machine Specific Register specified by Index. No\r
4661 parameter checking is performed on Index, and if the Index value is beyond the implemented MSR\r
4662 register range, a Reserved Register/Field fault may occur. The caller must either guarantee that\r
4663 Index is valid, or the caller must set up fault handlers to catch the faults. This function is\r
1a2f870c 4664 only available on Itanium processors.\r
59e0bb0c 4665\r
4666 @param Index The 8-bit Machine Specific Register index to read.\r
4667\r
4668 @return The current value of the Machine Specific Register specified by Index. \r
4669\r
4670**/\r
4671UINT64\r
4672EFIAPI\r
4673AsmReadMsr (\r
4674 IN UINT8 Index \r
4675 );\r
4676\r
4677\r
4678/**\r
4679 Writes the current value of a Machine Specific Register (MSR).\r
4680\r
4681 Writes Value to the Machine Specific Register specified by Index. Value is returned. No\r
4682 parameter checking is performed on Index, and if the Index value is beyond the implemented MSR\r
4683 register range, a Reserved Register/Field fault may occur. The caller must either guarantee that\r
4684 Index is valid, or the caller must set up fault handlers to catch the faults. This function is\r
1a2f870c 4685 only available on Itanium processors.\r
59e0bb0c 4686\r
4687 @param Index The 8-bit Machine Specific Register index to write.\r
4688 @param Value The 64-bit value to write to the Machine Specific Register.\r
4689\r
4690 @return The 64-bit value to write to the Machine Specific Register. \r
4691\r
4692**/\r
4693UINT64\r
4694EFIAPI\r
4695AsmWriteMsr (\r
4696 IN UINT8 Index, \r
4697 IN UINT64 Value \r
4698 );\r
4699\r
4700\r
ac644614 4701/**\r
4702 Determines if the CPU is currently executing in virtual, physical, or mixed mode.\r
4703\r
4704 Determines the current execution mode of the CPU.\r
4705 If the CPU is in virtual mode(PSR.RT=1, PSR.DT=1, PSR.IT=1), then 1 is returned.\r
4706 If the CPU is in physical mode(PSR.RT=0, PSR.DT=0, PSR.IT=0), then 0 is returned.\r
4707 If the CPU is not in physical mode or virtual mode, then it is in mixed mode,\r
4708 and -1 is returned.\r
1a2f870c 4709 This function is only available on Itanium processors.\r
ac644614 4710\r
17f695ed 4711 @retval 1 The CPU is in virtual mode.\r
4712 @retval 0 The CPU is in physical mode.\r
4713 @retval -1 The CPU is in mixed mode.\r
ac644614 4714\r
4715**/\r
4716INT64\r
4717EFIAPI\r
4718AsmCpuVirtual (\r
4719 VOID\r
4720 );\r
4721\r
4722\r
4723/**\r
4724 Makes a PAL procedure call.\r
4725\r
4726 This is a wrapper function to make a PAL procedure call. Based on the Index\r
4727 value this API will make static or stacked PAL call. The following table\r
4728 describes the usage of PAL Procedure Index Assignment. Architected procedures\r
4729 may be designated as required or optional. If a PAL procedure is specified\r
4730 as optional, a unique return code of 0xFFFFFFFFFFFFFFFF is returned in the\r
4731 Status field of the PAL_CALL_RETURN structure.\r
4732 This indicates that the procedure is not present in this PAL implementation.\r
4733 It is the caller's responsibility to check for this return code after calling\r
4734 any optional PAL procedure.\r
4735 No parameter checking is performed on the 5 input parameters, but there are\r
4736 some common rules that the caller should follow when making a PAL call. Any\r
4737 address passed to PAL as buffers for return parameters must be 8-byte aligned.\r
4738 Unaligned addresses may cause undefined results. For those parameters defined\r
4739 as reserved or some fields defined as reserved must be zero filled or the invalid\r
4740 argument return value may be returned or undefined result may occur during the\r
4741 execution of the procedure. If the PalEntryPoint does not point to a valid\r
4742 PAL entry point then the system behavior is undefined. This function is only\r
1a2f870c 4743 available on Itanium processors.\r
ac644614 4744\r
ee6c452c 4745 @param PalEntryPoint The PAL procedure calls entry point.\r
4746 @param Index The PAL procedure Index number.\r
4747 @param Arg2 The 2nd parameter for PAL procedure calls.\r
4748 @param Arg3 The 3rd parameter for PAL procedure calls.\r
4749 @param Arg4 The 4th parameter for PAL procedure calls.\r
ac644614 4750\r
4751 @return structure returned from the PAL Call procedure, including the status and return value.\r
4752\r
4753**/\r
4754PAL_CALL_RETURN\r
4755EFIAPI\r
4756AsmPalCall (\r
4757 IN UINT64 PalEntryPoint,\r
4758 IN UINT64 Index,\r
4759 IN UINT64 Arg2,\r
4760 IN UINT64 Arg3,\r
4761 IN UINT64 Arg4\r
4762 );\r
fd163050 4763#endif\r
ac644614 4764\r
fd163050 4765#if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)\r
1106ffe1 4766///\r
030cd1a2 4767/// IA32 and x64 Specific Functions\r
1106ffe1 4768/// Byte packed structure for 16-bit Real Mode EFLAGS\r
4769///\r
ac644614 4770typedef union {\r
4771 struct {\r
2a53dabf
LG
4772 UINT32 CF:1; ///< Carry Flag\r
4773 UINT32 Reserved_0:1; ///< Reserved\r
4774 UINT32 PF:1; ///< Parity Flag\r
4775 UINT32 Reserved_1:1; ///< Reserved\r
4776 UINT32 AF:1; ///< Auxiliary Carry Flag\r
4777 UINT32 Reserved_2:1; ///< Reserved\r
4778 UINT32 ZF:1; ///< Zero Flag\r
4779 UINT32 SF:1; ///< Sign Flag\r
4780 UINT32 TF:1; ///< Trap Flag\r
4781 UINT32 IF:1; ///< Interrupt Enable Flag\r
4782 UINT32 DF:1; ///< Direction Flag\r
4783 UINT32 OF:1; ///< Overflow Flag\r
4784 UINT32 IOPL:2; ///< I/O Privilege Level\r
4785 UINT32 NT:1; ///< Nested Task\r
4786 UINT32 Reserved_3:1; ///< Reserved\r
ac644614 4787 } Bits;\r
4788 UINT16 Uint16;\r
4789} IA32_FLAGS16;\r
4790\r
1106ffe1 4791///\r
4792/// Byte packed structure for EFLAGS/RFLAGS\r
4793/// 32-bits on IA-32\r
030cd1a2 4794/// 64-bits on x64. The upper 32-bits on x64 are reserved\r
1106ffe1 4795///\r
ac644614 4796typedef union {\r
4797 struct {\r
2a53dabf
LG
4798 UINT32 CF:1; ///< Carry Flag\r
4799 UINT32 Reserved_0:1; ///< Reserved\r
4800 UINT32 PF:1; ///< Parity Flag\r
4801 UINT32 Reserved_1:1; ///< Reserved\r
4802 UINT32 AF:1; ///< Auxiliary Carry Flag\r
4803 UINT32 Reserved_2:1; ///< Reserved\r
4804 UINT32 ZF:1; ///< Zero Flag\r
4805 UINT32 SF:1; ///< Sign Flag\r
4806 UINT32 TF:1; ///< Trap Flag\r
4807 UINT32 IF:1; ///< Interrupt Enable Flag\r
4808 UINT32 DF:1; ///< Direction Flag\r
4809 UINT32 OF:1; ///< Overflow Flag\r
4810 UINT32 IOPL:2; ///< I/O Privilege Level\r
4811 UINT32 NT:1; ///< Nested Task\r
4812 UINT32 Reserved_3:1; ///< Reserved\r
4813 UINT32 RF:1; ///< Resume Flag\r
4814 UINT32 VM:1; ///< Virtual 8086 Mode\r
4815 UINT32 AC:1; ///< Alignment Check\r
4816 UINT32 VIF:1; ///< Virtual Interrupt Flag\r
4817 UINT32 VIP:1; ///< Virtual Interrupt Pending\r
4818 UINT32 ID:1; ///< ID Flag\r
4819 UINT32 Reserved_4:10; ///< Reserved\r
ac644614 4820 } Bits;\r
4821 UINTN UintN;\r
4822} IA32_EFLAGS32;\r
4823\r
1106ffe1 4824///\r
4825/// Byte packed structure for Control Register 0 (CR0)\r
4826/// 32-bits on IA-32\r
030cd1a2 4827/// 64-bits on x64. The upper 32-bits on x64 are reserved\r
1106ffe1 4828///\r
ac644614 4829typedef union {\r
4830 struct {\r
2a53dabf
LG
4831 UINT32 PE:1; ///< Protection Enable\r
4832 UINT32 MP:1; ///< Monitor Coprocessor\r
4833 UINT32 EM:1; ///< Emulation\r
4834 UINT32 TS:1; ///< Task Switched\r
4835 UINT32 ET:1; ///< Extension Type\r
4836 UINT32 NE:1; ///< Numeric Error\r
4837 UINT32 Reserved_0:10; ///< Reserved\r
4838 UINT32 WP:1; ///< Write Protect\r
4839 UINT32 Reserved_1:1; ///< Reserved\r
4840 UINT32 AM:1; ///< Alignment Mask\r
4841 UINT32 Reserved_2:10; ///< Reserved\r
4842 UINT32 NW:1; ///< Mot Write-through\r
4843 UINT32 CD:1; ///< Cache Disable\r
4844 UINT32 PG:1; ///< Paging\r
ac644614 4845 } Bits;\r
4846 UINTN UintN;\r
4847} IA32_CR0;\r
4848\r
1106ffe1 4849///\r
4850/// Byte packed structure for Control Register 4 (CR4)\r
4851/// 32-bits on IA-32\r
030cd1a2 4852/// 64-bits on x64. The upper 32-bits on x64 are reserved\r
1106ffe1 4853///\r
ac644614 4854typedef union {\r
4855 struct {\r
2a53dabf
LG
4856 UINT32 VME:1; ///< Virtual-8086 Mode Extensions\r
4857 UINT32 PVI:1; ///< Protected-Mode Virtual Interrupts\r
4858 UINT32 TSD:1; ///< Time Stamp Disable\r
4859 UINT32 DE:1; ///< Debugging Extensions\r
4860 UINT32 PSE:1; ///< Page Size Extensions\r
4861 UINT32 PAE:1; ///< Physical Address Extension\r
4862 UINT32 MCE:1; ///< Machine Check Enable\r
4863 UINT32 PGE:1; ///< Page Global Enable\r
4864 UINT32 PCE:1; ///< Performance Monitoring Counter\r
4865 ///< Enable\r
4866 UINT32 OSFXSR:1; ///< Operating System Support for\r
4867 ///< FXSAVE and FXRSTOR instructions\r
4868 UINT32 OSXMMEXCPT:1; ///< Operating System Support for\r
4869 ///< Unmasked SIMD Floating Point\r
4870 ///< Exceptions\r
4871 UINT32 Reserved_0:2; ///< Reserved\r
4872 UINT32 VMXE:1; ///< VMX Enable\r
77f863ee 4873 UINT32 Reserved_1:18; ///< Reserved\r
ac644614 4874 } Bits;\r
4875 UINTN UintN;\r
4876} IA32_CR4;\r
4877\r
1106ffe1 4878///\r
4879/// Byte packed structure for an IDTR, GDTR, LDTR descriptor\r
1106ffe1 4880///\r
ac644614 4881#pragma pack (1)\r
4882typedef struct {\r
4883 UINT16 Limit;\r
4884 UINTN Base;\r
4885} IA32_DESCRIPTOR;\r
4886#pragma pack ()\r
4887\r
4888#define IA32_IDT_GATE_TYPE_TASK 0x85\r
4889#define IA32_IDT_GATE_TYPE_INTERRUPT_16 0x86\r
4890#define IA32_IDT_GATE_TYPE_TRAP_16 0x87\r
4891#define IA32_IDT_GATE_TYPE_INTERRUPT_32 0x8E\r
4892#define IA32_IDT_GATE_TYPE_TRAP_32 0x8F\r
4893\r
6f4aad3b 4894\r
4895#if defined (MDE_CPU_IA32)\r
1106ffe1 4896///\r
1a2f870c 4897/// Byte packed structure for an IA-32 Interrupt Gate Descriptor\r
1106ffe1 4898///\r
dc317713 4899typedef union {\r
4900 struct {\r
6f4aad3b 4901 UINT32 OffsetLow:16; ///< Offset bits 15..0\r
4902 UINT32 Selector:16; ///< Selector\r
4903 UINT32 Reserved_0:8; ///< Reserved\r
4904 UINT32 GateType:8; ///< Gate Type. See #defines above\r
4905 UINT32 OffsetHigh:16; ///< Offset bits 31..16\r
dc317713 4906 } Bits;\r
4907 UINT64 Uint64;\r
4908} IA32_IDT_GATE_DESCRIPTOR;\r
4909\r
4910#endif\r
4911\r
4912#if defined (MDE_CPU_X64)\r
6f4aad3b 4913///\r
4914/// Byte packed structure for an x64 Interrupt Gate Descriptor\r
4915///\r
ac644614 4916typedef union {\r
4917 struct {\r
6f4aad3b 4918 UINT32 OffsetLow:16; ///< Offset bits 15..0\r
4919 UINT32 Selector:16; ///< Selector\r
4920 UINT32 Reserved_0:8; ///< Reserved\r
4921 UINT32 GateType:8; ///< Gate Type. See #defines above\r
4922 UINT32 OffsetHigh:16; ///< Offset bits 31..16\r
4923 UINT32 OffsetUpper:32; ///< Offset bits 63..32\r
4924 UINT32 Reserved_1:32; ///< Reserved\r
ac644614 4925 } Bits;\r
6f4aad3b 4926 struct {\r
4927 UINT64 Uint64;\r
4928 UINT64 Uint64_1;\r
4929 } Uint128; \r
ac644614 4930} IA32_IDT_GATE_DESCRIPTOR;\r
4931\r
dc317713 4932#endif\r
4933\r
1106ffe1 4934///\r
4935/// Byte packed structure for an FP/SSE/SSE2 context\r
4936///\r
ac644614 4937typedef struct {\r
4938 UINT8 Buffer[512];\r
4939} IA32_FX_BUFFER;\r
4940\r
1106ffe1 4941///\r
4942/// Structures for the 16-bit real mode thunks\r
4943///\r
ac644614 4944typedef struct {\r
4945 UINT32 Reserved1;\r
4946 UINT32 Reserved2;\r
4947 UINT32 Reserved3;\r
4948 UINT32 Reserved4;\r
4949 UINT8 BL;\r
4950 UINT8 BH;\r
4951 UINT16 Reserved5;\r
4952 UINT8 DL;\r
4953 UINT8 DH;\r
4954 UINT16 Reserved6;\r
4955 UINT8 CL;\r
4956 UINT8 CH;\r
4957 UINT16 Reserved7;\r
4958 UINT8 AL;\r
4959 UINT8 AH;\r
4960 UINT16 Reserved8;\r
4961} IA32_BYTE_REGS;\r
4962\r
4963typedef struct {\r
4964 UINT16 DI;\r
4965 UINT16 Reserved1;\r
4966 UINT16 SI;\r
4967 UINT16 Reserved2;\r
4968 UINT16 BP;\r
4969 UINT16 Reserved3;\r
4970 UINT16 SP;\r
4971 UINT16 Reserved4;\r
4972 UINT16 BX;\r
4973 UINT16 Reserved5;\r
4974 UINT16 DX;\r
4975 UINT16 Reserved6;\r
4976 UINT16 CX;\r
4977 UINT16 Reserved7;\r
4978 UINT16 AX;\r
4979 UINT16 Reserved8;\r
4980} IA32_WORD_REGS;\r
4981\r
4982typedef struct {\r
4983 UINT32 EDI;\r
4984 UINT32 ESI;\r
4985 UINT32 EBP;\r
4986 UINT32 ESP;\r
4987 UINT32 EBX;\r
4988 UINT32 EDX;\r
4989 UINT32 ECX;\r
4990 UINT32 EAX;\r
4991 UINT16 DS;\r
4992 UINT16 ES;\r
4993 UINT16 FS;\r
4994 UINT16 GS;\r
4995 IA32_EFLAGS32 EFLAGS;\r
4996 UINT32 Eip;\r
4997 UINT16 CS;\r
4998 UINT16 SS;\r
4999} IA32_DWORD_REGS;\r
5000\r
5001typedef union {\r
5002 IA32_DWORD_REGS E;\r
5003 IA32_WORD_REGS X;\r
5004 IA32_BYTE_REGS H;\r
5005} IA32_REGISTER_SET;\r
5006\r
1106ffe1 5007///\r
5008/// Byte packed structure for an 16-bit real mode thunks\r
5009///\r
ac644614 5010typedef struct {\r
5011 IA32_REGISTER_SET *RealModeState;\r
5012 VOID *RealModeBuffer;\r
5013 UINT32 RealModeBufferSize;\r
5014 UINT32 ThunkAttributes;\r
5015} THUNK_CONTEXT;\r
5016\r
5017#define THUNK_ATTRIBUTE_BIG_REAL_MODE 0x00000001\r
5018#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 0x00000002\r
5019#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL 0x00000004\r
5020\r
5021/**\r
5022 Retrieves CPUID information.\r
5023\r
5024 Executes the CPUID instruction with EAX set to the value specified by Index.\r
5025 This function always returns Index.\r
5026 If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.\r
5027 If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.\r
5028 If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.\r
5029 If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.\r
030cd1a2 5030 This function is only available on IA-32 and x64.\r
ac644614 5031\r
5032 @param Index The 32-bit value to load into EAX prior to invoking the CPUID\r
5033 instruction.\r
5034 @param Eax Pointer to the 32-bit EAX value returned by the CPUID\r
5035 instruction. This is an optional parameter that may be NULL.\r
5036 @param Ebx Pointer to the 32-bit EBX value returned by the CPUID\r
5037 instruction. This is an optional parameter that may be NULL.\r
5038 @param Ecx Pointer to the 32-bit ECX value returned by the CPUID\r
5039 instruction. This is an optional parameter that may be NULL.\r
5040 @param Edx Pointer to the 32-bit EDX value returned by the CPUID\r
5041 instruction. This is an optional parameter that may be NULL.\r
5042\r
2fe241a2 5043 @return Index.\r
ac644614 5044\r
5045**/\r
5046UINT32\r
5047EFIAPI\r
5048AsmCpuid (\r
5049 IN UINT32 Index,\r
5050 OUT UINT32 *Eax, OPTIONAL\r
5051 OUT UINT32 *Ebx, OPTIONAL\r
5052 OUT UINT32 *Ecx, OPTIONAL\r
5053 OUT UINT32 *Edx OPTIONAL\r
5054 );\r
5055\r
5056\r
5057/**\r
5058 Retrieves CPUID information using an extended leaf identifier.\r
5059\r
5060 Executes the CPUID instruction with EAX set to the value specified by Index\r
5061 and ECX set to the value specified by SubIndex. This function always returns\r
5062 Index. This function is only available on IA-32 and x64.\r
5063\r
5064 If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.\r
5065 If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.\r
5066 If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.\r
5067 If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.\r
5068\r
5069 @param Index The 32-bit value to load into EAX prior to invoking the\r
5070 CPUID instruction.\r
5071 @param SubIndex The 32-bit value to load into ECX prior to invoking the\r
5072 CPUID instruction.\r
5073 @param Eax Pointer to the 32-bit EAX value returned by the CPUID\r
5074 instruction. This is an optional parameter that may be\r
5075 NULL.\r
5076 @param Ebx Pointer to the 32-bit EBX value returned by the CPUID\r
5077 instruction. This is an optional parameter that may be\r
5078 NULL.\r
5079 @param Ecx Pointer to the 32-bit ECX value returned by the CPUID\r
5080 instruction. This is an optional parameter that may be\r
5081 NULL.\r
5082 @param Edx Pointer to the 32-bit EDX value returned by the CPUID\r
5083 instruction. This is an optional parameter that may be\r
5084 NULL.\r
5085\r
2fe241a2 5086 @return Index.\r
ac644614 5087\r
5088**/\r
5089UINT32\r
5090EFIAPI\r
5091AsmCpuidEx (\r
5092 IN UINT32 Index,\r
5093 IN UINT32 SubIndex,\r
5094 OUT UINT32 *Eax, OPTIONAL\r
5095 OUT UINT32 *Ebx, OPTIONAL\r
5096 OUT UINT32 *Ecx, OPTIONAL\r
5097 OUT UINT32 *Edx OPTIONAL\r
5098 );\r
5099\r
5100\r
be5f1614 5101/**\r
5102 Set CD bit and clear NW bit of CR0 followed by a WBINVD.\r
5103\r
5104 Disables the caches by setting the CD bit of CR0 to 1, clearing the NW bit of CR0 to 0,\r
5105 and executing a WBINVD instruction. This function is only available on IA-32 and x64.\r
5106\r
5107**/\r
5108VOID\r
5109EFIAPI\r
5110AsmDisableCache (\r
5111 VOID\r
5112 );\r
5113\r
5114\r
5115/**\r
5116 Perform a WBINVD and clear both the CD and NW bits of CR0.\r
5117\r
5118 Enables the caches by executing a WBINVD instruction and then clear both the CD and NW\r
5119 bits of CR0 to 0. This function is only available on IA-32 and x64.\r
5120\r
5121**/\r
5122VOID\r
5123EFIAPI\r
5124AsmEnableCache (\r
5125 VOID\r
5126 );\r
5127\r
5128\r
ac644614 5129/**\r
5130 Returns the lower 32-bits of a Machine Specific Register(MSR).\r
5131\r
5132 Reads and returns the lower 32-bits of the MSR specified by Index.\r
5133 No parameter checking is performed on Index, and some Index values may cause\r
5134 CPU exceptions. The caller must either guarantee that Index is valid, or the\r
5135 caller must set up exception handlers to catch the exceptions. This function\r
030cd1a2 5136 is only available on IA-32 and x64.\r
ac644614 5137\r
5138 @param Index The 32-bit MSR index to read.\r
5139\r
5140 @return The lower 32 bits of the MSR identified by Index.\r
5141\r
5142**/\r
5143UINT32\r
5144EFIAPI\r
5145AsmReadMsr32 (\r
5146 IN UINT32 Index\r
5147 );\r
5148\r
5149\r
5150/**\r
17f695ed 5151 Writes a 32-bit value to a Machine Specific Register(MSR), and returns the value.\r
5152 The upper 32-bits of the MSR are set to zero.\r
ac644614 5153\r
5154 Writes the 32-bit value specified by Value to the MSR specified by Index. The\r
5155 upper 32-bits of the MSR write are set to zero. The 32-bit value written to\r
5156 the MSR is returned. No parameter checking is performed on Index or Value,\r
5157 and some of these may cause CPU exceptions. The caller must either guarantee\r
5158 that Index and Value are valid, or the caller must establish proper exception\r
030cd1a2 5159 handlers. This function is only available on IA-32 and x64.\r
ac644614 5160\r
5161 @param Index The 32-bit MSR index to write.\r
5162 @param Value The 32-bit value to write to the MSR.\r
5163\r
5164 @return Value\r
5165\r
5166**/\r
5167UINT32\r
5168EFIAPI\r
5169AsmWriteMsr32 (\r
5170 IN UINT32 Index,\r
5171 IN UINT32 Value\r
5172 );\r
5173\r
5174\r
5175/**\r
62991af2 5176 Reads a 64-bit MSR, performs a bitwise OR on the lower 32-bits, and\r
ac644614 5177 writes the result back to the 64-bit MSR.\r
5178\r
62991af2 5179 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 5180 between the lower 32-bits of the read result and the value specified by\r
5181 OrData, and writes the result to the 64-bit MSR specified by Index. The lower\r
5182 32-bits of the value written to the MSR is returned. No parameter checking is\r
5183 performed on Index or OrData, and some of these may cause CPU exceptions. The\r
5184 caller must either guarantee that Index and OrData are valid, or the caller\r
5185 must establish proper exception handlers. This function is only available on\r
030cd1a2 5186 IA-32 and x64.\r
ac644614 5187\r
5188 @param Index The 32-bit MSR index to write.\r
5189 @param OrData The value to OR with the read value from the MSR.\r
5190\r
5191 @return The lower 32-bit value written to the MSR.\r
5192\r
5193**/\r
5194UINT32\r
5195EFIAPI\r
5196AsmMsrOr32 (\r
5197 IN UINT32 Index,\r
5198 IN UINT32 OrData\r
5199 );\r
5200\r
5201\r
5202/**\r
5203 Reads a 64-bit MSR, performs a bitwise AND on the lower 32-bits, and writes\r
5204 the result back to the 64-bit MSR.\r
5205\r
5206 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5207 lower 32-bits of the read result and the value specified by AndData, and\r
5208 writes the result to the 64-bit MSR specified by Index. The lower 32-bits of\r
5209 the value written to the MSR is returned. No parameter checking is performed\r
5210 on Index or AndData, and some of these may cause CPU exceptions. The caller\r
5211 must either guarantee that Index and AndData are valid, or the caller must\r
5212 establish proper exception handlers. This function is only available on IA-32\r
030cd1a2 5213 and x64.\r
ac644614 5214\r
5215 @param Index The 32-bit MSR index to write.\r
5216 @param AndData The value to AND with the read value from the MSR.\r
5217\r
5218 @return The lower 32-bit value written to the MSR.\r
5219\r
5220**/\r
5221UINT32\r
5222EFIAPI\r
5223AsmMsrAnd32 (\r
5224 IN UINT32 Index,\r
5225 IN UINT32 AndData\r
5226 );\r
5227\r
5228\r
5229/**\r
62991af2 5230 Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise OR\r
ac644614 5231 on the lower 32-bits, and writes the result back to the 64-bit MSR.\r
5232\r
5233 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5234 lower 32-bits of the read result and the value specified by AndData\r
62991af2 5235 preserving the upper 32-bits, performs a bitwise OR between the\r
ac644614 5236 result of the AND operation and the value specified by OrData, and writes the\r
5237 result to the 64-bit MSR specified by Address. The lower 32-bits of the value\r
5238 written to the MSR is returned. No parameter checking is performed on Index,\r
5239 AndData, or OrData, and some of these may cause CPU exceptions. The caller\r
5240 must either guarantee that Index, AndData, and OrData are valid, or the\r
5241 caller must establish proper exception handlers. This function is only\r
030cd1a2 5242 available on IA-32 and x64.\r
ac644614 5243\r
5244 @param Index The 32-bit MSR index to write.\r
5245 @param AndData The value to AND with the read value from the MSR.\r
5246 @param OrData The value to OR with the result of the AND operation.\r
5247\r
5248 @return The lower 32-bit value written to the MSR.\r
5249\r
5250**/\r
5251UINT32\r
5252EFIAPI\r
5253AsmMsrAndThenOr32 (\r
5254 IN UINT32 Index,\r
5255 IN UINT32 AndData,\r
5256 IN UINT32 OrData\r
5257 );\r
5258\r
5259\r
5260/**\r
5261 Reads a bit field of an MSR.\r
5262\r
5263 Reads the bit field in the lower 32-bits of a 64-bit MSR. The bit field is\r
5264 specified by the StartBit and the EndBit. The value of the bit field is\r
5265 returned. The caller must either guarantee that Index is valid, or the caller\r
5266 must set up exception handlers to catch the exceptions. This function is only\r
030cd1a2 5267 available on IA-32 and x64.\r
ac644614 5268\r
5269 If StartBit is greater than 31, then ASSERT().\r
5270 If EndBit is greater than 31, then ASSERT().\r
5271 If EndBit is less than StartBit, then ASSERT().\r
5272\r
5273 @param Index The 32-bit MSR index to read.\r
5274 @param StartBit The ordinal of the least significant bit in the bit field.\r
5275 Range 0..31.\r
5276 @param EndBit The ordinal of the most significant bit in the bit field.\r
5277 Range 0..31.\r
5278\r
5279 @return The bit field read from the MSR.\r
5280\r
5281**/\r
5282UINT32\r
5283EFIAPI\r
5284AsmMsrBitFieldRead32 (\r
5285 IN UINT32 Index,\r
5286 IN UINTN StartBit,\r
5287 IN UINTN EndBit\r
5288 );\r
5289\r
5290\r
5291/**\r
5292 Writes a bit field to an MSR.\r
5293\r
2fe241a2 5294 Writes Value to a bit field in the lower 32-bits of a 64-bit MSR. The bit\r
ac644614 5295 field is specified by the StartBit and the EndBit. All other bits in the\r
5296 destination MSR are preserved. The lower 32-bits of the MSR written is\r
62991af2 5297 returned. The caller must either guarantee that Index and the data written \r
5298 is valid, or the caller must set up exception handlers to catch the exceptions. \r
5299 This function is only available on IA-32 and x64.\r
ac644614 5300\r
5301 If StartBit is greater than 31, then ASSERT().\r
5302 If EndBit is greater than 31, then ASSERT().\r
5303 If EndBit is less than StartBit, then ASSERT().\r
5304\r
5305 @param Index The 32-bit MSR index to write.\r
5306 @param StartBit The ordinal of the least significant bit in the bit field.\r
5307 Range 0..31.\r
5308 @param EndBit The ordinal of the most significant bit in the bit field.\r
5309 Range 0..31.\r
5310 @param Value New value of the bit field.\r
5311\r
5312 @return The lower 32-bit of the value written to the MSR.\r
5313\r
5314**/\r
5315UINT32\r
5316EFIAPI\r
5317AsmMsrBitFieldWrite32 (\r
5318 IN UINT32 Index,\r
5319 IN UINTN StartBit,\r
5320 IN UINTN EndBit,\r
5321 IN UINT32 Value\r
5322 );\r
5323\r
5324\r
5325/**\r
5326 Reads a bit field in a 64-bit MSR, performs a bitwise OR, and writes the\r
5327 result back to the bit field in the 64-bit MSR.\r
5328\r
62991af2 5329 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 5330 between the read result and the value specified by OrData, and writes the\r
5331 result to the 64-bit MSR specified by Index. The lower 32-bits of the value\r
5332 written to the MSR are returned. Extra left bits in OrData are stripped. The\r
5333 caller must either guarantee that Index and the data written is valid, or\r
5334 the caller must set up exception handlers to catch the exceptions. This\r
030cd1a2 5335 function is only available on IA-32 and x64.\r
ac644614 5336\r
5337 If StartBit is greater than 31, then ASSERT().\r
5338 If EndBit is greater than 31, then ASSERT().\r
5339 If EndBit is less than StartBit, then ASSERT().\r
5340\r
5341 @param Index The 32-bit MSR index to write.\r
5342 @param StartBit The ordinal of the least significant bit in the bit field.\r
5343 Range 0..31.\r
5344 @param EndBit The ordinal of the most significant bit in the bit field.\r
5345 Range 0..31.\r
5346 @param OrData The value to OR with the read value from the MSR.\r
5347\r
5348 @return The lower 32-bit of the value written to the MSR.\r
5349\r
5350**/\r
5351UINT32\r
5352EFIAPI\r
5353AsmMsrBitFieldOr32 (\r
5354 IN UINT32 Index,\r
5355 IN UINTN StartBit,\r
5356 IN UINTN EndBit,\r
5357 IN UINT32 OrData\r
5358 );\r
5359\r
5360\r
5361/**\r
5362 Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
5363 result back to the bit field in the 64-bit MSR.\r
5364\r
5365 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5366 read result and the value specified by AndData, and writes the result to the\r
5367 64-bit MSR specified by Index. The lower 32-bits of the value written to the\r
5368 MSR are returned. Extra left bits in AndData are stripped. The caller must\r
5369 either guarantee that Index and the data written is valid, or the caller must\r
5370 set up exception handlers to catch the exceptions. This function is only\r
030cd1a2 5371 available on IA-32 and x64.\r
ac644614 5372\r
5373 If StartBit is greater than 31, then ASSERT().\r
5374 If EndBit is greater than 31, then ASSERT().\r
5375 If EndBit is less than StartBit, then ASSERT().\r
5376\r
5377 @param Index The 32-bit MSR index to write.\r
5378 @param StartBit The ordinal of the least significant bit in the bit field.\r
5379 Range 0..31.\r
5380 @param EndBit The ordinal of the most significant bit in the bit field.\r
5381 Range 0..31.\r
5382 @param AndData The value to AND with the read value from the MSR.\r
5383\r
5384 @return The lower 32-bit of the value written to the MSR.\r
5385\r
5386**/\r
5387UINT32\r
5388EFIAPI\r
5389AsmMsrBitFieldAnd32 (\r
5390 IN UINT32 Index,\r
5391 IN UINTN StartBit,\r
5392 IN UINTN EndBit,\r
5393 IN UINT32 AndData\r
5394 );\r
5395\r
5396\r
5397/**\r
5398 Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
62991af2 5399 bitwise OR, and writes the result back to the bit field in the\r
ac644614 5400 64-bit MSR.\r
5401\r
5402 Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by a\r
62991af2 5403 bitwise OR between the read result and the value specified by\r
ac644614 5404 AndData, and writes the result to the 64-bit MSR specified by Index. The\r
5405 lower 32-bits of the value written to the MSR are returned. Extra left bits\r
5406 in both AndData and OrData are stripped. The caller must either guarantee\r
5407 that Index and the data written is valid, or the caller must set up exception\r
5408 handlers to catch the exceptions. This function is only available on IA-32\r
030cd1a2 5409 and x64.\r
ac644614 5410\r
5411 If StartBit is greater than 31, then ASSERT().\r
5412 If EndBit is greater than 31, then ASSERT().\r
5413 If EndBit is less than StartBit, then ASSERT().\r
5414\r
5415 @param Index The 32-bit MSR index to write.\r
5416 @param StartBit The ordinal of the least significant bit in the bit field.\r
5417 Range 0..31.\r
5418 @param EndBit The ordinal of the most significant bit in the bit field.\r
5419 Range 0..31.\r
5420 @param AndData The value to AND with the read value from the MSR.\r
5421 @param OrData The value to OR with the result of the AND operation.\r
5422\r
5423 @return The lower 32-bit of the value written to the MSR.\r
5424\r
5425**/\r
5426UINT32\r
5427EFIAPI\r
5428AsmMsrBitFieldAndThenOr32 (\r
5429 IN UINT32 Index,\r
5430 IN UINTN StartBit,\r
5431 IN UINTN EndBit,\r
5432 IN UINT32 AndData,\r
5433 IN UINT32 OrData\r
5434 );\r
5435\r
5436\r
5437/**\r
5438 Returns a 64-bit Machine Specific Register(MSR).\r
5439\r
5440 Reads and returns the 64-bit MSR specified by Index. No parameter checking is\r
5441 performed on Index, and some Index values may cause CPU exceptions. The\r
5442 caller must either guarantee that Index is valid, or the caller must set up\r
5443 exception handlers to catch the exceptions. This function is only available\r
030cd1a2 5444 on IA-32 and x64.\r
ac644614 5445\r
5446 @param Index The 32-bit MSR index to read.\r
5447\r
5448 @return The value of the MSR identified by Index.\r
5449\r
5450**/\r
5451UINT64\r
5452EFIAPI\r
5453AsmReadMsr64 (\r
5454 IN UINT32 Index\r
5455 );\r
5456\r
5457\r
5458/**\r
5459 Writes a 64-bit value to a Machine Specific Register(MSR), and returns the\r
5460 value.\r
5461\r
5462 Writes the 64-bit value specified by Value to the MSR specified by Index. The\r
5463 64-bit value written to the MSR is returned. No parameter checking is\r
5464 performed on Index or Value, and some of these may cause CPU exceptions. The\r
5465 caller must either guarantee that Index and Value are valid, or the caller\r
5466 must establish proper exception handlers. This function is only available on\r
030cd1a2 5467 IA-32 and x64.\r
ac644614 5468\r
5469 @param Index The 32-bit MSR index to write.\r
5470 @param Value The 64-bit value to write to the MSR.\r
5471\r
5472 @return Value\r
5473\r
5474**/\r
5475UINT64\r
5476EFIAPI\r
5477AsmWriteMsr64 (\r
5478 IN UINT32 Index,\r
5479 IN UINT64 Value\r
5480 );\r
5481\r
5482\r
5483/**\r
62991af2 5484 Reads a 64-bit MSR, performs a bitwise OR, and writes the result\r
ac644614 5485 back to the 64-bit MSR.\r
5486\r
62991af2 5487 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 5488 between the read result and the value specified by OrData, and writes the\r
5489 result to the 64-bit MSR specified by Index. The value written to the MSR is\r
5490 returned. No parameter checking is performed on Index or OrData, and some of\r
5491 these may cause CPU exceptions. The caller must either guarantee that Index\r
5492 and OrData are valid, or the caller must establish proper exception handlers.\r
030cd1a2 5493 This function is only available on IA-32 and x64.\r
ac644614 5494\r
5495 @param Index The 32-bit MSR index to write.\r
5496 @param OrData The value to OR with the read value from the MSR.\r
5497\r
5498 @return The value written back to the MSR.\r
5499\r
5500**/\r
5501UINT64\r
5502EFIAPI\r
5503AsmMsrOr64 (\r
5504 IN UINT32 Index,\r
5505 IN UINT64 OrData\r
5506 );\r
5507\r
5508\r
5509/**\r
5510 Reads a 64-bit MSR, performs a bitwise AND, and writes the result back to the\r
5511 64-bit MSR.\r
5512\r
5513 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5514 read result and the value specified by OrData, and writes the result to the\r
5515 64-bit MSR specified by Index. The value written to the MSR is returned. No\r
5516 parameter checking is performed on Index or OrData, and some of these may\r
5517 cause CPU exceptions. The caller must either guarantee that Index and OrData\r
5518 are valid, or the caller must establish proper exception handlers. This\r
030cd1a2 5519 function is only available on IA-32 and x64.\r
ac644614 5520\r
5521 @param Index The 32-bit MSR index to write.\r
5522 @param AndData The value to AND with the read value from the MSR.\r
5523\r
5524 @return The value written back to the MSR.\r
5525\r
5526**/\r
5527UINT64\r
5528EFIAPI\r
5529AsmMsrAnd64 (\r
5530 IN UINT32 Index,\r
5531 IN UINT64 AndData\r
5532 );\r
5533\r
5534\r
5535/**\r
62991af2 5536 Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise \r
ac644614 5537 OR, and writes the result back to the 64-bit MSR.\r
5538\r
5539 Reads the 64-bit MSR specified by Index, performs a bitwise AND between read\r
62991af2 5540 result and the value specified by AndData, performs a bitwise OR\r
ac644614 5541 between the result of the AND operation and the value specified by OrData,\r
5542 and writes the result to the 64-bit MSR specified by Index. The value written\r
5543 to the MSR is returned. No parameter checking is performed on Index, AndData,\r
5544 or OrData, and some of these may cause CPU exceptions. The caller must either\r
5545 guarantee that Index, AndData, and OrData are valid, or the caller must\r
5546 establish proper exception handlers. This function is only available on IA-32\r
030cd1a2 5547 and x64.\r
ac644614 5548\r
5549 @param Index The 32-bit MSR index to write.\r
5550 @param AndData The value to AND with the read value from the MSR.\r
5551 @param OrData The value to OR with the result of the AND operation.\r
5552\r
5553 @return The value written back to the MSR.\r
5554\r
5555**/\r
5556UINT64\r
5557EFIAPI\r
5558AsmMsrAndThenOr64 (\r
5559 IN UINT32 Index,\r
5560 IN UINT64 AndData,\r
5561 IN UINT64 OrData\r
5562 );\r
5563\r
5564\r
5565/**\r
5566 Reads a bit field of an MSR.\r
5567\r
5568 Reads the bit field in the 64-bit MSR. The bit field is specified by the\r
5569 StartBit and the EndBit. The value of the bit field is returned. The caller\r
5570 must either guarantee that Index is valid, or the caller must set up\r
5571 exception handlers to catch the exceptions. This function is only available\r
030cd1a2 5572 on IA-32 and x64.\r
ac644614 5573\r
5574 If StartBit is greater than 63, then ASSERT().\r
5575 If EndBit is greater than 63, then ASSERT().\r
5576 If EndBit is less than StartBit, then ASSERT().\r
5577\r
5578 @param Index The 32-bit MSR index to read.\r
5579 @param StartBit The ordinal of the least significant bit in the bit field.\r
5580 Range 0..63.\r
5581 @param EndBit The ordinal of the most significant bit in the bit field.\r
5582 Range 0..63.\r
5583\r
5584 @return The value read from the MSR.\r
5585\r
5586**/\r
5587UINT64\r
5588EFIAPI\r
5589AsmMsrBitFieldRead64 (\r
5590 IN UINT32 Index,\r
5591 IN UINTN StartBit,\r
5592 IN UINTN EndBit\r
5593 );\r
5594\r
5595\r
5596/**\r
5597 Writes a bit field to an MSR.\r
5598\r
5599 Writes Value to a bit field in a 64-bit MSR. The bit field is specified by\r
5600 the StartBit and the EndBit. All other bits in the destination MSR are\r
62991af2 5601 preserved. The MSR written is returned. The caller must either guarantee \r
5602 that Index and the data written is valid, or the caller must set up exception \r
5603 handlers to catch the exceptions. This function is only available on IA-32 and x64.\r
ac644614 5604\r
5605 If StartBit is greater than 63, then ASSERT().\r
5606 If EndBit is greater than 63, then ASSERT().\r
5607 If EndBit is less than StartBit, then ASSERT().\r
5608\r
5609 @param Index The 32-bit MSR index to write.\r
5610 @param StartBit The ordinal of the least significant bit in the bit field.\r
5611 Range 0..63.\r
5612 @param EndBit The ordinal of the most significant bit in the bit field.\r
5613 Range 0..63.\r
5614 @param Value New value of the bit field.\r
5615\r
5616 @return The value written back to the MSR.\r
5617\r
5618**/\r
5619UINT64\r
5620EFIAPI\r
5621AsmMsrBitFieldWrite64 (\r
5622 IN UINT32 Index,\r
5623 IN UINTN StartBit,\r
5624 IN UINTN EndBit,\r
5625 IN UINT64 Value\r
5626 );\r
5627\r
5628\r
5629/**\r
62991af2 5630 Reads a bit field in a 64-bit MSR, performs a bitwise OR, and\r
ac644614 5631 writes the result back to the bit field in the 64-bit MSR.\r
5632\r
62991af2 5633 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 5634 between the read result and the value specified by OrData, and writes the\r
5635 result to the 64-bit MSR specified by Index. The value written to the MSR is\r
5636 returned. Extra left bits in OrData are stripped. The caller must either\r
5637 guarantee that Index and the data written is valid, or the caller must set up\r
5638 exception handlers to catch the exceptions. This function is only available\r
030cd1a2 5639 on IA-32 and x64.\r
ac644614 5640\r
5641 If StartBit is greater than 63, then ASSERT().\r
5642 If EndBit is greater than 63, then ASSERT().\r
5643 If EndBit is less than StartBit, then ASSERT().\r
5644\r
5645 @param Index The 32-bit MSR index to write.\r
5646 @param StartBit The ordinal of the least significant bit in the bit field.\r
5647 Range 0..63.\r
5648 @param EndBit The ordinal of the most significant bit in the bit field.\r
5649 Range 0..63.\r
5650 @param OrData The value to OR with the read value from the bit field.\r
5651\r
5652 @return The value written back to the MSR.\r
5653\r
5654**/\r
5655UINT64\r
5656EFIAPI\r
5657AsmMsrBitFieldOr64 (\r
5658 IN UINT32 Index,\r
5659 IN UINTN StartBit,\r
5660 IN UINTN EndBit,\r
5661 IN UINT64 OrData\r
5662 );\r
5663\r
5664\r
5665/**\r
5666 Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
5667 result back to the bit field in the 64-bit MSR.\r
5668\r
5669 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5670 read result and the value specified by AndData, and writes the result to the\r
5671 64-bit MSR specified by Index. The value written to the MSR is returned.\r
5672 Extra left bits in AndData are stripped. The caller must either guarantee\r
5673 that Index and the data written is valid, or the caller must set up exception\r
5674 handlers to catch the exceptions. This function is only available on IA-32\r
030cd1a2 5675 and x64.\r
ac644614 5676\r
5677 If StartBit is greater than 63, then ASSERT().\r
5678 If EndBit is greater than 63, then ASSERT().\r
5679 If EndBit is less than StartBit, then ASSERT().\r
5680\r
5681 @param Index The 32-bit MSR index to write.\r
5682 @param StartBit The ordinal of the least significant bit in the bit field.\r
5683 Range 0..63.\r
5684 @param EndBit The ordinal of the most significant bit in the bit field.\r
5685 Range 0..63.\r
5686 @param AndData The value to AND with the read value from the bit field.\r
5687\r
5688 @return The value written back to the MSR.\r
5689\r
5690**/\r
5691UINT64\r
5692EFIAPI\r
5693AsmMsrBitFieldAnd64 (\r
5694 IN UINT32 Index,\r
5695 IN UINTN StartBit,\r
5696 IN UINTN EndBit,\r
5697 IN UINT64 AndData\r
5698 );\r
5699\r
5700\r
5701/**\r
5702 Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
62991af2 5703 bitwise OR, and writes the result back to the bit field in the\r
ac644614 5704 64-bit MSR.\r
5705\r
5706 Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by\r
62991af2 5707 a bitwise OR between the read result and the value specified by\r
ac644614 5708 AndData, and writes the result to the 64-bit MSR specified by Index. The\r
5709 value written to the MSR is returned. Extra left bits in both AndData and\r
5710 OrData are stripped. The caller must either guarantee that Index and the data\r
5711 written is valid, or the caller must set up exception handlers to catch the\r
030cd1a2 5712 exceptions. This function is only available on IA-32 and x64.\r
ac644614 5713\r
5714 If StartBit is greater than 63, then ASSERT().\r
5715 If EndBit is greater than 63, then ASSERT().\r
5716 If EndBit is less than StartBit, then ASSERT().\r
5717\r
5718 @param Index The 32-bit MSR index to write.\r
5719 @param StartBit The ordinal of the least significant bit in the bit field.\r
5720 Range 0..63.\r
5721 @param EndBit The ordinal of the most significant bit in the bit field.\r
5722 Range 0..63.\r
5723 @param AndData The value to AND with the read value from the bit field.\r
5724 @param OrData The value to OR with the result of the AND operation.\r
5725\r
5726 @return The value written back to the MSR.\r
5727\r
5728**/\r
5729UINT64\r
5730EFIAPI\r
5731AsmMsrBitFieldAndThenOr64 (\r
5732 IN UINT32 Index,\r
5733 IN UINTN StartBit,\r
5734 IN UINTN EndBit,\r
5735 IN UINT64 AndData,\r
5736 IN UINT64 OrData\r
5737 );\r
5738\r
5739\r
5740/**\r
5741 Reads the current value of the EFLAGS register.\r
5742\r
5743 Reads and returns the current value of the EFLAGS register. This function is\r
030cd1a2 5744 only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a\r
5745 64-bit value on x64.\r
ac644614 5746\r
030cd1a2 5747 @return EFLAGS on IA-32 or RFLAGS on x64.\r
ac644614 5748\r
5749**/\r
5750UINTN\r
5751EFIAPI\r
5752AsmReadEflags (\r
5753 VOID\r
5754 );\r
5755\r
5756\r
5757/**\r
5758 Reads the current value of the Control Register 0 (CR0).\r
5759\r
5760 Reads and returns the current value of CR0. This function is only available\r
030cd1a2 5761 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5762 x64.\r
ac644614 5763\r
5764 @return The value of the Control Register 0 (CR0).\r
5765\r
5766**/\r
5767UINTN\r
5768EFIAPI\r
5769AsmReadCr0 (\r
5770 VOID\r
5771 );\r
5772\r
5773\r
5774/**\r
5775 Reads the current value of the Control Register 2 (CR2).\r
5776\r
5777 Reads and returns the current value of CR2. This function is only available\r
030cd1a2 5778 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5779 x64.\r
ac644614 5780\r
5781 @return The value of the Control Register 2 (CR2).\r
5782\r
5783**/\r
5784UINTN\r
5785EFIAPI\r
5786AsmReadCr2 (\r
5787 VOID\r
5788 );\r
5789\r
5790\r
5791/**\r
5792 Reads the current value of the Control Register 3 (CR3).\r
5793\r
5794 Reads and returns the current value of CR3. This function is only available\r
030cd1a2 5795 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5796 x64.\r
ac644614 5797\r
5798 @return The value of the Control Register 3 (CR3).\r
5799\r
5800**/\r
5801UINTN\r
5802EFIAPI\r
5803AsmReadCr3 (\r
5804 VOID\r
5805 );\r
5806\r
5807\r
5808/**\r
5809 Reads the current value of the Control Register 4 (CR4).\r
5810\r
5811 Reads and returns the current value of CR4. This function is only available\r
030cd1a2 5812 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5813 x64.\r
ac644614 5814\r
5815 @return The value of the Control Register 4 (CR4).\r
5816\r
5817**/\r
5818UINTN\r
5819EFIAPI\r
5820AsmReadCr4 (\r
5821 VOID\r
5822 );\r
5823\r
5824\r
5825/**\r
5826 Writes a value to Control Register 0 (CR0).\r
5827\r
5828 Writes and returns a new value to CR0. This function is only available on\r
030cd1a2 5829 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 5830\r
5831 @param Cr0 The value to write to CR0.\r
5832\r
5833 @return The value written to CR0.\r
5834\r
5835**/\r
5836UINTN\r
5837EFIAPI\r
5838AsmWriteCr0 (\r
5839 UINTN Cr0\r
5840 );\r
5841\r
5842\r
5843/**\r
5844 Writes a value to Control Register 2 (CR2).\r
5845\r
5846 Writes and returns a new value to CR2. This function is only available on\r
030cd1a2 5847 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 5848\r
5849 @param Cr2 The value to write to CR2.\r
5850\r
5851 @return The value written to CR2.\r
5852\r
5853**/\r
5854UINTN\r
5855EFIAPI\r
5856AsmWriteCr2 (\r
5857 UINTN Cr2\r
5858 );\r
5859\r
5860\r
5861/**\r
5862 Writes a value to Control Register 3 (CR3).\r
5863\r
5864 Writes and returns a new value to CR3. This function is only available on\r
030cd1a2 5865 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 5866\r
5867 @param Cr3 The value to write to CR3.\r
5868\r
5869 @return The value written to CR3.\r
5870\r
5871**/\r
5872UINTN\r
5873EFIAPI\r
5874AsmWriteCr3 (\r
5875 UINTN Cr3\r
5876 );\r
5877\r
5878\r
5879/**\r
5880 Writes a value to Control Register 4 (CR4).\r
5881\r
5882 Writes and returns a new value to CR4. This function is only available on\r
030cd1a2 5883 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 5884\r
5885 @param Cr4 The value to write to CR4.\r
5886\r
5887 @return The value written to CR4.\r
5888\r
5889**/\r
5890UINTN\r
5891EFIAPI\r
5892AsmWriteCr4 (\r
5893 UINTN Cr4\r
5894 );\r
5895\r
5896\r
5897/**\r
5898 Reads the current value of Debug Register 0 (DR0).\r
5899\r
5900 Reads and returns the current value of DR0. This function is only available\r
030cd1a2 5901 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5902 x64.\r
ac644614 5903\r
5904 @return The value of Debug Register 0 (DR0).\r
5905\r
5906**/\r
5907UINTN\r
5908EFIAPI\r
5909AsmReadDr0 (\r
5910 VOID\r
5911 );\r
5912\r
5913\r
5914/**\r
5915 Reads the current value of Debug Register 1 (DR1).\r
5916\r
5917 Reads and returns the current value of DR1. This function is only available\r
030cd1a2 5918 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5919 x64.\r
ac644614 5920\r
5921 @return The value of Debug Register 1 (DR1).\r
5922\r
5923**/\r
5924UINTN\r
5925EFIAPI\r
5926AsmReadDr1 (\r
5927 VOID\r
5928 );\r
5929\r
5930\r
5931/**\r
5932 Reads the current value of Debug Register 2 (DR2).\r
5933\r
5934 Reads and returns the current value of DR2. This function is only available\r
030cd1a2 5935 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5936 x64.\r
ac644614 5937\r
5938 @return The value of Debug Register 2 (DR2).\r
5939\r
5940**/\r
5941UINTN\r
5942EFIAPI\r
5943AsmReadDr2 (\r
5944 VOID\r
5945 );\r
5946\r
5947\r
5948/**\r
5949 Reads the current value of Debug Register 3 (DR3).\r
5950\r
5951 Reads and returns the current value of DR3. This function is only available\r
030cd1a2 5952 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5953 x64.\r
ac644614 5954\r
5955 @return The value of Debug Register 3 (DR3).\r
5956\r
5957**/\r
5958UINTN\r
5959EFIAPI\r
5960AsmReadDr3 (\r
5961 VOID\r
5962 );\r
5963\r
5964\r
5965/**\r
5966 Reads the current value of Debug Register 4 (DR4).\r
5967\r
5968 Reads and returns the current value of DR4. This function is only available\r
030cd1a2 5969 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5970 x64.\r
ac644614 5971\r
5972 @return The value of Debug Register 4 (DR4).\r
5973\r
5974**/\r
5975UINTN\r
5976EFIAPI\r
5977AsmReadDr4 (\r
5978 VOID\r
5979 );\r
5980\r
5981\r
5982/**\r
5983 Reads the current value of Debug Register 5 (DR5).\r
5984\r
5985 Reads and returns the current value of DR5. This function is only available\r
030cd1a2 5986 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5987 x64.\r
ac644614 5988\r
5989 @return The value of Debug Register 5 (DR5).\r
5990\r
5991**/\r
5992UINTN\r
5993EFIAPI\r
5994AsmReadDr5 (\r
5995 VOID\r
5996 );\r
5997\r
5998\r
5999/**\r
6000 Reads the current value of Debug Register 6 (DR6).\r
6001\r
6002 Reads and returns the current value of DR6. This function is only available\r
030cd1a2 6003 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6004 x64.\r
ac644614 6005\r
6006 @return The value of Debug Register 6 (DR6).\r
6007\r
6008**/\r
6009UINTN\r
6010EFIAPI\r
6011AsmReadDr6 (\r
6012 VOID\r
6013 );\r
6014\r
6015\r
6016/**\r
6017 Reads the current value of Debug Register 7 (DR7).\r
6018\r
6019 Reads and returns the current value of DR7. This function is only available\r
030cd1a2 6020 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6021 x64.\r
ac644614 6022\r
6023 @return The value of Debug Register 7 (DR7).\r
6024\r
6025**/\r
6026UINTN\r
6027EFIAPI\r
6028AsmReadDr7 (\r
6029 VOID\r
6030 );\r
6031\r
6032\r
6033/**\r
6034 Writes a value to Debug Register 0 (DR0).\r
6035\r
6036 Writes and returns a new value to DR0. This function is only available on\r
030cd1a2 6037 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 6038\r
6039 @param Dr0 The value to write to Dr0.\r
6040\r
6041 @return The value written to Debug Register 0 (DR0).\r
6042\r
6043**/\r
6044UINTN\r
6045EFIAPI\r
6046AsmWriteDr0 (\r
6047 UINTN Dr0\r
6048 );\r
6049\r
6050\r
6051/**\r
6052 Writes a value to Debug Register 1 (DR1).\r
6053\r
6054 Writes and returns a new value to DR1. This function is only available on\r
030cd1a2 6055 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 6056\r
6057 @param Dr1 The value to write to Dr1.\r
6058\r
6059 @return The value written to Debug Register 1 (DR1).\r
6060\r
6061**/\r
6062UINTN\r
6063EFIAPI\r
6064AsmWriteDr1 (\r
6065 UINTN Dr1\r
6066 );\r
6067\r
6068\r
6069/**\r
6070 Writes a value to Debug Register 2 (DR2).\r
6071\r
6072 Writes and returns a new value to DR2. This function is only available on\r
030cd1a2 6073 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 6074\r
6075 @param Dr2 The value to write to Dr2.\r
6076\r
6077 @return The value written to Debug Register 2 (DR2).\r
6078\r
6079**/\r
6080UINTN\r
6081EFIAPI\r
6082AsmWriteDr2 (\r
6083 UINTN Dr2\r
6084 );\r
6085\r
6086\r
6087/**\r
6088 Writes a value to Debug Register 3 (DR3).\r
6089\r
6090 Writes and returns a new value to DR3. This function is only available on\r
030cd1a2 6091 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 6092\r
6093 @param Dr3 The value to write to Dr3.\r
6094\r
6095 @return The value written to Debug Register 3 (DR3).\r
6096\r
6097**/\r
6098UINTN\r
6099EFIAPI\r
6100AsmWriteDr3 (\r
6101 UINTN Dr3\r
6102 );\r
6103\r
6104\r
6105/**\r
6106 Writes a value to Debug Register 4 (DR4).\r
6107\r
6108 Writes and returns a new value to DR4. This function is only available on\r
030cd1a2 6109 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 6110\r
6111 @param Dr4 The value to write to Dr4.\r
6112\r
6113 @return The value written to Debug Register 4 (DR4).\r
6114\r
6115**/\r
6116UINTN\r
6117EFIAPI\r
6118AsmWriteDr4 (\r
6119 UINTN Dr4\r
6120 );\r
6121\r
6122\r
6123/**\r
6124 Writes a value to Debug Register 5 (DR5).\r
6125\r
6126 Writes and returns a new value to DR5. This function is only available on\r
030cd1a2 6127 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 6128\r
6129 @param Dr5 The value to write to Dr5.\r
6130\r
6131 @return The value written to Debug Register 5 (DR5).\r
6132\r
6133**/\r
6134UINTN\r
6135EFIAPI\r
6136AsmWriteDr5 (\r
6137 UINTN Dr5\r
6138 );\r
6139\r
6140\r
6141/**\r
6142 Writes a value to Debug Register 6 (DR6).\r
6143\r
6144 Writes and returns a new value to DR6. This function is only available on\r
030cd1a2 6145 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 6146\r
6147 @param Dr6 The value to write to Dr6.\r
6148\r
6149 @return The value written to Debug Register 6 (DR6).\r
6150\r
6151**/\r
6152UINTN\r
6153EFIAPI\r
6154AsmWriteDr6 (\r
6155 UINTN Dr6\r
6156 );\r
6157\r
6158\r
6159/**\r
6160 Writes a value to Debug Register 7 (DR7).\r
6161\r
6162 Writes and returns a new value to DR7. This function is only available on\r
030cd1a2 6163 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 6164\r
6165 @param Dr7 The value to write to Dr7.\r
6166\r
6167 @return The value written to Debug Register 7 (DR7).\r
6168\r
6169**/\r
6170UINTN\r
6171EFIAPI\r
6172AsmWriteDr7 (\r
6173 UINTN Dr7\r
6174 );\r
6175\r
6176\r
6177/**\r
6178 Reads the current value of Code Segment Register (CS).\r
6179\r
6180 Reads and returns the current value of CS. This function is only available on\r
030cd1a2 6181 IA-32 and x64.\r
ac644614 6182\r
6183 @return The current value of CS.\r
6184\r
6185**/\r
6186UINT16\r
6187EFIAPI\r
6188AsmReadCs (\r
6189 VOID\r
6190 );\r
6191\r
6192\r
6193/**\r
6194 Reads the current value of Data Segment Register (DS).\r
6195\r
6196 Reads and returns the current value of DS. This function is only available on\r
030cd1a2 6197 IA-32 and x64.\r
ac644614 6198\r
6199 @return The current value of DS.\r
6200\r
6201**/\r
6202UINT16\r
6203EFIAPI\r
6204AsmReadDs (\r
6205 VOID\r
6206 );\r
6207\r
6208\r
6209/**\r
6210 Reads the current value of Extra Segment Register (ES).\r
6211\r
6212 Reads and returns the current value of ES. This function is only available on\r
030cd1a2 6213 IA-32 and x64.\r
ac644614 6214\r
6215 @return The current value of ES.\r
6216\r
6217**/\r
6218UINT16\r
6219EFIAPI\r
6220AsmReadEs (\r
6221 VOID\r
6222 );\r
6223\r
6224\r
6225/**\r
6226 Reads the current value of FS Data Segment Register (FS).\r
6227\r
6228 Reads and returns the current value of FS. This function is only available on\r
030cd1a2 6229 IA-32 and x64.\r
ac644614 6230\r
6231 @return The current value of FS.\r
6232\r
6233**/\r
6234UINT16\r
6235EFIAPI\r
6236AsmReadFs (\r
6237 VOID\r
6238 );\r
6239\r
6240\r
6241/**\r
6242 Reads the current value of GS Data Segment Register (GS).\r
6243\r
6244 Reads and returns the current value of GS. This function is only available on\r
030cd1a2 6245 IA-32 and x64.\r
ac644614 6246\r
6247 @return The current value of GS.\r
6248\r
6249**/\r
6250UINT16\r
6251EFIAPI\r
6252AsmReadGs (\r
6253 VOID\r
6254 );\r
6255\r
6256\r
6257/**\r
6258 Reads the current value of Stack Segment Register (SS).\r
6259\r
6260 Reads and returns the current value of SS. This function is only available on\r
030cd1a2 6261 IA-32 and x64.\r
ac644614 6262\r
6263 @return The current value of SS.\r
6264\r
6265**/\r
6266UINT16\r
6267EFIAPI\r
6268AsmReadSs (\r
6269 VOID\r
6270 );\r
6271\r
6272\r
6273/**\r
6274 Reads the current value of Task Register (TR).\r
6275\r
6276 Reads and returns the current value of TR. This function is only available on\r
030cd1a2 6277 IA-32 and x64.\r
ac644614 6278\r
6279 @return The current value of TR.\r
6280\r
6281**/\r
6282UINT16\r
6283EFIAPI\r
6284AsmReadTr (\r
6285 VOID\r
6286 );\r
6287\r
6288\r
6289/**\r
6290 Reads the current Global Descriptor Table Register(GDTR) descriptor.\r
6291\r
6292 Reads and returns the current GDTR descriptor and returns it in Gdtr. This\r
030cd1a2 6293 function is only available on IA-32 and x64.\r
ac644614 6294\r
6295 If Gdtr is NULL, then ASSERT().\r
6296\r
6297 @param Gdtr Pointer to a GDTR descriptor.\r
6298\r
6299**/\r
6300VOID\r
6301EFIAPI\r
6302AsmReadGdtr (\r
6303 OUT IA32_DESCRIPTOR *Gdtr\r
6304 );\r
6305\r
6306\r
6307/**\r
6308 Writes the current Global Descriptor Table Register (GDTR) descriptor.\r
6309\r
6310 Writes and the current GDTR descriptor specified by Gdtr. This function is\r
030cd1a2 6311 only available on IA-32 and x64.\r
ac644614 6312\r
6313 If Gdtr is NULL, then ASSERT().\r
6314\r
6315 @param Gdtr Pointer to a GDTR descriptor.\r
6316\r
6317**/\r
6318VOID\r
6319EFIAPI\r
6320AsmWriteGdtr (\r
6321 IN CONST IA32_DESCRIPTOR *Gdtr\r
6322 );\r
6323\r
6324\r
6325/**\r
17f695ed 6326 Reads the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
ac644614 6327\r
6328 Reads and returns the current IDTR descriptor and returns it in Idtr. This\r
030cd1a2 6329 function is only available on IA-32 and x64.\r
ac644614 6330\r
6331 If Idtr is NULL, then ASSERT().\r
6332\r
6333 @param Idtr Pointer to a IDTR descriptor.\r
6334\r
6335**/\r
6336VOID\r
6337EFIAPI\r
6338AsmReadIdtr (\r
6339 OUT IA32_DESCRIPTOR *Idtr\r
6340 );\r
6341\r
6342\r
6343/**\r
17f695ed 6344 Writes the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
ac644614 6345\r
6346 Writes the current IDTR descriptor and returns it in Idtr. This function is\r
030cd1a2 6347 only available on IA-32 and x64.\r
ac644614 6348\r
6349 If Idtr is NULL, then ASSERT().\r
6350\r
6351 @param Idtr Pointer to a IDTR descriptor.\r
6352\r
6353**/\r
6354VOID\r
6355EFIAPI\r
6356AsmWriteIdtr (\r
6357 IN CONST IA32_DESCRIPTOR *Idtr\r
6358 );\r
6359\r
6360\r
6361/**\r
6362 Reads the current Local Descriptor Table Register(LDTR) selector.\r
6363\r
6364 Reads and returns the current 16-bit LDTR descriptor value. This function is\r
030cd1a2 6365 only available on IA-32 and x64.\r
ac644614 6366\r
6367 @return The current selector of LDT.\r
6368\r
6369**/\r
6370UINT16\r
6371EFIAPI\r
6372AsmReadLdtr (\r
6373 VOID\r
6374 );\r
6375\r
6376\r
6377/**\r
17f695ed 6378 Writes the current Local Descriptor Table Register (LDTR) selector.\r
ac644614 6379\r
6380 Writes and the current LDTR descriptor specified by Ldtr. This function is\r
030cd1a2 6381 only available on IA-32 and x64.\r
ac644614 6382\r
6383 @param Ldtr 16-bit LDTR selector value.\r
6384\r
6385**/\r
6386VOID\r
6387EFIAPI\r
6388AsmWriteLdtr (\r
6389 IN UINT16 Ldtr\r
6390 );\r
6391\r
6392\r
6393/**\r
6394 Save the current floating point/SSE/SSE2 context to a buffer.\r
6395\r
6396 Saves the current floating point/SSE/SSE2 state to the buffer specified by\r
6397 Buffer. Buffer must be aligned on a 16-byte boundary. This function is only\r
030cd1a2 6398 available on IA-32 and x64.\r
ac644614 6399\r
6400 If Buffer is NULL, then ASSERT().\r
6401 If Buffer is not aligned on a 16-byte boundary, then ASSERT().\r
6402\r
6403 @param Buffer Pointer to a buffer to save the floating point/SSE/SSE2 context.\r
6404\r
6405**/\r
6406VOID\r
6407EFIAPI\r
6408AsmFxSave (\r
6409 OUT IA32_FX_BUFFER *Buffer\r
6410 );\r
6411\r
6412\r
6413/**\r
6414 Restores the current floating point/SSE/SSE2 context from a buffer.\r
6415\r
6416 Restores the current floating point/SSE/SSE2 state from the buffer specified\r
6417 by Buffer. Buffer must be aligned on a 16-byte boundary. This function is\r
030cd1a2 6418 only available on IA-32 and x64.\r
ac644614 6419\r
6420 If Buffer is NULL, then ASSERT().\r
6421 If Buffer is not aligned on a 16-byte boundary, then ASSERT().\r
6422 If Buffer was not saved with AsmFxSave(), then ASSERT().\r
6423\r
6424 @param Buffer Pointer to a buffer to save the floating point/SSE/SSE2 context.\r
6425\r
6426**/\r
6427VOID\r
6428EFIAPI\r
6429AsmFxRestore (\r
6430 IN CONST IA32_FX_BUFFER *Buffer\r
6431 );\r
6432\r
6433\r
6434/**\r
6435 Reads the current value of 64-bit MMX Register #0 (MM0).\r
6436\r
6437 Reads and returns the current value of MM0. This function is only available\r
030cd1a2 6438 on IA-32 and x64.\r
ac644614 6439\r
6440 @return The current value of MM0.\r
6441\r
6442**/\r
6443UINT64\r
6444EFIAPI\r
6445AsmReadMm0 (\r
6446 VOID\r
6447 );\r
6448\r
6449\r
6450/**\r
6451 Reads the current value of 64-bit MMX Register #1 (MM1).\r
6452\r
6453 Reads and returns the current value of MM1. This function is only available\r
030cd1a2 6454 on IA-32 and x64.\r
ac644614 6455\r
6456 @return The current value of MM1.\r
6457\r
6458**/\r
6459UINT64\r
6460EFIAPI\r
6461AsmReadMm1 (\r
6462 VOID\r
6463 );\r
6464\r
6465\r
6466/**\r
6467 Reads the current value of 64-bit MMX Register #2 (MM2).\r
6468\r
6469 Reads and returns the current value of MM2. This function is only available\r
030cd1a2 6470 on IA-32 and x64.\r
ac644614 6471\r
6472 @return The current value of MM2.\r
6473\r
6474**/\r
6475UINT64\r
6476EFIAPI\r
6477AsmReadMm2 (\r
6478 VOID\r
6479 );\r
6480\r
6481\r
6482/**\r
6483 Reads the current value of 64-bit MMX Register #3 (MM3).\r
6484\r
6485 Reads and returns the current value of MM3. This function is only available\r
030cd1a2 6486 on IA-32 and x64.\r
ac644614 6487\r
6488 @return The current value of MM3.\r
6489\r
6490**/\r
6491UINT64\r
6492EFIAPI\r
6493AsmReadMm3 (\r
6494 VOID\r
6495 );\r
6496\r
6497\r
6498/**\r
6499 Reads the current value of 64-bit MMX Register #4 (MM4).\r
6500\r
6501 Reads and returns the current value of MM4. This function is only available\r
030cd1a2 6502 on IA-32 and x64.\r
ac644614 6503\r
6504 @return The current value of MM4.\r
6505\r
6506**/\r
6507UINT64\r
6508EFIAPI\r
6509AsmReadMm4 (\r
6510 VOID\r
6511 );\r
6512\r
6513\r
6514/**\r
6515 Reads the current value of 64-bit MMX Register #5 (MM5).\r
6516\r
6517 Reads and returns the current value of MM5. This function is only available\r
030cd1a2 6518 on IA-32 and x64.\r
ac644614 6519\r
6520 @return The current value of MM5.\r
6521\r
6522**/\r
6523UINT64\r
6524EFIAPI\r
6525AsmReadMm5 (\r
6526 VOID\r
6527 );\r
6528\r
6529\r
6530/**\r
6531 Reads the current value of 64-bit MMX Register #6 (MM6).\r
6532\r
6533 Reads and returns the current value of MM6. This function is only available\r
030cd1a2 6534 on IA-32 and x64.\r
ac644614 6535\r
6536 @return The current value of MM6.\r
6537\r
6538**/\r
6539UINT64\r
6540EFIAPI\r
6541AsmReadMm6 (\r
6542 VOID\r
6543 );\r
6544\r
6545\r
6546/**\r
6547 Reads the current value of 64-bit MMX Register #7 (MM7).\r
6548\r
6549 Reads and returns the current value of MM7. This function is only available\r
030cd1a2 6550 on IA-32 and x64.\r
ac644614 6551\r
6552 @return The current value of MM7.\r
6553\r
6554**/\r
6555UINT64\r
6556EFIAPI\r
6557AsmReadMm7 (\r
6558 VOID\r
6559 );\r
6560\r
6561\r
6562/**\r
6563 Writes the current value of 64-bit MMX Register #0 (MM0).\r
6564\r
6565 Writes the current value of MM0. This function is only available on IA32 and\r
030cd1a2 6566 x64.\r
ac644614 6567\r
6568 @param Value The 64-bit value to write to MM0.\r
6569\r
6570**/\r
6571VOID\r
6572EFIAPI\r
6573AsmWriteMm0 (\r
6574 IN UINT64 Value\r
6575 );\r
6576\r
6577\r
6578/**\r
6579 Writes the current value of 64-bit MMX Register #1 (MM1).\r
6580\r
6581 Writes the current value of MM1. This function is only available on IA32 and\r
030cd1a2 6582 x64.\r
ac644614 6583\r
6584 @param Value The 64-bit value to write to MM1.\r
6585\r
6586**/\r
6587VOID\r
6588EFIAPI\r
6589AsmWriteMm1 (\r
6590 IN UINT64 Value\r
6591 );\r
6592\r
6593\r
6594/**\r
6595 Writes the current value of 64-bit MMX Register #2 (MM2).\r
6596\r
6597 Writes the current value of MM2. This function is only available on IA32 and\r
030cd1a2 6598 x64.\r
ac644614 6599\r
6600 @param Value The 64-bit value to write to MM2.\r
6601\r
6602**/\r
6603VOID\r
6604EFIAPI\r
6605AsmWriteMm2 (\r
6606 IN UINT64 Value\r
6607 );\r
6608\r
6609\r
6610/**\r
6611 Writes the current value of 64-bit MMX Register #3 (MM3).\r
6612\r
6613 Writes the current value of MM3. This function is only available on IA32 and\r
030cd1a2 6614 x64.\r
ac644614 6615\r
6616 @param Value The 64-bit value to write to MM3.\r
6617\r
6618**/\r
6619VOID\r
6620EFIAPI\r
6621AsmWriteMm3 (\r
6622 IN UINT64 Value\r
6623 );\r
6624\r
6625\r
6626/**\r
6627 Writes the current value of 64-bit MMX Register #4 (MM4).\r
6628\r
6629 Writes the current value of MM4. This function is only available on IA32 and\r
030cd1a2 6630 x64.\r
ac644614 6631\r
6632 @param Value The 64-bit value to write to MM4.\r
6633\r
6634**/\r
6635VOID\r
6636EFIAPI\r
6637AsmWriteMm4 (\r
6638 IN UINT64 Value\r
6639 );\r
6640\r
6641\r
6642/**\r
6643 Writes the current value of 64-bit MMX Register #5 (MM5).\r
6644\r
6645 Writes the current value of MM5. This function is only available on IA32 and\r
030cd1a2 6646 x64.\r
ac644614 6647\r
6648 @param Value The 64-bit value to write to MM5.\r
6649\r
6650**/\r
6651VOID\r
6652EFIAPI\r
6653AsmWriteMm5 (\r
6654 IN UINT64 Value\r
6655 );\r
6656\r
6657\r
6658/**\r
6659 Writes the current value of 64-bit MMX Register #6 (MM6).\r
6660\r
6661 Writes the current value of MM6. This function is only available on IA32 and\r
030cd1a2 6662 x64.\r
ac644614 6663\r
6664 @param Value The 64-bit value to write to MM6.\r
6665\r
6666**/\r
6667VOID\r
6668EFIAPI\r
6669AsmWriteMm6 (\r
6670 IN UINT64 Value\r
6671 );\r
6672\r
6673\r
6674/**\r
6675 Writes the current value of 64-bit MMX Register #7 (MM7).\r
6676\r
6677 Writes the current value of MM7. This function is only available on IA32 and\r
030cd1a2 6678 x64.\r
ac644614 6679\r
6680 @param Value The 64-bit value to write to MM7.\r
6681\r
6682**/\r
6683VOID\r
6684EFIAPI\r
6685AsmWriteMm7 (\r
6686 IN UINT64 Value\r
6687 );\r
6688\r
6689\r
6690/**\r
6691 Reads the current value of Time Stamp Counter (TSC).\r
6692\r
6693 Reads and returns the current value of TSC. This function is only available\r
030cd1a2 6694 on IA-32 and x64.\r
ac644614 6695\r
6696 @return The current value of TSC\r
6697\r
6698**/\r
6699UINT64\r
6700EFIAPI\r
6701AsmReadTsc (\r
6702 VOID\r
6703 );\r
6704\r
6705\r
6706/**\r
6707 Reads the current value of a Performance Counter (PMC).\r
6708\r
6709 Reads and returns the current value of performance counter specified by\r
030cd1a2 6710 Index. This function is only available on IA-32 and x64.\r
ac644614 6711\r
6712 @param Index The 32-bit Performance Counter index to read.\r
6713\r
6714 @return The value of the PMC specified by Index.\r
6715\r
6716**/\r
6717UINT64\r
6718EFIAPI\r
6719AsmReadPmc (\r
6720 IN UINT32 Index\r
6721 );\r
6722\r
6723\r
6724/**\r
6725 Sets up a monitor buffer that is used by AsmMwait().\r
6726\r
6727 Executes a MONITOR instruction with the register state specified by Eax, Ecx\r
030cd1a2 6728 and Edx. Returns Eax. This function is only available on IA-32 and x64.\r
ac644614 6729\r
6730 @param Eax The value to load into EAX or RAX before executing the MONITOR\r
6731 instruction.\r
6732 @param Ecx The value to load into ECX or RCX before executing the MONITOR\r
6733 instruction.\r
6734 @param Edx The value to load into EDX or RDX before executing the MONITOR\r
6735 instruction.\r
6736\r
6737 @return Eax\r
6738\r
6739**/\r
6740UINTN\r
6741EFIAPI\r
6742AsmMonitor (\r
6743 IN UINTN Eax,\r
6744 IN UINTN Ecx,\r
6745 IN UINTN Edx\r
6746 );\r
6747\r
6748\r
6749/**\r
6750 Executes an MWAIT instruction.\r
6751\r
6752 Executes an MWAIT instruction with the register state specified by Eax and\r
030cd1a2 6753 Ecx. Returns Eax. This function is only available on IA-32 and x64.\r
ac644614 6754\r
6755 @param Eax The value to load into EAX or RAX before executing the MONITOR\r
6756 instruction.\r
6757 @param Ecx The value to load into ECX or RCX before executing the MONITOR\r
6758 instruction.\r
6759\r
6760 @return Eax\r
6761\r
6762**/\r
6763UINTN\r
6764EFIAPI\r
6765AsmMwait (\r
6766 IN UINTN Eax,\r
6767 IN UINTN Ecx\r
6768 );\r
6769\r
6770\r
6771/**\r
6772 Executes a WBINVD instruction.\r
6773\r
6774 Executes a WBINVD instruction. This function is only available on IA-32 and\r
030cd1a2 6775 x64.\r
ac644614 6776\r
6777**/\r
6778VOID\r
6779EFIAPI\r
6780AsmWbinvd (\r
6781 VOID\r
6782 );\r
6783\r
6784\r
6785/**\r
6786 Executes a INVD instruction.\r
6787\r
6788 Executes a INVD instruction. This function is only available on IA-32 and\r
030cd1a2 6789 x64.\r
ac644614 6790\r
6791**/\r
6792VOID\r
6793EFIAPI\r
6794AsmInvd (\r
6795 VOID\r
6796 );\r
6797\r
6798\r
6799/**\r
6800 Flushes a cache line from all the instruction and data caches within the\r
6801 coherency domain of the CPU.\r
6802\r
6803 Flushed the cache line specified by LinearAddress, and returns LinearAddress.\r
030cd1a2 6804 This function is only available on IA-32 and x64.\r
ac644614 6805\r
6806 @param LinearAddress The address of the cache line to flush. If the CPU is\r
6807 in a physical addressing mode, then LinearAddress is a\r
6808 physical address. If the CPU is in a virtual\r
6809 addressing mode, then LinearAddress is a virtual\r
6810 address.\r
6811\r
6812 @return LinearAddress\r
6813**/\r
6814VOID *\r
6815EFIAPI\r
6816AsmFlushCacheLine (\r
6817 IN VOID *LinearAddress\r
6818 );\r
6819\r
6820\r
6821/**\r
6822 Enables the 32-bit paging mode on the CPU.\r
6823\r
6824 Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
6825 must be properly initialized prior to calling this service. This function\r
6826 assumes the current execution mode is 32-bit protected mode. This function is\r
6827 only available on IA-32. After the 32-bit paging mode is enabled, control is\r
6828 transferred to the function specified by EntryPoint using the new stack\r
6829 specified by NewStack and passing in the parameters specified by Context1 and\r
6830 Context2. Context1 and Context2 are optional and may be NULL. The function\r
6831 EntryPoint must never return.\r
6832\r
6833 If the current execution mode is not 32-bit protected mode, then ASSERT().\r
6834 If EntryPoint is NULL, then ASSERT().\r
6835 If NewStack is NULL, then ASSERT().\r
6836\r
6837 There are a number of constraints that must be followed before calling this\r
6838 function:\r
6839 1) Interrupts must be disabled.\r
6840 2) The caller must be in 32-bit protected mode with flat descriptors. This\r
6841 means all descriptors must have a base of 0 and a limit of 4GB.\r
6842 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat\r
6843 descriptors.\r
6844 4) CR3 must point to valid page tables that will be used once the transition\r
6845 is complete, and those page tables must guarantee that the pages for this\r
6846 function and the stack are identity mapped.\r
6847\r
6848 @param EntryPoint A pointer to function to call with the new stack after\r
6849 paging is enabled.\r
6850 @param Context1 A pointer to the context to pass into the EntryPoint\r
6851 function as the first parameter after paging is enabled.\r
6852 @param Context2 A pointer to the context to pass into the EntryPoint\r
6853 function as the second parameter after paging is enabled.\r
6854 @param NewStack A pointer to the new stack to use for the EntryPoint\r
6855 function after paging is enabled.\r
6856\r
6857**/\r
6858VOID\r
6859EFIAPI\r
6860AsmEnablePaging32 (\r
6861 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
6862 IN VOID *Context1, OPTIONAL\r
6863 IN VOID *Context2, OPTIONAL\r
6864 IN VOID *NewStack\r
6865 );\r
6866\r
6867\r
6868/**\r
6869 Disables the 32-bit paging mode on the CPU.\r
6870\r
6871 Disables the 32-bit paging mode on the CPU and returns to 32-bit protected\r
6872 mode. This function assumes the current execution mode is 32-paged protected\r
6873 mode. This function is only available on IA-32. After the 32-bit paging mode\r
6874 is disabled, control is transferred to the function specified by EntryPoint\r
6875 using the new stack specified by NewStack and passing in the parameters\r
6876 specified by Context1 and Context2. Context1 and Context2 are optional and\r
6877 may be NULL. The function EntryPoint must never return.\r
6878\r
6879 If the current execution mode is not 32-bit paged mode, then ASSERT().\r
6880 If EntryPoint is NULL, then ASSERT().\r
6881 If NewStack is NULL, then ASSERT().\r
6882\r
6883 There are a number of constraints that must be followed before calling this\r
6884 function:\r
6885 1) Interrupts must be disabled.\r
6886 2) The caller must be in 32-bit paged mode.\r
6887 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode.\r
6888 4) CR3 must point to valid page tables that guarantee that the pages for\r
6889 this function and the stack are identity mapped.\r
6890\r
6891 @param EntryPoint A pointer to function to call with the new stack after\r
6892 paging is disabled.\r
6893 @param Context1 A pointer to the context to pass into the EntryPoint\r
6894 function as the first parameter after paging is disabled.\r
6895 @param Context2 A pointer to the context to pass into the EntryPoint\r
6896 function as the second parameter after paging is\r
6897 disabled.\r
6898 @param NewStack A pointer to the new stack to use for the EntryPoint\r
6899 function after paging is disabled.\r
6900\r
6901**/\r
6902VOID\r
6903EFIAPI\r
6904AsmDisablePaging32 (\r
6905 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
6906 IN VOID *Context1, OPTIONAL\r
6907 IN VOID *Context2, OPTIONAL\r
6908 IN VOID *NewStack\r
6909 );\r
6910\r
6911\r
6912/**\r
6913 Enables the 64-bit paging mode on the CPU.\r
6914\r
6915 Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
6916 must be properly initialized prior to calling this service. This function\r
6917 assumes the current execution mode is 32-bit protected mode with flat\r
6918 descriptors. This function is only available on IA-32. After the 64-bit\r
6919 paging mode is enabled, control is transferred to the function specified by\r
6920 EntryPoint using the new stack specified by NewStack and passing in the\r
6921 parameters specified by Context1 and Context2. Context1 and Context2 are\r
6922 optional and may be 0. The function EntryPoint must never return.\r
6923\r
6924 If the current execution mode is not 32-bit protected mode with flat\r
6925 descriptors, then ASSERT().\r
6926 If EntryPoint is 0, then ASSERT().\r
6927 If NewStack is 0, then ASSERT().\r
6928\r
17f695ed 6929 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
ac644614 6930 is called. The descriptor in the GDT that this selector\r
6931 references must be setup for long mode.\r
6932 @param EntryPoint The 64-bit virtual address of the function to call with\r
6933 the new stack after paging is enabled.\r
6934 @param Context1 The 64-bit virtual address of the context to pass into\r
6935 the EntryPoint function as the first parameter after\r
6936 paging is enabled.\r
6937 @param Context2 The 64-bit virtual address of the context to pass into\r
6938 the EntryPoint function as the second parameter after\r
6939 paging is enabled.\r
6940 @param NewStack The 64-bit virtual address of the new stack to use for\r
6941 the EntryPoint function after paging is enabled.\r
6942\r
6943**/\r
6944VOID\r
6945EFIAPI\r
6946AsmEnablePaging64 (\r
17f695ed 6947 IN UINT16 Cs,\r
ac644614 6948 IN UINT64 EntryPoint,\r
6949 IN UINT64 Context1, OPTIONAL\r
6950 IN UINT64 Context2, OPTIONAL\r
6951 IN UINT64 NewStack\r
6952 );\r
6953\r
6954\r
6955/**\r
6956 Disables the 64-bit paging mode on the CPU.\r
6957\r
6958 Disables the 64-bit paging mode on the CPU and returns to 32-bit protected\r
6959 mode. This function assumes the current execution mode is 64-paging mode.\r
030cd1a2 6960 This function is only available on x64. After the 64-bit paging mode is\r
ac644614 6961 disabled, control is transferred to the function specified by EntryPoint\r
6962 using the new stack specified by NewStack and passing in the parameters\r
6963 specified by Context1 and Context2. Context1 and Context2 are optional and\r
6964 may be 0. The function EntryPoint must never return.\r
6965\r
6966 If the current execution mode is not 64-bit paged mode, then ASSERT().\r
6967 If EntryPoint is 0, then ASSERT().\r
6968 If NewStack is 0, then ASSERT().\r
6969\r
17f695ed 6970 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
ac644614 6971 is called. The descriptor in the GDT that this selector\r
6972 references must be setup for 32-bit protected mode.\r
6973 @param EntryPoint The 64-bit virtual address of the function to call with\r
6974 the new stack after paging is disabled.\r
6975 @param Context1 The 64-bit virtual address of the context to pass into\r
6976 the EntryPoint function as the first parameter after\r
6977 paging is disabled.\r
6978 @param Context2 The 64-bit virtual address of the context to pass into\r
6979 the EntryPoint function as the second parameter after\r
6980 paging is disabled.\r
6981 @param NewStack The 64-bit virtual address of the new stack to use for\r
6982 the EntryPoint function after paging is disabled.\r
6983\r
6984**/\r
6985VOID\r
6986EFIAPI\r
6987AsmDisablePaging64 (\r
17f695ed 6988 IN UINT16 Cs,\r
ac644614 6989 IN UINT32 EntryPoint,\r
6990 IN UINT32 Context1, OPTIONAL\r
6991 IN UINT32 Context2, OPTIONAL\r
6992 IN UINT32 NewStack\r
6993 );\r
6994\r
6995\r
6996//\r
6997// 16-bit thunking services\r
6998//\r
6999\r
7000/**\r
7001 Retrieves the properties for 16-bit thunk functions.\r
7002\r
7003 Computes the size of the buffer and stack below 1MB required to use the\r
7004 AsmPrepareThunk16(), AsmThunk16() and AsmPrepareAndThunk16() functions. This\r
7005 buffer size is returned in RealModeBufferSize, and the stack size is returned\r
7006 in ExtraStackSize. If parameters are passed to the 16-bit real mode code,\r
7007 then the actual minimum stack size is ExtraStackSize plus the maximum number\r
7008 of bytes that need to be passed to the 16-bit real mode code.\r
52fa075c 7009 \r
ac644614 7010 If RealModeBufferSize is NULL, then ASSERT().\r
7011 If ExtraStackSize is NULL, then ASSERT().\r
7012\r
7013 @param RealModeBufferSize A pointer to the size of the buffer below 1MB\r
7014 required to use the 16-bit thunk functions.\r
7015 @param ExtraStackSize A pointer to the extra size of stack below 1MB\r
7016 that the 16-bit thunk functions require for\r
7017 temporary storage in the transition to and from\r
7018 16-bit real mode.\r
7019\r
7020**/\r
7021VOID\r
7022EFIAPI\r
7023AsmGetThunk16Properties (\r
7024 OUT UINT32 *RealModeBufferSize,\r
7025 OUT UINT32 *ExtraStackSize\r
7026 );\r
7027\r
7028\r
7029/**\r
7030 Prepares all structures a code required to use AsmThunk16().\r
7031\r
7032 Prepares all structures and code required to use AsmThunk16().\r
52fa075c 7033 \r
8243b089 7034 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
7035 virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.\r
ac644614 7036\r
7037 If ThunkContext is NULL, then ASSERT().\r
7038\r
7039 @param ThunkContext A pointer to the context structure that describes the\r
7040 16-bit real mode code to call.\r
7041\r
7042**/\r
7043VOID\r
7044EFIAPI\r
7045AsmPrepareThunk16 (\r
7046 OUT THUNK_CONTEXT *ThunkContext\r
7047 );\r
7048\r
7049\r
7050/**\r
7051 Transfers control to a 16-bit real mode entry point and returns the results.\r
7052\r
7053 Transfers control to a 16-bit real mode entry point and returns the results.\r
17f695ed 7054 AsmPrepareThunk16() must be called with ThunkContext before this function is used.\r
7055 This function must be called with interrupts disabled.\r
7056\r
7057 The register state from the RealModeState field of ThunkContext is restored just prior \r
7058 to calling the 16-bit real mode entry point. This includes the EFLAGS field of RealModeState, \r
7059 which is used to set the interrupt state when a 16-bit real mode entry point is called.\r
7060 Control is transferred to the 16-bit real mode entry point specified by the CS and Eip fields of RealModeState.\r
7061 The stack is initialized to the SS and ESP fields of RealModeState. Any parameters passed to \r
7062 the 16-bit real mode code must be populated by the caller at SS:ESP prior to calling this function. \r
7063 The 16-bit real mode entry point is invoked with a 16-bit CALL FAR instruction,\r
7064 so when accessing stack contents, the 16-bit real mode code must account for the 16-bit segment \r
7065 and 16-bit offset of the return address that were pushed onto the stack. The 16-bit real mode entry \r
7066 point must exit with a RETF instruction. The register state is captured into RealModeState immediately \r
7067 after the RETF instruction is executed.\r
7068 \r
7069 If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, \r
7070 or any of the 16-bit real mode code makes a SW interrupt, then the caller is responsible for making sure \r
7071 the IDT at address 0 is initialized to handle any HW or SW interrupts that may occur while in 16-bit real mode. \r
7072 \r
7073 If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, \r
7074 then the caller is responsible for making sure the 8259 PIC is in a state compatible with 16-bit real mode. \r
7075 This includes the base vectors, the interrupt masks, and the edge/level trigger mode.\r
7076 \r
7077 If THUNK_ATTRIBUTE_BIG_REAL_MODE is set in the ThunkAttributes field of ThunkContext, then the user code \r
7078 is invoked in big real mode. Otherwise, the user code is invoked in 16-bit real mode with 64KB segment limits.\r
7079 \r
7080 If neither THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 nor THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in \r
7081 ThunkAttributes, then it is assumed that the user code did not enable the A20 mask, and no attempt is made to \r
7082 disable the A20 mask.\r
7083 \r
7084 If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is set and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is clear in \r
7085 ThunkAttributes, then attempt to use the INT 15 service to disable the A20 mask. If this INT 15 call fails, \r
7086 then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
7087 \r
7088 If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is clear and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is set in \r
7089 ThunkAttributes, then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
7090 \r
ac644614 7091 If ThunkContext is NULL, then ASSERT().\r
7092 If AsmPrepareThunk16() was not previously called with ThunkContext, then ASSERT().\r
17f695ed 7093 If both THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in \r
7094 ThunkAttributes, then ASSERT().\r
ac644614 7095\r
8243b089 7096 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
7097 virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.\r
52fa075c 7098\r
ac644614 7099 @param ThunkContext A pointer to the context structure that describes the\r
7100 16-bit real mode code to call.\r
7101\r
7102**/\r
7103VOID\r
7104EFIAPI\r
7105AsmThunk16 (\r
7106 IN OUT THUNK_CONTEXT *ThunkContext\r
7107 );\r
7108\r
7109\r
7110/**\r
7111 Prepares all structures and code for a 16-bit real mode thunk, transfers\r
7112 control to a 16-bit real mode entry point, and returns the results.\r
7113\r
7114 Prepares all structures and code for a 16-bit real mode thunk, transfers\r
7115 control to a 16-bit real mode entry point, and returns the results. If the\r
7116 caller only need to perform a single 16-bit real mode thunk, then this\r
7117 service should be used. If the caller intends to make more than one 16-bit\r
7118 real mode thunk, then it is more efficient if AsmPrepareThunk16() is called\r
7119 once and AsmThunk16() can be called for each 16-bit real mode thunk.\r
7120\r
8243b089 7121 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
7122 virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.\r
52fa075c 7123\r
17f695ed 7124 See AsmPrepareThunk16() and AsmThunk16() for the detailed description and ASSERT() conditions.\r
ac644614 7125\r
7126 @param ThunkContext A pointer to the context structure that describes the\r
7127 16-bit real mode code to call.\r
7128\r
7129**/\r
7130VOID\r
7131EFIAPI\r
7132AsmPrepareAndThunk16 (\r
7133 IN OUT THUNK_CONTEXT *ThunkContext\r
7134 );\r
7135\r
ac644614 7136#endif\r
e3a7917f 7137#endif\r
ac644614 7138\r
7139\r