]> git.proxmox.com Git - mirror_edk2.git/blame - UefiCpuPkg/Library/MpInitLib/MpLib.c
UefiCpuPkg/MpInitLib: Remove redundant CpuStateFinished State.
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
CommitLineData
3e8ad6bd
JF
1/** @file\r
2 CPU MP Initialize Library common functions.\r
3\r
a2ea6894 4 Copyright (c) 2016 - 2018, Intel Corporation. All rights reserved.<BR>\r
3e8ad6bd
JF
5 This program and the accompanying materials\r
6 are licensed and made available under the terms and conditions of the BSD License\r
7 which accompanies this distribution. The full text of the license may be found at\r
8 http://opensource.org/licenses/bsd-license.php\r
9\r
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "MpLib.h"\r
16\r
93ca4c0f
JF
17EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;\r
18\r
7c3f2a12
JF
19/**\r
20 The function will check if BSP Execute Disable is enabled.\r
844b2d07
JF
21\r
22 DxeIpl may have enabled Execute Disable for BSP, APs need to\r
23 get the status and sync up the settings.\r
24 If BSP's CR0.Paging is not set, BSP execute Disble feature is\r
25 not working actually.\r
7c3f2a12
JF
26\r
27 @retval TRUE BSP Execute Disable is enabled.\r
28 @retval FALSE BSP Execute Disable is not enabled.\r
29**/\r
30BOOLEAN\r
31IsBspExecuteDisableEnabled (\r
32 VOID\r
33 )\r
34{\r
35 UINT32 Eax;\r
36 CPUID_EXTENDED_CPU_SIG_EDX Edx;\r
37 MSR_IA32_EFER_REGISTER EferMsr;\r
38 BOOLEAN Enabled;\r
844b2d07 39 IA32_CR0 Cr0;\r
7c3f2a12
JF
40\r
41 Enabled = FALSE;\r
844b2d07
JF
42 Cr0.UintN = AsmReadCr0 ();\r
43 if (Cr0.Bits.PG != 0) {\r
7c3f2a12 44 //\r
844b2d07 45 // If CR0 Paging bit is set\r
7c3f2a12 46 //\r
844b2d07
JF
47 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);\r
48 if (Eax >= CPUID_EXTENDED_CPU_SIG) {\r
49 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);\r
7c3f2a12 50 //\r
844b2d07
JF
51 // CPUID 0x80000001\r
52 // Bit 20: Execute Disable Bit available.\r
7c3f2a12 53 //\r
844b2d07
JF
54 if (Edx.Bits.NX != 0) {\r
55 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);\r
56 //\r
57 // MSR 0xC0000080\r
58 // Bit 11: Execute Disable Bit enable.\r
59 //\r
60 if (EferMsr.Bits.NXE != 0) {\r
61 Enabled = TRUE;\r
62 }\r
7c3f2a12
JF
63 }\r
64 }\r
65 }\r
66\r
67 return Enabled;\r
68}\r
69\r
41be0da5
JF
70/**\r
71 Worker function for SwitchBSP().\r
72\r
73 Worker function for SwitchBSP(), assigned to the AP which is intended\r
74 to become BSP.\r
75\r
76 @param[in] Buffer Pointer to CPU MP Data\r
77**/\r
78VOID\r
79EFIAPI\r
80FutureBSPProc (\r
81 IN VOID *Buffer\r
82 )\r
83{\r
84 CPU_MP_DATA *DataInHob;\r
85\r
86 DataInHob = (CPU_MP_DATA *) Buffer;\r
87 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);\r
88}\r
89\r
03a1a925
JF
90/**\r
91 Get the Application Processors state.\r
92\r
93 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
94\r
95 @return The AP status\r
96**/\r
97CPU_STATE\r
98GetApState (\r
99 IN CPU_AP_DATA *CpuData\r
100 )\r
101{\r
102 return CpuData->State;\r
103}\r
104\r
105/**\r
106 Set the Application Processors state.\r
107\r
108 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
109 @param[in] State The AP status\r
110**/\r
111VOID\r
112SetApState (\r
113 IN CPU_AP_DATA *CpuData,\r
114 IN CPU_STATE State\r
115 )\r
116{\r
117 AcquireSpinLock (&CpuData->ApLock);\r
118 CpuData->State = State;\r
119 ReleaseSpinLock (&CpuData->ApLock);\r
120}\r
3e8ad6bd 121\r
ffab2442 122/**\r
f70174d6 123 Save BSP's local APIC timer setting.\r
ffab2442
JF
124\r
125 @param[in] CpuMpData Pointer to CPU MP Data\r
126**/\r
127VOID\r
128SaveLocalApicTimerSetting (\r
129 IN CPU_MP_DATA *CpuMpData\r
130 )\r
131{\r
132 //\r
133 // Record the current local APIC timer setting of BSP\r
134 //\r
135 GetApicTimerState (\r
136 &CpuMpData->DivideValue,\r
137 &CpuMpData->PeriodicMode,\r
138 &CpuMpData->Vector\r
139 );\r
140 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();\r
141 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();\r
142}\r
143\r
144/**\r
145 Sync local APIC timer setting from BSP to AP.\r
146\r
147 @param[in] CpuMpData Pointer to CPU MP Data\r
148**/\r
149VOID\r
150SyncLocalApicTimerSetting (\r
151 IN CPU_MP_DATA *CpuMpData\r
152 )\r
153{\r
154 //\r
155 // Sync local APIC timer setting from BSP to AP\r
156 //\r
157 InitializeApicTimer (\r
158 CpuMpData->DivideValue,\r
159 CpuMpData->CurrentTimerCount,\r
160 CpuMpData->PeriodicMode,\r
161 CpuMpData->Vector\r
162 );\r
163 //\r
164 // Disable AP's local APIC timer interrupt\r
165 //\r
166 DisableApicTimerInterrupt ();\r
167}\r
168\r
68cb9330
JF
169/**\r
170 Save the volatile registers required to be restored following INIT IPI.\r
171\r
172 @param[out] VolatileRegisters Returns buffer saved the volatile resisters\r
173**/\r
174VOID\r
175SaveVolatileRegisters (\r
176 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters\r
177 )\r
178{\r
179 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
180\r
181 VolatileRegisters->Cr0 = AsmReadCr0 ();\r
182 VolatileRegisters->Cr3 = AsmReadCr3 ();\r
183 VolatileRegisters->Cr4 = AsmReadCr4 ();\r
184\r
185 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
186 if (VersionInfoEdx.Bits.DE != 0) {\r
187 //\r
188 // If processor supports Debugging Extensions feature\r
189 // by CPUID.[EAX=01H]:EDX.BIT2\r
190 //\r
191 VolatileRegisters->Dr0 = AsmReadDr0 ();\r
192 VolatileRegisters->Dr1 = AsmReadDr1 ();\r
193 VolatileRegisters->Dr2 = AsmReadDr2 ();\r
194 VolatileRegisters->Dr3 = AsmReadDr3 ();\r
195 VolatileRegisters->Dr6 = AsmReadDr6 ();\r
196 VolatileRegisters->Dr7 = AsmReadDr7 ();\r
197 }\r
e9415e48
JW
198\r
199 AsmReadGdtr (&VolatileRegisters->Gdtr);\r
200 AsmReadIdtr (&VolatileRegisters->Idtr);\r
201 VolatileRegisters->Tr = AsmReadTr ();\r
68cb9330
JF
202}\r
203\r
204/**\r
205 Restore the volatile registers following INIT IPI.\r
206\r
207 @param[in] VolatileRegisters Pointer to volatile resisters\r
208 @param[in] IsRestoreDr TRUE: Restore DRx if supported\r
209 FALSE: Do not restore DRx\r
210**/\r
211VOID\r
212RestoreVolatileRegisters (\r
213 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,\r
214 IN BOOLEAN IsRestoreDr\r
215 )\r
216{\r
217 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
e9415e48 218 IA32_TSS_DESCRIPTOR *Tss;\r
68cb9330
JF
219\r
220 AsmWriteCr0 (VolatileRegisters->Cr0);\r
221 AsmWriteCr3 (VolatileRegisters->Cr3);\r
222 AsmWriteCr4 (VolatileRegisters->Cr4);\r
223\r
224 if (IsRestoreDr) {\r
225 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
226 if (VersionInfoEdx.Bits.DE != 0) {\r
227 //\r
228 // If processor supports Debugging Extensions feature\r
229 // by CPUID.[EAX=01H]:EDX.BIT2\r
230 //\r
231 AsmWriteDr0 (VolatileRegisters->Dr0);\r
232 AsmWriteDr1 (VolatileRegisters->Dr1);\r
233 AsmWriteDr2 (VolatileRegisters->Dr2);\r
234 AsmWriteDr3 (VolatileRegisters->Dr3);\r
235 AsmWriteDr6 (VolatileRegisters->Dr6);\r
236 AsmWriteDr7 (VolatileRegisters->Dr7);\r
237 }\r
238 }\r
e9415e48
JW
239\r
240 AsmWriteGdtr (&VolatileRegisters->Gdtr);\r
241 AsmWriteIdtr (&VolatileRegisters->Idtr);\r
242 if (VolatileRegisters->Tr != 0 &&\r
243 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {\r
244 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +\r
245 VolatileRegisters->Tr);\r
d69ba6a7 246 if (Tss->Bits.P == 1) {\r
e9415e48
JW
247 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case\r
248 AsmWriteTr (VolatileRegisters->Tr);\r
249 }\r
250 }\r
68cb9330
JF
251}\r
252\r
9ebcf0f4
JF
253/**\r
254 Detect whether Mwait-monitor feature is supported.\r
255\r
256 @retval TRUE Mwait-monitor feature is supported.\r
257 @retval FALSE Mwait-monitor feature is not supported.\r
258**/\r
259BOOLEAN\r
260IsMwaitSupport (\r
261 VOID\r
262 )\r
263{\r
264 CPUID_VERSION_INFO_ECX VersionInfoEcx;\r
265\r
266 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);\r
267 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;\r
268}\r
269\r
270/**\r
271 Get AP loop mode.\r
272\r
273 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.\r
274\r
275 @return The AP loop mode.\r
276**/\r
277UINT8\r
278GetApLoopMode (\r
279 OUT UINT32 *MonitorFilterSize\r
280 )\r
281{\r
282 UINT8 ApLoopMode;\r
283 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;\r
284\r
285 ASSERT (MonitorFilterSize != NULL);\r
286\r
287 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);\r
288 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);\r
289 if (ApLoopMode == ApInMwaitLoop) {\r
290 if (!IsMwaitSupport ()) {\r
291 //\r
292 // If processor does not support MONITOR/MWAIT feature,\r
293 // force AP in Hlt-loop mode\r
294 //\r
295 ApLoopMode = ApInHltLoop;\r
296 }\r
297 }\r
298\r
299 if (ApLoopMode != ApInMwaitLoop) {\r
300 *MonitorFilterSize = sizeof (UINT32);\r
301 } else {\r
302 //\r
303 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes\r
304 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT\r
305 //\r
306 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);\r
307 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;\r
308 }\r
309\r
310 return ApLoopMode;\r
311}\r
b8b04307 312\r
8a2d564b
JF
313/**\r
314 Sort the APIC ID of all processors.\r
315\r
316 This function sorts the APIC ID of all processors so that processor number is\r
317 assigned in the ascending order of APIC ID which eases MP debugging.\r
318\r
319 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
320**/\r
321VOID\r
322SortApicId (\r
323 IN CPU_MP_DATA *CpuMpData\r
324 )\r
325{\r
326 UINTN Index1;\r
327 UINTN Index2;\r
328 UINTN Index3;\r
329 UINT32 ApicId;\r
31a1e4da 330 CPU_INFO_IN_HOB CpuInfo;\r
8a2d564b
JF
331 UINT32 ApCount;\r
332 CPU_INFO_IN_HOB *CpuInfoInHob;\r
bafa76ef 333 volatile UINT32 *StartupApSignal;\r
8a2d564b
JF
334\r
335 ApCount = CpuMpData->CpuCount - 1;\r
31a1e4da 336 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
8a2d564b
JF
337 if (ApCount != 0) {\r
338 for (Index1 = 0; Index1 < ApCount; Index1++) {\r
339 Index3 = Index1;\r
340 //\r
341 // Sort key is the hardware default APIC ID\r
342 //\r
31a1e4da 343 ApicId = CpuInfoInHob[Index1].ApicId;\r
8a2d564b 344 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {\r
31a1e4da 345 if (ApicId > CpuInfoInHob[Index2].ApicId) {\r
8a2d564b 346 Index3 = Index2;\r
31a1e4da 347 ApicId = CpuInfoInHob[Index2].ApicId;\r
8a2d564b
JF
348 }\r
349 }\r
350 if (Index3 != Index1) {\r
31a1e4da 351 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));\r
8a2d564b 352 CopyMem (\r
31a1e4da
JF
353 &CpuInfoInHob[Index3],\r
354 &CpuInfoInHob[Index1],\r
355 sizeof (CPU_INFO_IN_HOB)\r
8a2d564b 356 );\r
31a1e4da 357 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));\r
bafa76ef
SZ
358\r
359 //\r
360 // Also exchange the StartupApSignal.\r
361 //\r
362 StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;\r
363 CpuMpData->CpuData[Index3].StartupApSignal =\r
364 CpuMpData->CpuData[Index1].StartupApSignal;\r
365 CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;\r
8a2d564b
JF
366 }\r
367 }\r
368\r
369 //\r
370 // Get the processor number for the BSP\r
371 //\r
372 ApicId = GetInitialApicId ();\r
373 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {\r
31a1e4da 374 if (CpuInfoInHob[Index1].ApicId == ApicId) {\r
8a2d564b
JF
375 CpuMpData->BspNumber = (UINT32) Index1;\r
376 break;\r
377 }\r
378 }\r
8a2d564b
JF
379 }\r
380}\r
381\r
fe627769
JF
382/**\r
383 Enable x2APIC mode on APs.\r
384\r
385 @param[in, out] Buffer Pointer to private data buffer.\r
386**/\r
387VOID\r
388EFIAPI\r
389ApFuncEnableX2Apic (\r
390 IN OUT VOID *Buffer\r
391 )\r
392{\r
393 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
394}\r
395\r
b8b04307
JF
396/**\r
397 Do sync on APs.\r
398\r
399 @param[in, out] Buffer Pointer to private data buffer.\r
400**/\r
401VOID\r
402EFIAPI\r
403ApInitializeSync (\r
404 IN OUT VOID *Buffer\r
405 )\r
406{\r
407 CPU_MP_DATA *CpuMpData;\r
408\r
409 CpuMpData = (CPU_MP_DATA *) Buffer;\r
410 //\r
b8b04307
JF
411 // Load microcode on AP\r
412 //\r
2a089134 413 MicrocodeDetect (CpuMpData, FALSE);\r
cb811673
JF
414 //\r
415 // Sync BSP's MTRR table to AP\r
416 //\r
417 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);\r
b8b04307
JF
418}\r
419\r
420/**\r
421 Find the current Processor number by APIC ID.\r
422\r
367284e7
DB
423 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
424 @param[out] ProcessorNumber Return the pocessor number found\r
b8b04307
JF
425\r
426 @retval EFI_SUCCESS ProcessorNumber is found and returned.\r
427 @retval EFI_NOT_FOUND ProcessorNumber is not found.\r
428**/\r
429EFI_STATUS\r
430GetProcessorNumber (\r
431 IN CPU_MP_DATA *CpuMpData,\r
432 OUT UINTN *ProcessorNumber\r
433 )\r
434{\r
435 UINTN TotalProcessorNumber;\r
436 UINTN Index;\r
31a1e4da 437 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e52838d3 438 UINT32 CurrentApicId;\r
31a1e4da
JF
439\r
440 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
b8b04307
JF
441\r
442 TotalProcessorNumber = CpuMpData->CpuCount;\r
e52838d3 443 CurrentApicId = GetApicId ();\r
b8b04307 444 for (Index = 0; Index < TotalProcessorNumber; Index ++) {\r
e52838d3 445 if (CpuInfoInHob[Index].ApicId == CurrentApicId) {\r
b8b04307
JF
446 *ProcessorNumber = Index;\r
447 return EFI_SUCCESS;\r
448 }\r
449 }\r
e52838d3 450\r
b8b04307
JF
451 return EFI_NOT_FOUND;\r
452}\r
453\r
03434dff
JF
454/**\r
455 This function will get CPU count in the system.\r
456\r
457 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
458\r
459 @return CPU count detected\r
460**/\r
461UINTN\r
462CollectProcessorCount (\r
463 IN CPU_MP_DATA *CpuMpData\r
464 )\r
465{\r
59a119f0
JF
466 UINTN Index;\r
467\r
03434dff
JF
468 //\r
469 // Send 1st broadcast IPI to APs to wakeup APs\r
470 //\r
471 CpuMpData->InitFlag = ApInitConfig;\r
472 CpuMpData->X2ApicEnable = FALSE;\r
473 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL);\r
03434dff
JF
474 CpuMpData->InitFlag = ApInitDone;\r
475 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r
476 //\r
477 // Wait for all APs finished the initialization\r
478 //\r
479 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
480 CpuPause ();\r
481 }\r
482\r
71d8226a
JF
483 if (CpuMpData->CpuCount > 255) {\r
484 //\r
485 // If there are more than 255 processor found, force to enable X2APIC\r
486 //\r
487 CpuMpData->X2ApicEnable = TRUE;\r
488 }\r
fe627769
JF
489 if (CpuMpData->X2ApicEnable) {\r
490 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));\r
491 //\r
492 // Wakeup all APs to enable x2APIC mode\r
493 //\r
494 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL);\r
495 //\r
496 // Wait for all known APs finished\r
497 //\r
498 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
499 CpuPause ();\r
500 }\r
501 //\r
502 // Enable x2APIC on BSP\r
503 //\r
504 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
59a119f0
JF
505 //\r
506 // Set BSP/Aps state to IDLE\r
507 //\r
508 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
509 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
510 }\r
fe627769
JF
511 }\r
512 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));\r
8a2d564b
JF
513 //\r
514 // Sort BSP/Aps by CPU APIC ID in ascending order\r
515 //\r
516 SortApicId (CpuMpData);\r
517\r
03434dff
JF
518 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));\r
519\r
520 return CpuMpData->CpuCount;\r
521}\r
522\r
367284e7 523/**\r
03a1a925
JF
524 Initialize CPU AP Data when AP is wakeup at the first time.\r
525\r
526 @param[in, out] CpuMpData Pointer to PEI CPU MP Data\r
527 @param[in] ProcessorNumber The handle number of processor\r
528 @param[in] BistData Processor BIST data\r
367284e7 529 @param[in] ApTopOfStack Top of AP stack\r
03a1a925
JF
530\r
531**/\r
532VOID\r
533InitializeApData (\r
534 IN OUT CPU_MP_DATA *CpuMpData,\r
535 IN UINTN ProcessorNumber,\r
845c5be1 536 IN UINT32 BistData,\r
dd3fa0cd 537 IN UINT64 ApTopOfStack\r
03a1a925
JF
538 )\r
539{\r
31a1e4da
JF
540 CPU_INFO_IN_HOB *CpuInfoInHob;\r
541\r
542 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
543 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
544 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
545 CpuInfoInHob[ProcessorNumber].Health = BistData;\r
dd3fa0cd 546 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;\r
31a1e4da 547\r
03a1a925 548 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
03a1a925 549 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;\r
31a1e4da 550 if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {\r
03a1a925
JF
551 //\r
552 // Set x2APIC mode if there are any logical processor reporting\r
553 // an Initial APIC ID of 255 or greater.\r
554 //\r
555 AcquireSpinLock(&CpuMpData->MpLock);\r
556 CpuMpData->X2ApicEnable = TRUE;\r
557 ReleaseSpinLock(&CpuMpData->MpLock);\r
558 }\r
559\r
560 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);\r
561 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
562}\r
563\r
b8b04307
JF
564/**\r
565 This function will be called from AP reset code if BSP uses WakeUpAP.\r
566\r
567 @param[in] ExchangeInfo Pointer to the MP exchange info buffer\r
9fcea114 568 @param[in] ApIndex Number of current executing AP\r
b8b04307
JF
569**/\r
570VOID\r
571EFIAPI\r
572ApWakeupFunction (\r
573 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,\r
37676b9f 574 IN UINTN ApIndex\r
b8b04307
JF
575 )\r
576{\r
577 CPU_MP_DATA *CpuMpData;\r
578 UINTN ProcessorNumber;\r
579 EFI_AP_PROCEDURE Procedure;\r
580 VOID *Parameter;\r
581 UINT32 BistData;\r
582 volatile UINT32 *ApStartupSignalBuffer;\r
31a1e4da 583 CPU_INFO_IN_HOB *CpuInfoInHob;\r
dd3fa0cd 584 UINT64 ApTopOfStack;\r
c6b0feb3 585 UINTN CurrentApicMode;\r
b8b04307
JF
586\r
587 //\r
588 // AP finished assembly code and begin to execute C code\r
589 //\r
590 CpuMpData = ExchangeInfo->CpuMpData;\r
591\r
ffab2442
JF
592 //\r
593 // AP's local APIC settings will be lost after received INIT IPI\r
594 // We need to re-initialize them at here\r
595 //\r
596 ProgramVirtualWireMode ();\r
a2ea6894
RN
597 //\r
598 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.\r
599 //\r
600 DisableLvtInterrupts ();\r
ffab2442 601 SyncLocalApicTimerSetting (CpuMpData);\r
b8b04307 602\r
c6b0feb3 603 CurrentApicMode = GetApicMode ();\r
b8b04307
JF
604 while (TRUE) {\r
605 if (CpuMpData->InitFlag == ApInitConfig) {\r
606 //\r
607 // Add CPU number\r
608 //\r
609 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);\r
37676b9f 610 ProcessorNumber = ApIndex;\r
b8b04307
JF
611 //\r
612 // This is first time AP wakeup, get BIST information from AP stack\r
613 //\r
845c5be1 614 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;\r
dd3fa0cd 615 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));\r
b8b04307
JF
616 //\r
617 // Do some AP initialize sync\r
618 //\r
619 ApInitializeSync (CpuMpData);\r
620 //\r
c563077a
RN
621 // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,\r
622 // to initialize AP in InitConfig path.\r
623 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.\r
b8b04307
JF
624 //\r
625 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);\r
845c5be1 626 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);\r
b8b04307
JF
627 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
628 } else {\r
629 //\r
630 // Execute AP function if AP is ready\r
631 //\r
632 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
633 //\r
634 // Clear AP start-up signal when AP waken up\r
635 //\r
636 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
637 InterlockedCompareExchange32 (\r
638 (UINT32 *) ApStartupSignalBuffer,\r
639 WAKEUP_AP_SIGNAL,\r
640 0\r
641 );\r
642 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
643 //\r
644 // Restore AP's volatile registers saved\r
645 //\r
646 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);\r
199de896
JW
647 } else {\r
648 //\r
649 // The CPU driver might not flush TLB for APs on spot after updating\r
650 // page attributes. AP in mwait loop mode needs to take care of it when\r
651 // woken up.\r
652 //\r
653 CpuFlushTlb ();\r
b8b04307
JF
654 }\r
655\r
656 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {\r
657 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;\r
658 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;\r
659 if (Procedure != NULL) {\r
660 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);\r
661 //\r
43c9fdcc 662 // Enable source debugging on AP function\r
7367cc6c 663 //\r
43c9fdcc
JF
664 EnableDebugAgent ();\r
665 //\r
b8b04307
JF
666 // Invoke AP function here\r
667 //\r
668 Procedure (Parameter);\r
31a1e4da 669 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
41be0da5
JF
670 if (CpuMpData->SwitchBspFlag) {\r
671 //\r
672 // Re-get the processor number due to BSP/AP maybe exchange in AP function\r
673 //\r
674 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
675 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;\r
676 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;\r
b3775af2
JF
677 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
678 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;\r
41be0da5 679 } else {\r
c6b0feb3
JF
680 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||\r
681 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {\r
682 if (CurrentApicMode != GetApicMode ()) {\r
683 //\r
684 // If APIC mode change happened during AP function execution,\r
685 // we do not support APIC ID value changed.\r
686 //\r
687 ASSERT (FALSE);\r
688 CpuDeadLoop ();\r
689 } else {\r
690 //\r
691 // Re-get the CPU APICID and Initial APICID if they are changed\r
692 //\r
693 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
694 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
695 }\r
696 }\r
41be0da5 697 }\r
b8b04307 698 }\r
2a5997f8 699 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
b8b04307
JF
700 }\r
701 }\r
702\r
703 //\r
704 // AP finished executing C code\r
705 //\r
706 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);\r
0594ec41 707 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);\r
b8b04307
JF
708\r
709 //\r
710 // Place AP is specified loop mode\r
711 //\r
712 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
713 //\r
714 // Save AP volatile registers\r
715 //\r
716 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);\r
717 //\r
718 // Place AP in HLT-loop\r
719 //\r
720 while (TRUE) {\r
721 DisableInterrupts ();\r
722 CpuSleep ();\r
723 CpuPause ();\r
724 }\r
725 }\r
726 while (TRUE) {\r
727 DisableInterrupts ();\r
728 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
729 //\r
730 // Place AP in MWAIT-loop\r
731 //\r
732 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);\r
733 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {\r
734 //\r
735 // Check AP start-up signal again.\r
736 // If AP start-up signal is not set, place AP into\r
737 // the specified C-state\r
738 //\r
739 AsmMwait (CpuMpData->ApTargetCState << 4, 0);\r
740 }\r
741 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {\r
742 //\r
743 // Place AP in Run-loop\r
744 //\r
745 CpuPause ();\r
746 } else {\r
747 ASSERT (FALSE);\r
748 }\r
749\r
750 //\r
751 // If AP start-up signal is written, AP is waken up\r
752 // otherwise place AP in loop again\r
753 //\r
754 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {\r
755 break;\r
756 }\r
757 }\r
758 }\r
759}\r
760\r
96f5920d
JF
761/**\r
762 Wait for AP wakeup and write AP start-up signal till AP is waken up.\r
763\r
764 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal\r
765**/\r
766VOID\r
767WaitApWakeup (\r
768 IN volatile UINT32 *ApStartupSignalBuffer\r
769 )\r
770{\r
771 //\r
772 // If AP is waken up, StartupApSignal should be cleared.\r
773 // Otherwise, write StartupApSignal again till AP waken up.\r
774 //\r
775 while (InterlockedCompareExchange32 (\r
776 (UINT32 *) ApStartupSignalBuffer,\r
777 WAKEUP_AP_SIGNAL,\r
778 WAKEUP_AP_SIGNAL\r
779 ) != 0) {\r
780 CpuPause ();\r
781 }\r
782}\r
783\r
7c3f2a12
JF
784/**\r
785 This function will fill the exchange info structure.\r
786\r
787 @param[in] CpuMpData Pointer to CPU MP Data\r
788\r
789**/\r
790VOID\r
791FillExchangeInfoData (\r
792 IN CPU_MP_DATA *CpuMpData\r
793 )\r
794{\r
795 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
f32bfe6d
JW
796 UINTN Size;\r
797 IA32_SEGMENT_DESCRIPTOR *Selector;\r
7c3f2a12
JF
798\r
799 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
800 ExchangeInfo->Lock = 0;\r
801 ExchangeInfo->StackStart = CpuMpData->Buffer;\r
802 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;\r
803 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;\r
804 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;\r
805\r
806 ExchangeInfo->CodeSegment = AsmReadCs ();\r
807 ExchangeInfo->DataSegment = AsmReadDs ();\r
808\r
809 ExchangeInfo->Cr3 = AsmReadCr3 ();\r
810\r
811 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;\r
37676b9f 812 ExchangeInfo->ApIndex = 0;\r
0594ec41 813 ExchangeInfo->NumApsExecuting = 0;\r
46d4b885
JF
814 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;\r
815 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
7c3f2a12
JF
816 ExchangeInfo->CpuMpData = CpuMpData;\r
817\r
818 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();\r
819\r
3b2928b4
MK
820 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;\r
821\r
7c3f2a12
JF
822 //\r
823 // Get the BSP's data of GDT and IDT\r
824 //\r
825 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);\r
826 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);\r
f32bfe6d
JW
827\r
828 //\r
829 // Find a 32-bit code segment\r
830 //\r
831 Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;\r
832 Size = ExchangeInfo->GdtrProfile.Limit + 1;\r
833 while (Size > 0) {\r
834 if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {\r
835 ExchangeInfo->ModeTransitionSegment =\r
836 (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);\r
837 break;\r
838 }\r
839 Selector += 1;\r
840 Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);\r
841 }\r
842\r
843 //\r
844 // Copy all 32-bit code and 64-bit code into memory with type of\r
845 // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.\r
846 //\r
66833b2a 847 if (CpuMpData->WakeupBufferHigh != 0) {\r
f32bfe6d
JW
848 Size = CpuMpData->AddressMap.RendezvousFunnelSize -\r
849 CpuMpData->AddressMap.ModeTransitionOffset;\r
850 CopyMem (\r
66833b2a 851 (VOID *)CpuMpData->WakeupBufferHigh,\r
f32bfe6d
JW
852 CpuMpData->AddressMap.RendezvousFunnelAddress +\r
853 CpuMpData->AddressMap.ModeTransitionOffset,\r
854 Size\r
855 );\r
856\r
66833b2a 857 ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;\r
f32bfe6d
JW
858 } else {\r
859 ExchangeInfo->ModeTransitionMemory = (UINT32)\r
860 (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);\r
861 }\r
69dfa8d8
JW
862\r
863 ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +\r
864 (UINT32)ExchangeInfo->ModeOffset -\r
865 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;\r
866 ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;\r
7c3f2a12
JF
867}\r
868\r
6e1987f1
LE
869/**\r
870 Helper function that waits until the finished AP count reaches the specified\r
871 limit, or the specified timeout elapses (whichever comes first).\r
872\r
873 @param[in] CpuMpData Pointer to CPU MP Data.\r
874 @param[in] FinishedApLimit The number of finished APs to wait for.\r
875 @param[in] TimeLimit The number of microseconds to wait for.\r
876**/\r
877VOID\r
878TimedWaitForApFinish (\r
879 IN CPU_MP_DATA *CpuMpData,\r
880 IN UINT32 FinishedApLimit,\r
881 IN UINT32 TimeLimit\r
882 );\r
883\r
a6b3d753
SZ
884/**\r
885 Get available system memory below 1MB by specified size.\r
886\r
887 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
888**/\r
889VOID\r
890BackupAndPrepareWakeupBuffer(\r
891 IN CPU_MP_DATA *CpuMpData\r
892 )\r
893{\r
894 CopyMem (\r
895 (VOID *) CpuMpData->BackupBuffer,\r
896 (VOID *) CpuMpData->WakeupBuffer,\r
897 CpuMpData->BackupBufferSize\r
898 );\r
899 CopyMem (\r
900 (VOID *) CpuMpData->WakeupBuffer,\r
901 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,\r
902 CpuMpData->AddressMap.RendezvousFunnelSize\r
903 );\r
904}\r
905\r
906/**\r
907 Restore wakeup buffer data.\r
908\r
909 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
910**/\r
911VOID\r
912RestoreWakeupBuffer(\r
913 IN CPU_MP_DATA *CpuMpData\r
914 )\r
915{\r
916 CopyMem (\r
917 (VOID *) CpuMpData->WakeupBuffer,\r
918 (VOID *) CpuMpData->BackupBuffer,\r
919 CpuMpData->BackupBufferSize\r
920 );\r
921}\r
922\r
923/**\r
924 Allocate reset vector buffer.\r
925\r
926 @param[in, out] CpuMpData The pointer to CPU MP Data structure.\r
927**/\r
928VOID\r
929AllocateResetVector (\r
930 IN OUT CPU_MP_DATA *CpuMpData\r
931 )\r
932{\r
933 UINTN ApResetVectorSize;\r
934\r
935 if (CpuMpData->WakeupBuffer == (UINTN) -1) {\r
936 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +\r
937 sizeof (MP_CPU_EXCHANGE_INFO);\r
938\r
939 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);\r
940 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)\r
941 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);\r
66833b2a
JW
942 CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (\r
943 CpuMpData->AddressMap.RendezvousFunnelSize -\r
944 CpuMpData->AddressMap.ModeTransitionOffset\r
945 );\r
a6b3d753
SZ
946 }\r
947 BackupAndPrepareWakeupBuffer (CpuMpData);\r
948}\r
949\r
950/**\r
951 Free AP reset vector buffer.\r
952\r
953 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
954**/\r
955VOID\r
956FreeResetVector (\r
957 IN CPU_MP_DATA *CpuMpData\r
958 )\r
959{\r
960 RestoreWakeupBuffer (CpuMpData);\r
961}\r
962\r
96f5920d
JF
963/**\r
964 This function will be called by BSP to wakeup AP.\r
965\r
966 @param[in] CpuMpData Pointer to CPU MP Data\r
967 @param[in] Broadcast TRUE: Send broadcast IPI to all APs\r
968 FALSE: Send IPI to AP by ApicId\r
969 @param[in] ProcessorNumber The handle number of specified processor\r
970 @param[in] Procedure The function to be invoked by AP\r
971 @param[in] ProcedureArgument The argument to be passed into AP function\r
972**/\r
973VOID\r
974WakeUpAP (\r
975 IN CPU_MP_DATA *CpuMpData,\r
976 IN BOOLEAN Broadcast,\r
977 IN UINTN ProcessorNumber,\r
978 IN EFI_AP_PROCEDURE Procedure, OPTIONAL\r
979 IN VOID *ProcedureArgument OPTIONAL\r
980 )\r
981{\r
982 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
983 UINTN Index;\r
984 CPU_AP_DATA *CpuData;\r
985 BOOLEAN ResetVectorRequired;\r
31a1e4da 986 CPU_INFO_IN_HOB *CpuInfoInHob;\r
96f5920d
JF
987\r
988 CpuMpData->FinishedCount = 0;\r
989 ResetVectorRequired = FALSE;\r
990\r
58942277 991 if (CpuMpData->WakeUpByInitSipiSipi ||\r
96f5920d
JF
992 CpuMpData->InitFlag != ApInitDone) {\r
993 ResetVectorRequired = TRUE;\r
994 AllocateResetVector (CpuMpData);\r
995 FillExchangeInfoData (CpuMpData);\r
ffab2442 996 SaveLocalApicTimerSetting (CpuMpData);\r
58942277
ED
997 }\r
998\r
999 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
96f5920d
JF
1000 //\r
1001 // Get AP target C-state each time when waking up AP,\r
1002 // for it maybe updated by platform again\r
1003 //\r
1004 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);\r
1005 }\r
1006\r
1007 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
1008\r
1009 if (Broadcast) {\r
1010 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1011 if (Index != CpuMpData->BspNumber) {\r
1012 CpuData = &CpuMpData->CpuData[Index];\r
1013 CpuData->ApFunction = (UINTN) Procedure;\r
1014 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1015 SetApState (CpuData, CpuStateReady);\r
1016 if (CpuMpData->InitFlag != ApInitConfig) {\r
1017 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1018 }\r
1019 }\r
1020 }\r
1021 if (ResetVectorRequired) {\r
1022 //\r
1023 // Wakeup all APs\r
1024 //\r
1025 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);\r
1026 }\r
c1192210
JF
1027 if (CpuMpData->InitFlag == ApInitConfig) {\r
1028 //\r
86121874
ED
1029 // Here support two methods to collect AP count through adjust\r
1030 // PcdCpuApInitTimeOutInMicroSeconds values.\r
1031 //\r
1032 // one way is set a value to just let the first AP to start the\r
1033 // initialization, then through the later while loop to wait all Aps\r
1034 // finsh the initialization.\r
1035 // The other way is set a value to let all APs finished the initialzation.\r
1036 // In this case, the later while loop is useless.\r
1037 //\r
1038 TimedWaitForApFinish (\r
1039 CpuMpData,\r
1040 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,\r
1041 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)\r
1042 );\r
0594ec41
ED
1043\r
1044 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {\r
1045 CpuPause();\r
1046 }\r
c1192210 1047 } else {\r
96f5920d
JF
1048 //\r
1049 // Wait all APs waken up if this is not the 1st broadcast of SIPI\r
1050 //\r
1051 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1052 CpuData = &CpuMpData->CpuData[Index];\r
1053 if (Index != CpuMpData->BspNumber) {\r
1054 WaitApWakeup (CpuData->StartupApSignal);\r
1055 }\r
1056 }\r
1057 }\r
1058 } else {\r
1059 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1060 CpuData->ApFunction = (UINTN) Procedure;\r
1061 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1062 SetApState (CpuData, CpuStateReady);\r
1063 //\r
1064 // Wakeup specified AP\r
1065 //\r
1066 ASSERT (CpuMpData->InitFlag != ApInitConfig);\r
1067 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1068 if (ResetVectorRequired) {\r
31a1e4da 1069 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
96f5920d 1070 SendInitSipiSipi (\r
31a1e4da 1071 CpuInfoInHob[ProcessorNumber].ApicId,\r
96f5920d
JF
1072 (UINT32) ExchangeInfo->BufferStart\r
1073 );\r
1074 }\r
1075 //\r
1076 // Wait specified AP waken up\r
1077 //\r
1078 WaitApWakeup (CpuData->StartupApSignal);\r
1079 }\r
1080\r
1081 if (ResetVectorRequired) {\r
1082 FreeResetVector (CpuMpData);\r
1083 }\r
58942277
ED
1084\r
1085 //\r
1086 // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with\r
1087 // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by\r
1088 // S3SmmInitDone Ppi.\r
1089 //\r
1090 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
96f5920d
JF
1091}\r
1092\r
08085f08
JF
1093/**\r
1094 Calculate timeout value and return the current performance counter value.\r
1095\r
1096 Calculate the number of performance counter ticks required for a timeout.\r
1097 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1098 as infinity.\r
1099\r
1100 @param[in] TimeoutInMicroseconds Timeout value in microseconds.\r
1101 @param[out] CurrentTime Returns the current value of the performance counter.\r
1102\r
1103 @return Expected time stamp counter for timeout.\r
1104 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1105 as infinity.\r
1106\r
1107**/\r
1108UINT64\r
1109CalculateTimeout (\r
1110 IN UINTN TimeoutInMicroseconds,\r
1111 OUT UINT64 *CurrentTime\r
1112 )\r
1113{\r
48cfb7c0
ED
1114 UINT64 TimeoutInSeconds;\r
1115 UINT64 TimestampCounterFreq;\r
1116\r
08085f08
JF
1117 //\r
1118 // Read the current value of the performance counter\r
1119 //\r
1120 *CurrentTime = GetPerformanceCounter ();\r
1121\r
1122 //\r
1123 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1124 // as infinity.\r
1125 //\r
1126 if (TimeoutInMicroseconds == 0) {\r
1127 return 0;\r
1128 }\r
1129\r
1130 //\r
1131 // GetPerformanceCounterProperties () returns the timestamp counter's frequency\r
7367cc6c 1132 // in Hz.\r
48cfb7c0
ED
1133 //\r
1134 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);\r
1135\r
08085f08 1136 //\r
48cfb7c0
ED
1137 // Check the potential overflow before calculate the number of ticks for the timeout value.\r
1138 //\r
1139 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {\r
1140 //\r
1141 // Convert microseconds into seconds if direct multiplication overflows\r
1142 //\r
1143 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);\r
1144 //\r
1145 // Assertion if the final tick count exceeds MAX_UINT64\r
1146 //\r
1147 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);\r
1148 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);\r
1149 } else {\r
1150 //\r
1151 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide\r
1152 // it by 1,000,000, to get the number of ticks for the timeout value.\r
1153 //\r
1154 return DivU64x32 (\r
1155 MultU64x64 (\r
1156 TimestampCounterFreq,\r
1157 TimeoutInMicroseconds\r
1158 ),\r
1159 1000000\r
1160 );\r
1161 }\r
08085f08
JF
1162}\r
1163\r
1164/**\r
1165 Checks whether timeout expires.\r
1166\r
1167 Check whether the number of elapsed performance counter ticks required for\r
1168 a timeout condition has been reached.\r
1169 If Timeout is zero, which means infinity, return value is always FALSE.\r
1170\r
1171 @param[in, out] PreviousTime On input, the value of the performance counter\r
1172 when it was last read.\r
1173 On output, the current value of the performance\r
1174 counter\r
1175 @param[in] TotalTime The total amount of elapsed time in performance\r
1176 counter ticks.\r
1177 @param[in] Timeout The number of performance counter ticks required\r
1178 to reach a timeout condition.\r
1179\r
1180 @retval TRUE A timeout condition has been reached.\r
1181 @retval FALSE A timeout condition has not been reached.\r
1182\r
1183**/\r
1184BOOLEAN\r
1185CheckTimeout (\r
1186 IN OUT UINT64 *PreviousTime,\r
1187 IN UINT64 *TotalTime,\r
1188 IN UINT64 Timeout\r
1189 )\r
1190{\r
1191 UINT64 Start;\r
1192 UINT64 End;\r
1193 UINT64 CurrentTime;\r
1194 INT64 Delta;\r
1195 INT64 Cycle;\r
1196\r
1197 if (Timeout == 0) {\r
1198 return FALSE;\r
1199 }\r
1200 GetPerformanceCounterProperties (&Start, &End);\r
1201 Cycle = End - Start;\r
1202 if (Cycle < 0) {\r
1203 Cycle = -Cycle;\r
1204 }\r
1205 Cycle++;\r
1206 CurrentTime = GetPerformanceCounter();\r
1207 Delta = (INT64) (CurrentTime - *PreviousTime);\r
1208 if (Start > End) {\r
1209 Delta = -Delta;\r
1210 }\r
1211 if (Delta < 0) {\r
1212 Delta += Cycle;\r
1213 }\r
1214 *TotalTime += Delta;\r
1215 *PreviousTime = CurrentTime;\r
1216 if (*TotalTime > Timeout) {\r
1217 return TRUE;\r
1218 }\r
1219 return FALSE;\r
1220}\r
1221\r
6e1987f1
LE
1222/**\r
1223 Helper function that waits until the finished AP count reaches the specified\r
1224 limit, or the specified timeout elapses (whichever comes first).\r
1225\r
1226 @param[in] CpuMpData Pointer to CPU MP Data.\r
1227 @param[in] FinishedApLimit The number of finished APs to wait for.\r
1228 @param[in] TimeLimit The number of microseconds to wait for.\r
1229**/\r
1230VOID\r
1231TimedWaitForApFinish (\r
1232 IN CPU_MP_DATA *CpuMpData,\r
1233 IN UINT32 FinishedApLimit,\r
1234 IN UINT32 TimeLimit\r
1235 )\r
1236{\r
1237 //\r
1238 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0\r
1239 // "infinity", so check for (TimeLimit == 0) explicitly.\r
1240 //\r
1241 if (TimeLimit == 0) {\r
1242 return;\r
1243 }\r
1244\r
1245 CpuMpData->TotalTime = 0;\r
1246 CpuMpData->ExpectedTime = CalculateTimeout (\r
1247 TimeLimit,\r
1248 &CpuMpData->CurrentTime\r
1249 );\r
1250 while (CpuMpData->FinishedCount < FinishedApLimit &&\r
1251 !CheckTimeout (\r
1252 &CpuMpData->CurrentTime,\r
1253 &CpuMpData->TotalTime,\r
1254 CpuMpData->ExpectedTime\r
1255 )) {\r
1256 CpuPause ();\r
1257 }\r
1258\r
1259 if (CpuMpData->FinishedCount >= FinishedApLimit) {\r
1260 DEBUG ((\r
1261 DEBUG_VERBOSE,\r
1262 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",\r
1263 __FUNCTION__,\r
1264 FinishedApLimit,\r
1265 DivU64x64Remainder (\r
1266 MultU64x32 (CpuMpData->TotalTime, 1000000),\r
1267 GetPerformanceCounterProperties (NULL, NULL),\r
1268 NULL\r
1269 )\r
1270 ));\r
1271 }\r
1272}\r
1273\r
08085f08
JF
1274/**\r
1275 Reset an AP to Idle state.\r
1276\r
1277 Any task being executed by the AP will be aborted and the AP\r
1278 will be waiting for a new task in Wait-For-SIPI state.\r
1279\r
1280 @param[in] ProcessorNumber The handle number of processor.\r
1281**/\r
1282VOID\r
1283ResetProcessorToIdleState (\r
1284 IN UINTN ProcessorNumber\r
1285 )\r
1286{\r
1287 CPU_MP_DATA *CpuMpData;\r
1288\r
1289 CpuMpData = GetCpuMpData ();\r
1290\r
cb33bde4 1291 CpuMpData->InitFlag = ApInitReconfig;\r
08085f08 1292 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL);\r
cb33bde4
JF
1293 while (CpuMpData->FinishedCount < 1) {\r
1294 CpuPause ();\r
1295 }\r
1296 CpuMpData->InitFlag = ApInitDone;\r
08085f08
JF
1297\r
1298 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
1299}\r
1300\r
1301/**\r
1302 Searches for the next waiting AP.\r
1303\r
1304 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().\r
1305\r
1306 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.\r
1307\r
1308 @retval EFI_SUCCESS The next waiting AP has been found.\r
1309 @retval EFI_NOT_FOUND No waiting AP exists.\r
1310\r
1311**/\r
1312EFI_STATUS\r
1313GetNextWaitingProcessorNumber (\r
1314 OUT UINTN *NextProcessorNumber\r
1315 )\r
1316{\r
1317 UINTN ProcessorNumber;\r
1318 CPU_MP_DATA *CpuMpData;\r
1319\r
1320 CpuMpData = GetCpuMpData ();\r
1321\r
1322 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1323 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1324 *NextProcessorNumber = ProcessorNumber;\r
1325 return EFI_SUCCESS;\r
1326 }\r
1327 }\r
1328\r
1329 return EFI_NOT_FOUND;\r
1330}\r
1331\r
1332/** Checks status of specified AP.\r
1333\r
1334 This function checks whether the specified AP has finished the task assigned\r
1335 by StartupThisAP(), and whether timeout expires.\r
1336\r
1337 @param[in] ProcessorNumber The handle number of processor.\r
1338\r
1339 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().\r
1340 @retval EFI_TIMEOUT The timeout expires.\r
1341 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.\r
1342**/\r
1343EFI_STATUS\r
1344CheckThisAP (\r
1345 IN UINTN ProcessorNumber\r
1346 )\r
1347{\r
1348 CPU_MP_DATA *CpuMpData;\r
1349 CPU_AP_DATA *CpuData;\r
1350\r
1351 CpuMpData = GetCpuMpData ();\r
1352 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1353\r
1354 //\r
2a5997f8 1355 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.\r
08085f08 1356 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
2a5997f8 1357 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.\r
08085f08
JF
1358 //\r
1359 //\r
1360 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.\r
1361 //\r
2a5997f8 1362 if (GetApState(CpuData) == CpuStateIdle) {\r
08085f08
JF
1363 if (CpuData->Finished != NULL) {\r
1364 *(CpuData->Finished) = TRUE;\r
1365 }\r
08085f08
JF
1366 return EFI_SUCCESS;\r
1367 } else {\r
1368 //\r
1369 // If timeout expires for StartupThisAP(), report timeout.\r
1370 //\r
1371 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {\r
1372 if (CpuData->Finished != NULL) {\r
1373 *(CpuData->Finished) = FALSE;\r
1374 }\r
1375 //\r
1376 // Reset failed AP to idle state\r
1377 //\r
1378 ResetProcessorToIdleState (ProcessorNumber);\r
1379\r
1380 return EFI_TIMEOUT;\r
1381 }\r
1382 }\r
1383 return EFI_NOT_READY;\r
1384}\r
1385\r
1386/**\r
1387 Checks status of all APs.\r
1388\r
1389 This function checks whether all APs have finished task assigned by StartupAllAPs(),\r
1390 and whether timeout expires.\r
1391\r
1392 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().\r
1393 @retval EFI_TIMEOUT The timeout expires.\r
1394 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.\r
1395**/\r
1396EFI_STATUS\r
1397CheckAllAPs (\r
1398 VOID\r
1399 )\r
1400{\r
1401 UINTN ProcessorNumber;\r
1402 UINTN NextProcessorNumber;\r
1403 UINTN ListIndex;\r
1404 EFI_STATUS Status;\r
1405 CPU_MP_DATA *CpuMpData;\r
1406 CPU_AP_DATA *CpuData;\r
1407\r
1408 CpuMpData = GetCpuMpData ();\r
1409\r
1410 NextProcessorNumber = 0;\r
1411\r
1412 //\r
1413 // Go through all APs that are responsible for the StartupAllAPs().\r
1414 //\r
1415 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1416 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1417 continue;\r
1418 }\r
1419\r
1420 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1421 //\r
2a5997f8 1422 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.\r
08085f08 1423 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
2a5997f8 1424 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.\r
08085f08 1425 //\r
2a5997f8 1426 if (GetApState(CpuData) == CpuStateIdle) {\r
08085f08
JF
1427 CpuMpData->RunningCount ++;\r
1428 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
08085f08
JF
1429\r
1430 //\r
1431 // If in Single Thread mode, then search for the next waiting AP for execution.\r
1432 //\r
1433 if (CpuMpData->SingleThread) {\r
1434 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);\r
1435\r
1436 if (!EFI_ERROR (Status)) {\r
1437 WakeUpAP (\r
1438 CpuMpData,\r
1439 FALSE,\r
1440 (UINT32) NextProcessorNumber,\r
1441 CpuMpData->Procedure,\r
1442 CpuMpData->ProcArguments\r
1443 );\r
1444 }\r
1445 }\r
1446 }\r
1447 }\r
1448\r
1449 //\r
1450 // If all APs finish, return EFI_SUCCESS.\r
1451 //\r
1452 if (CpuMpData->RunningCount == CpuMpData->StartCount) {\r
1453 return EFI_SUCCESS;\r
1454 }\r
1455\r
1456 //\r
1457 // If timeout expires, report timeout.\r
1458 //\r
1459 if (CheckTimeout (\r
1460 &CpuMpData->CurrentTime,\r
1461 &CpuMpData->TotalTime,\r
1462 CpuMpData->ExpectedTime)\r
1463 ) {\r
1464 //\r
1465 // If FailedCpuList is not NULL, record all failed APs in it.\r
1466 //\r
1467 if (CpuMpData->FailedCpuList != NULL) {\r
1468 *CpuMpData->FailedCpuList =\r
1469 AllocatePool ((CpuMpData->StartCount - CpuMpData->FinishedCount + 1) * sizeof (UINTN));\r
1470 ASSERT (*CpuMpData->FailedCpuList != NULL);\r
1471 }\r
1472 ListIndex = 0;\r
1473\r
1474 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1475 //\r
1476 // Check whether this processor is responsible for StartupAllAPs().\r
1477 //\r
1478 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1479 //\r
1480 // Reset failed APs to idle state\r
1481 //\r
1482 ResetProcessorToIdleState (ProcessorNumber);\r
1483 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1484 if (CpuMpData->FailedCpuList != NULL) {\r
1485 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;\r
1486 }\r
1487 }\r
1488 }\r
1489 if (CpuMpData->FailedCpuList != NULL) {\r
1490 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;\r
1491 }\r
1492 return EFI_TIMEOUT;\r
1493 }\r
1494 return EFI_NOT_READY;\r
1495}\r
1496\r
3e8ad6bd
JF
1497/**\r
1498 MP Initialize Library initialization.\r
1499\r
1500 This service will allocate AP reset vector and wakeup all APs to do APs\r
1501 initialization.\r
1502\r
1503 This service must be invoked before all other MP Initialize Library\r
1504 service are invoked.\r
1505\r
1506 @retval EFI_SUCCESS MP initialization succeeds.\r
1507 @retval Others MP initialization fails.\r
1508\r
1509**/\r
1510EFI_STATUS\r
1511EFIAPI\r
1512MpInitLibInitialize (\r
1513 VOID\r
1514 )\r
1515{\r
6a2ee2bb
JF
1516 CPU_MP_DATA *OldCpuMpData;\r
1517 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e59f8f6b
JF
1518 UINT32 MaxLogicalProcessorNumber;\r
1519 UINT32 ApStackSize;\r
f7f85d83 1520 MP_ASSEMBLY_ADDRESS_MAP AddressMap;\r
c563077a 1521 CPU_VOLATILE_REGISTERS VolatileRegisters;\r
e59f8f6b 1522 UINTN BufferSize;\r
9ebcf0f4 1523 UINT32 MonitorFilterSize;\r
e59f8f6b
JF
1524 VOID *MpBuffer;\r
1525 UINTN Buffer;\r
1526 CPU_MP_DATA *CpuMpData;\r
9ebcf0f4 1527 UINT8 ApLoopMode;\r
e59f8f6b 1528 UINT8 *MonitorBuffer;\r
03a1a925 1529 UINTN Index;\r
f7f85d83 1530 UINTN ApResetVectorSize;\r
e59f8f6b 1531 UINTN BackupBufferAddr;\r
c563077a 1532 UINTN ApIdtBase;\r
6936ee03 1533 VOID *MicrocodePatchInRam;\r
6a2ee2bb
JF
1534\r
1535 OldCpuMpData = GetCpuMpDataFromGuidedHob ();\r
1536 if (OldCpuMpData == NULL) {\r
1537 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);\r
1538 } else {\r
1539 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;\r
1540 }\r
14e8137c 1541 ASSERT (MaxLogicalProcessorNumber != 0);\r
f7f85d83
JF
1542\r
1543 AsmGetAddressMap (&AddressMap);\r
1544 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);\r
e59f8f6b 1545 ApStackSize = PcdGet32(PcdCpuApStackSize);\r
9ebcf0f4
JF
1546 ApLoopMode = GetApLoopMode (&MonitorFilterSize);\r
1547\r
c563077a
RN
1548 //\r
1549 // Save BSP's Control registers for APs\r
1550 //\r
1551 SaveVolatileRegisters (&VolatileRegisters);\r
1552\r
e59f8f6b
JF
1553 BufferSize = ApStackSize * MaxLogicalProcessorNumber;\r
1554 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;\r
e59f8f6b 1555 BufferSize += ApResetVectorSize;\r
c563077a
RN
1556 BufferSize = ALIGN_VALUE (BufferSize, 8);\r
1557 BufferSize += VolatileRegisters.Idtr.Limit + 1;\r
1558 BufferSize += sizeof (CPU_MP_DATA);\r
e59f8f6b
JF
1559 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;\r
1560 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));\r
1561 ASSERT (MpBuffer != NULL);\r
1562 ZeroMem (MpBuffer, BufferSize);\r
1563 Buffer = (UINTN) MpBuffer;\r
1564\r
c563077a
RN
1565 //\r
1566 // The layout of the Buffer is as below:\r
1567 //\r
1568 // +--------------------+ <-- Buffer\r
1569 // AP Stacks (N)\r
1570 // +--------------------+ <-- MonitorBuffer\r
1571 // AP Monitor Filters (N)\r
1572 // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)\r
1573 // Backup Buffer\r
1574 // +--------------------+\r
1575 // Padding\r
1576 // +--------------------+ <-- ApIdtBase (8-byte boundary)\r
1577 // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.\r
1578 // +--------------------+ <-- CpuMpData\r
1579 // CPU_MP_DATA\r
1580 // +--------------------+ <-- CpuMpData->CpuData\r
1581 // CPU_AP_DATA (N)\r
1582 // +--------------------+ <-- CpuMpData->CpuInfoInHob\r
1583 // CPU_INFO_IN_HOB (N)\r
1584 // +--------------------+\r
1585 //\r
e59f8f6b
JF
1586 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);\r
1587 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;\r
c563077a
RN
1588 ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);\r
1589 CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);\r
e59f8f6b
JF
1590 CpuMpData->Buffer = Buffer;\r
1591 CpuMpData->CpuApStackSize = ApStackSize;\r
1592 CpuMpData->BackupBuffer = BackupBufferAddr;\r
1593 CpuMpData->BackupBufferSize = ApResetVectorSize;\r
e59f8f6b
JF
1594 CpuMpData->WakeupBuffer = (UINTN) -1;\r
1595 CpuMpData->CpuCount = 1;\r
1596 CpuMpData->BspNumber = 0;\r
1597 CpuMpData->WaitEvent = NULL;\r
41be0da5 1598 CpuMpData->SwitchBspFlag = FALSE;\r
e59f8f6b
JF
1599 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);\r
1600 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);\r
1e3f7a37 1601 CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);\r
6936ee03
ED
1602 //\r
1603 // If platform has more than one CPU, relocate microcode to memory to reduce\r
1604 // loading microcode time.\r
1605 //\r
1606 MicrocodePatchInRam = NULL;\r
1607 if (MaxLogicalProcessorNumber > 1) {\r
1608 MicrocodePatchInRam = AllocatePages (\r
1609 EFI_SIZE_TO_PAGES (\r
1610 (UINTN)CpuMpData->MicrocodePatchRegionSize\r
1611 )\r
1612 );\r
1613 }\r
1614 if (MicrocodePatchInRam == NULL) {\r
1615 //\r
1616 // there is only one processor, or no microcode patch is available, or\r
1617 // memory allocation failed\r
1618 //\r
1619 CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);\r
1620 } else {\r
1621 //\r
1622 // there are multiple processors, and a microcode patch is available, and\r
1623 // memory allocation succeeded\r
1624 //\r
1625 CopyMem (\r
1626 MicrocodePatchInRam,\r
1627 (VOID *)(UINTN)PcdGet64 (PcdCpuMicrocodePatchAddress),\r
1628 (UINTN)CpuMpData->MicrocodePatchRegionSize\r
1629 );\r
1630 CpuMpData->MicrocodePatchAddress = (UINTN)MicrocodePatchInRam;\r
1631 }\r
1632\r
e59f8f6b 1633 InitializeSpinLock(&CpuMpData->MpLock);\r
c563077a
RN
1634\r
1635 //\r
1636 // Make sure no memory usage outside of the allocated buffer.\r
e59f8f6b 1637 //\r
c563077a
RN
1638 ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==\r
1639 Buffer + BufferSize);\r
1640\r
1641 //\r
1642 // Duplicate BSP's IDT to APs.\r
1643 // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1\r
68cb9330 1644 //\r
c563077a
RN
1645 CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);\r
1646 VolatileRegisters.Idtr.Base = ApIdtBase;\r
1647 CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));\r
68cb9330 1648 //\r
03a1a925
JF
1649 // Set BSP basic information\r
1650 //\r
f2655dcf 1651 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);\r
03a1a925 1652 //\r
e59f8f6b
JF
1653 // Save assembly code information\r
1654 //\r
1655 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));\r
1656 //\r
1657 // Finally set AP loop mode\r
1658 //\r
1659 CpuMpData->ApLoopMode = ApLoopMode;\r
1660 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));\r
58942277
ED
1661\r
1662 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
1663\r
e59f8f6b 1664 //\r
03a1a925
JF
1665 // Set up APs wakeup signal buffer\r
1666 //\r
1667 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {\r
1668 CpuMpData->CpuData[Index].StartupApSignal =\r
1669 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);\r
1670 }\r
94f63c76
JF
1671 //\r
1672 // Load Microcode on BSP\r
1673 //\r
2a089134 1674 MicrocodeDetect (CpuMpData, TRUE);\r
94f63c76 1675 //\r
e59f8f6b
JF
1676 // Store BSP's MTRR setting\r
1677 //\r
1678 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);\r
9d64a9fd
JF
1679 //\r
1680 // Enable the local APIC for Virtual Wire Mode.\r
1681 //\r
1682 ProgramVirtualWireMode ();\r
e59f8f6b 1683\r
6a2ee2bb 1684 if (OldCpuMpData == NULL) {\r
14e8137c
JF
1685 if (MaxLogicalProcessorNumber > 1) {\r
1686 //\r
1687 // Wakeup all APs and calculate the processor count in system\r
1688 //\r
1689 CollectProcessorCount (CpuMpData);\r
1690 }\r
6a2ee2bb
JF
1691 } else {\r
1692 //\r
1693 // APs have been wakeup before, just get the CPU Information\r
1694 // from HOB\r
1695 //\r
1696 CpuMpData->CpuCount = OldCpuMpData->CpuCount;\r
1697 CpuMpData->BspNumber = OldCpuMpData->BspNumber;\r
1698 CpuMpData->InitFlag = ApInitReconfig;\r
31a1e4da
JF
1699 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;\r
1700 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
6a2ee2bb
JF
1701 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1702 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);\r
71d8226a 1703 if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {\r
6a2ee2bb
JF
1704 CpuMpData->X2ApicEnable = TRUE;\r
1705 }\r
31a1e4da 1706 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;\r
6a2ee2bb 1707 CpuMpData->CpuData[Index].ApFunction = 0;\r
c563077a 1708 CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS));\r
6a2ee2bb 1709 }\r
14e8137c
JF
1710 if (MaxLogicalProcessorNumber > 1) {\r
1711 //\r
1712 // Wakeup APs to do some AP initialize sync\r
1713 //\r
1714 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData);\r
1715 //\r
1716 // Wait for all APs finished initialization\r
1717 //\r
1718 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
1719 CpuPause ();\r
1720 }\r
1721 CpuMpData->InitFlag = ApInitDone;\r
1722 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1723 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
1724 }\r
6a2ee2bb
JF
1725 }\r
1726 }\r
93ca4c0f
JF
1727\r
1728 //\r
1729 // Initialize global data for MP support\r
1730 //\r
1731 InitMpGlobalData (CpuMpData);\r
1732\r
f7f85d83 1733 return EFI_SUCCESS;\r
3e8ad6bd
JF
1734}\r
1735\r
1736/**\r
1737 Gets detailed MP-related information on the requested processor at the\r
1738 instant this call is made. This service may only be called from the BSP.\r
1739\r
1740 @param[in] ProcessorNumber The handle number of processor.\r
1741 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for\r
1742 the requested processor is deposited.\r
1743 @param[out] HealthData Return processor health data.\r
1744\r
1745 @retval EFI_SUCCESS Processor information was returned.\r
1746 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
1747 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.\r
1748 @retval EFI_NOT_FOUND The processor with the handle specified by\r
1749 ProcessorNumber does not exist in the platform.\r
1750 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1751\r
1752**/\r
1753EFI_STATUS\r
1754EFIAPI\r
1755MpInitLibGetProcessorInfo (\r
1756 IN UINTN ProcessorNumber,\r
1757 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,\r
1758 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL\r
1759 )\r
1760{\r
ad52f25e
JF
1761 CPU_MP_DATA *CpuMpData;\r
1762 UINTN CallerNumber;\r
31a1e4da 1763 CPU_INFO_IN_HOB *CpuInfoInHob;\r
ad52f25e
JF
1764\r
1765 CpuMpData = GetCpuMpData ();\r
31a1e4da 1766 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
ad52f25e
JF
1767\r
1768 //\r
1769 // Check whether caller processor is BSP\r
1770 //\r
1771 MpInitLibWhoAmI (&CallerNumber);\r
1772 if (CallerNumber != CpuMpData->BspNumber) {\r
1773 return EFI_DEVICE_ERROR;\r
1774 }\r
1775\r
1776 if (ProcessorInfoBuffer == NULL) {\r
1777 return EFI_INVALID_PARAMETER;\r
1778 }\r
1779\r
1780 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1781 return EFI_NOT_FOUND;\r
1782 }\r
1783\r
31a1e4da 1784 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;\r
ad52f25e
JF
1785 ProcessorInfoBuffer->StatusFlag = 0;\r
1786 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1787 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;\r
1788 }\r
1789 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {\r
1790 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;\r
1791 }\r
1792 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
1793 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;\r
1794 } else {\r
1795 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;\r
1796 }\r
1797\r
1798 //\r
1799 // Get processor location information\r
1800 //\r
262128e5 1801 GetProcessorLocationByApicId (\r
31a1e4da 1802 CpuInfoInHob[ProcessorNumber].ApicId,\r
73152f19
LD
1803 &ProcessorInfoBuffer->Location.Package,\r
1804 &ProcessorInfoBuffer->Location.Core,\r
1805 &ProcessorInfoBuffer->Location.Thread\r
1806 );\r
ad52f25e
JF
1807\r
1808 if (HealthData != NULL) {\r
31a1e4da 1809 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;\r
ad52f25e
JF
1810 }\r
1811\r
1812 return EFI_SUCCESS;\r
3e8ad6bd 1813}\r
ad52f25e 1814\r
41be0da5
JF
1815/**\r
1816 Worker function to switch the requested AP to be the BSP from that point onward.\r
1817\r
1818 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.\r
1819 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an\r
1820 enabled AP. Otherwise, it will be disabled.\r
1821\r
1822 @retval EFI_SUCCESS BSP successfully switched.\r
7367cc6c 1823 @retval others Failed to switch BSP.\r
41be0da5
JF
1824\r
1825**/\r
1826EFI_STATUS\r
1827SwitchBSPWorker (\r
1828 IN UINTN ProcessorNumber,\r
1829 IN BOOLEAN EnableOldBSP\r
1830 )\r
1831{\r
1832 CPU_MP_DATA *CpuMpData;\r
1833 UINTN CallerNumber;\r
1834 CPU_STATE State;\r
1835 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;\r
a8d75a18 1836 BOOLEAN OldInterruptState;\r
26b43433 1837 BOOLEAN OldTimerInterruptState;\r
a8d75a18 1838\r
26b43433
JF
1839 //\r
1840 // Save and Disable Local APIC timer interrupt\r
1841 //\r
1842 OldTimerInterruptState = GetApicTimerInterruptState ();\r
1843 DisableApicTimerInterrupt ();\r
a8d75a18
JF
1844 //\r
1845 // Before send both BSP and AP to a procedure to exchange their roles,\r
1846 // interrupt must be disabled. This is because during the exchange role\r
1847 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will\r
1848 // be corrupted, since interrupt return address will be pushed to stack\r
1849 // by hardware.\r
1850 //\r
1851 OldInterruptState = SaveAndDisableInterrupts ();\r
1852\r
1853 //\r
1854 // Mask LINT0 & LINT1 for the old BSP\r
1855 //\r
1856 DisableLvtInterrupts ();\r
41be0da5
JF
1857\r
1858 CpuMpData = GetCpuMpData ();\r
1859\r
1860 //\r
1861 // Check whether caller processor is BSP\r
1862 //\r
1863 MpInitLibWhoAmI (&CallerNumber);\r
1864 if (CallerNumber != CpuMpData->BspNumber) {\r
5e72dacc 1865 return EFI_DEVICE_ERROR;\r
41be0da5
JF
1866 }\r
1867\r
1868 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1869 return EFI_NOT_FOUND;\r
1870 }\r
1871\r
1872 //\r
1873 // Check whether specified AP is disabled\r
1874 //\r
1875 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);\r
1876 if (State == CpuStateDisabled) {\r
1877 return EFI_INVALID_PARAMETER;\r
1878 }\r
1879\r
1880 //\r
1881 // Check whether ProcessorNumber specifies the current BSP\r
1882 //\r
1883 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1884 return EFI_INVALID_PARAMETER;\r
1885 }\r
1886\r
1887 //\r
1888 // Check whether specified AP is busy\r
1889 //\r
1890 if (State == CpuStateBusy) {\r
1891 return EFI_NOT_READY;\r
1892 }\r
1893\r
1894 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;\r
1895 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;\r
1896 CpuMpData->SwitchBspFlag = TRUE;\r
b3775af2 1897 CpuMpData->NewBspNumber = ProcessorNumber;\r
41be0da5
JF
1898\r
1899 //\r
1900 // Clear the BSP bit of MSR_IA32_APIC_BASE\r
1901 //\r
1902 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1903 ApicBaseMsr.Bits.BSP = 0;\r
1904 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
1905\r
1906 //\r
1907 // Need to wakeUp AP (future BSP).\r
1908 //\r
1909 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData);\r
1910\r
1911 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);\r
1912\r
1913 //\r
1914 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP\r
1915 //\r
1916 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1917 ApicBaseMsr.Bits.BSP = 1;\r
1918 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
9c6961d5 1919 ProgramVirtualWireMode ();\r
41be0da5
JF
1920\r
1921 //\r
1922 // Wait for old BSP finished AP task\r
1923 //\r
2a5997f8 1924 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateIdle) {\r
41be0da5
JF
1925 CpuPause ();\r
1926 }\r
1927\r
1928 CpuMpData->SwitchBspFlag = FALSE;\r
1929 //\r
1930 // Set old BSP enable state\r
1931 //\r
1932 if (!EnableOldBSP) {\r
1933 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);\r
af8ba51a
JF
1934 } else {\r
1935 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);\r
41be0da5
JF
1936 }\r
1937 //\r
1938 // Save new BSP number\r
1939 //\r
1940 CpuMpData->BspNumber = (UINT32) ProcessorNumber;\r
1941\r
a8d75a18
JF
1942 //\r
1943 // Restore interrupt state.\r
1944 //\r
1945 SetInterruptState (OldInterruptState);\r
1946\r
26b43433
JF
1947 if (OldTimerInterruptState) {\r
1948 EnableApicTimerInterrupt ();\r
1949 }\r
a8d75a18 1950\r
41be0da5
JF
1951 return EFI_SUCCESS;\r
1952}\r
ad52f25e 1953\r
e37109bc
JF
1954/**\r
1955 Worker function to let the caller enable or disable an AP from this point onward.\r
1956 This service may only be called from the BSP.\r
1957\r
1958 @param[in] ProcessorNumber The handle number of AP.\r
1959 @param[in] EnableAP Specifies the new state for the processor for\r
1960 enabled, FALSE for disabled.\r
1961 @param[in] HealthFlag If not NULL, a pointer to a value that specifies\r
1962 the new health status of the AP.\r
1963\r
1964 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.\r
1965 @retval others Failed to Enable/Disable AP.\r
1966\r
1967**/\r
1968EFI_STATUS\r
1969EnableDisableApWorker (\r
1970 IN UINTN ProcessorNumber,\r
1971 IN BOOLEAN EnableAP,\r
1972 IN UINT32 *HealthFlag OPTIONAL\r
1973 )\r
1974{\r
1975 CPU_MP_DATA *CpuMpData;\r
1976 UINTN CallerNumber;\r
1977\r
1978 CpuMpData = GetCpuMpData ();\r
1979\r
1980 //\r
1981 // Check whether caller processor is BSP\r
1982 //\r
1983 MpInitLibWhoAmI (&CallerNumber);\r
1984 if (CallerNumber != CpuMpData->BspNumber) {\r
1985 return EFI_DEVICE_ERROR;\r
1986 }\r
1987\r
1988 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1989 return EFI_INVALID_PARAMETER;\r
1990 }\r
1991\r
1992 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1993 return EFI_NOT_FOUND;\r
1994 }\r
1995\r
1996 if (!EnableAP) {\r
1997 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);\r
1998 } else {\r
d5fdae96 1999 ResetProcessorToIdleState (ProcessorNumber);\r
e37109bc
JF
2000 }\r
2001\r
2002 if (HealthFlag != NULL) {\r
2003 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =\r
2004 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);\r
2005 }\r
2006\r
2007 return EFI_SUCCESS;\r
2008}\r
2009\r
3e8ad6bd
JF
2010/**\r
2011 This return the handle number for the calling processor. This service may be\r
2012 called from the BSP and APs.\r
2013\r
2014 @param[out] ProcessorNumber Pointer to the handle number of AP.\r
2015 The range is from 0 to the total number of\r
2016 logical processors minus 1. The total number of\r
2017 logical processors can be retrieved by\r
2018 MpInitLibGetNumberOfProcessors().\r
2019\r
2020 @retval EFI_SUCCESS The current processor handle number was returned\r
2021 in ProcessorNumber.\r
2022 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.\r
2023 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2024\r
2025**/\r
2026EFI_STATUS\r
2027EFIAPI\r
2028MpInitLibWhoAmI (\r
2029 OUT UINTN *ProcessorNumber\r
2030 )\r
2031{\r
5c9e0997
JF
2032 CPU_MP_DATA *CpuMpData;\r
2033\r
2034 if (ProcessorNumber == NULL) {\r
2035 return EFI_INVALID_PARAMETER;\r
2036 }\r
2037\r
2038 CpuMpData = GetCpuMpData ();\r
2039\r
2040 return GetProcessorNumber (CpuMpData, ProcessorNumber);\r
3e8ad6bd 2041}\r
809213a6 2042\r
3e8ad6bd
JF
2043/**\r
2044 Retrieves the number of logical processor in the platform and the number of\r
2045 those logical processors that are enabled on this boot. This service may only\r
2046 be called from the BSP.\r
2047\r
2048 @param[out] NumberOfProcessors Pointer to the total number of logical\r
2049 processors in the system, including the BSP\r
2050 and disabled APs.\r
2051 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical\r
2052 processors that exist in system, including\r
2053 the BSP.\r
2054\r
2055 @retval EFI_SUCCESS The number of logical processors and enabled\r
2056 logical processors was retrieved.\r
2057 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
2058 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors\r
2059 is NULL.\r
2060 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2061\r
2062**/\r
2063EFI_STATUS\r
2064EFIAPI\r
2065MpInitLibGetNumberOfProcessors (\r
2066 OUT UINTN *NumberOfProcessors, OPTIONAL\r
2067 OUT UINTN *NumberOfEnabledProcessors OPTIONAL\r
2068 )\r
2069{\r
809213a6
JF
2070 CPU_MP_DATA *CpuMpData;\r
2071 UINTN CallerNumber;\r
2072 UINTN ProcessorNumber;\r
2073 UINTN EnabledProcessorNumber;\r
2074 UINTN Index;\r
2075\r
2076 CpuMpData = GetCpuMpData ();\r
2077\r
2078 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {\r
2079 return EFI_INVALID_PARAMETER;\r
2080 }\r
2081\r
2082 //\r
2083 // Check whether caller processor is BSP\r
2084 //\r
2085 MpInitLibWhoAmI (&CallerNumber);\r
2086 if (CallerNumber != CpuMpData->BspNumber) {\r
2087 return EFI_DEVICE_ERROR;\r
2088 }\r
2089\r
2090 ProcessorNumber = CpuMpData->CpuCount;\r
2091 EnabledProcessorNumber = 0;\r
2092 for (Index = 0; Index < ProcessorNumber; Index++) {\r
2093 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {\r
2094 EnabledProcessorNumber ++;\r
2095 }\r
2096 }\r
2097\r
2098 if (NumberOfProcessors != NULL) {\r
2099 *NumberOfProcessors = ProcessorNumber;\r
2100 }\r
2101 if (NumberOfEnabledProcessors != NULL) {\r
2102 *NumberOfEnabledProcessors = EnabledProcessorNumber;\r
2103 }\r
2104\r
2105 return EFI_SUCCESS;\r
3e8ad6bd 2106}\r
6a2ee2bb 2107\r
809213a6 2108\r
86efe976
JF
2109/**\r
2110 Worker function to execute a caller provided function on all enabled APs.\r
2111\r
2112 @param[in] Procedure A pointer to the function to be run on\r
2113 enabled APs of the system.\r
2114 @param[in] SingleThread If TRUE, then all the enabled APs execute\r
2115 the function specified by Procedure one by\r
2116 one, in ascending order of processor handle\r
2117 number. If FALSE, then all the enabled APs\r
2118 execute the function specified by Procedure\r
2119 simultaneously.\r
2120 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2121 service.\r
367284e7 2122 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
86efe976
JF
2123 APs to return from Procedure, either for\r
2124 blocking or non-blocking mode.\r
2125 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2126 all APs.\r
2127 @param[out] FailedCpuList If all APs finish successfully, then its\r
2128 content is set to NULL. If not all APs\r
2129 finish before timeout expires, then its\r
2130 content is set to address of the buffer\r
2131 holding handle numbers of the failed APs.\r
2132\r
2133 @retval EFI_SUCCESS In blocking mode, all APs have finished before\r
2134 the timeout expired.\r
2135 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
2136 to all enabled APs.\r
2137 @retval others Failed to Startup all APs.\r
2138\r
2139**/\r
2140EFI_STATUS\r
2141StartupAllAPsWorker (\r
2142 IN EFI_AP_PROCEDURE Procedure,\r
2143 IN BOOLEAN SingleThread,\r
2144 IN EFI_EVENT WaitEvent OPTIONAL,\r
2145 IN UINTN TimeoutInMicroseconds,\r
2146 IN VOID *ProcedureArgument OPTIONAL,\r
2147 OUT UINTN **FailedCpuList OPTIONAL\r
2148 )\r
2149{\r
2150 EFI_STATUS Status;\r
2151 CPU_MP_DATA *CpuMpData;\r
2152 UINTN ProcessorCount;\r
2153 UINTN ProcessorNumber;\r
2154 UINTN CallerNumber;\r
2155 CPU_AP_DATA *CpuData;\r
2156 BOOLEAN HasEnabledAp;\r
2157 CPU_STATE ApState;\r
2158\r
2159 CpuMpData = GetCpuMpData ();\r
2160\r
2161 if (FailedCpuList != NULL) {\r
2162 *FailedCpuList = NULL;\r
2163 }\r
2164\r
2165 if (CpuMpData->CpuCount == 1) {\r
2166 return EFI_NOT_STARTED;\r
2167 }\r
2168\r
2169 if (Procedure == NULL) {\r
2170 return EFI_INVALID_PARAMETER;\r
2171 }\r
2172\r
2173 //\r
2174 // Check whether caller processor is BSP\r
2175 //\r
2176 MpInitLibWhoAmI (&CallerNumber);\r
2177 if (CallerNumber != CpuMpData->BspNumber) {\r
2178 return EFI_DEVICE_ERROR;\r
2179 }\r
2180\r
2181 //\r
2182 // Update AP state\r
2183 //\r
2184 CheckAndUpdateApsStatus ();\r
2185\r
2186 ProcessorCount = CpuMpData->CpuCount;\r
2187 HasEnabledAp = FALSE;\r
2188 //\r
2189 // Check whether all enabled APs are idle.\r
2190 // If any enabled AP is not idle, return EFI_NOT_READY.\r
2191 //\r
2192 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2193 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2194 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2195 ApState = GetApState (CpuData);\r
2196 if (ApState != CpuStateDisabled) {\r
2197 HasEnabledAp = TRUE;\r
2198 if (ApState != CpuStateIdle) {\r
2199 //\r
2200 // If any enabled APs are busy, return EFI_NOT_READY.\r
2201 //\r
2202 return EFI_NOT_READY;\r
2203 }\r
2204 }\r
2205 }\r
2206 }\r
2207\r
2208 if (!HasEnabledAp) {\r
2209 //\r
2210 // If no enabled AP exists, return EFI_NOT_STARTED.\r
2211 //\r
2212 return EFI_NOT_STARTED;\r
2213 }\r
2214\r
2215 CpuMpData->StartCount = 0;\r
2216 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2217 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2218 CpuData->Waiting = FALSE;\r
2219 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2220 if (CpuData->State == CpuStateIdle) {\r
2221 //\r
2222 // Mark this processor as responsible for current calling.\r
2223 //\r
2224 CpuData->Waiting = TRUE;\r
2225 CpuMpData->StartCount++;\r
2226 }\r
2227 }\r
2228 }\r
2229\r
2230 CpuMpData->Procedure = Procedure;\r
2231 CpuMpData->ProcArguments = ProcedureArgument;\r
2232 CpuMpData->SingleThread = SingleThread;\r
2233 CpuMpData->FinishedCount = 0;\r
2234 CpuMpData->RunningCount = 0;\r
2235 CpuMpData->FailedCpuList = FailedCpuList;\r
2236 CpuMpData->ExpectedTime = CalculateTimeout (\r
2237 TimeoutInMicroseconds,\r
2238 &CpuMpData->CurrentTime\r
2239 );\r
2240 CpuMpData->TotalTime = 0;\r
2241 CpuMpData->WaitEvent = WaitEvent;\r
2242\r
2243 if (!SingleThread) {\r
2244 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument);\r
2245 } else {\r
2246 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2247 if (ProcessorNumber == CallerNumber) {\r
2248 continue;\r
2249 }\r
2250 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
2251 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);\r
2252 break;\r
2253 }\r
2254 }\r
2255 }\r
2256\r
2257 Status = EFI_SUCCESS;\r
2258 if (WaitEvent == NULL) {\r
2259 do {\r
2260 Status = CheckAllAPs ();\r
2261 } while (Status == EFI_NOT_READY);\r
2262 }\r
2263\r
2264 return Status;\r
2265}\r
2266\r
20ae5774
JF
2267/**\r
2268 Worker function to let the caller get one enabled AP to execute a caller-provided\r
2269 function.\r
2270\r
2271 @param[in] Procedure A pointer to the function to be run on\r
2272 enabled APs of the system.\r
2273 @param[in] ProcessorNumber The handle number of the AP.\r
2274 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2275 service.\r
367284e7 2276 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
20ae5774
JF
2277 APs to return from Procedure, either for\r
2278 blocking or non-blocking mode.\r
2279 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2280 all APs.\r
2281 @param[out] Finished If AP returns from Procedure before the\r
2282 timeout expires, its content is set to TRUE.\r
2283 Otherwise, the value is set to FALSE.\r
2284\r
2285 @retval EFI_SUCCESS In blocking mode, specified AP finished before\r
2286 the timeout expires.\r
2287 @retval others Failed to Startup AP.\r
2288\r
2289**/\r
2290EFI_STATUS\r
2291StartupThisAPWorker (\r
2292 IN EFI_AP_PROCEDURE Procedure,\r
2293 IN UINTN ProcessorNumber,\r
2294 IN EFI_EVENT WaitEvent OPTIONAL,\r
2295 IN UINTN TimeoutInMicroseconds,\r
2296 IN VOID *ProcedureArgument OPTIONAL,\r
2297 OUT BOOLEAN *Finished OPTIONAL\r
2298 )\r
2299{\r
2300 EFI_STATUS Status;\r
2301 CPU_MP_DATA *CpuMpData;\r
2302 CPU_AP_DATA *CpuData;\r
2303 UINTN CallerNumber;\r
2304\r
2305 CpuMpData = GetCpuMpData ();\r
2306\r
2307 if (Finished != NULL) {\r
2308 *Finished = FALSE;\r
2309 }\r
2310\r
2311 //\r
2312 // Check whether caller processor is BSP\r
2313 //\r
2314 MpInitLibWhoAmI (&CallerNumber);\r
2315 if (CallerNumber != CpuMpData->BspNumber) {\r
2316 return EFI_DEVICE_ERROR;\r
2317 }\r
2318\r
2319 //\r
2320 // Check whether processor with the handle specified by ProcessorNumber exists\r
2321 //\r
2322 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2323 return EFI_NOT_FOUND;\r
2324 }\r
2325\r
2326 //\r
2327 // Check whether specified processor is BSP\r
2328 //\r
2329 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2330 return EFI_INVALID_PARAMETER;\r
2331 }\r
2332\r
2333 //\r
2334 // Check parameter Procedure\r
2335 //\r
2336 if (Procedure == NULL) {\r
2337 return EFI_INVALID_PARAMETER;\r
2338 }\r
2339\r
2340 //\r
2341 // Update AP state\r
2342 //\r
2343 CheckAndUpdateApsStatus ();\r
2344\r
2345 //\r
2346 // Check whether specified AP is disabled\r
2347 //\r
2348 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
2349 return EFI_INVALID_PARAMETER;\r
2350 }\r
2351\r
2352 //\r
2353 // If WaitEvent is not NULL, execute in non-blocking mode.\r
2354 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.\r
2355 // CheckAPsStatus() will check completion and timeout periodically.\r
2356 //\r
2357 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2358 CpuData->WaitEvent = WaitEvent;\r
2359 CpuData->Finished = Finished;\r
2360 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);\r
2361 CpuData->TotalTime = 0;\r
2362\r
2363 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);\r
2364\r
2365 //\r
2366 // If WaitEvent is NULL, execute in blocking mode.\r
2367 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.\r
2368 //\r
2369 Status = EFI_SUCCESS;\r
2370 if (WaitEvent == NULL) {\r
2371 do {\r
2372 Status = CheckThisAP (ProcessorNumber);\r
2373 } while (Status == EFI_NOT_READY);\r
2374 }\r
2375\r
2376 return Status;\r
2377}\r
2378\r
93ca4c0f
JF
2379/**\r
2380 Get pointer to CPU MP Data structure from GUIDed HOB.\r
2381\r
2382 @return The pointer to CPU MP Data structure.\r
2383**/\r
2384CPU_MP_DATA *\r
2385GetCpuMpDataFromGuidedHob (\r
2386 VOID\r
2387 )\r
2388{\r
2389 EFI_HOB_GUID_TYPE *GuidHob;\r
2390 VOID *DataInHob;\r
2391 CPU_MP_DATA *CpuMpData;\r
2392\r
2393 CpuMpData = NULL;\r
2394 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);\r
2395 if (GuidHob != NULL) {\r
2396 DataInHob = GET_GUID_HOB_DATA (GuidHob);\r
2397 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);\r
2398 }\r
2399 return CpuMpData;\r
2400}\r
42c37b3b 2401\r