Introduce a MDEPKG_NDEBUG macro to provide a method which can be used to reduce code...
[mirror_edk2.git] / OptionRomPkg / UndiRuntimeDxe / Decode.c
CommitLineData
51ebae6b 1/** @file\r
2 Provides the basic UNID functions.\r
3\r
4Copyright (c) 2006 - 2007, Intel Corporation\r
5All rights reserved. This program and the accompanying materials\r
6are licensed and made available under the terms and conditions of the BSD License\r
7which accompanies this distribution. The full text of the license may be found at\r
8http://opensource.org/licenses/bsd-license.php\r
9\r
10THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "Undi32.h"\r
16\r
17//\r
18// Global variables defined in this file\r
19//\r
20UNDI_CALL_TABLE api_table[PXE_OPCODE_LAST_VALID+1] = { \\r
21 {PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,0, (UINT16)(ANY_STATE),UNDI_GetState },\\r
22 {(UINT16)(DONT_CHECK),PXE_DBSIZE_NOT_USED,0,(UINT16)(ANY_STATE),UNDI_Start },\\r
23 {PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,0,MUST_BE_STARTED,UNDI_Stop },\\r
24 {PXE_CPBSIZE_NOT_USED,sizeof(PXE_DB_GET_INIT_INFO),0,MUST_BE_STARTED, UNDI_GetInitInfo },\\r
25 {PXE_CPBSIZE_NOT_USED,sizeof(PXE_DB_GET_CONFIG_INFO),0,MUST_BE_STARTED, UNDI_GetConfigInfo },\\r
26 {sizeof(PXE_CPB_INITIALIZE),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),MUST_BE_STARTED,UNDI_Initialize },\\r
27 {PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED,UNDI_Reset },\\r
28 {PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,0, MUST_BE_INITIALIZED,UNDI_Shutdown },\\r
29 {PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED,UNDI_Interrupt },\\r
30 {(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_RecFilter },\\r
31 {(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_StnAddr },\\r
32 {PXE_CPBSIZE_NOT_USED, (UINT16)(DONT_CHECK), (UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_Statistics },\\r
33 {sizeof(PXE_CPB_MCAST_IP_TO_MAC),sizeof(PXE_DB_MCAST_IP_TO_MAC), (UINT16)(DONT_CHECK),MUST_BE_INITIALIZED, UNDI_ip2mac },\\r
34 {(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_NVData },\\r
35 {PXE_CPBSIZE_NOT_USED,(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_Status },\\r
36 {(UINT16)(DONT_CHECK),PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_FillHeader },\\r
37 {(UINT16)(DONT_CHECK),PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_Transmit },\\r
38 {sizeof(PXE_CPB_RECEIVE),sizeof(PXE_DB_RECEIVE),0,MUST_BE_INITIALIZED, UNDI_Receive } \\r
39};\r
40\r
41//\r
42// end of global variables\r
43//\r
44\r
45\r
46/**\r
47 This routine determines the operational state of the UNDI. It updates the state flags in the\r
48 Command Descriptor Block based on information derived from the AdapterInfo instance data.\r
49 To ensure the command has completed successfully, CdbPtr->StatCode will contain the result of\r
50 the command execution.\r
51 The CdbPtr->StatFlags will contain a STOPPED, STARTED, or INITIALIZED state once the command\r
52 has successfully completed.\r
53 Keep in mind the AdapterInfo->State is the active state of the adapter (based on software\r
54 interrogation), and the CdbPtr->StateFlags is the passed back information that is reflected\r
55 to the caller of the UNDI API.\r
56\r
57 @param CdbPtr Pointer to the command descriptor block.\r
58 @param AdapterInfo Pointer to the NIC data structure information which\r
59 the UNDI driver is layering on..\r
60\r
61 @return None\r
62\r
63**/\r
64VOID\r
65UNDI_GetState (\r
66 IN PXE_CDB *CdbPtr,\r
67 IN NIC_DATA_INSTANCE *AdapterInfo\r
68 )\r
69{\r
70 CdbPtr->StatFlags = (PXE_STATFLAGS) (CdbPtr->StatFlags | AdapterInfo->State);\r
71 return ;\r
72}\r
73\r
74\r
75/**\r
76 This routine is used to change the operational state of the UNDI from stopped to started.\r
77 It will do this as long as the adapter's state is PXE_STATFLAGS_GET_STATE_STOPPED, otherwise\r
78 the CdbPtr->StatFlags will reflect a command failure, and the CdbPtr->StatCode will reflect the\r
79 UNDI as having already been started.\r
80 This routine is modified to reflect the undi 1.1 specification changes. The\r
81 changes in the spec are mainly in the callback routines, the new spec adds\r
82 3 more callbacks and a unique id.\r
83 Since this UNDI supports both old and new undi specifications,\r
84 The NIC's data structure is filled in with the callback routines (depending\r
85 on the version) pointed to in the caller's CpbPtr. This seeds the Delay,\r
86 Virt2Phys, Block, and Mem_IO for old and new versions and Map_Mem, UnMap_Mem\r
87 and Sync_Mem routines and a unique id variable for the new version.\r
88 This is the function which an external entity (SNP, O/S, etc) would call\r
89 to provide it's I/O abstraction to the UNDI.\r
90 It's final action is to change the AdapterInfo->State to PXE_STATFLAGS_GET_STATE_STARTED.\r
91\r
92 @param CdbPtr Pointer to the command descriptor block.\r
93 @param AdapterInfo Pointer to the NIC data structure information which\r
94 the UNDI driver is layering on..\r
95\r
96 @return None\r
97\r
98**/\r
99VOID\r
100UNDI_Start (\r
101 IN PXE_CDB *CdbPtr,\r
102 IN NIC_DATA_INSTANCE *AdapterInfo\r
103 )\r
104{\r
105 PXE_CPB_START_30 *CpbPtr;\r
106 PXE_CPB_START_31 *CpbPtr_31;\r
107\r
108 //\r
109 // check if it is already started.\r
110 //\r
111 if (AdapterInfo->State != PXE_STATFLAGS_GET_STATE_STOPPED) {\r
112 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
113 CdbPtr->StatCode = PXE_STATCODE_ALREADY_STARTED;\r
114 return ;\r
115 }\r
116\r
117 if (CdbPtr->CPBsize != sizeof(PXE_CPB_START_30) &&\r
118 CdbPtr->CPBsize != sizeof(PXE_CPB_START_31)) {\r
119\r
120 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
121 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r
122 return ;\r
123 }\r
124\r
125 CpbPtr = (PXE_CPB_START_30 *) (UINTN) (CdbPtr->CPBaddr);\r
126 CpbPtr_31 = (PXE_CPB_START_31 *) (UINTN) (CdbPtr->CPBaddr);\r
127\r
128 if (AdapterInfo->VersionFlag == 0x30) {\r
129 AdapterInfo->Delay_30 = (bsptr_30) (UINTN) CpbPtr->Delay;\r
130 AdapterInfo->Virt2Phys_30 = (virtphys_30) (UINTN) CpbPtr->Virt2Phys;\r
131 AdapterInfo->Block_30 = (block_30) (UINTN) CpbPtr->Block;\r
132 //\r
133 // patch for old buggy 3.0 code:\r
134 // In EFI1.0 undi used to provide the full (absolute) I/O address to the\r
135 // i/o calls and SNP used to provide a callback that used GlobalIoFncs and\r
136 // everything worked fine! In EFI 1.1, UNDI is not using the full\r
137 // i/o or memory address to access the device, The base values for the i/o\r
138 // and memory address is abstracted by the device specific PciIoFncs and\r
139 // UNDI only uses the offset values. Since UNDI3.0 cannot provide any\r
140 // identification to SNP, SNP cannot use nic specific PciIoFncs callback!\r
141 //\r
142 // To fix this and make undi3.0 work with SNP in EFI1.1 we\r
143 // use a TmpMemIo function that is defined in init.c\r
144 // This breaks the runtime driver feature of undi, but what to do\r
145 // if we have to provide the 3.0 compatibility (including the 3.0 bugs)\r
146 //\r
147 // This TmpMemIo function also takes a UniqueId parameter\r
148 // (as in undi3.1 design) and so initialize the UniqueId as well here\r
149 // Note: AdapterInfo->Mem_Io_30 is just filled for consistency with other\r
150 // parameters but never used, we only use Mem_Io field in the In/Out routines\r
151 // inside e100b.c.\r
152 //\r
153 AdapterInfo->Mem_Io_30 = (mem_io_30) (UINTN) CpbPtr->Mem_IO;\r
154 AdapterInfo->Mem_Io = (mem_io) (UINTN) TmpMemIo;\r
155 AdapterInfo->Unique_ID = (UINT64) (UINTN) AdapterInfo;\r
156\r
157 } else {\r
158 AdapterInfo->Delay = (bsptr) (UINTN) CpbPtr_31->Delay;\r
159 AdapterInfo->Virt2Phys = (virtphys) (UINTN) CpbPtr_31->Virt2Phys;\r
160 AdapterInfo->Block = (block) (UINTN) CpbPtr_31->Block;\r
161 AdapterInfo->Mem_Io = (mem_io) (UINTN) CpbPtr_31->Mem_IO;\r
162\r
163 AdapterInfo->Map_Mem = (map_mem) (UINTN) CpbPtr_31->Map_Mem;\r
164 AdapterInfo->UnMap_Mem = (unmap_mem) (UINTN) CpbPtr_31->UnMap_Mem;\r
165 AdapterInfo->Sync_Mem = (sync_mem) (UINTN) CpbPtr_31->Sync_Mem;\r
166 AdapterInfo->Unique_ID = CpbPtr_31->Unique_ID;\r
167 }\r
168\r
169 AdapterInfo->State = PXE_STATFLAGS_GET_STATE_STARTED;\r
170\r
171 return ;\r
172}\r
173\r
174\r
175/**\r
176 This routine is used to change the operational state of the UNDI from started to stopped.\r
177 It will not do this if the adapter's state is PXE_STATFLAGS_GET_STATE_INITIALIZED, otherwise\r
178 the CdbPtr->StatFlags will reflect a command failure, and the CdbPtr->StatCode will reflect the\r
179 UNDI as having already not been shut down.\r
180 The NIC's data structure will have the Delay, Virt2Phys, and Block, pointers zero'd out..\r
181 It's final action is to change the AdapterInfo->State to PXE_STATFLAGS_GET_STATE_STOPPED.\r
182\r
183 @param CdbPtr Pointer to the command descriptor block.\r
184 @param AdapterInfo Pointer to the NIC data structure information which\r
185 the UNDI driver is layering on..\r
186\r
187 @return None\r
188\r
189**/\r
190VOID\r
191UNDI_Stop (\r
192 IN PXE_CDB *CdbPtr,\r
193 IN NIC_DATA_INSTANCE *AdapterInfo\r
194 )\r
195{\r
196 if (AdapterInfo->State == PXE_STATFLAGS_GET_STATE_INITIALIZED) {\r
197 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
198 CdbPtr->StatCode = PXE_STATCODE_NOT_SHUTDOWN;\r
199 return ;\r
200 }\r
201\r
202 AdapterInfo->Delay_30 = 0;\r
203 AdapterInfo->Virt2Phys_30 = 0;\r
204 AdapterInfo->Block_30 = 0;\r
205\r
206 AdapterInfo->Delay = 0;\r
207 AdapterInfo->Virt2Phys = 0;\r
208 AdapterInfo->Block = 0;\r
209\r
210 AdapterInfo->Map_Mem = 0;\r
211 AdapterInfo->UnMap_Mem = 0;\r
212 AdapterInfo->Sync_Mem = 0;\r
213\r
214 AdapterInfo->State = PXE_STATFLAGS_GET_STATE_STOPPED;\r
215\r
216 return ;\r
217}\r
218\r
219\r
220/**\r
221 This routine is used to retrieve the initialization information that is needed by drivers and\r
222 applications to initialize the UNDI. This will fill in data in the Data Block structure that is\r
223 pointed to by the caller's CdbPtr->DBaddr. The fields filled in are as follows:\r
224 MemoryRequired, FrameDataLen, LinkSpeeds[0-3], NvCount, NvWidth, MediaHeaderLen, HWaddrLen,\r
225 MCastFilterCnt, TxBufCnt, TxBufSize, RxBufCnt, RxBufSize, IFtype, Duplex, and LoopBack.\r
226 In addition, the CdbPtr->StatFlags ORs in that this NIC supports cable detection. (APRIORI knowledge)\r
227\r
228 @param CdbPtr Pointer to the command descriptor block.\r
229 @param AdapterInfo Pointer to the NIC data structure information which\r
230 the UNDI driver is layering on..\r
231\r
232 @return None\r
233\r
234**/\r
235VOID\r
236UNDI_GetInitInfo (\r
237 IN PXE_CDB *CdbPtr,\r
238 IN NIC_DATA_INSTANCE *AdapterInfo\r
239 )\r
240{\r
241 PXE_DB_GET_INIT_INFO *DbPtr;\r
242\r
243 DbPtr = (PXE_DB_GET_INIT_INFO *) (UINTN) (CdbPtr->DBaddr);\r
244\r
245 DbPtr->MemoryRequired = MEMORY_NEEDED;\r
246 DbPtr->FrameDataLen = PXE_MAX_TXRX_UNIT_ETHER;\r
247 DbPtr->LinkSpeeds[0] = 10;\r
248 DbPtr->LinkSpeeds[1] = 100;\r
249 DbPtr->LinkSpeeds[2] = DbPtr->LinkSpeeds[3] = 0;\r
250 DbPtr->NvCount = MAX_EEPROM_LEN;\r
251 DbPtr->NvWidth = 4;\r
252 DbPtr->MediaHeaderLen = PXE_MAC_HEADER_LEN_ETHER;\r
253 DbPtr->HWaddrLen = PXE_HWADDR_LEN_ETHER;\r
254 DbPtr->MCastFilterCnt = MAX_MCAST_ADDRESS_CNT;\r
255\r
256 DbPtr->TxBufCnt = TX_BUFFER_COUNT;\r
257 DbPtr->TxBufSize = sizeof (TxCB);\r
258 DbPtr->RxBufCnt = RX_BUFFER_COUNT;\r
259 DbPtr->RxBufSize = sizeof (RxFD);\r
260\r
261 DbPtr->IFtype = PXE_IFTYPE_ETHERNET;\r
262 DbPtr->SupportedDuplexModes = PXE_DUPLEX_ENABLE_FULL_SUPPORTED |\r
263 PXE_DUPLEX_FORCE_FULL_SUPPORTED;\r
264 DbPtr->SupportedLoopBackModes = PXE_LOOPBACK_INTERNAL_SUPPORTED |\r
265 PXE_LOOPBACK_EXTERNAL_SUPPORTED;\r
266\r
267 CdbPtr->StatFlags |= PXE_STATFLAGS_CABLE_DETECT_SUPPORTED;\r
268 return ;\r
269}\r
270\r
271\r
272/**\r
273 This routine is used to retrieve the configuration information about the NIC being controlled by\r
274 this driver. This will fill in data in the Data Block structure that is pointed to by the caller's CdbPtr->DBaddr.\r
275 The fields filled in are as follows:\r
276 DbPtr->pci.BusType, DbPtr->pci.Bus, DbPtr->pci.Device, and DbPtr->pci.\r
277 In addition, the DbPtr->pci.Config.Dword[0-63] grabs a copy of this NIC's PCI configuration space.\r
278\r
279 @param CdbPtr Pointer to the command descriptor block.\r
280 @param AdapterInfo Pointer to the NIC data structure information which\r
281 the UNDI driver is layering on..\r
282\r
283 @return None\r
284\r
285**/\r
286VOID\r
287UNDI_GetConfigInfo (\r
288 IN PXE_CDB *CdbPtr,\r
289 IN NIC_DATA_INSTANCE *AdapterInfo\r
290 )\r
291{\r
292 UINT16 Index;\r
293 PXE_DB_GET_CONFIG_INFO *DbPtr;\r
294\r
295 DbPtr = (PXE_DB_GET_CONFIG_INFO *) (UINTN) (CdbPtr->DBaddr);\r
296\r
297 DbPtr->pci.BusType = PXE_BUSTYPE_PCI;\r
298 DbPtr->pci.Bus = AdapterInfo->Bus;\r
299 DbPtr->pci.Device = AdapterInfo->Device;\r
300 DbPtr->pci.Function = AdapterInfo->Function;\r
301\r
302 for (Index = 0; Index < MAX_PCI_CONFIG_LEN; Index++) {\r
303 DbPtr->pci.Config.Dword[Index] = AdapterInfo->Config[Index];\r
304 }\r
305\r
306 return ;\r
307}\r
308\r
309\r
310/**\r
311 This routine resets the network adapter and initializes the UNDI using the parameters supplied in\r
312 the CPB. This command must be issued before the network adapter can be setup to transmit and\r
313 receive packets.\r
314 Once the memory requirements of the UNDI are obtained by using the GetInitInfo command, a block\r
315 of non-swappable memory may need to be allocated. The address of this memory must be passed to\r
316 UNDI during the Initialize in the CPB. This memory is used primarily for transmit and receive buffers.\r
317 The fields CableDetect, LinkSpeed, Duplex, LoopBack, MemoryPtr, and MemoryLength are set with information\r
318 that was passed in the CPB and the NIC is initialized.\r
319 If the NIC initialization fails, the CdbPtr->StatFlags are updated with PXE_STATFLAGS_COMMAND_FAILED\r
320 Otherwise, AdapterInfo->State is updated with PXE_STATFLAGS_GET_STATE_INITIALIZED showing the state of\r
321 the UNDI is now initialized.\r
322\r
323 @param CdbPtr Pointer to the command descriptor block.\r
324 @param AdapterInfo Pointer to the NIC data structure information which\r
325 the UNDI driver is layering on..\r
326\r
327 @return None\r
328\r
329**/\r
330VOID\r
331UNDI_Initialize (\r
332 IN PXE_CDB *CdbPtr,\r
333 NIC_DATA_INSTANCE *AdapterInfo\r
334 )\r
335{\r
336 PXE_CPB_INITIALIZE *CpbPtr;\r
337\r
338 if ((CdbPtr->OpFlags != PXE_OPFLAGS_INITIALIZE_DETECT_CABLE) &&\r
339 (CdbPtr->OpFlags != PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE)) {\r
340 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
341 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r
342 return ;\r
343 }\r
344\r
345 //\r
346 // check if it is already initialized\r
347 //\r
348 if (AdapterInfo->State == PXE_STATFLAGS_GET_STATE_INITIALIZED) {\r
349 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
350 CdbPtr->StatCode = PXE_STATCODE_ALREADY_INITIALIZED;\r
351 return ;\r
352 }\r
353\r
354 CpbPtr = (PXE_CPB_INITIALIZE *) (UINTN) CdbPtr->CPBaddr;\r
355\r
356 if (CpbPtr->MemoryLength < (UINT32) MEMORY_NEEDED) {\r
357 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
358 CdbPtr->StatCode = PXE_STATCODE_INVALID_CPB;\r
359 return ;\r
360 }\r
361\r
362 //\r
363 // default behaviour is to detect the cable, if the 3rd param is 1,\r
364 // do not do that\r
365 //\r
366 AdapterInfo->CableDetect = (UINT8) ((CdbPtr->OpFlags == (UINT16) PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE) ? (UINT8) 0 : (UINT8) 1);\r
367 AdapterInfo->LinkSpeedReq = (UINT16) CpbPtr->LinkSpeed;\r
368 AdapterInfo->DuplexReq = CpbPtr->DuplexMode;\r
369 AdapterInfo->LoopBack = CpbPtr->LoopBackMode;\r
370 AdapterInfo->MemoryPtr = CpbPtr->MemoryAddr;\r
371 AdapterInfo->MemoryLength = CpbPtr->MemoryLength;\r
372\r
373 CdbPtr->StatCode = (PXE_STATCODE) E100bInit (AdapterInfo);\r
374\r
375 if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {\r
376 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
377 } else {\r
378 AdapterInfo->State = PXE_STATFLAGS_GET_STATE_INITIALIZED;\r
379 }\r
380\r
381 return ;\r
382}\r
383\r
384\r
385/**\r
386 This routine resets the network adapter and initializes the UNDI using the parameters supplied in\r
387 the CPB. The transmit and receive queues are emptied and any pending interrupts are cleared.\r
388 If the NIC reset fails, the CdbPtr->StatFlags are updated with PXE_STATFLAGS_COMMAND_FAILED\r
389\r
390 @param CdbPtr Pointer to the command descriptor block.\r
391 @param AdapterInfo Pointer to the NIC data structure information which\r
392 the UNDI driver is layering on..\r
393\r
394 @return None\r
395\r
396**/\r
397VOID\r
398UNDI_Reset (\r
399 IN PXE_CDB *CdbPtr,\r
400 IN NIC_DATA_INSTANCE *AdapterInfo\r
401 )\r
402{\r
403 if (CdbPtr->OpFlags != PXE_OPFLAGS_NOT_USED &&\r
404 CdbPtr->OpFlags != PXE_OPFLAGS_RESET_DISABLE_INTERRUPTS &&\r
405 CdbPtr->OpFlags != PXE_OPFLAGS_RESET_DISABLE_FILTERS ) {\r
406\r
407 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
408 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r
409 return ;\r
410 }\r
411\r
412 CdbPtr->StatCode = (UINT16) E100bReset (AdapterInfo, CdbPtr->OpFlags);\r
413\r
414 if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {\r
415 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
416 }\r
417}\r
418\r
419\r
420/**\r
421 This routine resets the network adapter and leaves it in a safe state for another driver to\r
422 initialize. Any pending transmits or receives are lost. Receive filters and external\r
423 interrupt enables are disabled. Once the UNDI has been shutdown, it can then be stopped\r
424 or initialized again.\r
425 If the NIC reset fails, the CdbPtr->StatFlags are updated with PXE_STATFLAGS_COMMAND_FAILED\r
426 Otherwise, AdapterInfo->State is updated with PXE_STATFLAGS_GET_STATE_STARTED showing the state of\r
427 the NIC as being started.\r
428\r
429 @param CdbPtr Pointer to the command descriptor block.\r
430 @param AdapterInfo Pointer to the NIC data structure information which\r
431 the UNDI driver is layering on..\r
432\r
433 @return None\r
434\r
435**/\r
436VOID\r
437UNDI_Shutdown (\r
438 IN PXE_CDB *CdbPtr,\r
439 IN NIC_DATA_INSTANCE *AdapterInfo\r
440 )\r
441{\r
442 //\r
443 // do the shutdown stuff here\r
444 //\r
445 CdbPtr->StatCode = (UINT16) E100bShutdown (AdapterInfo);\r
446\r
447 if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {\r
448 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
449 } else {\r
450 AdapterInfo->State = PXE_STATFLAGS_GET_STATE_STARTED;\r
451 }\r
452\r
453 return ;\r
454}\r
455\r
456\r
457/**\r
458 This routine can be used to read and/or change the current external interrupt enable\r
459 settings. Disabling an external interrupt enable prevents and external (hardware)\r
460 interrupt from being signaled by the network device. Internally the interrupt events\r
461 can still be polled by using the UNDI_GetState command.\r
462 The resulting information on the interrupt state will be passed back in the CdbPtr->StatFlags.\r
463\r
464 @param CdbPtr Pointer to the command descriptor block.\r
465 @param AdapterInfo Pointer to the NIC data structure information which\r
466 the UNDI driver is layering on..\r
467\r
468 @return None\r
469\r
470**/\r
471VOID\r
472UNDI_Interrupt (\r
473 IN PXE_CDB *CdbPtr,\r
474 IN NIC_DATA_INSTANCE *AdapterInfo\r
475 )\r
476{\r
477 UINT8 IntMask;\r
478\r
479 IntMask = (UINT8)(UINTN)(CdbPtr->OpFlags & (PXE_OPFLAGS_INTERRUPT_RECEIVE |\r
480 PXE_OPFLAGS_INTERRUPT_TRANSMIT |\r
481 PXE_OPFLAGS_INTERRUPT_COMMAND |\r
482 PXE_OPFLAGS_INTERRUPT_SOFTWARE));\r
483\r
484 switch (CdbPtr->OpFlags & PXE_OPFLAGS_INTERRUPT_OPMASK) {\r
485 case PXE_OPFLAGS_INTERRUPT_READ:\r
486 break;\r
487\r
488 case PXE_OPFLAGS_INTERRUPT_ENABLE:\r
489 if (IntMask == 0) {\r
490 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
491 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r
492 return ;\r
493 }\r
494\r
495 AdapterInfo->int_mask = IntMask;\r
496 E100bSetInterruptState (AdapterInfo);\r
497 break;\r
498\r
499 case PXE_OPFLAGS_INTERRUPT_DISABLE:\r
500 if (IntMask != 0) {\r
501 AdapterInfo->int_mask = (UINT16) (AdapterInfo->int_mask & ~(IntMask));\r
502 E100bSetInterruptState (AdapterInfo);\r
503 break;\r
504 }\r
505\r
506 //\r
507 // else fall thru.\r
508 //\r
509 default:\r
510 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
511 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r
512 return ;\r
513 }\r
514\r
515 if ((AdapterInfo->int_mask & PXE_OPFLAGS_INTERRUPT_RECEIVE) != 0) {\r
516 CdbPtr->StatFlags |= PXE_STATFLAGS_INTERRUPT_RECEIVE;\r
517\r
518 }\r
519\r
520 if ((AdapterInfo->int_mask & PXE_OPFLAGS_INTERRUPT_TRANSMIT) != 0) {\r
521 CdbPtr->StatFlags |= PXE_STATFLAGS_INTERRUPT_TRANSMIT;\r
522\r
523 }\r
524\r
525 if ((AdapterInfo->int_mask & PXE_OPFLAGS_INTERRUPT_COMMAND) != 0) {\r
526 CdbPtr->StatFlags |= PXE_STATFLAGS_INTERRUPT_COMMAND;\r
527\r
528 }\r
529\r
530 return ;\r
531}\r
532\r
533\r
534/**\r
535 This routine is used to read and change receive filters and, if supported, read\r
536 and change multicast MAC address filter list.\r
537\r
538 @param CdbPtr Pointer to the command descriptor block.\r
539 @param AdapterInfo Pointer to the NIC data structure information which\r
540 the UNDI driver is layering on..\r
541\r
542 @return None\r
543\r
544**/\r
545VOID\r
546UNDI_RecFilter (\r
547 IN PXE_CDB *CdbPtr,\r
548 IN NIC_DATA_INSTANCE *AdapterInfo\r
549 )\r
550{\r
551 UINT16 NewFilter;\r
552 UINT16 OpFlags;\r
553 PXE_DB_RECEIVE_FILTERS *DbPtr;\r
554 UINT8 *MacAddr;\r
555 UINTN MacCount;\r
556 UINT16 Index;\r
557 UINT16 copy_len;\r
558 UINT8 *ptr1;\r
559 UINT8 *ptr2;\r
560 OpFlags = CdbPtr->OpFlags;\r
561 NewFilter = (UINT16) (OpFlags & 0x1F);\r
562\r
563 switch (OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_OPMASK) {\r
564 case PXE_OPFLAGS_RECEIVE_FILTER_READ:\r
565\r
566 //\r
567 // not expecting a cpb, not expecting any filter bits\r
568 //\r
569 if ((NewFilter != 0) || (CdbPtr->CPBsize != 0)) {\r
570 goto BadCdb;\r
571\r
572 }\r
573\r
574 if ((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) == 0) {\r
575 goto JustRead;\r
576\r
577 }\r
578\r
579 NewFilter = (UINT16) (NewFilter | AdapterInfo->Rx_Filter);\r
580 //\r
581 // all other flags are ignored except mcast_reset\r
582 //\r
583 break;\r
584\r
585 case PXE_OPFLAGS_RECEIVE_FILTER_ENABLE:\r
586 //\r
587 // there should be atleast one other filter bit set.\r
588 //\r
589 if (NewFilter == 0) {\r
590 //\r
591 // nothing to enable\r
592 //\r
593 goto BadCdb;\r
594 }\r
595\r
596 if (CdbPtr->CPBsize != 0) {\r
597 //\r
598 // this must be a multicast address list!\r
599 // don't accept the list unless selective_mcast is set\r
600 // don't accept confusing mcast settings with this\r
601 //\r
602 if (((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST) == 0) ||\r
603 ((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) != 0) ||\r
604 ((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST) != 0) ||\r
605 ((CdbPtr->CPBsize % sizeof (PXE_MAC_ADDR)) != 0) ) {\r
606 goto BadCdb;\r
607 }\r
608\r
609 MacAddr = (UINT8 *) ((UINTN) (CdbPtr->CPBaddr));\r
610 MacCount = CdbPtr->CPBsize / sizeof (PXE_MAC_ADDR);\r
611\r
612 for (; MacCount-- != 0; MacAddr += sizeof (PXE_MAC_ADDR)) {\r
613 if (MacAddr[0] != 0x01 || MacAddr[1] != 0x00 || MacAddr[2] != 0x5E || (MacAddr[3] & 0x80) != 0) {\r
614 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
615 CdbPtr->StatCode = PXE_STATCODE_INVALID_CPB;\r
616 return ;\r
617 }\r
618 }\r
619 }\r
620\r
621 //\r
622 // check selective mcast case enable case\r
623 //\r
624 if ((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST) != 0) {\r
625 if (((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) != 0) ||\r
626 ((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST) != 0) ) {\r
627 goto BadCdb;\r
628\r
629 }\r
630 //\r
631 // if no cpb, make sure we have an old list\r
632 //\r
633 if ((CdbPtr->CPBsize == 0) && (AdapterInfo->mcast_list.list_len == 0)) {\r
634 goto BadCdb;\r
635 }\r
636 }\r
637 //\r
638 // if you want to enable anything, you got to have unicast\r
639 // and you have what you already enabled!\r
640 //\r
641 NewFilter = (UINT16) (NewFilter | (PXE_OPFLAGS_RECEIVE_FILTER_UNICAST | AdapterInfo->Rx_Filter));\r
642\r
643 break;\r
644\r
645 case PXE_OPFLAGS_RECEIVE_FILTER_DISABLE:\r
646\r
647 //\r
648 // mcast list not expected, i.e. no cpb here!\r
649 //\r
650 if (CdbPtr->CPBsize != PXE_CPBSIZE_NOT_USED) {\r
651 goto BadCdb;\r
652 }\r
653\r
654 NewFilter = (UINT16) ((~(CdbPtr->OpFlags & 0x1F)) & AdapterInfo->Rx_Filter);\r
655\r
656 break;\r
657\r
658 default:\r
659 goto BadCdb;\r
660 }\r
661\r
662 if ((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) != 0) {\r
663 AdapterInfo->mcast_list.list_len = 0;\r
664 NewFilter &= (~PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST);\r
665 }\r
666\r
667 E100bSetfilter (AdapterInfo, NewFilter, CdbPtr->CPBaddr, CdbPtr->CPBsize);\r
668\r
669JustRead:\r
670 //\r
671 // give the current mcast list\r
672 //\r
673 if ((CdbPtr->DBsize != 0) && (AdapterInfo->mcast_list.list_len != 0)) {\r
674 //\r
675 // copy the mc list to db\r
676 //\r
677\r
678 DbPtr = (PXE_DB_RECEIVE_FILTERS *) (UINTN) CdbPtr->DBaddr;\r
679 ptr1 = (UINT8 *) (&DbPtr->MCastList[0]);\r
680\r
681 //\r
682 // DbPtr->mc_count = AdapterInfo->mcast_list.list_len;\r
683 //\r
684 copy_len = (UINT16) (AdapterInfo->mcast_list.list_len * PXE_MAC_LENGTH);\r
685\r
686 if (copy_len > CdbPtr->DBsize) {\r
687 copy_len = CdbPtr->DBsize;\r
688\r
689 }\r
690\r
691 ptr2 = (UINT8 *) (&AdapterInfo->mcast_list.mc_list[0]);\r
692 for (Index = 0; Index < copy_len; Index++) {\r
693 ptr1[Index] = ptr2[Index];\r
694 }\r
695 }\r
696 //\r
697 // give the stat flags here\r
698 //\r
699 if (AdapterInfo->Receive_Started) {\r
700 CdbPtr->StatFlags = (PXE_STATFLAGS) (CdbPtr->StatFlags | AdapterInfo->Rx_Filter);\r
701\r
702 }\r
703\r
704 return ;\r
705\r
706BadCdb:\r
707 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
708 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r
709}\r
710\r
711\r
712/**\r
713 This routine is used to get the current station and broadcast MAC addresses, and to change the\r
714 current station MAC address.\r
715\r
716 @param CdbPtr Pointer to the command descriptor block.\r
717 @param AdapterInfo Pointer to the NIC data structure information which\r
718 the UNDI driver is layering on..\r
719\r
720 @return None\r
721\r
722**/\r
723VOID\r
724UNDI_StnAddr (\r
725 IN PXE_CDB *CdbPtr,\r
726 IN NIC_DATA_INSTANCE *AdapterInfo\r
727 )\r
728{\r
729 PXE_CPB_STATION_ADDRESS *CpbPtr;\r
730 PXE_DB_STATION_ADDRESS *DbPtr;\r
731 UINT16 Index;\r
732\r
733 if (CdbPtr->OpFlags == PXE_OPFLAGS_STATION_ADDRESS_RESET) {\r
734 //\r
735 // configure the permanent address.\r
736 // change the AdapterInfo->CurrentNodeAddress field.\r
737 //\r
738 if (CompareMem (\r
739 &AdapterInfo->CurrentNodeAddress[0],\r
740 &AdapterInfo->PermNodeAddress[0],\r
741 PXE_MAC_LENGTH\r
742 ) != 0) {\r
743 for (Index = 0; Index < PXE_MAC_LENGTH; Index++) {\r
744 AdapterInfo->CurrentNodeAddress[Index] = AdapterInfo->PermNodeAddress[Index];\r
745 }\r
746\r
747 E100bSetupIAAddr (AdapterInfo);\r
748 }\r
749 }\r
750\r
751 if (CdbPtr->CPBaddr != (UINT64) 0) {\r
752 CpbPtr = (PXE_CPB_STATION_ADDRESS *) (UINTN) (CdbPtr->CPBaddr);\r
753 //\r
754 // configure the new address\r
755 //\r
756 for (Index = 0; Index < PXE_MAC_LENGTH; Index++) {\r
757 AdapterInfo->CurrentNodeAddress[Index] = CpbPtr->StationAddr[Index];\r
758 }\r
759\r
760 E100bSetupIAAddr (AdapterInfo);\r
761 }\r
762\r
763 if (CdbPtr->DBaddr != (UINT64) 0) {\r
764 DbPtr = (PXE_DB_STATION_ADDRESS *) (UINTN) (CdbPtr->DBaddr);\r
765 //\r
766 // fill it with the new values\r
767 //\r
768 for (Index = 0; Index < PXE_MAC_LENGTH; Index++) {\r
769 DbPtr->StationAddr[Index] = AdapterInfo->CurrentNodeAddress[Index];\r
770 DbPtr->BroadcastAddr[Index] = AdapterInfo->BroadcastNodeAddress[Index];\r
771 DbPtr->PermanentAddr[Index] = AdapterInfo->PermNodeAddress[Index];\r
772 }\r
773 }\r
774\r
775 return ;\r
776}\r
777\r
778\r
779/**\r
780 This routine is used to read and clear the NIC traffic statistics. This command is supported only\r
781 if the !PXE structure's Implementation flags say so.\r
782 Results will be parsed out in the following manner:\r
783 CdbPtr->DBaddr.Data[0] R Total Frames (Including frames with errors and dropped frames)\r
784 CdbPtr->DBaddr.Data[1] R Good Frames (All frames copied into receive buffer)\r
785 CdbPtr->DBaddr.Data[2] R Undersize Frames (Frames below minimum length for media <64 for ethernet)\r
786 CdbPtr->DBaddr.Data[4] R Dropped Frames (Frames that were dropped because receive buffers were full)\r
787 CdbPtr->DBaddr.Data[8] R CRC Error Frames (Frames with alignment or CRC errors)\r
788 CdbPtr->DBaddr.Data[A] T Total Frames (Including frames with errors and dropped frames)\r
789 CdbPtr->DBaddr.Data[B] T Good Frames (All frames copied into transmit buffer)\r
790 CdbPtr->DBaddr.Data[C] T Undersize Frames (Frames below minimum length for media <64 for ethernet)\r
791 CdbPtr->DBaddr.Data[E] T Dropped Frames (Frames that were dropped because of collisions)\r
792 CdbPtr->DBaddr.Data[14] T Total Collision Frames (Total collisions on this subnet)\r
793\r
794 @param CdbPtr Pointer to the command descriptor block.\r
795 @param AdapterInfo Pointer to the NIC data structure information which\r
796 the UNDI driver is layering on..\r
797\r
798 @return None\r
799\r
800**/\r
801VOID\r
802UNDI_Statistics (\r
803 IN PXE_CDB *CdbPtr,\r
804 IN NIC_DATA_INSTANCE *AdapterInfo\r
805 )\r
806{\r
807 if ((CdbPtr->OpFlags &~(PXE_OPFLAGS_STATISTICS_RESET)) != 0) {\r
808 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
809 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r
810 return ;\r
811 }\r
812\r
813 if ((CdbPtr->OpFlags & PXE_OPFLAGS_STATISTICS_RESET) != 0) {\r
814 //\r
815 // Reset the statistics\r
816 //\r
817 CdbPtr->StatCode = (UINT16) E100bStatistics (AdapterInfo, 0, 0);\r
818 } else {\r
819 CdbPtr->StatCode = (UINT16) E100bStatistics (AdapterInfo, CdbPtr->DBaddr, CdbPtr->DBsize);\r
820 }\r
821\r
822 return ;\r
823}\r
824\r
825\r
826/**\r
827 This routine is used to translate a multicast IP address to a multicast MAC address.\r
828 This results in a MAC address composed of 25 bits of fixed data with the upper 23 bits of the IP\r
829 address being appended to it. Results passed back in the equivalent of CdbPtr->DBaddr->MAC[0-5].\r
830\r
831 @param CdbPtr Pointer to the command descriptor block.\r
832 @param AdapterInfo Pointer to the NIC data structure information which\r
833 the UNDI driver is layering on..\r
834\r
835 @return None\r
836\r
837**/\r
838VOID\r
839UNDI_ip2mac (\r
840 IN PXE_CDB *CdbPtr,\r
841 IN NIC_DATA_INSTANCE *AdapterInfo\r
842 )\r
843{\r
844 PXE_CPB_MCAST_IP_TO_MAC *CpbPtr;\r
845 PXE_DB_MCAST_IP_TO_MAC *DbPtr;\r
846 UINT8 *TmpPtr;\r
847\r
848 CpbPtr = (PXE_CPB_MCAST_IP_TO_MAC *) (UINTN) CdbPtr->CPBaddr;\r
849 DbPtr = (PXE_DB_MCAST_IP_TO_MAC *) (UINTN) CdbPtr->DBaddr;\r
850\r
851 if ((CdbPtr->OpFlags & PXE_OPFLAGS_MCAST_IPV6_TO_MAC) != 0) {\r
852 //\r
853 // for now this is not supported\r
854 //\r
855 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
856 CdbPtr->StatCode = PXE_STATCODE_UNSUPPORTED;\r
857 return ;\r
858 }\r
859\r
860 TmpPtr = (UINT8 *) (&CpbPtr->IP.IPv4);\r
861 //\r
862 // check if the ip given is a mcast IP\r
863 //\r
864 if ((TmpPtr[0] & 0xF0) != 0xE0) {\r
865 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
866 CdbPtr->StatCode = PXE_STATCODE_INVALID_CPB;\r
867 }\r
868 //\r
869 // take the last 23 bits in IP.\r
870 // be very careful. accessing word on a non-word boundary will hang motherboard codenamed Big Sur\r
871 // casting the mac array (in the middle) to a UINT32 pointer and accessing\r
872 // the UINT32 content hung the system...\r
873 //\r
874 DbPtr->MAC[0] = 0x01;\r
875 DbPtr->MAC[1] = 0x00;\r
876 DbPtr->MAC[2] = 0x5e;\r
877 DbPtr->MAC[3] = (UINT8) (TmpPtr[1] & 0x7f);\r
878 DbPtr->MAC[4] = (UINT8) TmpPtr[2];\r
879 DbPtr->MAC[5] = (UINT8) TmpPtr[3];\r
880\r
881 return ;\r
882}\r
883\r
884\r
885/**\r
886 This routine is used to read and write non-volatile storage on the NIC (if supported). The NVRAM\r
887 could be EEPROM, FLASH, or battery backed RAM.\r
888 This is an optional function according to the UNDI specification (or will be......)\r
889\r
890 @param CdbPtr Pointer to the command descriptor block.\r
891 @param AdapterInfo Pointer to the NIC data structure information which\r
892 the UNDI driver is layering on..\r
893\r
894 @return None\r
895\r
896**/\r
897VOID\r
898UNDI_NVData (\r
899 IN PXE_CDB *CdbPtr,\r
900 IN NIC_DATA_INSTANCE *AdapterInfo\r
901 )\r
902{\r
903 PXE_DB_NVDATA *DbPtr;\r
904 UINT16 Index;\r
905\r
906 if ((CdbPtr->OpFlags == PXE_OPFLAGS_NVDATA_READ) != 0) {\r
907\r
908 if ((CdbPtr->DBsize == PXE_DBSIZE_NOT_USED) != 0) {\r
909 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
910 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r
911 return ;\r
912 }\r
913\r
914 DbPtr = (PXE_DB_NVDATA *) (UINTN) CdbPtr->DBaddr;\r
915\r
916 for (Index = 0; Index < MAX_PCI_CONFIG_LEN; Index++) {\r
917 DbPtr->Data.Dword[Index] = AdapterInfo->NVData[Index];\r
918\r
919 }\r
920\r
921 } else {\r
922 //\r
923 // no write for now\r
924 //\r
925 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
926 CdbPtr->StatCode = PXE_STATCODE_UNSUPPORTED;\r
927 }\r
928\r
929 return ;\r
930}\r
931\r
932\r
933/**\r
934 This routine returns the current interrupt status and/or the transmitted buffer addresses.\r
935 If the current interrupt status is returned, pending interrupts will be acknowledged by this\r
936 command. Transmitted buffer addresses that are written to the DB are removed from the transmit\r
937 buffer queue.\r
938 Normally, this command would be polled with interrupts disabled.\r
939 The transmit buffers are returned in CdbPtr->DBaddr->TxBufer[0 - NumEntries].\r
940 The interrupt status is returned in CdbPtr->StatFlags.\r
941\r
942 @param CdbPtr Pointer to the command descriptor block.\r
943 @param AdapterInfo Pointer to the NIC data structure information which\r
944 the UNDI driver is layering on..\r
945\r
946 @return None\r
947\r
948**/\r
949VOID\r
950UNDI_Status (\r
951 IN PXE_CDB *CdbPtr,\r
952 IN NIC_DATA_INSTANCE *AdapterInfo\r
953 )\r
954{\r
955 PXE_DB_GET_STATUS *DbPtr;\r
956 PXE_DB_GET_STATUS TmpGetStatus;\r
957 UINT16 Index;\r
958 UINT16 Status;\r
959 UINT16 NumEntries;\r
960 RxFD *RxPtr;\r
961\r
962 //\r
963 // Fill in temporary GetStatus storage.\r
964 //\r
965 RxPtr = &AdapterInfo->rx_ring[AdapterInfo->cur_rx_ind];\r
966\r
967 if ((RxPtr->cb_header.status & RX_COMPLETE) != 0) {\r
968 TmpGetStatus.RxFrameLen = RxPtr->ActualCount & 0x3fff;\r
969 } else {\r
970 TmpGetStatus.RxFrameLen = 0;\r
971 }\r
972\r
973 TmpGetStatus.reserved = 0;\r
974\r
975 //\r
976 // Fill in size of next available receive packet and\r
977 // reserved field in caller's DB storage.\r
978 //\r
979 DbPtr = (PXE_DB_GET_STATUS *) (UINTN) CdbPtr->DBaddr;\r
980\r
981 if (CdbPtr->DBsize > 0 && CdbPtr->DBsize < sizeof (UINT32) * 2) {\r
982 CopyMem (DbPtr, &TmpGetStatus, CdbPtr->DBsize);\r
983 } else {\r
984 CopyMem (DbPtr, &TmpGetStatus, sizeof (UINT32) * 2);\r
985 }\r
986\r
987 //\r
988 //\r
989 //\r
990 if ((CdbPtr->OpFlags & PXE_OPFLAGS_GET_TRANSMITTED_BUFFERS) != 0) {\r
991 //\r
992 // DBsize of zero is invalid if Tx buffers are requested.\r
993 //\r
994 if (CdbPtr->DBsize == 0) {\r
995 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
996 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r
997 return ;\r
998 }\r
999\r
1000 //\r
1001 // remember this b4 we overwrite\r
1002 //\r
1003 NumEntries = (UINT16) (CdbPtr->DBsize - sizeof (UINT64));\r
1004\r
1005 //\r
1006 // We already filled in 2 UINT32s.\r
1007 //\r
1008 CdbPtr->DBsize = sizeof (UINT32) * 2;\r
1009\r
1010 //\r
1011 // will claim any hanging free CBs\r
1012 //\r
1013 CheckCBList (AdapterInfo);\r
1014\r
1015 if (AdapterInfo->xmit_done_head == AdapterInfo->xmit_done_tail) {\r
1016 CdbPtr->StatFlags |= PXE_STATFLAGS_GET_STATUS_TXBUF_QUEUE_EMPTY;\r
1017 } else {\r
1018 for (Index = 0; NumEntries >= sizeof (UINT64); Index++, NumEntries -= sizeof (UINT64)) {\r
1019 if (AdapterInfo->xmit_done_head != AdapterInfo->xmit_done_tail) {\r
1020 DbPtr->TxBuffer[Index] = AdapterInfo->xmit_done[AdapterInfo->xmit_done_head];\r
1021 AdapterInfo->xmit_done_head = next (AdapterInfo->xmit_done_head);\r
1022 CdbPtr->DBsize += sizeof (UINT64);\r
1023 } else {\r
1024 break;\r
1025 }\r
1026 }\r
1027 }\r
1028\r
1029 if (AdapterInfo->xmit_done_head != AdapterInfo->xmit_done_tail) {\r
1030 CdbPtr->StatFlags |= PXE_STATFLAGS_DB_WRITE_TRUNCATED;\r
1031\r
1032 }\r
1033 //\r
1034 // check for a receive buffer and give it's size in db\r
1035 //\r
1036 }\r
1037 //\r
1038 //\r
1039 //\r
1040 if ((CdbPtr->OpFlags & PXE_OPFLAGS_GET_INTERRUPT_STATUS) != 0) {\r
1041\r
1042 Status = InWord (AdapterInfo, AdapterInfo->ioaddr + SCBStatus);\r
1043 AdapterInfo->Int_Status = (UINT16) (AdapterInfo->Int_Status | Status);\r
1044\r
1045 //\r
1046 // acknoledge the interrupts\r
1047 //\r
1048 OutWord (AdapterInfo, (UINT16) (Status & 0xfc00), (UINT32) (AdapterInfo->ioaddr + SCBStatus));\r
1049\r
1050 //\r
1051 // report all the outstanding interrupts\r
1052 //\r
1053 Status = AdapterInfo->Int_Status;\r
1054 if ((Status & SCB_STATUS_FR) != 0) {\r
1055 CdbPtr->StatFlags |= PXE_STATFLAGS_GET_STATUS_RECEIVE;\r
1056 }\r
1057\r
1058 if ((Status & SCB_STATUS_SWI) != 0) {\r
1059 CdbPtr->StatFlags |= PXE_STATFLAGS_GET_STATUS_SOFTWARE;\r
1060 }\r
1061 }\r
1062\r
1063 return ;\r
1064}\r
1065\r
1066\r
1067/**\r
1068 This routine is used to fill media header(s) in transmit packet(s).\r
1069 Copies the MAC address into the media header whether it is dealing\r
1070 with fragmented or non-fragmented packets.\r
1071\r
1072 @param CdbPtr Pointer to the command descriptor block.\r
1073 @param AdapterInfo Pointer to the NIC data structure information which\r
1074 the UNDI driver is layering on..\r
1075\r
1076 @return None\r
1077\r
1078**/\r
1079VOID\r
1080UNDI_FillHeader (\r
1081 IN PXE_CDB *CdbPtr,\r
1082 IN NIC_DATA_INSTANCE *AdapterInfo\r
1083 )\r
1084{\r
1085 PXE_CPB_FILL_HEADER *Cpb;\r
1086 PXE_CPB_FILL_HEADER_FRAGMENTED *Cpbf;\r
1087 EtherHeader *MacHeader;\r
1088 UINTN Index;\r
1089\r
1090 if (CdbPtr->CPBsize == PXE_CPBSIZE_NOT_USED) {\r
1091 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
1092 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r
1093 return ;\r
1094 }\r
1095\r
1096 if ((CdbPtr->OpFlags & PXE_OPFLAGS_FILL_HEADER_FRAGMENTED) != 0) {\r
1097 Cpbf = (PXE_CPB_FILL_HEADER_FRAGMENTED *) (UINTN) CdbPtr->CPBaddr;\r
1098\r
1099 //\r
1100 // assume 1st fragment is big enough for the mac header\r
1101 //\r
1102 if ((Cpbf->FragCnt == 0) || (Cpbf->FragDesc[0].FragLen < PXE_MAC_HEADER_LEN_ETHER)) {\r
1103 //\r
1104 // no buffers given\r
1105 //\r
1106 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
1107 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r
1108 return ;\r
1109 }\r
1110\r
1111 MacHeader = (EtherHeader *) (UINTN) Cpbf->FragDesc[0].FragAddr;\r
1112 //\r
1113 // we don't swap the protocol bytes\r
1114 //\r
1115 MacHeader->type = Cpbf->Protocol;\r
1116\r
1117 for (Index = 0; Index < PXE_HWADDR_LEN_ETHER; Index++) {\r
1118 MacHeader->dest_addr[Index] = Cpbf->DestAddr[Index];\r
1119 MacHeader->src_addr[Index] = Cpbf->SrcAddr[Index];\r
1120 }\r
1121 } else {\r
1122 Cpb = (PXE_CPB_FILL_HEADER *) (UINTN) CdbPtr->CPBaddr;\r
1123\r
1124 MacHeader = (EtherHeader *) (UINTN) Cpb->MediaHeader;\r
1125 //\r
1126 // we don't swap the protocol bytes\r
1127 //\r
1128 MacHeader->type = Cpb->Protocol;\r
1129\r
1130 for (Index = 0; Index < PXE_HWADDR_LEN_ETHER; Index++) {\r
1131 MacHeader->dest_addr[Index] = Cpb->DestAddr[Index];\r
1132 MacHeader->src_addr[Index] = Cpb->SrcAddr[Index];\r
1133 }\r
1134 }\r
1135\r
1136 return ;\r
1137}\r
1138\r
1139\r
1140/**\r
1141 This routine is used to place a packet into the transmit queue. The data buffers given to\r
1142 this command are to be considered locked and the application or network driver loses\r
1143 ownership of these buffers and must not free or relocate them until the ownership returns.\r
1144 When the packets are transmitted, a transmit complete interrupt is generated (if interrupts\r
1145 are disabled, the transmit interrupt status is still set and can be checked using the UNDI_Status\r
1146 command.\r
1147 Some implementations and adapters support transmitting multiple packets with one transmit\r
1148 command. If this feature is supported, the transmit CPBs can be linked in one transmit\r
1149 command.\r
1150 All UNDIs support fragmented frames, now all network devices or protocols do. If a fragmented\r
1151 frame CPB is given to UNDI and the network device does not support fragmented frames\r
1152 (see !PXE.Implementation flag), the UNDI will have to copy the fragments into a local buffer\r
1153 before transmitting.\r
1154\r
1155 @param CdbPtr Pointer to the command descriptor block.\r
1156 @param AdapterInfo Pointer to the NIC data structure information which\r
1157 the UNDI driver is layering on..\r
1158\r
1159 @return None\r
1160\r
1161**/\r
1162VOID\r
1163UNDI_Transmit (\r
1164 IN PXE_CDB *CdbPtr,\r
1165 IN NIC_DATA_INSTANCE *AdapterInfo\r
1166 )\r
1167{\r
1168\r
1169 if (CdbPtr->CPBsize == PXE_CPBSIZE_NOT_USED) {\r
1170 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
1171 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r
1172 return ;\r
1173 }\r
1174\r
1175 CdbPtr->StatCode = (PXE_STATCODE) E100bTransmit (AdapterInfo, CdbPtr->CPBaddr, CdbPtr->OpFlags);\r
1176\r
1177 if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {\r
1178 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
1179 }\r
1180\r
1181 return ;\r
1182}\r
1183\r
1184\r
1185/**\r
1186 When the network adapter has received a frame, this command is used to copy the frame\r
1187 into the driver/application storage location. Once a frame has been copied, it is\r
1188 removed from the receive queue.\r
1189\r
1190 @param CdbPtr Pointer to the command descriptor block.\r
1191 @param AdapterInfo Pointer to the NIC data structure information which\r
1192 the UNDI driver is layering on..\r
1193\r
1194 @return None\r
1195\r
1196**/\r
1197VOID\r
1198UNDI_Receive (\r
1199 IN PXE_CDB *CdbPtr,\r
1200 IN NIC_DATA_INSTANCE *AdapterInfo\r
1201 )\r
1202{\r
1203\r
1204 //\r
1205 // check if RU has started...\r
1206 //\r
1207 if (!AdapterInfo->Receive_Started) {\r
1208 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
1209 CdbPtr->StatCode = PXE_STATCODE_NOT_INITIALIZED;\r
1210 return ;\r
1211 }\r
1212\r
1213\r
1214 CdbPtr->StatCode = (UINT16) E100bReceive (AdapterInfo, CdbPtr->CPBaddr, CdbPtr->DBaddr);\r
1215 if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {\r
1216 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
1217\r
1218 }\r
1219\r
1220 return ;\r
1221}\r
1222\r
1223\r
1224\r
1225/**\r
1226 This is the main SW UNDI API entry using the newer nii protocol.\r
1227 The parameter passed in is a 64 bit flat model virtual\r
1228 address of the cdb. We then jump into the common routine for both old and\r
1229 new nii protocol entries.\r
1230\r
1231 @param CdbPtr Pointer to the command descriptor block.\r
1232 @param AdapterInfo Pointer to the NIC data structure information which\r
1233 the UNDI driver is layering on..\r
1234\r
1235 @return None\r
1236\r
1237**/\r
1238// TODO: cdb - add argument and description to function comment\r
1239VOID\r
1240UNDI_APIEntry_new (\r
1241 IN UINT64 cdb\r
1242 )\r
1243{\r
1244 PXE_CDB *CdbPtr;\r
1245 NIC_DATA_INSTANCE *AdapterInfo;\r
1246\r
1247 if (cdb == (UINT64) 0) {\r
1248 return ;\r
1249\r
1250 }\r
1251\r
1252 CdbPtr = (PXE_CDB *) (UINTN) cdb;\r
1253\r
1254 if (CdbPtr->IFnum >= pxe_31->IFcnt) {\r
1255 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
1256 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r
1257 return ;\r
1258 }\r
1259\r
1260 AdapterInfo = &(UNDI32DeviceList[CdbPtr->IFnum]->NicInfo);\r
1261 //\r
1262 // entering from older entry point\r
1263 //\r
1264 AdapterInfo->VersionFlag = 0x31;\r
1265 UNDI_APIEntry_Common (cdb);\r
1266}\r
1267\r
1268\r
1269/**\r
1270 This is the common routine for both old and new entry point procedures.\r
1271 The parameter passed in is a 64 bit flat model virtual\r
1272 address of the cdb. We then jump into the service routine pointed to by the\r
1273 Api_Table[OpCode].\r
1274\r
1275 @param CdbPtr Pointer to the command descriptor block.\r
1276 @param AdapterInfo Pointer to the NIC data structure information which\r
1277 the UNDI driver is layering on..\r
1278\r
1279 @return None\r
1280\r
1281**/\r
1282// TODO: cdb - add argument and description to function comment\r
1283VOID\r
1284UNDI_APIEntry_Common (\r
1285 IN UINT64 cdb\r
1286 )\r
1287{\r
1288 PXE_CDB *CdbPtr;\r
1289 NIC_DATA_INSTANCE *AdapterInfo;\r
1290 UNDI_CALL_TABLE *tab_ptr;\r
1291\r
1292 CdbPtr = (PXE_CDB *) (UINTN) cdb;\r
1293\r
1294 //\r
1295 // check the OPCODE range\r
1296 //\r
1297 if ((CdbPtr->OpCode > PXE_OPCODE_LAST_VALID) ||\r
1298 (CdbPtr->StatCode != PXE_STATCODE_INITIALIZE) ||\r
1299 (CdbPtr->StatFlags != PXE_STATFLAGS_INITIALIZE) ||\r
1300 (CdbPtr->IFnum >= pxe_31->IFcnt) ) {\r
1301 goto badcdb;\r
1302\r
1303 }\r
1304\r
1305 if (CdbPtr->CPBsize == PXE_CPBSIZE_NOT_USED) {\r
1306 if (CdbPtr->CPBaddr != PXE_CPBADDR_NOT_USED) {\r
1307 goto badcdb;\r
1308 }\r
1309 } else if (CdbPtr->CPBaddr == PXE_CPBADDR_NOT_USED) {\r
1310 goto badcdb;\r
1311 }\r
1312\r
1313 if (CdbPtr->DBsize == PXE_DBSIZE_NOT_USED) {\r
1314 if (CdbPtr->DBaddr != PXE_DBADDR_NOT_USED) {\r
1315 goto badcdb;\r
1316 }\r
1317 } else if (CdbPtr->DBaddr == PXE_DBADDR_NOT_USED) {\r
1318 goto badcdb;\r
1319 }\r
1320\r
1321 //\r
1322 // check if cpbsize and dbsize are as needed\r
1323 // check if opflags are as expected\r
1324 //\r
1325 tab_ptr = &api_table[CdbPtr->OpCode];\r
1326\r
1327 if (tab_ptr->cpbsize != (UINT16) (DONT_CHECK) && tab_ptr->cpbsize != CdbPtr->CPBsize) {\r
1328 goto badcdb;\r
1329 }\r
1330\r
1331 if (tab_ptr->dbsize != (UINT16) (DONT_CHECK) && tab_ptr->dbsize != CdbPtr->DBsize) {\r
1332 goto badcdb;\r
1333 }\r
1334\r
1335 if (tab_ptr->opflags != (UINT16) (DONT_CHECK) && tab_ptr->opflags != CdbPtr->OpFlags) {\r
1336 goto badcdb;\r
1337\r
1338 }\r
1339\r
1340 AdapterInfo = &(UNDI32DeviceList[CdbPtr->IFnum]->NicInfo);\r
1341\r
1342 //\r
1343 // check if UNDI_State is valid for this call\r
1344 //\r
1345 if (tab_ptr->state != (UINT16) (-1)) {\r
1346 //\r
1347 // should atleast be started\r
1348 //\r
1349 if (AdapterInfo->State == PXE_STATFLAGS_GET_STATE_STOPPED) {\r
1350 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
1351 CdbPtr->StatCode = PXE_STATCODE_NOT_STARTED;\r
1352 return ;\r
1353 }\r
1354 //\r
1355 // check if it should be initialized\r
1356 //\r
1357 if (tab_ptr->state == 2) {\r
1358 if (AdapterInfo->State != PXE_STATFLAGS_GET_STATE_INITIALIZED) {\r
1359 CdbPtr->StatCode = PXE_STATCODE_NOT_INITIALIZED;\r
1360 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
1361 return ;\r
1362 }\r
1363 }\r
1364 }\r
1365 //\r
1366 // set the return variable for success case here\r
1367 //\r
1368 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_COMPLETE;\r
1369 CdbPtr->StatCode = PXE_STATCODE_SUCCESS;\r
1370\r
1371 tab_ptr->api_ptr (CdbPtr, AdapterInfo);\r
1372 return ;\r
1373 //\r
1374 // %% AVL - check for command linking\r
1375 //\r
1376badcdb:\r
1377 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r
1378 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r
1379 return ;\r
1380}\r
1381\r
1382\r
1383/**\r
1384 When called with a null NicPtr, this routine decrements the number of NICs\r
1385 this UNDI is supporting and removes the NIC_DATA_POINTER from the array.\r
1386 Otherwise, it increments the number of NICs this UNDI is supported and\r
1387 updates the pxe.Fudge to ensure a proper check sum results.\r
1388\r
1389 @param NicPtr Pointer to the NIC data structure.\r
1390\r
1391 @return None\r
1392\r
1393**/\r
1394VOID\r
1395PxeUpdate (\r
1396 IN NIC_DATA_INSTANCE *NicPtr,\r
1397 IN PXE_SW_UNDI *PxePtr\r
1398 )\r
1399{\r
1400 if (NicPtr == NULL) {\r
1401 if (PxePtr->IFcnt > 0) {\r
1402 //\r
1403 // number of NICs this undi supports\r
1404 //\r
1405 PxePtr->IFcnt--;\r
1406 }\r
1407\r
1408 PxePtr->Fudge = (UINT8) (PxePtr->Fudge - CalculateSum8 ((VOID *) PxePtr, PxePtr->Len));\r
1409 return ;\r
1410 }\r
1411\r
1412 //\r
1413 // number of NICs this undi supports\r
1414 //\r
1415 PxePtr->IFcnt++;\r
1416 PxePtr->Fudge = (UINT8) (PxePtr->Fudge - CalculateSum8 ((VOID *) PxePtr, PxePtr->Len));\r
1417\r
1418 return ;\r
1419}\r
1420\r
1421\r
1422/**\r
1423 Initialize the !PXE structure\r
1424\r
1425 @param PxePtr Pointer to SW_UNDI data structure.\r
1426\r
1427 @retval EFI_SUCCESS This driver is added to Controller.\r
1428 @retval other This driver does not support this device.\r
1429\r
1430**/\r
1431VOID\r
1432PxeStructInit (\r
1433 IN PXE_SW_UNDI *PxePtr\r
1434 )\r
1435{\r
1436 //\r
1437 // Initialize the !PXE structure\r
1438 //\r
1439 PxePtr->Signature = PXE_ROMID_SIGNATURE;\r
1440 PxePtr->Len = sizeof (PXE_SW_UNDI);\r
1441 //\r
1442 // cksum\r
1443 //\r
1444 PxePtr->Fudge = 0;\r
1445 //\r
1446 // number of NICs this undi supports\r
1447 //\r
1448 PxePtr->IFcnt = 0;\r
1449 PxePtr->Rev = PXE_ROMID_REV;\r
1450 PxePtr->MajorVer = PXE_ROMID_MAJORVER;\r
1451 PxePtr->MinorVer = PXE_ROMID_MINORVER;\r
1452 PxePtr->reserved1 = 0;\r
1453\r
1454 PxePtr->Implementation = PXE_ROMID_IMP_SW_VIRT_ADDR |\r
1455 PXE_ROMID_IMP_FRAG_SUPPORTED |\r
1456 PXE_ROMID_IMP_CMD_LINK_SUPPORTED |\r
1457 PXE_ROMID_IMP_NVDATA_READ_ONLY |\r
1458 PXE_ROMID_IMP_STATION_ADDR_SETTABLE |\r
1459 PXE_ROMID_IMP_PROMISCUOUS_MULTICAST_RX_SUPPORTED |\r
1460 PXE_ROMID_IMP_PROMISCUOUS_RX_SUPPORTED |\r
1461 PXE_ROMID_IMP_BROADCAST_RX_SUPPORTED |\r
1462 PXE_ROMID_IMP_FILTERED_MULTICAST_RX_SUPPORTED |\r
1463 PXE_ROMID_IMP_SOFTWARE_INT_SUPPORTED |\r
1464 PXE_ROMID_IMP_PACKET_RX_INT_SUPPORTED;\r
1465\r
1466 PxePtr->EntryPoint = (UINT64) (UINTN) UNDI_APIEntry_new;\r
1467 PxePtr->MinorVer = PXE_ROMID_MINORVER_31;\r
1468\r
1469 PxePtr->reserved2[0] = 0;\r
1470 PxePtr->reserved2[1] = 0;\r
1471 PxePtr->reserved2[2] = 0;\r
1472 PxePtr->BusCnt = 1;\r
1473 PxePtr->BusType[0] = PXE_BUSTYPE_PCI;\r
1474\r
1475 PxePtr->Fudge = (UINT8) (PxePtr->Fudge - CalculateSum8 ((VOID *) PxePtr, PxePtr->Len));\r
1476}\r
1477\r