]> git.proxmox.com Git - mirror_edk2.git/blame - UefiCpuPkg/CpuMpPei/CpuPaging.c
UefiCpuPkg: Correct some typos.
[mirror_edk2.git] / UefiCpuPkg / CpuMpPei / CpuPaging.c
CommitLineData
0a0d5296
JW
1/** @file\r
2 Basic paging support for the CPU to enable Stack Guard.\r
3\r
01acb06c 4Copyright (c) 2018 - 2019, Intel Corporation. All rights reserved.<BR>\r
0a0d5296 5\r
0acd8697 6SPDX-License-Identifier: BSD-2-Clause-Patent\r
0a0d5296
JW
7\r
8**/\r
9\r
01acb06c
RN
10#include <Register/Intel/Cpuid.h>\r
11#include <Register/Intel/Msr.h>\r
0a0d5296
JW
12#include <Library/MemoryAllocationLib.h>\r
13#include <Library/CpuLib.h>\r
14#include <Library/BaseLib.h>\r
d7c9de51 15#include <Guid/MigratedFvInfo.h>\r
0a0d5296
JW
16\r
17#include "CpuMpPei.h"\r
18\r
19#define IA32_PG_P BIT0\r
20#define IA32_PG_RW BIT1\r
21#define IA32_PG_U BIT2\r
22#define IA32_PG_A BIT5\r
23#define IA32_PG_D BIT6\r
24#define IA32_PG_PS BIT7\r
25#define IA32_PG_NX BIT63\r
26\r
27#define PAGE_ATTRIBUTE_BITS (IA32_PG_RW | IA32_PG_P)\r
28#define PAGE_PROGATE_BITS (IA32_PG_D | IA32_PG_A | IA32_PG_NX | IA32_PG_U |\\r
29 PAGE_ATTRIBUTE_BITS)\r
30\r
31#define PAGING_PAE_INDEX_MASK 0x1FF\r
32#define PAGING_4K_ADDRESS_MASK_64 0x000FFFFFFFFFF000ull\r
33#define PAGING_2M_ADDRESS_MASK_64 0x000FFFFFFFE00000ull\r
34#define PAGING_1G_ADDRESS_MASK_64 0x000FFFFFC0000000ull\r
35#define PAGING_512G_ADDRESS_MASK_64 0x000FFF8000000000ull\r
36\r
37typedef enum {\r
38 PageNone = 0,\r
39 PageMin = 1,\r
40 Page4K = PageMin,\r
41 Page2M = 2,\r
42 Page1G = 3,\r
43 Page512G = 4,\r
44 PageMax = Page512G\r
45} PAGE_ATTRIBUTE;\r
46\r
47typedef struct {\r
48 PAGE_ATTRIBUTE Attribute;\r
49 UINT64 Length;\r
50 UINT64 AddressMask;\r
51 UINTN AddressBitOffset;\r
52 UINTN AddressBitLength;\r
53} PAGE_ATTRIBUTE_TABLE;\r
54\r
55PAGE_ATTRIBUTE_TABLE mPageAttributeTable[] = {\r
56 {PageNone, 0, 0, 0, 0},\r
57 {Page4K, SIZE_4KB, PAGING_4K_ADDRESS_MASK_64, 12, 9},\r
58 {Page2M, SIZE_2MB, PAGING_2M_ADDRESS_MASK_64, 21, 9},\r
59 {Page1G, SIZE_1GB, PAGING_1G_ADDRESS_MASK_64, 30, 9},\r
60 {Page512G, SIZE_512GB, PAGING_512G_ADDRESS_MASK_64, 39, 9},\r
61};\r
62\r
63EFI_PEI_NOTIFY_DESCRIPTOR mPostMemNotifyList[] = {\r
64 {\r
65 (EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),\r
66 &gEfiPeiMemoryDiscoveredPpiGuid,\r
67 MemoryDiscoveredPpiNotifyCallback\r
68 }\r
69};\r
70\r
71/**\r
72 The function will check if IA32 PAE is supported.\r
73\r
74 @retval TRUE IA32 PAE is supported.\r
75 @retval FALSE IA32 PAE is not supported.\r
76\r
77**/\r
78BOOLEAN\r
79IsIa32PaeSupported (\r
80 VOID\r
81 )\r
82{\r
83 UINT32 RegEax;\r
84 CPUID_VERSION_INFO_EDX RegEdx;\r
85\r
86 AsmCpuid (CPUID_SIGNATURE, &RegEax, NULL, NULL, NULL);\r
87 if (RegEax >= CPUID_VERSION_INFO) {\r
88 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &RegEdx.Uint32);\r
89 if (RegEdx.Bits.PAE != 0) {\r
90 return TRUE;\r
91 }\r
92 }\r
93\r
94 return FALSE;\r
95}\r
96\r
97/**\r
98 This API provides a way to allocate memory for page table.\r
99\r
100 @param Pages The number of 4 KB pages to allocate.\r
101\r
102 @return A pointer to the allocated buffer or NULL if allocation fails.\r
103\r
104**/\r
105VOID *\r
106AllocatePageTableMemory (\r
107 IN UINTN Pages\r
108 )\r
109{\r
110 VOID *Address;\r
111\r
112 Address = AllocatePages(Pages);\r
113 if (Address != NULL) {\r
114 ZeroMem(Address, EFI_PAGES_TO_SIZE (Pages));\r
115 }\r
116\r
117 return Address;\r
118}\r
119\r
120/**\r
121 Get the address width supported by current processor.\r
122\r
123 @retval 32 If processor is in 32-bit mode.\r
124 @retval 36-48 If processor is in 64-bit mode.\r
125\r
126**/\r
127UINTN\r
128GetPhysicalAddressWidth (\r
129 VOID\r
130 )\r
131{\r
132 UINT32 RegEax;\r
133\r
134 if (sizeof(UINTN) == 4) {\r
135 return 32;\r
136 }\r
137\r
138 AsmCpuid(CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);\r
139 if (RegEax >= CPUID_VIR_PHY_ADDRESS_SIZE) {\r
140 AsmCpuid (CPUID_VIR_PHY_ADDRESS_SIZE, &RegEax, NULL, NULL, NULL);\r
141 RegEax &= 0xFF;\r
142 if (RegEax > 48) {\r
143 return 48;\r
144 }\r
145\r
146 return (UINTN)RegEax;\r
147 }\r
148\r
149 return 36;\r
150}\r
151\r
152/**\r
153 Get the type of top level page table.\r
154\r
155 @retval Page512G PML4 paging.\r
92c19c68 156 @retval Page1G PAE paging.\r
0a0d5296
JW
157\r
158**/\r
159PAGE_ATTRIBUTE\r
160GetPageTableTopLevelType (\r
161 VOID\r
162 )\r
163{\r
164 MSR_IA32_EFER_REGISTER MsrEfer;\r
165\r
166 MsrEfer.Uint64 = AsmReadMsr64 (MSR_CORE_IA32_EFER);\r
167\r
168 return (MsrEfer.Bits.LMA == 1) ? Page512G : Page1G;\r
169}\r
170\r
171/**\r
172 Return page table entry matching the address.\r
173\r
174 @param[in] Address The address to be checked.\r
175 @param[out] PageAttributes The page attribute of the page entry.\r
176\r
177 @return The page entry.\r
178**/\r
179VOID *\r
180GetPageTableEntry (\r
181 IN PHYSICAL_ADDRESS Address,\r
182 OUT PAGE_ATTRIBUTE *PageAttribute\r
183 )\r
184{\r
185 INTN Level;\r
186 UINTN Index;\r
187 UINT64 *PageTable;\r
188 UINT64 AddressEncMask;\r
189\r
190 AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask);\r
191 PageTable = (UINT64 *)(UINTN)(AsmReadCr3 () & PAGING_4K_ADDRESS_MASK_64);\r
192 for (Level = (INTN)GetPageTableTopLevelType (); Level > 0; --Level) {\r
193 Index = (UINTN)RShiftU64 (Address, mPageAttributeTable[Level].AddressBitOffset);\r
194 Index &= PAGING_PAE_INDEX_MASK;\r
195\r
196 //\r
197 // No mapping?\r
198 //\r
199 if (PageTable[Index] == 0) {\r
200 *PageAttribute = PageNone;\r
201 return NULL;\r
202 }\r
203\r
204 //\r
205 // Page memory?\r
206 //\r
207 if ((PageTable[Index] & IA32_PG_PS) != 0 || Level == PageMin) {\r
208 *PageAttribute = (PAGE_ATTRIBUTE)Level;\r
209 return &PageTable[Index];\r
210 }\r
211\r
212 //\r
213 // Page directory or table\r
214 //\r
215 PageTable = (UINT64 *)(UINTN)(PageTable[Index] &\r
216 ~AddressEncMask &\r
217 PAGING_4K_ADDRESS_MASK_64);\r
218 }\r
219\r
220 *PageAttribute = PageNone;\r
221 return NULL;\r
222}\r
223\r
224/**\r
225 This function splits one page entry to smaller page entries.\r
226\r
227 @param[in] PageEntry The page entry to be splitted.\r
228 @param[in] PageAttribute The page attribute of the page entry.\r
229 @param[in] SplitAttribute How to split the page entry.\r
230 @param[in] Recursively Do the split recursively or not.\r
231\r
232 @retval RETURN_SUCCESS The page entry is splitted.\r
233 @retval RETURN_INVALID_PARAMETER If target page attribute is invalid\r
234 @retval RETURN_OUT_OF_RESOURCES No resource to split page entry.\r
235**/\r
236RETURN_STATUS\r
237SplitPage (\r
238 IN UINT64 *PageEntry,\r
239 IN PAGE_ATTRIBUTE PageAttribute,\r
240 IN PAGE_ATTRIBUTE SplitAttribute,\r
241 IN BOOLEAN Recursively\r
242 )\r
243{\r
244 UINT64 BaseAddress;\r
245 UINT64 *NewPageEntry;\r
246 UINTN Index;\r
247 UINT64 AddressEncMask;\r
248 PAGE_ATTRIBUTE SplitTo;\r
249\r
250 if (SplitAttribute == PageNone || SplitAttribute >= PageAttribute) {\r
251 ASSERT (SplitAttribute != PageNone);\r
252 ASSERT (SplitAttribute < PageAttribute);\r
253 return RETURN_INVALID_PARAMETER;\r
254 }\r
255\r
256 NewPageEntry = AllocatePageTableMemory (1);\r
257 if (NewPageEntry == NULL) {\r
258 ASSERT (NewPageEntry != NULL);\r
259 return RETURN_OUT_OF_RESOURCES;\r
260 }\r
261\r
262 //\r
263 // One level down each step to achieve more compact page table.\r
264 //\r
265 SplitTo = PageAttribute - 1;\r
266 AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) &\r
267 mPageAttributeTable[SplitTo].AddressMask;\r
268 BaseAddress = *PageEntry &\r
269 ~PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) &\r
270 mPageAttributeTable[PageAttribute].AddressMask;\r
271 for (Index = 0; Index < SIZE_4KB / sizeof(UINT64); Index++) {\r
272 NewPageEntry[Index] = BaseAddress | AddressEncMask |\r
273 ((*PageEntry) & PAGE_PROGATE_BITS);\r
274\r
275 if (SplitTo != PageMin) {\r
276 NewPageEntry[Index] |= IA32_PG_PS;\r
277 }\r
278\r
279 if (Recursively && SplitTo > SplitAttribute) {\r
280 SplitPage (&NewPageEntry[Index], SplitTo, SplitAttribute, Recursively);\r
281 }\r
282\r
283 BaseAddress += mPageAttributeTable[SplitTo].Length;\r
284 }\r
285\r
286 (*PageEntry) = (UINT64)(UINTN)NewPageEntry | AddressEncMask | PAGE_ATTRIBUTE_BITS;\r
287\r
288 return RETURN_SUCCESS;\r
289}\r
290\r
291/**\r
292 This function modifies the page attributes for the memory region specified\r
293 by BaseAddress and Length from their current attributes to the attributes\r
294 specified by Attributes.\r
295\r
296 Caller should make sure BaseAddress and Length is at page boundary.\r
297\r
298 @param[in] BaseAddress Start address of a memory region.\r
299 @param[in] Length Size in bytes of the memory region.\r
300 @param[in] Attributes Bit mask of attributes to modify.\r
301\r
302 @retval RETURN_SUCCESS The attributes were modified for the memory\r
303 region.\r
304 @retval RETURN_INVALID_PARAMETER Length is zero; or,\r
305 Attributes specified an illegal combination\r
306 of attributes that cannot be set together; or\r
307 Addressis not 4KB aligned.\r
308 @retval RETURN_OUT_OF_RESOURCES There are not enough system resources to modify\r
309 the attributes.\r
310 @retval RETURN_UNSUPPORTED Cannot modify the attributes of given memory.\r
311\r
312**/\r
313RETURN_STATUS\r
314EFIAPI\r
315ConvertMemoryPageAttributes (\r
316 IN PHYSICAL_ADDRESS BaseAddress,\r
317 IN UINT64 Length,\r
318 IN UINT64 Attributes\r
319 )\r
320{\r
321 UINT64 *PageEntry;\r
322 PAGE_ATTRIBUTE PageAttribute;\r
323 RETURN_STATUS Status;\r
324 EFI_PHYSICAL_ADDRESS MaximumAddress;\r
325\r
326 if (Length == 0 ||\r
327 (BaseAddress & (SIZE_4KB - 1)) != 0 ||\r
328 (Length & (SIZE_4KB - 1)) != 0) {\r
329\r
330 ASSERT (Length > 0);\r
331 ASSERT ((BaseAddress & (SIZE_4KB - 1)) == 0);\r
332 ASSERT ((Length & (SIZE_4KB - 1)) == 0);\r
333\r
334 return RETURN_INVALID_PARAMETER;\r
335 }\r
336\r
337 MaximumAddress = (EFI_PHYSICAL_ADDRESS)MAX_UINT32;\r
338 if (BaseAddress > MaximumAddress ||\r
339 Length > MaximumAddress ||\r
340 (BaseAddress > MaximumAddress - (Length - 1))) {\r
341 return RETURN_UNSUPPORTED;\r
342 }\r
343\r
344 //\r
345 // Below logic is to check 2M/4K page to make sure we do not waste memory.\r
346 //\r
347 while (Length != 0) {\r
348 PageEntry = GetPageTableEntry (BaseAddress, &PageAttribute);\r
349 if (PageEntry == NULL) {\r
350 return RETURN_UNSUPPORTED;\r
351 }\r
352\r
353 if (PageAttribute != Page4K) {\r
354 Status = SplitPage (PageEntry, PageAttribute, Page4K, FALSE);\r
355 if (RETURN_ERROR (Status)) {\r
356 return Status;\r
357 }\r
358 //\r
359 // Do it again until the page is 4K.\r
360 //\r
361 continue;\r
362 }\r
363\r
364 //\r
365 // Just take care of 'present' bit for Stack Guard.\r
366 //\r
367 if ((Attributes & IA32_PG_P) != 0) {\r
368 *PageEntry |= (UINT64)IA32_PG_P;\r
369 } else {\r
370 *PageEntry &= ~((UINT64)IA32_PG_P);\r
371 }\r
372\r
373 //\r
374 // Convert success, move to next\r
375 //\r
376 BaseAddress += SIZE_4KB;\r
377 Length -= SIZE_4KB;\r
378 }\r
379\r
380 return RETURN_SUCCESS;\r
381}\r
382\r
383/**\r
384 Get maximum size of page memory supported by current processor.\r
385\r
386 @param[in] TopLevelType The type of top level page entry.\r
387\r
388 @retval Page1G If processor supports 1G page and PML4.\r
389 @retval Page2M For all other situations.\r
390\r
391**/\r
392PAGE_ATTRIBUTE\r
393GetMaxMemoryPage (\r
394 IN PAGE_ATTRIBUTE TopLevelType\r
395 )\r
396{\r
397 UINT32 RegEax;\r
398 UINT32 RegEdx;\r
399\r
400 if (TopLevelType == Page512G) {\r
401 AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);\r
402 if (RegEax >= CPUID_EXTENDED_CPU_SIG) {\r
403 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &RegEdx);\r
404 if ((RegEdx & BIT26) != 0) {\r
405 return Page1G;\r
406 }\r
407 }\r
408 }\r
409\r
410 return Page2M;\r
411}\r
412\r
413/**\r
414 Create PML4 or PAE page table.\r
415\r
416 @return The address of page table.\r
417\r
418**/\r
419UINTN\r
420CreatePageTable (\r
421 VOID\r
422 )\r
423{\r
424 RETURN_STATUS Status;\r
425 UINTN PhysicalAddressBits;\r
426 UINTN NumberOfEntries;\r
427 PAGE_ATTRIBUTE TopLevelPageAttr;\r
428 UINTN PageTable;\r
429 PAGE_ATTRIBUTE MaxMemoryPage;\r
430 UINTN Index;\r
431 UINT64 AddressEncMask;\r
432 UINT64 *PageEntry;\r
433 EFI_PHYSICAL_ADDRESS PhysicalAddress;\r
434\r
435 TopLevelPageAttr = (PAGE_ATTRIBUTE)GetPageTableTopLevelType ();\r
436 PhysicalAddressBits = GetPhysicalAddressWidth ();\r
437 NumberOfEntries = (UINTN)1 << (PhysicalAddressBits -\r
438 mPageAttributeTable[TopLevelPageAttr].AddressBitOffset);\r
439\r
440 PageTable = (UINTN) AllocatePageTableMemory (1);\r
441 if (PageTable == 0) {\r
442 return 0;\r
443 }\r
444\r
445 AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask);\r
446 AddressEncMask &= mPageAttributeTable[TopLevelPageAttr].AddressMask;\r
447 MaxMemoryPage = GetMaxMemoryPage (TopLevelPageAttr);\r
448 PageEntry = (UINT64 *)PageTable;\r
449\r
450 PhysicalAddress = 0;\r
451 for (Index = 0; Index < NumberOfEntries; ++Index) {\r
452 *PageEntry = PhysicalAddress | AddressEncMask | PAGE_ATTRIBUTE_BITS;\r
453\r
454 //\r
455 // Split the top page table down to the maximum page size supported\r
456 //\r
457 if (MaxMemoryPage < TopLevelPageAttr) {\r
458 Status = SplitPage(PageEntry, TopLevelPageAttr, MaxMemoryPage, TRUE);\r
459 ASSERT_EFI_ERROR (Status);\r
460 }\r
461\r
462 if (TopLevelPageAttr == Page1G) {\r
463 //\r
464 // PDPTE[2:1] (PAE Paging) must be 0. SplitPage() might change them to 1.\r
465 //\r
466 *PageEntry &= ~(UINT64)(IA32_PG_RW | IA32_PG_U);\r
467 }\r
468\r
469 PageEntry += 1;\r
470 PhysicalAddress += mPageAttributeTable[TopLevelPageAttr].Length;\r
471 }\r
472\r
473\r
474 return PageTable;\r
475}\r
476\r
477/**\r
478 Setup page tables and make them work.\r
479\r
480**/\r
481VOID\r
482EnablePaging (\r
483 VOID\r
484 )\r
485{\r
486 UINTN PageTable;\r
487\r
488 PageTable = CreatePageTable ();\r
489 ASSERT (PageTable != 0);\r
490 if (PageTable != 0) {\r
491 AsmWriteCr3(PageTable);\r
492 AsmWriteCr4 (AsmReadCr4 () | BIT5); // CR4.PAE\r
493 AsmWriteCr0 (AsmReadCr0 () | BIT31); // CR0.PG\r
494 }\r
495}\r
496\r
497/**\r
498 Get the base address of current AP's stack.\r
499\r
500 This function is called in AP's context and assumes that whole calling stacks\r
501 (till this function) consumed by AP's wakeup procedure will not exceed 4KB.\r
502\r
503 PcdCpuApStackSize must be configured with value taking the Guard page into\r
504 account.\r
505\r
506 @param[in,out] Buffer The pointer to private data buffer.\r
507\r
508**/\r
509VOID\r
510EFIAPI\r
511GetStackBase (\r
512 IN OUT VOID *Buffer\r
513 )\r
514{\r
515 EFI_PHYSICAL_ADDRESS StackBase;\r
516\r
517 StackBase = (EFI_PHYSICAL_ADDRESS)(UINTN)&StackBase;\r
518 StackBase += BASE_4KB;\r
519 StackBase &= ~((EFI_PHYSICAL_ADDRESS)BASE_4KB - 1);\r
520 StackBase -= PcdGet32(PcdCpuApStackSize);\r
521\r
522 *(EFI_PHYSICAL_ADDRESS *)Buffer = StackBase;\r
523}\r
524\r
525/**\r
526 Setup stack Guard page at the stack base of each processor. BSP and APs have\r
527 different way to get stack base address.\r
528\r
529**/\r
530VOID\r
531SetupStackGuardPage (\r
532 VOID\r
533 )\r
534{\r
535 EFI_PEI_HOB_POINTERS Hob;\r
536 EFI_PHYSICAL_ADDRESS StackBase;\r
537 UINTN NumberOfProcessors;\r
538 UINTN Bsp;\r
539 UINTN Index;\r
540\r
541 //\r
542 // One extra page at the bottom of the stack is needed for Guard page.\r
543 //\r
544 if (PcdGet32(PcdCpuApStackSize) <= EFI_PAGE_SIZE) {\r
545 DEBUG ((DEBUG_ERROR, "PcdCpuApStackSize is not big enough for Stack Guard!\n"));\r
546 ASSERT (FALSE);\r
547 }\r
548\r
549 MpInitLibGetNumberOfProcessors(&NumberOfProcessors, NULL);\r
550 MpInitLibWhoAmI (&Bsp);\r
551 for (Index = 0; Index < NumberOfProcessors; ++Index) {\r
2939283f
JW
552 StackBase = 0;\r
553\r
0a0d5296
JW
554 if (Index == Bsp) {\r
555 Hob.Raw = GetHobList ();\r
556 while ((Hob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, Hob.Raw)) != NULL) {\r
557 if (CompareGuid (&gEfiHobMemoryAllocStackGuid,\r
558 &(Hob.MemoryAllocationStack->AllocDescriptor.Name))) {\r
559 StackBase = Hob.MemoryAllocationStack->AllocDescriptor.MemoryBaseAddress;\r
560 break;\r
561 }\r
562 Hob.Raw = GET_NEXT_HOB (Hob);\r
563 }\r
564 } else {\r
565 //\r
566 // Ask AP to return is stack base address.\r
567 //\r
568 MpInitLibStartupThisAP(GetStackBase, Index, NULL, 0, (VOID *)&StackBase, NULL);\r
569 }\r
2939283f 570 ASSERT (StackBase != 0);\r
0a0d5296
JW
571 //\r
572 // Set Guard page at stack base address.\r
573 //\r
574 ConvertMemoryPageAttributes(StackBase, EFI_PAGE_SIZE, 0);\r
575 DEBUG ((DEBUG_INFO, "Stack Guard set at %lx [cpu%lu]!\n",\r
576 (UINT64)StackBase, (UINT64)Index));\r
577 }\r
578\r
579 //\r
580 // Publish the changes of page table.\r
581 //\r
582 CpuFlushTlb ();\r
583}\r
584\r
585/**\r
92c19c68 586 Enable/setup stack guard for each processor if PcdCpuStackGuard is set to TRUE.\r
0a0d5296
JW
587\r
588 Doing this in the memory-discovered callback is to make sure the Stack Guard\r
589 feature to cover as most PEI code as possible.\r
590\r
591 @param[in] PeiServices General purpose services available to every PEIM.\r
592 @param[in] NotifyDescriptor The notification structure this PEIM registered on install.\r
593 @param[in] Ppi The memory discovered PPI. Not used.\r
594\r
595 @retval EFI_SUCCESS The function completed successfully.\r
596 @retval others There's error in MP initialization.\r
597**/\r
598EFI_STATUS\r
599EFIAPI\r
600MemoryDiscoveredPpiNotifyCallback (\r
601 IN EFI_PEI_SERVICES **PeiServices,\r
602 IN EFI_PEI_NOTIFY_DESCRIPTOR *NotifyDescriptor,\r
603 IN VOID *Ppi\r
604 )\r
605{\r
d7c9de51
GJ
606 EFI_STATUS Status;\r
607 BOOLEAN InitStackGuard;\r
608 BOOLEAN InterruptState;\r
609 EDKII_MIGRATED_FV_INFO *MigratedFvInfo;\r
610 EFI_PEI_HOB_POINTERS Hob;\r
60b12e69
MK
611\r
612 if (PcdGetBool (PcdMigrateTemporaryRamFirmwareVolumes)) {\r
613 InterruptState = SaveAndDisableInterrupts ();\r
614 Status = MigrateGdt ();\r
615 ASSERT_EFI_ERROR (Status);\r
616 SetInterruptState (InterruptState);\r
617 }\r
0a0d5296
JW
618\r
619 //\r
620 // Paging must be setup first. Otherwise the exception TSS setup during MP\r
621 // initialization later will not contain paging information and then fail\r
622 // the task switch (for the sake of stack switch).\r
623 //\r
624 InitStackGuard = FALSE;\r
d7c9de51
GJ
625 Hob.Raw = NULL;\r
626 if (IsIa32PaeSupported ()) {\r
627 Hob.Raw = GetFirstGuidHob (&gEdkiiMigratedFvInfoGuid);\r
628 InitStackGuard = PcdGetBool (PcdCpuStackGuard);\r
629 }\r
630\r
631 if (InitStackGuard || Hob.Raw != NULL) {\r
0a0d5296 632 EnablePaging ();\r
0a0d5296
JW
633 }\r
634\r
635 Status = InitializeCpuMpWorker ((CONST EFI_PEI_SERVICES **)PeiServices);\r
636 ASSERT_EFI_ERROR (Status);\r
637\r
638 if (InitStackGuard) {\r
639 SetupStackGuardPage ();\r
640 }\r
641\r
d7c9de51
GJ
642 while (Hob.Raw != NULL) {\r
643 MigratedFvInfo = GET_GUID_HOB_DATA (Hob);\r
644\r
645 //\r
646 // Enable #PF exception, so if the code access SPI after disable NEM, it will generate\r
647 // the exception to avoid potential vulnerability.\r
648 //\r
649 ConvertMemoryPageAttributes (MigratedFvInfo->FvOrgBase, MigratedFvInfo->FvLength, 0);\r
650\r
651 Hob.Raw = GET_NEXT_HOB (Hob);\r
652 Hob.Raw = GetNextGuidHob (&gEdkiiMigratedFvInfoGuid, Hob.Raw);\r
653 }\r
654 CpuFlushTlb ();\r
655\r
0a0d5296
JW
656 return Status;\r
657}\r
658\r