]> git.proxmox.com Git - mirror_edk2.git/blame - OvmfPkg/PlatformPei/MemDetect.c
NetworkPkg/TlsAuthConfigDxe: preserve TlsCaCertificate variable attributes
[mirror_edk2.git] / OvmfPkg / PlatformPei / MemDetect.c
CommitLineData
49ba9447 1/**@file\r
2 Memory Detection for Virtual Machines.\r
3\r
035ce3b3 4 Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>\r
56d7640a 5 This program and the accompanying materials\r
49ba9447 6 are licensed and made available under the terms and conditions of the BSD License\r
7 which accompanies this distribution. The full text of the license may be found at\r
8 http://opensource.org/licenses/bsd-license.php\r
9\r
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13Module Name:\r
14\r
15 MemDetect.c\r
16\r
17**/\r
18\r
19//\r
20// The package level header files this module uses\r
21//\r
1fceaddb 22#include <IndustryStandard/E820.h>\r
d5e06444 23#include <IndustryStandard/Q35MchIch9.h>\r
49ba9447 24#include <PiPei.h>\r
25\r
26//\r
27// The Library classes this module consumes\r
28//\r
d5e06444 29#include <Library/BaseLib.h>\r
6a7cba79 30#include <Library/BaseMemoryLib.h>\r
49ba9447 31#include <Library/DebugLib.h>\r
32#include <Library/HobLib.h>\r
33#include <Library/IoLib.h>\r
c1c2669c 34#include <Library/PcdLib.h>\r
d5e06444 35#include <Library/PciLib.h>\r
49ba9447 36#include <Library/PeimEntryPoint.h>\r
37#include <Library/ResourcePublicationLib.h>\r
e8e5cd4a 38#include <Library/MtrrLib.h>\r
7e5b1b67 39#include <Library/QemuFwCfgLib.h>\r
49ba9447 40\r
41#include "Platform.h"\r
42#include "Cmos.h"\r
43\r
bc89fe48
LE
44UINT8 mPhysMemAddressWidth;\r
45\r
45d87081
LE
46STATIC UINT32 mS3AcpiReservedMemoryBase;\r
47STATIC UINT32 mS3AcpiReservedMemorySize;\r
48\r
23bfb5c0
LE
49STATIC UINT16 mQ35TsegMbytes;\r
50\r
51VOID\r
52Q35TsegMbytesInitialization (\r
53 VOID\r
54 )\r
55{\r
d5e06444
LE
56 UINT16 ExtendedTsegMbytes;\r
57 RETURN_STATUS PcdStatus;\r
58\r
59 if (mHostBridgeDevId != INTEL_Q35_MCH_DEVICE_ID) {\r
60 DEBUG ((\r
61 DEBUG_ERROR,\r
62 "%a: no TSEG (SMRAM) on host bridge DID=0x%04x; "\r
63 "only DID=0x%04x (Q35) is supported\n",\r
64 __FUNCTION__,\r
65 mHostBridgeDevId,\r
66 INTEL_Q35_MCH_DEVICE_ID\r
67 ));\r
68 ASSERT (FALSE);\r
69 CpuDeadLoop ();\r
70 }\r
71\r
72 //\r
73 // Check if QEMU offers an extended TSEG.\r
74 //\r
75 // This can be seen from writing MCH_EXT_TSEG_MB_QUERY to the MCH_EXT_TSEG_MB\r
76 // register, and reading back the register.\r
77 //\r
78 // On a QEMU machine type that does not offer an extended TSEG, the initial\r
79 // write overwrites whatever value a malicious guest OS may have placed in\r
80 // the (unimplemented) register, before entering S3 or rebooting.\r
81 // Subsequently, the read returns MCH_EXT_TSEG_MB_QUERY unchanged.\r
82 //\r
83 // On a QEMU machine type that offers an extended TSEG, the initial write\r
84 // triggers an update to the register. Subsequently, the value read back\r
85 // (which is guaranteed to differ from MCH_EXT_TSEG_MB_QUERY) tells us the\r
86 // number of megabytes.\r
87 //\r
88 PciWrite16 (DRAMC_REGISTER_Q35 (MCH_EXT_TSEG_MB), MCH_EXT_TSEG_MB_QUERY);\r
89 ExtendedTsegMbytes = PciRead16 (DRAMC_REGISTER_Q35 (MCH_EXT_TSEG_MB));\r
90 if (ExtendedTsegMbytes == MCH_EXT_TSEG_MB_QUERY) {\r
91 mQ35TsegMbytes = PcdGet16 (PcdQ35TsegMbytes);\r
92 return;\r
93 }\r
94\r
95 DEBUG ((\r
96 DEBUG_INFO,\r
97 "%a: QEMU offers an extended TSEG (%d MB)\n",\r
98 __FUNCTION__,\r
99 ExtendedTsegMbytes\r
100 ));\r
101 PcdStatus = PcdSet16S (PcdQ35TsegMbytes, ExtendedTsegMbytes);\r
102 ASSERT_RETURN_ERROR (PcdStatus);\r
103 mQ35TsegMbytes = ExtendedTsegMbytes;\r
23bfb5c0
LE
104}\r
105\r
106\r
1fceaddb
LE
107/**\r
108 Iterate over the RAM entries in QEMU's fw_cfg E820 RAM map that start outside\r
109 of the 32-bit address range.\r
110\r
111 Find the highest exclusive >=4GB RAM address, or produce memory resource\r
112 descriptor HOBs for RAM entries that start at or above 4GB.\r
113\r
114 @param[out] MaxAddress If MaxAddress is NULL, then ScanOrAdd64BitE820Ram()\r
115 produces memory resource descriptor HOBs for RAM\r
116 entries that start at or above 4GB.\r
117\r
118 Otherwise, MaxAddress holds the highest exclusive\r
119 >=4GB RAM address on output. If QEMU's fw_cfg E820\r
120 RAM map contains no RAM entry that starts outside of\r
121 the 32-bit address range, then MaxAddress is exactly\r
122 4GB on output.\r
123\r
124 @retval EFI_SUCCESS The fw_cfg E820 RAM map was found and processed.\r
125\r
126 @retval EFI_PROTOCOL_ERROR The RAM map was found, but its size wasn't a\r
127 whole multiple of sizeof(EFI_E820_ENTRY64). No\r
128 RAM entry was processed.\r
129\r
130 @return Error codes from QemuFwCfgFindFile(). No RAM\r
131 entry was processed.\r
132**/\r
133STATIC\r
134EFI_STATUS\r
135ScanOrAdd64BitE820Ram (\r
136 OUT UINT64 *MaxAddress OPTIONAL\r
137 )\r
138{\r
139 EFI_STATUS Status;\r
140 FIRMWARE_CONFIG_ITEM FwCfgItem;\r
141 UINTN FwCfgSize;\r
142 EFI_E820_ENTRY64 E820Entry;\r
143 UINTN Processed;\r
144\r
145 Status = QemuFwCfgFindFile ("etc/e820", &FwCfgItem, &FwCfgSize);\r
146 if (EFI_ERROR (Status)) {\r
147 return Status;\r
148 }\r
149 if (FwCfgSize % sizeof E820Entry != 0) {\r
150 return EFI_PROTOCOL_ERROR;\r
151 }\r
152\r
153 if (MaxAddress != NULL) {\r
154 *MaxAddress = BASE_4GB;\r
155 }\r
156\r
157 QemuFwCfgSelectItem (FwCfgItem);\r
158 for (Processed = 0; Processed < FwCfgSize; Processed += sizeof E820Entry) {\r
159 QemuFwCfgReadBytes (sizeof E820Entry, &E820Entry);\r
160 DEBUG ((\r
161 DEBUG_VERBOSE,\r
162 "%a: Base=0x%Lx Length=0x%Lx Type=%u\n",\r
163 __FUNCTION__,\r
164 E820Entry.BaseAddr,\r
165 E820Entry.Length,\r
166 E820Entry.Type\r
167 ));\r
168 if (E820Entry.Type == EfiAcpiAddressRangeMemory &&\r
169 E820Entry.BaseAddr >= BASE_4GB) {\r
170 if (MaxAddress == NULL) {\r
171 UINT64 Base;\r
172 UINT64 End;\r
173\r
174 //\r
175 // Round up the start address, and round down the end address.\r
176 //\r
177 Base = ALIGN_VALUE (E820Entry.BaseAddr, (UINT64)EFI_PAGE_SIZE);\r
178 End = (E820Entry.BaseAddr + E820Entry.Length) &\r
179 ~(UINT64)EFI_PAGE_MASK;\r
180 if (Base < End) {\r
181 AddMemoryRangeHob (Base, End);\r
182 DEBUG ((\r
183 DEBUG_VERBOSE,\r
184 "%a: AddMemoryRangeHob [0x%Lx, 0x%Lx)\n",\r
185 __FUNCTION__,\r
186 Base,\r
187 End\r
188 ));\r
189 }\r
190 } else {\r
191 UINT64 Candidate;\r
192\r
193 Candidate = E820Entry.BaseAddr + E820Entry.Length;\r
194 if (Candidate > *MaxAddress) {\r
195 *MaxAddress = Candidate;\r
196 DEBUG ((\r
197 DEBUG_VERBOSE,\r
198 "%a: MaxAddress=0x%Lx\n",\r
199 __FUNCTION__,\r
200 *MaxAddress\r
201 ));\r
202 }\r
203 }\r
204 }\r
205 }\r
206 return EFI_SUCCESS;\r
207}\r
208\r
209\r
4b455f7b 210UINT32\r
c0e10976 211GetSystemMemorySizeBelow4gb (\r
4b455f7b 212 VOID\r
49ba9447 213 )\r
214{\r
215 UINT8 Cmos0x34;\r
216 UINT8 Cmos0x35;\r
217\r
218 //\r
219 // CMOS 0x34/0x35 specifies the system memory above 16 MB.\r
220 // * CMOS(0x35) is the high byte\r
221 // * CMOS(0x34) is the low byte\r
222 // * The size is specified in 64kb chunks\r
223 // * Since this is memory above 16MB, the 16MB must be added\r
224 // into the calculation to get the total memory size.\r
225 //\r
226\r
227 Cmos0x34 = (UINT8) CmosRead8 (0x34);\r
228 Cmos0x35 = (UINT8) CmosRead8 (0x35);\r
229\r
c4046161 230 return (UINT32) (((UINTN)((Cmos0x35 << 8) + Cmos0x34) << 16) + SIZE_16MB);\r
49ba9447 231}\r
232\r
233\r
c0e10976 234STATIC\r
235UINT64\r
236GetSystemMemorySizeAbove4gb (\r
237 )\r
238{\r
239 UINT32 Size;\r
240 UINTN CmosIndex;\r
241\r
242 //\r
243 // CMOS 0x5b-0x5d specifies the system memory above 4GB MB.\r
244 // * CMOS(0x5d) is the most significant size byte\r
245 // * CMOS(0x5c) is the middle size byte\r
246 // * CMOS(0x5b) is the least significant size byte\r
247 // * The size is specified in 64kb chunks\r
248 //\r
249\r
250 Size = 0;\r
251 for (CmosIndex = 0x5d; CmosIndex >= 0x5b; CmosIndex--) {\r
252 Size = (UINT32) (Size << 8) + (UINT32) CmosRead8 (CmosIndex);\r
253 }\r
254\r
255 return LShiftU64 (Size, 16);\r
256}\r
257\r
bc89fe48 258\r
d5371680
LE
259/**\r
260 Return the highest address that DXE could possibly use, plus one.\r
261**/\r
262STATIC\r
263UINT64\r
264GetFirstNonAddress (\r
265 VOID\r
266 )\r
267{\r
268 UINT64 FirstNonAddress;\r
7e5b1b67
LE
269 UINT64 Pci64Base, Pci64Size;\r
270 CHAR8 MbString[7 + 1];\r
271 EFI_STATUS Status;\r
272 FIRMWARE_CONFIG_ITEM FwCfgItem;\r
273 UINTN FwCfgSize;\r
274 UINT64 HotPlugMemoryEnd;\r
32e083c7 275 RETURN_STATUS PcdStatus;\r
d5371680 276\r
1fceaddb
LE
277 //\r
278 // set FirstNonAddress to suppress incorrect compiler/analyzer warnings\r
279 //\r
280 FirstNonAddress = 0;\r
281\r
282 //\r
283 // If QEMU presents an E820 map, then get the highest exclusive >=4GB RAM\r
284 // address from it. This can express an address >= 4GB+1TB.\r
285 //\r
286 // Otherwise, get the flat size of the memory above 4GB from the CMOS (which\r
287 // can only express a size smaller than 1TB), and add it to 4GB.\r
288 //\r
289 Status = ScanOrAdd64BitE820Ram (&FirstNonAddress);\r
290 if (EFI_ERROR (Status)) {\r
291 FirstNonAddress = BASE_4GB + GetSystemMemorySizeAbove4gb ();\r
292 }\r
7e5b1b67
LE
293\r
294 //\r
295 // If DXE is 32-bit, then we're done; PciBusDxe will degrade 64-bit MMIO\r
296 // resources to 32-bit anyway. See DegradeResource() in\r
297 // "PciResourceSupport.c".\r
298 //\r
299#ifdef MDE_CPU_IA32\r
300 if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {\r
301 return FirstNonAddress;\r
302 }\r
303#endif\r
304\r
305 //\r
306 // Otherwise, in order to calculate the highest address plus one, we must\r
307 // consider the 64-bit PCI host aperture too. Fetch the default size.\r
308 //\r
309 Pci64Size = PcdGet64 (PcdPciMmio64Size);\r
310\r
311 //\r
312 // See if the user specified the number of megabytes for the 64-bit PCI host\r
313 // aperture. The number of non-NUL characters in MbString allows for\r
314 // 9,999,999 MB, which is approximately 10 TB.\r
315 //\r
316 // As signaled by the "X-" prefix, this knob is experimental, and might go\r
317 // away at any time.\r
318 //\r
319 Status = QemuFwCfgFindFile ("opt/ovmf/X-PciMmio64Mb", &FwCfgItem,\r
320 &FwCfgSize);\r
321 if (!EFI_ERROR (Status)) {\r
322 if (FwCfgSize >= sizeof MbString) {\r
323 DEBUG ((EFI_D_WARN,\r
324 "%a: ignoring malformed 64-bit PCI host aperture size from fw_cfg\n",\r
325 __FUNCTION__));\r
326 } else {\r
327 QemuFwCfgSelectItem (FwCfgItem);\r
328 QemuFwCfgReadBytes (FwCfgSize, MbString);\r
329 MbString[FwCfgSize] = '\0';\r
330 Pci64Size = LShiftU64 (AsciiStrDecimalToUint64 (MbString), 20);\r
331 }\r
332 }\r
333\r
334 if (Pci64Size == 0) {\r
335 if (mBootMode != BOOT_ON_S3_RESUME) {\r
336 DEBUG ((EFI_D_INFO, "%a: disabling 64-bit PCI host aperture\n",\r
337 __FUNCTION__));\r
32e083c7
LE
338 PcdStatus = PcdSet64S (PcdPciMmio64Size, 0);\r
339 ASSERT_RETURN_ERROR (PcdStatus);\r
7e5b1b67
LE
340 }\r
341\r
342 //\r
343 // There's nothing more to do; the amount of memory above 4GB fully\r
344 // determines the highest address plus one. The memory hotplug area (see\r
345 // below) plays no role for the firmware in this case.\r
346 //\r
347 return FirstNonAddress;\r
348 }\r
349\r
350 //\r
351 // The "etc/reserved-memory-end" fw_cfg file, when present, contains an\r
352 // absolute, exclusive end address for the memory hotplug area. This area\r
353 // starts right at the end of the memory above 4GB. The 64-bit PCI host\r
354 // aperture must be placed above it.\r
355 //\r
356 Status = QemuFwCfgFindFile ("etc/reserved-memory-end", &FwCfgItem,\r
357 &FwCfgSize);\r
358 if (!EFI_ERROR (Status) && FwCfgSize == sizeof HotPlugMemoryEnd) {\r
359 QemuFwCfgSelectItem (FwCfgItem);\r
360 QemuFwCfgReadBytes (FwCfgSize, &HotPlugMemoryEnd);\r
361\r
362 ASSERT (HotPlugMemoryEnd >= FirstNonAddress);\r
363 FirstNonAddress = HotPlugMemoryEnd;\r
364 }\r
365\r
366 //\r
367 // SeaBIOS aligns both boundaries of the 64-bit PCI host aperture to 1GB, so\r
368 // that the host can map it with 1GB hugepages. Follow suit.\r
369 //\r
370 Pci64Base = ALIGN_VALUE (FirstNonAddress, (UINT64)SIZE_1GB);\r
371 Pci64Size = ALIGN_VALUE (Pci64Size, (UINT64)SIZE_1GB);\r
372\r
373 //\r
374 // The 64-bit PCI host aperture should also be "naturally" aligned. The\r
375 // alignment is determined by rounding the size of the aperture down to the\r
376 // next smaller or equal power of two. That is, align the aperture by the\r
377 // largest BAR size that can fit into it.\r
378 //\r
379 Pci64Base = ALIGN_VALUE (Pci64Base, GetPowerOfTwo64 (Pci64Size));\r
380\r
381 if (mBootMode != BOOT_ON_S3_RESUME) {\r
382 //\r
383 // The core PciHostBridgeDxe driver will automatically add this range to\r
384 // the GCD memory space map through our PciHostBridgeLib instance; here we\r
385 // only need to set the PCDs.\r
386 //\r
32e083c7
LE
387 PcdStatus = PcdSet64S (PcdPciMmio64Base, Pci64Base);\r
388 ASSERT_RETURN_ERROR (PcdStatus);\r
389 PcdStatus = PcdSet64S (PcdPciMmio64Size, Pci64Size);\r
390 ASSERT_RETURN_ERROR (PcdStatus);\r
391\r
7e5b1b67
LE
392 DEBUG ((EFI_D_INFO, "%a: Pci64Base=0x%Lx Pci64Size=0x%Lx\n",\r
393 __FUNCTION__, Pci64Base, Pci64Size));\r
394 }\r
395\r
396 //\r
397 // The useful address space ends with the 64-bit PCI host aperture.\r
398 //\r
399 FirstNonAddress = Pci64Base + Pci64Size;\r
d5371680
LE
400 return FirstNonAddress;\r
401}\r
402\r
403\r
bc89fe48
LE
404/**\r
405 Initialize the mPhysMemAddressWidth variable, based on guest RAM size.\r
406**/\r
407VOID\r
408AddressWidthInitialization (\r
409 VOID\r
410 )\r
411{\r
412 UINT64 FirstNonAddress;\r
413\r
414 //\r
415 // As guest-physical memory size grows, the permanent PEI RAM requirements\r
416 // are dominated by the identity-mapping page tables built by the DXE IPL.\r
417 // The DXL IPL keys off of the physical address bits advertized in the CPU\r
418 // HOB. To conserve memory, we calculate the minimum address width here.\r
419 //\r
d5371680 420 FirstNonAddress = GetFirstNonAddress ();\r
bc89fe48
LE
421 mPhysMemAddressWidth = (UINT8)HighBitSet64 (FirstNonAddress);\r
422\r
423 //\r
424 // If FirstNonAddress is not an integral power of two, then we need an\r
425 // additional bit.\r
426 //\r
427 if ((FirstNonAddress & (FirstNonAddress - 1)) != 0) {\r
428 ++mPhysMemAddressWidth;\r
429 }\r
430\r
431 //\r
432 // The minimum address width is 36 (covers up to and excluding 64 GB, which\r
433 // is the maximum for Ia32 + PAE). The theoretical architecture maximum for\r
434 // X64 long mode is 52 bits, but the DXE IPL clamps that down to 48 bits. We\r
435 // can simply assert that here, since 48 bits are good enough for 256 TB.\r
436 //\r
437 if (mPhysMemAddressWidth <= 36) {\r
438 mPhysMemAddressWidth = 36;\r
439 }\r
440 ASSERT (mPhysMemAddressWidth <= 48);\r
441}\r
442\r
443\r
444/**\r
445 Calculate the cap for the permanent PEI memory.\r
446**/\r
447STATIC\r
448UINT32\r
449GetPeiMemoryCap (\r
450 VOID\r
451 )\r
452{\r
453 BOOLEAN Page1GSupport;\r
454 UINT32 RegEax;\r
455 UINT32 RegEdx;\r
456 UINT32 Pml4Entries;\r
457 UINT32 PdpEntries;\r
458 UINTN TotalPages;\r
459\r
460 //\r
461 // If DXE is 32-bit, then just return the traditional 64 MB cap.\r
462 //\r
463#ifdef MDE_CPU_IA32\r
464 if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {\r
465 return SIZE_64MB;\r
466 }\r
467#endif\r
468\r
469 //\r
470 // Dependent on physical address width, PEI memory allocations can be\r
471 // dominated by the page tables built for 64-bit DXE. So we key the cap off\r
472 // of those. The code below is based on CreateIdentityMappingPageTables() in\r
473 // "MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c".\r
474 //\r
475 Page1GSupport = FALSE;\r
476 if (PcdGetBool (PcdUse1GPageTable)) {\r
477 AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);\r
478 if (RegEax >= 0x80000001) {\r
479 AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);\r
480 if ((RegEdx & BIT26) != 0) {\r
481 Page1GSupport = TRUE;\r
482 }\r
483 }\r
484 }\r
485\r
486 if (mPhysMemAddressWidth <= 39) {\r
487 Pml4Entries = 1;\r
488 PdpEntries = 1 << (mPhysMemAddressWidth - 30);\r
489 ASSERT (PdpEntries <= 0x200);\r
490 } else {\r
491 Pml4Entries = 1 << (mPhysMemAddressWidth - 39);\r
492 ASSERT (Pml4Entries <= 0x200);\r
493 PdpEntries = 512;\r
494 }\r
495\r
496 TotalPages = Page1GSupport ? Pml4Entries + 1 :\r
497 (PdpEntries + 1) * Pml4Entries + 1;\r
498 ASSERT (TotalPages <= 0x40201);\r
499\r
500 //\r
501 // Add 64 MB for miscellaneous allocations. Note that for\r
502 // mPhysMemAddressWidth values close to 36, the cap will actually be\r
503 // dominated by this increment.\r
504 //\r
505 return (UINT32)(EFI_PAGES_TO_SIZE (TotalPages) + SIZE_64MB);\r
506}\r
507\r
508\r
36658fff
WL
509/**\r
510 Publish PEI core memory\r
511\r
512 @return EFI_SUCCESS The PEIM initialized successfully.\r
513\r
514**/\r
515EFI_STATUS\r
516PublishPeiMemory (\r
517 VOID\r
518 )\r
519{\r
520 EFI_STATUS Status;\r
521 EFI_PHYSICAL_ADDRESS MemoryBase;\r
522 UINT64 MemorySize;\r
fc3f005a 523 UINT32 LowerMemorySize;\r
bc89fe48 524 UINT32 PeiMemoryCap;\r
36658fff 525\r
45d87081
LE
526 LowerMemorySize = GetSystemMemorySizeBelow4gb ();\r
527 if (FeaturePcdGet (PcdSmmSmramRequire)) {\r
528 //\r
529 // TSEG is chipped from the end of low RAM\r
530 //\r
23bfb5c0 531 LowerMemorySize -= mQ35TsegMbytes * SIZE_1MB;\r
45d87081
LE
532 }\r
533\r
534 //\r
535 // If S3 is supported, then the S3 permanent PEI memory is placed next,\r
536 // downwards. Its size is primarily dictated by CpuMpPei. The formula below\r
537 // is an approximation.\r
538 //\r
539 if (mS3Supported) {\r
540 mS3AcpiReservedMemorySize = SIZE_512KB +\r
45a70db3 541 mMaxCpuCount *\r
45d87081
LE
542 PcdGet32 (PcdCpuApStackSize);\r
543 mS3AcpiReservedMemoryBase = LowerMemorySize - mS3AcpiReservedMemorySize;\r
544 LowerMemorySize = mS3AcpiReservedMemoryBase;\r
545 }\r
546\r
8e54500f 547 if (mBootMode == BOOT_ON_S3_RESUME) {\r
45d87081
LE
548 MemoryBase = mS3AcpiReservedMemoryBase;\r
549 MemorySize = mS3AcpiReservedMemorySize;\r
8e54500f 550 } else {\r
bc89fe48
LE
551 PeiMemoryCap = GetPeiMemoryCap ();\r
552 DEBUG ((EFI_D_INFO, "%a: mPhysMemAddressWidth=%d PeiMemoryCap=%u KB\n",\r
553 __FUNCTION__, mPhysMemAddressWidth, PeiMemoryCap >> 10));\r
554\r
8e54500f
JJ
555 //\r
556 // Determine the range of memory to use during PEI\r
557 //\r
efb0f16e
LE
558 // Technically we could lay the permanent PEI RAM over SEC's temporary\r
559 // decompression and scratch buffer even if "secure S3" is needed, since\r
560 // their lifetimes don't overlap. However, PeiFvInitialization() will cover\r
561 // RAM up to PcdOvmfDecompressionScratchEnd with an EfiACPIMemoryNVS memory\r
562 // allocation HOB, and other allocations served from the permanent PEI RAM\r
563 // shouldn't overlap with that HOB.\r
564 //\r
565 MemoryBase = mS3Supported && FeaturePcdGet (PcdSmmSmramRequire) ?\r
566 PcdGet32 (PcdOvmfDecompressionScratchEnd) :\r
567 PcdGet32 (PcdOvmfDxeMemFvBase) + PcdGet32 (PcdOvmfDxeMemFvSize);\r
8e54500f 568 MemorySize = LowerMemorySize - MemoryBase;\r
bc89fe48
LE
569 if (MemorySize > PeiMemoryCap) {\r
570 MemoryBase = LowerMemorySize - PeiMemoryCap;\r
571 MemorySize = PeiMemoryCap;\r
8e54500f 572 }\r
36658fff
WL
573 }\r
574\r
575 //\r
576 // Publish this memory to the PEI Core\r
577 //\r
578 Status = PublishSystemMemory(MemoryBase, MemorySize);\r
579 ASSERT_EFI_ERROR (Status);\r
580\r
581 return Status;\r
582}\r
583\r
c0e10976 584\r
49ba9447 585/**\r
c034906e 586 Peform Memory Detection for QEMU / KVM\r
49ba9447 587\r
588**/\r
c034906e
JJ
589STATIC\r
590VOID\r
591QemuInitializeRam (\r
592 VOID\r
49ba9447 593 )\r
594{\r
c0e10976 595 UINT64 LowerMemorySize;\r
596 UINT64 UpperMemorySize;\r
79d274b8
LE
597 MTRR_SETTINGS MtrrSettings;\r
598 EFI_STATUS Status;\r
49ba9447 599\r
c034906e 600 DEBUG ((EFI_D_INFO, "%a called\n", __FUNCTION__));\r
49ba9447 601\r
602 //\r
603 // Determine total memory size available\r
604 //\r
c0e10976 605 LowerMemorySize = GetSystemMemorySizeBelow4gb ();\r
606 UpperMemorySize = GetSystemMemorySizeAbove4gb ();\r
49ba9447 607\r
e3e3090a
LE
608 if (mBootMode == BOOT_ON_S3_RESUME) {\r
609 //\r
610 // Create the following memory HOB as an exception on the S3 boot path.\r
611 //\r
612 // Normally we'd create memory HOBs only on the normal boot path. However,\r
613 // CpuMpPei specifically needs such a low-memory HOB on the S3 path as\r
614 // well, for "borrowing" a subset of it temporarily, for the AP startup\r
615 // vector.\r
616 //\r
617 // CpuMpPei saves the original contents of the borrowed area in permanent\r
618 // PEI RAM, in a backup buffer allocated with the normal PEI services.\r
619 // CpuMpPei restores the original contents ("returns" the borrowed area) at\r
620 // End-of-PEI. End-of-PEI in turn is emitted by S3Resume2Pei before\r
8c0b0b34 621 // transferring control to the OS's wakeup vector in the FACS.\r
e3e3090a
LE
622 //\r
623 // We expect any other PEIMs that "borrow" memory similarly to CpuMpPei to\r
624 // restore the original contents. Furthermore, we expect all such PEIMs\r
625 // (CpuMpPei included) to claim the borrowed areas by producing memory\r
626 // allocation HOBs, and to honor preexistent memory allocation HOBs when\r
627 // looking for an area to borrow.\r
628 //\r
629 AddMemoryRangeHob (0, BASE_512KB + BASE_128KB);\r
630 } else {\r
bd386eaf
JJ
631 //\r
632 // Create memory HOBs\r
633 //\r
bd386eaf 634 AddMemoryRangeHob (0, BASE_512KB + BASE_128KB);\r
b09c1c6f
LE
635\r
636 if (FeaturePcdGet (PcdSmmSmramRequire)) {\r
637 UINT32 TsegSize;\r
638\r
23bfb5c0 639 TsegSize = mQ35TsegMbytes * SIZE_1MB;\r
b09c1c6f
LE
640 AddMemoryRangeHob (BASE_1MB, LowerMemorySize - TsegSize);\r
641 AddReservedMemoryBaseSizeHob (LowerMemorySize - TsegSize, TsegSize,\r
642 TRUE);\r
643 } else {\r
644 AddMemoryRangeHob (BASE_1MB, LowerMemorySize);\r
645 }\r
646\r
1fceaddb
LE
647 //\r
648 // If QEMU presents an E820 map, then create memory HOBs for the >=4GB RAM\r
649 // entries. Otherwise, create a single memory HOB with the flat >=4GB\r
650 // memory size read from the CMOS.\r
651 //\r
652 Status = ScanOrAdd64BitE820Ram (NULL);\r
653 if (EFI_ERROR (Status) && UpperMemorySize != 0) {\r
035ce3b3 654 AddMemoryBaseSizeHob (BASE_4GB, UpperMemorySize);\r
cfc80e2e 655 }\r
bd386eaf 656 }\r
49ba9447 657\r
79d274b8
LE
658 //\r
659 // We'd like to keep the following ranges uncached:\r
660 // - [640 KB, 1 MB)\r
661 // - [LowerMemorySize, 4 GB)\r
662 //\r
663 // Everything else should be WB. Unfortunately, programming the inverse (ie.\r
664 // keeping the default UC, and configuring the complement set of the above as\r
665 // WB) is not reliable in general, because the end of the upper RAM can have\r
666 // practically any alignment, and we may not have enough variable MTRRs to\r
667 // cover it exactly.\r
668 //\r
669 if (IsMtrrSupported ()) {\r
670 MtrrGetAllMtrrs (&MtrrSettings);\r
671\r
672 //\r
673 // MTRRs disabled, fixed MTRRs disabled, default type is uncached\r
674 //\r
675 ASSERT ((MtrrSettings.MtrrDefType & BIT11) == 0);\r
676 ASSERT ((MtrrSettings.MtrrDefType & BIT10) == 0);\r
677 ASSERT ((MtrrSettings.MtrrDefType & 0xFF) == 0);\r
678\r
679 //\r
680 // flip default type to writeback\r
681 //\r
682 SetMem (&MtrrSettings.Fixed, sizeof MtrrSettings.Fixed, 0x06);\r
683 ZeroMem (&MtrrSettings.Variables, sizeof MtrrSettings.Variables);\r
684 MtrrSettings.MtrrDefType |= BIT11 | BIT10 | 6;\r
685 MtrrSetAllMtrrs (&MtrrSettings);\r
e8e5cd4a 686\r
79d274b8
LE
687 //\r
688 // Set memory range from 640KB to 1MB to uncacheable\r
689 //\r
690 Status = MtrrSetMemoryAttribute (BASE_512KB + BASE_128KB,\r
691 BASE_1MB - (BASE_512KB + BASE_128KB), CacheUncacheable);\r
692 ASSERT_EFI_ERROR (Status);\r
e8e5cd4a 693\r
79d274b8
LE
694 //\r
695 // Set memory range from the "top of lower RAM" (RAM below 4GB) to 4GB as\r
696 // uncacheable\r
697 //\r
698 Status = MtrrSetMemoryAttribute (LowerMemorySize,\r
699 SIZE_4GB - LowerMemorySize, CacheUncacheable);\r
700 ASSERT_EFI_ERROR (Status);\r
c0e10976 701 }\r
49ba9447 702}\r
703\r
c034906e
JJ
704/**\r
705 Publish system RAM and reserve memory regions\r
706\r
707**/\r
708VOID\r
709InitializeRamRegions (\r
710 VOID\r
711 )\r
712{\r
2818c158
JJ
713 if (!mXen) {\r
714 QemuInitializeRam ();\r
715 } else {\r
2818c158
JJ
716 XenPublishRamRegions ();\r
717 }\r
8e54500f
JJ
718\r
719 if (mS3Supported && mBootMode != BOOT_ON_S3_RESUME) {\r
720 //\r
721 // This is the memory range that will be used for PEI on S3 resume\r
722 //\r
723 BuildMemoryAllocationHob (\r
45d87081
LE
724 mS3AcpiReservedMemoryBase,\r
725 mS3AcpiReservedMemorySize,\r
8e54500f
JJ
726 EfiACPIMemoryNVS\r
727 );\r
e249f906
LE
728\r
729 //\r
730 // Cover the initial RAM area used as stack and temporary PEI heap.\r
731 //\r
732 // This is reserved as ACPI NVS so it can be used on S3 resume.\r
733 //\r
734 BuildMemoryAllocationHob (\r
735 PcdGet32 (PcdOvmfSecPeiTempRamBase),\r
736 PcdGet32 (PcdOvmfSecPeiTempRamSize),\r
737 EfiACPIMemoryNVS\r
738 );\r
78a38b73 739\r
ad43bc6b
LE
740 //\r
741 // SEC stores its table of GUIDed section handlers here.\r
742 //\r
743 BuildMemoryAllocationHob (\r
744 PcdGet64 (PcdGuidedExtractHandlerTableAddress),\r
745 PcdGet32 (PcdGuidedExtractHandlerTableSize),\r
746 EfiACPIMemoryNVS\r
747 );\r
748\r
78a38b73
LE
749#ifdef MDE_CPU_X64\r
750 //\r
751 // Reserve the initial page tables built by the reset vector code.\r
752 //\r
753 // Since this memory range will be used by the Reset Vector on S3\r
754 // resume, it must be reserved as ACPI NVS.\r
755 //\r
756 BuildMemoryAllocationHob (\r
757 (EFI_PHYSICAL_ADDRESS)(UINTN) PcdGet32 (PcdOvmfSecPageTablesBase),\r
758 (UINT64)(UINTN) PcdGet32 (PcdOvmfSecPageTablesSize),\r
759 EfiACPIMemoryNVS\r
760 );\r
761#endif\r
0e8a31f5 762 }\r
6a7cba79 763\r
0e8a31f5 764 if (mBootMode != BOOT_ON_S3_RESUME) {\r
1a7edbbc
LE
765 if (!FeaturePcdGet (PcdSmmSmramRequire)) {\r
766 //\r
767 // Reserve the lock box storage area\r
768 //\r
769 // Since this memory range will be used on S3 resume, it must be\r
770 // reserved as ACPI NVS.\r
771 //\r
772 // If S3 is unsupported, then various drivers might still write to the\r
773 // LockBox area. We ought to prevent DXE from serving allocation requests\r
774 // such that they would overlap the LockBox storage.\r
775 //\r
776 ZeroMem (\r
777 (VOID*)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageBase),\r
778 (UINTN) PcdGet32 (PcdOvmfLockBoxStorageSize)\r
779 );\r
780 BuildMemoryAllocationHob (\r
781 (EFI_PHYSICAL_ADDRESS)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageBase),\r
782 (UINT64)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageSize),\r
783 mS3Supported ? EfiACPIMemoryNVS : EfiBootServicesData\r
784 );\r
785 }\r
b09c1c6f
LE
786\r
787 if (FeaturePcdGet (PcdSmmSmramRequire)) {\r
788 UINT32 TsegSize;\r
789\r
790 //\r
791 // Make sure the TSEG area that we reported as a reserved memory resource\r
792 // cannot be used for reserved memory allocations.\r
793 //\r
23bfb5c0 794 TsegSize = mQ35TsegMbytes * SIZE_1MB;\r
b09c1c6f
LE
795 BuildMemoryAllocationHob (\r
796 GetSystemMemorySizeBelow4gb() - TsegSize,\r
797 TsegSize,\r
798 EfiReservedMemoryType\r
799 );\r
800 }\r
8e54500f 801 }\r
c034906e 802}\r