]> git.proxmox.com Git - mirror_edk2.git/blame - PcAtChipsetPkg/Library/AcpiTimerLib/AcpiTimerLib.c
PcAtChipsetPkg: Replace BSD License with BSD+Patent License
[mirror_edk2.git] / PcAtChipsetPkg / Library / AcpiTimerLib / AcpiTimerLib.c
CommitLineData
83d1ffb9
LG
1/** @file\r
2 ACPI Timer implements one instance of Timer Library.\r
3\r
fd501a79 4 Copyright (c) 2013 - 2018, Intel Corporation. All rights reserved.<BR>\r
e1d302e5 5 SPDX-License-Identifier: BSD-2-Clause-Patent\r
83d1ffb9
LG
6\r
7**/\r
8\r
9#include <Base.h>\r
10#include <Library/TimerLib.h>\r
11#include <Library/BaseLib.h>\r
12#include <Library/PcdLib.h>\r
13#include <Library/PciLib.h>\r
14#include <Library/IoLib.h>\r
15#include <Library/DebugLib.h>\r
16#include <IndustryStandard/Acpi.h>\r
17\r
fd501a79
LG
18GUID mFrequencyHobGuid = { 0x3fca54f6, 0xe1a2, 0x4b20, { 0xbe, 0x76, 0x92, 0x6b, 0x4b, 0x48, 0xbf, 0xaa }};\r
19\r
83d1ffb9
LG
20/**\r
21 Internal function to retrieves the 64-bit frequency in Hz.\r
22\r
23 Internal function to retrieves the 64-bit frequency in Hz.\r
24\r
25 @return The frequency in Hz.\r
26\r
27**/\r
28UINT64\r
29InternalGetPerformanceCounterFrequency (\r
30 VOID\r
31 );\r
32\r
33/**\r
34 The constructor function enables ACPI IO space.\r
35\r
36 If ACPI I/O space not enabled, this function will enable it.\r
37 It will always return RETURN_SUCCESS.\r
38\r
39 @retval EFI_SUCCESS The constructor always returns RETURN_SUCCESS.\r
40\r
41**/\r
42RETURN_STATUS\r
43EFIAPI\r
44AcpiTimerLibConstructor (\r
45 VOID\r
46 )\r
47{\r
48 UINTN Bus;\r
49 UINTN Device;\r
50 UINTN Function;\r
51 UINTN EnableRegister;\r
52 UINT8 EnableMask;\r
53\r
54 //\r
5a702acd 55 // ASSERT for the invalid PCD values. They must be configured to the real value.\r
83d1ffb9
LG
56 //\r
57 ASSERT (PcdGet16 (PcdAcpiIoPciBarRegisterOffset) != 0xFFFF);\r
58 ASSERT (PcdGet16 (PcdAcpiIoPortBaseAddress) != 0xFFFF);\r
59\r
60 //\r
5a702acd 61 // If the register offset to the BAR for the ACPI I/O Port Base Address is 0x0000, then\r
83d1ffb9
LG
62 // no PCI register programming is required to enable access to the the ACPI registers\r
63 // specified by PcdAcpiIoPortBaseAddress\r
64 //\r
65 if (PcdGet16 (PcdAcpiIoPciBarRegisterOffset) == 0x0000) {\r
66 return RETURN_SUCCESS;\r
67 }\r
68\r
69 //\r
5a702acd 70 // ASSERT for the invalid PCD values. They must be configured to the real value.\r
83d1ffb9
LG
71 //\r
72 ASSERT (PcdGet8 (PcdAcpiIoPciDeviceNumber) != 0xFF);\r
73 ASSERT (PcdGet8 (PcdAcpiIoPciFunctionNumber) != 0xFF);\r
74 ASSERT (PcdGet16 (PcdAcpiIoPciEnableRegisterOffset) != 0xFFFF);\r
75\r
76 //\r
77 // Retrieve the PCD values for the PCI configuration space required to program the ACPI I/O Port Base Address\r
78 //\r
79 Bus = PcdGet8 (PcdAcpiIoPciBusNumber);\r
80 Device = PcdGet8 (PcdAcpiIoPciDeviceNumber);\r
81 Function = PcdGet8 (PcdAcpiIoPciFunctionNumber);\r
82 EnableRegister = PcdGet16 (PcdAcpiIoPciEnableRegisterOffset);\r
83 EnableMask = PcdGet8 (PcdAcpiIoBarEnableMask);\r
84\r
85 //\r
86 // If ACPI I/O space is not enabled yet, program ACPI I/O base address and enable it.\r
87 //\r
dde4aedc 88 if ((PciRead8 (PCI_LIB_ADDRESS (Bus, Device, Function, EnableRegister)) & EnableMask) != EnableMask) {\r
83d1ffb9
LG
89 PciWrite16 (\r
90 PCI_LIB_ADDRESS (Bus, Device, Function, PcdGet16 (PcdAcpiIoPciBarRegisterOffset)),\r
91 PcdGet16 (PcdAcpiIoPortBaseAddress)\r
92 );\r
93 PciOr8 (\r
94 PCI_LIB_ADDRESS (Bus, Device, Function, EnableRegister),\r
95 EnableMask\r
96 );\r
97 }\r
5a702acd 98\r
83d1ffb9
LG
99 return RETURN_SUCCESS;\r
100}\r
101\r
102/**\r
103 Internal function to retrieve the ACPI I/O Port Base Address.\r
104\r
105 Internal function to retrieve the ACPI I/O Port Base Address.\r
106\r
107 @return The 16-bit ACPI I/O Port Base Address.\r
108\r
109**/\r
110UINT16\r
111InternalAcpiGetAcpiTimerIoPort (\r
112 VOID\r
113 )\r
114{\r
115 UINT16 Port;\r
5a702acd 116\r
9ff926d6 117 Port = PcdGet16 (PcdAcpiIoPortBaseAddress);\r
5a702acd 118\r
83d1ffb9 119 //\r
5a702acd
LG
120 // If the register offset to the BAR for the ACPI I/O Port Base Address is not 0x0000, then\r
121 // read the PCI register for the ACPI BAR value in case the BAR has been programmed to a\r
83d1ffb9
LG
122 // value other than PcdAcpiIoPortBaseAddress\r
123 //\r
124 if (PcdGet16 (PcdAcpiIoPciBarRegisterOffset) != 0x0000) {\r
125 Port = PciRead16 (PCI_LIB_ADDRESS (\r
5a702acd
LG
126 PcdGet8 (PcdAcpiIoPciBusNumber),\r
127 PcdGet8 (PcdAcpiIoPciDeviceNumber),\r
128 PcdGet8 (PcdAcpiIoPciFunctionNumber),\r
83d1ffb9
LG
129 PcdGet16 (PcdAcpiIoPciBarRegisterOffset)\r
130 ));\r
131 }\r
5a702acd 132\r
9ff926d6 133 return (Port & PcdGet16 (PcdAcpiIoPortBaseAddressMask)) + PcdGet16 (PcdAcpiPm1TmrOffset);\r
83d1ffb9
LG
134}\r
135\r
136/**\r
137 Stalls the CPU for at least the given number of ticks.\r
138\r
139 Stalls the CPU for at least the given number of ticks. It's invoked by\r
140 MicroSecondDelay() and NanoSecondDelay().\r
141\r
142 @param Delay A period of time to delay in ticks.\r
143\r
144**/\r
145VOID\r
146InternalAcpiDelay (\r
147 IN UINT32 Delay\r
148 )\r
149{\r
150 UINT16 Port;\r
151 UINT32 Ticks;\r
152 UINT32 Times;\r
153\r
154 Port = InternalAcpiGetAcpiTimerIoPort ();\r
155 Times = Delay >> 22;\r
156 Delay &= BIT22 - 1;\r
157 do {\r
158 //\r
159 // The target timer count is calculated here\r
160 //\r
b3b58d4d 161 Ticks = IoBitFieldRead32 (Port, 0, 23) + Delay;\r
83d1ffb9
LG
162 Delay = BIT22;\r
163 //\r
164 // Wait until time out\r
165 // Delay >= 2^23 could not be handled by this function\r
166 // Timer wrap-arounds are handled correctly by this function\r
167 //\r
b3b58d4d 168 while (((Ticks - IoBitFieldRead32 (Port, 0, 23)) & BIT23) == 0) {\r
83d1ffb9
LG
169 CpuPause ();\r
170 }\r
171 } while (Times-- > 0);\r
172}\r
173\r
174/**\r
175 Stalls the CPU for at least the given number of microseconds.\r
176\r
177 Stalls the CPU for the number of microseconds specified by MicroSeconds.\r
178\r
179 @param MicroSeconds The minimum number of microseconds to delay.\r
180\r
181 @return MicroSeconds\r
182\r
183**/\r
184UINTN\r
185EFIAPI\r
186MicroSecondDelay (\r
187 IN UINTN MicroSeconds\r
188 )\r
189{\r
190 InternalAcpiDelay (\r
191 (UINT32)DivU64x32 (\r
192 MultU64x32 (\r
193 MicroSeconds,\r
194 ACPI_TIMER_FREQUENCY\r
195 ),\r
196 1000000u\r
197 )\r
198 );\r
199 return MicroSeconds;\r
200}\r
201\r
202/**\r
203 Stalls the CPU for at least the given number of nanoseconds.\r
204\r
205 Stalls the CPU for the number of nanoseconds specified by NanoSeconds.\r
206\r
207 @param NanoSeconds The minimum number of nanoseconds to delay.\r
208\r
209 @return NanoSeconds\r
210\r
211**/\r
212UINTN\r
213EFIAPI\r
214NanoSecondDelay (\r
215 IN UINTN NanoSeconds\r
216 )\r
217{\r
218 InternalAcpiDelay (\r
219 (UINT32)DivU64x32 (\r
220 MultU64x32 (\r
221 NanoSeconds,\r
222 ACPI_TIMER_FREQUENCY\r
223 ),\r
224 1000000000u\r
225 )\r
226 );\r
227 return NanoSeconds;\r
228}\r
229\r
230/**\r
231 Retrieves the current value of a 64-bit free running performance counter.\r
232\r
233 Retrieves the current value of a 64-bit free running performance counter. The\r
234 counter can either count up by 1 or count down by 1. If the physical\r
235 performance counter counts by a larger increment, then the counter values\r
236 must be translated. The properties of the counter can be retrieved from\r
237 GetPerformanceCounterProperties().\r
238\r
239 @return The current value of the free running performance counter.\r
240\r
241**/\r
242UINT64\r
243EFIAPI\r
244GetPerformanceCounter (\r
245 VOID\r
246 )\r
247{\r
248 return AsmReadTsc ();\r
249}\r
250\r
251/**\r
252 Retrieves the 64-bit frequency in Hz and the range of performance counter\r
253 values.\r
254\r
255 If StartValue is not NULL, then the value that the performance counter starts\r
256 with immediately after is it rolls over is returned in StartValue. If\r
257 EndValue is not NULL, then the value that the performance counter end with\r
258 immediately before it rolls over is returned in EndValue. The 64-bit\r
259 frequency of the performance counter in Hz is always returned. If StartValue\r
260 is less than EndValue, then the performance counter counts up. If StartValue\r
261 is greater than EndValue, then the performance counter counts down. For\r
262 example, a 64-bit free running counter that counts up would have a StartValue\r
263 of 0 and an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit free running counter\r
264 that counts down would have a StartValue of 0xFFFFFF and an EndValue of 0.\r
265\r
266 @param StartValue The value the performance counter starts with when it\r
267 rolls over.\r
268 @param EndValue The value that the performance counter ends with before\r
269 it rolls over.\r
270\r
271 @return The frequency in Hz.\r
272\r
273**/\r
274UINT64\r
275EFIAPI\r
276GetPerformanceCounterProperties (\r
277 OUT UINT64 *StartValue, OPTIONAL\r
278 OUT UINT64 *EndValue OPTIONAL\r
279 )\r
280{\r
281 if (StartValue != NULL) {\r
282 *StartValue = 0;\r
283 }\r
284\r
285 if (EndValue != NULL) {\r
286 *EndValue = 0xffffffffffffffffULL;\r
287 }\r
288 return InternalGetPerformanceCounterFrequency ();\r
289}\r
290\r
291/**\r
292 Converts elapsed ticks of performance counter to time in nanoseconds.\r
293\r
294 This function converts the elapsed ticks of running performance counter to\r
295 time value in unit of nanoseconds.\r
296\r
297 @param Ticks The number of elapsed ticks of running performance counter.\r
298\r
299 @return The elapsed time in nanoseconds.\r
300\r
301**/\r
302UINT64\r
303EFIAPI\r
304GetTimeInNanoSecond (\r
305 IN UINT64 Ticks\r
306 )\r
307{\r
308 UINT64 Frequency;\r
309 UINT64 NanoSeconds;\r
310 UINT64 Remainder;\r
311 INTN Shift;\r
312\r
313 Frequency = GetPerformanceCounterProperties (NULL, NULL);\r
314\r
315 //\r
316 // Ticks\r
317 // Time = --------- x 1,000,000,000\r
318 // Frequency\r
319 //\r
320 NanoSeconds = MultU64x32 (DivU64x64Remainder (Ticks, Frequency, &Remainder), 1000000000u);\r
321\r
322 //\r
323 // Ensure (Remainder * 1,000,000,000) will not overflow 64-bit.\r
324 // Since 2^29 < 1,000,000,000 = 0x3B9ACA00 < 2^30, Remainder should < 2^(64-30) = 2^34,\r
325 // i.e. highest bit set in Remainder should <= 33.\r
326 //\r
327 Shift = MAX (0, HighBitSet64 (Remainder) - 33);\r
328 Remainder = RShiftU64 (Remainder, (UINTN) Shift);\r
329 Frequency = RShiftU64 (Frequency, (UINTN) Shift);\r
330 NanoSeconds += DivU64x64Remainder (MultU64x32 (Remainder, 1000000000u), Frequency, NULL);\r
331\r
332 return NanoSeconds;\r
333}\r
62b8b5be
SZ
334\r
335/**\r
336 Calculate TSC frequency.\r
337\r
338 The TSC counting frequency is determined by comparing how far it counts\r
a012df5e
SZ
339 during a 101.4 us period as determined by the ACPI timer.\r
340 The ACPI timer is used because it counts at a known frequency.\r
341 The TSC is sampled, followed by waiting 363 counts of the ACPI timer,\r
342 or 101.4 us. The TSC is then sampled again. The difference multiplied by\r
343 9861 is the TSC frequency. There will be a small error because of the\r
344 overhead of reading the ACPI timer. An attempt is made to determine and\r
345 compensate for this error.\r
62b8b5be
SZ
346\r
347 @return The number of TSC counts per second.\r
348\r
349**/\r
350UINT64\r
351InternalCalculateTscFrequency (\r
352 VOID\r
353 )\r
354{\r
355 UINT64 StartTSC;\r
356 UINT64 EndTSC;\r
357 UINT16 TimerAddr;\r
358 UINT32 Ticks;\r
359 UINT64 TscFrequency;\r
360 BOOLEAN InterruptState;\r
361\r
362 InterruptState = SaveAndDisableInterrupts ();\r
363\r
364 TimerAddr = InternalAcpiGetAcpiTimerIoPort ();\r
a012df5e
SZ
365 //\r
366 // Compute the number of ticks to wait to measure TSC frequency.\r
367 // Use 363 * 9861 = 3579543 Hz which is within 2 Hz of ACPI_TIMER_FREQUENCY.\r
368 // 363 counts is a calibration time of 101.4 uS.\r
369 //\r
b3b58d4d 370 Ticks = IoBitFieldRead32 (TimerAddr, 0, 23) + 363;\r
62b8b5be
SZ
371\r
372 StartTSC = AsmReadTsc (); // Get base value for the TSC\r
373 //\r
a012df5e 374 // Wait until the ACPI timer has counted 101.4 us.\r
62b8b5be 375 // Timer wrap-arounds are handled correctly by this function.\r
a012df5e
SZ
376 // When the current ACPI timer value is greater than 'Ticks',\r
377 // the while loop will exit.\r
62b8b5be 378 //\r
b3b58d4d 379 while (((Ticks - IoBitFieldRead32 (TimerAddr, 0, 23)) & BIT23) == 0) {\r
62b8b5be
SZ
380 CpuPause();\r
381 }\r
a012df5e 382 EndTSC = AsmReadTsc (); // TSC value 101.4 us later\r
62b8b5be
SZ
383\r
384 TscFrequency = MultU64x32 (\r
a012df5e
SZ
385 (EndTSC - StartTSC), // Number of TSC counts in 101.4 us\r
386 9861 // Number of 101.4 us in a second\r
62b8b5be
SZ
387 );\r
388\r
389 SetInterruptState (InterruptState);\r
390\r
391 return TscFrequency;\r
392}\r
393\r