]> git.proxmox.com Git - mirror_edk2.git/blame - PcAtChipsetPkg/Library/AcpiTimerLib/AcpiTimerLib.c
UefiCpuPkg: Move AsmRelocateApLoopStart from Mpfuncs.nasm to AmdSev.nasm
[mirror_edk2.git] / PcAtChipsetPkg / Library / AcpiTimerLib / AcpiTimerLib.c
CommitLineData
83d1ffb9
LG
1/** @file\r
2 ACPI Timer implements one instance of Timer Library.\r
3\r
fd501a79 4 Copyright (c) 2013 - 2018, Intel Corporation. All rights reserved.<BR>\r
e1d302e5 5 SPDX-License-Identifier: BSD-2-Clause-Patent\r
83d1ffb9
LG
6\r
7**/\r
8\r
9#include <Base.h>\r
10#include <Library/TimerLib.h>\r
11#include <Library/BaseLib.h>\r
12#include <Library/PcdLib.h>\r
13#include <Library/PciLib.h>\r
14#include <Library/IoLib.h>\r
15#include <Library/DebugLib.h>\r
16#include <IndustryStandard/Acpi.h>\r
17\r
5220bd21
MK
18GUID mFrequencyHobGuid = {\r
19 0x3fca54f6, 0xe1a2, 0x4b20, { 0xbe, 0x76, 0x92, 0x6b, 0x4b, 0x48, 0xbf, 0xaa }\r
20};\r
fd501a79 21\r
83d1ffb9
LG
22/**\r
23 Internal function to retrieves the 64-bit frequency in Hz.\r
24\r
25 Internal function to retrieves the 64-bit frequency in Hz.\r
26\r
27 @return The frequency in Hz.\r
28\r
29**/\r
30UINT64\r
31InternalGetPerformanceCounterFrequency (\r
32 VOID\r
33 );\r
34\r
35/**\r
36 The constructor function enables ACPI IO space.\r
37\r
38 If ACPI I/O space not enabled, this function will enable it.\r
39 It will always return RETURN_SUCCESS.\r
40\r
41 @retval EFI_SUCCESS The constructor always returns RETURN_SUCCESS.\r
42\r
43**/\r
44RETURN_STATUS\r
45EFIAPI\r
46AcpiTimerLibConstructor (\r
47 VOID\r
48 )\r
49{\r
5220bd21
MK
50 UINTN Bus;\r
51 UINTN Device;\r
52 UINTN Function;\r
53 UINTN EnableRegister;\r
54 UINT8 EnableMask;\r
83d1ffb9
LG
55\r
56 //\r
5a702acd 57 // ASSERT for the invalid PCD values. They must be configured to the real value.\r
83d1ffb9
LG
58 //\r
59 ASSERT (PcdGet16 (PcdAcpiIoPciBarRegisterOffset) != 0xFFFF);\r
60 ASSERT (PcdGet16 (PcdAcpiIoPortBaseAddress) != 0xFFFF);\r
61\r
62 //\r
5a702acd 63 // If the register offset to the BAR for the ACPI I/O Port Base Address is 0x0000, then\r
aad15888 64 // no PCI register programming is required to enable access to the ACPI registers\r
83d1ffb9
LG
65 // specified by PcdAcpiIoPortBaseAddress\r
66 //\r
67 if (PcdGet16 (PcdAcpiIoPciBarRegisterOffset) == 0x0000) {\r
68 return RETURN_SUCCESS;\r
69 }\r
70\r
71 //\r
5a702acd 72 // ASSERT for the invalid PCD values. They must be configured to the real value.\r
83d1ffb9 73 //\r
5220bd21
MK
74 ASSERT (PcdGet8 (PcdAcpiIoPciDeviceNumber) != 0xFF);\r
75 ASSERT (PcdGet8 (PcdAcpiIoPciFunctionNumber) != 0xFF);\r
83d1ffb9
LG
76 ASSERT (PcdGet16 (PcdAcpiIoPciEnableRegisterOffset) != 0xFFFF);\r
77\r
78 //\r
79 // Retrieve the PCD values for the PCI configuration space required to program the ACPI I/O Port Base Address\r
80 //\r
5220bd21
MK
81 Bus = PcdGet8 (PcdAcpiIoPciBusNumber);\r
82 Device = PcdGet8 (PcdAcpiIoPciDeviceNumber);\r
83 Function = PcdGet8 (PcdAcpiIoPciFunctionNumber);\r
83d1ffb9 84 EnableRegister = PcdGet16 (PcdAcpiIoPciEnableRegisterOffset);\r
5220bd21 85 EnableMask = PcdGet8 (PcdAcpiIoBarEnableMask);\r
83d1ffb9
LG
86\r
87 //\r
88 // If ACPI I/O space is not enabled yet, program ACPI I/O base address and enable it.\r
89 //\r
dde4aedc 90 if ((PciRead8 (PCI_LIB_ADDRESS (Bus, Device, Function, EnableRegister)) & EnableMask) != EnableMask) {\r
83d1ffb9
LG
91 PciWrite16 (\r
92 PCI_LIB_ADDRESS (Bus, Device, Function, PcdGet16 (PcdAcpiIoPciBarRegisterOffset)),\r
93 PcdGet16 (PcdAcpiIoPortBaseAddress)\r
94 );\r
95 PciOr8 (\r
96 PCI_LIB_ADDRESS (Bus, Device, Function, EnableRegister),\r
97 EnableMask\r
98 );\r
99 }\r
5a702acd 100\r
83d1ffb9
LG
101 return RETURN_SUCCESS;\r
102}\r
103\r
104/**\r
105 Internal function to retrieve the ACPI I/O Port Base Address.\r
106\r
107 Internal function to retrieve the ACPI I/O Port Base Address.\r
108\r
109 @return The 16-bit ACPI I/O Port Base Address.\r
110\r
111**/\r
112UINT16\r
113InternalAcpiGetAcpiTimerIoPort (\r
114 VOID\r
115 )\r
116{\r
117 UINT16 Port;\r
5a702acd 118\r
9ff926d6 119 Port = PcdGet16 (PcdAcpiIoPortBaseAddress);\r
5a702acd 120\r
83d1ffb9 121 //\r
5a702acd
LG
122 // If the register offset to the BAR for the ACPI I/O Port Base Address is not 0x0000, then\r
123 // read the PCI register for the ACPI BAR value in case the BAR has been programmed to a\r
83d1ffb9
LG
124 // value other than PcdAcpiIoPortBaseAddress\r
125 //\r
126 if (PcdGet16 (PcdAcpiIoPciBarRegisterOffset) != 0x0000) {\r
5220bd21
MK
127 Port = PciRead16 (\r
128 PCI_LIB_ADDRESS (\r
129 PcdGet8 (PcdAcpiIoPciBusNumber),\r
130 PcdGet8 (PcdAcpiIoPciDeviceNumber),\r
131 PcdGet8 (PcdAcpiIoPciFunctionNumber),\r
132 PcdGet16 (PcdAcpiIoPciBarRegisterOffset)\r
133 )\r
134 );\r
83d1ffb9 135 }\r
5a702acd 136\r
9ff926d6 137 return (Port & PcdGet16 (PcdAcpiIoPortBaseAddressMask)) + PcdGet16 (PcdAcpiPm1TmrOffset);\r
83d1ffb9
LG
138}\r
139\r
140/**\r
141 Stalls the CPU for at least the given number of ticks.\r
142\r
143 Stalls the CPU for at least the given number of ticks. It's invoked by\r
144 MicroSecondDelay() and NanoSecondDelay().\r
145\r
146 @param Delay A period of time to delay in ticks.\r
147\r
148**/\r
149VOID\r
150InternalAcpiDelay (\r
151 IN UINT32 Delay\r
152 )\r
153{\r
5220bd21
MK
154 UINT16 Port;\r
155 UINT32 Ticks;\r
156 UINT32 Times;\r
83d1ffb9
LG
157\r
158 Port = InternalAcpiGetAcpiTimerIoPort ();\r
159 Times = Delay >> 22;\r
160 Delay &= BIT22 - 1;\r
161 do {\r
162 //\r
163 // The target timer count is calculated here\r
164 //\r
b3b58d4d 165 Ticks = IoBitFieldRead32 (Port, 0, 23) + Delay;\r
83d1ffb9
LG
166 Delay = BIT22;\r
167 //\r
168 // Wait until time out\r
169 // Delay >= 2^23 could not be handled by this function\r
170 // Timer wrap-arounds are handled correctly by this function\r
171 //\r
b3b58d4d 172 while (((Ticks - IoBitFieldRead32 (Port, 0, 23)) & BIT23) == 0) {\r
83d1ffb9
LG
173 CpuPause ();\r
174 }\r
175 } while (Times-- > 0);\r
176}\r
177\r
178/**\r
179 Stalls the CPU for at least the given number of microseconds.\r
180\r
181 Stalls the CPU for the number of microseconds specified by MicroSeconds.\r
182\r
183 @param MicroSeconds The minimum number of microseconds to delay.\r
184\r
185 @return MicroSeconds\r
186\r
187**/\r
188UINTN\r
189EFIAPI\r
190MicroSecondDelay (\r
191 IN UINTN MicroSeconds\r
192 )\r
193{\r
194 InternalAcpiDelay (\r
195 (UINT32)DivU64x32 (\r
196 MultU64x32 (\r
197 MicroSeconds,\r
198 ACPI_TIMER_FREQUENCY\r
199 ),\r
200 1000000u\r
201 )\r
202 );\r
203 return MicroSeconds;\r
204}\r
205\r
206/**\r
207 Stalls the CPU for at least the given number of nanoseconds.\r
208\r
209 Stalls the CPU for the number of nanoseconds specified by NanoSeconds.\r
210\r
211 @param NanoSeconds The minimum number of nanoseconds to delay.\r
212\r
213 @return NanoSeconds\r
214\r
215**/\r
216UINTN\r
217EFIAPI\r
218NanoSecondDelay (\r
219 IN UINTN NanoSeconds\r
220 )\r
221{\r
222 InternalAcpiDelay (\r
223 (UINT32)DivU64x32 (\r
224 MultU64x32 (\r
225 NanoSeconds,\r
226 ACPI_TIMER_FREQUENCY\r
227 ),\r
228 1000000000u\r
229 )\r
230 );\r
231 return NanoSeconds;\r
232}\r
233\r
234/**\r
235 Retrieves the current value of a 64-bit free running performance counter.\r
236\r
237 Retrieves the current value of a 64-bit free running performance counter. The\r
238 counter can either count up by 1 or count down by 1. If the physical\r
239 performance counter counts by a larger increment, then the counter values\r
240 must be translated. The properties of the counter can be retrieved from\r
241 GetPerformanceCounterProperties().\r
242\r
243 @return The current value of the free running performance counter.\r
244\r
245**/\r
246UINT64\r
247EFIAPI\r
248GetPerformanceCounter (\r
249 VOID\r
250 )\r
251{\r
252 return AsmReadTsc ();\r
253}\r
254\r
255/**\r
256 Retrieves the 64-bit frequency in Hz and the range of performance counter\r
257 values.\r
258\r
259 If StartValue is not NULL, then the value that the performance counter starts\r
260 with immediately after is it rolls over is returned in StartValue. If\r
261 EndValue is not NULL, then the value that the performance counter end with\r
262 immediately before it rolls over is returned in EndValue. The 64-bit\r
263 frequency of the performance counter in Hz is always returned. If StartValue\r
264 is less than EndValue, then the performance counter counts up. If StartValue\r
265 is greater than EndValue, then the performance counter counts down. For\r
266 example, a 64-bit free running counter that counts up would have a StartValue\r
267 of 0 and an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit free running counter\r
268 that counts down would have a StartValue of 0xFFFFFF and an EndValue of 0.\r
269\r
270 @param StartValue The value the performance counter starts with when it\r
271 rolls over.\r
272 @param EndValue The value that the performance counter ends with before\r
273 it rolls over.\r
274\r
275 @return The frequency in Hz.\r
276\r
277**/\r
278UINT64\r
279EFIAPI\r
280GetPerformanceCounterProperties (\r
237295f4 281 OUT UINT64 *StartValue OPTIONAL,\r
83d1ffb9
LG
282 OUT UINT64 *EndValue OPTIONAL\r
283 )\r
284{\r
285 if (StartValue != NULL) {\r
286 *StartValue = 0;\r
287 }\r
288\r
289 if (EndValue != NULL) {\r
290 *EndValue = 0xffffffffffffffffULL;\r
291 }\r
5220bd21 292\r
83d1ffb9
LG
293 return InternalGetPerformanceCounterFrequency ();\r
294}\r
295\r
296/**\r
297 Converts elapsed ticks of performance counter to time in nanoseconds.\r
298\r
299 This function converts the elapsed ticks of running performance counter to\r
300 time value in unit of nanoseconds.\r
301\r
302 @param Ticks The number of elapsed ticks of running performance counter.\r
303\r
304 @return The elapsed time in nanoseconds.\r
305\r
306**/\r
307UINT64\r
308EFIAPI\r
309GetTimeInNanoSecond (\r
310 IN UINT64 Ticks\r
311 )\r
312{\r
313 UINT64 Frequency;\r
314 UINT64 NanoSeconds;\r
315 UINT64 Remainder;\r
316 INTN Shift;\r
317\r
318 Frequency = GetPerformanceCounterProperties (NULL, NULL);\r
319\r
320 //\r
321 // Ticks\r
322 // Time = --------- x 1,000,000,000\r
323 // Frequency\r
324 //\r
325 NanoSeconds = MultU64x32 (DivU64x64Remainder (Ticks, Frequency, &Remainder), 1000000000u);\r
326\r
327 //\r
328 // Ensure (Remainder * 1,000,000,000) will not overflow 64-bit.\r
329 // Since 2^29 < 1,000,000,000 = 0x3B9ACA00 < 2^30, Remainder should < 2^(64-30) = 2^34,\r
330 // i.e. highest bit set in Remainder should <= 33.\r
331 //\r
5220bd21
MK
332 Shift = MAX (0, HighBitSet64 (Remainder) - 33);\r
333 Remainder = RShiftU64 (Remainder, (UINTN)Shift);\r
334 Frequency = RShiftU64 (Frequency, (UINTN)Shift);\r
83d1ffb9
LG
335 NanoSeconds += DivU64x64Remainder (MultU64x32 (Remainder, 1000000000u), Frequency, NULL);\r
336\r
337 return NanoSeconds;\r
338}\r
62b8b5be
SZ
339\r
340/**\r
341 Calculate TSC frequency.\r
342\r
343 The TSC counting frequency is determined by comparing how far it counts\r
a012df5e
SZ
344 during a 101.4 us period as determined by the ACPI timer.\r
345 The ACPI timer is used because it counts at a known frequency.\r
346 The TSC is sampled, followed by waiting 363 counts of the ACPI timer,\r
347 or 101.4 us. The TSC is then sampled again. The difference multiplied by\r
348 9861 is the TSC frequency. There will be a small error because of the\r
349 overhead of reading the ACPI timer. An attempt is made to determine and\r
350 compensate for this error.\r
62b8b5be
SZ
351\r
352 @return The number of TSC counts per second.\r
353\r
354**/\r
355UINT64\r
356InternalCalculateTscFrequency (\r
357 VOID\r
358 )\r
359{\r
5220bd21
MK
360 UINT64 StartTSC;\r
361 UINT64 EndTSC;\r
362 UINT16 TimerAddr;\r
363 UINT32 Ticks;\r
364 UINT64 TscFrequency;\r
365 BOOLEAN InterruptState;\r
62b8b5be
SZ
366\r
367 InterruptState = SaveAndDisableInterrupts ();\r
368\r
369 TimerAddr = InternalAcpiGetAcpiTimerIoPort ();\r
a012df5e
SZ
370 //\r
371 // Compute the number of ticks to wait to measure TSC frequency.\r
372 // Use 363 * 9861 = 3579543 Hz which is within 2 Hz of ACPI_TIMER_FREQUENCY.\r
373 // 363 counts is a calibration time of 101.4 uS.\r
374 //\r
b3b58d4d 375 Ticks = IoBitFieldRead32 (TimerAddr, 0, 23) + 363;\r
62b8b5be
SZ
376\r
377 StartTSC = AsmReadTsc (); // Get base value for the TSC\r
378 //\r
a012df5e 379 // Wait until the ACPI timer has counted 101.4 us.\r
62b8b5be 380 // Timer wrap-arounds are handled correctly by this function.\r
a012df5e
SZ
381 // When the current ACPI timer value is greater than 'Ticks',\r
382 // the while loop will exit.\r
62b8b5be 383 //\r
b3b58d4d 384 while (((Ticks - IoBitFieldRead32 (TimerAddr, 0, 23)) & BIT23) == 0) {\r
5220bd21 385 CpuPause ();\r
62b8b5be 386 }\r
5220bd21 387\r
a012df5e 388 EndTSC = AsmReadTsc (); // TSC value 101.4 us later\r
62b8b5be
SZ
389\r
390 TscFrequency = MultU64x32 (\r
a012df5e
SZ
391 (EndTSC - StartTSC), // Number of TSC counts in 101.4 us\r
392 9861 // Number of 101.4 us in a second\r
62b8b5be
SZ
393 );\r
394\r
395 SetInterruptState (InterruptState);\r
396\r
397 return TscFrequency;\r
398}\r